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Face recognition has been an active research field for decades. In recent years,

with videos playing an increasingly important role in our everyday life, video-based

face recognition has begun to attract considerable research interest. This leads to a

wide range of potential application areas, including TV/movies search and parsing,

video surveillance, access control etc. Preliminary research results in this field have

suggested that by exploiting the abundant spatial-temporal information contained

in videos, we can greatly improve the accuracy and robustness of a visual recognition

system. On the other hand, as this research area is still in its infancy, developing

an end-to-end face processing pipeline that can robustly detect, track and recognize

faces remains a challenging task. The goal of this dissertation is to study some of

the related problems under different settings.

We address the video-based face association problem, in which one attempts

to extract face tracks of multiple subjects while maintaining label consistency. Tra-

ditional tracking algorithms have difficulty in handling this task, especially when

challenging nuisance factors like motion blur, low resolution or significant camera

motions are present. We demonstrate that contextual features, in addition to face

appearance itself, play an important role in this case. We propose principled meth-

ods to combine multiple features using Conditional Random Fields and Max-Margin

Markov networks to infer labels for the detected faces. Different from many existing



approaches, our algorithms work in online mode and hence have a wider range of

applications. We address issues such as parameter learning, inference and handling

false positves/negatives that arise in the proposed approach. Finally, we evaluate

our approach on several public databases.

We next propose a novel video-based face recognition framework. We ad-

dress the problem from two different aspects: To handle pose variations, we learn a

Structural-SVM based detector which can simultaneously localize the face fiducial

points and estimate the face pose. By adopting a different optimization criterion

from existing algorithms, we are able to improve localization accuracy. To model

other face variations, we use intra-personal/extra-personal dictionaries. The intra-

personal/extra-personal modeling of human faces has been shown to work success-

fully in the Bayesian face recognition framework. It has additional advantages in

scalability and generalization, which are of critical importance to real-world appli-

cations. Combining intra-personal/extra-personal models with dictionary learning

enables us to achieve state-of-arts performance on unconstrained video data, even

when the training data come from a different database.

Finally, we present an approach for video-based face recognition using camera

networks. The focus is on handling pose variations by applying the strength of the

multi-view camera network. However, rather than taking the typical approach of

modeling these variations, which eventually requires explicit knowledge about pose

parameters, we rely on a pose-robust feature that eliminates the needs for pose es-

timation. The pose-robust feature is developed using the Spherical Harmonic (SH)

representation theory. It is extracted using the surface texture map of a spherical

model which approximates the subject’s head. Feature vectors extracted from a

video are modeled as an ensemble of instances of a probability distribution in the

Reduced Kernel Hilbert Space (RKHS). The ensemble similarity measure in RKHS

improves both robustness and accuracy of the recognition system. The proposed ap-

proach outperforms traditional algorithms on a multi-view video database collected

using a camera network.
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Chapter 1

Introduction

The general face recognition problem can be defined as identifying faces in

a query database (probe) given a stored database of labeled faces (gallery). The

fact that humans can accomplish this task so well has encouraged researchers to

develop automatic solutions to the problem. However, in spite of the intense research

activities in face recognition performed over several decades [1] and the significant

advances that have been achieved, the performance of existing algorithms is not

good enough for deployment.

In recent years, researchers have started to consider the role of videos in au-

tomatic face recognition. This is partly because video arises naturally in many

important applications, such as surveillance and access control. But the more im-

portant reason is that videos contain more information than still images and can

provide spatial-temporal characteristics of patterns for improved recognition perfor-

mance. One can think of many reasons for potentially improved performance when

videos are used. It could either be due to the availability of algorithms that infer 3D

information from multiple views, or due to the evidence accrual process that comes

into play when multiple frames of an object are processed, or being able to learn

and recognize the facial dynamics. Following these possible paths, many approaches

have been proposed, making video-based face recognition an active research field.
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Although previous research efforts have suggested that videos do help to im-

prove face recognition accuracy, many challenges still remain, among which the most

important ones are discussed next. In a general sense, ”video-based face recogni-

tion” refers to the whole end-to-end processing pipeline which also includes the face

tracking or face detection module. Reliable extraction of a face track is a diffi-

cult task, yet it is essential to the recognition module. In many traditional face

recognition evaluation databases, both gallery and probes are still images taken in a

controlled environment. In contrast, face appearance often changes dramatically in

a video, due to complicated interactions of many factors such as pose, illumination

and expression. As such, we either need to estimate the states of these nuisance fac-

tors and then normalize them, or design invariants for these variations. Regarding

the large volume of visual data that need to be processed, we must manage to han-

dle the “curse of dimensionality” problem. Furthermore, a successful video-based

face recognition algorithm should go beyond the naive approach that directly ap-

plies still image-based face recognition algorithms to individual frames. Coming up

with a representation that can efficiently exploit the spatial-temporal information

of videos is an important task to be addressed.

In this dissertation, we will investigate three different but closely-connected

sub-problems of video-based face recognition, namely face association from multi-

person videos, single-view face recognition using intra/extra-personal dictionary and

multi-view face recognition in camera networks. Below, we will give a brief intro-

duction for each of them.
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1.1 Face Association from Videos

As the first stage in the processing pipeline, face extraction from video is

the key step in any video-based face recognition system. Traditionally, we rely on

tracking algorithms to accomplish this task. However, when we are confronted with

unconstrained videos, crowded scene and camera motions often pose great challenges

to tracking algorithms, not to mention that these algorithms inherently suffer from

drifting errors. In view of this fact, we choose to adopt a “tracking by detection”

scheme, which in turn requires a method to associate detected faces of the same

person across frames despite the frequent presence of false detections.

Our proposed approach for face association is partially inspired by human’s

cognitive psychology under similar circumstances. When identifying a person, we

often make our judgement not only based on his/her facial features, but also exploit

contextual information such as clothes, hair style etc. Although face association is

not exactly equivalent to an identification problem, this phenomenon does provide

us a hint for leveraging contextual features to group faces. In this work, the features

employed include clothing, relative positions and scale and uniqueness constraints.

By casting the association problem in a probabilistic graphical model framework,

we encode these features using unary and pairwise potential functions.

By noticing that face association has a structural output, we propose two prin-

cipled methods to integrate the contextual features. They are based on Conditional

Random Fields (CRFs) and Max-Margin Markov (M3) networks, respectively. The

two approaches share the same underlying graphical model and the same set of fea-
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ture functions, but differ in the functions being optimized. As the graph structure is

highly-connected, we present approximate inference techniques to optimize the ob-

jective functions. In contrast with most existing multi-target tracking algorithms,

this proposed algorithm works in an online mode, which provides more choices in

applications.

In face association, as face tracks are built in a bottom-up fashion from detec-

tion responses, it is important to address false positives, false negatives and subjects

entering/leaving the scene. To this end, we explicitly model a null state using logis-

tic regression to account for both novel faces and false positives. We also propose

schemes to recover the false negatives based on a sampling strategy. The resulting

framework is capable of handling dynamically a varying graph structure and working

with noisy detection outputs.

1.2 Single-View Video-Based Face Recognition

In this part, we look into the video-to-video face recognition problem under

single-view settings. Our work relies on the concept of intra-personal/extra-personal

face variations, first proposed in a Bayesian face recognition framework [2]. To be

more specific, we assume that the difference between any pair of human face images

falls into one of two possible categories: those purely caused by nuisance factors

such as illuminations, pose, expression etc., and those caused by different identities.

However, we further separate pose variations from other factors by only investigating

the differences taken at the same face pose, as we believe that they often obscure

4



the boundary between intra-personal and extra-personal classes.

We take a dictionary learning approach in view of the recent success achieved

by sparse coding in many computer vision applications. Since the traditional dic-

tionary learning methods are not directly related to classification tasks, we follow

the Label-Consistent K-SVD (LC-KSVD) algorithm [3] to jointly learn a shared

intra-personal/extra-personal dictionary and a discriminative projection matrix for

each pose group. The linear transformed sparse codes are used for recognition. To

efficiently exploit the high volume video data, we fit a Dirichlet process Gaussian

mixture model to each video. The model exempts us from having to specify a fixed

number of clusters and compresses the video to a set of representative frames which

are used in training and testing.

To perform face alignment against translation and in-plane rotations, we pro-

pose a structural SVM-based face fiducial point detector. It serves an additional

crucial purpose: provide pose estimation outputs that can be employed to construct

pose-specific dictionaries. The detector adopts a tree mixture model that enables

us to simultaneously obtain feature locations and discretized face pose. We set the

optimization criterion in such a way that emphasis is placed on localization accu-

racy. Results of our experiments demonstrate that the proposed detector is able to

work robustly “in the wild”.

The proposed single-view video-based face recognition framework not only

produces state-of-arts results on public databases, but also has attractive properties

in scalability and generalization. Irrespective of the size of database, we always only

consider a two-class classification problem. The algorithm can be readily applied to
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the video-based face verification protocol and gracefully handle the cross-database

recognition problem.

1.3 Multi-View Video-Based Face Recognition

In this part, we turn our attention from single-view settings to multi-view

settings. Camera networks have become increasingly prevalent in surveillance en-

vironments, providing effective means for handling pose variations in face recogni-

tion. Cooperation among multiple cameras can increase the chance of capturing a

targeted face in a favorable frontal pose. However, previous multi-view face recog-

nition algorithms, irrespective of whether they use a camera network or not, require

a pose estimation or model registration step. Results of such a step are vital to the

recognition performance as they provide a common reference frame to compare face

appearances. Unfortunately, neither of the two problems is easy to solve, and hence

the desired registration or estimation accuracy can seldom be achieved. It is thus

desirable that we avoid both of them as much as possible. This motivates us to

investigate whether pose invariants exist when we attempt to recognize faces using

camera networks.

In physics, spherical harmonics (SH) theory has been well known for its ap-

plication in the study of electrons. Basri and Jacobs [4] introduced it for modeling

the reflectance functions that arise in face recognition problems. We employ the SH

theory to analyze the appearance of human face and propose pose-robust features

based on spherical harmonics. To be specific, we approximate the human head with
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a spherical model and construct a surface texture map from multi-view images. The

energy dispersion of the SH coefficients of the texture map remains constant against

rotations. Using this property, we are able to bypass the pose estimation step in

multi-view face recognition application.

Our video tracking module combines robust visual features to locate a human

head and provides a continuous supply of head appearance to the texture mapping

module. As for video-level recognition, we treat the set of the SH energy dispersion

features extracted from all the frames in a video as an ensemble and project them

onto the reproducing kernel Hilbert space (RKHS). Ensemble similarity measured

in the RKHS is our criterion for matching two videos. Experiments show the supe-

riority of the SH energy dispersion feature and our proposed recognition scheme.

The main contribution in this part is a novel feature which is robust against

pose variations for multi-view face recognition. Secondly, we developed an end-to-

end system which consists of both face tracking and video-based recognition mod-

ules.

1.4 Organization of the Dissertation

The remainder of the dissertation is organized as follows: In Chapter 2, we

present a comprehensive survey of existing works on video-based face recognition.

We propose the Conditional Random Field and M3 network based algorithms for

online context-aided face association in Chapter 3. Our video-based face recognition

approach using intra-personal dictionaries is presented in Chapter 4. We then pro-
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pose the pose-robust Spherical Harmonic energy dispersion feature and describe our

face tracking/recognition algorithm for camera networks in Chapter 5. Finally, in

Chapter 6 we conclude the dissertation and discuss some future research directions.
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Chapter 2

Literature Survey

As we discussed in the previous chapter, a video-based face recognition algo-

rithm belongs to either one of the three categories, according to whether the gallery

consists of still images, single-view videos or multi-view videos. We will review re-

lated literature naturally in this order. A survey on video-based face recognition

methods can also be found in [5].

2.1 Still to Video

The most straightforward method of dealing with this problem is to match

each frame to the gallery as in a still-to-still face recognition problem and then

apply certain rules to integrate decisions across the frames. The most popular

rules include max-sum, min-max, majority voting etc. In this approach, after faces

are cropped from video frames through tracking or detection, they usually have

to pass several saliency tests to be adopted as inputs for the recognition engine.

Typically, these tests attempt to reject non-frontal or poorly-illuminated face crops.

For example, Steffens et al. [6] picked the two frames with highest elastic graph

model matching score for recognition. A procedure utilizing robust statistics to

remove outliers from face image sequence is presented in [7]. In [8], still images

in a subject’s gallery form the initial eigenspace, which is then updated using the
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fames of a test video of the same subject. Only the frames that pass a confidence

test are used for the updating. The final decision is made through majority voting

among recognition results of individual frames. Zhang and Martinez [9] adopted

a probabilistic weighting scheme. They divided a human face into subregions and

trained PCA, LDA and ICA subspaces for each of them. To combine the likelihoods

of all the subregions and all the frames, a weight is assigned to each subregion in each

probe frame for each subject, according to its similarity to the best matched gallery

image of the subject. The similarity is measured in terms of pose and expression.

Park et al. [10] used a semi-automatically trained AAM to track face and reconstruct

the 3D shape. Pose can be estimated from the 3D shape. The face in probe frame

is compared to the gallery face images of the same pose through three classification

algorithms. The three resulting scores are min-max normalized and added together.

The rule for frame-level score fusion is max-sum. Stallkamp [11] et al. proposed to

use the distance-to-model (DTM) scheme, which weighs each frame according to its

distance to closest match in the gallery, and the distance-to second-closest (DT2ND)

scheme, which weighs each frame according to the distance between its best match

and the second best match in gallery, to perform temporal fusion. When the DCT

feature is adopted, the authors showed through experiments that both schemes

outperformed the majority voting and sum rules and even better performance can

be achieved if they are combined.

The naive fusion method often suffers from unstable performance because of

the ad-hoc nature of the fusion rules. To overcome the drawback, more principled

and structured algorithms have been proposed. In [12], Li and Chellappa unify
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face tracking and verification in a Sequential Importance Sampling (SIS) [13] [14]

framework. The idea is that the posterior distribution evaluated by SIS will achieve

high values only when both of the following two conditions are met: 1) The motion

parameters are accurate; 2) The appearance template used for tracking has the same

identity as the subject in a probe video. Later, Zhou et al. further developed this

idea by treating a subject identity and motion parameters as state variables of SIS

[15]. The appearance likelihood is calculated using the probabilistic intra/extra-

personal subspace algorithm [16]. By marginalizing the joint posterior distribution

of the two sets of parameters, they were able to simultaneously perform tracking

and recognition. An important feature of the work is its probabilistic mechanism

in accumulating recognition confidence. A close, clear and frontal view of face can

provide stronger evidence than one of poor visual quality, which could overturn

previous wrong decision. In experiments, the proposed approach exhibits better

performance than still-based face recognition algorithm. The video-to-video version

of this algorithm will be discussed in Section 2.2. In order to handle pose variations,

they later extended the work by adding a term in the likelihood which judges the

“frontalness” of the face in a frame [17]. The non-frontal face is treated as non-

informative as far as recognition is concerned. As the samples of joint distribution

are constructed by repeating the samples of motion parameter space for every value

of the identity variable, the number of particles grows with the number of subjects

enrolled in the gallery. Thus the algorithm does not scale well with the gallery size.
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2.2 Video to Video

The video-gallery/video-probe problem can be viewed as a special case of a

wider category: face recognition based on image set. The difference is whether the

images within a set are treated as temporally ordered information. In many scenar-

ios, the two concepts are used interchangeably. Due to their close relationship, we

shall not confine our review to the strict-sense video-video face recognition, but dis-

cuss general image set-based face recognition works as well. On the other hand, the

video-video recognition problem can certainly be reduced to a still face recognition

problem, as implemented in [18](Majority voting), [19] (Minimun reconstruction

error) and [20] (Min-min distance).

There are different ways of representing face images in a set. The most pop-

ular ones among them are linear subspaces, manifolds, probability distribution and

dynamical models.

Linear Subspace Linear subspace analysis has achieved great success in still

image-based face recognition. A variety of subspace construction methods, such as

Principal Component Analysis(PCA), Linear Discriminative Analysis(LDA), and

Bayesian probabilistic subspace [2] have been proposed. When projected onto the

trained subspace, the probe face images are generally easier to classify than in the

original feature space. In the video-video (or image set-image set) case, the probe is

no longer a single point in feature space. Therefore a number of projections need to

be collectively considered. An effective solution to this situation is to assume that
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images within each gallery or probe set span a subspace and the distances between

subpaces can be utilized to characterize set similarity.

The concept of principle angles was first proposed by Jordan in 1875, to ac-

count for the relationship between two linear subspaces. Suppose there are two

linear subspaces U and V , and the canonical correlations between them are recur-

sively defined as [21]:

cos(θ1) = max
u∈U

max
v∈V

uTv, s.t.uTu = vTv = 1 (2.1)

cos(θk) = max
u∈U

max
v∈V

uTv, s.t.uTu = vTv = 1,uTui = vTvi = 0, i = 2, . . . , k − 1(2.2)

, where 0 ≤ θ1 ≤ . . . ≤ θk ≤ π/2 are called the principle angles between U and V .

Numerically, principle angles can be evaluated based on QR factorization of data

matrices and singular value decomposition (SVD).

Yamaguchi et al. [22] directly applied the principle angles in their Mutual

Subspace Method (MSM), and showed through experiments that it is superior to the

still face recognition algorithm based on PCA. Later, in [23], Fukui and Yamaguchi

proposed the constrained mutual subspace method (CMSM). They first assumed

that the difference vectors ui−vi, where ui and vi are as defined in 2.1, form the basis

of a difference subspace. They claimed the constructed subspace contains only the

essential information for discriminating between two classes of faces and generalized

this concept to the case of multiple subspaces. Gallery and probe sets are projected

onto the generalized difference space (what they called the constrained subspace) and

the projections are compared for recognition. The CMSM outperformed the MSM

in their experiment. The method was further extended to the Multiple Constrained
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Mutual Subspace Method (MCMSM) [24]. In MCMSM, a number of constrained

subspaces are constructed, each of which is trained from image sets under a certain

pose or illumination condition. The gallery and probe sets are projected onto every

constrained subspace. The canonical correlations between the pairs of projections

are evaluated, and they are combined through bagging or boosting.

Wolf and Shashua [25] developed a procedure for directly calculating the princi-

ple angles in RKHS from a Gram matrix when the explicit form of kernel is unknown

[25]. They also proposed a positive definite kernel based on principle angles, which

can be used in SVM-like classifiers. In their experiments on image set-based face

recognition, each image in a set enters the data matrix as a column. The mean of

the smallest 20 principle angles between the column subspaces of two data matrices

is adopted as a measurement of set similarity.

Kim et al. [26] employed principle angles to reformulate the criterion function

to be optimized in a nonparametric linear discriminant analysis. The correlations in

the traditional definition of within-class and between-class scatter are now replaced

by the canonical correlations between sets. This method can be regarded as the

vector-set version of LDA.

An algorithm which does not fall in this category but has close relationship

was proposed by Cevikalp and Triggs in [27]. They approximate the image set by

an affine subspace or convex hull. An affine subspace is a superset of linear sub-

space in that an affine subspace does not have to contain the origin. A convex

hull is the tightest convex model containing the samples. They use the geometric

distances (distances of closest approach) to compare two sets of face images. De-
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spite the conceptual simplicity, the algorithm demonstrates good performance in

experiments. Hu et al. [28] also represent each image set with an affine hull, but

the distance measure they use is based on the Sparse Approximated Nearest Points

(SANP), which are defined as the nearest points of the two sets that can be sparsely

approximated by the sample images in the respective sets.

Manifold While the linear subspace-based methods have the advantage of tractabil-

ity and can conveniently borrow results from relatively matured research on still-

based face recognition, their assumptions are oversimplified. Consequently, they are

insufficient to characterize the geometrical distribution of face appearance in vector

space. Moreover, some argued that even the top principle angles do not necessarily

encode identity information [29]. On the other hand, it is generally believed that ap-

pearances of a face under smooth illumination and pose variations sit on a nonlinear

manifold, whose intrinsic dimensionality is much lower than that of the embedded

vector space. The most attractive property of manifold is that it can be locally ap-

proximated by the Euclidean space. As such, most of the manifold-based set-to-set

face recognition algorithms focus on how to construct a locally linear model.

In practice, what we have is several training and testing videos, which repre-

sent sparse samples from the manifold structure. The general strategy of modeling

this manifold from a video or image set is as follows: First use a clustering algorithm

(K-means, spectral clustering etc.) to group images within the video or image set

according to appearance similarity. Then for each group, learn a local linear struc-

ture from the samples in that group. In the test stage, there are two choices. One
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is applying a fusion rule after evaluating the similarities between individual frames

and the trained manifolds as point-manifold distances. The other is constructing

a manifold from the probe set and calculate its manifold-manifold distances with

respect to the trained manifolds. Since each manifold is approximated by locally

linear model, the linear subspace methods reviewed in the previous section can still

play a role in this step.

Li, et. al.’s work [30] is based on the concept of manifold, though they used the

term ”identity surface” instead. They used a 3D model to track the face, providing

aligned face texture and pose information at the same time. Kernel Discriminant

Analysis is applied to project face appearance onto a low-dimensional space. The

identity surface for a subject is constructed as follows: The two basis coordinates

stand for tilt and yaw of the face pose. At each point on this coordinate grid, the

function value is the KDA vector obtained from the subject’s gallery. Since the

gallery can only cover a limited region of the grid, the function surface is assumed

to be composed of piece-wise planes and interpolation is necessary for novel points.

Probe video frames can be looked as points in this space and distances from them

to each identity surface are summed for recognition.

Kokiopoulou and Frossard [31] exploited the smoothness assumption of face

manifold based on graph. Instead of forming a k-NN graph whose vertices corre-

spond to all the training and testing data, they worked on the part of data which

includes all the training faces and frames of only one testing video at a time. Under

the constraints that the labels of the testing video frames have to be the same, they

optimized a cost function that is related to the smoothness of manifold.
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Lee et al. [32] considered the face appearances under pose changes as lying on a

pose-manifold. In the training step, they clustered face crops obtained from an video

through the K-means algorithm. They modeled each subject’s pose manifold as a

collection of linear planes trained through PCA. Along with the manifold structure,

a transition probability matrix which captures the dynamics of pose variation is also

trained. The distance from a face in a test video frame to a manifold is defined as

that of its projection on this manifold. It is a probabilistic distance determined not

only by the the appearance difference, but also by the pose transition matrix. As an

extension to this work, they later [33] integrated the tracking module by iteratively

optimizing tracking and recognition parameters while keeping the other fixed. Fan et

al. followed this method by replacing PCA with Locally Linear Embedding (LLE).

Arandjelovic and Cipolla [34] assumed that when pose is fixed and illumina-

tion is varied, all the intra-personal differences of log-transformed face images form

a general shape-illumination manifold independent of identity. The manifold is rep-

resented by a probabilistic PCA mixture, which is learned from separate training

videos with identities different from those in the gallery and probe videos. Every

frame of a probe video is matched to its corresponding frame of each gallery video

in terms of pose similarity. The matched pairs’ log-differences are used to calcu-

late point-manifold distance. The gallery video yielding shortest average distances

identifies the subject in the probe video. This representation of manifold was also

adopted in [29], where the proximity of two sets of face images is measured as a com-

bination of the distance between their subspace representations and that between

their manifold representations. Both distances are in terms of weighted sum of
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canonical correlations between subspaces, as the manifold is also approximated by a

collection of subspaces. The weights are learned by the AdaBoost algorithm. Their

more recent work [35], however, is conceptually close to [32] in that the face mani-

fold is also modeled as a pose-wise one. They learned the relationship between pose

and facial feature points, which allows an automatic clustering of frames in terms of

pose. The intra-person variations within such a cluster is thus assumed to be caused

by illumination and form a linear subspace. Distances between corresponding pose

clusters of the two videos are fused using a RBF nerual network.

Fan and Yeung [36] [37] used Hierarchical Agglomerative Clustering (HAC) to

cluster images in a set, on the basis of geodesic distance approximated by the Isomap

algorithm. The centers of all clusters are then selected as exemplar images, which

are further subject to linear projection by the traditional subspace methods. Image

set-based matching is turned into exemplar matching. Finally the decision is made

based on majority voting. Liu et al. [38] selected an exemplar which maximize the

in-cluster co-occurrence and representative capability from each of the expression

clusters of a video. The expression clusters are formed by K-means based on a

distance function considering both appearance and temporal closeness. For each

expression, a non-parametric version LDA is separately performed. This work can

be viewed as based on an expression-wise manifold.

In [39], Wang et al. proposed an algorithm to compute manifold-manifold

distance in image set-based face recognition. They use a procedure called Maximal

Linear Patch (MLP) to cluster samples in a image set or video. The idea is to let

a linear subspace gradually spread from a seed sample to include more and more
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nearest neighbors, until the linearity condition is broken. The linearity is measured

as the ratio of geodesic distance to Euclidean distance, and the distances are cal-

culated between a candidate neighbor and each existing sample in the cluster. For

each cluster, a linear subspace is trained. The manifold-manifold distance is defined

as the distance between the closest subspace pair from the two manifolds, and the

subspace distance is defined as a weighted sum of canonical correlations and exem-

plar distance. Inspired by Zhao, et. al.’s Discriminant Clustering Embedding (DCE)

work [40], Wang and Chen further developed their above-mentioned algorithm by

combining discriminant analysis [41]. In this work, clustering is done through a hier-

archical version of MLP. They learned a linear projection aiming to simultaneously

minimize the within-class compactness and maximize the between-class separability,

which are characterized by center samples’ distance between clusters coming from

the same or different classes. A test image set will go through the same cluster-

ing procedure and is projected with the learned function. The manifold-manifold

distance is calculated as before.

Dictionaries Sparse coding and dictionary learning algorithms are extensively

used for face recognition following Wright et al.’s work [42]. A popular approach

is to use the pixel-representation of the gallery images directly as atoms of the

dictionary and then represent each test image as sparse combination of those atoms.

Extension of this approach to the video domain is straightforward and natural.

Chen et al. [43] partition the video sequence so that frames with same pose and

illumination are in one partition. They then built sequence-specific dictionaries
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for each gallery video. For each partition, a sub-dictionary is learned where the

representation error is minimized under a sparseness constraint. These partition-

specific sub-dictionaries are combined to form a sequence-specific dictionary. In the

recognition phase, frames from a given query video sequence are projected onto

the span of atoms in every sequence-specific dictionary. From the projection on

to the atoms, the residuals are computed and combined to perform recognition or

verification. They later extended this approach to non-linear kernel space [44]. In

[45], Ortiz et al. showed that under the assumption that all frames in a face track

will produce the same sparse coefficients when projected onto a learned dictionary,

the mean image is an equivalent representation of the whole video. Therefore, they

are able to reduce the video-based recognition problem to a still-based problem for

the mean images.

Probability Distributions If we treat faces in all frames of a video as samples

generated from an underlying distribution, the resemblance of two video sequences

can be measured according to probability distribution distance. Usually, it is as-

sumed that the samples are independent and identically distributed. This is obvi-

ously not a valid assumption, at least in the video case. Another disadvantage is

that the underlying distributions are usually assumed to be Gaussian in order to

obtain an analytical form of the distance. This appears to be an insufficient model

in a lot of situations.

Shakhnarovich et al. [46] assumed the underlying distribution to be multivari-

ate Gaussian. They implemented the complementary orthogonal subspace learning
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method to train the covariance matrix. The Kullback-Leibler (KL)-divergence be-

tween gallery and probe is compared for recognition. Arandjelovic and Cipolla [47],

instead, assumed the KPCA projection of face images in a video follow a Gaus-

sian distribution. The distance measure they used is the Resistor-Average Distance,

which is defined in terms of KL-divergence as follows:

DRAD(p, q) = (KL(p‖q)−1 +KL(q‖p)−1)−1 (2.3)

The two groups of researchers later cooperated to further extend their works by mod-

eling face instances in a video as samples from a Gaussian Mixture Model (GMM).

Since the analytical form of KL-divergence for GMM is not available, they evaluated

the value using Monte-Carlo simulation.

In [48], Zhou and Chellappa studied different probability distance measure

(Chernoff distance, Bhattacharyya distance, KL divergence etc.) in Reproducing

Kernel Hilbert Space (RKHS). They introduced a way to approximate the covariance

matrix in the space given the Gram matrix and derived formulas to calculate the

aforementioned probability distance. In the video-video face recognition experiment,

the divergence distance and the Bhattacharyya distance in RKHS leads to significant

improvement over ad-hoc measures.

Dynamical Models Some existing works model the moving face in a video as a

dynamical system to capture the temporal information. A dynamical system is often

characterized in a state-space way. The temporally varying features are treated as

observations emitted by an underlying state variable, whose state transitions form a

trajectory in the configuration space. The idea, in the face video case, is to think of
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the varying condition such as pose, expression as state variable and face appearances

as observations. Given training videos, a dynamical model can be learned for each

subject. Note that methods of this category cannot be applied to image sets as

temporal continuity is essential to a dynamical system.

Liu and Chen applied Hidden Markov Model (HMM) to the video-based face

recognition in [49]. Their observation probability model is a Gaussian mixture model

with respect to the eigenface projection and the states are separated through vector

quantization. The face video is recognized as the subject whose model receives

maximum observation likelihood. They also suggested an adaptive scheme to allow

unseen appearance to be learned. Their research also suggested that the hidden

state of each model seems to correspond to pose of face. One possible drawback

of the algorithm, as Hadid and Pietikainen argued in [50], is that a HMM will

give poor results when the video is short because the dynamical model is learned

slowly. In Liu and Chen’s work, the face image sequence was obtained manually.

Kim et al. [51] added a particle filter-based face tracking module to the framework.

Besides the incremental PCA subspace likelihood model, they imposed pose and

alignment visual constraints, which function as additional terms in the likelihood

function. Furthermore, the observation model in HMM was modified to be based

on pose-discriminating LDA features and identity-discriminating landmark template

features. The method proved to be effective on Honda/UCSD and YouTube celebrity

database. Tistarelli et al. [52] built a two-level hierarchical HMM to characterize

expression variation in a video. The lower-level is a spatial one, which is trained

from clusters of images with the same expression in a video. Each state corresponds
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to a subregion of face and the observation vector is composed of order statistics of

grey level values. In the higher-level, each state is a HMM in the lower-level. Hence

it captures the temporal evolution of face expressions.

Aggarwal et al.[53] used a first-order ARMA model to describe face videos.

After the closed-form solution of the model parameters is obtained, they formed

an extended observability matrix [54] for each model and calculated the distances

between models as principle angles between system matrices.

3D Model One of the earliest works on 3D face modeling from image is the 3D

morphable model (3dMM) [55] proposed by Blanz and Vetter. It models both shape

and texture of a face as linear combinations of their trained PCA basis, respectively.

Model fitting is solved by maximizing the posterior of combination coefficients. In

an extension of this work [56], these coefficients were used to achieve face recognition

for still images.

Given a monocular video sequence, Chowdhury and Chellappa [57] proposed

a method of reconstructing a 3D mesh face model from a monocular video by ap-

plying the optical flow-based structure from motion. Zhang et al. [58] generated an

animated 3D mesh model from a face video based on bundle adjustment. Breuer

et al. [59] also presented an automated procedure for building 3DMMs for images

and videos based on facial feature detection results. Although recognition was not

performed in these works, it could be readily incorporated into the framework by

comparing the shapes of models in 3D domain [60] or the mapped textures in 2D

domain or combination of the two [61]. Furthermore, the generated model can be
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utilized to synthesize augmented probe image set by varying illumination or pose

conditions, which can then be compared with the gallery image sets. This is exactly

what was done in [62] and [63].

3D model-based approaches are naturally robust against pose variations, but

there are two main concerns about them. First, the computation overhead required

for building and fitting a 3D model is large. This is because a human face is not

a smooth surface and its geometry requires a delicate model. The dense match-

ing of feature points between consecutive frames is also time-consuming. Second,

when models are compared for the purpose of recognition, accurate registration and

alignment are essential. Many methods have to rely on manual selection of feature

points.

Miscellaneous There are also approaches that do not fall into the above cate-

gories. For example, in [64], Edwards et al. employed a filter-based approach to rec-

ognize face from video. They tracked face using Active Appearance Models (AAM)

and assumed that the model parameter can be represented as a linear combination

of identity and non-identity parameters. To decouple the two sets of parameters,

they used a three-step procedure: first apply a trained partition model, then use

a correction matrix trained by regression, and finally pass through the Kalman fil-

ter. The procedure results in an identity-parameter vector for each video. Tang

and Li [65] utilized the audio signal to align different videos, under the assumption

that people have similar expressions when they speak similar words. They used the

unified subspace analysis classifier [66] to compare the corresponding frames of two
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aligned videos and fused frame-level result with sum-rule or majority voting rule.

Chen et al. [67] divided face into local blocks. They extracted low-freqency DCT

coefficients in each block and used them to generate “visual words” as in the bag-of-

words approach. Each video is represented by a codeword histogram by averaging

the codeword histograms of individual frames. Ye and Sim [68] utilized facial motion

patterns for video-based face recognition. The so called Local Deformation Profile

(LDP) algorithm calculates motion field and Right Cauchy-Green deformation ten-

sor for each frame, which measures local motion and deformation, respectively. The

overall similarity of two face sequences is combination of the two, with local mo-

tion similarity also plays the role of confidence score and is used as weight in the

temporal fusion stage. It is demonstrated through experiments that subjects can be

identified even when the facial motion pattern is learned from a different expression.

2.3 Automatic Face Labeling for Video Archives

In recent years, there has been an increasing interest towards automatic face

labeling for large-scale video databases. This application is more related to video

archiving than the typical face recognition problem as the main purpose here is to

annotate huge volumes of films or news videos. However, we view it as a variation

of the video-based face recognition problem, since face appearance similarity is the

main, if not the only, criterion of clustering the face tracks extracted from a video

database. Compared to the usual video-based face recognition applications, the

video archiving task places particular importance on face acquisition and registra-
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tion due to the additional uncontrolled factors present in movies and news videos

introduced by camera motion and scene change. It is also crucial that the face track

matching (recognition) algorithm should be efficient due to the large volume of data

being processed.

Berg et al. [69] clustered face images extracted from a large database of cap-

tioned news. They initially assigned one or more names to each face with the aid

of caption. The faces without assignment ambiguity are used to initialize person

classes. Face images then undergo an iterative clustering process: LDA projec-

tion matrix is learned from the current clusters, while the clusters are modified by

applying the K-means algorithm on the projected vectors, and so on.

Raytchev and Murase [70] performed an unsupervised partition procedure on a

collection of video sequences to indirectly recognize the face. The clustering process

is guided by two types of interaction forces, attraction and repulsion, imposing

both positive and negative values on the matrices of pairwise relations derived from

traditional proximity matrices.

Arandjelovic and Zisserman [71] designed a film character retrieval system

based on automatic face recognition. They set up a cascade of processing steps

to obtain good-quality face tracks. These include an SVM-based eye and mouth

detector, an affine transformation, a background suppression method, a bandpass

filter and an occlusion detector. Video frames matched to query are retrieved based

on L2 distance in the original space or after subspace projection.

Fitzgibbon and Zisserman [72] proposed to look for the closest affine-invariant

subspace to the two images to be compared. The sum of the distances between
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the images and their projections is shown to be a distance and is invariant to the

affine transform. Prior information about transform parameters, such as transla-

tion constraints, can be incorporated into the distance function. They cluster the

face images detected from films based on the distance matrix. The algorithm can

normalize variations which are due to in-plane rotation, translation and scaling, but

is sensitive to expression change or out-of-plane rotation. Later, they generalize

the distance measure from the image-image case to the image-set versus image-set

case in [73]. Each face image set, after being extracted from a movie through face

detection, is represented by a PCA subspace. The manifold-manifold distance is de-

fined as the minimum distance between points on two subspaces when the points are

subject to affine transforms. They also incorporated learned priors about transfor-

mation parameters and modeled image priors as heavy-tailed distributions to handle

occlusions. Clustering is performed using an agglomerative strategy.

Sivic et al. [74] proposed a face set retrieval system for movie videos based on

local features. In this system, after faces are detected in frames, they are concate-

nated by an affine covariant region tracker to form face-tracks. Five facial feature

points for each detected face are then located using a part-based “constellation”

model. SIFT descriptors computed around the feature points are used to compose a

bag-of-words. A dictionary of descriptors is built after vector quantization and each

face set is represented as a histogram of visual words from the dictionary. Finally

face set matching is achieved by calculating the χ2 distance between histograms.

Everingham et al. [75] combined multiple cues to label the faces in videos of

TV serial “Buffy the Vampire Slayer”. The KLT tracker was applied to associate
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face detections in consecutive frames. They used a tree-structured pictorial model

to detect facial features and extracted local SIFT and intensity descriptors around

them. They found the speaker in each frame by analyzing mouth motion and as-

signed to him/her the name obtained from subtitle and script. Face tracks without

ambiguous association were treated as exemplar sets. The recognition of a face track

is based on its distance to exemplar sets in terms of local descriptors and clothing

color histogram. They later [76] generalized their face, facial feature and speaker

detectors to profile views, and modified the face appearance classifier to be an SVM

based on the HOG feature and multiple kernel learning. A real-time realization of

the application can be found in [77]. To realize efficiency in implementation, the

authors adopted a kernel-based regressor tracker which is trained from synthetically

transformed versions of the initially detected face. For the same reason, they used

a random-ferns classifier based on local patches around facial feature points and

applied only simple max-max or max-sum rules to match two face sets.

Ramanan et al. [78] used a hierarchical procedure to group faces detected

from the TV serial “Friends”. Within the same shot, faces are tracked using a

part-based color tracker. To join face tracks of different shots within the same

scene, an agglomerative clustering algorithm which is based on similarity in face,

hair and clothing color histogram and face appearance subspace is applied, with

great importance placed on clothing. The same clustering method is also applied to

across-episode face tracks, only that now greater weights are assigned to hair color.

Tapaswi et al. [79] modeled videos from the “Big Bang Theory” using a

Markov Random Field and combine face, clothing appearance, speech signal and
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contextual constraints in a probabilistic framework. They then perform energy

minimization to produce labels for the characters. Later they investigate the prob-

lem under a semi-supervised setting [80]. They first tagged speaking faces using

subtitles and fan transcripts of the videos. Then they propagate the labels to the

non-talking faces using a loss function that jointly take into account all the faces

and some constraints.

2.4 Multi-View Video

The term “multi-view face recognition” has been used ambiguously. In a strict

sense, it only refers to the situations in which many cameras acquire the subject

(or scene) simultaneously and the algorithm collaboratively utilizes images taken

by different cameras. But more frequently, the term simply means recognizing faces

across pose. The ambiguity does not cause any problem in the still-based recognition

case. As far as pose variation is concerned, a group of face images simultaneously

taken with multiple cameras and those taken with a single camera but at different

view angles are equivalent. However, in the video case, the two cases diverge. A

multi-camera system has not only more information at its disposal, but also can

easily obtain the multi-view images at any time. In contrast, to obtain the same

images, a single camera system has to passively wait for the subjects to turn his

head. This difference becomes vital in non-cooperative recognition applications

such as surveillance. For clarification, we shall call the multiple video sequences

captured by synchronized cameras a multi-view video, and the monocular video
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sequence captured when the subject changes pose a pose-variation video. With the

prevalence of camera networks, multi-view surveillance videos have become more

common. Nonetheless, most existing multi-view video face recognition algorithms

target pose-variation videos.

A lot of literature on face recognition from pose-variation videos have been

reviewed in Section 2.1 and Section 2.2. On the other hand, still image-based multi-

view face recognition algorithms, including those based on frontal-view synthesis

[81] [82] [83] [84], 3D model reconstruction (See the 3D model part of Section 2.2),

subspace or manifold analysis [85] [86] and local feature match [87] [88] [89] [90]

[91], can always be extended to pose-variation videos. In addition, data redundancy

makes view selection feasible for face videos. One example is Li et al’s work in [92].

They first employed edge feature-based SVM regression to estimate poses of face

candidates which are targeted by skin color detector. Then, for each candidate, a

face detector specific to that pose is applied to judge if it is a face. Only the frontal

faces are retained for recognition. The algorithm in [93] also relied on an SVM to

select the frontal faces for recognition.

The relatively small number of existing approaches based on multi-view videos

reflect the fact that it is not easy to fully exploit such a rich source of information.

For example, in [94], although both the gallery and the probes are multi-view videos,

they are treated just like monocular sequences. Frames of a multi-view sequence

are collected together to form a gallery or probe set. The frontal or near-frontal

faces are picked by the pose estimator and retained, while others are discarded.

The recognition algorithm is frame-based PCA and LDA fused by the sum rule. In
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[95], a three-layer hierarchical image-set matching was adopted, but the cameras

did not work in a cooperative way, either. Layer 1 associates frames of the same

individual taken by the same camera. Layer 2 matches the frame sets obtained in

Layer 1 among different cameras. Layer 3 finalizes the recognition by comparing the

output of layer 2 with the training set, which is manually clustered from multi-view

videos. The motivation of using multiple cameras in this work is not to handle pose

variations, but to deal with occlusion when more than one subject appeared.

Rammath et al. [96] extended the AAM fitting and construction algorithm

to the multi-view video case. They demonstrated that when 3D constraints are

imposed, the resulting 2D+3D AAM is more robust than the single view case.

However, recognition was not implemented in this work. Yoder et al. [97] tracked

multiple faces in a wireless camera network. The observations of multiple cameras

are integrated using a minimum variance estimator and tracked using a Kalman

filter. A clustering protocol is responsible for dynamically creating groups of cameras

that track a given face and for coordinating the distributed processing.

In [98], Liu and Chen proposed a geometrical model to normalize pose varia-

tions. By back projecting the face image to the surface of an elliptical head model,

they obtained a texture map which was then decomposed into local patches. The

texture maps generated from different images were compared in a probabilistic fash-

ion. The method was later extended to multi-view videos in [99]. They followed the

framework in [15] to simultaneously estimate pose and projection parameters and

recognize the texture map. The texture mapping procedure was further extended

by adding a geometric deviation model to describe the mapping error. However,
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there were still no collaborations among cameras since tracking, texture mapping

and recognition were all carried out for each view independently.

2.5 Multi-Modal Fusion

Although face may be the one receiving the most attention from researchers,

other cues have also been used for human identification. For example, one can com-

bine face and other features to boost the performance of video-based recognition

algorithm. Choudhury et al. [100] fused the eigenface-based face recognition algo-

rithm with the HMM-based speech recognition algorithm in a Bayesian framework.

They tested different choices of confidence score and found that the Maximum-

Probability to Average-Probability Distance (MPAP) works the best. Zhou and

Bhanu [101] fused LDA-based face and gait recognition results with product and

sum rules. They reported higher recognition rates than obtained from individual

cues. Note that in this work, to utilize the gait feature, they used the side-view of

the face for the face recognition module.

2.6 Face Localization

The role played by face localization in video-based face recognition is far more

crucial than in the still-based face recognition problem, where the gallery and probe

images are normally assumed to be already well aligned. The faces can be localized

either by tracking or through frame-by-frame detection. The former has become

less of a problem with the availability of Viola and Jones’s cascaded face detection
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algorithm [102] which is based on Adaboost and Harr feature. The particle filter

framework [13] [14] also has become the standard choice due to its capability for han-

dling multi-modal non-Gaussian posterior. However, these facts do not mean face

localization is a solved problem. The cascaded face detector yields false positives and

false negatives, and these errors can be quite frequent in some cases. Face trackers

are challenged by out-of-plane face rotation and severe occlusions. Moreover, results

generated by face detector or tracker are often subject to large registration error,

which is a potential cause for failure in many recognition algorithms. Inspired by

the success of Deformable Part Model (DPM) [103] in object detection and recog-

nition, Zhu and Ramanan proposed a DPM-based face detector [104]. The detector

is able to simultaneously detect faces and predict their poses. It has been widely

adopted in numerous face-related research works and yielded superior performance

in comparison to the Viola-Jones detector. The face detection and tracking algo-

rithms used in previous video-based face recognition works are summarized in Table

2.1. Note that we have excluded the cascaded Adaboost face detector and particle

filter from the table due to their dominant applications.

There has also been an increasing demand for a reliable facial feature point

detection algorithm in consideration of the important role it can play in multiple

tasks related to video-based face recognition. These tasks include face detection,

tracking, model registration and so on. We also summarize several facial feature

detection algorithms used in video-based face recognition literature in Table 2.1.
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Face Detectors

stereo-based [6]
local histogram based on wavelet [105] [106] [72] [73] [69] [74]
convolutional neural networks [107] [7]
skin-color based [108] [50]
HOG+SVM [76]
DPM [80] [109]

Facial Feature Detectors

neural networks [110] [20]
elastic graph matching [111] [6]
AAM [112] [30] [64] [10]
edge curvature analysis [101] [24]
circular separability filter [22] [23] [35] [47]
Haar feature [67]
SVM [71] [69] [9]
parts-based ”constellation” model [113] [74]
tree-structured pictorial model [75] [76]
Gabor filter [51]

Face Trackers

regularized kernel-based tracker [77]
eigen tracker [114] [32]
CAMSHIFT [115] [67]
affine covariant region tracker [116] [74]
KLT [117] [53] [75] [76] [68]
AAM [112] [64] [10] [30]
Kalman filter [118] [18]
part-based color tracker [119] [78]
incremental visual tracker [120] [51]

Table 2.1: Summary of face detection, tracking and facial feature detection methods.
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Chapter 3

Face Association in Videos Using Conditional Random Fields and

Max-Margin Markov Networks

3.1 Introduction

Face association refers to the problem of automatically assigning identity labels

to a group of faces detected in each frame of a video. An example of face association

is demonstrated in Fig. 3.1. In this example, at time t1, there are four subjects

enrolled in the current identity list: Red, Blue, Purple and Yellow (we use color of

the corresponding label to refer to the person). But subject Purple does not appear

in this scene. At time t2, a new subject, i.e. subject Green appears and needs to be

added to the list. At the same time, there is a false detection (pink bounding box)

which should not be assigned any label. At time t3, subject Yellow, who was absent

at t2 returns to the scene. His face should be re-identified. The detector also misses

subject Blue (the dotted bounding box), which should be recovered. The example

presents the main issues a face association algorithm should address: false positives,

false negatives, ingress/egress of subjects, and re-identification. A successful solution

to these problems has immediate applications in video-based face recognition [76,

75], automatic video annotation, automatic collection of large-scale face dataset [78],

just to name a few. In this work, we present an online face association algorithm due
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to its versatility: aside from scenarios in which general face association algorithms

can be applied, there are cases (for instance, video surveillance) that could benefit

from the online processing mode.

Traditionally, automatic face association is accomplished by multi-object track-

ing: Each target face initiates an independent tracker. The tracker searches in suc-

cessive frames over a neighborhood as determined by temporal coherence constraints

for the best match. It is well known that tracking algorithms suffer from drift errors

and occlusions. In recent years, the so-called “tracking-by-detection” approaches

[121, 122, 123, 124, 125, 126, 127, 128] have gained popularity following the ad-

vances in object detection techniques. As the name implies, methods of this type

compose detection results from individual frames into tracks. In comparison with

traditional tracking methods, these bottom-up methods are more suitable for real-

world video processing, as they are free of drift errors, more robust against shaky

camera / occlusions and easier to recover from failure. Our algorithm also falls

into this category. To emphasize the difference between the two types of schemes,

we use the more particular term “face association” or “face labeling” to refer to

the bottom-up framework presented in this chapter, but leave the word “multi-face

tracking” for the traditional approaches.

It has become evident from empirical studies [129, 130] that contextual features

play an important role in the process that human vision system uses to recognize an

object. Motivated by this observation, context-based vision has received increasing

interest recently. Although there exist different definitions about what context is

in a vision application, it generally refers to information extracted from the neigh-
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Figure 3.1: Face association A face association algorithm solves the correspon-

dence problem between face detections and the identity labels.

bourhood of the region of interest and/or other sources such as maps, time stamp,

etc. For face recognition problems, the context can be the hair, or clothing of a

subject, or even other subjects in the image. We make intensive use of contextual

features in our face association work, because the data we are concerned with are

unconstrained videos. By unconstrained videos, we mean those captured under the

condition that camera motion, illumination conditions, face pose/expressions, and

occlusions are not intentionally controlled. Conceivably, exploiting contextual fea-

tures is not just beneficial, but actually necessary under such a situation. To this

end, it is important to develop a systematic approach which is able to effectively

integrate evidence from different sources.

Motivated by these considerations, we propose an online face association al-

gorithm for unconstrained videos. The problem is formulated in a graphical model

framework, with each node representing a detected face (either true or false pos-

itives) in a video frame. We exploit multiple contextual features as well as local

appearances at each node for reliable association. The features are encoded in the
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unary and pairwise potential functions of the graphical model. For each feature, we

maintain a time-adaptive model which is updated at every frame. This makes our

algorithm to operate in the online mode. We present two different approaches to

infer the labels of each node. One is based on Conditional Random Fields (CRF)

and the other is based on the Max-Margin Markov networks (M3 networks). The

two share the same underlying graph but differ in optimization criterion. To handle

the time-varying structure of the graphical model, we introduce the concept of “null

state” to handle false detections and novel faces.

Our contributions can be summarized as follows: First, we propose an end-to-

end fully automatic framework for face association in videos. Unlike many existing

works in multi-object association [121, 122, 123], our method operates in the on-

line mode, which is crucial to many real-world applications. Moreover, our model

is dynamic in the sense that not only the features are characterized in a time-

adaptive fashion, but also that the number of nodes and states can vary with time.

Second, we exploit the abundant contextual features available in the video. The

features enter the potential function through both unary and pairwise terms and

significantly improve the performance of face association in terms of accuracy and

robustness. Third, we present two different learning and inference schemes for the

proposed approach and demonstrate their performance on multiple databases.

Aside from the online/offline processing mode, one important difference be-

tween our work and many other multi-target tracking algorithms is that we em-

phasize the use of contextual features. Moreover, to introduce the global feature,

we tie a global observation node to every label node. As a consequence, the edge
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potentials for labels depend on observations. The resulting model is neither a com-

plete bipartite graph nor a directed acyclic graph, whose solutions can be found by

the the Hungarian algorithm [127, 131] and the min-cost flow solution [121, 122],

respectively. However, the inference problem can be addressed using CRF or M3

networks.

The rest of this chapter is organized as follows: We first discuss related work

in Section 3.2 and formulate the problem in Section 3.3. We then present the online

face association algorithms in Section 3.4. Experimental results are presented in

Section 3.5. Finally, we conclude the chapter in Section 3.6.

3.2 Related Works

Visual tracking is a well-studied research topic. Interested readers may refer

to [132] for a comprehensive review on object tracking. Generally speaking, almost

all single-object tracking algorithms can be naively extended to the multi-target

case by initiating multiple independent trackers [133]. However, the naive solution

inherits the weakness from single-object tracking algorithms.

In recent years, the tracking-by-detection strategy has been widely adopted

for multi-target association. As the name suggests, methods of this type attempt

to assemble detection responses into object tracks. This could be achieved within a

traditional tracking framework. For instance, Cai et al. [125] incorporated the de-

tector’s output into a particle filter in the form of proposal distribution. Breitenstein

et al. [124] assigned detection results to a set of particle filters, each of which tracks
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a target, and then used the detection results to construct the observation model

of the associated tracker. Alternatively, association could also be solved directly

from discrete detections, or from short trajectories initialized by the detections (i.e.

“tracklets”). It has been shown that association of detector responses to existing

tracks can be converted to a job assignment problem and solved by the Hungarian

algorithm [127, 131]. From a different perspective, the problem can also be formu-

lated using a network-flow model [121, 122], which is a directed acyclic graph. The

globally optimal association can be achieved by finding the min-cost flow. In [126],

the Hidden Markov Model and the Viterbi algorithm were applied in the association

step. Although the above approaches are advantageous in terms of optimization,

they are only compatible with off-line processing. Besides, their structure makes

it difficult to combine pair-wise cost functions, which are important if we are to

explore contextual features. In association problem, appearance modeling plays an

important role. In [134], Kuo et al. learned HOG-based appearance models from

the training samples collected on-line for pedestrian tracking. They later extended

the work by learning a subset of feature which are most discriminative [135]. The

association module of both systems still works off-line. In [136], Yang and Nevatia

extracted part-based appearance models for pedestrians and combined them with

particle-filter-like trackers.

Two CRF-based approaches were proposed in [123] and [137] for multi-pedestrian

association. In [123], a set of energy functions capturing cues from motion, appear-

ance, smoothness etc. were learned off-line using the RankBoost algorithm. [137]

further extended the work by learning some of the cues on-line. However, its associ-
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ation stage is still an off-line process based on Hungarian and Iterated Conditional

Modes(ICM) algorithms. While the first algorithm we present in the chapter is

also based on CRF, it differs from [123] in several important aspects; First, in our

work, updating of feature functions and face association are performed in an on-

line manner. Second, our CRF node represents a detection response, whereas in

[123], a node represents a pair of tracklets. This fundamental difference in problem

formulation results in significantly different graph structures, models and features.

Third, our work follows the canonical framework of CRF in which learning applies to

global parameters used to integrate feature functions. In contrast, training in [123]

and [137] is local to the individual energy functions themselves. Finally, our work

emphasizes the use of contextual features, which is seldom explored in pedestrian

tracking works, including [123] and [137].

Most existing multi-target association algorithms are concerned with pedes-

trian tracking. Face association has issues specific to its own. A common applica-

tions of face association is automatic face labeling for TV,movies and news videos

[72, 69, 74, 78, 75, 76]. There are usually two steps in such a system, namely con-

necting detection responses into face tracks within a scene and clustering the face

tracks across different scenes. Various face association techniques have been applied

in the former case, including KLT tracker [75, 76, 109], particle filter [79], logistic

regression [78], affine-invariant clustering [72], constrained agglomerative clustering

[74] and Modified Census Transform [80]. However, most of these approaches do not

explicitly handle the multi-face scenarios. Some schemes used to match face tracks

across scenes, like SVM with multiple kernel learning [76], Markov Random Field
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appearance model [79] etc., are also applicable to face association, since affinity

measures are required in both cases.

The effectiveness of contextual features has been studied for face labeling and

recognition in videos or consumer photos. Gallagher and Chen [139] learned group

priors, i.e. the co-occurrence of people, and used it to resolve ambiguous label of

faces in a graphical model framework. Clothing appearance has been combined with

the face using an MRF model to improve recognition accuracy in [140, 78, 79]. Lin et

al. [141] implemented joint people, event and location labeling using cross-domain

context. For the people domain, face and clothing appearances were used, while

for the event domain and location domain, time-stamps and background histogram

were used respectively. Both [75] and [79] exploited speaker analysis to assist face

labeling. Yang et al. [142] discovered the auxiliary objects with high co-occurrent

frequency and motion correlation w.r.t the target object. Tracking was based on a

random field and was achieved in a collaborative way. They showed that the context-

aware tracking algorithm exhibits robust performance even in very challenging real

world videos.

3.3 Problem Formulation

Suppose there are N detected faces in the current frame Ft of the input video.

Let yt = {y1, y2, ...yN} denote the set of unknown labels we would like to associate

with these faces. Let L be the number of all the subjects that have appeared in the

scene up to frame Ft−1, then the state(label) space is Lt = {0, 1, 2, ..., L}. Here we
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introduce a “null” state with the label 0 to account for false detections and novel

faces. The set of all possible yt, or the solution space Y , is therefore Lt×Lt×, ...,×Lt.

Note that both the number of detected faces and the state space vary with time,

and the mapping from yt to the state space is many-to-one.

We create a graph G = (V,E) and let vertices V = {y1, y2, ...yN ,xt}, where xt

is a global observation node. To maximize the effectiveness of contextual features,

we let the label nodes to be fully connected to each other. We define a set of unary

or pairwise feature functions in the form of f(xt,y) to measure the compliance of a

label configuration y with the image observation xt. In our CRF and M3 network

models, we use the same graph structure and the same set of feature functions.

At the t-th frame, we are trying to solve for the optimal label configuration y∗t

which maximizes a discriminant function g(xt,y,w) = g(wT f(xt,y)), where w are

parameters. The different interpretations of the discriminant function in CRFs and

M3 networks will be discussed in detail in Sections 3.4.2 and 3.4.3. The assigned

label is employed to renew the models used in feature functions and update the state

space to Lt+1. From this point on, we will omit the time index as long as it does

not cause any confusion.

3.4 Context-Aided Face Association

3.4.1 Feature Functions

Our face association methods rely on incorporating face appearance with con-

textual features, which include clothing appearance, relative scale, relative position
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and uniqueness of identity. As a result, the evaluation function has the following

form:

wT f(x,y) =
∑
i∈V

wαfα(yi, ai(x)) +
∑
i∈V

wβfβ(yi, hi(x))

+
∑

(i,j)∈E

wγfγ(yi, yj, γij(x)) +
∑

(i,j)∈E

wT
η fη(yi, yj, ηij(x))

+
∑

(i,j)∈E

wλfλ(yi, yj)

(3.1)

, where fα, fβ, fγ, fη and fλ are the feature functions for the four aforementioned

features, respectively. We demonstrate our use of contextual features in Fig. 3.2.

In the following, we define each feature function individually.

Face Appearance: Face appearance provides the most direct evidence about a

subject’s ID, though for our case its power has been diminished by nuisance factors.

We maintain an Online Appearance Model (OAM) [143] for each existing face track,

motivated by the algorithm’s success in modeling appearances with strong temporal

coherence. In an OAM, object appearance is represented by a mixture of three

components, namely the stable, wander and lost components. The stable component

models steady and long-term appearance; The wander component is responsible

for modeling short-term changes in appearance; The lost component accounts for

outliers. Considering that alignment errors are often caused by the imperfections of

the sliding-window-based detector, in the OAM we use Gabor features, which can

tolerate small translation and scale variations, in lieu of raw intensity values.

The model parameters are updated by an Online-EM procedure. Denote the

set of Gabor coefficients of a detected face at time t as at = {an,t}, n = 1, 2, ..., N ,
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Figure 3.2: Context-aided face matching The face appearance alone usually is

not sufficient as a strong feature to perform association. Contextual information,

such as clothing appearance and relative poses, can be incorporated to make a more

confident decision.
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and the set of existing, recently updated OAMs as At−1 = {Al,t−1}, l = 1, 2, ..., L.

In the E step, we calculate the ownership probabilities of the face with respect to

the l-th OAM:

ol,q(at) =
mq,tpq(at|Al,t−1)∑
qmq,tpq(at|Al,t−1)

(3.2)

, where q ∈ { stable, wander, lost } is the label of the components in OAM. pwander

and pstable are the two normal distributions whose parameters are updated every

frame for each OAM. plost is a uniform distribution over the domain of observation

feature values. The feature function, which evaluates how likely a node y is in state

l, is defined as:

fα(y = l, a(xt)) =
∑
n

log
∑
q

ol,q(an,t)pq(an,t|Al,t−1) (3.3)

. The M step happens after the label has been determined through inference. We

use the appearance of the node that has been labeled as subject l to update the

parameters of the l-th OAM. The set of updating equations can be found in [143].

We illustrate an example of OAM in Figure 3.3.

Clothing Appearance: As a contextual feature, clothing appearance assists the

goal of face association effectively. This is especially the case for real-world videos,

because: 1) It occupies a larger area than face and hence is easier to extract from

a distance. 2) The between-class variation for clothing appearance is usually more

distinguishable than face appearance. Given Fi, the center of the face of the i-th

subject, we locate the torso by using a probabilistic mask p(I ∈ Si|Fi) (See Fig.

3.4), where I is a pixel in the current frame, and Si is the torso region of the i-th

subject. The mask is learned from the statistics of body part’s spatial relationship
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Figure 3.3: The Online Appearance Model From frame t−20 to t−2 there was

partial occlusion, which is still present in the mean of the S(stable) component of

the recently updated OAM At−1 (b). The occlusion disappeared at frame t− 2. So

in the current frame t we get a clean face at (a). (c) is the mean of the W(wander)

component of At−1, which captures this recent appearance change. (d) is produced

by subtracting the posterior mixture probability of S component from that of the

W component. We can see that the previously occluded region is much better

accounted for by the W component than by the S component.
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Figure 3.4: Probabilistic mask of torso The H3D database (left) and the learned

probabilistic mask of torso. The green square marks the position of the reference

face.

on the H3D (Human in 3D) dataset [144]. If the clothing histogram feature for a

detection is denoted as h, the color feature function for the tth frame is defined as:

fβ(y = l, h) = log(1− d(h, hl,t−1)) (3.4)

, where d is the chi-square distance between two histograms. The histogram model

hl is also updated at every frame with a forgetting parameter.

It is not a rare situation that two predicted clothing regions Si, Sj overlap

significantly. In such a case, we associate the overlapped region O = Si ∩ Sj to Si if

d(h(O), h(Si)) < d(h(O), h(Sj)) and associate it to Sj otherwise.

Relative Pose: Camera shakes are common while acquiring real-world videos. Un-

fortunately video stabilization algorithms often fail when complicated or textureless

background(water surface, wall etc.) are present. However, the relative scale and

48



distance features do not suffer as much, and they maintain a temporal coherence.

Note that these features cannot be defined in a MRF framework as MRF’s edge

potentials cannot condition on non-local observations.

We approximate the camera with a weak perspective model. This is a rea-

sonable model since for a camera whose field of view can hold a group of peo-

ple, the depth variations of the scene points that we are interested in are usually

small in comparison to Z0, the distance between the frontal plane and the im-

age plane. Another assumption implied by the model is that the movement of

a face along the camera axis is also insignificant compared to Z0. Let the scale-

normalized distance(SND) between the images of two rigid objects A and B be

∆AB = [(µB − µA)/ωA, (νB − νA)/ωA], where (µA, νA) are the image coordinates of

A’s center, ωA is the size of A’s image, and so on. It is easy to show that, when the

focal length and the principal point of the weak perspective camera change, the dif-

ference of ∆AB between two consecutive frames satisfies: ∆AB,t−∆AB,t−1 = δAB/τ ,

where δAB is the displacement of A with regard to B in the world coordinate sys-

tem (we disregard the camera-axis direction for the aforementioned reason) during

the same time interval and τ is a constant factor. That is, the SND’s change is

only dependent on the object’s motion and is independent of the camera’s zoom or

translation.

We define the relative distance feature function as:

fη,µ(yi = l1, yj = l2, ηij(xt)) = logL(∆µi,j,t −∆µl1,l2,t−1|mµ, bµ)

fη,ν(yi = l1, yj = l2, ηij(xt)) = logL(∆νi,j,t −∆νl1,l2,t−1|mν , bν)

(3.5)

, where L is the Laplace distribution: L(x|m, b) = 1
2b

exp(− |x−m|
b

). The choice of
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Laplace distribution over the more frequently used Gaussian distribution is justified

by two considerations: First, the Laplace distribution has longer tails, therefore it is

more robust against outliers. Second, in our experiments, the Laplace distribution

can approximate the empirical distribution of the features more accurately (See

Figure 3.5). Parameters of the Laplace distributions are estimated from the training

data using the maximum likelihood method.

In a similar fashion, we define the feature function for relative size as:

fγ(yi = l1, yj = l2, γij(xt)) = logL(
ωj,t
ωi,t
− ωl2,t−1

ωl1,t−1

|mγ, bγ) (3.6)

Uniqueness: The uniqueness constraint follows naturally from a self-evident fact

that no person can appear more than once in the same frame. However, the con-

straint does not apply to the null state introduced in Section 3.4.4, as multiple new

faces and false detections can be present at the same frame. This feature function

has the following form:

fλ(yi, yj) =


− inf if yi = yj 6= 0

0 otherwise

(3.7)

As we can see, this hard constraint dominates other feature functions and enforces a

zero probability when it is violated, but has no influence when it is satisfied. Thus,

wλ can be fixed as 1.

3.4.2 Conditional Random Field

To combine multiple contextual features, we first adopt the CRF-based ap-

proach. CRFs are undirected graphical models which characterize the conditional
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Figure 3.5: Distributions of relative positions The empirical distributions are

visualized using histograms. The fitted Laplace distribution is plotted in red, and

the Gaussian distribution is plotted in green. Parameters are set as the maximum

likelihood estimates. The distribution of the x-direction distance variation is much

larger than that of the y-direction, which makes sense since the human moves hori-

zontally much more often than vertically.
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probability p(y|x):

p(y|x,w) =
1

Z(x,w)

∏
c∈C

Ψc(yc|x,w) (3.8)

, where C is the set of all cliques in the graph and ΨC is the potential function

defined for clique c, w is CRF parameter and Z(x,w) is the normalization factor.

This is in contrast to its generative counterpart Markov Random Fields (MRF),

which model the joint probability p(y,x). In our work, we assume the potential

function to possess the log-linear form:

log p(y|x,w) = wT f(y,x)− logZ(x,w) (3.9)

. The log-linear form not only imposes positivity, but has a close relationship to the

Maximum Entropy models. The idea behind Maximum Entropy Models is to find

the conditional distribution which achieves the largest possible conditional entropy

and at the same time is consistent with the training samples. The principle leads

to the following optimization objective function:

J(p, λ) = H(y|x)+
K∑
k=1

λk(E(fk(x,y))−E ′(fk(x,y)))+λK+1(
∑
y

p(y|x)−1) (3.10)

, where λk are the Lagrange multipliers, H(y|x) is the conditional entropy, fk(x,y)

are the feature functions and E(fk) and E ′(fk) are the model and empirical expec-

tations of the feature functions, respectively. Optimization of the objective function

yields a probability distribution of the log-linear form. Equation (3.9) also defines

g(x,y,w) for the CRF case, as this is the objective function we attempt to maximize

at run-time.
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The main advantage of a CRF over an MRF is that it does not waste re-

sources on modeling the data distribution p(x), which is what we have observed.

Because it directly optimizes the conditional probability, the resulting model usually

demonstrates better performance than MRF in classification tasks. As an additional

consequence, a CRF is capable of incorporating non-local features, and the edge po-

tentials can be either dependent (as in the relative pose feature case) or independent

(as in the uniqueness constraint case) of the observation nodes. By comparison, non-

local observation node(s) will render an MRF intractable. The “global observation

friendly” property makes CRF especially useful for modeling contextual features.

The parameters of the CRF are estimated using a regularized maximum like-

lihood procedure: Given M labeled data pair {x(m),y(m)}m=1,...,M , we maximize:

E = L+ λ‖w‖2 =
M∑
m=1

log p(y(m)|x(m),w) + λ‖w‖2 (3.11)

. We employ the steepest descent algorithm for optimization for this purpose. As a

result, we need to compute

∂L

∂wp
=

M∑
m=1

[
∑
i∈V

fp(y
(m)
i ,x(m))−

∑
y∈Y

p(y|x(m),w)
∑
i∈V

fp(yi,x
(m))]

∂L

∂wq
=

M∑
m=1

[
∑

(i,j)∈E

fq(y
(m)
i , y

(m)
j ,x(m))−

∑
y∈Y

p(y|x(m),w)
∑

(i,j)∈E

fq(yi, yj,x
(m))]

(3.12)

, where fp and fq are unary and pairwise functions. The apparently more compli-

cated form over MRF’s parameter estimation is owing to the dependency of CRF’s

partition function on image observation x. In other words, because the contrastive

term in the gradient step varies with each training sample rather than remaining
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the same as in an MRF, parameter estimation in CRF is O(M) times slower than

MRF. Note that (3.12) requires an enumeration of all the possible configurations

in the solution space Y , which is generally infeasible. We use the Gibbs sampler

[145] to generate samples from the label space. To calculate p(y|x(m),w), we per-

form approximate inference on the CRF. Although many inference algorithms are

applicable, we opt for Gibbs sampling inference because it allows us to reuse the

samples generated above. We summarize the CRF parameter learning algorithm in

Algorithm 1

At the test time, the MAP solution: y∗ = argmax
y∈Y

g(x,y,w) is also solved by

conducting inference, but with learned parameters. Here, we choose the Loopy Belief

Propagation (LBP) algorithm [146] for balancing between efficiency and accuracy.

Occasionally the LBP may fail to converge, in which case we switch to the variational

Mean Field algorithm [147] for a max marginal solution.

3.4.3 Max-Margin Markov Networks

In the CRF approach, we learn the parameters by maximizing the log condi-

tional likelihood. Alternatively, we may choose to apply a margin-based optimiza-

tion criterion, in which case the M3 networks will be more appropriate. As has

been demonstrated by SVM, the max-margin rule usually results in models with

good generalization performance. In spite of its name, an M3 network is not nec-

essarily an MRF, as it in general does not model a probability distribution. In M3

networks, we are concerned with the discriminant function g(x,y,w) = wT f(y,x),
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Algorithm 1: The CRF training algorithm.

Input: N labeled training samples{x(m), y(m)}

Output: Optimal parameters w∗

Initialization: w0 = 0

while Et − Et−1 > threshold do

for m = 1→M do

• Calculate the un-normalized potential∑
i

∑
p wp,t−1fp(y

(m)
i ,x(m)) +

∑
(i,j)∈E

∑
q wq,t−1fq(y

(m)
i , y

(m)
j ,x(m));

• Apply the Gibbs Sampling algorithm to draw M model samples

{−→y (k), k = 1, ..., K};

• Do inference, calculate Z(x(m),wt) and p(y(m)|x(m),wt);

for p = {α, β},q = {η, γ, λ} do

• Calculate An =
∑K

k=1 p(
−→y (k)|x(m),wt)

∑
i fp(
−→y (k)

i ,x(m));

• Calculate Bn =
∑K

k=1 p(
−→y (k)|x(m),wt)

∑
(i,j)∈E fq(

−→y (k)
i ,−→y (k)

j ,x(m));

for p = {α, β},q = {η, γ, λ} do

• Evaluate ∂L
∂wp

=
∑M

m=1[
∑

i∈V fp(y
(m)
i ,x(m))− An] and

∂L
∂wq

=
∑M

m=1[
∑

(i,j)∈E fq(y
(m)
i , y

(m)
j ,x(m))−Bn];

• Update wp,t → wp,t−1 − ρ ∂E
∂wp

, wq,t → wq,t−1 − ρ ∂E
∂wq

;

Calculate Et =
∑M

m=1 log p(y(m)|x(m),wt) + λ‖wt‖2.
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where the parameter vector w and feature functions f are defined as before. This

is a more flexible form than the CRF model, in which normalization has to be

taken into consideration due to the underlying probabilistic interpretation. Indeed,

the relationship between CRF and M3 networks is similar to that between logistic

regression and SVM. For a brief introduction to structural SVM, please refer to

Appendeix A.

Among all the w’s that satisfy the condition: wT f(x(m),y∗) ≥ max
y∈Y\y∗

wT f(x(m),y) ∀m,

M3 networks seek the one that maximizes the margin, defined as:

η = min
m

[wT f(x(m),y(m))− max
y∈Y\y(m)

wT f(x(m),y)] (3.13)

, i.e. the smallest difference between the value of discriminant function evaluated

at the ground-truth label and that at the runner-up, across all training samples.

Therefore, the M3 network’s training objective function is:

max
w:‖w‖=1

η s.t.wT f(x(m),y(m))−wT f(x(m),y) ≥ η, ∀m, ∀y ∈ Y\y(m) (3.14)

. It is more often than not that the ground-truth and competing solutions cannot be

perfectly separated. A common practice is to introduce slack variables, as in SVMs,

to relax the constraints. Rather than treating every constraint violation with equal

importance, M3 networks penalize them according to a loss function ∆(y,yi). After

some manipulations, the ultimate optimization problem to be solved is:

min
w, ξm≥0

1

2
‖w‖2 + C

∑
m

ξm

s.t. max
y∈Y

[∆(y,y(m)) + wT f(x(m),y)]−wT f(x(m),y(m)) ≤ ξm ∀m, ∀y ∈ Y\y(m)

(3.15)
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. In (??), ξm is the slack variable and C is a tunable parameter which determines the

trade-off between margin and error tolerance. In this work, we adopt the normalized

Hamming loss function:

∆(y,y(m)) =
∑
i∈V

1(yi = y
(m)
i )/|V | (3.16)

, i.e. the percentage of labels assigned in error.

Many algorithms exist for learning the parameters in a M3 network. How-

ever, they all require to perform inference on each training image and solve for

y′(m) = argmax
y∈Y

∆(y,y(m)) + wT f(x(m),y). For tree-structured graphs, exact in-

ference may be accomplished using dynamic programming, but the same task is

generally intractable for densely-connected loopy graphs, including those used in

our work. To address this problem, we take an approximate inference strategy.

The basic idea is to construct a reduced label configuration space Ỹ(m) for each

labeled training sample {x(m),y(m)} and perform inference on the pruned space.

To this end, we iterate over all pairs of nodes {i, j}i,j∈V . Each time, we perturb

only the i-th and j-th positions in the ground truth y(m) using all possible al-

ternative combinations of labels. The obtained competing solutions {y(m)
¬(i,j)} =

[y
(m)
1 , ..., y

(m)
i−1 , ỹ

(m)
i , y

(m)
i+1 , ..., y

(m)
j−1, ỹ

(m)
j , y

(m)
j+1, ..., y

(m)
|V | ]

T , where ỹ
(m)
i 6= y

(m)
i , ỹ

(m)
j 6= y

(m)
j ,

are then added to Ỹ(m). Here we leverage the fact that the margins are mostly

dominated by the most confusing competing solutions. For a frame with N face

detection responses, the approximate inference technique reduces the complexity in

the original inference problem from roughly O(N !) to O(N2). Once y′(m) is inferred

with respect to Ỹ(m), we are then able to evaluate the subgradient of w and optimize
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the objective function. This subgradient-based M3 network learning algorithm is

summarized in Algorithm 2.

Algorithm 2: M3 network training algorithm

input : M labeled training samples{x(m), y(m)}

number of iterations K

learning rate α

output: Optimal parameters w∗

Initialization: w0 = 0

for k = 1→ K do

for m = 1→M do

Ỹ(m) = ∅

for i = 1→ |V | do

for j = i+ 1→ |V | do

Ỹ(m) = Ỹ(m) ∪ y
(m)
¬(i,j)

y′(m) = argmax
y∈Ỹ(m)

∆(y,y(m)) + wT
k−1f(x(m),y)

g = wk−1 + C
∑M

m=1[f(x(m),y(m))− f(x(m),y′(m))]

wk = wk−1 − α
K
g

w∗ = wK

3.4.4 The Null State

So far, the definitions of the feature functions have not considered the issue

of the null state. In other words, we have not defined f(yi,x) or f(yi, yj,x) when

yi = 0 or yj = 0. It is very challenging to explicitly model the null state, which is an
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open-universe set. The problem becomes even more complicated when we attempt

to guarantee the function value for the null state to be in an appropriate numerical

scale comparable to that of other states.

If we denote the domain of a unary feature function fp as X , then fp define a

map Zp : X → RL:

Zp(x) = fp = [f(yi = 1,x), f(yi = 2,x), ..., f(yi = L,x)]T (3.17)

, where L is the number of the non-null states. We now construct a second map:

Z ′p : RL → rL+1, where r is the closed interval [0, 1] on the real axis, using logistic

regression models:

Z ′p(fp) = [f ′0, f
′
1, ..., f

′
L]T , f ′l =

exp[wT
l φ(f)]∑L

l′=0 exp[wT
l′φ(f)]

(3.18)

. Here, φ is a set of nonlinear basis functions. The pairwise case is a little more

complicated. We define a “null state set” N = {(l1, l2)|l1 = 0 ∨ l2 = 0} for the

edges of the graph, which contains L+1 elements. We can similarly learn a map for

a pairwise feature function Z ′q : RL2 → r(L+1)2 , but with an additional constraint:

f ′(l1,l2) = ρ, ∀(l1, l2) ∈ N . This is intuitive as there is no reason to favor one null

state in N over another in the eye of an pairwise feature function. Although the

logistic regression is a classification algorithm, its output is continuous and so can be

interpreted as class-conditional probabilities. So the models define a map for feature

functions, with the desired property that their outputs with respect to different

states have comparable magnitudes. One limitation of our null state modeling is

that we need to learn a model for each different case of state numbers, though

training such a set of logistic regression models is computationally manageable.
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3.4.5 Removal of False Detections and Recovery of Missed Detections

False positives and false negatives are unavoidable at the face detection stage,

though the rate may vary with the detectors applied. To handle false positives,

we take the following approach: We first mark those detection responses which

are initially assigned with a null label as candidates for false positive or novel faces.

They are examined for a number of consecutive frames. Those with low re-appearing

rate are considered as false positives and discarded, and the others are kept as novel

faces. For faces which are previously detected but are missing from the current MAP

solution, we hypothesize according to their most recent SND features with respect

to other subjects. Suppose the set of subjects in the solution given by our CRF

or M3 networks at frame Ft is Ωt, then the set of missing subjects is Ωt. For any

i ∈ Ωt whose latest presence was at Ft−t0 , we generate samples of bounding boxes

{sk = (µk, νk, ωk)
T}k=1,...,K ∼ L(m,B), where:

m = Mj∈Ωt((ψt−t0 + m∆) + ϕ), B = Mj∈Ωt(ωj,te
Ct0B′) (3.19)

Here, we have utilized the linear transformation property of Laplace distribution. In

(3.19), Mj∈Ωt denotes matrix-element-wise median over the set Ωt. We choose to use

median in order to get robust prediction of the missing subject’s position from the

discovered ones. Also, ψt−t0 =


∆µi,j,t−t0

∆νi,j,t−t0

ωi,t−t0/ωj,t−t0

 , m∆ =


mµ

mν

mγ

 , ϕ =


µj

νj

0

,
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and B′ =


bµ 0 0

0 bν 0

0 0 bγ

. The variables at the entries of the vectors and matrixes

are defined as in (3.5). As the number of consecutive frames that subject i has been

missing accumulates, the variance of the Laplace distribution is gradually increased

by the exponential factor in which C is an empirically determined positive constant.

We let the generated samples go through a two-step verification procedure. At the

first step, we check if any of the samples is substantially overlapped with a detection

response that is assigned with a null label. If this is the case, then we re-assign the

missing label to the detection response. Otherwise we proceed to evaluate the unary

feature functions of the samples: fsk(i,x) = fα(ysk = i, a(x)), fβ(ysk = i,h(x)).

Only when fsk(i,x) − max
i∗ 6=i

fsk(i∗,x) > ε, where ε is a conservatively-set threshold,

will a recovery of the missing face i be enforced at sk. On the other hand, if a subject

has been consecutively absent for a certain number of frames, it is considered that

he/she has left the scene and the track associated to the subject is then terminated.

An example of the sampling-based face recovery result is shown in 3.6.

3.5 Experiments

3.5.1 Database

We evaluated the performance of the proposed algorithms on the following

three public video databases:

• Big Bang Theory database It consists of 3 episodes (Episode 1, 2 and 6)
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Figure 3.6: Samples used to recover the missing faces: Subject 2’s face is

missed by the face detector. Based on the previous relative position/size features

and the current positions/dizes of Subjects 1 and 3, we are able to generate samples

(marked by the red bounding boxes) which form the candidates for the position/size

of the missed face. The green bounding box marks the final inferred face position.
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from the first season of the sitcom “The Big Bang Theory”. There are 95052

frames and 2207 face tracks in this database. It has been used to evaluate the

TV character labeling algorithms in [79] and [80].

• Buffy database This database has been widely experimented with in many

automatic face labeling works, including [75, 76, 80]. It contains 3 episodes

(Episode 2, 5 and 6) from Season 5 of the TV series “Buffy the Vampire

Slayer”. The total number of frames and face tracks are 190097 and 3038,

respectively. The illumination condition in this database is more challenging

than the Big Bang Theory database as it contains many scenes with dim

lighting.

• QMUL Multi-Face database This database has been used in [149] to test

multi-target visual tracking algorithms. It has three video sequences, namely

frontal, fast and turning. Although captured by a static camera, all three video

sequences contain intense face motions and occlusions. In addition, subjects

change their face poses frequently in the turning sequence and perform fast

movements in the fast sequence. There are 2769 frames and 11 face tracks in

this database.

For the Big Bang Theory database and the Buffy database, we used the labeled

face tracks provided in [80] as the basis of our ground truth. We manually corrected

the errors in these annotations and added some missing face tracks. For all the

databases, we ran the shot boundary detection algorithms to divide each video into

segments. Our face association algorithm runs from boundary to boundary within
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each shot.

Aside from the three testing databases, we collected an independent real-world

video dataset in outdoor environments for training purposes. It consists of 42 short

video sequences with more than 3000 frames. We deliberately simulate the uncon-

strained conditions by introducing intense camera motions, blur, pose variations

and occlusions. The illumination condition is not controlled. The number of sub-

jects showing up in each frame ranges from 2 to 14. The training data set serves two

purposes: 1) To learn the parameters for CRFs and M3 networks. 2) Pairs of consec-

utive frames are also employed to learn the parameters of the Laplace distributions

used to characterize the relative distance and scale features.

3.5.2 Face Detection

We applied the Deformable Part Model (DPM) based face detector [104] to

each frame. We observed that the DPM detector results in considerable improve-

ment in accuracy when compared to the Haar cascaded face detector. The detector

was then followed by a skin detector using HSV color space thresholding. We marked

those face candidates with an unreasonable portion of skin pixels (We empirically

determine the upper and lower threshold to be 0.85 and 0.2) as tentative false posi-

tives and the remaining ones as tentative true positives. We performed CRF and M3

network inference for the tentative true positives. However, tentative false positives

were not simply discarded. When their locations coincided with a sample in the

missing face recovery procedure described in Section 3.4.5, we assigned bonus score
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to that sample. We attempted to fuse face detection responses with DPM-based

human body detection responses, but found this to degrade the performance.

3.5.3 Evaluation Metrics

To qualitatively evaluate the performance of our algorithm, we adopted a set

of metrics commonly used in multi-pedestrian tracking works [135], including:

• GT: the number of ground-truth face tracks.

• Recall: correctly labeled faces / total ground-truth detections.

• Precision: correctly labeled faces / total labelings made.

• Frag: fragments, the number of times that a ground-truth face track is inter-

rupted.

• IDS: ID switch, the total number of times that a ground-truth face track

changes its associated label.

• MOTA: multiple object tracking accuracy, defined as:

1−
∑

n FPn + FNn + IDSn
GTn

(3.20)

, where FPn, FNn, IDSn and GTn are the number of false positives, false

negatives, ID switches and ground truth faces at the n-th frame, respectively.

To determine if a predicted face corresponds to a face in a ground truth track,

we follow the convention in object detection literature by measuring the intersection-
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union overlap ratio. If (A1 ∩ A2)/(A1 ∪ A2) > 0.35, the two regions A1 and A2 are

considered as matched.

3.5.4 Qualitative Evaluation

We present sample qualitative face association results generated by the pro-

posed M3 network on the three video databases in Figure 3.7, Figure 3.8 and Figure

3.9, respectively. As demonstrated, the M3 network is able to produce consistent

and accurate face association results even when various challenging situations are

present. Fast motion (Figure 3.7, second row) is a common cause of failure when

traditional trackers are used, but it is gracefully handled by our algorithm. We at-

tribute this to the overall tracking-by-detection framework, as detectors are largely

unaffected by the displacement between frames. Our algorithm is also capable of

successfully handling consecutive pose variations (Figure 3.7, third row, Figure 3.8,

Figure 3.9) and short-duration occlusions (e.g. first row, Figure 3.8 and first row,

Figure 3.9). However, when a face was occluded for a relatively long period of time

and re-appears at a novel pose, the proposed algorithm could treat it as from a new

subject, as neither appearance-related contextual features nor the relative position

features are updated correctly. This accounts for the observed track splits in 3.7,

for subject 2 in the first row, subject 1 in the second row and subject 2 in the third

row. A subject’s entering and leaving the scene is similar to occlusion. A successful

example can be found in the second row of Figure 3.9, in which subject 4 temporar-

ily left the scene and re-entered, and subject 3 and 5 left the scene subsequently.
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Figure 3.7: Sample face association results on the QMUL Multi-Face

database The three rows correspond to results for the frontal, fast, and turning

sequences, from top to bottom.

We are also able to recover some of the faces that are missed by the detector. These

are marked by the black bounding boxes, e.g. fifth image, first row, Figure 3.7 and

third image, second row, Figure 3.8. The white bounding boxes mark the detections

which are labeled by our algorithm as false positives, e.g. second img, first row,

Figure 3.8 and fourth image, third row, Figure 3.9. We can see that our scheme

proposed in Section 3.4.5 works effectively in general. However, in the current im-

plementation, there is no mechanism to recognize false negatives or false positives

at the initialization stage. This is the reason why subject 4 was not associated with

any face tracks for the first three images in the first row of Figure 3.8.
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Figure 3.8: Sample face association results on the Buffy database

Figure 3.9: Sample face association results on the Big Bang Theory

database
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3.5.5 Quantitative Results

To quantitatively evaluate the performance of our algorithms, we carried out

comparison experiments. In the first experiment, we compared our approach with

two existing algorithms. The first one is the face processing pipeline used in [151].

It is also similar to that used in [75, 76], but replaces the Haar cascade face detector

with a DPM detector. Since we are concerned with face association performance,

we did not include their SIFT feature extraction and speaker detection steps in this

experiment. In this method, short tracks were formed between detection responses

using KLT trackers. The obtained tracklets were then grouped by applying con-

strained agglomerative clustering. The second compared approach is the min-cost

flow algorithm proposed in [122]. It performs greedy successive shortest-path com-

putation on an underlying flow network model. The algorithm uses birth and death

states to model subject’s entry/exit. It also considers occlusion handling and non-

maximum suppression. Comparisons results on the three databases are summarized

in Table 3.1, 3.2 and 3.3. Regarding the measures that are related to association

accuracy, i.e. MOTA, Frag and IDS, both of the proposed CRF and M3 network

framework consistently outperform the other two algorithms on all three databases.

This demonstrates the power of contextual features. The M3 network algorithm

further improve face association accuracy over the CRF. This is an expectable con-

sequence by adopting max-margin rule. The min-cost flow approach achieves the

lowest association accuracy, most likely because its transition model is not robust

enough. On the other hand, the precision and recall rates provide insights about the
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performance of our missing face recovery and false face removal mechanisms. The

proposed algorithm again outperforms the compared methods except on the Buffy

database, where the tracking-clustering algorithm produces a higher recall rate. Dif-

ference in the characteristics of the databases also impacts the performance. For

example, the substantially more frequent IDS and fragment errors made on the

QMUL Multi-face database are caused by the complicated motions and occlusions

that are intentionally introduced to the dataset. On the other hand, the relatively

simpler background in this database leads to high recall and precision rates. Aside

from performance, the two alternative approaches work in an off-line mode, but ours

operates in an on-line fashion, which has a wider range of real-world applications.

In the second experiment, we compared the relative importance of different

features on the Buffy database. To this end, we removed the face/clothing/relative

pose feature function one at a time in the M3 networks framework. We kept the

uniqueness constraint all the time, otherwise the performance would be substantially

degraded. The comparative result is presented in Table 3.4. As the result suggests,

face appearance is still the most important evidence for face association accuracy, as

MOTA drops most drastically after we remove it from the feature set. This feature

plays an especially important role in avoiding ID switch errors. This is intuitive since

clothing with similar colors or occluded by the same object tend to cause confusions

(e.g. third row, Fig. 3.8). The spatial features, i.e. the relative position and scale

feature, rank the second place in terms of effectiveness. They are the most reliable

cues under certain circumstances, including: blur, false negatives, or shaky cameras.

Disregarding this feature leads to high occurrences of fragment error and significantly
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Table 3.1: Comparison of face association algorithms on the QMUL Multi-Face

database

Method GT Recall Precision MOTA Frag IDS

Tracking-Clustering 11 96.1% 98.3% 61.8% 50 23

Min-Cost Flow 11 93.6% 98.1% 53.7% 61 29

CRF 11 96.5% 98.5% 65.2% 42 20

M3 Networks 11 96.7% 98.5% 68.8% 37 17

lowers the recall rate. Performance degradation after dropping the clothing feature

can be mostly accounted by cases in which blurred and low-resolution faces are

present. In general, every feature plays an important role, and we achieve the best

performance by combining all of them in the proposed approach.

3.6 Conclusions

In this chapter, we proposed an automatic end-to-end on-line face association

framework. We made use of multiple contextual features that can effectively assist

the task under challenging situations. We demonstrated that CRFs are particu-

larly suitable for integrating contextual features due to their ability to handle global

observations. We further improved the association performance by switching from

maximum likelihood to max-margin optimization criterion, resulting in an M3 net-

works solution. We presented approximate inference methods to address tractability
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Table 3.2: Comparison of face association algorithms on the Big Bang Theory

database

Method GT Recall Precision MOTA Frag IDS

Tracking-Clustering 2207 79.1% 91.8% 68.3% 202 32

Min-Cost Flow 2207 76.9% 87.6% 64.7% 247 30

CRF 2207 81.3% 94.1% 74.9% 188 27

M3 Networks 2207 81.7% 95.0% 75.3% 179 24

Table 3.3: Comparison of face association algorithms on the Buffy database

Method GT Recall Precision MOTA Frag IDS

Tracking-Clustering 3038 76.2% 88.5% 65.3% 345 52

Min-Cost Flow 3038 73.9% 86.4% 59.7% 352 59

CRF 3038 75.4% 92.3% 68.2% 311 45

M3 Networks 3038 75.9% 93.9% 70.7% 305 39
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Table 3.4: Comparison of contextual features on the Buffy database

Method GT Recall Precision MOTA Frag IDS

M3 Networks (no face feature) 3038 73.8% 89.7% 61.5% 407 81

M3 Networks (no clothing feature) 3038 74.9% 90.6% 66.1% 332 44

M3 Networks (no relative distance/scale feature) 3038 69.4% 94.2% 63.2% 435 56

M3 Networks 3038 75.9% 93.9% 70.7% 305 39

issues when applying CRF or M3 networks to our fully connected graph. We intro-

duced null label and sample-based face recovery mechanism to manage false posi-

tives, false negatives and faces entering/leaving the scene. Our algorithms achieved

promising experimental results on challenging public face association databases. In

the future, we will concatenate the current algorithm with cross-scene face recogni-

tion module, in order to develop a complete system for face extraction and naming

from videos. We believe the proposed methods have laid a solid foundation for this

goal.
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Chapter 4

Video-Based Face Recognition By Intrapersonal Dictionary Learning

4.1 Introduction

We are witnessing a growing interest in video-based face recognition (VFR)

research in recent years. Part of this is driven by the increasing demand for process-

ing digital video contents over the Internet. It is reported that over 14,000 hours of

new videos are uploaded to YouTube every day. From a technical perspective, the

attraction of videos comes from the fact that they contain extra spatial-temporal

information that can be exploited to improve recognition performance. Moreover,

videos arise naturally in many applications like surveillance. It is expected that

VFR can play an important role in cases where the still image-based algorithms do

not return satisfactory results.

In this chapter, we attempt to improve the performance of VFR in the following

two aspects:

Face Localization and Normalization As the first steps in almost every VFR

algorithm, face localization and normalization are of vital importance to the pro-

cessing of unconstrained videos. This is where we try to bridge the gap between

unconstrained and constrained videos in terms of source data quality. Recent ad-

vances in object detection technology have stimulated new research on “tracking

by detection” approaches and facial feature detectors. The former is more robust
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against drift errors in comparison with traditional trackers. The latter enables us to

perform accurate face alignment when large pose variations are present. However,

tracking and aligning faces “in the wild” is still a highly challenging task.

Scalability and Generalization The majority of existing VFR algorithms are

devoted to discovering features which are closely correlated with identity. However,

it requires a large amount of training data to effectively characterize a subject. More

often than not, we have insufficient training samples to account for all possible

variations for each subject. As a result, decision boundaries of the classifiers are

often highly dependent on the training data and are prone to change every time

we add new subjects to the database. Such a strategy is inherently inflexible and

unscalable. Moreover, for practical uses, while it is desirable that a VFR algorithm

be capable of working across databases, most existing approaches have difficulty in

addressing this issue.

Our fully automatic VFR algorithm works as follows: Faces are first local-

ized from videos using a tracking by detection approach. A fiducial point detector

is then applied to each tracked face. The detector is based on a structural SVM

(SSVM) learned by optimizing an objective function that emphasizes on improved

localization accuracy. It provides both coordinates of feature points and the quan-

tized face pose. Based on the estimated pose, the localized faces are then aligned to

pose-specific common reference coordinate frames. They are further clustered using

a non-parametric Bayesian model to remove temporal redundancy. Classification is

performed on these cluster centers. We construct pose-specific dictionaries as our

classifiers. However, in our work, the discriminative dictionaries do not directly
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Figure 4.1: Processing pipeline of the proposed video-based face recognition algo-

rithm.

assign an identity label to each test sample. Rather, it attempts to distinguish the

intra-personal face appearance variations from the extra-personal ones. Such dic-

tionaries are generic in nature and are capable of working across data domains. An

overview of the proposed approach is given in Figure 4.1.

Our contributions are three-fold: First, we develop a novel VFR algorithm

based on discriminative dictionary learning and the concept of intra-personal vari-

ations. As a result, the algorithm can achieve good performance in terms of ac-

curacy, generalizability and scalability at the same time. Second, we propose an

end-to-end solution to the real-world VFR problem. It allows us to reliably localize

and recognize face videos “in the wild”. Third, we demonstrate through compre-

hensive experiments that the proposed algorithm outperforms state-of-arts methods

on multiple public VFR databases.
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The rest of the chapter is organized as follows: We first discuss related work in

Section 4.2. In Section 4.3, we present the SSVM-based fiducial point detector and

the face localization module. The proposed intra-personal space VFR framework is

then described in Section 4.4 together with background knowledge in discriminative

dictionary learning. Finally we present the experimental results in Section 4.5 and

conclude the chapter in Section 4.6.

4.2 Related Works

Video-based face recognition can be viewed as a special case of a broader prob-

lem: face recognition based on image set. In practice, the two terms are often used

interchangeably when the image sets are sampled from videos. Various represen-

tations of image sets have been explored, including linear subspaces, dictionaries,

manifolds, probability distributions, dynamical models etc. By modeling image

sets as subspaces, Yamaguchi et al. developed series of methods (Mutual Subspace

Method(MSM) [22], constrained Mutual Subspace Method (CMSM) [23], Multiple

Constrained Mutual Subspace Method (MCMSM) [24]) to measure the similarity of

face videos using canonical correlations or principle angles. The measure of principle

angles is also adopted by Wolf and Shashua in a kernel-based approach [25] and by

Kim et al. in nonparametric linear discriminant analysis of face image sets [152].

Wang et al. [153] model image sets with their covariance matrices and derive a

kernel to map the covariance matrices from the Riemannian manifold to Euclidean

space. Cevikalp and Triggs [27] approximate an image set by a convex hull or an
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affine subspace and compare them using the geometric distance. Hu et al. [28] also

represent each image set with an affine hull, but the distance measure they use is

based on the Sparse Approximated Nearest Points (SANP), which are defined as the

nearest points of two sets that can be sparsely approximated by the sample images

in their respective sets. Chen et al. [43] build sequence-specific dictionaries for each

gallery videos and use reconstruction residual error to match galleries and probes.

In [45], Ortiz et al. show that under the assumption that all frames in a face track

will produce the same sparse coefficients when projected onto a learned dictionary,

the mean image is an equivalent representation of the whole video. The algorithms

which model image sets as manifolds follow a common strategy: First they apply

clustering algorithms like K-means or Hierarchical Agglomerative Clustering (HAC)

[41] to group video frames, then construct linear subspaces for each cluster. Different

types of manifold-manifold distance are then defined for the purpose of recognition.

In addition to learning the manifolds for recognition, Lee et al. [33] also use them

to aid tracking by capturing the dynamics of face pose variations with a transition

probability matrix. Wang et al. studied manifold-manifold distance in [39] and

conducted discriminative manifold analysis for image sets in [41]. There are also

existing works in which video frames are interpreted as samples from an underly-

ing distribution. For example, Arandjelovic and Cipolla [47] assume a Gaussian

distribution for Kernel PCA projections of face images. Resistor-Average Distance

is then used to characterize the similarity of two videos. They later extended the

approach to the Gaussian Mixture Model case. Zhou and Chellappa [48] performed

video-based face recognition using various probability distance measures (Chernoff
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distance, Bhattacharyya distance, KL divergence etc.) in a Reproducing Kernel

Hilbert Space (RKHS). Besides the above-mentioned works which mostly explore

the visual information of videos, dynamical models such as Hidden Markov Model

[49] and ARMA [53] have also been used to incorporate the temporal information

in VFR.

In [2], Moghaddam et al. first proposed the Bayesian face recognition algo-

rithm. The intrapersonal subspace ΩIn is defined as the subspace constructed from

within-class sample differences {∆In} using Principal Component Analysis. It ac-

counts for appearance variations of the same subject that arise from factors like pose,

lighting, expression etc. Similarly, the extrapersonal subspace ΩEx, which charac-

terizes appearance variations caused by intrinsic identity differences, is constructed

using the between-class sample differences {∆Ex}. At test time, the difference be-

tween a probe face image Ip and a galley image Ig, ∆pg, is projected onto ΩIn.

The likelihood P (∆pg|ΩIn) is computed as a product of two Gaussian densities:

one for the projection onto the principal space and the other for the complement

space. P (∆pg|ΩEx) is evaluated likewise. Finally a Bayesian classifier is applied

to obtain the recognition result. Inspired by the success of this algorithm in still

image-based face recognition, many works followed. Wang and Tang [66] showed the

relationship between Bayesian face recognition and two other frequently used sub-

space approaches: PCA and LDA. Chen et al. [154] modeled the joint distribution

of a pair of faces in the original feature space instead of the difference vector space.

The joint distribution is assumed to be Gaussian and their covariance matrices are

learned using the EM algorithm. The metric learning approach proposed in [155]
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also explored the difference images. It attempted to learn a symmetric positive defi-

nite matrix Q, which can be used to calculate the Mahalanobis distance for a pair of

images: dQ(∆) = ∆TQ∆. This is closely related to the method based on Gaussian

densities proposed for Bayesian face recognition.

In recent years, sparse coding [156] has gained popularity in the field of image

classification. Wright et al. [42] successfully applied their Sparse Representation-

based Classification (SRC) framework to the still image-based face recognition prob-

lem. In this work, the dictionary used to reconstruct face images is composed of all

the training samples. In more general cases, dictionaries need to be learned from

data. The K-SVD algorithm [157], an iterative method to learn over-complete dic-

tionaries, is one of the most widely used dictionary learning approaches. However,

as it focuses on the reconstruction error using sparse codes, K-SVD is not well suited

for classification tasks. Many discriminative dictionary learning algorithms which

include classification error terms in the objective function have been proposed. Jiang

et al. [3] presented a discriminative dictionary learning framework by enforcing la-

bel consistency constraints in addition to sparsity and reconstruction error terms.

The projection matrix used for classification is learned along with the dictionary.

In [158], the additional constraints include the discriminative fidelity terms and the

discriminative coefficient term based on Fisher’s discriminant.

Face fiducial points detection has been shown to be critical for solving the

unconstrained face recognition problem. The detectors often utilize both spatial

relationship and appearance information to localize the feature points. Everingham

et al. [75, 76] used a mixture Gaussian tree spatial model and an Adaboost trained
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Haar feaure classifier to detect facial features on faces found in TV videos. Bel-

humeur et al. [159] formulated the feature point localization problem in a Bayesian

framework and use a RANSAC-like trial-and-error procedure to find the optimal

configuration from a pool of plausible samples. One limitation of the above work

is that they train a single detector to apply to faces of various poses. Since the

spatial arrangements and visibility of facial features can change dramatically from

pose to pose, these detectors may encounter difficulties in processing face images

in the unconstrained settings. Zhu and Ramanan [104] extended the Deformable

Parts Model (DPM) for face detection, pose estimation and feature localization.

The model is also a mixture of tree-structure sub-models, each of which corresponds

to a pose prototype. It is trained using the max margin criterion and hence can

be globally optimized. The facial feature detector used in our work shares some

similarities with this work in that we also enforce max margin constraints to train

a mixture of pose-specific models. However, as we show in Section 4.3, while their

objective function is designed to guarantee the capabilities of detecting both the

whole face and the facial features, ours is tuned to improved accuracy in fiducial

points localization.

4.3 Face Localization and Alignment

Our face localization module falls in the “tracking-by-detection” paradigm.

We apply a Viola-Jones face detector to each frame of a video. Then we evaluate
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the image likelihood of each face candidate as:

L(xi,t|It) = lnN (xi,t|xt−1,Σ) + λ ln p(xi,t|Wt−1) (4.1)

, where xi,t is the bounding box’s coordinates of the i-th face candidate found in

frame It, and W is a WSL appearance model [143] updated at each frame. Appar-

ently, the two terms penalize location inconsistency and appearance inconsistency

respectively. The candidate with the largest likelihood is added to the face track

and updates the appearance model. If no faces have likelihood values above a set

threshold or no faces are detected at all in the current frame, a particle filter will

be initiated. It performs face tracking until the detector starts to find a valid face

again. The particle filter also uses the likelihood model as defined in (4.1). This

simple strategy proved to be very effective in our experiments.

To detect face fiducial points from the localized face, we train a structural

SVM [160] (For a brief introduction to structural SVM, please refer to Appendeix

A). Its coefficients control the relative weights of feature functions which are com-

puted based on a mixture of pictorial structure models {Tm,m = 1, 2, ...,M}. Each

component of the mixture accounts for the configuration of fiducial points for a spe-

cific range of face poses. Here, we divide the poses according to the yaw angle of face

and the boundaries are set as {−45◦,−30◦,−15◦, 15◦, 30◦, 45◦}. We opt for multiple

pose-specific models rather than a single shared model for two reasons. First, face

fiducial points could have totally different configurations across poses. For example,

when a face is in profile pose, half of the fiducial points will be occluded. Even

for those feature points which are visible in all the poses, the pose-specific model
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can enforce constrains on the state space. Second, such a mixture model will allow

us to estimate the face pose as a byproduct. Pose information is required when

we construct the intra/extra-personal dictionaries at the next stage. Note that for

the purpose of face alignment, usually a set of sparse features is sufficient. Follow-

ing [76], we pick eye corners, mouth corners, nose corners and nose tip as points

of interest. Intuitively, the number of feature points in each model varies due to

occlusion.

The structure of our face fiducial point model is similar to that of the mixture

of pictorial model defined in [104]. For a fiducial point configuration z = {L,m},

where L = {li} = {(xi, yi)} are the image coordinates and m is index of the mixture

component that the fiducial points are associated with, we define its score function

as:

f(I, z) = wTΦ(I, z) = wT
mφm(I, L) =

∑
i∈Vm

qi Tm ψm(I, li)+
∑
ij∈Em

aijmdx
2+bijmdx+cijmdy

2+dijmdy

(4.2)

, where:

wT = [wT
1 ,w

T
2 , ...,w

T
M ], Φ(I, z)T = [0, ..., 0, φm(I, L), 0, ...0] (4.3)

. In (4.2), Vm and Em are the nodes and edges of the m-th pictorial model in

the mixture, respectively. ψm(I, li) is a local visual descriptor extracted at the

neighbourhood of li. In our case, the CENTRIST descriptor [161] is used. For every

pair of fiducial points connected by an edge, the pairwise term in (4.2) captures their

spatial relationship. As defined in [104], dx and dy are the displacements of fiducial

point i w.r.t. fiducial point j in x and y directions. The sparse augmented feature
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function φm(I, L) only activates the mixture component whose index is encoded in z.

We can jointly localize the fiducial points and estimate the face pose by maximizing

the potential function:

z∗ = {L∗,m∗} = argmax
L,m

wT
mφm(I, L) (4.4)

To learn the parameter w, we solve the following margin re-scaling structure

SVM problem:

min
w, ξn≥0

1

2
‖w‖2 + C

∑
n

ξn

s.t. max
z∈Z

[∆(z, zn) + wTΦ(In, z)]−wTΦ(In, zn) ≤ ξn, ∀n, ∀z ∈ Z\zn

(4.5)

, or equivalently:

min
w

1

2
‖w‖2 + C

∑
n

max
z∈Z

[∆(z, zn) + wTΦ(In, z)]−wTΦ(In, zn) (4.6)

. In (4.5) and (4.6), (In, zn) is an image-label pair in the training database and Z is

the viable label configuration set. As in the single-output SVM case, each training

sample is assigned with a slack variable ξn to relax the constraints. ∆(z, zn) is

the loss function of a output z when measured against the ground-truth label zn.

Suppose there are K fiducial points in total and the subset of indexes of those

fiducial points visible for the m-th pictorial model is S(m). The loss function is

defined as follows:

∆(z, zn) =
K∑
k=1

‖δk‖2

δk =



Lk − Ln,k if k ∈ S(m) ∩ S(mn)

Ln,k if k ∈ S(mn) \ S(m)

c if k ∈ S(m) \ S(mn))

(4.7)
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. We assign a constant c in the third case because if a false positive feature point

shows up in prediction, it should be penalized uniformly, irrespective of its coordi-

nates.

In comparison, the optimization function used in [104] is:

min
w, ξn≥0

1

2
‖w‖2 + C

∑
n

ξn

s.t. ∀n, ∀ In ∈ neg, z ∈ z wTΦ(In, z) ≤ −1 + ξn,

∀In ∈ pos,wTΦ(In, zn) ≥ 1− ξn ∀k,wk ≤ 0

(4.8)

, where pos contains the positive training images with a face and neg contains the

negative ones with only background. Apparently, the constraints in (4.8) focus on

the margin between face and non-face images. In contrast, we use a different defini-

tion about positive and negative training samples: Every training image in our case

has a face in it. The positive samples are the ground-truth fiducial point configura-

tions of the faces and the negative samples are just any configurations other than the

ground-truth ones. Therefore, our objective function explicitly imposes constraints

on the margin between correct and wrong landmark predictions. Moreover, while

[104] treats all the fiducial point configuration equally for a negative training image,

in our case the margin is re-scaled by a loss function ∆(z, zn) which penalizes the

negative training samples according to their misalignment errors. In summary, our

method is not designed to detect face and facial feature points at the same time

as in [104]. Instead, it aims for higher accuracy in localizing the landmarks from a

previously detected face.

We employ the subgradient algorithm to learn the parameter w. The update
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equation is:

g =wt−1 + C
N∑
n=1

[Φ(In, zn)−Φ(In, z
′
n)]

wt =wt−1 −
α

T
g

(4.9)

. Here T is the number of iterations, and z′n is the configuration leading to the

most violated constraints. At test time, we follow a two-step procedure to solve the

inference problem defined in (4.4). First, we solve for the best L for each individual

model in the mixture. Although the cardinality of the entire configuration space is

extremely large (in the order of 1018), we only need to be concerned with a very

small portion of it at run-time, thanks to the models’ tree structure. Dynamic

programming (more specifically in this case, the Max-sum inference algorithm) can

be applied at this step to select the best configuration efficiently. Then we compare

across models to choose the optimal solution. The result of model selection also

gives a rough estimate of face pose. We detect fiducial points on every face localized

by the detector or tracker. A linear conformal image transformation calculated from

point correspondences is then applied to align faces to a canonical frame. Note that

there are M such canonical frames, each of which is associated with a model from

the mixture.

4.4 Intrapersonal Dictionary Learning

4.4.1 Sparse Coding

We now discuss the problem of modeling intrapersonal face appearance differ-

ences using sparse coding. Since video can be viewed as a special case of an image set,
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we will first discuss general image/frame-based recognition using the intrapersonal

dictionary and leave the video case to Section 4.4.2. Let X = {xi, i = 1, 2, ..., N} ∈

Rd×N be the set of vectorized intrapersonal difference training images/frames. The

intrapersonal dictionary D = [D1, D2, ..., DK ], where Dk ∈ Rd, is learned by solving

the following constrained optimization problem:

min
D,α

N∑
i=1

1

2
‖xi −Dαi‖2

2 s.t. ∀i, ‖αi‖0 < ε (4.10)

. In other words, the goal is to minimize the L2 reconstruction error and guarantee

the reconstruction coefficient vector to be sparse at the same time. Each Dk is called

an atom of the dictionary, and αi is called a sparse code. Due to the intractability

of L0 terms, it is a common practice to replace them with the L1 norm. As a result,

the actual objective function is:

min
D,α

N∑
i=1

1

2
‖xi −Dαi‖2

2 + λ‖αi‖1 (4.11)

. One of the most frequently used dictionary learning methods is the K-SVD al-

gorithm [157]. It is an iterative procedure with two alternating optimization steps:

First fix the dictionary to solve for the sparse code, and then fix the sparse code to

update the dictionary.

Our ultimate goal is to assign an identity label to a probe image (or frame)

Ip. Although dictionary learning falls in the category of unsupervised learning algo-

rithms, sparse codes have been used for classification in a number of different ways.

A typical strategy is based on reconstruction errors. More specifically, we can cal-

culate the difference vector xc between Ip and every gallery image Ic, c = 1, 2, ..., C,
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and compare the reconstruction errors:

ID(Ip) = argmin
c
‖xc −Dαc‖2

2 (4.12)

. Alternatively, one may choose to learn an additional extrapersonal dictionary D′

following a similar procedure, and compare reconstruction error ratios:

ID(Ip) = argmin
c

‖xc −Dαc‖2
2

‖xc −D′α′c‖2
2

(4.13)

4.4.2 Label-Consistent Dictionary Learning for Video-Based Face Recog-

nition

It has been argued that separating dictionary learning from classier design

may lead to sub-optimal solutions for the final classification task. In view of this,

we follow the Label-Consistent K-SVD (LC-KSVD) algorithm [3] to jointly learn

a generative shared dictionary and a discriminative projection matrix. Although

the shared dictionary is composed of two sub-dictionaries corresponding to intra-

personal and extra-personal differences respectively, the sparse code of any input

difference vector is computed by using the complete set of atoms in the dictio-

nary. This is different from the class-specific dictionaries in Section 4.4.1. On the

other hand, a matrix W ∈ R2×d that encodes the discriminative information of

the sparse codes is learned along with the shared dictionary. For the sparse codes

A = [α1, α2, ..., αN ] resulting from s set of intra-personal and extra-personal differ-

ence vectors, the projection WA is supposed to form two well-separated clusters.

Aside from that, the LC-KSVD also looks for a linear transformation B ∈ RK×d
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which encourages the samples from the same class to be reconstructed using similar

atoms, i.e. the entries in the sub-dictionary of that class. This constraint can be

written in the form: BX = Q, where Q ∈ RK×N has a block diagonal form: The

c-th block contains entry Qij, i ∈ vc, j ∈ hc, where vc are the indices of atoms from

class c (i.e. intra-personal or extra-personal) and hc are the indices of training in-

stances from class c. All the non-zero entries in Q are assigned with unit value. To

summarize, the final optimization problem has the following form:

min
D,A
‖X−DA‖2

2 + µ‖Q−BA‖2
2 + σ‖F−WA‖2

2 + λ
∑
i

‖αi‖1 (4.14)

, where the columns of F ∈ R2×N are labels of the training instances in X, repre-

sented using the 1-of-K coding scheme.

Solution to (4.14) can be converted to a typical K-SVD objective function:

min
D,A
‖X̃− D̃A‖2

2 + λ
∑
i

‖αi‖1 (4.15)

by defining X̃ =


X

Q

F

 and D̃ =


D

B

W

. Therefore, we can conveniently apply

K-SVD and extract W and D from the resulting augmented matrices.

According to a large body of empirical research, pose variations often cause

within-class variance to exceed between-class variance in face recognition. Pre-

dictably, they present a great challenge to the intrapersonal/extrapersonal differ-

ence dictionary learning. Therefore, we choose to separate pose from other nuisance

factors which case variations in the intrapersonal/extrapersonal domain. To this

end, we first group the aligned training images according to face pose that has been
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estimated along with the fiducial points in 4.3. The difference images are then calcu-

lated within each pose group and are used to learn pose-specific shared dictionaries

{Dm}, where m corresponds to the mixture index in Section 4.3. Naturally, to

predict the class label (i.e. same-person or different-person) of a difference image

with pose m at test time, only the dictionary Dm is relevant and will be activated

in calculations. Therefore, we drop the mixture/pose superscript to avoid cluttered

notation and keep the dependency on pose implicit.

In our work, calculating sparse codes for every frame pair is not only computa-

tionally expensive, but also unnecessary due to the significant temporal redundancy

present in video signals. The redundancy can be removed by finding representative

frames, which was often accomplished using the K-means algorithm. However, it

is still an open problem to adaptively determine K at run-time, and it is obvious

that a pre-determined K would be unsatisfactory considering the large variations of

video contents. In view of that, we choose to fit a non-parametric Bayesian model to

each video. The resulting model has infinite number of Gaussian mixtures controlled

by a Dirichlet process DP (β,H) [162], where β is the concentration parameter and

H is the base probability measure. The mixture weights {πk, k = 1, 2, ...,∞} are

generated from the Griffiths-Engen-McClosky (GEM) process [163], i.e.:

πk = ρk

k−1∏
l=1

(1− ρl) ρk ∼ Beta(1, β) (4.16)

. The mean and covariance parameters {θk} of the mixtures are sampled from H.

Given a video V , we assume that each frame {If , f = 1, ..., F} is assumed to be

generated by first drawing a component label zf from a Multinoulli distribution with
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parameter {πk, k = 1, 2, ...,∞} and then sample from a Gaussian distribution with

parameter {θk}. We adopt the variational inference approach to fit the model due to

its efficiency. The posterior distribution P (zf |V ) is used for clustering. By using the

Dirichlet process mixture model, new clusters can be generated when more frames

are observed, and there is no need to know number of clusters a priori.

After fitting the model, a video V with K clusters can be characterized by the

set of cluster centers. We further exrtact feature vectors {vk, k = 1, 2, ..., K} from

these representative images. Both training and test videos go through this process.

For the training videos, the intrapersonal features {xIn = vmi − vnj , ID(Vi) =

ID(Vj)} and the extrapersonal ones {xEx = vmi − vnj , ID(Vi) 6= ID(Vj)} are

employed to learn the dictionary D and the projection matrix W . At the test

stage, we iterate over every probe-gallery video pair {Vp,Vg} and calculate feature

difference vectors {xm,np,g = vmp − vng } from the representative cluster centers. We

then solve for the sparse representation of xm,np,g :

αm,np,g = argmin
α

N∑
i=1

1

2
‖xm,np,g −Dα‖2

2 + λ‖α‖1 (4.17)

. As mentioned earlier, there is an implicit pose index in the equations above. That

is, we only calculate feature vector differences for face images with the same pose,

and activate the dictionary of the corresponding pose to compute sparse codes.

For video-based recognition, we have: ID(Vp) = argmax
g

s(p, g), where

s(p, g) =
M∑
m=1

N∑
n=1

1(t1Wαm,np,g > t0Wαm,np,g )/MN (4.18)

. Here, we use t0 = [0, 1]T and t1 = [1, 0]T to denote the 1-of-K coding label for

intra-personal and extra-personal class, respectively. 1(·) is the indicator function.
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One of the attractive features of the proposed algorithm is that it naturally fits

in with the verification protocol. In a hard decision scheme, for each video pair

{Vp,Vg}, we apply majority voting on top of the binary ”same person/different

person” results of the frame pairs. This will yield a single operating point on the

ROC curve. Alternatively, we may adopt a soft decision rule. The entry of the

similarity matrix is the same as the s(p, g) defined in (4.18).

4.5 Experiments

In this section, we first present the results of our face fiducial points localization

algorithm. Then we compare our video-based face recognition methods with existing

algorithms on three public databases.

4.5.1 Facial Feature Localization

We trained our facial feature detector and evaluated its performance on a

subset of the Annotated Facial Landmarks in the Wild (AFLW) database [164]. The

database contains about 25,000 face images downloaded from Flickr, each manually

annotated with up to 21 fiducial points. There are 5872 and 2000 face images in

the selected training set and the test set, respectively. They are mutually exclusive.

Some example images from the database are shown in Figure 4.2. We cropped

the face region using the response of a Viola-Jones face detector and normalize it to

60×60. The training data were partitioned into groups according to pose. Although

filter responses were computed for M mixture components at test time, we trained
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Figure 4.2: Example images from the AFLW database. Red circles mark the anno-

tated face fiducial points.

M−1
2

of them by utilizing the symmetric property of a human face and mirroring the

left-posed face images. Within each group of data, we collected statistics of L to

determine the configuration space Z. The reference algorithms used for comparison

were the DPM-based one proposed in [104] and the one based on the Haar feature

+ Gaussian mixture tree [76]. The localization error was measured by the average

distance (in pixels) between the predicted fiducial points and the ground truth ones,

and normalized by inter-ocular distance. As shown in Figure 4.3, the proposed facial

feature localization algorithm outperforms the two reference algorithms. However,

the DPM detector is able to provide face detection output that is not supported by

our method. It has also been observed that for large poses, the advantage of the

proposed approach in localization accuracy is more evident.

4.5.2 Video-Based Face Recognition

Youtube Celebrity Video Database: The Youtube Celebrity database [51] has

been widely adopted for evaluating the video-based face recognition algorithms. The

database contains 1910 Youtube video clips of 47 subjects. Most of the videos were
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Figure 4.3: Face fiducial point detection results on the AFLW database.

extracted from news TV or movies, and hence exhibit large pose and illumination

variations. The low resolution of the videos also poses a challenge to face recognition.

In other words, this database aims to test the performance of VFR algorithms under

uncontrolled settings. We follow the protocol in [41, 165, 45], i.e., randomly choosing

3 clips per subject as galleries and 6 per subject as probes.

Honda UCSD Database: The Honda UCSD database [32] consists of 59 videos

of 20 subjects. The videos are divided into a training set which contains one video

per subject and a testing set which contains 1 to 4 videos per subject. Each video

sequence is recorded in an indoor environment at 15 frames/second and lasts at least

15 frames. Faces in the database undergo significant head motions and expression

variations.

Buffy Database: This dataset consists of 639 face tracks from the TV series “Buffy

the Vampire Slayer”. We removed the face tracks whose id is labeled as unknown
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Figure 4.4: Example frames from the three public video-based face recognition

databases: Youtube Clebrity (top row), Honda UCSD (middle row) and Buffy (bot-

tom row).

characters, leaving a subset of 483 face tracks for 8 main characters. Following [166],

they are separated into a training set of size 227 and a test set of size 256.

We show some example frames from the three video databases in Figure 4.4.

For the Youtube Celebrity Video database and the Honda UCSD database, we ap-

plied the tracking-by-detection method as described in Section 4.3 to localize the

face. For the Buffy dataset, we used the face tracks provided by the ground truth di-

rectly. We then simultaneously detected facial fiducial points and estimated the face

pose using the proposed structural-SVM detector. The result was then employed to

align the face region to a canonical frame pre-specified for the corresponding pose.

We calculated the self-quotient image to normalize the illumination. Pose-specific
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masks were imposed to suppress the background pixels. LBP and TP-LBP features

were extracted and concatenated to form the feature vector. PCA was applied to

reduce the dimension of feature vector to 400.

We trained our shared dictionary under two different settings. In the first one,

the dictionary was learned from each database’s own training set. We call this the

same-database dictionary mode. Alternatively, because the intra-personal/extra-

personal face variations are generic, we can learn a dictionary using training data

of an entirely different set of subjects. We call this second case the cross-database

dictionary mode. The number of intra-personal or extra-personal feature vector

pairs that can be used for training is in O(NK2) and O(N2K2) respectively, where

N is the number of subjects and K is the average number of clusters discovered by

the Dirichlet process Gaussian mixture model from the videos of the same subject.

The potential number is huge for a large database like the Youtube Celebrity Video

dataset, especially when we are concerned with the extra-personal pairs. This is also

true if we are to learn a dictionary from an external database. On the other hand,

the number of intra-personal pairs generated from a small training set, such as that

of the Honda/UCSD database, might be insufficient for learning a dictionary. In the

former case, we pruned candidate pairs by keeping only around 4000 samples in each

of the intra-personal and extra-personal training set. We attempted to distribute

the samples as evenly as possible and avoided only using samples from a small subset

of videos. In the latter case, we augmented the pool of intra-personal pairs with

samples from external data. To train the dictionary in the cross-database mode, we

used the LFW database[167], which has 5749 people, among which 1680 subjects
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Table 4.1: Comparison of Video-Based Face Recognition Results on the Youtube

Celebrity Video and the Honda/UCSD database

Method Youtube Celebrity Honda/UCSD

MSM[22] 61.1 92.5

MMD[39] 62.9 97.1

MDA[41] 65.3 100.0

CHISD[27] 66.3 90.5

SANP[28] 68.4 93.6

COV + PLS[153] 70.1 100.0

MA[165] 74.6 99.0

MSSRC[45] 80.8 -

Proposed-I(Same-Database) 81.9 97.4

Proposed-II(Cross-Database) 78.6 97.4
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Table 4.2: Comparison of Video-Based Face Recognition Results on the Buffy

database

Method Buffy Database

LDML[166] 85.9

MSSRC[45] 86.3

Proposed-I(Same-Database) 88.3

Proposed-II(Cross-Database) 85.2

have two or more images. We expect that the different variations covered by the

database can lead to a dictionary with good generalization property.

We compare the proposed methods with several existing VFR algorithms on

the three databases. It is apparent from a careful study of reported experimental re-

sults that not all the algorithms are compared on all the databases. On the Youtube

Celebrity Video database and the Honda/UCSD database, the compared existing

algorithms include: Mutual Subspace Method (MSM)[22], Manifold-Manifold Dis-

tance (MMD)[39], Manifold Discriminant Analysis (MDA)[41], Convex Hull based

Image Set Distance (CHISD)[27], Sparse Approximated Nearest Point (SANP)[28],

Covariance Partial Least Square (COV + PLS)[153], Manifold Alignment (MA)[165]

and Mean Sequence Sparse Representation-based Classification (MSSRC) [45]. On

the Buffy database, we compare with Logistic Discriminant-based Metric Learning

(LDML) [166] and MSSRC. The results are presented in Tables 4.1 and 4.2. As
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shown in tables, in all three databases, both of the same-database and the cross-

database dictionary modes of the proposed algorithm achieve comparable results

with respect to the state-of-the-art. On the most challenging Youtube Celebrity

Video database, our method produces slightly better results than the one most re-

cently reported in [45] and outperforms the other algorithms by a large margin.

The relative lower classification rate on the Honda/UCSD database may be due

to insufficient training samples. A noticeable fact is that using the cross-database

dictionary learned from the external database usually leads to a degraded perfor-

mance. This is consistent with our intuition that cross-domain learning is in general

a more difficult problem. But the cross-domain dictionary is advantageous in terms

of scalability and flexibility, as the training difference vectors are complementary to

each other and can be shared. Finally, the proposed framework naturally supports

the face verification protocol. Therefore, we also investigate the performance of our

algorithm in the verification mode that is described in Section 4.4. The result on the

Youtube Celebrity Video database is plotted in the form of ROC curves in Figure

4.5. We compare with the MMD and MDA because their outputs are distances,

from which the ROC curves can be conveniently generated.

4.6 Conclusion

We introduced a novel framework for video-based face recognition. It is based

on the generic concept of intra-personal/extra-personal variations, and hence leads

to greater scalability. We exploited the strength of sparse codings in classification
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Figure 4.5: The face verification results on the Youtube Celebrity Video database.

and learned a discriminative dictionary from these variations. In addition, we pre-

sented a facial feature detection method for accurate face alignment in unconstrained

videos. Our scheme is flexible enough to work in both identification and verification

modes. It can also be trained and tested on different databases. We conducted

experiments on three public databases and demonstrated the performance of the

proposed approach through comparison with existing algorithm.
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Chapter 5

Video-Based Face Recognition Using a Camera Network

5.1 Introduction

We now extend our focus to the multi-view video case. Single-view based

object recognition is inherently affected by information loss that occurs during image

formation. Although there exist many works addressing this problem, pose variation

remains as one of the major nuisance factors for face recognition. In particular, self-

occlusion of facial features, as the pose varies, raises fundamental challenges to

designing robust face recognition algorithms. A promising approach to handle pose

variations and their inherent challenges is the use of multi-view data.

In recent years, multi-camera networks have become increasingly common for

biometric and surveillance systems. Having multiple viewpoints alleviates the draw-

backs of a single viewpoint since the system has more information at its disposal.

For example, in the context of face recognition, having multiple views increases the

chances of the person being in a favorable frontal pose. However, to reliably and

efficiently exploit the multi-view video data, we often need to estimate the pose of

the person’s head. This could be done explicitly by computing the actual pose of

the person to a reasonable approximation, or implicitly by using a view selection

algorithm. While there are many methods for multi-view pose estimation [168, 169],

solving for the pose of a person’s head is still a hard problem, especially when the
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resolution of the images is poor and the calibration of cameras (both external and

internal) is not sufficiently precise to allow robust multi-view fusion. Such a scenario

is especially true in the context of surveillance.

Face recognition using a multi-camera network is the focus of this chapter. At

this point, it is worth noting that the problem we study goes beyond face recognition

across pose variations. In our setting, at a given time instant, we obtain multiple

images of the face in different poses. Invariably these images could include a mix

of frontal, non-frontal images of the face or in some cases, a mix of non-frontal

images. This makes registration of the faces extremely important. Registration can

be done once we decide to impose a 3D model onto the face. However, registration

to a 3D model (essentially, aligning eyes to eyes, nose to nose, etc.) is hard and

computationally intensive for low-resolution imagery. Toward this end, we choose

to use a spherical model of the face and a feature that is insensitive to pose variations.

In this chapter, we propose a robust feature for multi-view recognition that is

insensitive to pose variations1. For a given set of multi-view video sequences, we first

use a particle filter to track the 3D location of the head using multi-view information.

For each video frame, we build the texture map associated with the face using a

spherical head model. Given that we have the 3D location of the head from the

tracking algorithm, we back-project the image intensity values from each of the views

onto the surface of the spherical model, and construct a texture map for the whole

face. We then compute a Spherical Harmonic (SH) transform of the texture map,

and construct a robust feature that is based on the properties of the SH projection.

Building rotational tolerances into our feature allows us to completely bypass the
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pose estimation step. For recognition with videos, we exploit the ensemble feature

similarity which is measured by the limiting Bhattacharyya distance of features

in the Reproducing Kernel Hilbert Space. The proposed approach outperforms

traditional features and algorithms on a multi-view video database collected using

a camera network.

5.2 Related Work

The term multi-view face recognition, in a strict sense, only refers to situa-

tions where multiple cameras acquire the subject (or scene) simultaneously and an

algorithm collaboratively utilizes the acquired images/videos. But the term has fre-

quently been used to recognize faces across pose variations. This ambiguity does

not cause any problem for recognition with (still) images; a group of images simul-

taneously taken with multiple cameras and those taken with a single camera but at

different view angles are equivalent as far as pose variations are concerned. How-

ever, in the case of video data, the two cases diverge. While a multi-camera system

guarantees the acquisition of multi-view data at any moment, the chance of obtain-

ing the equivalent data by using a single camera is unpredictable. Such differences

become vital in non-cooperative recognition applications such as surveillance. For

clarity, we shall call the multiple video sequences captured by synchronized cameras

1In many contexts such as camera pose estimation, pose typically refers to the 3D translation

and 3D rotation of the camera/object. However, in face recognition, pose typically refers only to

the 3D rotation of face with respect to a reference orientation. We follow this convention. For

most of this chapter, we use the term pose and rotation interchangeably.
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a multi-view video, and the monocular video sequence captured when the subject

changes pose, a single-view video. With the prevalence of camera networks, multi-

view surveillance videos have become more and more common. Nonetheless, most

existing multi-view video face recognition algorithms exploit single-view videos.

Still image-based recognition: There is a large body of research on still image-

based multi-view face recognition. Existing algorithms include those based on view

synthesis [81, 82, 83, 84, 170], 3D model construction [55, 56, 59], subspace or

manifold analysis[85, 86, 171], regularized regression [172], stereo matching [173, 174]

and local feature matching [87, 88, 89, 90, 91]. In recent years, local patch/feature-

based approaches have become popular due to their effectiveness in handling pose

variations. Cao et al. [175] compare the local descriptors in a pose-adaptive way:

they estimate the poses of the pair of input faces images and select an SVM classifier

customized for that pose combination to perform verification. Yin et al. [176]

generate a collection of generic intra-person variations for local patches. Given a

pair of face images to verify, they look up in the collection to “align” the face

part’s appearance in one image to the same pose and illumination of the other

image. This method will also require the poses and illumination conditions to be

estimated for both face images. This “generic reference set” idea has also been used

to develop the holistic matching algorithm in [177], where the ranking of look-up

results forms the basis of matching measure. There are also works which handles

pose variations implicitly without estimating the pose explicitly. For example, by

modeling the location-augmented local descriptors using a Gaussian Mixture Model,
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Li et al. [178] perform probabilistic elastic matching on a pair of face images even

when large pose variations exhibit.

Video-based recognition: Video contains more information than still images. A

straightforward way to handle single-view videos is to take advantage of the data

redundancy and perform view selection. Li et al. [92] employ a combination of skin

color detector and edge feature-based SVM regression to localize face candidates

and estimate their poses. Then, for each candidate, a face detector specific to that

pose is applied to determine if it is a face. Only the frontal faces are retained for

recognition. The algorithm in [93] also relies on an SVM to select frontal faces from

video for recognition. The continuity of pose variation in video has inspired the

idea of modeling face pose manifolds [32, 35]. The typical method is to cluster the

frames of similar pose and train a linear subspace to represent each pose cluster.

Here, the piecewise linear subspace model is an approximation to the pose manifold.

Wang et al. [39] grow each such linear subspace gradually from a seed sample to

include more and more nearest neighbors, until the linearity condition is violated.

The linearity is measured as the ratio of geodesic distance to Euclidean distance,

and the distances are calculated between a candidate neighbor and each existing

sample in the cluster. They define the manifold-manifold distance as the distance

between the closest subspace pair from the two manifolds, and the subspace distance

is defined as a weighted sum of canonical correlations and exemplar distance. Also

assuming that all images of the same person lie on a manifold, Arandjelovic et al.

[179] model face videos using Gaussian Mixture Models. The manifold-manifold

105



distance is then measured using the KL divergence between the Gaussian mixtures.

Single-view videos have also been modeled using Hidden Markov Models [49], or

ARMA models [53]. 3D face models can be estimated from single-view videos as

done in [57, 58, 59]. The 3D model can be then used in a model-based algorithm

(e.g. [63]) to perform face recognition.

Multi-view-based recognition: In contrast to single-view/video-based face recog-

nition, there are relatively a smaller number of approaches for recognition using

multi-view videos. In [94], although both the gallery and the probe are multi-view

videos, they are treated just like single-view sequences. Frames of a multi-view

sequence are collected together to form a gallery or probe set. The frontal or near-

frontal faces are picked by the pose estimator and retained, while others are dis-

carded. The recognition algorithm is frame-based PCA and LDA fused by the sum

rule. In [95], a three-layer hierarchical image-set matching technique is presented.

The first layer associates frames of the same individual taken by the same camera.

The second layer matches the groups obtained in the first layer among different

cameras. Finally, the third layer compares the output of the second layer with the

training set, which is manually clustered using multi-view videos. Though multi-

view data is used to deal with occlusions when more than one subject is present,

pose variations are not effectively addressed in this work. Ramnath et al. [96] ex-

tend the AAM framework to the multi-view video case. They demonstrate that

when 3D constraints are imposed, the resulting 2D+3D AAM is more robust than

the single view case. However, recognition was not attempted in this work. Liu and
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Chen [98] use geometrical models to normalize pose variations. By back-projecting

a face image to the surface of an elliptical head model, they obtained a texture

map which was then decomposed into local patches. The texture maps generated

from different images were compared in a probabilistic fashion. Our work shares

some similarities with theirs in the texture mapping stage. This method has been

extended to multi-view videos in [99]. The texture mapping procedure was further

elaborated by adding a geometric deviation model to describe the mapping error.

However, tracking, texture mapping and recognition steps were all carried out for

each view independently.

As mentioned earlier, almost all of the above referenced algorithms incorporate

a pose estimation or model registration step, or even assume that pose is known a

priori. The problem naturally arises when we try to compare face appearances

described by pose-sensitive features.

Video processing in multi-camera networks: Camera networks have been

extensively used for surveillance and security applications [180]. Research in this

field has been focused on distributed tracking, resource allocation, activity recogni-

tion and active sensing. Yoder et al. [97] track multiple faces in a wireless camera

network. The observations of multiple cameras are integrated using a minimum

variance estimator and tracked with a Kalman filter. Song and Roy-Chowdhury

present a multi-objective optimization framework for tracking in a camera network

in [181]. They adapt the feature correspondence computations by modeling the

long-term dependencies between them and then obtain statistically optimal paths
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for each subject. Song et al. [182] incorporate the concept of consensus into dis-

tributed camera networks for tracking and activity recognition. The estimate made

by each camera is shared with its local neighborhood, and the consensus algorithms

combine the decisions from single cameras to make a network-level decision. A

detailed survey on video processing in camera networks can be found in [183].

Spherical harmonics (SH) in machine vision: Basri and Jacobs [184] use SH

to model Lambertian objects under varying illumination. Specifically, they proved

that the reflectance function produced by convex, Lambertian objects under distant,

isotropic lighting can be well approximated using the first nine SH basis functions.

Ramamoorthi [185] revealed the connection between SH and PCA, showing that

the principal components are equal to the SH basis functions under appropriate

assumptions. Zhang and Samaras [186] proposed an algorithm to estimate the SH

basis images for a face at a fixed pose from a single 2D image based on statistical

learning. When the 3D shape of the face is available, the SH basis images can be

estimated for test images with different poses. Yue et al. [187] adopted a similar

strategy where the distribution of SH basis images is modeled as Gaussian and its

parameters are learned from a 3D face database. Note that all these works are based

on Lambertian reflectance model. As a result, they require a 3D face model and

face pose estimation to infer the face appearance. In contrast, we use an SH-based

feature to directly model face appearance rather than the reflectance function, and

hence do not require a 3D face surface model or a pose estimation step.
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5.3 Robust Feature

The robust feature presented here is based on the theory of spherical harmon-

ics. Spherical harmonics are a set of orthonormal basis functions defined over the

unit sphere, and can be used to linearly expand any square-integrable function on

S2 as:

f(θ, φ) =
∞∑
l=0

l∑
m=−l

flmYlm(θ, φ), (5.1)

where Ylm(·, ·) defines the SH basis function of degree l ≥ 0 and order m ∈ (−l,−l+

1, . . . , l − 1, l). flm is the coefficient associated with the basis function Ylm for the

function f . Note that we are using the spherical coordinate system. θ ∈ (0, π) and

φ ∈ (0, 2π) are the zenith and azimuth angles, respectively. There are 2l + 1 basis

functions for a given order l [188].

The SH basis function for degree l and order m has the following form:

Ylm(θ, φ) = KlmP
m
l (cos θ)eimφ (5.2)

where Klm denotes a normalization constant such that:

∫ π

θ=0

∫ 2π

φ=0

YlmY
∗
lmdφdθ = 1 (5.3)

Here, Pm
l (x) are the associated Legendre functions.

In this work, we are interested in modeling real-valued functions (eg. texture

maps) and thus, we are more interested in the real Spherical Harmonics which are
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defined as

Y m
l (θ, φ) =



Yl0 if m = 0

1√
2
(Ylm + (−1)m Yl,−m) if m > 0

1√
2i

(Yl,−m − (−1)m Ylm) if m < 0

(5.4)

The real SHs are also orthonormal and they share most of the important properties

of the general Spherical Harmonics. For the rest of the chapter, we will use the

word “spherical harmonics” to refer exclusively to real SHs. We visualize the SH for

degree l = 0, 1, 2 in Fig. 5.1.

(a) l=0,

m=0

(b) l=1,

m=-1

(c) l=1,

m=0

(d) l=1,

m=1

(e) l=2,

m=-2

(f) l=2,

m=-1

(g) l=2,

m=0

(h) l=2,

m=1

(i) l=2,

m=2

Figure 5.1: Visualization of the first three degree of Spherical Harmonics.

As with Fourier expansion, the SH expansion coefficients fml can be computed

as:

fml =

∫
θ

∫
φ

f(θ, φ)Y m
l (θ, φ)dθdφ (5.5)
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The expansion coefficients have a very important property which is directly related

to our “pose free” face recognition application.

Proposition: If two functions f(θ, φ) and g(θ, φ), defined on S2, are related by a

rotation R ∈ SO(3), i.e. g(θ, φ) = f(R(θ, φ)), and their SH expansion coefficients

are fml and gml , respectively, the following relationship exists:

gml =
l∑

m′=−l

Dl
mm′f

m′

l (5.6)

and the Dl
mm′s satisfy:

l∑
m′=−l

(Dl
mm′)

2 = 1 (5.7)

In other words, (5.6) suggests that after rotation, the SH expansion coefficients

at a certain degree l are linear combinations of those before the rotation, and coef-

ficients at different degrees do not affect each other. This can also be represented

in a matrix form:
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

f0
0

f−1
1

f0
1

f1
1

f−2
2

...

...

f2
2

...



=



1 0 0 0 0 0 0 0 0 .

0 x x x 0 0 0 0 0 .

0 x x x 0 0 0 0 0 .

0 x x x 0 0 0 0 0 .

0 0 0 0 x x x x x .

0 0 0 0 x x x x x .

0 0 0 0 x x x x x .

0 0 0 0 x x x x x .

0 0 0 0 x x x x x .

. . . . . . . . . .





g0
0

g−1
1

g0
1

g1
1

g−2
2

...

...

g2
2

...



, (5.8)

where the x denotes non-zero entries corresponding to appropriate Dl
mm′ values.

This proposition is a direct result of the following Lemma [188] [189].

Lemma: Denote by El the subspace spanned by Y m
l (θ, φ), m = {−l, . . . , l}, then

El is an irreducible representation for the rotation group SO(3).

The proof of the proposition is as follows:

Proof Let us denote the lth degree frequency component as fl(θ, φ):

fl(θ, φ) =
l∑

m=−l

fml Y
m
l (θ, φ) (5.9)
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, then fl(θ, φ) ∈ El. According to the Lemma:

gl(θ, φ) = R(fl(θ, φ))

= R(
l∑

m=−l

fml Y
m
l (θ, φ))

=
l∑

m=−l

fml R(Y m
l (θ, φ))

=
l∑

m=−l

fml

l∑
m′=−l

Dl
mm′Y

m′

l (θ, φ)

=
l∑

m′=−l

l∑
m=−l

fml D
l
mm′Y

m′

l (θ, φ) (5.10)

Equation (5.6) follows by comparing (5.10) with

gl(θ, φ) =
l∑

m′=−l

gm
′

l Y m′

l (θ, φ) (5.11)

As for Equation (5.7), notice that Y m
l s and Y m′

l are both orthonormal basis:

RHS = 1

=

∫ π

θ=0

∫ 2π

φ=0

Y m
l Y

m
l dφdθ

=
l∑

m′=−l

(Dl
mm′)

2

∫ π

θ=0

∫ 2π

φ=0

Y m′

l Y m′

l dφdθ

=
l∑

m′=−l

(Dl
mm′)

2

= LHS (5.12)

We further look into a energy vector associated with a f(θ, φ) defined on S2

as:

ef = (‖f0‖2, ‖f1‖2, ‖fl‖2, . . .), (5.13)

where ‖ · ‖2 denotes the `2-norm, and fl consists of all the SH decomposition coeffi-

cients of f(θ, φ) at degree l:
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fl = {fml ,m = −l, . . . , l}. (5.14)

Equation (5.7) guarantees that ef is invariant when f(θ, φ) is rotated. In practice,

we find that subsequent normalization of ef with respect to total energy increases

reliability. This results in a feature which describes the spectrum of the SH coeffi-

cients. We refer to it as the SH spectrum feature.

The specific form of the function f(θ, φ) varies with applications and is often

numerically defined for sampled points on the surface of a sphere. In our multi-view

face recognition scenario, f(θ, φ) is the face appearance as represented by a texture

map/template. To be more specific, we use a sphere to approximate the human

head and the relevant image regions in multi-view data are mapped onto the surface

of the sphere according to projective geometry. This procedure will be described in

detail in Section 5.4. Note that the spherical model is different from the 3D face

model in a general sense as one does not have to estimate the surface normals. Using

a simple spherical model is often sufficient when we deal with low-resolution images

and hence, is suitable for camera networks. Constructing a reasonable 3D face model

usually requires much higher image resolution and computations. More importantly,

this model enables us to set up a connection between multi-view face image and SH

representation. Indeed, even when the face undergoes extreme pose variations, the

SH spectrum feature extracted from the texture maps remains stable, leading to

pose-robust face recognition. Note that the normalization step in feature extraction

is equivalent to assuming that all the texture maps have the same total energy,
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and in a loose sense functions as an illumination normalization step. Although this

means that skin color information is not used for recognition, experimental results

are good. Fig. 5.2 shows an example. One can see that features extracted from

the same subject’s texture map are very close even when large pose variations are

present, and they are much closer than those extracted from different subjects but

under the same pose.

Another advantage of the SH spectrum feature is its ease of use. There is only

one parameter to be determined, namely the number of degrees in the SH expansion.

Apparently, a trade-off exists for different choices of parameter values: A higher

degree number means better approximation, but it also comes with a price of more

expensive computational cost. In Fig. 5.3, we visualize a 3D head texture map as

a function defined on S2, and its reconstruction resulting from 20, 30 and 40 degree

SH transform respectively. The ratio of computation time for the 3 cases is roughly

1:5:21. (On a PC with Xeon 2.13GHz CPU, it takes roughly 1.2 seconds to do a

20 degree SH transform for 18050 points.) We have empirically observed that the

30-degree transform usually achieves a reasonable balance between approximation

error and computational cost.

5.4 Multi-Camera Tracking and Texture Mapping

In this section, we describe a robust multi-view tracking algorithm based on

Sequential Importance Resampling (SIR) (particle filtering) [14]. Tracking is an

essential stage in camera-network-based video processing. It automates the local-

115



0 2 4 6 8 10 12
0

0.2

0.4

0.6

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0 2 4 6 8 10 12
0

0.2

0.4

0.6

Figure 5.2: Robust features based on Spherical Harmonics. The texture of

each model is constructed from multi-view images captured by four synchronized

cameras. The top and bottom models correspond to the same subject, but the

capture time of the two sets of images are separated by a time span of more than

6 months. Note that we intentionally rotate the bottom model by 180◦ so that

readers can see that it is the same subject as in the top one. Therefore their actual

pose difference is even larger than the one shown. The green bars in the three bar

graphs are the same feature vector extracted from the top model. For visualization

considerations, only the first 12 elements of the feature vector are plotted here.116



Figure 5.3: Comparison of the Reconstruction Qualities with SH Coeffi-

cients The images from left to right are: the original 3D head texture map, the

texture map reconstructed from 40-degree, 30-degree and 20-degree SH coefficients,

respectively. Note that we interpolated the surface points for a better visualization

quality.

ization of the face and has direct impact on the performance of the recognition

algorithm. Recall that the proposed SH spectrum feature is extracted from the tex-

ture map of the face under a spherical head model. The tracking module, together

with a texture mapping step, describes the entire feature extraction process (see

Fig. 5.4).

5.4.1 Multi-View Tracking

To fully describe the position and pose of a rigid 3D object, we usually need a

6-D representation (R3×SO(3)), where the 3-D real vector space is used to represent

the object’s location, and SO(3) is used to represent the object’s rotation. It is well

known that higher the dimensionality of the state space is, the harder the tracking

problem becomes. This is especially true for search-algorithms like SIR since the

number of particles typically grows dramatically for high-dimensional state spaces.
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hypothesis

gradient

uniformly sampled surface points

Figure 5.4: The Multi-Cue Tracking Algorithm and Back-Projection. The

yellow circle is the boundary of the head’s image for a certain hypothesis state

vector. The green and orange rectangles mark the human body detection result and

the estimated range of head center’s projection, respectively. Green dots are the

projections of model’s surface points. The navy-blue curve on the sphere highlights

the boundary of the visible hemisphere. Note that we draw tracking and back-

projection together just for illustration. In actual case, only the MAP estimate of

the state vector will be back-projected to construct the texture map.
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However, given that our eventual recognition framework is built on the robust

feature derived using SH representation under the diffuse lighting assumption, it

suffices that we track only the location of the head in 3D. Hence, the state space for

tracking s = (x, y, z) represents only the position of a sphere’s center, disregarding

any orientation information. Initialization of the tracker can be solved through face

detection (For example, the cascaded Haar-feature detector in [102]) applied to the

first frame and followed by multi-view triangulation.

The state transition model P (st|st−1) is modeled as a Gaussian distribution

N (st|st−1, σ
2I). We found that the tracking result is relatively insensitive to the

specific value of σ and have fixed it in all of our experiments.

The observation model P (Ot|st) of the tracker is based on multiple cues such

as a histogram, the gradient map and a geometric constraint.

Histogram: To evaluate the image likelihood for a hypothesized state vector sit, we

assume a weak-perspective camera model and calculate the image of the spherical

model on the jth camera’s image plane, which is a disk-like region Ei
j (We shall

use the subscript j to indicate the jth view). A normalized 3D histogram in RGB

space is built from this image region. Its difference with the template, which is set

up at the first frame through the same procedure and subject to adaptive update

thereafter, is measured by the Bhattacharyya distance. This defines the first cue

matching function φ(Ot, s
i
t).

Gradient map: On the circular perimeter of the model’s image, we select the 90◦
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arc segment on the top, superimposing it on the horizontal and vertical gradient

map of It,j. Despite various shapes of human heads, this part of the boundary turns

out to reliably coincide with an arc. Therefore, if the state vector is a good match

to the ground truth, we expect the magnitude of the image gradient response along

this arc segment to be strong and its direction to be perpendicular to the tangent

directions [190]. Consequently, we formulate the second cue matching score as:

ϕ(Ot, s
i
t) =

1

rij

M∑
m=1

|nm · 5Im|, (5.15)

where rij is the radius of Ei
j measured in number of pixels, nm is the normal vector

of the m-th pixel on the arc, and 5Im is the image gradient at this pixel.

Geometric constraint: We impose geometric constraints to the state vector by

applying the part-based human body detector as proposed in [191]. The detector

is based on the histogram of gradients (HOG) feature. We further apply body size

constraints to filter out potential background human subjects, and then pick the

detection result with highest confidence value among the remaining ones. A reliable

head region Ri
j with respect to the detected human body area is then selected. Note

this cue forms a hard constraint for the state vector:

ψ(Ot, s
i
t) =


0 if Ei

j ⊂ Ri
j = ∅

1 otherwise

(5.16)

The overall image likelihood can be calculated as:

P (Ot|sit) ∝ lnψ(Ot, s
i
t) + λ1 lnφ(Ot, s

i
t) + λ2 lnϕ(Ot, s

i
t), (5.17)
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where λ1 and λ2 are determined by applying a logistic regression-like algorithm to

independent data. We determine the location of the head in 3D space as:

st = argmax
sit

P (sit|Ot)

= argmax
sit

P (Ot|sit)P (sit|sit−1) (5.18)

Fig. 5.5 shows the result of our multi-view tracking algorithm. The tracker is

able to track all the 500 frames without failure. Note that the video contains signif-

icant head motions in terms of rotation, translation and scaling. It is also subject

to interruptions when the head moves out of the field of view. The second video

example shown in Fig. 5.6 was captured when Baratunde Thurston, a technology-

loving humorist and host of the Science Channel, visited the Biomotion laboratory

at University of Maryland. Our multi-view tracking algorithm accurately locates

the subject’s head in spite of his dramatic motion. (Both videos are provided as

supplementary materials.) Though in real-world surveillance videos subjects usually

do not perform such extreme motions as in the example videos, the results clearly

illustrate the robustness of our algorithm. The tracker also successfully handles all

the videos in our database.

5.4.2 Texture Mapping

Once the MAP estimate of the head center is obtained, we are ready to obtain

the surface texture map for the model. First, we uniformly sample the sphere’s

surface according to the following procedure:

1. Uniformly sample within the range [−R, R], where R is the radius of the
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Figure 5.5: Sample Tracking Results Tracking results for a 500-frame multi-view

video sequence. 5 views are shown here. Each row of images is captured by the same

camera. Each column of images is captured at the same time.

122



Figure 5.6: Sample Tracking Results Tracking results for a 200-frame multi-view

video sequence. The subject performs dramatic dancing motions. Five views are

shown here. Each row of images is captured by the same camera. Each column of

images is captured at the same time.
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sphere, to get zn, n = 1, 2, ..., N .

2. Uniformly sample αn within the range [0, 2π], and independent of zn.

3. xn =
√
R2 − z2

n cosαn, yn =
√
R2 − z2

n sinαn.

Then, we perform a coordinate transformation for these sample points. As-

sume that their original world coordinates are {(xn, yn, zn), n = 1, 2, ..., N}. After

the transformation, we obtain {(x′n,j, y′n,j, z′n,j)} , which are their coordinates in the

jth camera coordinate reference frame. We determine their visibility to camera j by

examining (x′n,j, y
′
n,j, z

′
n,j). Only an un-occluded point, i.e. which satisfies z′n,j ≤ z′0,j,

can contribute to an image on the jth camera’s image plane. Here, z′0,j is the dis-

tance from the head center to the jth camera center. It is said that a back-projection

link is created between a sample point on the model’s surface and a pixel in a frame

Ij if the former’s world coordinates (xn, yn, zn) and the latter’s image coordinates

(x′′n,j, y
′′
n,j) can be related under the weak-perspective projection assumption.

We denote the texture map for the jth camera view obtained by using such

a back-projection approach as T j. Note that when we iterate the procedure over

all the cameras in the network, some model points will correspond to pixels from

multiple views, because these cameras have overlapped field of views. For sample

points in the overlapped region, we adopted a weighted fusion strategy, i.e., we

assign weight wn,j to a pixel with image coordinate pn,j:

wn,j = exp(−‖pn,j − p0,j‖/rij), (5.19)
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where p0,j is the image coordinates of the pixel back-projected by the head model,

and thus roughly the center of all the projections for camera j. Intuitively, the

closer a pixel is to this center, the larger its contribution to the texture map should

be. On the rim of a sphere a large number of sample points tend to project to the

same pixel, and hence are not suitable for back-projection. The texture of the model

point with world coordinates (xn, yn, zn) is determined by:

T (xn, yn, zn) = T j0(xn, yn, zn), (5.20)

where

j0 = arg max
j

wn,j, j = 1, 2, ..., K. (5.21)

This weighting scheme is illustrated in Fig. 5.7. Note that in our multi-view face

recognition algorithm, T is in fact the function f(θ, φ) that is subject to decompo-

sition, as described in Section 5.3.

5.5 Video-Based Recognition

Video-based face recognition has some advantages. First, video offers data

redundancy, which can be exploited to improve the robustness of a recognition

algorithm. It has been reported in the literature that video-based algorithms in

general achieve better performance than image-based ones. Second, by performing

video tracking we can automate feature acquisition. Although it is always possible

to extend the frame-based recognition result to a video-based one via simple fusion

rules such as majority voting, a principled approach that exploits data’s underlying
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Figure 5.7: Weighted Texture Mapping. In multi-view texture mapping, the

field of views of different cameras in a network often have overlap. The red (green)

region on the sphere model represents the targeting back-projection area for the

first (second) camera. The redness (greenness) at a certain point is proportional

to its texture mapping weight with regard to the first (second) camera. In their

overlapping region, whether a point is more red or more green determines which

camera’s image the texture map at that point should be based on.
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structure is often more desirable for performance reason.

Given two multi-view video sequences with m and n (note that in general

m 6= n) multi-view frames (a multi-view frame refers to the group of K frames

synchronously captured by K cameras), respectively, two sets of feature vectors

can be extracted. We look into their projections in the reproducing kernel Hilbert

space (RKHS). The projection is indirectly performed via an Radial Basis Function

(RBF) kernel. It is known that the kernel trick induces nonlinear feature mapping,

which often leads to easier separation in RKHS. We treat each instance of feature

vector as a sample from its class-conditional probability distribution. Therefore,

the similarity of the two ensembles of features can be measured using the distance

between the two class-conditional probability distributions in RKHS. By assuming

that these distributions are Gaussian, analytical form of several different distance

measures are derived in [48]. We follow [48] to calculate the limiting Bhattacharyya

distance. To this end, the rank-deficient covariance matrix (since the dimensionality

of RKHS is much higher than the number of data samples) involved in calculating

the Bhattacharyya distance is replaced by an invertible approximation C, which

preserves the dominant eigenvalues and eigenvectors. The limiting Bhattacharyya

distance in this case is:

D =
1

8
(α11 + α22 − 2α12), (5.22)

where

αij = µTi

(
1

2
Ci +

1

2
Cj

)−1

µTj . (5.23)
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We now show the steps to calculate (5.23) from the Gram matrix. Denote the

Gram matrix as Kij, where i, j ∈ {1, 2} are the indices of ensembles. The K11 and

K22 are then centered:

K′ii = JTi KiiJi, Ji = N
−1/2
i (IN − s1T ) (5.24)

where s = N−1
i 1, 1 is a Ni × 1 vector of 1s and Ni is the number of vectors in

ensemble i. Let Vi be the matrix which stores the first r eigenvectors of K′ii (i.e.

corresponding to the r largest eigenvalues). Define:

P =


√

1
2
J1V1 0

0
√

1
2
J2V2

 , (5.25)

then it can be verified that

(
1

2
Ci +

1

2
Cj

)−1

= If −
(

Φ1 Φ2

)
B

 ΦT
1

ΦT
2

 . (5.26)

If is f × f identity matrix, where f is the dimensionality of the RKHS. And Φ is

the matrix of nonlinearly-mapped data in RKHS, which is not explicitly available

to us. Matrix B can be computed from the Gram matrix:

B = PL−1PT , L = PT

 K11 K12

K21 K22

P. (5.27)

By combining (5.23) and (5.26), we have:

αij = sTi Kijsj − sTi

(
Ki1 Ki2

)
B

 K1j

K2j

 sj. (5.28)
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5.6 Experiments

5.6.1 Database

As mentioned in Section 5.2, there are very few works addressing the multi-

view face recognition problem. We exhaustively searched for a public multi-view

video-based face database. It seems that a database which contains videos captured

by multiple synchronized cameras is not available yet. Therefore, we collected a

multi-view video database using an indoor camera network. The database has 40

subjects. The videos were collected at four different sessions and are 100 to 200

frames in length. Most of the subjects have 3 videos and some of them have 2 or

4 videos. We use one as gallery and the rest as probes. This database is double

the size of its previous versions [192][193] in terms of the number of videos. To

test the robustness of our recognition system, we have arranged the time span that

separated the sessions to be up to 6 months. The appearance of many subjects has

changed significantly between the sessions. Such a dataset well serves our purpose of

simulating a practical surveillance environment and poses great challenges to multi-

view face recognition algorithms. Fig. 5.8 shows some example frames from gallery

and probe video sequences.

5.6.2 Feature Comparison

As the proposed feature can work for a single multi-view frame as well as

video sequences, we first associate four different kinds of features with different
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Figure 5.8: Example of Gallery and Probe Video Frames. Shown in the first

row are examples of gallery frames and the second row are examples of probe frames.
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classifiers to compare their performance in image-based face recognition settings.

By “image-based face recognition” we mean that each frame (a multi-view frame

for the SH spectrum feature and a single-view frame for other features.) is treated

as a gallery or probe individually without concerning which video it comes from.

We use one multi-view video of each subject as the gallery and the remaining videos

as probe. We pick every 10th frame in this experiment. The four features are:

Locality Preserving Projection (LPP) [194] and LDA in the original image space,

SH raw coefficients with PCA, and the proposed SH spectrum feature. For the first

two features, we use the face image that is automatically cropped by a circular mask

as a result of tracking, and normalize it to the size 50 × 50. For LDA, we first train

a PCA projection matrix from all the gallery images to reduce the dimension of

the original image feature, in order to avoid the intra-class scatter matrix’s rank

deficiency issue. As in the conventional LDA formulation, the criterion we choose to

optimize is det(WSbW
T )/det(WSwW

T ), where W is the projection matrix, and Sb

and Sw are the between-class/within-class scatter matrices, respectively. For LPP,

we utilize label information in the gallery by setting the weights between inter-class

samples to be 0. We also use cross-validation to determine the optimal scale constant

which is defined in the weight matrix of LPP. The experiment runs in a single-view

vs. single-view mode for the LPP and LDA case, and in a multi-view vs. multi-view

mode for the SH+PCA and SH spectrum feature case. The results are shown in

Table 5.1. Due to the incompatibility of the nature of single-view features with the

special structure of multi-view image data, the performance of the proposed feature

exceeds them by a large margin in all cases.
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Table 5.1: Comparison of Recognition Performance

Feature NN KDE SVM-Linear SVM-RBF

LPP 56.1% 42.7% 58.8% 65.9%

LDA 51.3% 34.8% 40.6% 47.4%

SH PCA 40.7% 36.4% 39.3% 52.2%

Proposed 65.3% 65.1% 79.0% 87.3%

To quantitatively verify the proposed feature’s discriminant power, we then

conducted the following experiment. We calculate distances for each unordered pair

of feature vectors {xi,xj} in the gallery. If {xi,xj} belongs to the same subject, then

the distance is categorized as being in-class. Otherwise, the distance is categorized as

being between-class. We approximate the distribution of the two kinds of distances as

histograms. Intuitively, if a feature has good discrimination power, then the in-class

distances evaluated using that feature tends to be smaller compared to the between-

class distances, and hence the distributions of the two distances should exhibit large

divergence. We use the symmetric KL divergence (KL(p‖q)+KL(q‖p)) to evaluate

the difference between the two distributions. We summarize the results for the four

features in Table 5.2 and plot three of them in Fig. 5.9. The in-class distances for the

SH spectrum feature are concentrated in the low value bins, while its between-class

distance tends to have higher values. Their modes are obviously separated. For the

other features, the between-class distance tend to mix with the in-class distance.
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Figure 5.9: Comparison of the Discriminant Power Histograms of between-

class distance distribution (blue) and in-class distance distribution (red) of the LDA

feature (left), LPP feature (center) and the SH spectrum feature (right) are pre-

sented above. Number of bins is 30.

Table 5.2: KL divergence of in-class and between-class distances for different features

LPP LDA SH+PCA SH Spectrum

0.3511 0.2709 0.2866 1.3141

The symmetric KL-divergence also suggests the same phenomenon.

5.6.3 Video-Based Recognition

The algorithm we use for video-level recognition is the one as described in

Section 5.5. We compare the performance of our video recognition algorithm with

five other ones: (1) Ensemble-similarity-based algorithm directly applied to the raw

image. Inputs are the head images which are tracked in a video and scaled to

size 50 by 50. The kernel is RBF. (2) View-selection-based algorithm. We use a

Viola-Jones frontal face detector [102] to select frontal-view face images from both

gallery and probe multi-view videos. The chosen frames from a subject’s gallery
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video are then used to construct the personal frontal-view face PCA subspace. The

frontal-view frames from the probe videos are fitted to the personal PCA subspaces

for recognition. Video-level decision is made through majority voting. (3) The

probabilistic appearance manifold algorithm proposed in [32]. We use 8 planes for

the local manifold model and set the probability of remaining the same pose to

be 0.7 in the pose transition probability matrix. We first use this algorithm to

process each camera view of a probe video. To fuse results of different camera views

we use majority voting. If there is a tie in views’ voting, we pick the one with

smaller Hausdorff distance. (4) Image-based recognition with SH spectrum feature

and majority voting for video-level fusion. We use SVM with RBF kernel for every

multi-view frame recognition. Note however that the recognition accuracies in this

case should not be compared to the previous experiment’s result to draw misleading

conclusions2. (5) The Manifold-Manifold Distance (MMD) algorithm presented in

[39]. We use the author’s code and parameter settings. When comparing two multi-

view videos, we first calculate the MMD between the sequence pairs of the same

view, and then use the minimum MMD across views as the distance measure. We

also tried with average MMD across views, which yielded similar results.

2The numbers in the two cases are not convertible to each other, as in the previous image-

based recognition experiment we did not fuse results with respect to video. Think of two extreme

situations: (1) For each video of the probe set, 51% frames are individually correctly recognized.

(2) For half of the probe videos, 100% frames are individually correctly recognized and for the

remaining half only 49% frames are correctly recognized. The overall image recognition rate and

majority-voting-based video recognition rate are respectively 51% and 100% in the former case,

and 74.5% and 50% in the latter one.
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We plot the cumulative recognition rate curve in Fig. 5.10. The view-selection

method heavily relies on the availability of frontal-view face images, however, in the

camera network case, the frontal pose may not appear in any view of the cameras.

As a result, it does not perform well in this experiment. The manifold-based al-

gorithm, the MMD-based algorithm and the image-ensemble-based algorithm use

more principled strategies than voting to combine classification results of individual

frames. Moreover, they both have certain ability to handle pose variations, espe-

cially the two algorithms based on manifold. However, because they are designed

to work with a single camera, they are single-view in nature. Repeating these algo-

rithms for each view does not fully utilize the multi-view information. For example,

we found in our experiments that mismatches made by the MMD algorithm often

happens when the minimum MMD is produced between the back-of-head clusters,

which have similar appearance representations even for different subjects. In con-

trast, the proposed method based on a robust feature performs noticeably better

in this experiment. An additional advantage of the algorithm is that it requires no

pose estimation or model registration. Comparison between the ensemble matching

algorithm and the majority voting method which both use the proposed feature

demonstrates the superiority of a systematic fusion strategy to an ad-hoc one.

5.7 Conclusion

In this chapter, we proposed a multi-view face recognition algorithm. The

most noteworthy feature of the algorithm is that it does not require any pose es-
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Figure 5.10: Video Face Recognition Results Cumulative recognition rate of

the video-based face recognition algorithms.

timation or model registration step. Under the normal diffuse lighting condition,

we present a robust feature by exploring the fact that the subspace spanned by

Spherical Harmonics is an irreducible representations for the SO(3) group. We also

proposed a multi-view video tracking algorithm to automate the feature acquisition

in a camera network setting. We modeled the video-based recognition problem as

one of measuring ensemble similarities in RKHS. We demonstrated the performance

of our method on a relatively uncontrolled multi-view video database.

Limitations One limitation of our method is that the pose insensitivity prop-

erty of the SH representation relies on the assumption that the spherical function

remains unchanged other than a rotation, i.e.: f(θ, φ, t1) = f(R(θ, φ), t2). In prac-

tice, this could always be affected by real-world lighting conditions. Under normal
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lighting conditions, this assumption is reasonable, and as we mentioned, even global

illumination variation can be partially compensated for by the energy normaliza-

tion step in feature extraction. However, extreme lighting conditions can render the

assumption invalid. This could happen when, for example, there are anisotropic

illumination variations, or strong directional light is casted onto the face from the

side. Such situations will result in large fluctuation in the features and cause the

recognition performance to degrade. There are some possible solutions to this prob-

lem. For example, we could use the self-quotient method to preprocess video frames,

or we could figure out a way to integrate the algorithm in [184] for a uniform mod-

eling of both lighting conditions and face appearance. This will be one of our future

research directions. Our algorithm also relies on the assumption that human head

can be approximated by a sphere. While this approximation may be reasonable,

model fitting errors due to the non-spherical nature of human heads do exist and

can become evident in certain cases. Moreover, because we treat the texture map

as a spherical function, unavoidably there will be quantization error caused by the

discrete pixel value. Finally, calibration of camera network could be a source of

error, too.
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Chapter 6

Future Works

In this dissertation, we studied the video-based face recognition problem in

three different aspects, i.e. face extraction from videos, recognition using single-

view videos and recognition using multi-view videos. Our research has shown that

by leveraging the information contained in videos, we can achieve encouraging re-

sults in all of these problems in spite of the challenging data used in our experiments.

However, we realized that limitations exist and robust face recognition from com-

pletely unconstrained videos is still an open problem. We have also noticed that pose

variations, especially the out-of-plane ones, remains the main issue to be addressed

by a VFR algorithm. In the following, we would like to outline several possible

directions to pursue in the future.

6.1 Deep Learning

Deep learning [195] has triggered a revolution in the computer vision commu-

nity by reshaping the way that objects are represented. Traditionally, most of the

successful visual features used in object detection or recognition, such as SIFT [196],

Histogram of Gradients [197], Histogram of Gabor Phase Pattern (HGPP) [198] etc.,

almost all rely on hand-crafting to capture the essence of different visual patterns.

Deep learning techniques allow us to learn the features from data, and hence can be
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tied directly to our final goal. The application of deep learning to face processing

has led to promising results. In [199], Osardchy et al. developed a real-time face de-

tection algorithm based on convolutional neural networks. Recently, the DeepFace

system proposed by Taigman et al. [200] has achieved near-human performance on

the challenging LFW database. By applying the learned representation of face to

the association or recognition framework presented in this dissertation, we expect

to obtain substantial performance boost.

6.2 Cross-Scene Face Association

The face association framework presented in this dissertation is concerned with

video frames of the same scene. In many applications, it is often desirable to further

group the faces across scenes, forming larger clusters. As a result, there will be

more face images per subject at our disposal, which is potentially advantageous for

the following name labeling or recognition task. For cross-scene clustering we will

need to define a proper distance measure and we are interested in applying metric

learning techniques [155]. In terms of clustering, one can adopt the Dirichlet process

mixture model used in Chapter 4 to extract representative frames.

6.3 Adaptive Face Association

The parameters of our CRF and M3 networks remain fixed after having been

learned from the training data. However, one set of parameters is not necessarily

suitable for processing all videos. We would like to infer the parameters at run-time,
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adapting to the test videos. To this end, we could take an iterative optimization

strategy, which is similar to the generalized-EM algorithm. Specifically, one could

maximize the lower bound of the data log likelihood:

Q(w, q) = −KL(q(y)||p(y|x,w)) + lnZ(x,w) (6.1)

by alternately fixing the parameters w and the labels y. The q(y) in the equation

is an approximation to the posterior distribution and is in the form of a product

of marginal distributions. Scene descriptive features may be used as priors for the

parameters to improve convergence rate.

6.4 Joint Framework for Face Alignment and Video-Based Face Recog-

nition

In Chapter 4, the face alignment problem was handled by a structural SVM and

recognition was based on intra-personal/extra-personal dictionary learning. These

are two decoupled optimization processes. Being aware of the existing work on batch

alignment of face images by sparse and low-rank decomposition [201], we are curious

to ask the question whether it is possible to integrate alignment and recognition into

a unified framework. We anticipate the joint method to work more effectively for

each individual task than currently independently optimized schemes.
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6.5 Still-To-Video Face Recognition Problem

Though video-based face recognition has received more and more interest,

not many of them are devoted to the still-to-video case. The approach proposed

in [15] is one of the only few algorithms that systematically address this issue in

a probabilistic framework. However, the dense sampling strategy adopted in the

algorithm has serious limitations in its applicability to practical databases. We are

interested in developing an efficient scheme to intelligently sample the joint state

space of pose and identity parameters. To be specific, we would like to transform

the space of identity variable to a well-behaved one such that it possess certain

“continuity”. We expect the manifold-based algorithms and the metric learning

methods to play an important role in defining such a transform. Joint tracking and

recognition approaches based on such a transformed state space could potentially

run very efficiently and be applicable to practical scenarios.

6.6 Spherical Harmonics Based Head Pose Estimation

In Chapter 5, we have mentioned that after the pose of a head changes, the

SH coefficients of the texture map at a certain degree will be linearly related to

the original ones. This property can be utilized to estimate the head pose. As

the pose parameters are coupled in a nonlinear fashion in the transformation ma-

trix, stochastic optimization algorithms are required to find the solution. We have

verified the idea on toy problems. However, to apply it to a head pose estimation
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problem, there are many practical issues to be addressed. We also plan to extend our

work to more complicated conditions, such as outdoor environments, less stringent

calibration requirements etc.
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Appendix A

Structural SVM

As an extensively adopted supervised classifier, the Support Vector Machine

(SVM) is well known for its theoretically guaranteed generalization error bound

and its easy integration with kernels. While the traditional SVM is appropriate

for single-output classification tasks, the Structural SVM (SSVM) [160] generalizes

the max margin principle to the vector output case. It is also know as max margin

Markov networks (or M3nets), as we can also view it as a result of applying the max

margin learning rule to replace the maximum likelihood one in a Hidden Markov

Model. Relationships between some common, single-output and structural-output

classifiers are listed in Table (A.1):

Learning Rule Single Output Structural Output

Maximum Joint Likelihood Naive Bayesian Classifier Hidden Markov Model

Maximum Conditional Likelihood Logistic Regression Conditional Random Field

Maximum Margin SVM Structural SVM (M3nets)

Table A.1: Relationships between single-output and structural-output classifiers
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A.1 Problem Formulation

Suppose we have a feature function φ(x,y) which measures the fitness of in-

put x with structural output y. As in the case of SVM and other generalized

linear models, we calculate the linear filter response f(x,y) = wTφ(x,y) and take

y∗ = argmax
y∈Y

f(x,y) as the prediction output. Ideally, we hope we could find filter

coefficients w such that the following condition holds:

wTφ(xi,y
∗
i ) ≥ max

y∈Y\y∗i
wTφ(xi,y) ∀i (A.1)

. Among all the solutions satisfying the condition, we are particularly interested in

the one that maximizes the margin, which is defined as:

η = min
i

[wTφ(xi,yi)− max
y∈Y\yi

wTφ(xi,y)] (A.2)

, i.e. the smallest difference between the filter response of the ground truth and that

of the second optimal solution, across all training samples. However, maximizing

(A.2) would yield unbounded solution unless we enforce constraint on the scale of

w. For convenience, we let ‖w‖ = 1 and try to solve the optimization problem:

max
w:‖w‖=1

η s.t. wTφ(xi,yi)−wTφ(xi,y) ≥ η ∀i, ∀y ∈ Y\yi (A.3)

, or equivalently:

min
w

1

2
‖w‖2 s.t. wTφ(xi,yi)−wTφ(xi,y) ≥ 1 ∀i, ∀y ∈ Y\yi (A.4)

Just as in the SVM case, we can define slack variables to tolerate some errors

for the training samples. The optimization problem is then converted to:

min
w, ξi≥0

1

2
‖w‖2 +C

∑
i

ξi s.t. wTφ(xi,yi)−wTφ(xi,y) ≥ 1− ξi ∀i, ∀y ∈ Y\yi (A.5)
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In the SVM case, since the output is a scalar representing class label, usually all

errors are treated equally. However, when we are concerned with structural output,

it is intuitive to define a loss function ∆(y,yi) to penalize constraint violations

differently. Accordingly, stringent slack variables will be assigned to training samples

that cause more serious violation of constraints. There are two different schemes to

achieve this. The first is slack-rescaling SSVM:

min
w, ξi≥0

1

2
‖w‖2 +C

∑
i

ξi s.t. wTφ(xi,yi)−wTφ(xi,y) ≥ 1− ξi
∆(y,yi)

∀i, ∀y ∈ Y\yi

(A.6)

. The second is margin-rescaling SSVM:

min
w, ξi≥0

1

2
‖w‖2 +C

∑
i

ξi s.t. wTφ(xi,yi)−wTφ(xi,y) ≥ ∆(y,yi)− ξi ∀i, ∀y ∈ Y\yi

(A.7)

. Note that in the optimization problems above, we have |Y|−1 constraints for each

training sample. Therefore the total number of constraints is N |Y|−N , determined

by both the size of the training database and the cardinality of configuration space.

Equivalently, we can rewrite the formulation using |Y| − 1 constraints:

min
w, ξi≥0

1

2
‖w‖2+C

∑
i

ξi s.t. max
y∈Y

[∆(y,yi)+wTφ(xi,y)]−wTφ(xi,yi) ≤ ξi ∀i, ∀y ∈ Y\yi

(A.8)

. Finally, we obtain the following optimization problem:

min
w

1

2
‖w‖2 + C

∑
i

max
y∈Y

[∆(y,yi) + wTφ(xi,y)]−wTφ(xi,yi) (A.9)
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A.2 Learning SSVM

A.2.1 Subgradient Method

Subgradient of a convex function f : Rn → R at a point w0 is defined as a

vector v such that:

f(w)− f(w0) ≥ v · (w −w0) (A.10)

. Obviously, subgradients coincide with traditional gradients at any differentiable

points of the function, but become a set at those non-differentiable ones. The sub-

gradient method is an iterative procedure to optimize a convex objective function,

in which we move along a negative subgradient direction at each iteration:

wk = wk−1 − αkwk (A.11)

, where αk is a learning rate following certain shrinking scheme. We summarize the

subgradient algorithm for SSVM training in Algorithm 3.

The subgradient algorithm has a slow convergence rate of O(
√
ε), which means

that it requires O(1/ε2) iterations to reduce the distance to the optimal solution by

a factor of ε [202]. However, the bundle version of the algorithm can achieve faster

convergence.

A.2.2 Cutting Plane Algorithm

Cutting plane method [203] is a delayed constraint generation technique. The

procedure is initialized with an empty set of active constraints. Then at each itera-

tion, it solves the quadratic programming problem (A.8) with constraints from the
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Algorithm 3: The subgradient Structural SVM training algorithm.

input : N labeled training samples{xn, yn}

number of iterations K

learning rate α

output: Optimal parameters w∗

Initialization: w0 = 0

for k = 1→ K do

for n = 1→ N do

y′n = argmax
y∈Y

∆(y,yn) + wT
k−1φ(xn,y)

g = wk−1 + C
∑N

n=1[φ(xn,yn)− φ(xn,y
′
n)]

wk = wk−1 − α
K
g

w∗ = wK

current set of active constraints. Using the solved parameters and slack variables,

it then searches for the most violated constraints and adds it to the working set.

The iteration continues until the set of active constraints no longer changes. The

method is summarized in Algorithm 4.
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Algorithm 4: The cutting plane Structural SVM training algorithm.

input : N labeled training samples{xn, yn}

Preset threshold ε

output: Optimal parameters w∗

Initialization: S = ∅

repeat

Obtain (w, ξ) by solving the constrained quadratic programming problem

(A.8), where constraints are from S

for n = 1→ N do

y′n = argmax
y∈Y

∆(y,yn) + wTφ(xn,y)

if ∆(y′n,yn) + wTφ(xn,y
′
n)−wTφ(xn,yn)− ξn > ε then

S = S ∪ {(xn,y′n)}

until S does not change;

w∗ = w
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