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This thesis considers fire hazards in the existing vehicle fleet and uses failure modes 

and effects analyses of three generic designs to identify and rank potential fire 

hazards in the Emerging Fuel Vehicle (EFV) fleet. A statistics based predictive 

quantitative risk assessment framework and estimated uncertainty analysis is 

presented to predict risk of EFV fleets. The analysis also determines that the 

frequency of fire occurrence is the greatest factor that contributes to risk of death in 

fire. These preliminary results predict 420±14 fire related deaths per year for a fleet 

composed entirely of gasoline-electric hybrid vehicles, 910±340 for compressed 

natural gas vehicles, and 1300±570 for hydrogen fuel-cell vehicles relative to the 

statistical record of 350 for traditional fuel vehicles. The results are intended to 

provide vital fire safety information to the traveling public as well as to emergency 

response personnel to increase safety when responding to EFV fire hazards.  
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Chapter 1: Introduction 

Fires involving highway vehicles pose a significant hazard to the traveling public and 

emergency responders. In a typical year in the U.S. there are 266,000 highway vehicle fires, 

which are associated with 350 deaths, 1230 injuries, and $959 million in property damage. 

(Ahrens, 2005a) Fire hazards of gasoline and diesel fueled vehicles are relatively well 

understood, but Emerging Fuel Vehicles (EFVs) may introduce new and unanticipated fire 

hazards. 

Owing to economic and regulatory pressures, vehicles fueled by emerging fuels are 

appearing in greater numbers on U.S. highways. The registration of 392,000 new hybrids in the 

U.S. between 2000 and 2006 indicates how EFVs are becoming increasingly prevalent (Polk, 

2006). The Energy Policy Act (EPAct) of 1992 requires that 75% of the light-duty vehicles 

acquired by most government agencies in metropolitan areas be fueled by alternative fuels, i.e., 

fuels not derived from petroleum. The EPAct (eere.gov, 2006) was updated in 2005. Some extra 

requirements have been added, such as requiring that all vehicles capable of running on 

alternative fuels do so 100% of the time, whereas before they were only required to do so 51% of 

the time. 

Several studies have been conducted to assess hazards of accidents involving EFVs. One 

such study sought to identify these risks before the vehicles were widely used, thus ensuring 

public acceptance of the new systems (Purdue University, 1978). Two significant conclusions 

were drawn. First, to gain rapid acceptance by the public, operating procedure information needs 

to be widely distributed. And, second, to evaluate statistics, accident data needs to be well 

documented on a large scale. This study is 30 years old and does not reflect current EFV 

technologies. 
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The objective of a more recent study sought to analyze not only fire hazards associated 

with accidents involving alternative vehicles but also the infrastructure and regular operation of 

such vehicles (Plotkin, 2000). This study determined that properties of a fuel, vehicle storage, 

and refueling are also significant contributing factors to the fire hazards of EFVs. This study 

named many of the hazards of fuels and gave some comparison to traditional fuels assuming 

generic designs. However several fuels and the determination of what fire hazards are of the 

most concern were left for future research. 

The reporting of accident data, such as by Ahrens (2005a), helps to quantify and track the 

frequency of accidents and deaths involving highway vehicle fires. By evaluating fuel system 

hazards quantitatively, such as was done for compressed natural gas buses by Chamberlain et al. 

(2005), risk comparisons between fuel systems can be made. But before a quantitative analysis 

can take place, the hazards need to be comprehensively identified and this information alone can 

provide useful safety information. 

The EPAct (eere.gov, 2006) provides a list of Alternative Fuels. EFVs are defined here to be 

vehicles fueled by Alternative Fuels as well as gasoline-electric hybrid vehicles. The emerging 

fuels and systems considered here are: 

• Gasoline-electric hybrids  

• Natural gas and liquid fuels domestically produced from natural gas 

• Hydrogen 

• Liquefied petroleum gas (propane) 

• Ethanol, methanol, and other alcohols 

• Blends of 85% or more of alcohol with gasoline 

• Coal-derived liquid fuels 
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• Electricity 

• Biodiesel (B100) 

• P-Series fuel 

 

The objectives of this work are to: 

1. Identify the fire hazards associated with emerging fuel vehicle systems. 

2. Create a Failure Modes and Effects Analysis (FMEA) for three generic designs of 

selected vehicle types. The selected vehicle types include: 

a. Gasoline-Electric Hybrid 

b. Compressed Natural Gas (CNG) 

c. Hydrogen Fuel-Cell 

3. Create a predictive quantitative risk analysis for the same vehicle types. 

4. Identify important vehicle fire research issues 
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Chapter 2: Fire Hazards of Emerging Fuel Vehicles 

 

This chapter begins with a discussion of fuel property hazards of EFVs. Following this, a 

discussion of other possible hazards identified from previous history and expert interviews is 

presented. The chapter concludes with suggestions for future research inspired by this research.  

2.1 Fuel Property Hazards 

2.1.1 Gasoline-Electric Hybrid 

Because gasoline-hybrids are powered by combustion and electricity, they have many of 

the same hazards as gasoline powered vehicles. In addition to gasoline hazards, hybrid vehicles 

can have additional, electrical fire hazards owing to the higher voltages they employ. 

2.1.2 Natural Gas 

Vehicle compressed natural gas (CNG) tanks involve high pressures. Exceeding the rated 

pressure can result in tank failure or explosion. In addition, fire can weaken tanks that may then 

cause them to rupture. 

Companies such as American Honda and FuelMaker have designed a refueling 

mechanism that can be installed in a consumer’s home. The appliance, called “Phill,” is costly, 

but it can perform a slow fill, refueling a vehicle overnight (South Coast AQMD, 2005). Having 

a CNG fuel line in the home increases some fire risks, such as the possibility of having 

accumulated vapors that can explode.  

Due to its positive Joule-Thompson coefficient, expanding CNG can lower the 

temperature below the freezing point of water. This freezing can block check valves in the open 
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position, allowing for a blow-back scenario where the fueling nozzle can be expelled with a 

pressure of up to 25,000 kPa (250 bars or about 3626 psi). 

Liquefied natural gas (LNG) refueling requires training and cannot generally be 

performed by consumers owing to exposure concerns. Certain substances, such as liquid water 

from condensation, can pose a fire/explosive hazard. This hazard is referred to as Rapid Phase 

Transition (RPT). If liquid water enters a LNG pool, the LNG can undergo a RPT, potentially 

leading to a fire or explosion (Orion, 2006; WMATA, 2006; epa.gov, 2002).  

2.1.3 Hydrogen 

Hydrogen involves several unusual fire risks. One such risk is that compressed hydrogen 

vehicles use gas at high pressure and have hazards related to using pressure vessels. Hydrogen 

leaks easily due to its small molecular size and ignites easily. It has wide flammability limits, a 

high flame speed, and low ignition energy. To prevent static discharge from igniting hydrogen 

fuel during refueling the vehicles need to be grounded to eliminate the buildup of electrical 

charge. Additionally, hydrogen flames are not easily visible under daytime illumination.  

2.1.4 Propane 

Refueling a propane vehicle parallels refueling a gasoline vehicle. The refueling stations 

pump at about the same rate (about 38-45 Liters per minute). Propane systems differ from 

gasoline in that they are sealed systems. This leaves the system vulnerable to leaks from sealed 

connections between refueling components. To reduce the vulnerability, redundant safety 

devices, such as check valves, are employed to prevent back flow from the tank in the case of a 

leak. A boiling liquid expanding vapor explosion, or BLEVE, is also a hazard. This occurs when 

there is a complete failure of the tank, and it can produce high velocity projectiles and high heat 
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release rates. To reduce this hazard, propane fuel tanks used in highway vehicles are designed to 

be 20 times as puncture resistant as gasoline tanks at four times the normal operating pressure 

(National Propane Gas Association, 2004).  

2.1.5 Ethanol and Methanol 

Ethanol vehicle fuel is usually mixed with gasoline. E85 is 85% ethanol and 15% 

gasoline. This changes many properties compared to normal gasoline. Consumers need to be no 

more cautious with ethanol than with gasoline (Pharmco-AAPER, 2005). Blends of fuel with 

concentrations of alcohol higher than 10% require the use of alcohol-resistant foams during fire 

suppression (Kidde Fire Fighting, 2006). Additionally, alcohol fires generally produce dimmer 

flames than those of gasoline or diesel fires. 

Fire hazards involved with methanol are similar to those associated with ethanol 

(Machiele, 1990).  

2.1.6 Biodiesel  

Biodiesel poses no severe fire hazards other than the normal hazards associated with 

diesel fuel. Biodiesel refueling uses the same equipment as standard diesel refueling equipment 

(Sundan, 2004).  

2.1.7 P-Series Fuel 

P-series fueled vehicles are composed of many types of fuels, including ethanol and 

natural gas (Structure Supplies, 2006). P-series fuels can also be mixed with gasoline. Therefore, 

the fire hazards involved with P-series vehicles encompass the same hazards as ethanol and 

gasoline. P-series fuels are liquid, so additional concerns of spilling or leakage, which can lead to 

fire or explosion, are also present. P-series fuels are not currently widely used. 
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2.2 Fuel System Hazards 

Each of the emerging fuel systems presents unique hazards and challenges for emergency 

responders. Based on hazards identified in the previous section, past research, previously 

documented events, and personal communication with experts, this section discusses the hazards 

of emerging fuel systems and their effects on the traveling public and emergency responders.  

In this section several adverse effects of traditional emergency response tactics are 

observed. The descriptions of traditional emergency response methods presented here may vary 

from actual performance methods since procedures are known to vary by location or may have 

become outdated.  

The complete list of experts interviewed, diagrams of several vehicle component layouts, 

and a table of emergency response guides referenced can be found are provided in Appendix A 

through C. It should be noted that all possible component layouts found during this research were 

considered to determine the vehicle system hazards, but there were too many to include all of 

them here. The component layouts presented in Appendix B are given to aid the reader in 

understanding the systems and their operation. The layouts represent some of the most 

commonly found component layouts but are not meant to encompass all possible designs. 

With the exception of a purely electric vehicle, the fire safety concerns for a traditionally 

fueled vehicle still apply to all other EFVs. While compressed gas fueled systems do not contain 

a liquid fuel that can cause a pooling hazard, there are other components that contain other 

flammable or combustible liquids that cause the same type of pooling hazard. The following 

hazards are those that are specifically not present in traditionally fueled vehicles. 
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2.2.1 Gasoline-Electric Hybrid 

In hybrid vehicles there are two primary fire concerns that are different from traditional 

fuel vehicles: fires involving the high voltage battery pack and electrification of components 

with high voltage. If the battery pack casing is breached in a fire, toxic runoff from liquid fire 

suppression methods may need to be diverted from watershed areas. Toxic gas emissions are also 

a concern if the battery pack should become involved in a fire. These gases vary depending on 

the battery type. It may be important for firefighters to use self-contained breathing apparatus 

devices to avoid the inhalation of such toxic gases. Furthermore a fire involving the battery pack 

should not be extinguished and the battery pack should not be flooded. Firefighters should cool 

surrounding components with water while allowing the fire to burn itself out (Toyota, 2006).  

2.2.2 Compressed Natural Gas 

The most significant concern associated with CNG is the potential for high pressure, 

flammable gas leakage. In the case that the tank or fuel line is breached, a high pressure, 

flammable gas will be released that is easily ignitable. CNG can also be released via the 

operation of a pressure relief device (PRD) (Toyota, 2006).  

Dimmick has suggested that many vehicles, depending on their use, benefit from venting 

their PRDs downward and that this configuration is the most likely to be encountered (Dimmick, 

2006). A long pipeline to the release point can create other failures should the release pipeline be 

damaged in an accident. For this reason a short distance from the tank to the release point is 

preferable. The position of the release point is often placed near probable sources of ignition. An 

ignited gas jet fed by the PRD burns at a subsonic speed. While when a collection of natural gas 

burns, it is possible for it to result in a detonation instead. Thus, the gas release is generally less 

likely to cause extreme damage if it is ignited in subsonic conditions. A PRD venting upward is 
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not as close to probable sources of ignition. It is therefore less likely to be ignited and may lead 

to an explosion that is far more damaging than an ordinary burning flame jet from a downward 

venting PRD (Seiff, 2006b). This warrants that in any situation where a venting or leakage of gas 

is suspected, possible ignition of the gas in one of these two modes will be possible.  

Examples of locations where these flame scenarios could become a threat include any 

enclosed areas where escaping gas could accumulate into an ignitable mixture. Sufficiently 

cooled natural gas by the Joule-Thompson effect while escaping high pressure tanks is heavier 

than air and will travel along the ground. Natural gas at ambient temperature will rise in air. The 

venting from the PRD can be identified by the loud noise it makes while venting. In addition, to 

prevent accumulation of gas, natural gas leakage that is already ignited should not be 

extinguished as this can create an explosive re-ignition scenario. Instead it is suggested that 

surrounding components be cooled to prevent further damage.  

Also it is suggested that fires that involve a pressurized fuel tank “should be fought from 

behind…cover and be at least 50 meters from the incident. If substantial cover does not exist 

then possible evacuation of members of the public and/or rescue personnel to a distance of 200 

meters should be considered” due to the shrapnel that can be generated from the failure of the 

storage tank (Hassan et al., 2006). This recommendation comes from research performed on 

propane fueled vehicles that have tanks very similar to both CNG and Hydrogen vehicles.  

In Seiff’s documentation of natural gas vehicle incidents, one case is suspected of having 

caused a chain of PRD failures. It is suspected that due to the venting and ignition of one bus’s 

PRD the fire spread to three other buses (Seiff, 2006b). It is reasonable to assume that a chain of 

PRD activations could be caused if they all happened in close proximity to one another such as 
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in a truck yard. It is important to be aware how the operation of the PRD by one vehicle can 

possibly involve another vehicle that also employs a PRD. 

2.2.3 Hydrogen Fuel Cell 

Many hydrogen vehicles contain similar electrical components as hybrid vehicles and 

thus require similar safety procedures in regard to electrical hazards during fires. Most hydrogen 

systems do not include a liquid fuel system and so there are new and different hazards present 

than in traditional fuel systems. Similar to the CNG system, the most significant concern 

associated with the use of compressed hydrogen as fuel is the potential for high pressure, 

flammable gas leakage through a breach or the operation of the PRD (George et al., 2006). All of 

the same hazards from explosion that apply to CNG also apply to hydrogen. Hydrogen has a 

wider flammable range and so is even more likely to ignite than CNG. 

Due to the unique properties of hydrogen, it is common for flames involving only 

hydrogen to be virtually invisible to the human eye. Thus, in any situation where hydrogen is 

suspected to be involved, it is prudent to use more extensive fire detection measures. These 

include using a thermal sensing camera to look for flames before approaching a possible fuel 

leakage scenario. This can also be performed by approaching the vehicle with a long handled 

broom preferably with straw bristles that will ignite when the bristles encounter the flames. 

For compressed fuels it is important to note that unlike gasoline, fighting the fire from an 

uphill position is not recommended. Since the hydrogen gas rises, it is important to fight fires 

and approach the vehicle from upwind, where gas accumulation is less likely. Hydrogen can be 

lighter or heavier than air depending on its temperature. If it is heavier than air it will travel 

along the ground accumulating in low areas until it is heated by contact with the ground and 

dispersion in air. Fighting these fires upwind is the most appropriate approach to avoid areas 
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where gas has accumulated in explosive mixture quantities. For these reasons identifying not 

only that a compressed gas is the source of a fire is important, but also what type (Slaughter, 

2003).  

2.2.4 Propane 

The same hazards apply to propane fuel systems as applied to CNG except in the cases 

where there is a gas leakage and explosion. Propane is heavier than air and will sink to the 

ground. For propane, liquid leakage and BLEVE are principal fire considerations. It is important 

to note that for both CNG and propane fuel systems on the road, after-market conversions may 

be provided by vehicle owners, and as such may not have installed PRDs in the system. Thus, 

any situation where a PRD has not already proven its presence should be treated as a possible 

BLEVE hazard, or explosion hazard for CNG and Hydrogen systems, further necessitating the 

large exclusion zone for fighting these fires as mentioned in the quote of the suggested CNG 

exclusion zone earlier in this paper. 

2.2.5 Ethanol and Methanol   

For systems that may contain ethanol or methanol, extra precaution should be taken to 

apply only alcohol resistant foams during fire suppression if foams are used. It is also not 

recommended to apply water from straight-stream nozzles because this can cause the fire to 

spread. 

2.3 Hazard Identification Future Research 

Several issues have arisen during the previously discussed hazard identification research 

that warrants further research. These issues are summarized as follows: 
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• Many of the current EFV symbols are similar and it is hard for emergency responders to 

differentiate vehicle fuel types, especially from a distance. Further research should be 

conducted to develop easily differentiable symbols or electronic markers. There is a large 

difference in the safe firefighting distance and priorities of suppression for situations 

where there is an explosion hazard versus when there is not. Thus immediate vehicle 

identification is critical to maintaining safe suppression measure. 

• Rupture and possible explosion of vehicle fuel tanks is a significant fire hazard. Further 

research is needed to determine safe exclusion zone distances for each type of emerging 

fuel. This would then also define the distance at which their previously mentioned 

symbols or electronic markers would need to be identifiable. 

• In trying to acquire statistics on EFV fires, it was found that they are not directly 

identifiable by their Vehicle Identification Number (VIN) or in emergency responder 

accident reports. VINs do identify model number; however the VINs of EFV models 

must be identified for each manufacturer separately since they are not consistent between 

manufacturers. Additionally there is no “fuel system” data entry on emergency responder 

accident report forms or in either the NFIRS or FARS databases. Therefore the accident 

data based on accident reports cannot be used to identify statistics for EFVs alone. 

Further research could improve these systems so that EFVs can be identified easily for 

statistical purposes. 

• The buoyancy and dispersion of released natural gas from the system remains an 

uncertainty that still needs to be addressed. Further research into modeling the behavior 

of natural gas release would provide more definite characteristics of how fire scenarios 

may form. 
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Chapter 3: Failure Modes and Effects Analysis 

3.1 FMEA Methods 

FMEAs were created for three generic EFV fuel systems to identify possible modes of 

failure and the consequences of those failures. These are generalizations and different designs 

could lead to different FMEA results. A hazard is defined here as a possible source of injury or 

damage. Failure is defined here as a function that causes injury or damage by either creating a 

fire hazard at any time or creating a hazard during fire suppression activities. Using statistics 

acquired in the future, these initial ratings can be replaced with quantitative ratings for greater 

accuracy.  

The FMEA method in this research adopts characteristics of a number of different 

sources from related industries such as mechanical design, (Otto et al., 2001; Crow, 2006; 

Dyadem Press, 2003) fire protection, (Mowrer et al., 1989; US Nuclear Regulatory Commission, 

1975; Vesely et al., 1981) and SAE (FMEA, 1995). Both failure modes and consequences are 

identified by consulting the literature on the emerging fuels, EFV components, laboratory 

experiments, and accidents. The FMEA uses the likelihood of the failure modes and the severity 

of consequences to understand the relative risk associated with each failure mode (Dyadem 

Press, 2003). The highest risk modes of failure are assessed by the risk priority number (RPN). 

Diagrams of the common fuel system component layouts used in the FMEA and the full 

FMEA are provided in Appendices B and D. The diagrams show the general component layouts 

that were considered to represent the systems in the FMEA. The FMEA summary table of the six 

highest risk modes of failure for particular components of each system is shown in Table 3.1.  
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Table 3.1. Summary of design FMEA fire related hazards 

Component Name
Potential Failure 
Mode(s) Potential Effect(s) of Failure S

ev
er

ity

Potential 
Cause(s) / 
Mechanism(s) of 
Failure P

ro
ba

bi
lit

y

R
P

N

Fuel Tank (And fuel 
lines)

Cracking Flammable leakage 6 Protective casing 
breach.

6 36

Hybrid Vehicle (HV) 
Battery Pack

Electrical Short Arcing, electrifies other components 
with high voltage and possible ignition 
source.

9 Short Circuit 4 36

Power Cables (with 
GFI)

Electrical Short Arcing, electrifies other components 
with high voltage and possible ignition 
source.

9 Excessive 
loading

4 36

Rear/Front Inertia 
Switch

Electrical Open No high voltage shutoff in hazardous 
situation. 

9 Improper 
maintenance

4 36

Hybrid Vehicle (HV) 
Battery Pack

Cracking Corrosive liquid leakage, toxic fire 
hazard, loss of power to electric motor, 
loss of power to vehicle.

6 Protective casing 
breach.

6 36

Electronic Monitoring 
System

Miscalibration Failure to prevent exposure to High 
Voltage.

9 Improper 
algorithm

4 36

Storage Tank Over-Pressure Rupture, Explosion, Sonic Conditions 9 Improper 
operating 
conditions, 
Inoperative PRD

6 54

Check Valve Freezing Prevents isolation, high pressure 
flammable back flow at the fill 
receptacle.

7 Fuel deposit 
buildup, Thermal 
Expansion

7 49

Fill Receptacle Deformation Flammable leakage of high pressure 
gas during refueling.

8 Excessive 
loading

6 48

Fill Receptacle Seal 
Embrittlement

Flammable leakage of high pressure 
gas during refueling.

8 Improper 
maintanance

6 48

Pressure Relief 
Device

Deformation Premature operation, Flammable 
leakage.

5 Excessive 
loading

9 45

Storage Tank Localized Flame Rupture, Flammable Leakage 9 Fuel line failure 5 45
Direct Current High 
Voltage Cables 
(without GFI)

Electrical Short Arcing. 9 Protective 
Casing Breach

7 63

Alternating Current 
High Voltage Cables 
(without GFI)

Electrical Short Arcing. 9 Protective 
Casing Breach

7 63

Hydrogen Tanks Over-Pressure Leaks high pressure flammable gas. 
Possible explosion.

10 Improper 
operating 
conditions

6 60

Pressure Relief 
Device (PRD)

Flame Leaks large volume of high pressure 
flammable gas in presence of ignition 
source.

6 Flame 9 54

High Pressure Tank 
Inlet Lines

Cracking Leaks high pressure flammable gas. 7 Excessive 
loading

7 49

Low Pressure Tank 
Outlet Lines

Localized flame Leaks low pressure flammable gas in 
presence of ignition source.

7 Small flame 7 49
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The modes of failure describe all the ways a component is capable of failing. Each 

identified failure mode can have a number of effects. Each of these effects is given a risk rating 

and is briefly described. The effect is then rated on a qualitative scale of severity numbering 

from 1, where no injuries or damage is expected, to 10, where death or complete destruction is 

expected in the event of failure. The most significant predicted causes of failure are described 

and ranked on another qualitative scale, also from 1 – 10. A hazard with a probability of 1 is not 

expected to cause a fire even in the lifetime of one out of one million vehicle systems. A rating 

of 10 represents that the probability of the failure scenario is assured to occur during the lifetime 

of at least one out of one million vehicle systems. Lastly, the product of the severity and 

probability ratings gives the RPN from which a determination of the priority of the hazard 

extends. The explicit rating descriptions are specified to describe EFV failures on the scales 

based on common industry practice (Otto and Wood, 2001, Dyadem, 2003). 

3.2 FMEA Results 

From the FMEA several issues with each vehicle became evident. The issues identified 

for each individual vehicle type are addressed in the following sections. Details of related failure 

scenarios from literature review and expert interviews are given to describe possible scenarios 

and justification for the qualitative result. 

3.2.1 Gasoline-Electric Hybrid 

The vehicle evaluated by the FMEA used an inertia switch to detect crashes, however not 

all vehicles use this method of detection. Other crash sensing systems can be defeated by 

different means resulting in the same hazard. 
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Failures involving the numerous electrical systems in this EFV type may result from a 

collision. Failures of the electrical system may also not be the initial cause of a fire, but during a 

fire scenario the prior failure of the system may cause further injury or damage by failing to 

activate safety devices.  

Failure of the electronic monitoring system can allow fire hazards to become worse. For 

example, sensors may fail to activate shut-off valves when fuel leakage occurs. The unfamiliarity 

of these systems increases the probability that the system may be incorrectly calibrated or 

otherwise improperly modified during construction, maintenance, or repair of this EFV type 

(Scott, 2006).  

In some hybrid designs, the battery pack is not protected by a ground fault interruption 

(GFI) system. If contacting the terminals directly due to an event such as a collision may result in 

a fire. However, many hybrids include the GFI within the battery pack. GFIs are actually one of 

many similar electrical safety systems employed by vehicle manufacturers. GFIs are the most 

commonly found method in the current hybrid vehicle fleet and so they were the method chosen 

for consideration in this analysis. GFIs may also be known by other names. Toyota names its 

GFI system a “Ground Fault Monitoring System” though the operation is the same as a standard 

GFI (Toyota, 2006). 

Federal Motor Vehicle Safety Standard 305 specifies the requirement that electrical 

systems should remain isolated from the passenger compartment at all times (U.S. Department of 

Transportation, 2005). It is possible that future vehicle designs will have different components 

that may lower the probability and therefore the risk of failures as well. This could be true of any 

vehicle system that has different components from the one evaluated here. Electrical hazards are 

hazards which involve arcing or shorting of an electrical circuit. While electrical hazards may 
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not often be the cause of fire itself it can be caused by a fire or events that cause a fire. The 

electrical hazard may then affect people involved in a fire scenario or the emergency response to 

it and thus it is considered among the fire hazards. Scott, an expert in EFV safety training, says 

that he would “feel confident that fire will not result in electrocution” (Scott, 2006). Given this 

expert’s opinion the probably of such a scenario is assumed to be low, but the consequence of 

even a rare occurrence is still significant. This value of consequence results in a notable risk 

result in the FMEA. As such, all possible measures to deactivate the high voltage system should 

be taken to avoid the risk of electrocution, such as turning off the car and disabling the battery 

with the manual breaker switch. The Toyota Camry Hybrid Emergency Response Manual carries 

the following warning that supports this recommendation. “Failure to shut off the vehicle before 

emergency response procedures are performed may result in serious injury or death from…the 

high voltage electrical system” (Toyota, 2006). 

It should also be noted that in many vehicles their components will retain some voltage 

for some time after the vehicle is shut off or disabled. In the case of the Toyota Camry Hybrid 

Emergency Response Manual, “the SRS (Safety Restraint System) may remain powered up for 

up to 90 seconds after the vehicle is shut off or disabled.” (Toyota, 2006)  It is never assumed to 

be safe to cut through any high voltage marked components, often identified by an orange 

coating (Dimmick, 2006).  

In addition to the aforementioned electrification issue the lack of detection of a collision 

from a malfunctioning inertia switch could leave components improperly electrified and active. 

Following this a breach in the fuel tank caused by a collision could be ignited by arcing electrical 

components.  
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Cracking of the battery pack can result in the exposure of the internals of the battery. The 

electrolyte inside the battery being exposed in a fire can emit different toxic gases depending of 

the battery type. The explicit hazards vary with battery type, since some containing large 

quantities of corrosive liquid and others do not. According to Scott, “some large bus batteries can 

have as little as two soda cans of liquid in them…only to keep the paper moist.” (Scott, 2006) 

The leakage of fuel from the tank or the fuel line causing pooling is a significantly severe 

fire hazard resulting in a flammable or explosive scenario. Depending on the configuration of the 

tank in the vehicle the probability of the tank being ruptured in a collision varies. 

3.2.2 Compressed Natural Gas 

Over-pressurization of the fuel tank can result from the malfunction of a fueling station’s 

pressure detection and relief devices. This is most likely to happen during refueling if dirt enters 

the system. Or, it could result from weakening of the tank due to mechanical or chemical 

damage. Weakening of the tank can result from a collision or acid or Ultra Violet (UV) light 

exposure. Seiff (Seiff, 2006a) has documented a number of natural gas vehicle fire incidents. 

One of these incidents exemplifies a situation where UV exposure was suspected as the cause of 

a CNG tank’s rupture (Seiff, 2006b).  

“A 12-year old aluminum-lined Type 2 cylinder produced by NGV Systems ruptured on 

a pick-up truck at Alabama Gas Co. No injuries were reported. The cylinder was suspected of 

having external physical and ultraviolet (UV) damage as well as being over-pressurized” (Seiff, 

2006b). 

The overpressure can result in a rupture and rapid leakage of the contained flammable 

gas. Two significant fire scenarios can result from this situation. If rapidly expelled gas is 

ignited, a large flame will result. Alternatively, leaked gas could accumulate and ignite resulting 
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in detonation. Seiff has documented a case where the PRD of a CNG vehicle was vented upward 

without being ignited while venting, which led to an explosion (Seiff, 2006b).  

The following account identified the circumstances associated with one incident: “An 

eleven foot, six inch tall Command bus shuttling race goers around Belmont Park attempted to 

go under a 9’ 6” underpass. The entire supporting frame of the roof mounted fuel storage system 

was pushed back approximately 10 feet. A high pressure fuel line detached causing a violent 

decompression of the entire fuel storage system. As the released gas rose, it was trapped by the 

overpass and ignited by a damaged underpass light fixture. Three confirmed minor injuries.” 

(Seiff, 2006b) 

SAE 2006-1-0129 includes information about venting directions. This type of failure is 

not only severe, where detonation can result in the complete destruction of the vehicle and death 

of personnel, but it is also the most commonly cited mode of failure in Seiff’s documentation 

(Seiff, 2006b).  

A check valve can freeze due to cold weather or during refueling with wet gas due to the 

Joule-Thompson effect as is documented in a few incidents by Seiff (Seiff, 2006b). For the 

system to operate normally, at least one check valve is located in the fill receptacle component 

leading to the high pressure solenoid valve bypass line to allow refueling to take place while the 

system is shut off and the solenoid valves are closed. If there are several tanks, there may be 

additional check valves (Orion, 2006; WMATA, 2006; Toyota, 2006). If there is only one check 

valve in the system and it freezes while refueling takes place there is a good chance that gas will 

be expelled when the operator removes the refueling nozzle from the fill receptacle while the 

operator is present. The pressure could expel the nozzle with a high force when it is disengaged 

from the fill receptacle injuring the operator. The possible ignition of this gas could burn the 
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operator and thus has very severe consequences. If the system employs multiple check valves 

two possible scenarios could occur. If the check valve at the fill receptacle is independently 

frozen, the system will vent gas through the receptacle as soon as it is started, which is when the 

high pressure solenoids are opened. In the other case if one of the check valves on the bypass 

line is frozen but the receptacle check valve is not, then the high pressure lines will remain 

pressurized even when the system is shut off, creating a high pressure flammable gas hazard if 

the pipes are opened for maintenance. 

Two similar modes of failure affect the fill receptacle. Deformation from physical 

damage and seal embrittlement from wear over time can both result in a high pressure flammable 

gas leakage at the fill receptacle during refueling in the presence of the operator. Because 

refueling requires the presence of the operator, they will most likely be in the presence of the fuel 

leak. However, the operator must visually guide the part of the nozzle to the receptacle and is 

therefore reasonably expected to spot the damage. For this reason it is less likely the failure will 

occur than with the previously mentioned check valve since the freezing may not be visually 

apparent and procedures to avoid check valve failure are not intuitive. 

In most CNG vehicles, PRDs soften at a certain temperature to vent fuel and prevent 

pressure build up. PRDs can fail to activate if they are damaged, e.g., by impact. PRDs can fail to 

activate before the tank ruptures. Deformation is even more likely to cause PRDs to deploy 

prematurely in the presence of an otherwise small fire or frictional heat in a collision. 

Additionally ice damage is noted as a common reason PRDs vent when they should not 

(Dimmick, 2006).  

A PRD may not activate because there is no redundant safety system provided to support 

the PRD. It is possible that deformation could cause the relief line leading to the PRD to be too 
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constricted to relieve the pressure adequately, which would raise the severity of this scenario to 

the same level as for the overpressure state of the storage tank. 

In a compressed gas vehicle PRDs are designed only to sense temperature at a single 

location for each PRD. For this reason a localized flame, for example, caused by the ignition of a 

leak in the high pressure fuel line on a part of the tank not occupied by a PRD can weaken the 

tank so that the rupture occurs. In addition, the flame could also raise the temperature and 

therefore the pressure inside the tank beyond the maximum limits of the tank. This mode of 

failure can result in explosion or flammable leakage from the tank in the presence of an ignition 

source. This specific mode of failure requires the PRD safety devices to not activate due to the 

location of the flames, and for any other redundant safety device to also fail to detect and deal 

with the flame.  

3.2.3 Hydrogen Fuel Cell 

Hydrogen is easier to ignite than CNG. For this reason, the rating of the severity and 

probability are higher. The description of the cause and effects of such a failure remain the same 

as described earlier for CNG. Because hydrogen flames can be invisible, detection is more 

difficult than for ignited flames from a CNG tank, further contributing to the higher RPN. 

Many hydrogen vehicles, such as the Toyota Highlander, (Toyota, 2006) are designed to 

protect both their AC and DC high voltage cables with a GFI monitoring system, which 

automatically shuts off the current. However, other hydrogen vehicles do not have such systems 

and it is not required by vehicle regulations. In the case of a breach of the cable’s protective 

coating without GFI protection, arcing due to high voltage may occur. It is known that arcing can 

occur through the air as well as through water. The additional possible methods of arcing 

increase the probability of failure beyond the probability of arcing through air alone. As stated 
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before from emergency response manuals and expert interviews, the probability of such 

occurrences is still expected to be low. 

The PRD for the hydrogen vehicle works in the same way as the PRD in the CNG 

vehicle, activating in the presence of flame. The presence of a flame is part of the device’s 

normal operating procedure, since a hazardous scenario being present is how the device 

activates. The PRDs venting under normal conditions is assured to vent away from critical zones 

where it could cause damage or injury since it is operating within its design parameters. Still, the 

damage incurred by this component’s operation may be moderate and if left unattended could 

result in damage spreading to other components if they are not cooled. It is highly probable that 

the component’s operation will cause damage. However this damage is relatively small 

compared to the rupture that could occur if the tank were allowed to remain pressurized while 

exposed to weakening conditions. 

Cracking in the high pressure gas line can leak high pressure flammable gas. This 

scenario is most likely to occur in a collision. Since the size of the line is smaller than the tank, 

the maximum possible rupture will be smaller than the maximum possible from the tank and thus 

the fire severity is lower. The lines are relatively unprotected in the event of a collision and if 

other safety components such as the solenoid valves do not isolate the breached line from the 

tank, the entire contents of the tank could vent. There is also the chance that the gas will not 

ignite when initially released and will accumulate and form an explosive mixture. Because this 

mode of failure requires the failure of additional safety devices in the system, it has a lower 

probability than a system without such safety precautions. 

When exposed to a localized flame, breaching of the low pressure tank outlet lines could 

occur without activating temperature sensors, which would isolate the lines from the tank and 
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other components. A localized flame of hydrogen leaking from another component would have 

an adiabatic flame temperature of 2384 K in air; (The Engineering Tool Box, 2005) stainless 

steel’s melting temperature is 1693 K (H. Cross Company, 2005). Pressure in these systems is 

monitored, (Toyota, 2006) so after a short time other leak preventative measures may respond to 

the hazard. In addition, the close proximity of this component to other components, which are 

easily affected by the failure and able to cause a localized flame in the engine compartment, 

raises its RPN. 

3.3 FMEA Future Research 

Several issues have arisen during the development of the FMEA that warrant further 

research. These issues are summarized as follows: 

• Improving the safety of each component to improve the design would lower the present 

risk ratings. Future improvements will need to be reevaluated to be accurately assessed. 

• Additional work on FMEA analyses of emerging fuel vehicles is warranted. This work 

could include developing FMEAs for fuel systems other than the three presented here and 

could consider specific designs and components of the systems included here. The 

analyses included here need to be validated with known statistics of vehicle fires and 

component failures for further accuracy. 

 23



Chapter 4: Quantitative Risk Assessment 

While the FMEA presented in Chapter 3 helps identify and rank specific fire hazards for 

each vehicle type, it is not well suited to comparing the overall fire hazards or risks of these 

vehicle types. Thus a quantitative risk assessment is presented here for the vehicle types of 

Chapter 3: traditional, Gasoline-Electric Hybrid, CNG, and Hydrogen Fuel-Cell. 

This assessment begins with detailed fire statistics for traditional vehicles in the U.S.. For 

each of the other vehicle types, the assessment then estimates multipliers on each fire cause 

frequency, each area of origin probability, and each probability of death. These multipliers are 

estimated using engineering judgment of the hazard identification and the results of knowledge 

gained from the FMEA analysis.  

Applying these multipliers to existing statistics for traditional vehicles yields estimates of 

the numbers of fire deaths per vehicle per year for each vehicle type. The results are also 

generalized to obtain a plot of the variation in fire deaths associated with variations in the 

individual multipliers. 

The quantitative risk assessment method applied in this analysis of EFVs follows a structure 

similar to a risk assessment of CNG Buses by Chamberlain and Modarres (2005). Their analysis 

differs in several ways from the ones performed for this research, primarily in how statistics are 

acquired and used. The overall structure remains the same where quantitative values are 

calculated for the probability and consequence of a scenario occurring to find the overall risk for 

a particular vehicle type. The analysis provides valuable information and a method for 

comparing the risk of one type of vehicle fleet to another with quantitative values as well as 

several other conclusions. This section first describes the overall risk calculation process and 
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then presents the statistical source used to find each value, which was put into the 

aforementioned calculation. 

4.1 Traditional Fuel Vehicles 

Table 4.1. Traditional (Not EFV) fuel vehicle fire death risk calculation 

Cause 
Mult.

Cause Freq., 
fires/veh/yr

Origin 
Mult.

Origin 
Prob.

Conseq. 
Mult.

Conseq., 
deaths/fire

Fuel 1 0.01 9.95E-6 1 5.26E-3 5.24E-8

Other - 0.99 8.33E-4 1 1.89E-4 1.57E-7

Fuel 1 0.03 7.85E-6 1 2.67E-2 2.09E-7

Other - 0.97 2.64E-4 1 3.97E-3 1.05E-6

Fuel 1 0.01 3.14E-6 1 0 0

Other - 0.99 2.14E-4 1 7.35E-4 1.57E-7

Fuel 1 0.02 1.05E-6 1 5.00E-2 5.24E-8

Other - 0.98 5.97E-5 1 2.63E-3 1.57E-7

Total 1.39E-3 1.39E-3 1.83E-6

Risk, 
deaths/
veh/yr

1 6.07E-5

Note: All statistics are from or calculated from, Ahrens, 2005b except the fleet size.

Failure of 
Equipment or 
Heat Source

Unintentional

Intentional

Other Known 
or 

Unclassified 

Totals for the fleet result in 2.66E+5 fires/year and 350 deaths/year for a fleet of 1.91E+8 vehicles 
(EIA, 2005) and therefore an average of 1.32E-3 deaths per fire.

1

1

1

ConsequenceArea of Origin

8.43E-4

2.72E-4

2.17E-4

Fire Cause Scenario 
Freq., 

fires/veh/yr

 

 

Table 4.1 is a quantitative risk assessment for traditional fuel vehicle fire deaths. All 

entries in this table are statistics from Ahrens (2005b) and pertain to fire deaths in 2001. A 

sample equation and calculation for the first line of Table 4.1 is shown below: 

A sample equation for the failure of equipment or heat source with the fire originating in 

the fuel tank or fuel line area for a traditional fuel vehicle is shown below: 

(Cause Mult.)(Cause Freq.)(Origin Mult.)(Origin Prob.)(Conseq. Mult.)(Conseq.) = Risk 

(1)(8.43e-4 [fires/vehicle/year])(1)(0.01)(1)(5.25e-3 [deaths/fire])=5.24e-8 [deaths/vehicle/year] 
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OR 

(Scenario Freq.)(Consequence) = Risk 

(9.95e-6 [fires/vehicle/year])(5.25e-3 [deaths/fire]) = 5.24e-8 [deaths/vehicle/year] 

The statistics used to calculate the Cause Frequency, Origin Probability, and 

Consequence column values of Table 4.1 are reproduced in Table 4.2 for reference. Nearly all 

highway vehicle incidents in 2001 involved gasoline and diesel fueled non-hybrid engine 

systems. 

Table 4.2. Statistics used for risk calculations 

Origin Cause Fires Deaths
Consequence, 

Deaths/Fire
Failure of Equipment 161000 40 2.48E-4
Unintentional 51900 240 4.62E-3
Intentional 41400 30 7.25E-4
Unclassified 11600 40 3.45E-3
Failure of Equipment 1900 10 5.26E-3
Unintentional 1500 40 2.67E-2
Intentional 600 0 0
Unclassified 200 10 5.00E-2
Failure of Equipment 159100 30 1.89E-4
Unintentional 50400 200 3.97E-3
Intentional 40800 30 7.35E-4
Unclassified 11400 30 2.63E-3

Note: All statistics are from or calculated from Ahrens, 2005b

All Areas

Fuel Tank 
or Fuel Line

All Areas 
Except Fuel

 

The first three columns in Table 4.1 pertain to fire cause. These causes are divided into 

the four main categories of Ahrens (2005b): failure of equipment or heat source; unintentional; 

intentional; or other known or unclassified. Failure of equipment or heat source generally refers 

to the breakage of components through wear. Unintentional failures are failures resulting from a 

collision event. Intentional failures refer to cases of arson. Lastly unclassified or other known 

causes of failure are determined to be the remainder of events where the cause does not fall into 

one of the previously classified categories.  
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The cause multipliers (and all other multipliers) for traditional fuel vehicles are unity by 

definition. These multipliers will be adjusted below for other fuel system types to assess fire 

death risks. 

The fire cause frequencies in Table 4.1 are from Ahrens (2005b). In total these show that 

there were 1.39E-3 fires per vehicle in 2001. 

Two areas of origin are considered in Table 4.1: fuel and other. The fuel area is defined 

as being in the area of the fuel tank or fuel line components. 

The probability of fire originating in the fuel area is low, with a range of 0.01 – 0.03 

depending on fire cause. For each cause the origin probabilities have a sum of unity. These origin 

probabilities were assigned by dividing the number of fires originating in the fuel area due to a 

particular cause by the total number of fires (All Areas) due to that same cause. 

The difference of the probability of fire origin in the fuel area from unity determines the 

fraction of fires that originate in other areas of the vehicle. Other areas refer specifically to the 

engine, running gear, wheel, operator, passenger, and trunk areas of the vehicle. 

The scenario frequencies were determined by multiplying the cause frequency by the 

origin probability. 

The fire consequence values were obtained from Ahrens (2005b) by dividing the number 

of deaths per year by the number of fires for each cause-origin scenario possibility. 

Finally, the risk of fire death was obtained by multiplying the scenario frequency by the 

consequence. The sum of this risk for all causes and areas of origin was 1.83E-6 fire deaths per 

vehicle in 2001. 
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The 2001 U.S. highway vehicle fleet consisted of 191 million vehicles. When this 

number is multiplied by the total cause frequency and the risk, respectively, the results are 

266,000 vehicle fires and 350 vehicle fire deaths in 2001.  

4.2 Gasoline-Electric Hybrid Vehicles 

A demonstration of how the multiplier is inserted into the fire death risk calculation for 

hybrid vehicles is shown in Table 4.3. 

Table 4.3. Gasoline-electric hybrid fire death risk assessment calculation 

Cause 
Mult.

Cause Freq., 
fires/veh/yr

Origin 
Mult.

Origin 
Prob.

Conseq. 
Mult.

Conseq., 
deaths/fire

Fuel 1 0.01 1.24E-5 1 5.26E-3 6.54E-8

Other - 0.99 1.04E-3 1 1.89E-4 1.96E-7

Fuel 1 0.03 9.82E-6 1 2.67E-2 2.62E-7

Other - 0.97 3.30E-4 1 3.97E-3 1.31E-6

Fuel 1 0.01 3.14E-6 1 0 0

Other - 0.99 2.14E-4 1 7.35E-4 1.57E-7

Fuel 1 0.02 1.05E-6 1 5.00E-2 5.24E-8

Other - 0.98 5.97E-5 1 2.63E-3 1.57E-7

Total 1.67E-3 1.67E-3 2.20E-6

Risk, 
deaths/
veh/yr

Failure of 
Equipment or 
Heat Source

1.25

Fire Cause Area of Origin Scenario 
Freq., 

fires/veh/yr

Consequence

1.05E-3

Unintentional 1.25 3.40E-4

2.17E-4

Totals for the fleet result in 3.19E+5 fires/year and 420 deaths/year for a fleet of 1.91E+8 vehicles 
(EIA, 2005) and therefore an average of 1.32E-3 deaths per fire.
Note: All statistics are from or calculated from, Ahrens, 2005b except the fleet size.

Intentional 1

Other Known 
or 

Unclassified 
1 6.07E-5

 

For gasoline-electric hybrid vehicles the electrical system is the main difference 

compared to a traditional fuel vehicle. The system involves many more complex components and 

high-voltage power. These fire hazards lead to an increased probability that a fire will occur; 

therefore the Cause Multiplier was increased from 1 to 1.25. For hybrid vehicles, the hazards are 

not likely to involve the fuel system more often, develop significantly faster, or with greater 
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intensity than for traditional fuel vehicles. Therefore it is determined that for hybrid vehicle fire 

scenarios that are not related to the different electrical system, such as intentional scenarios, all 

other multipliers should remain the same.  

The prediction is that 420 deaths per year are predicted based on a fleet size of 191 

million vehicles. This is an increase by a factor of 1.2 from traditional fuel vehicles. 

 

4.3 Compressed Natural Gas Vehicles  

A demonstration of how the multipliers are applied in the fire risk calculation for CNG 

vehicles is shown in Table 4.4 below. 

 

Table 4.4. CNG fire death risk assessment calculation 

Cause 
Mult.

Cause Freq., 
fires/veh/yr

Origin 
Mult.

Origin 
Prob.

Conseq. 
Mult.

Conseq., 
deaths/fire

Fuel 1.5 0.02 2.24E-5 4 2.11E-2 4.71E-7

Other - 0.98 1.24E-3 1 1.89E-4 2.34E-7

Fuel 1.5 0.04 1.77E-5 4 1.07E-1 1.88E-6

Other - 0.96 3.90E-4 1 3.97E-3 1.55E-6

Fuel 1.5 0.02 4.71E-6 4 0 0

Other - 0.98 2.12E-4 1 7.35E-4 1.56E-7

Fuel 1.5 0.03 1.57E-6 4 2.00E-1 3.14E-7

Other - 0.97 5.92E-5 1 2.63E-3 1.56E-7

Total 1.95E-3 1.95E-3 4.76E-6

Risk, 
deaths/
veh/yr

Failure of 
Equipment or 
Heat Source

1.5

Fire Cause Area of Origin Scenario 
Freq., 

fires/veh/yr

Consequence

1.26E-3

Unintentional 1.5 4.08E-4

2.17E-4

Totals for the fleet result in 3.72E+5 fires/year and 910 deaths/year for a fleet of 1.91E+8 vehicles 
(EIA, 2005) and therefore an average of 2.44E-3 deaths per fire.
Note: All statistics are from or calculated from, Ahrens, 2005b except the fleet size.

Intentional 1

Other Known 
or 

Unclassified 
1 6.07E-5
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For CNG vehicles the fuel system involves a high pressure gas storage and delivery 

system and this is the most significant factor in changing the risk for this vehicle. Given the 

higher vulnerability of a compressed fuel system due to wider flammability limits, having a 

greater number of components, and the PRD activation features of CNG vehicles it is more likely 

that fire scenarios will occur due to failure of equipment or heat sources and unintentional 

causes. For these aforementioned reasons the Cause Multiplier for CNG is increased by 0.5 

giving it a total of 1.5. 

Fires will originate in the fuel line or storage tank area of the vehicle more often for the 

same reason as the Cause Multiplier’s increase. The value of the Origin Multiplier’s increase is 

therefore the same as the Cause Multiplier’s. The Origin Multiplier therefore is increased by 0.5 

for a total of 1.5. 

 The consequence of fuel originating fire scenarios is increased due to natural gas’s ability 

to produce a jet flame fire scenario or explosive fire scenario when the fuel is involved. An 

explosion scenario has the ability to affect a greater number of people than simply those carried 

by the vehicle itself including emergency responders inside the exclusion zone. A previous 

quantitative risk assessment of CNG buses took these hazards into account and gave an estimated 

value of consequence (Chamberlain and Modarres, 2005) that was considered when choosing the 

Consequence Multiplier in this analysis. Buses have a greater number of passengers, larger fuel 

storage, and different egress measures than passenger vehicles and thus have a higher 

consequence value. For this reason the Consequence Multiplier determined using the previous 

analysis was decreased to better represent the consequence of an entire CNG vehicle fleet. Thus 

the Consequence Multiplier was set to 4 in the current CNG vehicle analysis. 

 30



The result is that 910 deaths per year are predicted based on a fleet size of 191 million 

vehicles. This is an increase by a factor of 2.6 from traditional fuel vehicles. 

4.4 Hydrogen Fuel Cell Vehicles  

A demonstration of how the multiplier is applied in the fire risk calculation for Hydrogen 

vehicles is shown in Table 4.5 below. 

Table 4.5. Hydrogen Fuel-Cell fire death risk assessment calculation 

Cause 
Mult.

Cause Freq., 
fires/veh/yr

Origin 
Mult.

Origin 
Prob.

Conseq. 
Mult.

Conseq., 
deaths/fire

Fuel 1.6 0.02 2.94E-5 5 2.63E-2 7.75E-7

Other - 0.98 1.53E-3 1 1.89E-4 2.88E-7

Fuel 1.6 0.05 2.32E-5 5 1.33E-1 3.10E-6

Other - 0.95 4.79E-4 1 3.97E-3 1.90E-6

Fuel 1.6 0.02 5.03E-6 5 0 0

Other - 0.98 2.12E-4 1 7.35E-4 1.56E-7

Fuel 1.6 0.03 1.68E-6 5 2.50E-1 4.19E-7

Other - 0.97 5.91E-5 1 2.63E-3 1.55E-7

Total 2.34E-3 2.34E-3 6.80E-6

Risk, 
deaths/
veh/yr

Failure of 
Equipment or 
Heat Source

1.85

Fire Cause Area of Origin Scenario 
Freq., 

fires/veh/yr

Consequence

1.56E-3

Unintentional 1.85 5.03E-4

2.17E-4

Totals for the fleet result in 4.47E+5 fires/year and 1298 deaths/year for a fleet of 1.91E+8 vehicles 
(EIA, 2005) and therefore an average of 2.9E-3 deaths per fire.
Note: All statistics are from or calculated from, Ahrens, 2005b except the fleet size.

Intentional 1

Other Known 
or 

Unclassified 
1 6.07E-5

 

Hydrogen fuel-cell vehicles, as mentioned earlier, have the hazards of a gasoline-electric 

hybrid vehicle and a CNG vehicle as well as several other unique hazards. As a result the Cause 

Multiplier of hydrogen vehicles is increased 0.25 above traditional fuel scenarios due to having a 

similar electric system of the hybrid vehicles. The Cause Multiplier is increased an additional 0.5 

due to having a compressed fuel system that is similar to the CNG vehicles as well. Furthermore, 

since hydrogen has wider flammability limits and a higher leakage propensity the Cause 
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Multiplier is increased a further 0.10. The total Cause Multiplier for hydrogen is thus estimated 

at 1.85.  

The Origin Multiplier for hydrogen is estimated at 1.6, a 0.6 increase from traditional 

fuel.  Since hydrogen fuel cell vehicles have similar fuel transfer and storage components as 

CNG they have the same 0.5 increase in this multiplier. The further 0.1 increase to this multiplier 

is due to hydrogen having wider flammability limits and a higher leakage propensity than CNG. 

The Consequence Multiplier for hydrogen vehicles is 5. This value was chosen relative to 

the chosen multiplier of CNG vehicles. The reason hydrogen has a higher multiplier value comes 

from hydrogen’s low visibility flame and wider flammability limits. Since hydrogen flames are 

more difficult to detect it is likely that a greater number of people will enter a flame they would 

have avoided if it had been visually and radiantly more apparent.  

The prediction is that 1298 deaths per year are predicted based on a fleet size of 191 

million vehicles. This is an increase by a factor of 3.7 from traditional fuel vehicles.  

The summary of the results of all four analyses are graphically represented in Figure 4.1. 
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Figure 4.1. Predicted risk values by fuel type. 
 

4.5 Sources of Error 

There a number of sources of possible error that could affect the risk analysis. These 

errors may explain differences between the predicted risk and future statistics. The errors are 

enumerated as follows: 

• Statistical Error 

• Unprecedented or Unpredicted Vulnerability (Chain events…) 

• Design Changes (Component protection, component configuration…) 
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4.5.1 Statistical Error 

The Ahrens’s statistics being used may be too dated to effectively represent changes that 

have been made in safety design and regulation in the last eight years or by the time a particular 

EFV dominates the vehicle fleet population. Currently there is a full variety in the age of 

vehicles on the road, and not all comply with current safety regulations. Assuming most of the 

EFV fleet being analyzed will be built in the future under the effect of these changes in design 

and regulation the overall risk could be different. Furthermore not all fire related deaths are 

reported or reported correctly (Wenske, 2006; Ahrens 2005a; Parsons, 1990).  

Ahrens’s statistics were taken between 1999 and 2001 (Ahrens, 2005b) and will likely 

not match the current vehicle situation. The number of vehicles on the road has increased each 

year up to the present time. This will change the risk calculated in units of deaths per year, but 

will not affect the risk calculated as the number of deaths per year per vehicle. Also the 

percentage of emerging fuel vehicles has also increased since the statistics were acquired. This 

change can affect the risk in both terms of both unit calculations. At this time there is no valid 

way to separate emerging fuel vehicles from the current vehicle data. However, because the 

percentage at this time is small, less than one percent (U.S. Census Bureau, 2008), this is not 

believed to have a significant effect on the result for traditional fuel risk. 

A fire scenario that involves more than one vehicle can be statistically complicated. If 

two or more vehicles are involved in a fire scenario, they will be considered to be two separate 

scenarios in statistical reporting. Such an occurrence was not relevantly possible for traditional 

fuel scenarios and so the complicated effects it creates were not considered until the EFV 

analysis was performed. The effect of the new possibility of “chain scenarios” raises the 

probability of “Unintentional” fire scenarios for that type of vehicle fleet. The prediction of this 
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requires accurate knowledge of fire scenario exclusion zones, average vehicle density, and is 

highly variable depending on vehicle configuration. The complexity of predicting such 

occurrences is beyond the scope of the statistics used in this thesis and cannot be predicted with 

reliable accuracy. 

4.5.2 Unprecedented or Unpredicted Vulnerability 

Much of safety design and regulation depends on prior experience. Without such 

experience it is difficult to predict the risk of scenarios that have never occurred before. Due to 

the large scale of some interesting high risk scenarios it is costly to do full scale testing to 

provide a better prediction. Two such large scale scenarios are a scenario where a jet flame from 

a PRD impinges on a fuel tanker in rush-hour type traffic and a scenario where a compressed gas 

fuel tank explosion occurs in an urban environment with surrounding high-rise structures. 

4.5.3 Design Changes 

Risk depends heavily on the explicit design choices made to construct a certain vehicle 

type, such as component choice and layout. In the current EFVs some compressed fuel systems 

do not have PRDs and some high voltage hybrid systems do not employ GFIs, however others 

do. Placement of the fuel tank or PRD on the roof or underside of a vehicle can also have an 

effect on how or whether a fire scenario occurs in a given circumstance. Which design 

configurations dominate future EFV production will change whether, how, and why certain fire 

scenarios may occur.  

4.6 Uncertainty Analysis 

Risk multipliers were chosen based on the knowledge gained from the prior research 

discussed in this thesis. For illustrative purposes are estimated to have an error of 20% or less. 

 35



For two of the EFV risk analyses several attributes are multiplied simultaneously and so the 

uncertainty of the multipliers are calculated using the following equations: (Kline et al., 1953) 
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The resulting uncertainty value is added and subtracted from the predicted risk values to 

determine the maximum and minimum values of fire death risk, otherwise referred to as the risk 

error margin.  

The variables used to calculate the value of each fuel type’s uncertainty are shown in 

Table 4.6 below. In the table no multiplier was applied to the traditional fuel and so its 

uncertainty is assumed to be zero. This assumption is supported by the fact that this value is 

based on reported vehicle statistics of that year (Ahrens, 2005b) even though the statistics in 

Table 4.2 are estimated. For ease of comparison between vehicles the maximum and minimum 

risk values are graphed in Figure 4.2 based on the calculated uncertainty values.  
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Table 4.6. Predicted range of risk values by fuel type 

Fuel Δv1 Δv2 Δv3 δv1 δv2 δv3 Predicted Risk ΔR δR Max Risk Min Risk Actual

Traditional 1 1 1 0 0 0 0 -350 0 0 0 350
Hybrid 0.25 0 0 0.05 0 0 420 70 14 434 406 0
CNG 0.5 0.5 3 0.1 0.1 0.6 910 560 336 1246 574 0
Hydrogen 0.85 0.6 4 0.17 0.12 0.8 1298 948 569 1867 729 0
Note: if Δvi = Δvi,gasoline, δvi = 0
          if δvi = 20% * Δvi, δvi = 0
          else Δvi ≠ Δvi,gasoline, δvi = 0.2 vi  

Where for each vehicle type: 

Δv1= Cause Multiplier – 1.0 

Δv2= Origin Multiplier – 1.0 

Δv3= Consequence Multiplier – 1.0 

ΔR= Total Risk – 350 [deaths/year] 

Min. Risk = Risk – δR 

Max. Risk = Risk + δR 
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Figure 4.2. Risk with uncertainty values by fuel type. 

The “Traditional” value is taken from Ahrens, 2001 statistics. Other values are calculated 
from Table 4.6 using the stated risk calculation with the number of vehicles on the road in 
2001. 

In Figure 4.2 above it can be seen that the uncertainty margin from least to greatest is 

Hybrid, CNG, and Hydrogen. The uncertainty calculation takes the size of the multiplier into 

account. Hydrogen fuel-cell vehicles are given the largest multiplier values for all three 

multipliers while gasoline-electric hybrids have the least greatest multiplier for only one 

multiplier. A greater value and number of changes in the multipliers results in a greater amount 

of uncertainty in the final amount of risk. 

From the graph it is apparent that a gasoline-electric hybrid vehicle’s predicted risk, as 

well as its maximum and minimum values, is above that of traditional fuel vehicles but 
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significantly less than that of the other EFVs. Both compressed gas fuels have predicted, 

maximum, and minimum risk significantly above that of either traditional or hybrid vehicles. 

CNG ranged from roughly two times greater to up to four times greater risk than traditional fuel 

vehicles. There is some overlap between the values of CNG and Hydrogen Fuel-Cell risk and 

thus it is predicted that the risk of either vehicle may actually be the same due to error. But 

generally hydrogen fuel-cell vehicles have a higher predicted value and maximum value 

compared to the maximum values of the other vehicle types.  

With future research using additional supporting statistics or experimentation the 

uncertainty of the risk calculation for these fuels can be reduced. If additional safety features or a 

major design change in the future are implemented some multipliers will be reduced or 

eliminated thus reducing the associated error.  

4.7 Multiplier Analysis 

This analysis process provides more than just a calculation method to predict comparable 

quantitative risk values. By independently varying the multipliers of cause frequency, area of 

origin probability, and consequence one can observe the relative impact that each scenario 

dependant multiplier has on the risk. Since there are three multipliers three lines were made on 

Figure 4.3.  
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Figure 4.3. Risk trends due to fire risk multipliers.  

The lines are made by changing one multiplier independently while keeping the other two 

multipliers at 1. If the multipliers are all set to 1, the multiplier values of a traditional fuel 

vehicle, then the number of deaths per year in 2001 is 350. Increasing a multiplier linearly 

increases the number of deaths per year. The slope of each line indicates the effect of changes in 

the multiplier on the estimated deaths per year. 

The slope of the Origin Multiplier and the Consequence Multiplier are relatively the 

same. The Cause Multiplier has a much more significant effect than the other two multipliers, 

roughly 4.67 times greater. This indicates that if vehicle designs and regulations are changed to 

reduce the probability of fires caused by equipment and unintentional failures they will have a 

greater effect of reducing the risk than by changing the other multipliers by the same percentage.  
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Chapter 5: Conclusions 

From the quantitative EFV risk assessment research the following conclusions can be 

made: 

1. Hybrid vehicles provide only a moderately greater fire death risk than traditional fuel 

vehicles, an increase by an estimated factor of 1.2.  

2. Compressed fuel vehicles have a much greater relative risk. CNG vehicles are predicted 

to have a fire death risk that is 2.6 times greater than traditional fuel vehicles. Hydrogen 

fuel-cell vehicles are predicted to have fire death risk that is 3.7 times that of traditional 

fuel vehicles. The larger estimated risk stems largely from failures of high pressure fuel 

tank and fuel line components. Such failures may result in jet and explosion fires. 

Another significant risk contributor is the activation of PRDs creating a jet flame. Though 

PRDs lower the probability of a high risk explosion scenario, their operation still presents 

a greater hazard than those hazards commonly found in traditional fuel vehicles. These 

EFV risk comparison values only apply to current vehicle designs. 

3. The predicted risk uncertainty for the compressed fuel vehicles is much greater than for 

gasoline-electric hybrids. Further consideration through experimentation and simulation 

needs to be given to the fire scenarios associated with these fuels before a truly definitive 

answer can be given with regards to their comparative risk. 

4. Reducing the Cause Multiplier results in the greatest reduction in risk, 4.67 times greater 

than the other two multipliers. To reduce the Cause Multiplier the frequency of fires 

occurring due to failure of equipment and heat sources as well as unintentional failures 

must be reduced. The effectiveness of a solution can be measured by considering whether 
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the solution will simultaneously reduce multiple multipliers, the risk reduction effect of 

the multiplier, and lastly the cost of implementing the solution.   

From this research, opportunities have appeared where future research can aid the qualitative 

EFV risk assessment that were not addressed already during the hazard assessment suggestions 

for future research. These opportunities are as follows: 

1. In future research experimentation and simulation can be done to provide greater 

accuracy. It is recommended that this be done with one vehicle type per set of report. 

This would allow for greater detail, a feasible cost for experimentation, a feasible 

timetable for simulation, multiple reporting on variations of each fuel type’s design, and 

safety features. The broad range of three different fuel types did not allow as much focus 

on scenario development as if only one fuel type is considered per research period.  

2. Use of a panel of experts to decide the values for estimates such as the multiplier values 

would increase the knowledge base used to make such estimates. 

3. Research that applies simulations of egress success according to different fire scenarios 

would provide a much more accurate consequence value in the risk calculation. This 

research would identify what scenarios are most important to prevent due to higher 

predicted consequence. 

4. Research can be done to determine the risk effects of complicated chain reaction event 

scenarios. Hopefully by focusing on one vehicle type at a time it may be feasible to 

address the effects of such complicated scenarios. However, these effects alone may each 

require their own separate research attempt.  

5. Though it is too great of an extrapolation for this research to make, it may be relevant in 

future research to consider that a vehicle fleet entirely composed of compressed fuel type 
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vehicles will require a number of large sized fuel transport vehicles. The hazard of 

employing a large number of these vehicles may not be insignificant. While these 

vehicles currently exist, they are designed with safety margins based on operating in a 

traditional fuel vehicle fleet where explosions and other possible EFV hazards are a 

completely unexpected occurrence. The damage of an ignited flame jet of a PRD applied 

in a collision to a gasoline, natural gas, hydrogen, or other fuel tanker has yet to be 

quantified. Such large transport vehicles may require revised design, procedures, or 

regulations to ensure that during an EFV fire scenario they do not contribute to the 

scenario or otherwise remain outside the exclusion zone. 

6. It would be an important contribution to develop the means to identify EFVs in statistics 

from standard reporting procedures. Using multipliers would then be unnecessary since 

the risk could be calculated directly from the identified statistics. Using future developed 

statistics will provide a more up to date comparison of risk. However, it will be 

increasingly important to separate EFVs from actual traditional fuel vehicles in generic 

statistics in the future since the percentage of these vehicles on the road is increasing and 

may eventually dominate the statistics over traditional fuel vehicles.  

 

These recommendations and discoveries do not seek to warn against producing or developing 

any of the types of EFVs. By providing insight on the relative risks associated with EFVs these 

recommendations and discoveries will hopefully instead help to give all EFV types a chance at a 

viable future in the automotive industry.  
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Appendices 

Appendix A – Expert Interviews Contact Information 

Table A.1 – Table of Expert Interviews 

 

Last First email phone Occupation Expertise

Akers Bret Bret_M_Akers@rl.gov 509-376-3712

Hydrogen safety - HAMMER 
Training and Education 
Center H2 Safety

Astredo Pat 213-922-5830
LA MTA - Largest US CNG 
fleet CNG buses

Blake Meghan Info@cafcp.org 916-375-8034

Communications Specialist - 
Media - California Fuel Cell 
Partnership Hydrogen Safety

Bush Kevin keberofpe@hotmail.com FPE - MD State FM Office Electrical fires and Non-Crashes

Chernicoff William/Bill william.chernicoff@dot.gov 202-360-6623 DOT
Government funded safety 
studies

Clemens Richard 410-859-7481 BWI airport FD

BWI airport CNG bus fire 
incident, supply hose and vent 
hose for PRD

DeFlavis Richard
BWI airport CNG incident contact 
info

Dickens Jack Jdickens@ci.chula-vista.ca.us Hydrogen Refueling, Trailer
Dimmick John john.dimmick@sbcglobal.net 262-549-1894 NGV2 member NG design standard changes
Flanagan Timothy timothy.flanagan@exeloncorp.com 610-832-6450 Peco Energy - Exelon Crop CNG Delivery systems
Fluer Larry larryfluer@earthlink.net 805-238-7896 H2 Refueling
Fusco Chuck Chuckfusco@aol.com Fire Chief - Berywn Heights Emergency Response

Gambone Livio livio.gambone@powertechlabs.com
Presentation on 
CleanVehicle.org CNG bus Fire incident video

Golden Bob rgolden@wmata.com 301-618-1181
Bus Vehicle Engineer - 
WMATA CNG Buse Fire Hazards

Gromis Adam
California Fuel Cell 
Partnership H2 first responder's guide

Guilmette Aaron 248-728-7000 R. L. Polk and Co. Registered Vehicle Statistics

Halpert Jeff Jhalpert@ci.glendale.ca.us Alum

CNG Bus Fires in Sacramento 
and Palms Springs from the LA 
Area Fire Marshals

Hamilton Jennifer 916-375-4914
Safety Officer - California Fuel 
Cell Partnership Hydrogen Safety  

Haq Kathy khaq@apep.uci.edu
National Fuel Cell Research 
Center Fuel Cell Safety

Hoagland Bill 303-530-1140 Hydrogen 2000 DOE funded H2 Miami research
Holland Geoff h2000@earthlink.net Hydrogen 2000 Hydrogen Safety Video
Jakubowski Greg gregory_jakubowski@merck.com Alum with a PA FD Emergency Response
Joseph Tom josepht@airproducts.com 610-481-8416 Air Products H2 Refueling

Kerber Steve kerb24lgb@aol.com
Assistant Chief - College Park 
FD Emergency Response

Knight Cindy Cindy_Knight@Toyota.com 310-468-2170

Marketing Communications 
PR Manager, Toyota Motor 
Sales, USA, Inc.

Kolly Joseph KollyJ@ntsb.gov NTSB BWI CNG Bus fire report
Korn James jkorn@co.ba.md.us 410-887-4860 Baltimore County FD Emergency Response

Leach Susan sdleach@comcast.net
Executive Director - Hydrogen 
2000 Hydrogen Safety Video

McCoy Danny dmccoy@bhvfd14.org 301-741-8089

Wagon Driver of 10 Engine in 
WDC and Deputy Chief of 
Berywn Heights Emergency Response

contact methodsName
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Milliken Andrew amilli@umd.edu, Andrew6512@aol.com Sergeant Emergency Response

Mount Andy Amount@plymouthtownship.org 610-277-4311
Fire Marshal in Plymouth Twp, 
Montgomery County, PA traffic accidents in their area

O'Neill Joe Joneill@uppermoreland.org

Fire Marshal in Upper 
Moreland Twp., Montgomery 
County, PA traffic accidents in their area

Panagiotou Joe panagij@ntsb.gov NTSB BWI CNG Bus fire report

Pehrson Nancy nancy.pehrson@centerpointenergy.com Center Point Energy
NFPA 52 VAF Technical 
Committee

Platt Tom Assistant Fire Marshal Emergency Response

Sawyer Steve ssawyer@nfpa.org 617-984-7423

Senior Fire Service 
Specialist/Executive Secretary 
IFMA - NFPA traffic accidents

Scott Marc mwscott@lacofd.org 909-620-2202
Vehicle Extrication Instructor - 
Los Angeles County FD CNG, Hybrid, H2 experience

Seiff Hank hseiff@cleanvehicle.org 703-534-6151

Director of Technology - 
Clean Vehicle Education 
Foundation

NG incidents and 1st responder 
training

Snyder Bill 3094@bavfc.org Bel Air, MD FD Emergency Response

Stiteler Don don@uprov-montco.org

Fire Marshal in Upper 
Providence Twp., 
Montgomery County, PA traffic accidents in their area

Stuart Lurae lstuart@apta.com 202-496-4844

Senior Program Manager-Bus 
Programs - American Public 
Transportation Association CNG Buse Fire Hazards

Swain Michael mswain@miami.edu
Professor, University of 
Miami, Florida

H2 tests of Gasoline vs. 
Hydrogen fire

Tefft Brian brtefft@aaafoundation.org 202-638-5944 ex
Research Analyst - AAA 
Foundation for Traffic Safety FARS and NASS data

Tucker Elizibeth 202-737-1226
State Fire Marshal's 
Association Electrical fires and Non-Crashes

Wallace Phil pwallace@wmata.com 301-618-1097
Head of Bus Maintenance - 
WMATA CNG Buse Fire Hazards

Welsh Fred fhwelsh@att.net 240-777-2477
CFPS, EFO, Fire Chief - 
College Park Emergency Response

Winston Emily ebwinston@ucdavis.edu Hydrogen Refueling
Wolff Ossana owolff@umd.edu CNG Buse Fire Hazards
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Appendix B - Vehicle Layout 

 

Figure B.1 - CNG Vehicle, in Color (WMATA, 2006) 
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Figure B.2 - CNG Vehicle (Orion, 2006) 
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Figure B.3 - Hydrogen Fuel Cell Vehicle, in Color (Toyota, 2006) 

Reproduced with permission from Toyota Motor Corporation, April 21, 2008.
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Figure B.4 - Hybrid Vehicle (Toyota, 2006) 

Used with permission from Toyota Motor Corporation, April 21, 2008. 

 

Table B.1 – Hybrid Vehicle Component Summary (Toyota, 2006) 

Used with permission from Toyota Motor Corporation, April 21, 2008. 
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Appendix C – Table of Supporting Emergency Response Guides 

Table C.1 - Supporting Emergency Response Guides 
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Toyota EFV Emergency 
Response Guide (ERG) http://techinfo.toyota.com/
RFA E85 Guides, Specs, and 
Procedures http://www.ethanolrfa.org/objects/pdf/Membe

rDocuments/RFA_IndustryGuidelines.pdf

CaFCP - ERG - Fuel Cell 
Vehicles http://www.hydrogensafety.info/resources/Ca

FCP_EmergencyGuide.pdf#search=%22Em
ergency%20Response%20Guide%20for%20
Hydrogen%20Fuel%20Cell%20Vehicles%22

CaFCP - H2 ERG Video http://www.cafcp.org/resource-
ctr_ermaterials.htm#er_video

NHTSA - DOT - Approaching 
AFV Crashes (1996) http://www.nhtsa.dot.gov/people/injury/enforc

e/pub/altfuel.pdf

NAFTC Training Courses (No 
free available material)

http://www.naftc.wvu.edu/curriculum/courses/
coursedesc.html

Risk…LPG Tanks Hassan - SAE 2006-01-1274
GM Service Technical 
College

Hybrid Truck Emergency Personnel Training 
(2004)

B. Gustin, New fire tactics for 
new-car fires Fire Engineering 149:43 (1996)
PECO Energy ERG for Emergencies Involving Electricity 

and Gas
Consumer Reports Hybrid 
Safety Concerns

http://autos.msn.com/advice/CRArt.aspx?con
tentid=4023717

Texas State Safety manual 
Section 16 Vehicle Safety

http://www.vpfss.txstate.edu/riskmgt/Assets/1
6-VehicleSafety.pdf

AFV Transit in Florida http://www.clean-cities.org/pdf/afvguide.pdf
US DOE - AF Driver Training 
Manuals

http://www.eere.energy.gov/afdc/resources/al
tfueltraining/driver_training.html

NYSERDA Garage Guidelines for Alternative Fuels 
(1996)

DOE - Hydrogen Safety http://www1.eere.energy.gov/hydrogenandfue
lcells/pdfs/doe_h2_safety.pdf

Emergency Responders Traveling PublicMessages for:

Source
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Appendix D - FMEA 

Table D.1 - FMEA Hybrid, arranged by components. 

Potential Failure Mode and Effects Analysis (Design FMEA)           
Component ID: Hybrid             

Component 
Name Function 

Potential 
Failure Mode(s) Potential Effect(s) of Failure 

S
ev

er
ity

 

Potential 
Cause(s) / 

Mechanism(s) 
of Failure 

P
ro

ba
bi

lit
y 

R
P

N
 

Hybrid Vehicle 
(HV) Battery Pack 

Stores High Voltage 
Electricity 

Electrical Short Arcing, electrifies other 
components with high voltage and 

possible ignition source. 

9 Short Circuit 4 36 

  Cracking Corrosive liquid leakage, toxic fire 
hazard, loss of power to electric 
motor, loss of power to vehicle. 

6 Protective 
casing 
breach. 

6 36 

    Corrosion Loss of power to electric motor, 
loss of power to vehicle. 

5 Improper 
maintenance 

4 20 

High Voltage 
Cables (with GFI) 

Carries Power 
Between System 

Components 

Electrical Short Arcing, electrifies other 
components with high voltage and 

possible ignition source. 

9 Excessive 
loading 

4 36 

  

Corrosion Arcing, electrifies other 
components with high voltage and 

possible ignition source. 

8 Improper 
Maintenance 

4 32 

    Cracking Arcing, electrifies other 
components with high voltage and 

possible ignition source. 

8 Protective 
casing 
breach. 

4 32 

Electronic 
Monitoring 

System 

Monitors and 
Measures Electric 

Components.  

Miscalibration Failure to prevent exposure to 
High Voltage. 

9 Improper 
algorithm 

4 36 

    
Electrical Short Loss of power to vehicle and 

system components. 
1 Short Circuit 4 4 
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Fuel Tank (And 
fuel lines) 

Holds Gasoline Fuel 
(and Carries Fuel to 

Engine) 

Cracking Flammable leakage 6 Protective 
casing 
breach. 

6 36 

  
Deformation Prevents fuel flow 2 Excessive 

loading 
5 10 

  Corrosion Flammable leakage 6 Improper 
maintenance 

1 6 

    Clogging Prevents fuel flow 2 Dirty Fuel 1 2 
Rear/Front Inertia 

Switch 
Disconnects High 

Voltage and Fuel in 
Collision 

Electrical Open No high voltage shutoff in 
hazardous situation.  

9 Improper 
maintenance 

4 36 

  Electrical Short Loss of power 1 Short Circuit 3 3 
    Deformation Loss of power to vehicle 1 Improper 

maintenance 
7 7 

Gasoline Engine Powers Vehicle and 
Generator to Recharge 

HV Battery. 

Corrosion Rupture, flammable leakage. 6 Improper 
maintenance 

5 30 

  Deformation Damage to engine, loss of power 
to the vehicle. 

5 Improper 
maintenance 

5 25 

  Contamination Prevents fuel flow 5 Dirty Fuel 5 25 
    Torque Fatigue Mechanical Failure 5 Excessive 

loading 
5 25 

Electric Motor Powers Vehicle. Torque Fatigue High force mechanical failure 6 Excessive 
loading 

5 30 

  Electrical Short Arcing, electrifies other 
components with high voltage and 

possible ignition source. 

8 Short Circuit 3 24 

  Cracking Arcing, electrifies other 
components with high voltage and 

possible ignition source. 

6 Protective 
casing 
breach. 

3 18 

    Deformation Loss of power to vehicle 5 Improper 
maintenance 

3 15 

Inverter/Converter Boosts and Inverts 
Power to and from AC 

and DC.   

Electrical Short Loss of power. 3 Short Circuit 7 21 
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Ground Fault 
Interrupt Cable 

Coating 

Monitors and Prevents 
Exposure to High 
Voltage Wiring. 

Miscalibration Failure to prevent exposure to 
high voltage. 

10 Improper 
maintenance 

2 20 

  
Electrical Short Loss of power to vehicle and 

system components. 
2 Short Circuit 8 16 

    Cracking Loss of power to vehicle and 
system components. 

2 Protective 
casing 
breach. 

8 16 

Electric Generator Charges HV Battery 
Pack 

Torque Fatigue Failure to charge HV battery pack, 
loss of  vehicle power, High force 

mechanical failure 

4 Excessive 
loading 

5 20 

  Deformation Failure to charge HV battery pack, 
loss of  vehicle power, possible 

ignition source 

5 Improper 
maintenance 

3 15 

    Cracking Exposed high voltage component 8 Protective 
casing 
breach. 

3 24 

12 volt DC-DC 
Converter 

Steps Down High 
Voltage to Low Voltage 

for System 
Components 

Deformation Failure to step down voltage 6 Excessive 
loading 

3 18 

  Cracking Failure to step down voltage, 
exposed high voltage components 

8 Protective 
casing 
breach. 

2 16 

    Electrical Short Failure to step down voltage 6 Short Circuit 2 12 
12 Volt Auxiliary 

Battery 
Powers Low Voltage 

Devices 
Cracking Corrosive liquid leakage, loss of 

power to low voltage components. 
2 Protective 

casing 
breach. 

6 12 

  
Electrical Short Loss of power to low voltage 

electrical equipment 
1 Short Circuit 5 5 

    Corrosion Loss of power to low voltage 
electrical equipment 

1 Improper 
maintenance 

6 6 

 

Table D.2 - FMEA CNG, arranged by components. 
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Potential Failure Mode and Effects Analysis (Design FMEA)           
Component ID: 

CNG               

Component Name Function 

Potential 
Failure 

Mode(s) Potential Effect(s) of Failure 

S
ev

er
ity

 

Potential 
Cause(s) / 

Mechanism(s) 
of Failure 

P
ro

ba
bi

lit
y 

R
P

N
 

Storage Tank Stores gas. Over-
Pressure 

Rupture, Explosion 9 Improper 
operating 

conditions, 
inoperative 

PRD 

6 54 

  Localized 
Flame 

Rupture, Flammable Leakage 9 Fuel line 
failure 

5 45 

  Corrosion Rupture, Flammable Leakage 7 Exposure to 
acid 

5 35 

    Deformation Rupture, Flammable Leakage 7 Excessive 
loading 

5 35 

Check Valve Allows fuel to flow to the 
cylinders during fuelling 

(bypassing the high 
pressure solenoids) and 

close when fuelling is 
complete. 

Freezing Prevents isolation, high pressure 
flammable back flow at the fill 

receptacle 

7 Fuel deposit 
buildup, 
Thermal 

Expansion 

7 49 

    Deformation Prevents isolation, high pressure 
flammable back flow at the fill 

receptacle 

7 Excessive 
loading 

5 35 

Fill Receptacle Receives fuel from pump. Deformation Flammable leakage of high 
pressure gas during refueling. 

8 Excessive 
loading 

6 48 

  Seal 
Embrittlement

Flammable leakage of high 
pressure gas during refueling. 

8 Improper 
maintenance 

6 48 

    Cracking Flammable leakage of high 
pressure gas. 

7 Excessive 
loading 

5 35 
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Pressure Relief 
Device 

Vents pressure in the tank 
when exposed to 

temperatures between 
212°F. and 250°F 

Deformation Premature operation, Flammable 
leakage 

5 Excessive 
loading 

9 45 

  Localized 
Flame away 

from 
component 

Failure to operate, Tank over-
pressure 

8 Fuel line 
failure 

3 24 

  Blockage Explosion in tank 10 Dirty fuel 2 20 
    Localized 

Flame near 
component 

Premature operation, Flammable 
leakage 

3 Fuel line 
failure 

3 9 

Manual Shutoff 
Valve on Fueling 

Manifold 

Isolates the fill receptacle 
from the storage cylinders 
in case the check valves 

fail. 

Fatigue Prevents isolation of flammable 
leakage 

7 Improper 
torque 
applied 

5 35 

    Freezing Prevents isolation of flammable 
leakage 

7 Fuel deposit 
buildup, 
Thermal 

Expansion 

4 28 

Magnetic Fuel 
Door Interlock 

Switch 

Shuts off engine during 
refueling. 

Localized 
Impact 

Damaged components leak 
flammable gas. 

6 Puncture of 
hood or door 

6 36 

    

Electrical 
Short 

Prevents isolation, high pressure 
flammable back flow at the fill 

receptacle 

8 Improper 
maintenance 

3 24 

High Pressure 
Fuel Lines 

Transmits fuel through 
system 

Corrosion Rupture, Flammable Leakage 7 Exposure to 
acid 

5 35 

  Cracking Rupture, Flammable Leakage 7 Excessive 
loading 

5 35 

  Over-
Pressure 

Rupture, Flammable Leakage 8 Improper 
operating 
conditions 

3 24 

    Deformation Prevents fuel flow 1 Excessive 
loading 

6 6 
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Tube Fittings Seals connection of fuel 
lines to components. 

Torque 
Fatigue 

Rupture, Flammable Leakage 6 Improper 
torque 
applied 

5 30 

  Corrosion Rupture, Flammable Leakage 6 Exposure to 
acid 

5 30 

    Cracking Rupture, Flammable Leakage 6 Excessive 
loading 

4 24 

Low Pressure 
Fuel Lines 

Transmits fuel through 
system 

Corrosion Rupture, Flammable Leakage 6 Exposure to 
acid 

5 30 

  Cracking Rupture, Flammable Leakage 6 Excessive 
loading, 
Thermal 

Expansion 

5 30 

  Over-
Pressure 

Rupture, Flammable Leakage 6 Regulator 
deformation 

2 12 

    Deformation Prevents fuel flow 1 Excessive 
loading 

5 5 

High Pressure 
Solenoid Valve 

Provides fuel isolation for 
the tank when the vehicle 

is shut off, or upon 
activation of the safety 

system. 

Deformation Prevents isolation, high pressure 
flammable back flow at the fill 

receptacle 

6 Excessive 
loading 

5 30 

  Internal 
Corrosion 

Prevents isolation during system 
shutdown 

7 Dirty fuel 4 28 

  External 
Corrosion 

Rupture, Flammable Leakage 6 Exposure to 
acid or salt 

2 12 

    
Electrical 

Short 
Premature isolation, Prevents fuel 

flow 
1 Wire failure 5 5 

Pressure 
Regulator 

Drops pressure in the fuel 
line from the storage 

pressure to the pressure 
required for the engine 

(~120PSI) 

Deformation Over-pressure of low pressure 
components 

6 Excessive 
loading 

5 30 

    

Clogging Prevents fuel flow 1 Dirty fuel, 
Fuel line 

contamination 

5 5 

 58



Manual Shutoff 
Valve on Tank 

Isolates each individual 
cylinder manually. 

Corrosion Flammable leakage, Prevents 
isolation 

5 Exposure to 
acid 

5 25 

  
Deformation Prevents isolation 4 Excessive 

loading 
5 20 

    Fatigue Prevents isolation 4 Improper 
torque 
applied 

4 16 

Low Pressure 
Solenoid Valve 

Isolates the fuel injectors 
from the low pressure fuel 

lines 

Deformation Prevents isolation  5 Excessive 
loading 

5 25 

  Internal 
Corrosion 

Prevents isolation during system 
shutdown 

5 Dirty fuel 3 15 

  External 
Corrosion 

Rupture, Flammable Leakage 6 Exposure to 
acid 

2 12 

    Electrical 
Short 

Premature isolation, Prevents fuel 
flow 

1 Wire failure 5 5 

Fuel Heater Heats the fuel. Cracking Rupture, Cold fuel clogs and 
damages components in further 

processes 

4 Excessive 
loading 

5 20 

    Corrosion Rupture, Cold fuel clogs and 
damages components in further 

processes 

4 Exposure to 
acid 

2 8 

High Pressure 
Fuel Filter 

Filters fuel. Internal 
Corrosion 

Unfiltered fuel, further component 
damage in further processes 

2 Dirty fuel 9 18 

  Excess 
Moisture 

Unfiltered fuel, further component 
damage in further processes 

2 Dirty fuel, 
Fuel line 

contamination 

9 18 

  External 
Corrosion 

Rupture, Flammable Leakage 4 Exposure to 
acid 

3 12 

    Clogging Prevents fuel flow 1 Dirty fuel 8 8 
Low Pressure 

Fuel Filter 
Filters fuel. Internal 

Corrosion 
Unfiltered fuel, further component 

damage in further processes 
2 Dirty fuel 8 16 

  Excess 
Moisture 

Unfiltered fuel, further component 
damage in further processes 

2 Dirty fuel, 
Fuel line 

contamination 

8 16 
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  External 
Corrosion 

Rupture, Flammable Leakage 4 Exposure to 
acid 

3 12 

    Clogging Prevents fuel flow 1 Dirty fuel 6 6 
Fuel Injector Injects fuel into the 

engine. 
Cracking Rupture, Flammable Leakage 3 Excessive 

loading 
5 15 

  Deformation Prevents fuel flow 1 Excessive 
loading 

6 6 

    Clogging Prevents fuel flow 1 Dirty fuel 3 3 
High Pressure 

Gauge 
Measures the pressure in 

the high pressure fuel 
lines. 

Deformation Faulty measurement 2 Excessive 
loading 

4 8 

  Over-
Pressure 

Faulty measurement 2 Improper 
operating 
conditions 

3 6 

    

Miscalibration Faulty measurement 2 Improper 
operating 
conditions 

1 2 

Low Pressure 
Gauge 

Measures the pressure in 
the low pressure fuel lines 

available to the fuel 
injectors. 

Over-
Pressure 

Faulty measurement 4 Regulator 
deformation 

2 8 

  Deformation Faulty measurement 2 Excessive 
loading 

3 6 

    Miscalibration Faulty measurement 2 Improper 
operating 
conditions 

1 2 
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Table D.3 - FMEA Hydrogen Fuel Cell, arranged by components. 

Potential Failure Mode and Effects Analysis (Design FMEA)           
Component ID: 

H2               

Component 
Name Function 

Potential 
Failure 

Mode(s) Potential Effect(s) of Failure 

S
ev

er
ity

 

Potential 
Cause(s) / 

Mechanism(s) 
of Failure 

P
ro

ba
bi

lit
y 

R
P

N
 

Direct Current 
High Voltage 

Cables (without 
GFI) 

Carries high voltage DC 
between the PCU and the 

fuel cell or HV battery 
pack. 

Electrical 
Short 

Arcing. 9 Protective 
Casing 
Breach 

7 63 

Alternating 
Current High 

Voltage Cables 
(without GFI) 

Carries 3 phase AC 
between PCU and 

components in the motor 
compartment along with 

the hydrogen pump. 

Electrical 
Short 

Arcing. 9 Protective 
Casing 
Breach 

7 63 

Hydrogen Tanks Stores compressed 
hydrogen 

Over-
Pressure 

Leaks high pressure flammable 
gas. Possible explosion. 

10 Improper 
operating 
conditions 

6 60 

  Localized 
flame 

Leaks large volume of high 
pressure flammable gas. 

8 Small flame 6 48 

  

Deformation Compresses tank to over-
pressure situation and lowers 

burst pressure limit. 

8 Excessive 
loading 

5 40 

  Cracking Leaks large volume of high 
pressure flammable gas. 

8 Excessive 
loading 

5 40 

    Corrosion Leaks large volume of high 
pressure flammable gas. 

7 exposure to 
acid 

4 28 

Pressure Relief 
Device (PRD) 

Fusible temperature plug 
that quickly vents the tank 
if the plug exceeds 230°F 

(110°C). 

Flame Leaks large volume of high 
pressure flammable gas in 
presence of ignition source. 

6 Flame 9 54 
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  Deformation Clogs and allows tank to 
overheat and exceed burst 

pressure. 

10 Excessive 
loading 

4 40 

  Clogging Allows tank to overheat and 
exceed burst pressure. 

10 Dirty fuel 3 30 

  Cracking Premature fuel release. 5 Excessive 
loading 

5 25 

    Corrosion Premature fuel release. 5 exposure to 
acid 

4 20 

High Pressure 
Tank Inlet Lines 

Transports high pressure 
H2 from the filler to the fuel 

tank. 

Cracking Leaks high pressure flammable 
gas. 

7 Excessive 
loading 

7 49 

  Localized 
flame 

Leaks high pressure flammable 
gas in presence of ignition 

source. 

8 Small flame 6 48 

  Over-
Pressure 

Leaks high pressure flammable 
gas. 

8 Improper 
operating 
conditions 

5 40 

  Corrosion Leaks high pressure flammable 
gas. 

7 exposure to 
acid 

4 28 

    Deformation Stops fuel flow. 1 Excessive 
loading 

9 9 

Low Pressure 
Tank Outlet Lines 

Transports lower pressure 
H2 from the filler to the fuel 

tank. 

Localized 
flame 

Leaks low pressure flammable 
gas in presence of ignition 

source. 

7 Small flame 7 49 

  Cracking Leaks low pressure flammable 
gas. 

6 Excessive 
loading 

7 42 

  Corrosion Leaks low pressure flammable 
gas. 

6 exposure to 
acid 

5 30 

  Over-
Pressure 

Leaks high pressure flammable 
gas. 

6 Improper 
operating 
conditions 

3 18 

    Deformation Stops fuel flow. 1 Excessive 
loading 

9 9 
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Temperature 
Sensors 

Measures temperature at 
the H2 tank and 

distribution lines and 
components. 

Localized 
flame 

Does not signal ECU system 
shutdown in presence of 

overheating and weakening of 
components lowering their burst 
pressure in presence of ignition 

source. 

8 Small flame 
away from 

sensor 

6 48 

  Miscalibration Does not signal ECU system 
shutdown in presence of 

hazardous situation, allows over 
temperature of components. 

8 Improper 
construction 

2 16 

    Electrical 
Short 

Premature ECU engine 
shutdown. 

1 Excessive 
voltage 

2 2 

Check Valve Ensures one way flow of 
fuel at the H2 filler, each 

tank and at locations in the 
distribution lines. 

Freezing Does not shut down fuel flow, 
allowing high pressure 
flammable gas leak. 

7 Thermal 
Expansion 

6 42 

  Deformation Does not shut down fuel flow, 
allowing high pressure 
flammable gas leak. 

7 Excessive 
loading 

5 35 

    Cracking Leaks high pressure flammable 
gas. 

6 Excessive 
loading 

5 30 

Hydrogen Fuel 
Receptacle 

Inlet coupling receptacle 
for fueling. 

Seal 
Degradation 

Leaks high pressure flammable 
gas. 

7 Wear 6 42 

  
Deformation Leaks high pressure flammable 

gas. 
7 Excessive 

loading 
4 28 

    Cracking Leaks high pressure flammable 
gas. 

6 Excessive 
loading 

3 18 

Pressure Sensors Detects abnormal pressure 
loss (leak) or increase 

(regulator/valve 
malfunction). 

Localized 
flame 

Does not signal ECU system 
shutdown in presence of 

overheating and weakening of 
components lowering their burst 
pressure in presence of ignition 

source. 

8 Small flame 5 40 

 63



  Miscalibration Does not signal ECU system 
shutdown in presence of 

overheating and weakening of 
components lowering their burst 

pressure. 

10 Improper 
construction, 
Overpressure 

2 20 

    
Electrical 

Short 
Premature ECU engine 

shutdown. 
1 Excessive 

voltage 
2 2 

Impact Sensors Sense a predetermined 
level of frontal, side, or 

rear impact. 

Localized 
Impact 

Does not signal ECU system 
shutdown in presence of 

hazardous situation. 

8 Projectile 
collision 

5 40 

    Electrical 
Short 

Does not signal ECU system 
shutdown in presence of 

hazardous situation. 

6 Wire 
breakage. 

3 18 

Fuel door/Hood 
Sensor 

Detects open/closed state 
of the fuel door or hood. 

Localized 
Impact 

Damaged components leak 
flammable gas. 

6 Puncture of 
hood or door 

6 36 

    

Electrical 
Short 

Does not signal ECU system 
shutdown while fueling or 
performing maintenance. 

8 Improper 
operating 
conditions 

2 16 

Tank Outlet 
Pressure 
Regulator 

Regulates fuel pressure at 
the outlet of each tank to a 

lower pressure. 

Deformation Allows over-pressure of lower 
pressure fuel lines. 

7 Excessive 
loading 

5 35 

    Cracking Leaks large volume of high 
pressure flammable gas. 

7 Excessive 
loading 

4 28 

HV Battery Pack 
(BP) 

274-Volt NiMH battery 
pack consisting of modules 

connected in series. 

Electrical 
Short 

Electrifies other components with 
high voltage and possible ignition 

source. 

8 Improper 
operating 
conditions 

4 32 

    Cracking Leaks toxic and burnable battery 
acid. 

4 Excessive 
loading 

6 24 

Engine Control 
Unit (ECU) 

Monitors system pressures 
and temperatures and 

actuates tank shut valves. 

Miscalibration Does not activate safety devices 
in presence of hazardous heat or 

pressure situations. 

9 Erroneous 
algorithms 

3 27 

  

Electrical 
Short 

Does not activate safety devices 
in presence of hazardous heat or 

pressure situations. 

9 Improper 
construction 

2 18 
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    Electrical 
Short 

Does not activate safety devices 
in presence of hazardous heat or 

pressure situations. 

9 Excessive 
loading 

2 18 

Water Pump Circulates coolant between 
the fuel cell, hydrogen 
pump and radiators. 

Deformation Possible ignition source and 
increases temperature in fuel 

cell. 

4 Excessive 
loading 

6 24 

  Cracking Possible ignition source and 
increases temperature in fuel 

cell. 

4 Excessive 
loading 

6 24 

    Electrical 
Short 

Possible ignition source and 
increases temperature in fuel 

cell. 

4 Excessive 
voltage 

5 20 

Tank Shut Valve 
Mechanism 

Shuts off fuel flow from 
each tank with normally 

closed solenoid. 

Cracking Leaks high pressure flammable 
gas. 

6 Excessive 
loading 

4 24 

  

Corrosion Does not shut down fuel flow, 
allowing high pressure 
flammable gas leak. 

7 Dirty fuel, 
Exposure to 

acid 

3 21 

  Deformation Does not shut down fuel flow, 
allowing high pressure 
flammable gas leak. 

7 Excessive 
loading 

3 21 

    Electrical 
Short 

Premature valve closing. 1 ECU 
malfunction 

2 2 

Electric Motor 3 Phase AC permanent 
magnet electric motor 

contained in the transaxle. 
Driven by the PCU and 

used to power the vehicle 
during "coasting" or 

braking. 

Electrical 
Short 

Arcing. 8 Protective 
Casing 
Breach 

3 24 

  Torque 
Fatigue 

Mechanical failure. 5 Excessive 
loading 

4 20 

  Corrosion Mechanical failure. 5 exposure to 
acid 

3 15 

    Deformation Engine shut down. 1 Excessive 
loading 

6 6 
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Hydrogen Pump Circulates H2 through the 
fuel cell. 

Deformation Possible ignition source and 
leaks flammable gas. 

4 Excessive 
loading 

5 20 

  Cracking Possible ignition source and 
leaks flammable gas. 

4 Excessive 
loading 

5 20 

    Electrical 
Short 

Possible ignition source and 
leaks flammable gas. 

4 Excessive 
voltage 

4 16 

Fuel Cell (FC) Utilizes H2 and O2 from 
the air to generate high 

voltage DC. 

Electrical 
Short 

Possible ignition source in 
presence of flammable gas. 

4 Excessive 
voltage 

5 20 

  
Cracking Leaks flammable gas and 

possible ignition source. 
4 Excessive 

loading 
4 16 

    Contamination Engine loses energy. 1 Dirty fuel 9 9 
Hydrogen 
Sensors 

Detect hydrogen gas 
accumulation. 

Electrical 
Short 

Does not signal ECU system 
shutdown when hydrogen 

accumulation causes explosive 
conditions to develop. 

8 Improper 
operating 
conditions 

2 16 

    

Miscalibration Does not signal ECU system 
shutdown when hydrogen 

accumulation causes explosive 
conditions to develop. 

8 Improper 
construction 

1 8 

BP High Voltage 
Fuse 

Provides short circuit 
protection in the HV 

battery pack. 

Electrical 
Short 

Allows short circuit of high 
voltage lines. 

8 Improper 
operating 
conditions 

2 16 

FC and BP 
Electric Relays 

Stops electric flow from 
both the fuel cell and the 

HV battery pack. 

Electrical 
Short 

Does not prevent component 
electrification with high voltage 

current. 

8 Improper 
operating 

conditions, 
Melting relay 

contacts 

2 16 

Direct Current 
High Voltage 

Cables (with GFI) 

Carries high voltage DC 
between the PCU and the 

fuel cell or HV battery 
pack. 

Electrical 
Short 

Arcing. 8 Protective 
Casing 
Breach 

2 16 

Power Control 
Unit (PCU) 

Converts DC current to 3 
phase AC current and vice 

versa. 

Electrical 
Short 

Arcing. 8 Excessive 
voltage 

2 16 
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Alternating 
Current High 

Voltage Cables 
(with GFI) 

Carries 3 phase AC 
between PCU and 

components in the motor 
compartment along with 

the hydrogen pump. 

Electrical 
Short 

Arcing. 8 Protective 
Casing 
Breach 

2 16 

Air Pump Pumps air to the fuel cell. Deformation Possible ignition source. 2 Excessive 
loading 

5 10 

  Cracking Possible ignition source. 2 Excessive 
loading 

5 10 

    Electrical 
Short 

Possible ignition source. 2 Excessive 
voltage 

4 8 

Ground Fault 
Monitor 

Monitors for high voltage 
leakage to the metal 

chassis while the vehicle is 
running. Actuates electric 

relays. 

Electrical 
Short 

Does not prevent component 
electrification with high voltage 

current. 

8 Monitor 
Malfunction 

1 8 
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