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This paper is motivated by the problem of designing an intelligent Network
Fault Management (NFM) system. In such a system, agents at network ele-
ments (NE) render network statistics when being polled. While polling infor-
mation arrives sequentially, the Network Management System (NMS) manager
is responsible for deciding which element is in fault. However, polling introduces
additional overhead [10] that may itself degrade network performance especially
when the network is in a stressed state. Thus, a tradeoff must be made between
the amount of data collected and transferred on one hand, and the speed and
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Abstract

This paper presents a fast Reinforcement Learning (RL) algorithm
to solve Partially Observable Markov Decision Processes (POMDP) prob-
lem. The proposed algorithm is devised to provide a policy-making frame-
work for Network Management Systems (NMS) which is in essence an
engineering application without an exact model. The algorithm con-
sists of two phases. Firstly, the model is estimated and policy is learned
in a completely observable simulator. Secondly, the estimated model is
brought into the partially observed real-world where the learned policy is
then fine-tuned. The learning algorithm is based on the on-policy linear
gradient-descent learning algorithm with eligibility traces. This implies
that the Q-value on belief space is linearly approximated by the Q-value
at vertex over the belief space where on-line TD method will be applied.
The proposed algorithm is tested against the exact solutions to exten-
sive small/middle-size benchmark examples from POMDP literature and
found near optimal in terms of average-discounted-reward and step-to-
goal. The proposed algorithm significantly reduces the convergence time
and can easily be adapted to large state-number problems.

Introduction

accuracy of fault detection and diagnosis on the other hand.



Several factors make such sequential decision-making non-trivial. Firstly,
each agent sends symptoms (i.e., observations) of the faults rather than the
root-cause (i.e., completely-observed states) of faults. Secondly, a single root-
cause may be related to different symptoms in many agents and vice versa.
Thirdly, symptoms may arrive to NMS manager misordered, corrupted, or may
fail to arrive at all (i.e., noisy sensor).

The NMS manager will take management actions (e.g., to poll or repair a
network element) based on sequential observations. Each state and action pair
has an associated cost which reflects, e.g., communication bandwidth used by
polling, network downtime, or the cost to replace a device. An optimal policy is
such an action sequence determined by incoming observations to minimize long-
term operating cost. For example, polling devices randomly (or in round-robin)
may waste bandwidth and delay fault diagnosis, thereby increasing network
downtime. On the other hand, choosing a smart polling sequence that focuses
on network elements that are most likely to be fault-related will isolate the
problem more quickly and with less communication overhead. An optimal policy
will represent a tradeoff between the amount of monitoring on one hand, and the
speed and accuracy with which potential faults can be detected and diagnosed.

The problem of choosing an optimal policy for monitoring, diagnosis, and
mitigation can be formulated as a Partially Observable Markov Decision Process
(POMDP) ([2],[11],][21]) . POMDP may serve as the theoretical basis of general
diagnosis without exact knowledge of states and has found many applications
[8] [23]. Recent years have seen various exact solution algorithms for POMDP’s
([12],120], [4],[26]). But they all have two major drawbacks that prevent them
from being widely deployed in many engineering applications. First, the major-
ity of them require accurate a priori system models. Unfortunately, such models
are not realistic for complex systems. This gives rises to demand for model-free
RL approaches which learn the control policy in a trial-and-error way. Second,
most of exact solution algorithms run into computational intractability when the
number of states becomes fairly large as is the case in network management.

In this paper, we develop a fast RL algorithm to obtain approximate solu-
tions to POMDP’s with large numbers of states. The idea is that we assign
Q-values to belief-action pairs instead of state-action pairs as is done in RL
algorithms for MDP, and use linear function to approximate it when rewards
(or costs) are received. We build a simulator of the real-world (network sys-
tem) in which we have complete observability. State-transition probabilities
and observation-function are estimated on-line during such simulation phase.
Then, we have not only identified an explicit simulator model (if it is not given)
but also the policy for the simulator which can be used as jump-starter to sup-
ply the next phase. In the execution phase where the state cannot be observed
completely, the agent uses the estimated model to update its belief state and
fine-tune its policy.

The proposed algorithm is tested against extensive benchmark examples in
the literature. Average-discounted-reward and steps-to-goal are recorded as
algorithm performance metrics to be compared with one of the most effective
exact POMDP solution ([26]). For the small and middle size problems for which



the policies can be obtained by the exact solutions within moderate time, values
of above two metrics are found to be close to those of the exact solution. Our
algorithm can easily be adapted to larger problems by changing iterative pa-
rameters. Our experiments show that in the case of model discrepancy between
simulator and real-world, learning-based approximate algorithm outperforms
exact solutions by virtue of its inherent learning capability. Our experiments
also support the observation that, within the spectrum of learning algorithms,
on-policy learning is preferable to off-policy learning for control when Q-value
on belief-state is approximated linearly.

This paper is organized in four sections. Section 2 briefly covers various
solutions to POMDP. Section 3 outlines our fast algorithm and its performances.
Section 4 contains conclusions.

2 Solutions to POMDP

POMDP is a framework to handle observation uncertainty in the MDP. A model-
based POMDP has 6-tuple < S,7,.A4,0,II,R > where § is a finite set of state,
A is a finite set of actions, 7 is a mapping 7 : § xA — Pr(S). R is a reward
function. O is the set of observations and II is an observation function II :
S x A — Pr(0). Solution to POMDP refers to a control policy that will yield
greatest reward over some finite or infinite horizons ([12]).

In MDP (or Completely Observable MDP), current action only depends on
the current state; previous states and actions are irrelevant. In the POMDP, the
current action may depend on the entire sequence of past actions and resulting
observations. However, it is equivalent to have the current action depend on a
sufficient statistic called belief state, which gives the probability for each possible
value for the current state given all the past actions and observations. By doing
such a conversion, a POMDP problem over state space can be treated as an
MDP problem over belief space and Markov property holds.

2.1 Exact solutions to POMDP

In principle, solutions to MDP can be used directly to solve POMDP assum-
ing POMDP is an MDP over belief states. Unfortunately, the infinite number
of belief states makes the direct use impractical. However, due to Sondik’s
work ([20]), the optimal value function for any POMDP can be approximated
arbitrarily well by piecewise-linear convex function (PWLC), thus the optimal
action is

m(b) = argmaz{.e A, enyla - b (1)

where b is a belief state, £ is a collection of solution vectors of | S |-dimension.

The discussion of exact solution is beyond the scope of this paper. Basically,
numerous exact algorithms to POMDP have their different ways of finding so-
lution vectors set in (1) ([26], [4]). Most of them start by constructing a finite
representation of PWLC function over belief state, then iteratively updating
this representation, expanding horizon and truncating it at some desired depth.



Generally, such truncated exact solution works well for small problems with less
than 100 states. For larger problem, it becomes computationally intractable
when the horizon or | S|, | A |, | O | increases.

2.2 Approximate Solutions to POMDP

In order to overcome to the computing difficulty, quite a few approximate ap-
proaches are proposed to solve POMDP quickly. Some of them are based on
model-based heuristic search while others utilize model-free learning techniques.

[7] represents policy as a finite-state controller and iteratively improves con-
troller by heuristic search in a policy space. [6] extends Real-Time-Dynamic-
Programming (RTDP) algorithm for MDP to POMDP by combining exact value
updating and heuristic search and produces near optimal solution especially for
large state number grid problem.

[13] and [15] use approximate approach to learn memoryless policy in the
case of POMDP. [13] uses a function approximator to represent a stochastic
policy which controls a robot moving in a quantized continuous state space.
The learning process is based on stochastic gradient ascent algorithm which is
performed by a neural-network-like agent with eligibility trace involved. Though
the learned policy is memoryless, there is still good chance to combine it with
state estimate to yield better results. In [15], memoryless near-optimal policy of
POMDP is obtained by learning Q-value of observation-action pair (0,a) with
Sarsa(M). Since no explicit state estimation is needed, it relieves the learning
algorithm from doing function approximation. However, our specific application
shows that immediate observation to action mapping is error-prone especially
when observation is noisy or observation space is much smaller than that of
action space . Though a couple of benchmark examples are tested in [15], no
direct performance comparison is made with exact solutions.

2.3 Solving POMDP by Simulation and Function Approx-
imation

In order to use POMDP as a framework for constructing intelligent decision
system, we need to solve POMDP problem without the exact model of the real
world. The dynamics of our network are hard to obtain explicitly. A practical
approach is to build a simulator that closely resembles the real-world model.
The model of the simulator is easy to identify. Then we pretend the real-world
model is the same as that of the simulator. Agent brings the optimal policy
from the simulator to the real-world and keeps learning to resolve the model
inconsistency, if any. Furthermore, the real-life problems often end up with
huge number of states, actions and observations. Therefore, it is crucial to use
function approximation to parameterize value functions.

Our on-policy linear approximation algorithm is derived from on-policy con-
trol algorithm Sarsa(A) ([22], [17]) which is originally applied in MDP. The idea
is that we assign Q-value to belief-action pair instead of state-action pair and
use linear function to approximate it. It is in essence like the hybrid solution



[14] in the sense that both use linear function to approximate Q-value based on
gradient descent method. But it differs in that it uses on-policy learning with
eligibility traces instead of off-policy Q-learning. On-policy algorithm, backing
up via on-line state sampling, is superior to off-policy algorithm in the case
of linear function approximation ([24]). In fact, some counterexamples have
been found for the off-policy case even though basis function (i.e. features) and
learning-step are favorably defined([1] [3]). On the other hand, on-policy TD
learning is more elegant, flexible and robust. In particular, on-policy TD(A),
approximated by gradient-descent linear function, is proved to converge to near
global optimum with bounded error on condition that features, parameters,
cost- function and learning-step-size are chosen properly ([24]). Nevertheless,
such analysis only holds for prediction problem where the action is greedily cho-
sen, though it empirically extends to control problem in [3]. Moreover, ([19])
proves the convergence result for Sarsa(0) for specific learning policy families.
However, such result has not been extended to multi-step and function approx-
imation yet. The contribution of this paper is to explore experimentally the
possibility of approximating Q-value over an infinite belief space by finite state
Q-value which is updated in the manner of on-policy TD learning algorithm,
e.g. Sarsa(N).

3 Implementation and Performance

3.1 Implementation

As discussed in the previous section, Q-value on belief-action pair will be ap-
proximated in the linear form of parameters which can be simply chosen as the
vertex Q-values over the belief space

Qi(br,a) =Y Qi(s,a)bi(s) (2)

seS

Using belief as features and vertex Q-value as parameters in POMDP is
intuitive and definitely efficient in practice. The updating rule for parameters

is ([22])
Qt+1 (S) a) = Qt(s) a) + adiey (57 a) Vs (3)

where
O = 141 + YQi(big1,a) — Qi (by, a) (4)

et(s,a) = yAer1(8,a) + Vg, (5,0)Qt(bt, a) = yAer1(s,a) + be(s) Vs (5)

in which eg(s,t) = 0,Vs. 0 < A < 1 is the trace-decay parameter. 0 < a < 1 is
the learning step. 0 < 7 < 1 is the discount factor. Theoretically, in (5) b:(s)
can be regarded as coming from derivative of approximated value function on
parameters. A mechanistic view is that (5) is a direct application of Sarsa()) to



the belief space with Q-value approximated by (2). All states here are eligible for
credit (or blame) which is assigned proportional to the belief on corresponding
states.

Our algorithm runs at simulation and execution phase sequentially. In sim-
ulation phase, we have complete observability and inexact model of the real-
world. The belief-state is the unit vector corresponding to the known current
state. State-transition and observation-function are estimated on-line during
simulation. After the MDP-like simulation phase, we have not only identified
an explicit model (for the simulator) but also obtained the policy for the sim-
ulator which can be used as a jump-starter to supply the next phase. In the
execution phase where the state cannot be observed completely, the belief is
updated by previously estimated model and policy is thus fine-tuned (as shown
in Figure 1). A pseudo-code procedure is reported in [9].
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Figure 1: Two-phase Learning Algorithm

3.2 Performance

In order to measure the performances, we build a tester which can execute
greedy policies derived from both exact algorithm and our algorithm referred
as “Fast-RL”. Average-discounted-reward (ADR) and steps-to-goal (STG) are
two metrics to measure Fast-RL vs. the exact algorithm. The policy from exact
algorithm is fixed while Fast-RL policies are learned before each test.

To calculate ADR, successive policies are tested and rewards are discounted,
added and averaged accordingly. Each test starts from an arbitrary belief state
with a given policy, discounted reward is added for each step until the goal-state
or the maximum steps limit is reached. Test repeats itself for the number of
trials. Steps are added among all the trials. The ADR and STG are represented
in the form of (mean + sample-standard-deviation) among all tested policies.



3.2.1 Benchmark Examples

Following examples are selected from POMDP literature as test benchmarks,
e.g., 4x3 ([21]), Cheese ([16]), Milos ([8]), Two-layer, Hallway-1-2 ([4]) (as shown
in Table 1). We choose currently the most effective exact algorithm (][26], [5]).
Policy is optimized for the given horizon and epsilon which controls the conver-
gence rate. Other parameters are chosen as default. The number of solution
vectors is obtained after time given at its right column (in seconds).

Benchmarks | | S| || A| | | O] | Horizon | Epsilon | Vector | Time
4x3 11 |4 6 7 1077 436 29.9
Cheese 11 4 7 100 1077 14 5.6
Milos 20 6 8 ) 0.1 157 11157
Two-layer 39 4 4 10 1077 1414 358
Hallway-1 60 ) 21 ) 0.004 1944 3010
Hallway-2 92 ) 17 4 0.01 1897 5211

Table 1: Benchmark examples from POMDP literature

For Fast-RL, although learning parameters can be optimized for each indi-
vidual case, they are intentionally not chosen to do so. In the following test,
goal-state is absorbing which means test will terminate either after the goal-state
or the “test-step” is reached. For the sake of simplification, the max-step in ex-
ecution phase is chosen to be the same as max-step in simulation phase, thus
denoted as “RL-step”. Time until the approximate policy obtained is denoted
as “RL-Time”, which covers both simulation and execution phase. Trial of ex-
ecution phase is much smaller than the episode of simulation phases. Learning
rate «=0.01, exploration rate e=0.1 and is decayed by the factor of 0.99 each
step. Eligibility trace decay factor A=0.9. ADT and STG are also obtained for
random policies for the purpose of providing the performance baselines.

4x3 ADR STG

Exact 365.2+8.1 | 4952+64
Fast-RL | 364.6+15.0 | 5004£76
Random | 153.5+£97.9 | 8543+3895

Table 2: RL-step=100 Episode=100, Test-step=100, RL-Time=17 Sec.

Cheese ADR STG
Exact 78.3+0.0 | 580+0
Fast-RL | 76.3+3.4 | 642+121
Random | 11.0+6.8 | 8828+725

Table 3: RL-step=100 Episode=100, Test-step=100, RL-Time=18 Sec.



Milos ADR STG

Exact 2359415 27900+881
Fast-RL | 40414+623 | 3456441201
Random | 203741752 | 3468542249

Table 4: RL-step=200 Episode=100, Test-step=300, RL-Time=313 Sec.

Two-layer | ADR STG

Exact 255.440 351040
Fast-RL 221.74+16.7 | 4803+766
Random | 125+57.9 35691+1793

Table 5: RL-step

=100 Episode=100, Test-step=100, RL-Time=182 Sec.

Hallway-1 | ADR STG

Exact 205.8+5.2 19648+830
Fast-RL 201.1+45.9 | 1735548118
Random 13.1+£6.8 25937+1111

Table 6: RL-step=100 Episode=100, Test-step=100, RL-Time=303 Sec.

Hallway-2 | ADR STG

Exact 1724+3.4 526744458
Fast-RL 2524+10.1 | 32980£2950
Random | 70.94+27.9 | 288119442884

Table 7: RL-step=200 Episode=100, Test-step=>500, RL-Time=1620 Sec.

As shown in the above tables, the performance metrics of fast-RL is close
to or in some case even superior to that of exact algorithm. The later case is
probably due to early termination of exact algorithm when no progress is made
within 3 hours. In general, the standard deviation of policies from fast-RL is
larger than that of exact algorithm. This implies that the exact algorithm is
preferred in the sense of stability. The deterministic model (e.g. Cheese) has no
uncertainty in action and sensor, therefore policy from exact algorithm performs
consistently well while learning algorithm does not.

3.2.2 Model Inaccuracy

In the previous section, we consider the case where the model of the simulator,
i.e. state-transition matrix, observation-function etc., is exactly the same as
that of the real-world. In our algorithm, policies learned in the simulator will be
brought into the real-world and will be fine-tuned during the policy is executed.
However, the policy from the exact solutions will not tolerate model inaccuracy.
On the other hand, RL algorithm during execution phase will adjust the policy
while making observations and penalizing “bad” actions that incur large costs.
Following is an example from previous section to show how Fast-RL outperforms



exact solution when the model is wrong. Suppose state-5 in 4x3-example in
simulator is actually blocked in the real-world which means actions leading to
state-5 will be bouncing back to the original state, e.g., in state-9 taking action-
up will stay at the same place with probability 1.

4x3 ADR STG
Exact 10945.87 | 11383+£203
Fast-RL | 192.5£43 | 8248+2690

Table 8: Performance metrics when state-5 in 4x3-examples is blocked

What makes RL algorithm more significant is that a real-world problem, like
network management, is too complex to have pre-defined models. The tolerance
of model inaccuracy is an important aspect to measure the robustness of control
algorithm.

3.2.3 On-Policy vs. Off-Policy Algorithm

In this section, we compare briefly the performance issue of Fast-RL vs. off-
policy linear Q-learning in ([14]). Using linear Q-learning, two navigation prob-
lems with 57 and 89 states respectively only have 8.4% and 5.2% trials reach
goals within 251 steps. Since these two problems in ([14]) are model-based,
we skip the simulation phase and assume the model is known to make a fair
comparison. These two cases are tried by Fast-RL and found 99.6% and 99.1%
trials reach the goals within 251 steps.

Hallway-1 | ADR STG
Hallway-1 | 199.27+48.0 | 16611+7651
Hallway-2 | 219.38+23.7 | 46146+13654

Table 9: Performances metrics when model is known

4 Conlusion

Some experimental result ([15], [13]) shed the light that on-policy TD learn-
ing (e.g. Sarsa(\)) works better when eligibility trace is employed. However,
the general convergence property has not been proved even for the simplest
table-lookup cases. This paper does not focus on the convergence property,
in stead it finds a quick solution to POMDP with satisfactory performances.
Our features and parameters selection is practically most efficient and archiving
near-optimality quickly in all benchmark examples. Although replacing trace
outperform accumulating trace in many table-lookup cases ([18]), the later one
is more conceptually natural in our case. This observation complements the
claims in ([22]) which primarily consider the binary features.
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