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ABSTRACT

We investigate the effects of feedback on a decentralized detection system consisting of
N sensors and a data fusion center. It is assumed that observations are independent and
identically distributed across sensors, and that each sensor uses a randomized scheme for
compressing its observations into a fixed number of quantization levels. We consider two
variations on this setup. One entails the transmission of sensor data to the fusion center in
two stages, and the broadcast of feedback information from the center to the sensors after
the first stage. The other variation involves information exchange between sensors prior
to transmission to the fusion center; this exchange is effected through a feedback decision
center, which processes binary data from the sensors and thereafter broadcasts a single
feedback bit back to the sensors. We show that under the Neyman-Pearson criterion, only
the latter type of feedback yields an improvement on the asymptotic performance of the
system (as N — o0), and we derive the associated error exponents. We also demonstrate

that deterministic compression schemes are asymptotically as powerful as randomized ones.
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1. Introduction.

We consider a binary hypothesis testing problem (Hy versus H;). The system in general
consists of N identical sensors {S;}X ;. Each sensor observes a random variable X; and
transmits a compressed version of its information to a fusion center. The fusion center

then decides which hypothesis is true based on the classical Neyman-Pearson criterion.

Tenney and Sandell [1] were the first to introduce this kind of problem. They consid-
ered two sensors (N=2), and designed, for a fixed fusion decision rule, the optimal local
decision rules of the sensors on the basis of the minimum cost function criterion. Much
related work has since appeared in literature [2-9]. Of special interest to our work here is
[7], where a similar problem with multiple hypotheses was considered. The sensors and
the fusion center used deterministic rules, and the optimization was based on minimizing
the overall probability of error. The error exponent of this probability was evaluated as

N — oo.

A modified version of the above system is as follows. Each sensor may transmit an
encoded version of its observations to a feedback decision center (which may be the fusion
center itself). This feedback decision center then broadcasts a compressed version of the
received information to all the sensors (and perhaps also to the fusion center). Each sensor
uses this feedback information to update its decision and transmit a new local decision
to the fusion center, which will then decide on the true hypothesis. This system 1s useful

in situations where the channel between the sensors and the fusion center is of restricted
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capacity and the transmission entails considerable cost.

2. Problem Definition and Preliminaries.

We have two hypotheses (Ho, H;) and N sensors {S;}}Y,. Each sensor S; observes a
random variable X; that takes values from a finite set X'. We assume that X;,.--., Xy are
identically distributed and independent under both hypotheses. The distributions of X;
under Hy and H; are Px and Qx, respectively. We will consider four different systems
for processing the data collected by the sensors. Before describing these systems we will

introduce some notation.

General Notation. Px~ and Qx~ denote the distribution of the vector XV under the
null hypothesis and the alternative hypothesis, respectively. If the components {X;} of
XN are independent and Py, (resp. Qx,) denotes the distribution of X; under Hy (resp.
Hy), then for all 2™V € XN

N N
Pyw(aV) =[] Pri(e),  Quv(e™) =[] @xi(as) -

If, moreover, Px, = Px for all7, 1 <1 < N, then we may use PY instead of Pxw; similarly

for Q. Also, as usual, |A| denotes the cardinality of the set A.

Problem (P1). Let U; € U be the decision of sensor S;, where, U is any set of
cardinality at most |X|. To generate the random variable U;, each sensor uses a behavioral
rule, [10], which can be represented by a conditional distribution Ay, x,; on UxX. No
feedback is involved in this system, hence, as soon as the fusion center C' collects the local
decisions of each sensor {U;}, it declares that hypothesis Ho is true if UN lies in some
acceptance region Ay C UN. We would like to choose the decision rules {Ay, x,} and the

acceptance region so as to minimize the type II error, Qu~ (An), subject to the constraint

Pyn(AS) < e
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on type I error, where € € (0,1). For all u’¥ € YN Pyw is defined as

N
Pon (u™) = [] Pui(us)

where

Py, (ui) = Y Ay x, (uilz)Px (2)
T
or simply Py, = Ay,x;Px. Qu~ (u™) is defined in a similar manner. We denote this
minimum probability of type II error by ﬂ](\%)(lu |, €), i.e.,

(1) def .
Ul e) = f : >1—¢€}.
B (1], €) {AU”X,.I?,ANCLIN{QUN(AN) Pyn(An) 2 1—€}

We are interested in the asymptotic behavior of ﬂ](\})(v/l |, €) as N — oo. The resulting error
exponent is given by

B0, €) % — lim

im —log A ([Ul, ) ,

provided the limit exists.

Problem (P2). Here feedback is involved and we assume that U is a binary set (each
sensor transmits just one bit to C before receiving the feedback information). Once C
receives U, it generates a feedback bit V. This bit is “0” if UV lies in some region
Cn CUN called the feedback acceptance region, and “1” otherwise. The center broadcasts
the bit V to all sensors. Each sensor S; generates two binary random variables Y;, Z; (that
take values in the same binary set W) according to distributions Ay, |y, x;, Az v, x; and
uses the feedback bit to decide which of Y;, Z; to transmit to the fusion center as the second
information bit W;:

W; def Yiliy=o) + Ziljv=1] » (2.1)

where I1j denotes the indicator function. Since V depends on the observations of all sensors,
the W;’s are in general dependent. The center C collects these decisions {W;} and uses

those along with U N to declare that Hy is true if UMWY lies in an acceptance region Ay
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which is a subset of U™ x WY, Our aim is to choose the decision rules {Ay,y; 1Xi> AU zi1X:
the feedback acceptance region Cy, and the acceptance region Ay so as to minimize the

type II error, Qy~w~ (An), subject to the constraint
PUN wWN (A?V) S €
on the type I error. Here, by (2.1), for all (u”V,w™) € UN x WY, we can write

N N : N
p N N Pyvyn(u?,w?), ifu” €Cpy;
prwn (U, 0T { Pyn zn (ulV wh),  otherwise, (2:2)

where
N
Pynyn(u,w) =[] Puyvi(ui,wi),  Poovi(wiywi) =Y Avpygyx; (uiy wile) Px () |
=1 T
and

N
Py~ gn (uN’wN) = HPU;Zi(Ui,wi), PUiZi(ui’wi) = ZAUiZeIXi(ui’wilw)PX(x) .

=1 z

Hence, by (2.2),
Pynyw (AN) = Pynyn(An N (CN X WN)) + Pyngn (An N (CJCV X WN)) .
Qu~ww 1is evaluated in a similar way. The optimal type II error is defined as follows

2 def .
B (e) & inf {Quvwn (An): Punwn (An) 21— €} .
Ay, v x;80;2; 1% b
cyculN aycuNxwhN

The corresponding error exponent is given by

6 () &f _1i]rvn—]1vlogﬁz(3)(e) :

Problem (P3). This system differs from (P2) in that here we have two different centers:
the feedback decision center C; and the fusion center Cy. The sensors transmit their first

decisions {U;} to C;, which broadcasts a feedback decision bit V' (generated in exactly the
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same manner as in (P2)) to all sensors and to C;. The sensors then transmit their second
decisions {W;} (generated as in (P2)) to Cy. Cy uses W along with V to declare the final

decision. Therefore, the acceptance region Ay C UN x WV can be written as the disjoint

union

An =(Cn x FN)U(CYy x EN)

where Cy ¢ UY and Fn,En C WY, With the aid of (2.2), we can write
Pynwn(An) = Pyny~n (Cn X Fn)+ Pyvgn (Cir X EN) .
The corresponding optimal type II error is thus

B (e) & inf {Quwwx (An): Ay = (CyxFN)U(CK XEN), Pusws (Ay) = 1—¢}
Ay x;8u;240x, b
enycuN Fy,enycwN

and the error exponent is

1

o () & - lim

log B (e) .

Problem (P4). This system differs from P3 in that the two centers C;,C; do not
communicate. Thus, Cy uses WY only to determine the true hypothesis. The statment
of the problem is summarized as follows. Let the acceptance region set by Cs be Ay (it
should be emphasized that this acceptance region is a subset of WY, not U as in (P1)).

The type I and type II errors are given by
Py~ (AN) = Pynvyn(Cn X AN) + Pyn zn (C X AN)

and

Qwr (An) = Quvy~(Cn X AN) + Qurzn (Ciy X An)

respectively. The optimal type II error is thus

A OR inf {Quw~ (AN): Pyw (An) 2 1 — €}
Ay viix; A z:1x;: b
eycuN anycwi



and the error exponent is given by

09 (e) &~ tim < log Y (e)

In this report we are interested in comparing the error exponent in (P1) (when |U| = 4)
with that in (P2), the error exponent in (P3) with that in (P4), and the error exponent
in (P1) (when |U| = 2) with that in (P4). This comparison will measure the effect of a

feedback bit in the performance of the system.

In Section 3 we will evaluate the error exponents of the above systems under the
assumption that all sensors use the same behavioral decision rule. In Section 4 we will
discuss and evaluate the error exponents in problems (P1), (P2) assuming that the sensors
are not restricted to use the same rule. It turns out that system (P2) performs similarly
to (P1)(|4] = 4). This means that the feedback bit does not lead to an improvement in
the error exponent in (P2), but it is certainly useful in reducing the complexity of the
system. On the other hand (P4) outperforms (P1)(|/| = 2) in general, hence this type
of information exchange between sensors is useful. We will see as well that (P3) does not

outperform (P4), i.e., C2 does not need to know the feedback bit transmitted by C}.

We will show also that the sensors can employ only deterministic decision rules without

loss of asymptotic optimality.

Typical sequences. Our proofs rely on the concept of a typical sequence, as developed

in [11]. Here we cite some basic definitions and facts on typical sequences.
The type of a sequence zV € AV is the distribution A; on A’ defined by the relationship

(Va € ¥) Mala) & 5 n(ale),

where n(alz™V) is the number of terms in zV equal to a. The set of all types of sequences

in XV, namely {\, : 2% € XV}, will be denoted by Pn(X).
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Given a type Px € Pn(X), we will denote by T}g the set of sequences zV € XV of
type f’X:

TN N e xN ), = Px}.

Also, for an arbitrary distribution Px on X and a constant n > 0, we will denote by
TXN,n the set of (ISX,n)~typ1'ca1 sequences in XN. A sequence zV is (Px,n)-typical if
I\z(a) — Px(a)| < n for every letter a € X and, in addition, A.(a) = 0 for every a such
that Px(a) = 0. Thus, if || - || denotes the sup norm and < denotes absolute continuity,

we have

n def ~ A~
T, = {2¥ € XY []de — Px|| <0, X\s < Px} .
In the same manner, we will denote by T)]}” , the set of (Px,n)-typical sequences in X N,
The proofs of Lemmas 2.1, 2.2 appear in [11].

LEMMA 2.1. For any Px in Pn(X), any distribution Qx on X
(N +1)"¥lexp[NH(Px)] < [T§] < exp[NH(Px)],
and
(N +1)71* exp[~-ND(Px[|@x)] < QX(TX) < exp[-ND(Px||Qx)] ,

where H(-), D(:||-) denote the informational entropy and divergence, respectively.

LEMMA 2.2. For any distributions Px, Qx on X, andn > 0,

X

PR(IR) 2 1= g

QX(TX,) < exp[-N(D(Px||Qx) = én — v(n))]
where 6N = M]éwl — 0, and v(n) — 0 asn — 0.
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One can easily modify the above exposition to accommodate pairs (z7V,y™) € A x
YV by reverting to their representation in (X x Y)N. Thus the type of (z¥,y") is the
distribution Azy on X' x Y such that

1y .
)‘Zy(aab) = YV—' {Z : ($i7yi) = (a7b)} )
and the sets Py(X x V), as well as T8y AN x YV and T)](VY,,’ C AN x YV, are defined
accordingly.
We will need the following lemma.

LEMMA 2.3. Let X and Y be any binary sets. Fix p > 0, § € (0,1). Then there

exists a sequence

VN = VN(p767|X|7|y|) -0

such that for every Pxy, Qxy € P(X x V), C € XN, F € YV that satisfy

min Xyl >
z’y:Qxy(x’y»OQ (z,y)>p,

D(Pxy||@xy) < oo,

and

PR (CxF)>6,

the following is true:

Qv (C x F) > exp[-N(d(Px, Py||Qxvy) + vN)] ,

where

d(Px, PY||QXY)déf glin D(Pxy||Qxy) -
XY

15X=Px, Isy=PY

PROOF. Case 1. Qxy > 0. The statement is implicitly proven in [12], Section 3, and

is also true for arbitrary X, ).



Case 2. Qxy has zeros. The binary assumption on the sets X and ) is critical here.
Let the distribution ISXY achieve the minimum in d(Px,Py||@xy), then PXY < Qxy,

otherwise the divergence is infinity. The constraints 13X = Px, by = Py force IBXY to be

identical to Pxy, i.e., here d(Px, Py||@xy) = D(Pxy||@xy). Stein’s Lemma [13] ensures

the existence of a sequence Ay — 0 such that
QXy(C x F) > exp[-N(D(Pxy||Qxv) + An)] . A

In the following sections we will omit the superscript N from T, as N will be essentially

constant.

3. The Main Results.

THEOREM 3.1. The error exponent for (P1), assuming all sensors use the same decision

rule and |U| < |X|, is given by

oV (|4, ) = sup. D(Pyl|Qu)
Py =Py Alet,JlgU=QXAU|X

for all e € (0, 1).

PROOF. Direct part. If |U| = |X|, then the error exponent is given by Stein’s Lemma
[13]. Let U be a set of cardinality not greater than |X|. We assume all sensors use the

same decision rule, i.e., Ay, |x; = Ay|x, for all 1 <4 < N. We thus have for all u € U,

Py,(u) = Py(u) = > Ayix(ulz)Px(z),  Qui(u) = Qu(u) =Y Ayx(ulz)Qx(z) .

Set the acceptance region

AN = TU,n ’

where n > 0 is arbitrary small. Then from Lemma 2.2,

Pyn(An) = P[]]V(AN) >1- W )



which is greater than 1 — € if N is large enough. The type II error is upper bounded by
exp[~N(D(Py||Qu) — én —v(n))], where 6y — 0 and () — 0 as n — 0 (cf. Lemma 2.2).

Since the conditional distribution Ay)x is arbirary, we have

BY (Ul,e) < Aigfx exp[—N(D(Py||Qu) — én — v(n))] -

By definition of the error exponent,

6D (], €) > sup D(Pyl|Qu) — v(n) -

Ay\x

Since n > 0 is arbitrary, the proof of the direct part is complete.

Converse part. Assume that all sensors use the same decision rule Ay;x. Let Ay C

UV be any acceptance region satisfying the constraint
PUN(.AN) Z 1—e€.

Hence, from Stein’s Lemma, for N large enough there exists a sequence Ay — 0, depending
g g

only on || and €, such that

Quw(An) 2 exp[-N(D(Pu||Qu) + An)l

> exp[-N(sup D(PullQu) +An)],

Ayix

Since Ay|x was arbitrary, and Ay was any set satisfying the constraint on type I error,

we obtain
W, €) > exp[-N( sup D(PyllQu) + An)] -
UixX
Hence
6V (||, €) < sup D(Py|lQu) - A
Ay|x

THEOREM 3.2. The error exponent for (P2), assuming all sensors use the same pair

of decision rules, is given by

6 () = sup D(PyyllQuy)

Apyyix:
Pyy=FPxApyy|x  QUuYy=Qx4vrY|X
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for all e € (0,1).

REMARK. One can see that if [2/| = 4 in Theorem 3.1, then the error exponents in
(P1) and (P2) are exactly the same, so the feedback bit used by the fusion center actually
does not convey essential information to the sensors. As a matter of fact, one can show

that the same error exponent prevails for any fized number of feedback bits.

SKETCH OF THE PROOF. Direct part. It is obvious that this system will do at

least as well as the one with no feedback, hence () (€) > 61 (¢).

Converse part. Assume that all sensors use a pair of decision rules Apy|x, Avz|x Let

Cy cUN, Any c UN x WY be any regions satisfying the constraint
Pynywr(An) = Pyvyn(An N (Cn X WN)) + Pynzn (AN D (C{ X WN)) >1l—e€.

Hence, either Pynyn (AnN(Cx x WN)) > 12€ or Pyw zv (An N(CR X WHN)) > L=<, Using

the same method as in the proof of the converse part of Theorem 3.1, we get that

8 (e) < { sup D(Puy||Quy)}V{ sup D(Puzl||Quz)}

Apyix Apyzix

= sup D(Puyl||Quy) - A

Apy|x

THEOREM 3.3. The error exponents for (P3) and (P4), assuming all sensors use the

same pair of decision rules and D(Px||Qx) < oo, are given by

6 () = 6W(e) = sup d(Py, Py||Quy)
Apy|x:
Pyy=PxAypy|x:» QUuy=9x4uy|x

for all e € (0,1).

REMARK. In general, the error exponent in (P3) and (P4) is better than that in (P1)
when || = 2, because we always have d(Py, Py||Quy) = D(Pul|Qu).

SKETCH OF THE PROOF. Direct part. By the problem statement, we have 803)(e) >

8 (). Hence it is enough to show the direct part for (P4) only. Pick an arbitrary pair
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of conditional distributions Ayy|x, Ayzx as fixed decision rules to all sensors. Set

Cy =Tuy, An = Ty,y, where > 0 arbitrary. For the type I error in (P4), we can write

Pyn(AY) = Pynyn(Cn X AX) + Pyn zn (Cx X A%)
< Py~(A¥) + Py~ (Cy)

VI ]
< <
~ 4Nn? +4N772 =€

if N is large enough. The Type II error in (P4) is upper bounded as follows

Qwn (An) = Quvyn(Cy x An) + Qurzv (C X An)

A

Qurvy~ (Tum X Tyyg) + Qzv (Ty,y)

< exp[=N(d(Py, Py||Quy) — 65 — v(m)] + Qz~ (T¥,n) -

By a suitable choice of Azjx the last term in the above inequality can be equal to zero.
Indeed, for any fixed y with Py(y) > 0 we can always choose a trivial decision rule Az x
such that for the above fixed y, Az x(y|z) = 0 for all z € X'. It follows that Qz(y) =0.
Since Py (y) > 0, there exists an 1 > i(yN) > N such that y;,~) = y for each sequence
yN in Ty,,. Thus Qz~ (TY,;) = 0. This, together with the fact that the decision rules were

arbitrary, yields

6@ (e) > sup d(Pu,Pr|lQuy)—v(n).

Ayy|x
Converse part. It is enough to show the converse part for (P3) only because 63 (e) >
6'(4)(6). Assume that all sensors use a pair of decision rules Ayy|x,Avz|x- Note that
D(Pyy||Quy) < oo and D(Pyz||Quz) < oo since D(Px||Qx) < oo. Let Cn C un,

Fn,En C WN Ay =Cn x FNUC{ x EN be satisfying the type I error constraint
Pynwr (An) = Pyvyn(Cn X Fn) + Pungn(CE x En) 21 —¢€.
Hence, either Pyny~(Cn x Fn) = 1—'2'—6— or Py~ zv(C& X EN) 2 1—2_—9 Using Lemma 2.3, we
have either
Qury~(Cn x Fn) = exp[-N(d(Pu, Py||Quy) + vn)]
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> exp[-N( sup d(Pu,Pr||Quy)+vn)|

UY|X

Qunzn (Ch x En) 2 exp[-N(d(Py, Pzl|Quz) + vn)]

v

exp[—N( sup d(Py,Py||Quy) +vn)] .

UY|X

This yields

Qunvwr (An) = Quny~(Cn X Fn) + Qunzv (Cy X EN)
QUNyN(CN X fN) \% QUNzN(C]cV X gN)

> exp[-N( sup d(Pv, Pr||Quy)+An)],

Apyix

Vv

and therefore also

8 (e) < sup d(Pu,PyllQuy) .

Pyy|x

A

In what follows we will see that it is sufficient for all sensors to employ deterministic

decision rules in order to achieve the above error exponents. We need to define ®(Ay|x)

and ¥(Aypy|x) as follows.

where

and

where

®(Ayx) < D(Py||Qu) ,

Py() =Y Ayx(2)Px(z), Qu(-) =Y Aux(|2)Qx(2)

¥(Ayy|x) < d(Py, Py|lQuy) ,

Py() =Y Apyix(yle)Px(z), Py()= > Auyx(u, ) Px (@)

z,y u,z

Quy(:,-) = ZAUY|X('a 12)Qx () -

13
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The following lemma asserts the convexity of ®(-) and ¥(-).

LEMMA 3.1. ®(Ay|x) defined in (8.1) is a convex function in Ay x, and ¥(Ayy|x)

defined in (3.3) is a convex function in Ayy|x.

PROOF. For « € (0,1) and any two conditional distributions Ay, x, AU|X§ let Py, Qu
be defined as in (3.2), and Py, Qu be defined similarly. Then

®(alyx + (1 - 0)Ayx) = D(aPy + (1 - a)PyllaQu + (1 - a)Qu)
< aD(PullQu) + (1 — @)D(Py|Qu)

= a®(Ayix) + (1 - 0)@(Ayix) ,

where we have made use of the convexity of the divergence. This proves that ®(Ay|x) is

a convex function in Ay x.

Now for any a € (0,1) and any two conditional distributions Agyy X,AUy| x, let

Py, Py, Quy be defined as in (3.4), (3.5), and similarly for Py, Py,Quy. Then

a¥(Apyx) + (1 — a)¥(Apy|x)
= ad(Py, Py||Quy) + (1 - a)d(Py, Py||Quy)

= aD(PH1Quy) + (1 — a)D(PF|1Quy) ,

for some PSQ, having marginals Py, Py, and P[(le), having marginals Py, Py . By convexity

of the divergence and definition of d(-,||-), we obtain

a¥(Apyx) + (1 — ) ¥(Apyx)
> D(aP{y +(1 - )P leQuy + (1 — a)Quy)
> d(aPy + (1 — a)Py,aPy + (1 — o) Py||laQuy + (1 — a)Quy)

= P(aApy)x + (1 — 0)Ayyix) -

This proves that ¥(Ayy|x) is a convex function in Ayy|x- A
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In what follows we assume that II and A are partitions of X. We denote by IIV A the
coarsest common refinement of II and A. We use P|;; to denote the restriction of Px on
II.

THEOREM 3.4. Assume all sensors use the same decision rule.

(i) For all e € (0,1), |U| < |X|, if II is a partition of X, then
6D(Ul,e)=  max  D(PullQu) .
Py=Pln, Qu=Qln
(ii) IfU, Y are any binary sets and II, A are partitions of X, then for all € € (0,1)

8 (e) = max D(Pyy||Quy) ,

Pyy=Plnva, Quy=Qlmva

(iii) If, in addition to (ii), D(Px||@Qx) < oo, then for all € € (0,1)

93 (e) = 6@ (e) = max d(Py, Py||Quy) .

Pyy=Plnva, Quy=Qlnva

PROOF. From Theorem 3.1 and the definition of ®(-) we have

6 (U], e) = sup ®(Ayx) - (3.6)

Ay|x

Observe, however, that any distribution Ay x can be written as a convex combination of
at most |U|!*! extremal distributions {Ay;|x;}, which are such that Ay, |x,(u|z) =0or 1,
ie.,if M = |U|!*!) then we can write

M
Apix =Y aily,x,

=1
where a > 0, Ef\il a; = 1. Substituting in (3.6) and making use of the convexity of ®(-),

we obtain

M
(U], e) = sup ®(Ayix) = sup @(ZaiAUi|X,-)

Avix {ei i, i=1
M
S Sullj\)l Zai@(AUilXi) S 1%%}5\/] (I)(AUi|Xi) . (37)
(o)L, i=1 <is
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The reverse inequality is obviously true. This proves the first statment of the theorem.

The remaining statments can be proven in a similar way. A

4. Extensions and Concluding Remarks.

In the previous section we considered the situation in which all sensors use the same behav-
ioral decision rule, and showed that no loss of optimality resulted from using deterministic
rules. In this section we consider a more general situation, in which the sensors are allowed

to use different decision rules.

We show here that in this case the error exponents of (P1), (P2) will still be given
by the corresponding expressions in Theorem 3.4, and thus the sensors can use the same

deterministic rule without loss of optimality. We have the following theorem.

THEOREM 4.1. The error exponents for (P1) and (P2), assuming D(Px||Qx) <
oo but no further constraint on the local decision rules, are given by the corresponding

expressions in Theorem 3.4.

PROOF. Direct part. In (P1) let U be a set of cardinality not greater than |X|.
Fix any conditional distribution Ay|x and let all sensors use the same decision rule, i.e.,

Ay, x; = Ayx for all 1 <i < N. As in Theorem 3.1, the error exponent in (P1) is lower

bounded by

69 (|t],e) > sup D(PyllQu) = max  D(Pyl|Qu) .

Uix Py=Ply, Qu=Rln
Converse part. In (P1) assume that each sensor S; uses an arbitrary behavioral
decision rule Ay, |x,. For all u; €U, ¢ € {1,---, N}, define

Py,(ui) =Y Ayx,(uile)Px(z),  Qui(wi) =Y Auyx,(uile)Qx(z) .

It is obvious that the Py,’s are independent and so are the Qu,’s. Let Anx C UN be any

acceptance region satisfying the constraint
PUN(AN)Z].—G.
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Define, for n > 0 arbitrary, the set

e Pyn (u?)
TN € N e yYN:|log 2L 2 < Nnij.
il 198 Qun () ™ 2 < )
If Ep(-), Varp(-) denote expectation and variance under P, then
Pun(UY) & Py, (U3)
Eplog ——=- = Eplo :
P8 Qun(T) 2:: P58 Qu ()
= > D(Pu,|1Qu;)
=1
and
Py~ (UM) = Py, (Ui)
Varplog ———% = Varplo -
% Qun(TT) ; 7% Qu. ()
Py(U) 2
< N sup Varplog = No*,
Ay |x QU(U)
where 02 = SUDA, x Varp log g’:]((ll]])) < oo (cf. Appendix A). We have from Chebychev’s

inequality that

. Py~ (U
PUN(T,]) = PUN{“Og@'gﬁ-(—[j'ﬁ% ZD(PU 1Qu; )| > N?]}
Varplogai%ﬁj < 0.2
N2n2 — NT]2 :

This yields

1-—¢

Pyn(AnNT,) >

for N large enough. We can estimate the type II error rate as follows:

Quv(An) = Qux(ANNTy) = > Qunv(u™)

uNeEAN ﬂT,J’V

Vv

N
Z PUN(UN)eXp[_ZD(PUil[QUi)_NU]

uNEeAN ﬂTN

1—e€

v

exp | ZD(PU 1Qu.) — N .
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It follows that

N
60l o) < 3> D(PullQu)+n < sup D(PullQu)+1 -

i=1 Ulx

Combining the direct and converse parts and applying Theorem 3.4 completes the proof

of the first statement of the theorem. The proof of the other is omitted. VAN
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APPENDIX A

We will show that 0% < oo if Px < Qx. Let
def g2 Py(u) _ 2 Pu(u)
Py( = Py(u)log , Al
)E L s g s X Qu(w) (A1
where
Py() = Z Ayx(-|z)Px(z) = Z Ayx(|z)Px (=) ,
z z:Qx (z)>0

Quih= Y Aux(le)@x(e).

z:Qx (2)>0
We have, for all w € U with Py(u) > 0,

PU(U) 22:Qx (>0 Auix (ulz) _1
QU(U/) pzx:QX(x)>0 Ale(u’x) P ’

PU(u) <

where pdéf ming.q, (z)>0 @x(z). Consequently,

Py (u) 1
log Py(u) <lo <log —
g Pu(u) < EQu(w) = %%

and hence,

log? —g%—((-;)j < log® - p V log? Py(u) .

Substituting in (A.1), we obtain
1
fw) < > (Puu)log® =) V (Py(u)log? Py(u)) .
w:Py(u)>0 P
Using the fact that 0 < tlogzt < 1og2 e2/e for all 0 < ¢ < 1, it follows that
1
flu) < Z log? = V log? ¢*/¢
u: Py (u)>0 p

< |U|log? (1 vV ele)

Hence,
2 _ op2 Folw) Py(u) 2
7t = o (Brle’ oy~ (Brlos g )]
< sup f(u) £ |U|log? ( Ve2/e) A
U|Xx
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