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In the post-genomic era, availability of high-throughput profiling techniques 

enabled the measurement of entire cellular molecular fingerprints. Major 

characteristics of the high-throughput revolution were that (a) studying biological 

problems did not have to rely on prior hypotheses, while (b) parallel occurring 

phenomena, previously assumed disconnected, could now be simultaneously 

observed. Metabolomics is the newest of the “omics” techniques. It enables the 

quantification of hundreds of free metabolite pools, providing a metabolic fingerprint. 

Considering the importance of cellular metabolism, which is the net effect of changes 

at the genomic, transcriptomic and proteomic levels and of the cell with its 

environment, the metabolomic profile, is a fundamental determinant of cellular 

physiology.  

Obtaining accurate and complete metabolomic profiles is thus of great 

importance. However, being recent technology, metabolomics is currently at its 



  

standardization phase. As part of my PhD thesis research, I focused on addressing 

several current challenges in metabolomics technology development. Specifically a 

novel data correction, validation and normalization strategy for gas chromatography-

mass spectrometry (GC-MS) metabolomic profiling analysis was developed, which 

dramatically increased the accuracy and reliability of GC-MS metabolomic profiles. 

The optimized metabolomics protocol was applied to study the short-term dynamic 

response of systematically perturbed Arabidopsis thaliana liquid culture system to 

study regulation of its primary metabolism. The biological system was studied under 

conditions of  elevated CO2 stress, salt (NaCl) stress, sugar (trehalose) signal, and 

hormone (ethylene) signal, applied individually; the latter three stresses also applied 

in combination with the CO2 stress. Analysis of the obtained results required the 

appropriate application of multivariate statistical analysis techniques, which are 

developed mainly in transcriptomic analysis, into metabolomics analysis for the first 

time.  

The acquired results identified important new regulatory information about 

the biological systems resulting in new targets for metabolic engineering of plants. 

The large number of dynamic perturbation allowed re-construction of metabolic 

networks to identify possible novel metabolic pathways based on correlations 

between metabolic profiles. In addition, it demonstrates the advantages of dynamic, 

multiple-stress “omic” analysis for the elucidation of plant systems function. In this 

sense, it contributes in further advancing the computational and experimental 

metabolic engineering and systems biology toolbox. 
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11   INTRODUCTION 

The analysis of biological systems had to traditionally rely on the monitoring of 

macroscopic physiological properties and few variables at the molecular scale, due to 

limitations in the available analytical techniques. Under these conditions, the selection of 

the few microscopic markers to be monitored required the use of initial hypothesis 

regarding the particular biological problem. Therefore, any conclusions or models 

derived from such analysis depended heavily on the validity of this initial hypothesis, i.e. 

whether the selected measurements were indeed the most sensitive markers of the process 

under investigation. In addition, being few and specific, the molecular measurements 

were not usually adequate for the researcher to observe and correlate simultaneously 

occurring phenomena that had not been included in the initial hypothesis.  

Advances in the computational and robotic techniques, along with better understanding of 

biological processes, allowed for the development of the high-throughput (‘OMICS’) 

techniques. The latter enabled researchers to obtain very detailed and comprehensive 

information about the state of a biological system at the molecular level. In contrast to the 

conventional analysis, the high-throughput analysis of biological systems does not 

require the use of initial hypothesis. Moreover, allowing for the holistic analysis of 

cellular fingerprints, simultaneously occurring phenomena can now be observed and 

correlated leading to more detailed and accurate models of cellular function. Hence, high-

throughput techniques can significantly upgrade the quality of information that is 
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obtained about a biological system. 

Transcriptional profiling using cDNA micro arrays (Schena et al., 1995) or Affymetrix 

Genechip® (Pease et al., 1994) has been the most widely used high-throughput analysis 

in the post-genomic era. However, it is becoming increasingly clear that comprehensive 

analysis of the complex biological systems requires the quantitative integration of all 

cellular fingerprints, i.e. genome sequence, maps of gene and protein expression, 

metabolic output, and in vivo enzymatic activity (Idekar et al., 2001). In a systematically 

perturbed cellular system such integration can provide insight about the function of 

unknown genes, metabolic regulation and even the reconstruction of the gene regulation 

network (Klapa and Quackenbush, 2003).  

Before such integrated analysis can be carried out, the challenges of quantitative high-

throughput analysis at each level of cellular function need to be resolved. These 

challenges range from limitations in the available experimental protocols to lack of data 

analysis techniques for upgrading the information content of the acquired data. With this 

motivation, the proposed research will address major challenges in the quantitative high 

throughput analysis of the metabolic state of a biological system. 

1.1 METABOLOMICS 

Metabolic profiling (or Metabolomics) refers to the high-throughput analysis of the 

metabolic state of a biological system by the simultaneous measurement of the relative 

concentration of at least few hundred small molecules in the cellular biomass (Sumner 

and Dixon, 2003). Even though it’s the changes in metabolic fluxes that directly reflects 
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reshuffling of the in-vivo enzymatic activity due to an applied perturbation and could be 

directly integrated with gene expression data, metabolic concentrations are also expected 

to change as a result of metabolic flux re-distribution. Therefore a metabolic profile of a 

biological system can still provide a significant fingerprint of the metabolic state of the 

cells.  

The main advantage of metabolic profiling analysis over metabolic flux analysis is that 

the former is high-throughput while the later is not. The later requires extensive 

knowledge about the structure of the biochemical reaction network of a biological system 

and has been primarily applied to steady or pseudo-steady state conditions. These 

limitations render metabolic flux analysis cumbersome and challenging for the study of 

complex eukaryotic systems. In most cases for these systems, steady or pseudo steady 

state conditions are a risky assumption to make, while – especially in the case of plants – 

insufficient and/or incomplete biochemical information is available.  

Since the initial metabolomic publications in plants in 1999 (Roessner et. al., 1999), the 

interest in metabolomic analysis has grown tremendously. Applications of metabolic 

profiling range from bacteria (Burja et al., 2003) to yeast (Castrillo et al., 2003), plants 

(Roessner et. al., 2000; Fiehn et. al., 2000b; Kanani, 2004; Hirai et. al., 2004; Dutta et. 

al., 2007b), rats (Gopaul et al., 2000) and humans (Gemesi et. al., 2001). Some of the 

recent papers also refer to integrated studies of metabolic profiling in combination with 

other high-throughput analysis such as proteomics (Mayr et al., 2004) and 

transcriptomics (Hirai et. al., 2004; Dutta et. ak., 2007).  The increasing diverse studies 

involving metabolomic analysis of different biological systems is also targeted towards a 
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variety of commercial applications in Industries such as Agricultural, Agri-Biotech, 

Industrial (or White) Biotech, Pharmaceutical, Diagnostics and Fundamental Research of 

biological systems in Universities and research Institutes. Figure 1-1 summarizes various 

currently proposed applications of metabolomic analysis in these industries. 
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Metabolomics

Pharma & Diagnostics Companies
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Figure 1-1: Emerging Applications of Metabolomics in Industry and Academia 

The measurement of the metabolite concentrations is carried out primarily by gas 

(Roessner et. al., 2000, Fiehn et al., 2000b, Kanani, 2004, Kanani and Klapa, 2007) or 

liquid (Katz et. al., 2004) chromatography- mass spectrometry or nuclear magnetic 

resonance (Ratcliffe and Hill, 2004) spectroscopy (NMR). Even though each one of the 

techniques has advantages and disadvantages gas chromatography coupled with mass 

spectrometry (GC-MS)  offers the maximum number of advantages and there by has 
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been the most commonly used for metabolomic profiling analysis (Fiehn, 2001; Kopka et 

al., 2004). More information about the differences between these techniques has been 

provided in Chapter 2 of this report. While the techniques used for the determination of 

the concentration of small molecules in a biological sample are not new, it is their use in 

a high-throughput manner along with sophisticated experimental design that introduces 

the main novelty to this type of analysis.  

Most of the reported metabolic profiling studies have focused on the identification of 

environmental and genetic phenotype. Data analyses in these studies involve statistical 

analysis primarily using Principal component analysis (PCA), Hierarchical Clustering 

(HCL) and t-test. Other potential applications of metabolic profiling which have been 

discussed, but not yet fully addressed in the literature are: 

• Metabolic network reconstruction from metabolic profiling data correlation 

analysis (Kose et. al., 2001; Steuer et. al.,2003). 

• Identification of the function of unknown genes and reconstruction of metabolic 

gene regulation network through integration of metabolic profiling to gene 

expression data (Klapa and Quackenbush, 2003). 

The main reasons that these issues have not yet been fully addressed are: 

• Identification of unknown biochemical pathways and reconstruction of the 

metabolic regulation network requires time series metabolic profiling analysis 

(Steuer et al., 2003). However apart from the previous work in our lab (Kanani, 
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2004), very few time-series metabolomic experiments have been performed.  

• Data analysis techniques for measuring and interpreting correlations between time 

series profiles of metabolite or gene expression data for reconstruction of a 

biochemical network are not available. 

• For integrated analysis applications, metabolic flux information is required. 

However experimental design and data analysis methodology for obtaining 

metabolic flux information from a complex eukaryotic system at transient 

metabolic conditions in a high throughput manner is not available. 

• The protocol for metabolic profiling using GC-MS is still not completely 

optimized (Kanani, 2004). 

Moreover all recently published high-throughput metabolomic studies measure the 

response of a system to one perturbation at a time. However when two or more 

perturbations are applied in combination, the response of the system is not expected to be 

linearly related to the responses of the individual perturbations. To date, no 

highthroughput experimental design or data analysis strategies that would lead to 

derivation of conclusions from multiple perturbations of a biological system using high 

throughput techniques are currently available.  

1.2 PLANT PRIMARY METABOLISM 

Plants along with photosynthetic bacteria are the primary fixers of solar energy, inorganic 

Carbon (CO2) and inorganic nitrogen ( −
3NO , N2). This unique ability of plants plays an 
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important role in sustaining life on earth. Plants are highly sophisticated multi-cellular 

organisms which can produces thousands of chemicals through highly complex, 

compartmentalized chemical reaction networks.  Plants are able to produce these 

numerous highly complex chemicals primarily using sunlight, CO2, O2, N2 from the 

atmosphere; macro-nutrients such as −
3NO , 2

4SO− , 3
3PO− , +Na , +K , 2Ca +  and several 

micronutrients (see Taiz, 2002 for complete list) normally available in ground. The role 

that the plants are foreseen to play in society, science and technology has changed 

considerably since the completion of the first plant genome sequence in 2000 

(Arabidopsis Genome Initiative, 2000) and the initiation of the Arabidopsis 2010 

functional genomics initiative (Somerville and Dangle, 2002). Beyond the traditional role 

of agriculture in providing food, neutraceuticals and natural polymers, for commercial, 

environmental and (bio)ethical reasons, plants are now taking central stage in bio-fuel 

(Ragauskas et. al., 2006), engineered bio-polymer (Slater et al., 1999) and chemical 

(Oksman-Caldentey, 2004) industry. For the traditional uses of the plants, the potential 

targets for genetic modifications so far have been mainly in the secondary metabolism, 

which is responsible for crop protection (Dixon et al., 1996) and neutraceutical 

production (Ajjawi et al., 2004). Optimization of the upcoming agri-industrial 

applications will require plants that could efficiently fixate CO2 and Nitrogen while 

withstanding stressful growth conditions with minimal nutrient requirements. To engineer 

plants with these traits, extensive knowledge about the regulatory mechanisms governing 

plant primary metabolism will be of great importance.  

A vast amount of studies in the last century, have significantly contributed to the research 



 8

aiming at unraveling the stoichiometry and regulation of plant primary metabolism (see 

summary in (Buchanan, 2000)). Even after such extensive efforts, detailed information 

about regulation, stoichiometry and compartmentalization of primary pathways are still 

putative to a greater extent as compared to the bacterial and in some cases even the 

mammalian systems. This currently limited information about plant primary metabolism 

usually hinders the application of the in vivo and in Silico flux balance models 

(Stephanopoulos, 1998) favored by metabolic engineering in other systems to elucidate 

the underlying regulatory mechanisms. In this case, the post-genomic high-throughput 

“omics” techniques and the multivariate statistics and systems engineering/biology 

analytical toolbox could be used to increase our understanding of plant primary 

metabolism. 

1.3 RESEARCH OBJECTIVES 

In this context, the main objective of the current project is the development of a 

methodology for the high-throughput, quantitative, dynamic metabolomic analysis of a 

systematically perturbed A. thaliana liquid culture system. In order to achieve the main 

objective, the following specific aims were pursued: 

Specific Aim 1 

To improve the available experimental protocol for the metabolic profiling analysis of 

plant biomass using Gas Chromatography-Mass Spectrometry. Improvement is expected 

to increase of the number and accuracy of acquired metabolic measurements as well as 
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guarantee the reproducibility.  

Specific Aim 2  

To design and perform experiments that enable the monitoring of the dynamic response 

of A. thaliana liquid cultures to various environmental stresses applied independently or 

in combination. 

Specific Aim 3 

To develop a data analysis strategy to upgrade the information content of the acquired 

data. Specifically the following issues will be addressed: 

• Identification of metabolic fingerprints of a specific perturbation.  

• Identification of metabolic fingerprints of specific perturbations that are carried 

over when two or more perturbations are applied simultaneously. 

• Identification of changes observed between the metabolic profile of the combined 

perturbations versus those applied individually. 

• Reconstruction of the metabolic regulation network from metabolic profiling data 

from multiple metabolic conditions. 

Specific Aim 4  

To interpret and validate the results obtained from data analysis in the context of the 

known A. thaliana physiology to understand the response of the plant system to the 



 10

applied environmental stresses. 

1.4 DESCRIPTION OF THE THESIS 

The thesis is organized in 7 Chapters. 

Chapter 1: Describes the motivation for the thesis and importance of high-throughput 

analysis in biological systems, metabolomic analysis and regulation of plant primary 

metabolism is described. Specific objectives pursued in the current project are also stated. 

Chapter 2: This chapter provides an overview of the history and current state of 

metabolomic analysis. It provides information about various platforms for metabolomic 

analysis, various stages of a metabolomic analysis and finally techniques available for 

this analysis.  

Chapter 3:  The chapter describes the methodology followed for optimizing the GC-MS 

metabolomic profiling analysis of plants. It describes the experiments carried out for 

optimizations and the resulting improvements achieved by optimization of each stage of 

metabolomic analysis. 

Chapter 4: Description of the design of the biological experiments which were 

performed as part of the current project is provided in this chapter. Details about the 

choice of model system, choice of environmental perturbations, experimental conditions 

and time-points are also provided. 

Chapter 5: Results obtained from the time-series metabolomic analysis of Arabidopsis 
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thaliana liquid culture response to four environmental perturbations (1) Elevated CO2 (2) 

Salt (NaCl) Stress (3) Sugar (Trehalose) Signal (4) Hormone (Ethylene) Signal are 

presented. The results obtained from multivariate statistical analysis of the profiles are 

presented and their significance is discussed in the biological context. The results 

demonstrate the advantage of using high-throughput metabolomic analysis and time-

series experimental design.  

Chapter 6: Results obtained by comparing the individual stress response to the combined 

stress response are presented. Comparison of the results from individual perturbations is 

also presented to gain a system wide understanding of regulation of primary metabolism. 

Finally results obtained from re-construction of the metabolic network using 

metabolomic profiles from multiple dynamic perturbations.  

Chapter 7: Conclusions from the current analysis along with recommendations for 

direction of future experimental design and data analysis techniques to significantly 

improve the interpretation of metabolomic data is provided. 
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22   GC-MS METABOLOMIC PROFILING   

The metabolomic profile of a biological system refers to the concentration profile of all 

its free small metabolite pools ((Fiehn et al., 2000a; Roessner et al., 2000; Kanani and 

Klapa, 2007). Metabolites are defined as the small molecules that participate in the 

metabolic reactions as substrates or products; debate still exists regarding the maximum 

size of the “small” metabolites, which will also determine the size of the entire 

metabolome. Taking into consideration that the concentrations of the metabolites affect 

and are affected by the rates of the metabolic reactions (or metabolic fluxes), it becomes 

apparent that the metabolomic profile of a biological system provides a fingerprint of its 

metabolic state. As such, it is a phenotypic correspondent of the transcriptomic and 

proteomic profiles, which provide, respectively, the cellular fingerprint at the 

transcriptional (mRNA) and translational (protein) levels (Fiehn et al., 2000a). To-date, 

metabolomic profiling in plants has been mainly used to differentiate between metabolic 

states and/or identify an environmental or genetic phenotype (Broeckling et al., 2005; 

Cook et al., 2004; Dutta et al., 2007; Fiehn et al., 2000a; Kanani, 2004; Noguchi et al., 

2003; Roessner et al., 2000; Sakai et al., 2004; Taylor et al., 2002; Weckwerth et al., 

2004). The interest of metabolomic analysis in the current biological research could also 

be monitored by the dramatic increase in the number of publications in the recent years. 

Specifically Pub-med citations for articles containing any of the keywords “metabolic 

profiling”, “metabolite profiling”, “metabolomics”, “metabolomic profiling” or 

“metabonomics”, has increased from 14 in 2000, to 330 citations in 2006 (Figure 1-1). 
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Figure 2-1: Growth of Publications matching keyword “Metabolomics” OR "Metabolomic Profiling" 

OR "Metabonomics" OR "Metabolic Profiling" OR “Metabolite Profiling” in Pubmed Database. 

In the current research project metabolomic analysis is used to measure response of 

biological systems to external perturbations. In this chapter a brief review of the steps and 

tools available for performing metabolomic analysis are presented. (see Kanani, 2004 for 

a more detailed review of various steps involved ).  

2.1 PLATFORMS AND COMPARISON 

High-throughput metabolomic analysis can be performed using several platforms. The 

most commonly platform are: being Gas or Liquid Chromatography- Mass Spectrometry 

(GC/LC-MS) and Nuclear Magnetic Resonance (NMR) Spectra. These techniques have 

recently compared and their conclusion has been summarized in Table 1 (Kopka et al., 

2004, Kanani, 2004). GC-MS has been chosen as the technique to use in the current study 

due to high number of advantages that have ranked it the most commonly used technique  
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Table 2-1 Overview of analytical techniques available for metabolic profiling. 

Analytical Technique Compound Class measured  # of Peaks 
Detected 

Advantages Disadvantages 

Gas chromatography 
– Mass Spectrometry 

Mono, disaccharides, amino 
acids, organic acids, alcohols, 
monophosphates, volatiles 
(esters), lipids, sterols 

400-700 Low cost, Large 
library, Better 
Separation, 
Differentiated mass-
spectra 

Derivatization 
Required, Very High 
molecular weight 
compounds not 
measured. 

Liquid 
Chromatography- 
Mass spectrometry 

All of above, less volatiles + 
pigments, diphosphates, 
alkaloids 

Variable No derivatization 
required  

High Cost, Limited 
library, difficult 
separation of isomers 

Nuclear Magnetic 
Resonance 

Compounds that contain atoms 
with magnetic activity 

150 Structure 
Identification, In-
vivo studies possible 

Low sensitivity, 
Magnetically active 
groups required 

Others For specific class of 
compounds OR tasks 

50 – 100 Low cost, Specific 
for a given category 

Absence of protocols 
and library 
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(Broeckling et al., 2005; Cook et al., 2004; Dutta et al., 2007; Fiehn et al., 2000a; Kanani, 

2004; Noguchi et al., 2003; Roessner et al., 2000; Sakai et al., 2004; Taylor et al., 2002; 

Weckwerth et al., 2004) in metabolomic analysis. A detailed description of the equipment 

and its use for metabolomic analysis is available in (Kanani, 2004). 

2.2 GC-MS METABOLOMIC ANALYSIS   

Obtaining the metabolomic profile of the biological system starting from the initial bio-

mass involves several steps which are summarized in Figure 2-2. In case of GC-MS 

metabolomic analysis, an additional step of derivatization is required in order to make 

metabolites volatile so that they can be separated in the gas phase by GC. The 

requirement of derivatization also adds an additional data correction step as shown in 

Figure 2-2 which restores the one-to-one proportionality between the original metabolic 

profile in the biological sample and the acquired metabolomic profile. The four steps 

involved in a typical metabolomic analysis using GC-MS are discussed below. 

2.2.1 Metabolite Extraction  

The small molecules targeted by metabolomic analysis can be obtained from the cellular 

biomass by three different methods of extraction: 

(a) Vapor phase extraction  

(b) Free metabolite extraction  

(c) Total metabolite extraction. 
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Figure 2-2: Steps involved in GC-MS Metabolomic Analysis. The addition step (as compared to LC-

MS/NMR) of derivatization introduces bias into the analysis and hence requires an additional Data 

Correction step prior to Data Analysis. 

Typically vapor phase extraction has been used for:  

• The identification of components e.g. esters. As quality control markers in plants 

distained for food use (Deng et al., 2004) 

• The study of the signaling between plants through secondary metabolites (Deng et 

al., 2004) 

However for most general studies, water/methanol (for polar metabolites) (Roessner et 

al., 2000) and chloroform (for non polar metabolites) extraction has been used (Fiehn et 

al., 2000a). Using this method of extraction only the free small metabolite pools are 

obtained. Total Metabolite Extraction is used if in addition to free metabolite pool it is 
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important to measure the amount of the small precursors which are a part of cellular 

macromolecules However even though protocols for extracting the total (attached and 

free) metabolite pools for specific metabolite categories exist (Kitson et al., 1996), no 

protocol that enables the total extraction of multiple categories of metabolites has yet 

been developed.  In addition extracting the total pool of a metabolite might require 

special type of analysis in the case of dynamic models of biological systems in order to 

relate the rate of incorporation of a metabolite into a macromolecular pool to the rate of 

production of the free pool. For all these reasons free metabolite extraction has been used 

in this study. 

2.2.2 Metabolite Derivatization 

Derivatization is imperative for the conversion of the small metabolites to volatile, non-

polar and stable derivatives through their reaction with a particular derivatization agent. 

The most commonly used derivatization method in metabolomics analysis involves the 

original metabolites’ conversion into their trimethylsilyl (TMS) & Methoxime (MEOX) 

derivative(s) (Roessner et al., 2000). The chemical reactions involved can be seen from 

Figure 2-3. To ensure accuracy of the metabolomic analysis, the derivatization time 

should be optimized (see next Chapter for the optimization strategy). 

2.2.3 GC-(electron ionization (EI)) MS analysis 

Gas Chromatography enables the separation of the metabolites, while their identification 

and quantification is based on the acquired mass spectra. These derivatized metabolite 

mixture when injected into GC-MS, is separated by gas chromatography using an inert 
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Figure 2-3: Most commonly used two step-derivatization process for producing Methoxime, 

trimethylsilyl derivatives of the metabolites in GC-MS Metabolomic analysis. 

carrier gas and temperature programming. The separated metabolites enter the mass 

spectrometer, where they are ionized by electron bombardment. The mass to charge (m/z) 

and intensity of the fragmented ions are than recorded by mass spectrometer generating a 

mass spectrum of a given scan. Details concerning the actual GC-MS operating 

conditions are provided in (Kanani, 2004).  

2.2.4 Metabolite Identification & Quantification 

Identification of metabolites: The mass spectrum recorded in each scan by the mass 

spectrometer is than integrated to generate a chromatogram containing peaks representing 

one of more metabolite. Using the retention time and reference spectra of known 

derivatized metabolite available in the library, the peaks in the chromatogram are 
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identified. Rest of the peaks whose spectra/retention time can not be conclusively 

matched in the available library are treated as unknown metabolites (see Kanani, 2004 for 

more details).  

Quantification of metabolites: Metabolic profiling analysis only obtains relative 

concentration of extracted metabolites. The peak area of the unique m/z fragment for a 

given metabolite at a give time is used for quantification. Prior to attempting any 

quantification, the linear range of operation of the instrument is determined to ensure 

optimum sample quantity and split ratio. It is important to ensure all measurements are 

within the linear range (typically spans 3-4 orders of magnitude). In metabolomic 

analysis however it is always the relative concentration of the metabolite which is of 

interest. In order to obtain relative quantification, fixed amount of internal standard 

(typically a compound not produced by plant) is added to the plant sample. The relative 

concentration of each metabolite is than determined by taking the ratio of peak area of a 

marker ion of the metabolite, to that of marker ion of the internal standard (see Kanani, 

2004 for more details).  

2.3 DATA NORMALIZATION 

Metabolomic analysis consists of number of steps involving different chemical processes 

and equipments. Thus during sample preparation, significant variability is likely to occur. 

In addition in case of GC-MS analysis, because of the derivatization step, in metabolomic 

analysis using GC-MS the actually measured metabolomic profile is the derivative 

profile. In this case, metabolomic analysis is based on the assumption that the 
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concentration of each metabolite in the original sample is in one-to-one directly 

proportional relationship with the peak area of its marker ion (or the sum of the peak 

areas of its marker ion(s)). Biases, however, introduced at each of the 4 steps of the GC-

MS data acquisition process might affect this proportionality, hindering the comparison 

between data from different experiments/batches. In this case, appropriate normalization 

is required before any data analysis is attempted. The potential biases in GC-MS 

metabolomic analysis can be divided into 3 categories, for each of which a specific 

normalization strategy is suggested. 

2.3.1 Errors that affect all metabolites equally  

These biases, e.g. unequal division of a sample into replicates, injection errors, different 

split ratios, are expected to change the proportionality ratio between a metabolite’s 

original concentration and the peak area of its marker ion to the same fold-extent for all 

metabolites. Therefore, barring any other type of biases, the relative composition of the 

measured derivative metabolomic profile should be the same as that of the original 

sample. To account for this bias and render the results from different experiments/batches 

comparable Internal Standard Normalization is required. The selected internal standard 

should not be produced – at least not to the extent that it distorts the acquired data - by 

the biological system (ribitol or isotopes of known metabolites have been the most 

commonly used Roessner et. al., 2000, Fiehn et al., 2000a). It is added just before the 

initiation of the four-step process described above. Each metabolite is then quantitatively 

characterized by the ratio of the peak area of its marker ion(s) to the peak area of the 

marker ion(s) of the internal standard. Detailed explanation of internal standard 
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normalization is provided in (Kanani, 2004). The peak area ratio thus obtained is referred 

to as “relative peak area” of the metabolite.  

2.3.2 Errors that affect specific metabolites 

These biases are expected to change the proportionality ratio between a metabolite’s 

original concentration and the peak area of its marker ion to a different fold-extent for the 

various metabolites in the sample. They concern the derivatization process and time, e.g. 

incomplete derivatization of a metabolite, formation of multiple derivatives or changes in 

GC-MS conditions that lead to variations in a metabolite’s fragmentation pattern. The 

extent of this type of bias introduced in a particular metabolite’s measurement depends 

on the molecular structure and/or concentration of the metabolite. These errors should be 

identified in the measured profile and properly accounted for, because if not, they could 

change the relative composition of the measured derivative metabolomic profile with 

respect to that of the original sample. In this case, changes in the profile that are due only 

on chemical and/or setup reasons could be attributed biological significance leading to 

erroneous conclusions (Kanani and Klapa, 2007, also Chapter 3 of this report). In order to 

account for these biases, a novel data correction, validation and normalization algorithm 

was developed which is presented in the Chapter 3 of this report. 

2.3.3 Process/Setup or Biological Outliers  

To potentially enable identification of these outliers through clustering analysis (Kanani, 

2004), at least three biological (if allowed from the experimental setup/resources) and 

experimental (i.e. parts of the same sample or different injections of the same sample) 
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replicates should be acquired. The identified outliers should be removed from the rest of 

the analysis as not representing the true metabolic state of the plant sample to avoid the 

distortion of the attained results/conclusions.    

2.3.4 Normalization with Reference Biological States 

These three data normalization steps are necessary in any metabolomic analysis using 

GC-MS. In addition, in the case when different experiments/perturbations of the same 

biological system/setup are conducted on different days, the potential change in the 

initial/control conditions (e.g. ambient air composition, different batch of seeds and/or 

media) between the various experiments should also be taken into consideration for the 

experiments to be comparable. In the case of a time-series analysis, time zero represents 

the initiation of each perturbation, the change in control conditions between the 

experiments is represented by the difference in their metabolomic profiles at time zero. 

To account for this variation and to scale the metabolomic data around the value of 1 

(log2[1]=0), the metabolomic profiles of all time points of an experiment could be 

normalized with respect to the metabolomic profile of its time zero. Then, any identified 

difference between the metabolomic profiles of the experiments is due only on the 

applied perturbation(s). Similar normalization strategy has also been used in snapshot 

analysis involving comparison between different genotypes, grown on different days 

(Roessner et al., 2001). The metabolomic profiles as obtained after this 4-step data 

normalization and validation procedure could now be used in further data analysis. 
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2.4 MULTIVARIATE STATISTICAL TECHNIQUES  

2.4.1 Clustering Techniques 

Clustering techniques, like Principal Component Analysis (PCA) and Hierarchical 

Clustering (HCL) have been used in metabolomic and genomic analysis to identify 

different physiological states, representing genetic mutation(s), environmental 

perturbation(s) or external treatment(s). Typically, such analysis is carried out for the 

comparison between snap-shots (Fiehn et al., 2000a; Roessner et al., 2001; Taylor et al., 

2002), where presence of clusters represents different states. In case of time-series 

metabolomic profiling also, HCL and PCA can identify if the given perturbation alters 

the metabolism of the biological system significantly or not.  

Principal component analysis is a technique which projects a large set of data onto a 

smaller set of variables (called principal components) which are a linear combination of 

all the initial variables. The principal components are chosen in a way so that the first 

component accounts for the largest variation in the samples. For data sets with high 

degree or correlation between variables, the first three components together can account 

for more than 50% of the total variability of the system. Under such conditions by 

plotting the metabolic profiles in the first three principal component plane, a large part of 

the variations (or the difference) between the plant samples can be visually identified. 

The Principal components required for the analysis are obtained by identifying the eigen 

vectors of the metabolomic data sets. For a given set of metabolomic data, the eigen 

vectors for the data are obtained and the scores of each biological sample along the three 
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eigen vectors is plotted. In most metabolomic time-series analysis, the first three eigen 

vectors together account for about 60-85% of the total variation. These is thus a useful 

tool in time-series analysis to identify and compare overall effects on the metabolism of 

the biological system in response to a given perturbations. In the present analysis, 

principal component analysis algorithm incorporated in MEV-TM4 (Saeed et al., 2003) 

was used. A more detailed description of the use of PCA and HCL analysis can also be 

obtained from Kanani, 2004.  

2.4.2 Identifying significant metabolites  

PCA analysis or any other clustering algorithm allows us to distinguish between 

biological states and to determine if in response to a perturbation in the system if the 

metabolomic profile was altered significantly.  One of the main objectives of high-

throughput analysis is the identification of these biological variables that characterize the 

difference between physiological states. In most of the reported snap-shot “-omic” studies 

(Fiehn et al., 2000a; Roessner et al., 2001; Taylor et al., 2002), this has been achieved 

through t-test or fold change (FD) analysis. These methods, however, do not include any 

distinct threshold characterizing significance and also do not allow estimation of false 

detection rate accurately.  

To overcome this problem in DNA microarray analysis, a methodology called 

Significance Analysis of Microarrays (SAM) was recently developed and used for the 

comparison of different experimental conditions (Tusher et al., 2001; Kanani, 2004; 

Xiang et al., 2004; Hirai et al., 2004). SAM was further modified to allow one-to-one 

pairing between corresponding samples in each compared class and this method is 
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known as two-class paired-SAM to be differentiated from the original unpaired. In both 

paired and unpaired SAM analyses, the probability of genes being falsely assigned 

significance (referred to as False Detection Rate - FDR) is calculated at each significance 

level (referred to as delta value). Thus, when comparing multiple data sets, instead of 

using a fixed limit of significance as in traditional analysis (p-value in t-test, FC value in 

fold change), SAM allows comparison between the same FDR values, which is 

determined based on the overall variation in each data set.  

2.5 TIME SERIES METABOLOMIC DATA 

Paired-SAM thus is a useful technique to understand the important biological changes 

which are taking place across all time points. However in case of time-series analysis, the 

objective is not only the identification of significant metabolites from overall analysis, 

but also at individual time-point. However this can not be achieved using SAM when 

only two replicates are available at each timepoint. Hence a new method was recently 

developed (Dutta et al., 2007) which was modified to identify significant metabolites at 

individual timepoint which is described in more detail in the next section. 

2.5.1 MiTimeS for Metabolomic Data – General Definition 

MiTimeS Analysis is a modified paired-SAM algorithm (Dutta et. al., 2007), which 

identifies number of significant metabolites at each individual time point. Specifically 

when using paired-SAM analysis, the observed score for each gene is estimated as 

follows:  
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Where subscript t indicates the observed score, and expression at a given time point t. 

The dt distribution is then compared with the expected score de which is generated from 

the overall time point just as in paired-SAM analysis. A cutoff value of the observed 

score is obtained for a fixed delta value at each and every time point using the following 

equations: 

lower-cut-off(Δ) t = min{di, where de(i) – dt(i) > Δ}    (2-3)             

upper-cut-off(Δ) t = min{di, where dt (i) – de(i) > Δ}   (2-4) 

where de(i) is the expected score distribution obtained by calculating observed scores for 

a population of comparisons generated by randomly switching time points between the 

control and perturbed groups. For 8 time points – 256 such random observed score 

distribution – are generated which are first sorted and subsequently averaged to obtain the 

expected score distribution. Equations 2-3 and 2-4 thus allow us to obtain the lower and 

upper cutoff at each time point. Any metabolite with an: observed score lower than the 
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lower cutoff is considered negatively significant metabolite at that time point; and having 

observed score at a time point higher than the upper-cut-off at that time point is 

considered positively significant metabolite at that time point. 

In addition to calculating the positively and negatively significant metabolite, the 

MiTimeS analysis also allows calculation of Significance Variability (SV) Score (Dutta 

et al., 2007). For this calculation each positively significant metabolite is assigned +1 and 

negatively significant metabolite is assigned a value -1. The SV score is calculated by 

taking the mean of the absolute difference between consecutive time points. Hence if a 

metabolite remains at the same state at all the time points, the SV score value for the 

same is 0, where as if the metabolite changes state from positively significant to 

negatively significant and vice versa, at each an every time point the metabolite has an 

SV score value of 2. Thus SC score of the metabolite indicates variability in its 

significance level across time point and gives a sense of dynamics of the metabolite 

significance. Finally in order to identify time points which show a correlation in their 

response i.e. which have a high number of intercept between their positively or 

negatively significant metabolites, MiTimeS algorithm (Dutta et al., 2007) allows 

calculation of significance correlation matrix for both positively and negatively 

significant metabolites. In this report MiTimeS analysis was incorporated into a Mathcad 

algorithm to perform these calculations for metabolites and the same was used to identify 

significant metabolites at different time points, SV scores and SCM networks. 
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2.5.2 Pattern Matching 

Methods to construct a known biochemical network by measuring the correlation 

between various metabolites at the same metabolic state have been proposed in past 

(Kose et al., 2001, Steuer et al., 2003). The assumption supporting such methodology is 

that metabolites which are “close” in terms of the position or function in a metabolic 

network should show correlated variations. However in the absence of time-series 

metabolic data, the proposed techniques were unable to re-construct biochemical 

pathways using metabolic profiling data. Demonstrating the ability to reconstruct known 

biochemical networks from metabolic profiling data would lead eventually to the 

discovery of unknown biochemical pathways, or the identification of metabolites that 

might be related due to the structure of the regulatory and not the stoichiometric network 

per se. 

In the time series metabolic profiling analysis previously conducted in our lab (Kanani, 

2004), it was attempted to measure and interpret correlations between different 

metabolites. Even though this analysis indicated metabolites belonging to the 

tricarboxylic acid cycle (TCA cycle) and metabolites belonging to sugar production 

pathways clustering together those clusters also contained a large number of apparently 

unrelated metabolites. It is expected that combination of data from multiple perturbations 

of the same metabolic network could provide a higher resolution picture of the correlated 

metabolites. Combining all the information would decrease the uncertainty about the 

metabolic network reconstruction in the context of quantitative techniques like Relevance 

Network (Butte et al., 2000) and Pavlidis Template Matching (PTM) (Pavlidis and Noble, 
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2001). From these Pavlidis template matching (PTM) analysis was the chosen technique 

for this project. PTM, uses one of the variables which can be chosen by the user, as 

template and identifies all other variables in the data set which show a correlation to the 

template for a given p value. Successively increasing stringency by lower p-values allows 

creating of network around the template metabolite showing which the metabolites which 

are most closely related to the queried metabolite. Results from using these techniques 

are shown in Chapter 6 of the report. 
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33   DATA CORRECTION STRATAGY FOR GC-

MS METABOLOMIC ANALYSIS 

The metabolomic profile of a biological system – referring to the concentration profile of 

its free small metabolite pools (Fiehn et al., 2000a; Roessner et al., 2000) - provides a 

phenotypic correspondent of the high-throughput transcriptional and proteomic profiles 

(Fiehn et al., 2000a). Gas Chromatography–Mass Spectrometry (GC-MS) has to-date 

been the technique of choice for quantitative metabolomics (Broeckling et al., 2005; 

Cook et al., 2004; Fiehn et al., 2000a; Kanani, 2004; Noguchi et al., 2003; Roessner et 

al., 2000; Sakai et al., 2004; Taylor et al., 2002; Weckwerth et al., 2004), of polar 

metabolites in particular, due to its current advantages over other available techniques 

(e.g. Liquid Chromatography-Mass Spectrometry (LC-MS), Nuclear Magnetic 

Resonance Spectroscopy (NMR) or Capillary Electrophoresis – Mass Spectrometry (CE-

MS)) (Kanani, 2004; Kopka et al., 2004).  

3.1 MOTIVATION FOR DATA-CORRECTION 

To be detected, however, through GC-MS, small metabolites have to be converted to a 

volatile, non-polar and stable derivative form (Roessner et al., 2000). To-date, the most 

commonly used derivatization method in GC-MS metabolomics involves the original 

metabolites’ conversion into their trimethylsilyl (TMS) and methoxime (MEOX) 

derivative(s) (Broeckling et al., 2005; Cook et al., 2004; Fiehn et al., 2000a; Kanani, 
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2004; Noguchi et al., 2003; Roessner et al., 2000; Sakai et al., 2004; Taylor et al., 2002; 

Weckwerth et al., 2004). Hence, when GC-MS is used, the actually measured 

metabolomic profile is the peak area profile of the metabolite derivatives. In this case, 

quantitative metabolomics has to take into account biases that distort the one-to-one 

directly proportional relationship between the original metabolite concentration profile 

and the measured peak area profile of the metabolite derivatives. 

There are two types of biases in GC-MS Metabolomic analysis. The first type of potential 

systematic biases in GC-MS metabolomics is common among all analytical techniques. 

They are responsible for the proportionality ratio between a metabolite’s original 

concentration and the peak area of its derivative’s marker ion to potentially vary among 

samples to identical fold-extent for all metabolites. Hence, in the presence of such biases 

only and in the case that there were a one-to-one relationship between the original 

metabolite concentration and the measured peak area profiles, the composition of the two 

profiles would be the same. However, quantitative comparison among samples would not 

be possible in the absence of an internal standard for appropriate normalization. The 

selection criteria and type of the internal standard(s) have already been the subject of 

previous published work (Fiehn et al., 2000a; Roessner et al., 2000; Gullberg et al., 2004; 

Jiye et al., 2005). The second type of systematic biases in GC-MS metabolomics are due 

to the required derivatization of the original metabolite sample. These biases concern 

restrictively any separation-molecular identification/quantification technique used in 

metabolomics or any other chemical compound analysis that requires the derivatization 

of the original sample. Specifically, these biases might:  
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• Distort the one-to-one relationship between the original and the derivative 

metabolite profiles. 

• Change the proportionality ratio between a metabolite’s original concentration 

and the peak area of its derivative’s marker ion to a different fold-extent for the 

various metabolites in the sample.  

Following limitation of the derivatization reactions give rise to these biases: 

Formation of multiple Derivatives: Some metabolites form more than one derivatives 

(Gehrke et al., 1969; Gehrke and Leimer, 1971; Poole, 1978), despite efforts to ensure a 

single derivative per metabolite (Gehrke et al., 1969; Gehrke and Leimer, 1971),  

Incomplete Derivatization: Unless the derivatization reaction has completed for all 

metabolites in the sample, the acquired derivative metabolite profile depends both on the 

composition of the original sample (Fogler, 2002) and the derivatization time at which it 

has been acquired (Gehrke and Leimer, 1971).  

If the derivative peak area profiles are not corrected from the “derivatization” biases, 

identified profile differences that might be due only to chemical kinetics and/or 

experimental setup could be attributed biological significance leading thus to erroneous 

conclusions. Even though this type of errors in the GC-MS spectra of certain classes of 

molecules have been known since the late 60s (Gehrke et al., 1969; Gehrke and Leimer, 

1971), the discussion about them in the metabolomics community has been quite limited 

(Gullberg et al., 2004; Halket et al., 2005). The MS community resolved the issue 

experimentally for certain classes of compounds by using a different derivatizing agent 
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per class, each producing only one derivative per compound of the specific class (Poole, 

1978; Evershed, 1993). In the high-throughput metabolomic context, however, this would 

mean that multiple runs with different derivatizing agents and derivatization/data 

acquisition protocols would have been needed with all the obvious quantification 

problems that such differentiation could bring along.  

Hence a streamlined data correction, normalization and validation strategy that does not 

jeopardize the high-throughput nature of GC-MS metabolomics was developed and 

presented in the subsequent sections.  

3.2 DERIVATIZATION BIASES  

3.2.1 Response Factor Definition 

In GC-MS metabolomic (but also any other chemical compound) analysis that requires 

derivatization of the original sample, there are three quantities of interest, the 

interrelationship of which needs to be seriously taken into consideration for an accurate 

data acquisition, quantification and analysis process:  

• The concentration of a metabolite in the original sample. 

• The concentration of the metabolite derivative(s) in the derivatized sample 

• The measured peak area(s) of the metabolite’s derivative(s).  

The last two are directly proportional, the proportionality ratio 
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(i.e.
ionconcentrats'derivative

areapeaksion'marker ) defined as the response factor, RF, of this derivative 

under specific GC-MS equipment’s conditions (Colón and Baird, 2004). Therefore, if the 

latter remain constant, a derivative’s RF is the same among all measured samples. 

Because of their proportionality, quantities (b) and (c) tend to be used interchangeably. 

However, they are not the same, and as it will be indicated below, considered as such 

could lead to erroneous data acquisition and analysis protocols.  

3.2.2 Metabolite Derivative Formation 

Conversion of the original metabolites into their trimethylsilyl (TMS) and methoxime 

(MEOX) derivative(s) involves two reactions. 

Methoxime Derivative: In the first reaction involves the reaction between the original 

metabolite mixture and the solution of methoxyamine hydrochloride in pyridine. Any 

metabolite containing ketone (-C=O) group is transformed to the more stable and non-

polar methoxime (-C=N-O-CH3) group (Poole, 1978; Laine and Sweeley, 1971; 

Evershed, 1993).  

Trimethylsilyl Derivative: On completion of the first reaction, the oxime derivatives of 

the ketone-group containing original metabolites and the metabolites that did not react in 

lack of ketone groups react with a silylating agent, e.g. the N-methyl-trimethylsilyl-

trifluoroacetamide (MSTFA), to produce their more volatile, non-polar and stable TMS-

derivatives. TMS derivative formation involves the replacement of the active hydrogen 

atoms (-H) in the hydroxyl, carboxylic and amine (-OH,-COOH, NH2) functional groups 
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by the TMS (-Si(CH3)3) group (Poole,1978; Evershed, 1993).  

In the rest of the text, MSTFA will represent the silylating agent in the second reaction 

only for demonstration purposes, without affecting the validity of the description for any 

other silylating agent selected to act in a TMS-derivatization process. Due to the 

mechanism and kinetics of the methoximation and silylation reactions, a metabolite might 

form multiple (oxime-)TMS derivatives (Gehrke et al., 1969; Gehrke and Leimer, 1971; 

Poole, 1978; Laine and Sweeley, 1971; Evershed, 1993; Halket, 1993).  

3.3 METABOLITE CLASSIFICATION 

Based on the number and type of their TMS-derivatives, the metabolites can be classified 

into three categories, as listed below. This grouping assists in the identification of the 

derivatization biases’ sources, but also in the determination of ways to either avoid or 

correct for these biases in the acquired metabolomic profiles, as will be subsequently 

explained in this chapter. 

3.3.1 Metabolites forming only one derivative (MD) 

Metabolites in this category comprise only hydroxyl (–OH) and/or carboxylic (-COOH) 

functional groups. At the silylation step, the active hydrogen atoms of these groups react 

simultaneously leading to the formation of a single TMS-derivative. Schematically, the 

derivatization reaction of a category-1 metabolite M into its derivative MD could be 

depicted as follows:  

kM + MSTFA MD 
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where k represents the derivatization rate constant. Independent of the order of the 

derivatization reaction kinetics, the MD concentration in the derivatized sample becomes 

equal to the M concentration in the original sample after derivatization time *
1t . For 

category-1 metabolites, *
1t  coincides with the time required for the completion of the 

original metabolite M’s conversion, tM. Figure 3-1(A) illustrates the time profile of the M 

and MD concentrations in the case of first-order derivatization reaction kinetics. 

 According to the principles of chemical reaction kinetics (Fogler, 2002), only the size of 

the plateau of the time profile of the MD concentration is independent of the 

derivatization reaction kinetics, depending only on the concentration of metabolite M in 

the original sample. Specifically, if all other derivatization parameters remain constant, 

replicates of the same sample might correspond to a different derivative concentration, 

and thus peak area, for metabolite j, if measured at different derivatization times (at least  

one) shorter than 
*

j,1t . Moreover, samples of different original metabolite composition,  

measured at the same derivatization time shorter than the 
*

j,1t  in (at least one of) the 

samples, might correspond to a different derivatization stage for metabolite j. The latter 

holds true, because metabolite’s j derivatization kinetics, 
*

j,1t  included, depends also on 

the original sample’s composition (see Fogler, 2002 for kinetics of parallel-occurring 

compound reactions with the same reactant). Therefore, to avoid non-correctable biases 

affecting the comparison of a category-1 metabolite’s j concentration among various 

samples, barring changes in the GC-MS operating conditions, i.e. for constant RF of  
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Figure 3-1: Variation in the original metabolite and TMS-derivative concentration with 

derivatization time, assuming first-order derivatization kinetics. (a) Category-1 (b) Category-2 and 

(c) Category-3 Metabolites. The final steady-state in each category is independent of the 

derivatization kinetics. 
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metabolite’s j derivative, the TMS-derivative metabolomic profile of each sample should 

be acquired at derivatization time equal to or longer than the
*

j,1t  in this sample. 

3.3.2 Metabolites forming two isomeric oxime-TMS derivatives 

Metabolites in this category contain also ketone apart from the hydroxyl and carboxylic 

groups. At the methoximation step, these metabolites react through parallel reactions to 

produce two, syn and anti, geometric isomers (Laine and Sweeley, 1971; Poole, 1978; 

Halket, 1993). After silylation, these are converted through a catagory-1 type of reaction 

into two isomeric oxime-TMS derivatives that give rise to separate peaks in the 

metabolomic profile (Poole, 1978; Halket, 1993). Glucose, fructose, Mannose are 

examples of category-2 metabolites. Schematically, the methoximation and silylation 

reactions of a category-2 metabolite M into its two derivatives MD1 and MD2 could be 

depicted as follows: 

 

 

 

where, k1, k2 depict the oxime formation and k3 the silylation rate constants, respectively. 

Independent of the order of the oxime formation and silylation reaction kinetics, the 

concentrations of MD1 and MD2 are of constant ratio 
2

1
o k

k
k =  throughout the silylation 

reaction and reach final values, summing up to the initial M concentration, at 

derivatization (silylation) time *
2t . In this case, *

2t  coincides with the time required for 

k1 

M +  

ox
1MD  

k3 
Methoxyamine  

MD1 

k3 

(+MSTFA)

k2 
(+MSTFA) MD2 ox

2MD  
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the complete conversion of the intermediate methoxime derivatives ( ox
2,1MD ), tM. Figure 

3-1(B) depicts the time profile of the M, ox
2,1MD  and MD1,2 concentrations in the case of 

first-order oxime formation and silylation reaction kinetics. Under the same argument 

stated for category-1 metabolites, only the ratio of and the size of the plateau in the time 

profiles of the MD1,2 concentrations is independent of the derivatization kinetics, the 

former being equal to ko, a characteristic of metabolite M, and the latter depending only 

on the concentration of metabolite M in the original sample and ko. In this context, three 

conclusions can be derived regarding the metabolomic profile of the category-2 

metabolites:  

(a) to avoid non-correctable biases affecting the comparison of a category-2 metabolite’s 

j concentration among various samples, barring changes in the GC-MS operating 

conditions, i.e. for constant RF’s of metabolite’s j MD1,2 derivatives, the TMS-derivative 

peak area profile of each sample should be acquired at derivatization time equal to or 

longer than the *
j,2t  in this sample. 

(b) Both MD1 and MD2 peak areas (PAMD1,2) are in directly proportional relationship with 

the concentration of metabolite M in the original sample. Specifically: 
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where 
2,1MDRF  represent, respectively, the response factors of MD1,2.  

Hence, the two derivative peak areas are not independent. Therefore, considering both in 

the metabolomic profile of a particular biological sample is expected to add double 

weight to the change in the concentration of category-2 metabolites compared to the other 

metabolite categories in any multivariate statistical analysis. In this case, only one of the 

two peak areas should be considered, the largest and less susceptible to noise being the 

better choice.   

c) Ratio α of the MD1,2 peak areas (see Eq. (3-1)) could be used as a criterion to 

verify whether the GC-MS operating conditions remained constant throughout the data 

acquisition of a sample batch. ko being a characteristic of metabolite M, ratio α would be 

different for certain samples only in the case that the GC-MS operating conditions, and 

thereby the MD1,2 RF’s, changed before the acquisition of these samples. No other such 

data validation criterion exists currently in the metabolomics literature.   

3.3.3 Metabolites forming Multiple Derivatives  

Category 3 comprises metabolites forming multiple derivatives differing in number of 

derivatives or Chemical structures. Category 3 comprises metabolites containing at least 

one amine (-NH2) group. Protons in the (-NH2) group react sequentially and slower than 

those in the carboxylic (-COOH) and hydroxyl (-OH) functional groups (Poole, 1978), 

leading thus to the formation of multiple derivative forms (Gehrke et al., 1969; Leimer, 
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1977; Poole, 1978). In addition, the silylation of a particular metabolite derivative might 

lead to the formation of a TMS-derivative of another chemical compound, the formation 

of TMS-pyroglutamate from glutamate-3 TMS being a characteristic example (Gehrke et 

al., 1969;Leimer et al., 1977). Schematically, the silylation reaction of a category-3 

metabolite M into its multiple derivatives could be depicted as follows:  

M + MSTFA M(TMS)x M(TMS)x+1 M(TMS)x+n 
k 
 k1 

(+MSTFA) (+MSTFA) 

kn 
 

                                       ( reaction  sequence A ) 

or 

M + MSTFA M(TMS)x M(TMS)x+1 
k 
 k1 

(+MSTFA)  
kn 

M_new(TMS)? 

 

       (reaction  sequence B ) 

where k’s and x depict, respectively, derivatization rate constants and number of TMS-

groups after all carboxylic (-COOH) and hydroxyl (-OH) groups of the original 

metabolite M have reacted.  

In theory then, because of the sequential nature of the derivatization reactions for a 

category-3 metabolite M, only one derivative with concentration equal to the M’s 

concentration in the original metabolite mixture will be present in the derivatized sample 

after derivatization’s completion, at time *
3t . At any derivatization time shorter than *

3t , 
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more than one derivatives of M may be present in the derivatized mixture. In contrast to 

the other two metabolite categories, *
3t  does not coincide with, but is (much) longer than, 

the time required for the complete conversion of the original metabolite M, tM. Figure 3-

1(C) depicts the time profile of M and MDx+1,x+2 concentrations in the case of first order 

derivatization reaction kinetics and two derivatives of metabolite M. From this 

description, the following conclusions can be derived regarding the derivative peak area 

profile of a category-3 metabolite: 

• The multiple derivative peak areas of a category-3 metabolite are not independent 

and should not be considered as such in any multivariate statistical analysis of the 

metabolomic profiles; 

• In contrast to the category 2 metabolite’s two derivatives, the concentration of the 

category-3 metabolite’s multiple derivatives is not each directly proportional to 

the concentration of metabolite M in the original sample; at times equal to or 

longer than tM only their sum is.  

Hence, none of the derivative peak areas can be used as single representative of the 

metabolite’s M concentration in the original metabolite mixture. This is a major issue to 

be addressed in quantitative metabolomics, considering that, in the largest to-date 

publicly available curated retention-time library of TMS-derivatives (it is Max-Planck 

based [http://www.mpimp-golm.mpg.de/mms-library/index-e.html] and in the rest of the 

text will be referred to as MPL), out of 167 polar metabolites for which at least one 

derivative has been identified, 47 contain at least one (-NH2)-group. Among those are the 
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amino acids, a class of major significance, because they are often used as markers of 

biological change (e.g. Noguchi et al., 2003; Sakai et al., 2004), implying that high 

accuracy in their quantification is indeed necessary.  

Taking into consideration that the response factors of a category-3 metabolite’s 

derivatives are not equal, at times equal to or longer than tM it is the weighted sum of the 

derivative peak areas that is directly proportional to the concentration of the metabolite 

M in the original sample, the weights being the inverse of the response factors of M’s 

derivatives. No algorithm enabling the estimation of the response factors of a category-3 

metabolite’s derivatives, and thereby the estimation of the weighted sum of its derivative 

peak areas, had been reported to-date. The first such algorithm is presented in the next 

section. 

To avoid non-correctable biases affecting the comparison of a category-3 metabolite’s j 

concentration among various samples, barring changes in the GC-MS operating 

conditions, the TMS-derivative peak area profile of each sample should be acquired at 

derivatization time equal to or longer than either (a) the *
j,3t  in this sample, when only one 

derivative is present, or (b) the j,Mt  in this sample, but in this case the comparison should 

be made between the weighted sums of the metabolite’s derivative peak areas in each 

sample. It is underlined that in the latter case acquiring the metabolomic profiles at the 

same time does not alleviate the constraint of using the weighted sums. The kinetics of 

metabolite’s j derivatization reactions depend on the original metabolite sample’s 

composition (Fogler, 2002). Therefore, profiles acquired at the same derivatization time, 
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but shorter than *
j,3t  in (at least one of) the samples, might not necessarily correspond to 

the same derivatization stage for metabolite j. 

3.4 ALGORITHM FOR ESTIMATING CUMULATIVE 

PEAK AREA  

At any time equal to or longer than the time required for the complete conversion of a 

category-3 metabolite M into its derivatives, tM, the sum of the concentrations of all M’s 

derivatives that are at the given time present in the derivatized sample is equal to the M’s 

concentration in the original metabolite mixture, [Mo]. Therefore, if N is the number of 

all category-3 metabolite M’s derivatives that are observed throughout the practically 

relevant derivatization period, the following equation is valid at any derivatization time 

within this period that is equal to or longer than tM: 

[ ] [ ] [ ]N10 MD...MDM ++=                                                                     (3-3)                

where MDi is the i-th derivative of  metabolite M. 

If [ISo], and [MDIS] are, respectively, the concentration of the category-1 internal 

standard (IS) added in the original sample and the concentration of IS’s derivative in the 

derivatized sample after the completion of IS’s derivatization, then, according to the 

description provided in the previous section regarding the category-1 metabolites, these 

two concentrations are equal. Therefore, if  ISi MDMD RFandRF  are, respectively, the 

response factors of the i-th derivative of metabolite M and of the single derivative of the 
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internal standard, Eq. (3-3) is equivalent to:  

[ ] [ ] [ ]
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where 
iMDPA and 

ISMDPA  are, respectively, the peak area of the i-th derivative of 

metabolite M and of the internal standard’s derivative, measured at the particular 

derivatization time to which Eq. (3-3) refers; iMDRPA  is the relative (with respect to the 

peak area of the internal standard) measured peak area corresponding to the i-th 

derivative of metabolite M at the same derivatization time; M
iw is the inverse of the 

relative (with respect to the response factor of the internal standard’s derivative) response 

factor of the i-th derivative of metabolite M.  

It is obvious that M
iw  depends only on the selection of the marker ion(s) for the i-th M’s 

derivative and the GC-MS operating conditions. Therefore, considering the same marker 

ion(s) for each category-3 metabolite M’s derivative in all runs and barring change in the 

GC-MS operating conditions, if the same original metabolite sample is measured at V 

different derivatization times longer than tM, the following system of equations holds 

true:    
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where i

j

MD
tRPA  is the relative (with respect to the peak area of the internal standard) peak 

area corresponding to the i-th derivative of metabolite M at derivatization time tj.  

Eqs. (3-5) can thereby be used to determine the M
iw ’s of a category-3 metabolite’s M 

derivatives at particular GC-MS operating conditions by simple regression analysis. 

Specifically: 

• only one representative metabolite sample containing metabolite M should 

undergo the repetitive measurement process for the M
iw ’s estimation. The same 

M
iw ’s could be used afterwards to “correct” the derivative peak area profile of 

metabolite M in any other biological sample as long as the GC-MS operating 

conditions remain constant;  

• the representative metabolite sample should be run at V different derivatization 

times longer than tM throughout a practically relevant derivatization period. The 

selection of the V derivatization times should be based on the following criteria:  

o the acquired peak area profiles of M should be clearly different from each 

other to exclude any mathematical artifacts in regression analysis  
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o V should be by at least one greater than the number of the metabolite M’s 

derivatives that are observed throughout the measured derivatization 

period to allow for data reconciliation in the regression analysis 

o No derivative degradation should have yet occurred;  

If M’s concentration in the representative metabolite sample, [Mo], is not known, any 

constant C could be, in theory, used in Eq. (3-5) instead; in metabolomic analysis it is the 

relative change between profiles due to a particular perturbation that matters. To avoid 

mathematical artifacts, C should be of the same order of magnitude as the largest relative 

peak area observed for any metabolite M’s derivative in any of the samples measured at 

the particular GC-MS operating conditions. If a certain constant C is used in the 

regression analysis instead of the actual concentration [Mo], the estimated weights, M
iw , 

do not represent the exact inverse of the relative response factors of metabolite’s M 

derivatives, but a certain proportionality ratio between the relative concentrations of 

metabolite’s M derivatives and their measured relative peak areas. 

The estimated M
iw  values can subsequently be used to determine the “cumulative” 

relative peak area of metabolite M in any other metabolomic profile, as long as the GC-

MS operating conditions (and the selected marker ions of the metabolite’s M derivatives) 

remain constant, based on the following equation: 

i

aa

MD
s

N

1i

M
i

M
s RPAwRPA ⋅= ∑

=

                                  (3-6) 

where M
sa

RPA and i
a

MD
sRPA  represent, respectively, the “cumulative” relative peak area of 
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metabolite M and the measured relative peak area of the i-th derivative of metabolite M  

in sample Sa.  

The last two sections discussed the potential sources of derivatization biases in the 

metabolomic profile along with suggestions of how to account for them and appropriately 

“correct” the metabolomic profile in the context of a single metabolite or a specific 

category of metabolites at most. In the metabolomics context, all these suggestions 

should be combined into a systematic data correction/normalization strategy that does not 

jeopardize the high-throughput nature of the analysis. 

3.5 DATA CORRECTION STRATAGY 

Let us consider a biological sample comprising P, Q and R, respectively, metabolites in 

each of the categories 1, 2, and 3 as these were previously described. Then, according to 

the previous sections, the derivative peak area and the original metabolite concentration 

profiles would be in one-to-one directly proportional relationship with the proportionality 

ratio depending only on the GC-MS operating conditions, if (a) the metabolomic profile 

were acquired at derivatization time equal to or longer than T, the latter being defined as 

follows: 

{ }*
3

*
2

*
1 T,T,TmaxT =                                                                              (3-7) 

where  { }*
i,1P,..,2,1i

*
1 tmaxT == ; { }*

j,2Q,..,2,1j
*
2 tmaxT == ; { }*

l,3R,..,2,1l
*
3 tmaxT ==      (3-8) 

and *
i,1t , *

j,2t , *
l,3t  depict, respectively, the time required for the completion of the 
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derivatization of the i-th metabolite in category 1, of the j-th metabolite in category 2 and 

of the l-th metabolite in category 3; and (b) only one of the two derivative peak areas of 

the category-2 metabolites were considered.  

In theory then, T would have been the optimal derivatization time for high-throughput 

GC-MS metabolomics analysis. *
3T , however, might be much longer than 30h. Besides 

the practical difficulties associated with an experimental protocol of this long duration, 

derivative degradation might also be taking place at such long derivatization times 

(unpublished data from our lab; Roessner et al., 2000). On the contrary, TM, which is 

defined as the time at which all original metabolites have been completely transformed, is 

usually in the range of 2-6h.  

According to the previous sections, to avoid derivatization biases due to incomplete 

conversion of the original metabolites, TM should be the lower bound for the 

derivatization time in an optimized metabolomics protocol. The exact identification of TM 

is relatively easy when few compounds of certain molecular categories are measured. 

This remains, however, a major challenge of quantitative high-throughput GC-MS 

analysis in general. In high-throughput metabolomics, TM could be approximately 

estimated by observing the shape of the measured peak area profiles at various 

derivatization times for all metabolites. Identification, thereby, of the optimal 

derivatization time requires preliminary runs of the particular type of biological samples 

at multiple derivatization times. For 12-13 days old A. thaliana liquid cultures, for 

example, this time was identified to be 6 hours after the addition of MSTFA. Clearly, the 

identification of the optimal derivatization time should be performed only once at the 
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stage of the optimization of the experimental protocol for a particular biological system. 

If all available derivatized samples are run at derivatization time equal to or longer than 

the optimal derivatization time TM, remaining sources of derivatization biases are (a) 

potential change in the GC-MS operating conditions, and (b) the multiple derivative peak 

areas of category-3 metabolites. Neither could be avoided by acquiring all metabolomic 

profiles at the same derivatization time, as explained in the previous sections. Therefore, 

an automated derivatization system is not the solution. To identify and properly account 

for these biases, the following steps should be followed:  

1.   4 and the measured peak areas of the metabolite’s derivatives in the particular 

metabolomic profile.  

2. Finally, the dataset representing the “annotated” part of each acquired 

metabolomic profile, which should be considered for further statistical analysis to 

extract biologically relevant conclusions, comprises: (a) the relative peak area of 

each known category-1 metabolite, (b) one of the two relative peak areas of each 

known category 2 metabolite; as less susceptible to noise, the largest of the two 

should be preferably selected, and (c) the “cumulative” peak area of each known 

category-3 metabolite, as estimated in Step 5.  

With respect to the unknown part of the metabolomic profiles, the “molecular origin” of 

each peak should be determined, so it could be categorized in one of the 3 classes 

described in this paper. In this case, only the peak areas of category-1 metabolites could 

be “safely” used in subsequent statistical analysis. Regarding the category-2 metabolites, 

it is currently impossible to select one of the two peak areas to use in further analysis, 
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because no algorithm pairing unknown peaks corresponding to the same metabolite has 

yet been reported. Therefore, derivative peak areas of unknown category-2 metabolites 

may be included in the metabolomic dataset taking, however, into consideration that any 

change in these metabolites’ concentration will be assigned double weight in any 

statistical analysis. Obviously, the bias introduced to the analysis by these peaks’ 

inclusion increases monotonically with the number of unknown category-2 metabolites in 

the biological samples. Finally, regarding the derivative peaks of unknown category-3 

metabolites, these could be identified from the change in their area profile with increasing 

derivatization time and/or from fragment peaks at characteristic m/z values (e.g. 156 or 

174), indicating the presence of amine functional groups. Unless, however, an algorithm 

that can combine these peaks into groups representing the same metabolite is invented, 

enabling thus the estimation of their “cumulative” peak areas based on the presented 

normalization strategy, these peak areas should not be used in further statistical analysis. 

As it was previously discussed in the context of the category-3 metabolite derivatization 

kinetics and will be proven in the context of real samples, including derivative peak areas 

corresponding to category-3 metabolites as independent elements in the metabolomic 

profile vector might lead to highly erroneous statistical results. Assigning biological 

meaning to the latter could prove quite negative.  

3.6 MATERIALS AND METHODS  

In order to demonstrate the effectiveness of the algorithm and to estimate the w values for 

the known category-3 metabolites, a series of experiments were carried as described in 
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the sections below. 

3.6.1 Sample Preparation 

Category-3 Metabolite Standards: Vacuum-dried 200μL equal-volume mixture of 1 

mg/mL of a particular category-3 metabolite solution in 1:1 (v/v) methanol and water and 

1 mg/mL ribitol (as internal standard) solution in water. Table 3-1 includes a list of all 

category-3 metabolites whose standard sample was prepared and measured. In the case of 

cysteine, arginine, histidine and tryptophan, ~1mg pure compound was also derivatized 

directly, without prior treatment with methanol-water solution and subsequent drying. 

Standard Metabolite Mix 1: Vacuum-dried 600 μL solution of 27 metabolites (16 amino 

acids, 4 organic acids, 7 sugar/sugar alcohols) and ribitol (as internal standard) in 1:1 

(v/v) methanol and water (for exact composition, see Appendix I, Table A1-1). 

Standard Metabolite Mix 2: A mixture of ~1mg from each of the 10 category-3 

metabolites flagged with asterisk in Table 3-1.  

Plant Samples: Vacuum-dried polar extracts (see extraction protocol in Roessner et al. 

(2000); Kanani (2004)) from ~125 mg of ground Arabidopsis thaliana liquid cultures. 

The cultures were grown in 200 mL of Gamborg media (Gamborg et al., 1976) with 20 

g/L sucrose under constant light (80-100 μmole/m2.s) and temperature (23°C) in the 

controlled environment of an EGC M-40 growth chamber. Two cultures were used in 

present analysis; plant sample 1 was 12 days and 9 hour old, while plant sample 2 was 13 

days and 6 hours old. All reagents were procured from Sigma.  
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Table 3-1: All observed TMS-derivatives of 26 metabolites containing (-NH2) groups (including all 20 

protein amino acids) in the metabolomic profiles of the real plant, pure metabolite and standard 

metabolite mix samples that were  acquired at derivatization times spanning a period from 6h to 30h. 

Amino Acid Derivative 1 Derivative 2 Derivative 3 

Alanine Alanine N O Alanine N N O  
Arginine*,# Ornithine N2 N5 N5 O Ornithine N2 N2 N5 O 2 Ornithine N2 N2 N5 N5 O 
Asparagine Asparagine N N O Asparagine N N N O Asparagine N N N N O2,3 (putative) 

Aspartate Aspartate O O2,3 Aspartate N O O  
Cysteine* Cysteine N O2  Cysteine N S O   Cysteine N N O 
Glutamate Glutamate N O O Pyroglutamate N O1  
Glutamine Glutamine N N O Glutamine N N N O Pyroglutamine N N O1,2,3 (putative)  
Glycine Glycine N O Glycine N N O  
Histidine* Histidine O2  (putative) Histidine N O  Histidine N N O 
iso-Leucine iso-Leucine O iso-Leucine N O iso-Leucine N N O2 
Lysine Lysine N N O Lysine N N N O Lysine N N N N O2  (putative) 
Leucine Leucine O Leucine N O Leucine N N O2 
Methionine Methionine N O Methionine N N O2  
Proline Proline N O  
Phenylalanine* Phenylalanine O Phenylalanine N O  
Serine Serine O O Serine N O O Serine NNOO2 
Threonine Threonine O O Threonine N O O Threonine N N O O2 

Tryptophan* Tryptophan O2  (putative) Tryptophan N O Tryptophan N N O 

Tyrosine* Tyrosine O2  (putative) Tyrosine O O Tyrosine N O O 
Valine Valine O Valine N O Valine N N O 2,3 
Allantoin Allantoin N N N Allantoin N N N N Allantoin N N N N N  
β –Alanine* Β –Alanine O β –Alanine N O β -Alanine N N O 
GABA* GABA N  O GABA N N O  
Dopamine*  Dopamine N O O Dopamine N N O O  
Homoserine* Homoserine OO Homoserine N OO  Homoserine N N O O 
Ornithine* Ornithine N2 N5 N5 O Ornithine N2 N2 N5 O 2 Ornithine N2 N2 N5 N5 O 

1 derivative forms produced by chemical transformation of one of the original metabolite’s TMS derivatives 

2  derivative forms not yet reported in currently available major public MS libraries (i.e. MPL, CSB.DB, 

NIST)  
3  derivative forms matching reported peaks which have been currently assigned an unknown status in MPL: 

 - Asparagine Derivative 3 matched Potato Tuber 015 in MPL 

- Valine Derivative 3 matched Potato Tuber 002 in MPL 

- Glutamine Derivative 3 matched Tomato leaf 011 and Potato Tuber 007 in MPL 

- Aspartate Derivative 1 matched Phloem C.  Max 020 and Potato leaf 003 in MPL  

-  Threonine Derivative 3 matched Phloem C. max 028 in MPL 

* Metabolites included in the Stdandard Metabolite Mix 2 # Arginine is converted to Ornithine  
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3.6.2 GC-MS Runs 

Multiple replicates of the plant, standard metabolite mixes and pure metabolite samples 

were derivatized as described in (Roessner et al., 2000; Kanani, 2004) and run at various 

derivatization times over a period from 6 and 30 hours after addition of MSTFA, at 1:35 

split ratio, using Varian 2100 GC-(ion-trap) MS fitted with 8400 auto-sampler at 

operating conditions described in (Kanani, 2004). All reagents were procured from 

Sigma.  

• In the case of the plant and metabolite mix 1 samples, 100 μL of 20 mg/mL 

Methoxyamine HCL solution in pyridine was added to each sample and allowed 

to react for 90 mins followed by the addition of 100 μL MSTFA.  

• In the case of pure metabolite samples, 30 instead of 100 μL MSTFA were used, 

balanced out by 70 μL of pyridine. 

• In the case of the cysteine, arginine, histidine, tryptophan and metabolite mix 2 

samples that were prepared without the addition of methanol-water solution and 

the subsequent drying, 100 μL of 2 μg/μL ribitol solution in pyridine and 300 μL 

of pyridine were initially added to each sample. The sample reacted with 100 μL 

of 20 mg/mL Methoxyamine HCL solution in pyridine for 30 mins followed by 

the addition of 500 μL MSTFA.  

The exact derivatization times at which each sample was run along with the data acquired 

from each of the metabolomic profiles that were used to estimate the M
iw  weight values 

shown in Table 3-2 can be found in Appendix I, Table A1-2. Appendix I, Table A1-3 
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includes the retention times of the observed metabolite derivatives (see Table 3-1) at the 

given derivatization and GC-MS operating conditions. In Table 3-2, the weight values of: 

• The metabolites 3,6-7,16-17,25 were based on the profiles of plant sample 1. 

• The metabolites 1,8,10,12-13,20 were based on the metabolomic profiles of 

standard metabolite mix 1. 

• The metabolites 2,5,14,18-19,22,24,26 were based on the metabolomic profiles 

of standard metabolite mix 2. 

• The metabolites 4,21 were based on pure metabolite standards. 

3.6.3 Data acquisition and analysis  

Metabolite peak identification was based on (a) own library of standards, (b) MPL and 

the Public Repository for Metabolomic Mass Spectra - CSB.DB GOLM Metabolome 

database (Kopka et al., 2005) (in the rest of the text it will be referred to as CSB.DB) and 

(c) the commercially available NIST MS-library (Ausloos et al., 1999). 

3.7 RESULTS-DISCUSSION 

Similarly to any other high-throughput biomolecular profiling analysis to-date, GC-MS 

metabolomic profiling has been mainly used either to differentiate between various 

cellular states (Broeckling et al., 2005; Cook et al., 2004; Kanani, 2004; Noguchi et al., 

2003; Sakai et al., 2004) and/or identify an environmental or genetic phenotype (Fiehn et 

al., 2000; Taylor et al., 2002; Weckwerth et al., 2004). When the objective is only the 
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Table 3-2: Estimated
M
iw  weight values of the category-3 metabolite derivatives in the order shown 

in Table 3-1 for a particular set of GC-MS operating conditions and the indicated marker ion(s) 

(m/z); all utilized data are included in Appendix I Table A1-2. n/d: not consistently detected among 

the samples utilized for the estimation of the weight values.  

 Amino Acid Derivative 1 Derivative 2 Derivative 3 

 (M) m/z 
M
1w  m/z 

M
2w  m/z 

M
3w  

1 Alanine 116.0 1.025 188.2 0.774   

2 Arginine 142.2 1.10 174.2 0.48 257.2 n/d 
3 Asparagine 231.3+258.0 0.726 188 1.904 405.3 1.595 

4 Aspartate 160.0 3.824 232.2 0.224   

5 Cysteine 148.1+218.1 n/d 148.0  12.67 220.2 0.37 

6 Glutamate 246.5 1.014 230.2 + 156.1 0.988   

7 Glutamine 156.1 0.667 227.3+317.2 10.3 155.1+301.3 + 
344.3+227.0 9.00 

8 Glycine 102.0 9.397 174.2 0.773   

9 Histidine 154.2 + 110.1 n/d 154.2 + 182.1 n/d 154.3 + 254.1 1.0 

10 iso-Leucine 86.0 2.55 158.2 0.92 230.1 n/d 

11 Leucine 170.0 n/d 158.2 1.0 230.1 n/d 

12 Lysine 362.2+230.0 n/d 174 1.005 389.5+463.5 2.124 

13 Methionine 176.1 1.42 248.3 0.369   

14 Phenylalanine 146 1.30 218.0 0.48   

15 Proline 142.1 1.0     

16 Serine 116.0 2.97 204.3 0.299 290 7.87 

17 Threonine 219.0+130.0 3.30 292.3+218.3 0.321 290.2 33.5 

18 Tryptophan 130.1 n/d 202.1 1.0 202.1 n/d 

19 Tyrosine 179.1+268.1 1.18 179.1 0.94 218.1 0.26 

20 Valine 72.0 1.638 218.0 0.842 188.0+216.0+ 
172.0 

n/d 

21 Allantoin 374.2+259.2 25.3 331.3+431.2+ 
446.2 

0.530 518.5+428.4+ 
188.3 

2.12 

22 B Alanine 117 8.88 102.1 n/d 248.3 0.80 

23 GABA 102.1 n/d 174.2 1.0   

24 Dopamine 102.1 4.16 174.2 0.73   

25 Homoserine 146.1 6.51 218.3 0.231 290.3 2.67 

26 Ornithine 142.2 1.10 174.2 0.48 257.2 n/d 
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former, profiles are compared as a whole with no particular interest in peak identity. In 

this case, based on the to-date published studies, it seems that each peak area in the 

metabolomic profiles has been typically considered independent of the others in 

multivariate statistical analysis, including peaks corresponding to derivatives of the same 

metabolite (Broeckling et al., 2005; Cook et al., 2004; Fiehn et al., 2000a; Noguchi et al., 

2003; Sakai et al., 2004; Taylor et al., 2002; Weckwerth et al., 2004). When the objective 

is (also) the latter, peak identity is of interest.  

Based on the reported results, it seems that in this case one of its derivative peak areas, 

(usually the largest) if multiple exist, has been typically used to represent a particular 

metabolite’s concentration and derive biologically relevant conclusions (Broeckling et 

al., 2005; Cook et al., 2004; Fiehn et al., 2000a; Kanani, 2004; Noguchi et al., 2003; 

Sakai et al., 2004; Taylor et al., 2002; Weckwerth et al., 2004).  Based, however, on 

earlier discussion in this report, regarding molecular categorization with respect to the 

derivatization reaction kinetics, both these practices could lead to erroneous conclusions 

in the context of GC-MS metabolomics.  

To identify the extent of the bias introduced in the statistical analysis of category-3 

metabolites if one of its derivative peak areas is selected to represent the metabolite’s 

concentration in the original sample, and to validate the proposed 

normalization/correction strategy, multiple spectra of pure category-3 metabolite 

samples, of synthetic metabolite mixtures and two real plant samples were analyzed. 

Specifically, one of the two plant samples, plant sample 1, the standard metabolite mixes 

and pure category-3 metabolite standards underwent the repetitive measurement process 
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described in Step 3 of the presented strategy. Metabolomic profiles were acquired at 

different derivatization times spanning a period from 6h to 30h. Table 3-1 includes the 

derivatives of 26 category-3 metabolites (including all 20 protein amino acids) that were 

observed during this derivatization period, the latter being practically relevant in the 

presence of an auto-sampler and in lack of an automated derivatization system. Table 3-2 

includes the weight values M
iw  for each of the 26 metabolites’ derivatives as these were 

estimated according to the 4th step of the proposed strategy, based on the acquired peak 

area information listed in Appendix 1, Table A1-2 for the particular GC-MS operating 

conditions and the selected marker ions. Subsequently, as indicated in Step 5, the 

estimated weight coefficients were used in Eq. (3-6) to calculate the cumulative peak area 

of each known category-3 metabolite observed in the metabolomic profiles of plant 

sample 1 (direct result of the regression analysis) and plant sample 2, the relative peak 

areas from the latter being also listed in Appendix 1, Table A1-2. Table 3-3 shows the 

average peak area value for each measured category-3 metabolite derivative and the 

average estimated cumulative peak area for each metabolite along with their coefficient. 

After studying Tables 3-2, 3-3 and Appendix 1, Table A1-2, there are two significant 

observations that can be made regarding the values of the weight coefficients M
iw :  

• They varied in a range of two orders of magnitude, from ~0.1 to ~10;  

• The largest weight coefficient did not always correspond to the largest derivative 

peak area of a particular metabolite.  
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Table 3-3 Measured relative (with respect to the internal standard ribitol) derivative and estimated 

cumulative peak areas of all category-3 metabolites listed in Table 3-2 that were observed in plant 

samples 1 and 2, averaged over metabolomic profiles acquired throughout the depicted 

derivatization periods (all utilized data are included in Appendix 1, Table A1-2). The cumulative 

peak areas were estimated using the values of the derivatives’ weight coefficients shown in Table 3-2.  

Plant Sample 1 
Derivatization Period (6-23 h) 

Plant Sample 2 
Derivatization Period (8-21 h) 

    

  

Average RPA Coefficient of 
Variation 

Average RPA  Coefficient of 
Variation 

Glutamate 3 TMS 0.2092 16% 0.2580 12% 

Pyroglutamate 2 TMS 0.2729 12% 0.3098 7% Glutamate 

Cumulative 0.4818 2% 0.5677 2% 

Asparagine 3 TMS 0.0206 26% 0.0271 20% 

Asparagine 4 TMS 0.0080 6% 0.0078 10% 

Asparagine 5 TMS  
( putative) 

0.0041 47% 0.0031 39% Asparagine 

Cumulative 0.0368 1% 0.0394 4% 

Glutamine 3 TMS 0.0594 78% 0.1421 34% 

Glutamine 4 TMS 5.73E-04 137% 0.0035 58% 

Pyroglutamine 3 TMS 
 (putative) 

0.0106 40% 0.0082 49% Glutamine 

Cumulative 0.1410 2% 0.2047 10% 

Serine 2 TMS 0.0057 19% 0.0140 9% 

Serine 3 TMS 0.0170 17% 0.0169 20% 

Serine 4 TMS 8.93E-04 51% 9.74E-04 42% 
Serine 

Cumulative 0.0290 5% 0.0544 5% 

Threonine 2 TMS 0.0049 14% 0.0080 7% 

Threonine 3 TMS 0.0168 11% 0.0133 15% 

Threonine 4 TMS 1.06E-04 64% 9.03E-05 53% 
Threonine 

Cumulative 0.0250 4% 0.0338 3% 

Homoserine 2 TMS 3.78E-04 20% 5.47E-04 18% 

Homoserine 3 TMS 0.0025 22% 0.0013 34% 

Homoserine 4 TMS 3.13E-04 65% 2.09E-04 80% 
Homoserine 

Cumulative 0.0039 6% 0.0044 7% 
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These observations further indicate that:  

• Even a small category-3 derivative peak area could significantly contribute to the 

cumulative peak area and thereby should not be ignored, as it seems to be the 

current practice.  

• Significant bias might be introduced in the analysis, if only one (often the largest) 

derivative peak area is selected to represent the metabolite of interest.   

A measure of the latter bias can be provided from the difference between the coefficient 

of variation of the average individual derivative peak areas and the average cumulative 

peak area of the listed in Table 3-3 category-3 metabolites.  

As discussed earlier in this chapter that only the cumulative peak area is directly 

proportional to the concentration of the metabolite in the original sample. The results in 

Table 3-3 validate this argument, considering that all acquired metabolomic profiles of 

plant samples 1 and 2 refer to the same biological sample measured at different 

derivatization times equal to or longer than the optimal derivatization time, as defined in 

the previous section. Therefore, barring changes in the GC-MS operating conditions, the 

peak area that is directly proportional to the concentration of a particular metabolite in the 

original sample should be of the same value in all profiles. Table 3-3 indicates that this is 

indeed true for the cumulative peak areas of the metabolites, their coefficient of variation 

being in average 3% and 5% in plant samples 1 and 2, respectively. On the other hand, 

the coefficient of variation of the individual derivative peak areas was in average 38% 

and 30%, respectively, the largest reaching a value of 137%.  
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This is a significant result indeed. First it validates the proposed methodology. Second it 

is the first time that the extent of the bias that could be introduced in the statistical 

analysis of the metabolomic data when, either the derivative peak areas of category-3 

metabolites are all used as independent in the analyzed dataset or only one of them is 

selected as the representative of the concentration of the metabolite in the original 

sample, has been quantified.  

Variation due only to the molecular characteristics of these metabolites and the 

mechanisms of the derivatization reaction could be attributed biological significance. 

Only the estimation of the cumulative peak area enables the accurate quantification of the 

change in a category-3 metabolite’s concentration among various biological samples. If 

individual derivative peak areas of category-3 metabolites are compared, each may lead 

to a different value, and, even worse, different direction of change (see Table 3-3).     

A significant “by-product” of the mass spectral analysis carried out for the validation of 

the proposed correction strategy was the identification of 15 derivatives of category-3 

metabolites, which either had not been reported before in public databases (NIST, MPL, 

CSB.DB) (10), or matched reported peaks which have been currently assigned an 

unknown status in MPL (5) (See Table 3-1). This identification was made possible 

through the analysis of spectra of pure metabolite samples. One of the currently reported 

unknown peaks was identified as a chemical transformation derivative of glutamine-4-

TMS. Moreover, pyroglutamate-2-TMS was validated to be a chemical transformation 

derivative of glutamate-3-TMS, as reported in (Gehrke et al., 1969; Leimer et al., 1977). 

This is underlined, because many recent studies have, however, treated this derivative as 
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independent of glutamate (Fiehn et al., 2000a; Roessner et al., 2000, Broeckling et al., 

2005). Moreover, the previously reported (Halket, 1993; Halket et al., 2005) chemical 

transformation of arginine to ornithine derivatives in the presence of a silylating agent 

was also validated. The significance of these discoveries is quite high, considering that: 

• A lot of effort in metabolomics is invested in the annotation of unknown peaks 

(Fiehn et al., 2000b; Halket et al., 2005),  

• To-date statistical analyses might be biased due to dependency between peaks 

currently considered as independent in the metabolomic profiles’ dataset,  

• Variation in cumulative peak areas of known compounds with derivatization time, 

implies the presence of additional, still unidentified, derivative(s), 

• Variation in unknown peak areas with derivatization time might provide clues 

regarding the chemical formula of the corresponding metabolite.   

This data correction algorithm was used for ensuring accuracy and reproducibility for 

acquiring metabolomic profiles of systematically perturbed A. thaliana liquid culture 

network as described in the following chapter. 
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44   EXPERIMENTAL DESIGN APPROACH  

In the traditional biological experiments to study a phenomenon, the key component of 

the experimental design is the initial hypothesis being proved or disproved by the series 

of experiments. The ability of high-throughput measurement techniques, to 

simultaneously measure all variables belonging to a class (in case of metabolomic 

analysis – metabolites),   instead allow an experimental design approach which is based 

on comparatively a “limited” hypothesis such as: A biological system will respond at 

metabolic level in response to the given perturbation. In some sense the design of 

experiment is based on “systematic discovery” rather than a hypothesized invention. 

However with this freedom of not being restricted to a focused hypothesis answering a 

specific question also comes several challenges which have to be taken into account 

while designing experiments involving high-throughput analysis. Some of the important 

common challenges are listed below: 

• The experiments should be designed in such a way that the observed changes in 

the molecular profiles should be attributed only to the applied perturbations  

• To ensure enough experimental controls, biological and instrumental replicates 

without significantly compromising on the number of biological states that can be 

studied. 

• Ensuring internal standards and appropriate data normalization and validation 
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techniques to monitor and remove the effect of biases introduced due to 

experimental and instrumental limitations. 

These requirements are even more necessary when using novel high-throughput 

techniques like metabolomic analysis which is still in its early days of standardization. 

Keeping these criteria in mind a series of experiments were designed to achieve the 

specific objectives of the current study. The rational for the various design decisions and 

the experimental design set up are described in the following sections of this chapter.     

4.1 MODEL SYSTEM SELECTION 

Always, the selection of the system depends on the specific aims of the study. The 

specific aims of the current study were: 

• To develop experimental and data analysis methods for using time-series 

metabolomic analysis to study complex biological systems where the ability to 

use metabolic flux analysis to study regulation is limited. 

• To understand regulation of primary metabolism of plants by metabolomic 

analysis of systematically perturbed system. 

The choice of plants was also governed by the fact that plants are complex eukaryotic 

organisms. Hence besides any functional insight that might be gained through the study, 

it is anticipated that analysis of multi-tissue organisms will also contribute in the 

development of systems biology principles that will have broader applicability than 



 69

studies in yeast or prokaryotic systems. 

In this context, Arabidopsis thaliana (Columbia Ecotype) liquid cultures were chosen as 

the model system based on following reasons: 

• A. thaliana is considered the model system of plant physiology, because of its 

short growth cycle and a small genome of 5 chromosomes,  

• A. thaliana was the first plant genome to be fully sequenced. 

• Liquid compared to soil cultures provide a controllable growth environment, 

ensuring that all plants in all experiments receive the same nutrients.  

• In liquid cultures, as part of a perturbation any signalling molecule/growth 

hormone added to the media is uniformly distributed in a very short time, 

ensuring equal treatment received by all plants. 

• Each liquid culture comprises of 50 - 80 A. thaliana seedlings. This provides a 

large biological population for each biological state, thereby reducing the effect of 

biological variability increasing, thereby, the confidence in the statistical 

significance of the acquired measurements. In the case of time-series analysis, this 

further helps in partially overcoming the trade off between number of replicates 

and number of timepoints (see further discussion in following section). 

• Metabolism of plants is known to change rapidly and hence it is necessary to stop 

the metabolism by freezing the plants in liquid nitrogen. Since each liquid culture 
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comprises 50-80 plant samples, a large number of replicates are harvested in a 

very short time. 

4.2 SELECTION OF PERTURBATIONS 

In order to achieve the specific aims of the current analysis, the particular environmental 

perturbations were chosen based on the following criteria:  

• Plants are expected to show a significant response to the perturbation at metabolic 

level  

• The metabolic response of the perturbation can be obtained even in short period 

of time 

• The response is expected to be in primary metabolism of plant 

• Understanding the response of the system to the perturbation, in addition to 

providing important information for engineering desired traits in plants, also 

provides an example of the use of metabolomic analysis for studying a variety of 

commonly studied biological problems.  

Based on these criteria perturbation following perturbations were chosen: 

• Elevated CO2 (in sucrose and glucose grown plants) 

• Salt (NaCl) Stress 

• Sugar (Trehalose) Signaling  
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• Hormone (Ethylene) Signaling 

 In order to develop the methodology for identifying interaction between different 

environmental stress, experiments were also conducted with the last three perturbation 

applied in combination to CO2 stress. The motivation for the choice of each perturbation 

is described below. 

4.2.1 Elevated CO2  

Increase in CO2 was chosen as the common perturbation under all conditions, because: 

• CO2 being the primary carbon source of plants, plants are expected to respond to 

changes in the CO2 level even for a short period of time. 

• Improved CO2 fixation can significantly increase the yield of industrial and 

agricultural output achieved from plants, thus any information gained would be 

extremely valuable  

• Most of the prior studies of response of plants to elevated CO2 have focused on 

long-term effects at a physiological level, hence very little is known about the 

short-term response which indicate metabolic pathways regulated by CO2.  

• CO2 is expected to perturb the central carbon metabolism and amino acid 

biosynthesis networks. These networks have been well studied in plants and 

extensive information about their function exist both at the metabolic and 

genomic level. Further the majority of the involved metabolic pathways have been 
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well characterized in plants, while the regulation of these pathways has been 

extensively investigated at least in prokaryotic systems. 

4.2.2  Salt (NaCl) Stress 

All living organisms (bacteria (Verala et al., 2003), plants (Taiz, 2002)) are known to 

respond to salt and osmotic stress by changing concentration of osmoprotectants at the 

metabolic level. Thus measuring the response of plants just after giving the osmotic stress 

using metabolic profiling is expected to allow identification of metabolic mechanisms 

used by plants to protect against osmotic stress. Previous studies with NaCl stress to A. 

thaliana (Essah et al., 2003) adult plants could not sustain 50 mM NaCl stress for more 

than 4 days, suggesting a significant perturbation for the plant system. Higher 

concentration of 250 mM has also shown a very strong immediate response (few hours) 

at transcriptional level (Taii et al., 2004) and the plant was not able to survive for more 

than 2 days. Hence, 50 mM NaCl stress was chosen for A. thaliana plants to ensure a 

significant response to salt stress only.  

4.2.3  Sugar (Trehalose) Signal 

Sugar signaling regulates important physiological processes in plants like photosynthesis 

and nitrogen assimilation and is currently an important area of study in plants (Moore et 

al., 2003). Trehalose is a disaccharide like sucrose made from two glucose molecules. 

Trehalose is known to be an important osmoprotectant in many biological systems 

(Wingler, 2002). In yeast it is also known to regulate glycolysis flux. However, when 

genes encoding trehalose were first discovered in plants a decade ago, even their 



 73

presence was a surprise (Goddijen and Smiklens, 1998). Recent studies have indicated 

trehalose regulates starch redistribution between source tissues and sink tissues. In 

addition it is also known to cause starch accumulation in some cases. However detailed 

mechanism and the exact role of trehalose in regulation of starch accumulation is still not 

clear. Starch being an important product of photosynthesis, any new information is likely 

to provide important information to improve carbon fixation in engineered plants. This 

makes it an interesting perturbation for the current study independently and especially in 

combination with elevated CO2 stress. 12 mM trehalose was chosen as in past 

experiments (Wingler et al., 2000) 10 mM trehalose present in the media (containing 50 

mM sucrose) caused redistribution of starch (Wingler et al., 2000).  

4.2.4  Plant Hormone (Ethylene) Signal 

Hormones play an important regulatory role in plant physiology. Ethylene is an important 

plant hormone, and controls various plant physiological and developmental parameters 

like seed germination, seedling elongation, ripening, wounding, stress and defense 

response (Taiz, 2002). Recently, gene expression analysis of A. thaliana response to 

ethylene has identified as many as 245 genes whose expression changes considerably 

during just the first six hours after ethylene addition (De Paepe et al., 2004). Most of the 

study involving ethylene has either been at the gene expression level or physiological 

level, hence very little is known about the regulation of metabolic pathways by ethylene. 

Moreover studying the response of the plants to combined ethylene and elevated CO2 

treatment will enable conclusions to be derived about ethylene signaling and 
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photosynthesis.  

4.3 TIME-SERIES VS SNAPSHOT ANALYSIS 

Majority of high-throughput experimental designs can be classified into two categories: 

• Comparison of Snapshots or two biological states with and without 

treatment/perturbation 

• Comparison of Time-profiles, which compares a number of biological states at 

different times with and without the perturbation 

The main advantages of snap-shot experimental design are: 

• Less number of biological states are studied which allows more biological 

replicates for each stage. This allows a more statistically valid “snap-shot” of the 

biological system 

• The data analysis methods for analysis of snap-shot experiments are well 

developed 

The main advantages of using time-series approach in experiment design are: 

• Most biological responses are inherently dynamic in nature which follow a 

signaling cascade at molecular level which can only be observed using time-series 

analysis. 

• Response of biological systems to perturbations may be different at different time 
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scales, hence by comparing only two snap-shots, the complete understanding of 

pathways being perturbed would not be achieved. 

• Time series also allows distinction between transient and sustained response 

which is not possible from snap-shot analysis. 

• In case of metabolomic profiles, time-series metabolomic profile contain within 

them information about the net result of changes in metabolic fluxes which are 

directly related to enzymatic activity and hence closer to gene expression level. 

Thus time-series metabolomic analysis can allow identification of common 

regulatory networks and integration of profiles with transcriptomic analysis which 

is limited for snap-shot comparisons between only two biological states. 

Thus in order to achieve the specific aims of the project, time-series analysis is preferred 

over snap-shot analysis.  

Experiment design of time-series metabolomic analysis has to address following two 

issues: 

Number of Timepoints Vs. Number of Bio-replicates: For a given experimental setup and 

set of resources, the experimental design should optimize between the number of 

timepoints at which the biological system should be sampled and the number of 

biological replicates at each timepoint. Both are desired to increase the information 

content and statistical significance of the analysis.  

Selection of timepoints/duration of sampling time: If there is large time difference 
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between samples, intermediate key events of shorter timescale might be missed. 

However, for a given number of sampling times due to the available resources as 

described above, decreasing the time difference between consecutive samples will result 

in shorter duration of the experiment. This might lead to missing important physiological 

events that are activated at a later stage after the initiation of the perturbation. Thus, there 

exists a trade off between the frequency of sampling and the duration of the experiment.  

Previous time series metabolic profiling analysis to measure response of A. thaliana to 

elevated CO2 (Kanani, 2004) following observations about time series experiment design 

were made which were incorporated in the current analysis: 

• The harvesting times should be uniformly distributed during the day 

• Large changes were observed from 12 to 24 hours, so intermediate time point and 

additional time point beyond 24 hours should be added. 

Based on theses criterion, and availability of 20 liquid cultures for each experiment the 

number of bio-replicates and time points in the current experiment were chosen as 

follows: 

• In each experiment, perturbations were applied in 12 day old A. thaliana seedlings 

which were in their young-adult (vegetative) state.  

• In order to study pathways regulated by the perturbations, short term (few hours) 

response was chosen over long term (few days) response. 
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• In order to account for variability during their initial 12 days of growth, four 

liquid cultures were harvested as the 13 day 0h reference state in each experiment 

and were harvested before application of perturbations. 

• The remaining 16 liquid-cultures were used to represent eight different time 

points with two bio-replicate cultures (each containing 60-80 seedlings ensuring a 

large number of plants thus avoiding bias due to a biological outlier/mutant). 

• Immediately after the perturbations, the sampling frequency was kept higher as 

more change in expected immediately after the response. 

• As per recommendations based on the previous experiment, a time point was 

added between 12 and 24h at 18h, and an additional time point was added beyond 

24h at 30h. 

• The final harvesting schedule chosen for the experiment were: 4 cultures at 13 

day 0h serve as reference state in each experiment followed by 2 liquid cultures at 

1h, 3h, 6h, 9h, 12h, 18h, 24h and 30h. The same harvesting protocol was followed 

for all the experiments.     

Based on the criteria described from above a series of experiments were conducted as 

described in the following section.  

4.4 PLANT GROWTH EXPERIMENTS 

4.4.1 Liquid Cultures  



 78

Arabidopsis thaliana (Columbia Eco-type) liquid cultures were grown in 500 mL conical 

shake flasks. Each flask contained 200 mL autoclaved solution of B5 Gamborg media 

with minimal organics (Sigma, St. Louis) and 4g of sucrose (2% or 58.5 mM). The pH of 

the solution was adjusted to 5.7 and each flask opening was closed with Identi-Plug 

Plastic Foam Plugs (VWR) and aluminum foil prior to autoclaving the solution. 1 mL of 

0.1% agar solution containing ~100 seeds of A. thaliana Columbia ecotype was added to 

each flask in bio-safety cabinet. The seeds were cleaned and sterilized as described in 

(Liu et al., 2005) and stored overnight at 4oC prior to inoculation. 

4.4.2 Experimental Setup  

Each experimental setup comprised of 20 A. thaliana liquid cultures, which were grown 

on an orbital shaker platform at 150 rpm. The shaker was kept in a controlled 

environmental growth chamber (EGC Inc, Chagrin Falls, OH, USA, model M-40) at the 

University of Maryland, New Green House facility. The chamber allowed measurement 

and control of light, humidity, temperature and CO2. The CO2 level inside the growth 

chamber was measured using WMA-4 CO2 Analyzer (PP Systems, Amesbury, MA).   

4.4.3 Experiment Description 

The experiment involved the growth of eight sets of 20 A. thaliana (Columbia ecotype) 

liquid cultures as shown in Figure 4-1. All sets were grown for 12 days in the controlled 

environment growth chambers under constant light intensity (80 - 100 μE m-2 s-2), 60% 

relative humidity and 23oC temperature. 
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Figure 4-1: Graphical representation of the experimental conditions of the eight experiments performed as part of the project. 
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On the 13th day, 4 liquid cultures were harvested from both the control and perturbed sets. 

They were used as “reference markers” of the plant growth up to that stage (0h). After 

harvesting the reference marker liquid cultures, different conditions were maintained as 

shown in Figure 4-1 in eight different experiments as described below: 

Experiment 1: Control experiment, Concentration of CO2 was maintained at ambient 

concentration and media composition was also kept the same. 

Experiment 2: Elevated CO2 Stress - Concentration of CO2 was increased to 10,000 ppm 

from ambient concentration. (Increase was achieved in less than 5 minutes). 

Experiment 3: Salt Stress - 10 ml of 1 M NaCl solution was added to the media to 

achieve 50 mM final concentration. 

Experiment 4: Trehalose Signal - 10 ml of 240 mM trehalose solution was added to the 

media to achieve 12 mM final concentration. 

Experiment 5: Ethylene Signal - 1 ml of 2 mM 1-Aminocyclopropanecarboxylic acid 

(ACC – ethylene precursor) was added to the media to achieve 0.01 mM final 

concentration. 

Experiment 6-8: Combined Stress Experiments, perturbations from experiment 3-5 were 

applied and simultaneously the CO2 concentration was increased to 10,000 ppm of the air 

composition.   

After applying the perturbations, 2 liquid cultures were harvested at each of the 1h, 3h, 

6h, 9h, 12h, 18h, 24h and 30h time points in each experiment. Each harvested plant 
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culture was weighed, washed with de-ionized water to remove media, excess water 

removed with filter paper, wrapped in aluminum foil, frozen in liquid nitrogen and stored 

at –80oC for further analysis. Each liquid culture spent about 2-5 minutes between 

removal from the growth chamber and freezing in liquid nitrogen. 

4.5 GC-MS METABOLOMICS CONDITIONS 

4.5.1 Grinding  

Each of the frozen whole plant cultures was ground under liquid Nitrogen to a state of 

paste and then used to extract polar metabolites for the metabolomic profiling analysis. 

(The same ground plant was also used for a parallel transcriptomic analysis of the 

sample). Since no specific part of the plant was selected, the obtained metabolic profiles 

represent the average over the entire plant state of each liquid culture containing 50-80 A. 

thaliana seedlings. 

4.5.2 Metabolite Extraction  

Polar metabolite extracts were obtained from approximately 0.5 gm of the frozen liquid 

culture using methanol and water. The extraction protocol followed in this study has been 

developed by (Roessner et al., 2000; Kanani, 2004) which were subsequently optimized 

for optimum solvent volume for the current plant sample. Methanol (28 g/g plant), water 

(28 g/g plant) and ribitol (20 mg/gm of plant) were used, respectively, as the solvent to 

collectively extract the polar small molecules and the common internal standard for all 

classes of the observed metabolites. The methanol water extracts obtained from each 
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plant sample were divided into four equal aliquots which were vacuum-dried overnight at 

room temperature using SAVANT rotary vacuum drier and stored in -20 C freezer.  

4.5.3 Derivatization of Polar Extracts  

The dried plant extracts were subsequently derivatized to their trimethylsilyl (TMS)-

Methoxime (Meox) derivatives. The derivatization conditions were 100 μL of 20 mg/mL 

methoxyamine hydrochloride solution in pyridine for 120 min followed by addition of 

200 μL of N-methyl-trimethylsilyl-trifluoroacetamide (MSTFA) at room temperature.  

The partial derivatization was identified as one of the problems in the previous analysis 

(Kanani, 2004). Hence optimization studies were carried out to optimize the 

derivatization time. Based on the analysis we found the number of identifiable peaks in a 

plant sample increased almost by 25% by increasing the MSTFA reaction time from 0.5 

hrs to 4 hours. Hence the standard reaction time for derivatization was modified 

accordingly. 

The derivatized samples were transferred to high recovery auto-sampler vials (National 

Scientific make) with Teflon inner liner for 4 hours after addition of MSTFA and 

transferred to auto-sampler. 

4.5.4 Split Ratio Optimization 

Since the GC-MS instrument used in the current analysis (Varian Inc, ion trap) was more 

sensitive as compared to instrument used in earlier study (Kanani, 2004), the new 

optimum split ratio needed to be determined. The approach for determination of the new 
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split ratio was developed in the previous study (Kanani, 2004) and involved ribitol 

calibration curves. Subsequently extracted plant samples were used to identify the largest 

peak area at different split ratios. Based on the obtained results 35:1 was chosen as the 

new split ratio. This ratio is much lower as compared to 75:1 split ratio used in the earlier 

analysis. This shows that apart from being more sensitive, the new GC-MS system has 

larger linear range, allowing more quantity of the sample to be injected in the system. 

4.5.5 GC-MS Sample Runs  

 The derivatized samples were analyzed using Saturn 2000 GC-(ion trap) MS (Varian, 

CA) between 6-30 hours after addition of MSTFA, to ensure complete conversion of 

metabolites to their at least one derivative form without degradation. (See Chapter 3 for 

detailed discussion on selection of derivatization-injection time). The spectra were 

obtained at 25:1 split ratio with 1.5 μL injection volume, which was optimized to ensure 

linear range of operation for all metabolites. The plant extracts were derivatized in 

batches of 10 and two instrumental replicates were obtained for each plant sample 

extract. Therefore, at least 4 (2 biological replicates x 2 injections) spectra were available 

for each timepoint (at 0h up to 8 spectra were available). See (Kanani thesis) for detailed 

GC-MS operating conditions such as temperature programming, column conditions and 

flow rates. 

4.5.6 Peak Identification  

Metabolite peak identification was based on: 

• Own library obtained using commercially available standards. 



84 

• The publicly available Max-Planck based curated TMS-derivative library 

[http://www.mpimp-golm.mpg.de/mms-library/index-e.html]  

• The Public Repository for Metabolomic Mass Spectra - CSB.DB GOLM 

Metabolome database (Kopka et al., 2005).   

• The commercially available NIST MS-library (Ausloos et al., 1999). 

A comprehensive list of peaks was obtained by running initially samples in split-less 

mode increasing the signal strength 25 times the normal split mode. The higher sample 

causes saturation for high concentration peaks but at the same time brings the lowest 

concentration peak out of the noise region making it possible to identify them. Totally 

550 peaks were identified from which about 140 had known structure, about 170 had at 

least a known functional group while the rest were complete unknowns. This approach 

significantly increased the total number of identified peaks and the contribution of known 

metabolites.   

4.5.7  Peak Quantification 

Each metabolite was quantified using peak area of its fragment ion/s using Varian Star 

software (version 6.5). The selection of the specific fragment ion/s for each metabolite 

was based on the criteria of: 

• Specificity for the particular metabolite,  

• Separation between co-eluting metabolites  
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• S/N optimization.  

Specifically, only peaks with S/N≥5 and raw peak area ≥ 500 were considered in the 

analysis.  

In order to ensure that the quantification is accurate, it is important to make sure that 

measurements are made in the linear range of operation of the machine. In current 

analysis, each set of experiment contains 20 plant samples. Each plant sample was 

analyzed two times, and each sample analysis contained 600 peak areas. Hence each 

experiment involved the calculation of approximately 24,000 peak areas. In the previous 

study, due to integration errors, peak areas were verified manually and corrected when 

required. However such manual verification was found to be a time consuming process, 

being the bottle-neck in the data analysis.  

By utilizing and optimizing the additional integration control parameters of the new 

Varian Inc software and using a qualifying ion along with the marker ion, this integration 

errors and false identifications were reduced significantly from ~0.9% in the initial 

analysis to <0.1% for the current analysis. Further data filtering steps were created to 

identify abnormal standard deviation in injections of metabolites, or abnormal variation 

in a metabolite peak area, which would help identify such deviations. With these 

measures the requirement for manual verification of each peak area was avoided saving 

considerable time and resources. 
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4.5.8 Metabolomic Data Validation, Correction & Normalization  

All known metabolites were classified into three categories, depending on their 

derivatization kinetics as described in Chapter 3 of this report. Category-1 consisted of 

metabolites forming a single derivative (e.g. alcohols & organic acids); Category-2 

consisted of metabolites containing a ketone group (e.g. Glucose, Fructose, α-

ketoglutarate) which at the methoximation step, react through parallel reactions to 

produce two syn and anti geometric isomers; Category-3 consisted of metabolites which 

contain at least one amine group and form multiple derivatives through series reaction 

(e.g. amino acids).  

The following steps were followed for data normalization, validation and correction: 

• Raw peak areas for all metabolite derivatives were normalized with peak area of 

internal standard ribitol to obtain relative peak area (RPA) of the metabolites. 

• Data Validation was performed to ensure constant GC-MS conditions throughout 

the analysis as described in Chapter 3 of the report by estimating the ratio of peak 

areas of 6 known Category-2 metabolite derivative forms.   

• For 16 Category-3 metabolites (for which 43 derivative forms were detected in 

total) “cumulative” peak areas representing the original metabolites were obtained 

using the data correction algorithm described in Chapter 3 of the report. The 

relative response ratios ( M
iw ) values required to estimate the cumulative peak 

areas were obtained as described earlier in Chapter 3 of the report. 
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• Unknown metabolite derivative forms showing a coefficient of variation of more 

than 30% in replicate runs of plant extract at different derivatization times or 

containing marker ions with m/z 156 or m/z 174 in their mass-spectra 

(characteristic m/zs in amino acids, indicating presence of silylated amine group) 

were classified as unknown Category-3 metabolites and removed from further 

analysis. 

• Finally a corrected RPA matrix consisting of: RPA of all known Category-1 

metabolites; RPA of larger of the two derivative forms of known Category-2 

metabolites; estimated Cumulative RPA of known Category-3 metabolites; and 

RPA of unknown Category-1&2 metabolite derivative forms; was prepared for 

further analysis as per the data correction algorithm described in Chapter 3. All 

RPA levels in the corrected RPA matrix are now expected to be directly 

proportional to the relative concentration of the original metabolite in the plant 

extract.  

• In order to ensure consistency in metabolomic data and avoid mathematical 

artifacts peaks which were detected in blank control (consisting all derivatization 

reagents without plant extract); and peaks which are carried over (detected 

considerably in solvent GC-MS runs in between derivatized plant extract runs); 

were removed from further data analysis.   

• The RPAs for each plant extract were obtained by taking arithmetic mean of the 

two instrumental replicates and for each time point by taking arithmetic mean of 

all instrumental & bio-replicates representing the given time point.  
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Finally Corrected RPA data sets for each experiments were normalized with metabolomic 

profiles of individual time zero controls (liquid cultures extracted at the end of 12 days) 

to obtain Normalized Peak Areas (NPA) by dividing the averaged RPA of a metabolite at 

time t hrs w. r. t. its averaged RPA at 0 hrs in the same data set. This normalization 

“corrects” for potential differences between the growth conditions of the two plant sets 

during 12 days before harvesting and improves the comparison between the various 

metabolites in each set.  

For better comparison between the two plant sets, the time profile of a metabolite’s 

concentration in the perturbed set was normalized with respect to its in the control and 

the logarithm with base 2 of this ratio was usually used to depict the difference in 

metabolite concentrations between the two sets. All mathematical operations described 

above were performed using an algorithm incorporated in Mathcad 2000 (Mathsoft, MA).  

4.5.9 Metabolomic Data Analysis  

Principal Component Analysis (PCA) and Pavlidis Template Matching (PTM) were 

carried out using algorithms incorporated in open source software MEV 3.1 (Saeed et al., 

2003) which is freely available from http://www.tm4.org/mev.html. Paired-SAM (Tusher 

et. al., 2001) and Time-series analysis of the Metabolomic data was performed using the 

MiTimeS algorithm (Dutta et. al., 2007) software incorporated in Mathcad 2000 

(Mathsoft, MA). The results obtained from the analysis of time-series metabolomic 

experiments of systematically perturbed A. thaliana liquid cultures are summarized in the 

next two chapters of this report. 
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55    INDIVIDUAL STRESS RESPONSES  

In the 21st Century plants are re-emerging as the renewable, environment friendly source 

of energy, plastics, industrial chemicals and even pharmaceuticals. This industrial role 

coupled with the ever increasing demand for food and feed application is making it 

necessary for us to engineer plants which are (a) more efficient in light, carbon, nitrogen 

and nutrient fixation (b) more tolerant to adverse environmental conditions (abiotic 

stress) such as high salinity, flooding, temperature variations and drought conditions (c) 

resistance to external biotic stress such as worms, virus, bacteria, fungi. Engineering 

plants which have combination of traits to perform all the three category of function can 

significantly increase the agricultural output and make plants an attractive manufacturing 

host for the production of industrial chemicals.  

In the last two decades a large amount of commercial agricultural research has focused on 

engineering genetically modified plants which are better able to combat biotic stress 

reducing the need for dependence on the chemical pesticides. These Genetically Modified 

plants have received very positive response in North and South American markets, 

accounting for more than 85% of the total agricultural output for some commercial crops 

(www.monsanto.com). The next generations of crops currently under various stages of 

development are however focused on improving resistance to the abiotic stresses and 

efficient utilization of nutrients. In order to successfully engineer plants for these 

applications we need to better understand: 
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• Regulation of primary metabolism of  plants 

• Strategies used by plants at molecular level in response to changes in the 

environment 

To achieve this aim a series of experiments were designed which systematically 

perturbed the Arabidopsis thaliana liquid culture system with (a) elevated CO2 levels 

(1%) in the growth environment (b) Salt (NaCl) stress in the liquid media (50 mM) (c) 

Trehalose sugar signal (12 mM) (d) Hormone Signal (Ethylene precursor ACC 0.01 MM) 

as described in Chapter 4 of this report. Their dynamic response at the metabolomic level 

was measured using the optimized GC-MS Metabolomic profiling algorithm described in 

Chapter 3. The results obtained from the statistical analysis of each individual stress and 

their biological significance is discussed in this chapter. 

5.1 ELEVATED CO2 RESPONSE 

5.1.1  Review of Elevated CO2 Stress Response in Plants 

CO2 is the main carbon and energy source of plants. One of the main roles of plants in 

global ecology is to maintain the carbon and nitrogen balance of the environment 

(Buchanan et. al., 2001). In this context and in light of global warming and increasing 

levels of CO2 in last few decades response of elevated CO2 on plant physiology has been 

extensively studied. A comprehensive review of the (a) carbon fixation mechanisms in 

plants, (b) known physiological effects of elevated CO2 (c) detailed mechanisms of the 

pathways perturbed by elevated CO2 and (d) the experiment design issues which can give 
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rise to contradictory results; was performed during an initial elevated CO2 experiment 

study (part of Master’s Thesis Research of this author) carried out under slightly different 

experimental conditions and the same is available from (Kanani, 2004). The main 

observations from the review were: 

• Most of the experimental work on effects of elevated CO2 was carried out in long-

term effects (few weeks to years) in response to 700-1000 ppm CO2. These 

studies were primarily governed by the aim to understand the physiological long 

term (adverse) effects of rise in environmental CO2 levels rather than 

understanding regulation at molecular level. 

• Most experiments made observations of the overall physiology like: root to shoot 

length ratio (found to increase), starch-sugar content (found to increase), total 

protein content (found to increase in absolute terms –but decrease on per gram dry 

weight basis), total lipid content (very few studies – showed no change), lignin 

(varying effect) and secondary metabolites. 

The review of literature presented thus showed that the elevated CO2, apart from 

affecting the Calvin cycle metabolite, also affects metabolites involved in carbohydrate 

synthesis, photorespiration, lipids, secondary metabolites and amino acids. The 

traditional analytical methods did not allow measurement of the change in all these 

metabolites simultaneously. In contrast high throughput method which can 

simultaneously measure changes in metabolites belonging to different classes will allow: 
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• Understanding the effect of elevated CO2 on the metabolism of various plant sub 

systems. 

• The extent of response of different plant sub systems in response to elevated CO2. 

• Understanding the interaction between different sub systems of the plants. 

Hence a high throughput method for analysis of metabolic data would allow 

understanding of a holistic, complete response of the plant to elevated CO2 level, as 

compared to the traditional methods which are focused more on a particular class of 

compounds.  In deed during the Master’s study the metabolomic analysis of the elevated 

CO2 of A. thaliana liquid cultures showed: 

• Inhibition of Nitrogen Storage due to competition for the reductive power 

between the CO2 and Nitrogen fixation pathways (see (Kanani,2004) for details)  

• Inhibition of photorespiration pathway 

• Increase in precursors of structural carbohydrate and glycerolipids 

In the current analysis, the experiment carried out during Master’s thesis research was 

repeated with following differences: 

• A. thaliana liquid cultures were grown in controlled environment growth 

chambers in University of Maryland Greenhouse, as compared to open growth 

chambers at The Institute of Genomic Research used in the previous experiment. 
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• In the current experiment, the elevated CO2 stress was applied by increasing 

concentration of the growth chamber as compared to connecting to a cylinder in 

the previous experiment. 

• Metabolomics was optimized for extraction derivatization and data-analysis. 

The results obtained from the current analysis are described in the following sections. 

5.1.2 Metabolomic profiling results 

Polar Metabolomic Profiles (Roessner et al., 2000) were obtained using the optimized 

protocol and experimental conditions described in Chapter 3 and Chapter 4, respectively, 

of this report. One of the liquid cultures (harvested at 6h in control) weighed abnormally 

low (9.2 gm), about 50% of average of all sample (18.4 gm) and 60% of its bio-replicate 

(15.2 gm), and was also identified as an outlier in metabolomic and transcriptomic 

analysis (data not shown) and hence was removed from the analysis. In the acquired 

metabolomic profiles, 550, among which 147 known, metabolite methoxime (Meox)-

trimethylsilyl(TMS)-derivative peaks were detected. After data correction, normalization 

and filtering, the set of metabolite peak areas that were finally considered in the analysis 

included 89 annotated and 216 unidentified. Among the 89 known metabolites, 61 

correspond to metabolites forming only one TMS-derivative, 9 to one of the two 

geometric isomer derivatives of ketone-group containing metabolites (see Chapter 3), and  
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Figure 5-1: Log2 Ratio Normalized Peak Area (NPA) profiles of Perturbed (elevated CO2) to  NPA 

Control  profiles indicate up to 15 fold increase - decrease in metabolite levels. 
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19 to cumulative peak areas of amine-group containing metabolites. The coefficient of 

peak area variation between injections of the same sample and between biological 

replicates was 6.3% and 17%, respectively. Each timepoint (except control 6 h) was 

represented by at least 4 (2 biological x 2 instrumental replicate) spectra (at 0h, with 4 

bio-replicates, 8 spectra were available). Data correction, filtering and normalization was 

done as described earlier in Chapter 3 to obtain normalized peak areas for control and 

perturbed experiments. The log ratio of this normalized peak profiles is shown in Figure 

5-1. As can be seen from the figure up to 15 fold increase (most at 1h) as well as decrease 

in metabolites (most at 30h) is observed in response to elevated CO2. 

5.1.3 PCA Analysis 

According to TIGR MeV Principal Component Analysis (PCA), the control metabolomic 

profiles can be clearly differentiated from their perturbed counterparts (Figure 5-2). This 

implies that the physiology of the plant liquid cultures is affected significantly by the 

applied perturbation at the metabolic levels, even during the first 30h of treatment. It is 

further interesting to note that even though elevated CO2 modifies the metabolism 

significantly, the variation due to elevated CO2 is mainly seen in the direction of principal 

component 3 which accounts for only 9% of the total variation, the largest variation is 

however with time which accounts for 45% of the total information content. 

5.1.4 SAM and MiTimeS Results 

Paired-SAM analysis (delta=1.35, 0% FDR) identified 28 (6 known) and 0, respectively, 

metabolites, whose average over time concentration had significantly decreased or 
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increased due to the applied perturbation (in the rest of the text, they will be referred to as 

negatively and positively significant, respectively) (Figure 5-3). It needs to be noted that, 

in the case that the new data correction and derivatization algorithm presented in Chapter 

3 of the report had not been used, i.e. both derivative peak areas of the known ketone-

group containing metabolites and all derivative peak areas of the amine-group containing 

metabolites had been included in the statistical analysis (361 peak areas in total), 14 (3 

known) additional peak areas corresponding to amine-group containing metabolites 

would have been identified as negatively significant (Figure 5-4). This result reinforces 

the validity of the new algorithm and provides additional evidence supporting the need 

for correcting the metabolomic profiles from the derivatization biases (Kanani and Klapa, 

2007).  

MiTimeS analysis (Dutta et al., 2007), on the other hand, many more negatively and 

positively significant metabolites were identified at the individual timepoints (average 91 

and 66, respectively) for the same significance threshold value (Figure 5-3). MiTimeS 

analysis (Dutta et al., 2007) also allows calculation of Significance Variability Score (SV 

Score) which represents the amount of fluctuations in the significance level for each 

metabolite on a scale of 0-2 as described earlier in Chapter 3. SV score of 0 represents the 

metabolite does not undergo change in its significance level and maintains the same 

significance level at all time points. In contrast SV score 2 represents that the metabolite 

changes its significance level from positively significant to negatively significant and 

vice-versa at each and every time point. The SV score distribution which plots the SV 

score against the fraction of the detected polar metabolites at each SV score is shown in 

Figure 5.5. 
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Figure 5-2: Principal Component Analysis (PCA) of Elevated CO2 response using TIGR MEV 3.0 

shows a significant difference in metabolism of A. thaliana liquid cultures even during the 1-30h.  
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Figure 5-3:  Number of Positively, Negatively and Total significant metabolites along with % median 

False Detection Rate (FDR) obtained for overall analysis and individual time points, using paired-

SAM and MiTimeS analysis. 
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Figure 5-4: Paired-SAM Negatively significant metabolites with and without the use of data correction algorithm with takes care of biases in Category-3 

metabolites (compounds containing amine groups). The comparison clearly shows in absence of data correction the results obtained can be biased due 

to variations in derivatization which may be assigned biological significance. 
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As can be seen from the figure, in response to elevated CO2, only three (all unidentified) 

metabolites were observed in the same significance level (non-significant) at all 

timepoints (i.e. SV score = 0), while all others were observed as positively or negatively 

significant at one time point at least. This shows that there is no pathway which is not 

perturbed by elevated CO2 at least during the short-term response. 

According to Figure 5-3, CO2 availability resulted in a drastic initial increase in the free 

polar metabolite pool sizes. The changes in the number of positively and negatively 

significant metabolites during the initial 6h of perturbation suggests (a) potential 

feedback inhibition of the pathways producing the measured free polar metabolites after 

the drastic initial increase in latter’s concentration, and/or (b) initiation of the pools’ 

consumption for the production of macromolecules and plant growth. The minimum and 

maximum total number of significant metabolites was observed at 9h and 24h, 

respectively, after the initiation of the perturbation. At 24h, more that 60% of the free 

polar metabolites were identified as negatively significant. The time point correlation 

network based on the positively significant metabolites (Figure 5-6A) indicates strong 

correlation between the time points up to 12h. The common known positively significant 

metabolites among these time points are mainly amino acids and other amine-containing 

compounds, intermediates of the one-half of the TCA cycle (citrate, iso-citrate, α-

ketoglutarate), which is responsible for the production of glutamate-based amino acids, 

most of the triose- and hexose- phosphates and some fatty acids. The time point 

correlation network based on the negatively significant metabolites indicates strong 

correlation between the longer time points (18h, 24h, 30h).  
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Figure 5-5: Significance Variability (SV) Score distribution of metabolites shows  
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Figure 5-6: Time point correlation networks based on the common between time points (A) positively 

and (B) negatively significant metabolites. Two time points are connected, if their correlation 

coefficient is larger than the indicated threshold, the latter being selected in each case as the average 

of all between different timepoints correlation coefficients. 

At these time points the number of positively significant genes is very low suggesting a 

continuous drain of the measured free polar metabolite pools without similar increase in 

their production rate. Most of the metabolites, which were identified as positively 

significant during the first 12h of the perturbation, belonged to the negatively 
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significance level at longer time points. Based on the number of metabolites that were 

significant at a particular time point only, the response of the system at 30 h of 

continuous perturbation can be singled out. This is in agreement with the observation that 

24h of perturbation is a “turning point” in the response of the system to the applied 

perturbation. 

In summary MiTimeS analysis of metabolomic data suggests a first turning point in the 

plant liquid culture’s physiology between 9h and 12h and a second at 24h of continuous 

perturbation. After 24h the response of the cultures seems to be drastically changing 

giving rise to the unique profiles measured at 30h. The following sections discuss the 

most prominently observed changes in the physiology of the A. thaliana liquid cultures 

due to the applied perturbation in the context of specific pathways that are directly or 

indirectly related to carbon fixation. 

5.1.5 Analysis of Individual Pathways 

Photorespiration Pathway 

Carbon and oxygen “compete” for Rubisco activity (Figure 5-7) as the Rubisco catalyses 

both the carboxylation and oxidation reaction. The pathway for regenerating Calvin cycle 

intermediate from the oxygenation product is known as Photorespiration pathway. This is 

an important pathway for plants as it wastes CO2 and hence reduces the biomass yield. 

Changes in the CO2/O2 ratio have been shown to affect the flux distribution between the 

two pathways (Siedow and Day, 2001; Dey and Harborne, 1997; Coschigano et al., 1998) 

by: (a) rescuing mutants having genes deficient in the photorespiration NH3 recycle 
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pathway (b) in vitro enzymatic assays. The metabolomic analysis of the response of A. 

thaliana liquid cultures to elevated CO2, showed significant changes in the metabolomic 

pools of all three detectable known organic acid intermediates of the photorespiration 

pathway, i.e. glycolate, glycerate and glyoxylate at (3,6,24h), (3,6,18,24h,30h and paired-

SAM) and (3,6,18,24,30h and paired-SAM), respectively (Figure 5-7). This is the first 

time that the actual decrease in the metabolite pools of the photorespiration pathways has 

been quantified. This also demonstrates the effect of elevated CO2 on the 

photorespiration pathway is similar to what has been observed in the soil grown plants. 

Tri-Carboxylic Acid (TCA) Cycle Metabolites 

Tri-Carboxylic acid Cycle (Figure 5-8) is the primary aerobic respiration pathway in the 

mitochondria for most eukaryotic systems (Tiaz, 2002). TCA cycle is responsible for the 

production of energy in the form of ATP and reducing power in the form of NADH and 

FAdH2 by oxidation of pyruvate (derived from sucrose) into CO2 (Tiaz, 2002). Apart 

from providing energy and reductive power TCA cycle also provides intermediates - α-

ketoglutarate and oxaloacetate (OAA) which are used as carbon skeleton for various 

amino acids, purines, polyamides and various secondary metabolites (Tiaz, 2002). In 

response to elevated CO2, as can be seen from Figure 5-8, most of the metabolite pools 

show a significant increase at 1h and significant decrease at 24h. This was in line with the 

over-all response of the free metabolite pools as the highest number of positively and 

negatively significant metabolites were observed at these time points. At other time 

points interestingly there were two distinct responses. During 3-12h, the right side of the 

TCA cycle from citrate -> α-ketoglutarate showed  a significant increase at most of the  
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Figure 5-7: Observed effect of the applied perturbation on the physiology of photorespiration, at the 

metabolic levels. If a metabolite was identified as positively or negatively significant at a particular 

time point, the corresponding time point box under this metabolite’s name is colored red or green, 

respectively. The significance level of the metabolite as identified by paired-SAM is indicated by the 

fonts’ color of the metabolite’s name (red or green for positively or negatively, respectively, 

significant metabolites). 

time points, however the left side from succinate to malate showed a significant decrease. 

Similar contradictory changes were also observed at 24h, suggesting differential 

regulation of these metabolite pools in the same TCA cycle.   
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Figure 5-8: Observed effect of the applied perturbation on the physiology of the Tri Carboxylic Acid (TCA) cycle and amino acid biosynthesis at the 

metabolic level. Positively and negatively significant metabolites are color-coded as described in the caption of Figure 5-7.



107 

Nitrogen Assimilation and Amino Acid Biosynthesis 

Nitrate Reductase (NR) gene, is the first enzyme in the nitrogen assimilation pathway and 

light, nitrate ions and carbohydrates, have shown to induce expression of NR mRNA 

(Larios et al., 2001; Cheng et al., 1991; Cheng et al., 1992). It was speculated that the 

regulation by light is achieved through carbohydrates concentrations (Cheng et al., 1991). 

Elevated CO2 study (Larrios et al., 2001) on cucumber plants indicated increase in the 

expression of the gene encoding nitrate reductase (NR), due to the applied stress. From 

the metabolomic data, three of the four nitrogen-storage amino acids (Coruzzi, 2000), 

glutamine, asparagine and aspartate, were identified as positively significant at most of 

the timepoints during the first 12h (Figure 5-8). Even though the concentration of the 

fourth amino acid, i.e. glutamate, remained unaltered for the first 9h of the perturbation, 

decreasing slightly at 12h, amine-containing metabolites derived from glutamate, i.e. 4-

aminobutyrate (GABA), ornithine/arginine and N-acetyl-glutamate, were identified as 

positively significant at most of the time points. In addition, α-ketoglutarate required for 

the production of glutamate and glutamine along with its TCA cycle precursors citrate 

and isocitrate, were also positively significant at some/most of the timepoints during the 

first 12h (Figure 5-8).   

Apart from the amino acids that are related to nitrogen assimilation and storage, valine, 

isoleucine, glycine, lysine and methionine were also identified as positively significant at 

some/most of the timepoints during the first 12h (Figure 5-8). Thus, the concentration of 

most of the known detected amino acids and metabolites produced by them showed a 

significant increase in response to elevated CO2 stress during the first 12h. This was not, 
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however, the case for serine, threonine, and homoserine. The decrease in serine could be 

explained by the decrease in photorespiration pathway which was discussed earlier. It 

was interesting to note that both methionine and iso-leucine showed increase in their 

concentration during first 12 h even though homoserine and threonine, the intermediates 

to the pathway were negatively significant. The methionine pool size was identified as 

significantly increasing due to the applied perturbation during the first 12h. At 

subsequent time points, when most of the amino acids were identified as negatively 

significant, methionine belonged to the non-significant metabolites. The significant 

decrease in most of the amino acid pool sizes after 12h of perturbation could be because 

of either (a) decrease in the rate of CO2 fixation through the Calvin cycle due to 

inhibition of RubisCo and/or (b) increase in the rate of these pools’ depletion for the 

production of macromolecules for plant growth without equal increase in their production 

rate.  

Sugar Metabolite Pools 

In plants, Starch (a polymer of glucose) and sucrose are the major carbon storage 

molecules. Starch is usually used as a long-term storage where as sucrose is used for 

short term storage of carbon and for transport of carbon from source (leaf) to sink (roots, 

flower) tissues. Sucrose is also the most abundant sugar in A. thaliana liquid cultures thus 

representing a major portion of the sugar-metabolite pool. Both starch and sucrose 

concentrations are known to accumulate in response to long term CO2 stress. In the 

present analysis however, in response to short term (1-day) exposure to elevated CO2 

levels, the concentration of sucrose significantly decreased at 3h, 6h, 24h and 30h with a 
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slight increase in concentration at 18h (Table 5-1). It is interesting to note that at 1h 

timepoint when most of the known metabolites show a significant increase in the 

metabolite pools, sucrose metabolite pools remain non-significant. This suggests there is 

very less carbon accumulation in the form of sucrose in response to elevated-CO2 in the 

short term. In contrast, Fructose and Glucose obtained from sucrose were accumulated at 

(1h,12h,24h, 30h) and 30h, respectively, as shown in Table 5-1. The metabolomic 

analysis thus indicates a tendency towards fructose accumulation in response to elevated 

CO2 in the short term.   

Table 5-1: Significance level of Sugar, Sugar Phosphates and Sugar Alcohols at individual time 

points and paired-SAM analysis. Value of 1 in the table indicates metabolite levels were significantly 

increased in response to elevated CO2 stress at the particular time-point or from paired-SAM 

analysis of overall response as indicated by the column heading. In contrast, value of  -1 indicates a 

significant decrease.  

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Sucrose sugar -1 -1 1 -1 -1
Trehalose Sugar 1 1 1 -1 -1
Maltose Sugar 1 -1 -1
Cellobiose Sugar 1 1 1 -1

Glucose Sugar 1
Fructose Sugar 1 1 1 1

Glucose 6 P Phosph 1 -1 1 -1 -1
Fructose 6 P Phosph 1 1 -1 -1
Inositol-1/2-Phosphate Phosph 1 -1 1 1 -1

Arabinose sugar -1 -1 -1
Rhamnose Sugar -1 -1 -1 1
Xylulose Sugar -1 -1
Xylitol alc 1 -1
myo-Inositol alc 1 1 -1 1

Glycerol alc -1 -1 -1
Glycerol 3 P Phosph -1 -1 -1 -1 -1 -1 -1  
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Maltose and cellobiose are metabolites produced from starch and cellulose breakdown 

respectively where as Trehalose competes with the starch and cellulose biosynthesis 

pathway for carbon substrates. All the three sugars (maltose, cellobiose, trehalose) like 

sucrose are disaccharides. In response to elevated CO2 maltose shows significant increase 

at 1h as was observed for most of the metabolites, and significant decrease at 18h and 

24h. In contrast cellobiose was found to be positively significant at 3h, 6h, 12h 

suggesting increase in cellulose breakdown. In the competing pathway trehalose 

concentration is increased significantly at 1h, 12h and 18h as shown in Table 5.1.  

However maltose and cellobiose are either negatively significant or non-significant 

beyond 18h, suggesting a decrease in starch and cellulose breakdown or probably 

accumulation of starch and cellulose which is in line with the overall changes which 

suggest increase in macro-molecule production in response to elevated CO2 at these time 

points. However these needs to be confirmed by actual measurement of starch/cellulose 

or by analyzing the corresponding transcriptomic fingerprint of the same response. 

Apart from the role of sugars in carbon storage and transport, sugar metabolites are also 

used to build structural carbohydrates (oligosaccharides) required for the plant cell wall. 

Apart from cellulose which is the polymer of glucose, plant also produces hemi-cellulose 

which is a polymer made from a combination of hexose (glucose, fructose, galactose, and 

mannose) and pentose (xylulose, arabinose, rhamanose) sugars. As can be seen from 

Table 5.1 xylulose, rhamanose, arabinose and xylitol are negative or non-significant at 

most of the time points except 30h. In addition glycerol and glycerol-3-phosphate which 

are utilized for production of cell membranes constituents glycerolipids and 
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phospholipids were also negative significant at (3h, 6h, 18h) and (1-9h,18h,30h) 

respectively suggesting a possible drain for increased production of the cell membranes.    

Secondary Metabolite Pools 

The three aromatic amino acids: tryptophan, tyrosine and phenylalanine; are the 

precursors for many secondary metabolites which are important for a host of important 

physiological functions in plants. As shown in Figure 5-9, tryptophan produces important 

plant hormone Indole-Acetic Acid (IAA) also known as Auxin which was the first plant 

hormone discovered and which regulates growth of the plants. In addition it produces a 

family of indole alkanoids and indole glucosinolates. Phenylalanine is the other important 

secondary amino acid which is the precursor for the production of flavanoids, important 

plant cell wall constituents’ lignin and syringin; and possibly regulatory compound 

salicylic acid important for regulating defense response to biotic stress in plants. The 

third aromatic amino acid tyrosine – is mainly used for production of alkanoids in higher 

plant, however in Arabidopsis, very few alkanoids are detected and the biosynthesis of 

alkanoids is still being studied. 

Even though the choice of GC-MS for metabolomic analysis limits the extent to which 

secondary metabolism can be studied, a number of metabolites which are precursors to 

the secondary metabolite and the concentration of the three aromatic amino acids can be 

detected using GC-MS as shown in Figure 5-9. The analysis revealed that in A. thaliana 

liquid cultures, from the three aromatic amino acids, tryptophan pools was the smallest, 

close to or below the detection limit in most of the samples, however some of the 

metabolites derivatives derived from tryptophan had significantly higher metabolite 
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Figure 5-9: Response of Metabolite Pools in Arabidopsis thaliana secondary metabolism pathways. Positively and negatively significant metabolites are 

color-coded as described in the caption of Figure 5-7. 
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pools. In response to elevated CO2, two metabolites, Nicotinate and an unidentified 

compound showing a very similar mass-spectra to nicotinate were identified as 

negatively or non-significant between 3-30h. From these two, nicotinate was also 

identified as negatively significant from paired-SAM analysis suggesting relative  

inhibition of nicotinate production. Another identified metabolite produced using 

tryptophan as a precursor was indole-3-acetamide which is in the auxin biosynthesis 

pathway which showed small fluctuations in metabolite pools in response to elevated 

CO2 as shown in Figure 5-9. 

From the other two aromatic amino acids, in response to elevated CO2, tyrosine was 

positively significant at 1h and 9h, but negatively significant at 6h,12h,18h,24h and 30h 

time point;  Phenylalanine was positively significant at 1h and 12h and negatively 

significant at 18h and 30h. This is in line with our earlier observation of significant 

increase in amino acid levels during first 9-12 hours followed by significant decrease at 

12-30h. In addition to the secondary amino acids, metabolomic analysis also identified 

sinapinic acid and its derivative in the lignin/syringin biosynthesis pathway and salicylic 

acid and two related metabolites.  In response to elevated CO2 these metabolites showed 

significant increase at 1-2 timepoints during first 12h and significant decrease beyond 12 

h as shown in Fig 5-9. The only exception in this pathways was however methyl 

benzoate, whose role and biosynthesis pathway in plants has still not been completely 

elucidated. Methyl benzoate in response to elevated CO2, showed significant increase at 

1h, 9h, 18h and 24h and no-significant at the rest of the timepoints.   
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Butanoate Metabolism  

Butanoate metabolism is based on precursors from TCA cycle and is important for the 

production of Poly-hydroxybutyrates (PHBs) as well as intermediates for ketone bodies. 

PHBs are currently being commercialized as an important renewable, biodegradable 

alternative to petroleum based polymers. The pathway producing PHBs in plants 

however, have not yet been fully characterized and many genes and reactions involved in 

the same are still being studied. GC-MS metabolomic analysis identified several 

metabolites belonging to the known PHB pathways (2-hydroxyglutarate, 3-

hydroxybutanoate, 4-hydroxybutanoate) as well as some related metabolites (3-hydroxy-

3-methylglutarate, 2,3-dihydroxybutanoate, 3,4-dihydroxybutyrate) which may also be 

involved in Butanoate metabolism. As shown in Table 5.3, in response to elevated CO2 

all the metabolite pools belonging to this pathway showed significant decrease at time 

point beyond 1h with the sole exception of  3(or 2)-hydroxybutanoate which was 

positively significant at 1-12h and 30h. Two of the metabolites, 4-hydroxybutanoate and 

3,4 dihydroxybutyrate were also identified as negatively significant from paired-SAM 

analysis. The results thus suggest elevated CO2 significantly affects Butanoate 

metabolism and hence most probably also PHB production and its effect needs to be 

studied in further detail. 

Lipid Metabolism 

In the present metabolomic analysis experiments, the polar metabolomic profiles 

obtained by methanol-water extraction were studied. Most of the lipid metabolites are not 

extracted using this extraction method and the chloroform extraction is the preferred 
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Table 5-2: Significance level of metabolite pools belonging to Butanoate metabolism at individual 

time points and paired-SAM analysis. Positively and negatively significant metabolites are color-

coded as described in the caption of Table 5-1. 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
2-hydroxyglutarate acid -1 -1
3-Hydroxy-3-methylglutarate acid 1 -1 -1 -1 -1
2/3-hydroxybutanoate acid 1 1 1 1 1 1
4-hydroxybutanoate acid -1 -1 -1 -1 -1 -1 -1
3,4-dihydroxybutyric acid acid -1 -1 -1 -1 -1 -1
2,4-dihydroxybutanoic acid acid 1 -1 -1 -1 -1  

method for studying lipid metabolism. However 5 fatty acids (Table 5-3), two of the four 

major Arabidopsis sterols and Tocopherol (Vitamin E) which is derived from the sterols 

were extracted in the methanol-water extraction and hence were studies in the current 

analysis. These lipids are important in determining the composition of the cell 

membranes. In addition campesterol is an intermediate of plant hormone Brassinosteroid 

which regulate important aspects of plant development. As can be seen from Table 5-3, 

all the detected fatty acids and Tocopherol showed significant increase at 1h as most 

metabolite pools increased in response to elevated CO2. Similarly all FA and sterols were 

negatively/non significant at most of the time points beyond 18h except stearic acid. 

Stearic acid (C18, saturated FA) was positively significant at 1h, 6h, 9h, 18h and 30h and 

non-significant at the rest. Thus stearic acid showed an increased concentration of the 

metabolite pool even when most metabolite pools were negatively significant, suggesting 

an increased production in response to elevated CO2.   

Other Metabolite Pools 

Metabolomic analysis of A. thaliana liquid culture polar extracts using GC-MS also 

identified several other metabolites shown in Table 5-4. Some of these metabolites the 

exact role and the biosynthesis of the metabolites is still not known. For e.g. erythretol 



116 

Table 5-3: Significance level of fatty acid and sterol metabolite pools at individual time points and 

paired-SAM analysis. Positively and negatively significant metabolites are color-coded as described 

in the caption of Table 5-1. 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Stearic Acid FA 1 1 1 1 1
Linolenic acid FA 1 -1 -1
alpha-Linolenic acid FA 1 -1 -1
Gama Linolenic Acid FA 1 -1 -1 -1
Icosanoic acid FA 1 1 -1
Stigmasterol Sterol -1 -1 1 -1 1
CampeSterol Sterol -1 -1 -1 -1 -1
Tocopherol Pherol 1 -1 -1 1 -1 -1  

does not belong to any known A. thaliana pathway; and genes involved in biosynthesis 

and break-down of pyrole-2-carboxylic acid which is produced from proline degradation 

in some mammalian systems, are still not known. Even though the biosynthesis and 

regulatory role of these metabolites in Arabidopsis is still not understood, they do 

undergo significant change in response to elevated CO2 as can be seen from Table 5-4. 

Citramalate is another such metabolite which is present in significant quantity and its role 

in plants is not well understood.  

In addition metabolomic analysis also identified variation in Adenosine-Adenine, 

Ascorbate-Threonate concentration. Adenosine and Adenine are important plant 

metabolites and are involved in number of important cellular processes such as: 

Adenosine triphosphate (ATP) and Adenosine diphosphates (ADP) production, Cyclic 

AMP (CAMP) biosynthesis, Nucleotide / Purines  production, methyl donor S-Adenosyl-

Methionine (SAM) production and recycle. Unlike most metabolites in response to 

elevated CO2, adenosine and adenine do not show increased production. In fact adenine 

was negatively significant at 3h, 6h, 12h, 24h, 30h 
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Table 5-4: Significance level of other know metabolite pools at individual time points and paired-

SAM analysis. Positively and negatively significant metabolites are as described in Table 5-1. 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Erythritol alc 1 -1 -1 -1
Pyrrole-2-carboxylic acid acid -1 -1 -1 -1 -1
Citramalate acid -1 -1 1 -1 -1
Adenoise sugar -1 1 1 -1 -1
Adenine (2TMS) purine -1 -1 -1 -1
Threonate acid 1 -1 1 -1 -1
Ascorbate acid 1 1 1 1  

This suggests increased consumption of adenine for biosynthesis of other 

metabolites/macro-molecules mentioned before. In contrast in response to elevated CO2, 

Ascorbate (Vitamin C - an important plant anti-oxidant) metabolite pool showed increase 

at 1h, 6h, 12h and 30h. Threonate which is produced by oxidation of ascorbate however 

showed a slightly different variation in significance level and was found to be negatively 

significant at 6h, 24, 30h suggesting a decrease in ascorbate oxidation at this timepoints. 

Unknown Metabolite Pools 

In addition to the response of known metabolite pools to elevated CO2 discussed in this 

section so far, GC-MS metabolomic analysis also identified additional 226 additional 

unknown metabolites. From these 226, it was possible to classify about 102 unknown 

metabolites into broad functional categories such as sugars, phospho-derivatives, 

secondary metabolites, organic and fatty acids (unknown amine containing metabolites 

were removed from the analysis during data correction and normalization). In some case 

the mass-spectra also hinted towards the possible metabolite structure by similarity to 

other known metabolites. The significance levels of these unknown metabolites are 

available from Appendix II – Table A2-1. 
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5.1.6  Conclusions 

In summary, time-series metabolomic analysis of the short-term elevated CO2 response of 

A. thaliana liquid cultures indicated following: 

• In response to elevated CO2, up to 12-15 fold increase (and decrease) in the 

metabolite concentrations were observed in the free-metabolite pools. All 

Metabolite (except 3 unknowns) pools showed significant increase or decrease in 

concentration at least at one time point. A large variation in number of 

metabolites showing positively/negatively significant level was observed. 

• Elevated CO2 levels, increased significantly concentration of the majority of free 

cellular metabolite pools during the first 1h of the treatment. These increased 

metabolite pools gradually decrease till 9h either due to feedback inhibition or due 

to increased utilization for production of macro-molecules. Between 9-12 hours 

and between 24-30 hours this trend is again reversed suggesting changes in 

carbon fixation pathways.  

• Metabolite pools show large variations with time in response to elevated CO2 

giving rise to large variation in significance level of the metabolites. Most 

metabolite pools at one or other time point. 

• Photorespiration is inhibited in response to elevated CO2 stress. 

• TCA cycle metabolites show two unique responses to elevated CO2 separated by 

the conversion of α-ketoglutarate to succinate. This shows differential regulation 
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of parts of the same pathway, separated at the points where TCA cycle 

intermediates are exported for amino acid production. 

• Amino acid metabolite pool increases during first 12h suggesting increased 

nitrogen assimilation. The amino acid metabolite pools decrease beyond 12h due 

to either inhibition of nitrogen assimilation or increased macro-molecule 

production. The exceptions were homoserine and methionine which did not show 

the decrease in metabolite pools beyond 12h; and tyrosine which did not show 

significant increase during 12h. 

• In addition to primary metabolism, polar GC-MS metabolomic analysis also 

identified response of secondary metabolites, lipid, sterols and PHBs biosynthesis 

pathways identifying specific metabolites showing significant increase / decrease 

in response to elevated CO2. 

• GC-MS metabolomic analysis identified several metabolites which are detected in 

significant amounts and undergo significant change in response to elevated CO2 

however their roles in A. thaliana physiology is still not known and need to be 

further investigated.  
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5.2 SALT (NACL) STRESS RESPONSE 

Salt or Osmotic stress is a common problem faced in commercial agriculture due to 

fluctuations in water levels, salt deposits from over-irrigation or the basic nature of the 

soil where the plants are being grown. Considerable amounts of resources have been 

devoted in public as well as private industry research for developing verities of plants 

with better salt tolerance strains. The increases acceptance of Genetically Modified (GM) 

plants in the Americas and the interest in plants for energy production has provided 

additional thrust to research in this area. In this section, the results of the first-ever time-

series metabolomic analysis of salt stress response of whole plants is provided which is 

likely to further aid the current efforts to engineer more salt tolerant plants. 

5.2.1  Review of Osmotic (Salt) Stress Response in Plants 

Osmotic stress is a common stress encountered by most biological systems and hence the 

response to osmotic stress in last few decades have been studied in various systems such 

as plants, Bacteria, Yeast and Mammalian cell culture systems. It is an important defense 

mechanism in biological system necessary for their survival. All living organisms 

(bacteria (Verala et al., 2003), plants (Taiz, 2002)) are known to respond to osmotic stress 

by changing concentration of Osmoprotectants at the metabolic level. Specifically in case 

of A. thaliana, previous studies with NaCl stress (Essah et al., 2003; Taii et al., 2004) 

have shown that 50 mM and 250 mM salt stress could not be sustained by plants for more 

than 4 and 2 days respectively. In plants the NaCl salt stress affects the cellular 

physiology in two different ways: 
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• Increased salt concentration in the environment affects the osmotic balance within 

and outside the plant cells resulting in water transport out of the cells  to maintain 

the water potential (Taiz, 2002). 

• In addition to osmotic stress, presence of increased Na+ and Cl- ions also cause 

oxidative stress, the exact mechanism of which has still not been completely 

understood (Hamilton and Heckthorne, 2001) 

The first stress condition of salt stress experienced by plant is also similar to conditions 

encountered during drought and cold stress conditions. Similarly the second condition is 

similar to oxidative stress created by hydrogen peroxide / ozone. Hence a number of 

transcriptional analysis experiments have also been directed towards identifying common 

regulatory elements between these stress responses. Previous analyses of osmotic stress 

in plants have revealed plants counter these two stress conditions in the short-term by: 

• Increasing concentration of Osmoprotectants to balance the water potential 

stopping water loss out of the cell (Hayashi et al., 2000) 

• Increasing production of  anti-oxidants to counter oxidative stress (Munne-Bosch 

and Allegre, 2003) 

• Regulating activity of transporter proteins to regulate ion influx/efflux between 

external environment-cell and vacuole-cell (Hamilton and Heckthorne, 2001). 

These known stress response strategies of plants have motivated years of research in 

identifying the Osmoprotectants used by plants, regulation of their biosynthesis (Apse 

and Blumwald, 2002; Ronetein et al., 2002, Nuccio et al., 1999) and understanding 
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mechanism of their osmo-protection, some of which is still being actively investigated. In 

case of A. thaliana following Osmoprotectants have been identified: 

• Proline (Hayashi et al., 2000) 

• Glycine betaine (N,N,N- trimethyl Glycine) (Sakamoto and Murate, 2001) 

• Raffinose family oligosaccharides (Galactinol) (Taji et al., 2002) 

• Sucrose (Hamilton and Heckthorne, 2001) 

In addition studies of osmotic stress response in other plants and study of helophytes 

which have the natural ability to with stand high osmotic stress conditions have also 

suggested: 

• Inositol derivatives like onitol, pinitol (Vemon et al., 2007) 

• Polyamines like spermine, spermidine, putrescine (Sannazaro et al., 2006; Tang, 

et al., 2007 );   

• Other Betaine compounds such as proline betaine (Trinchant et al., 2004) and β-

alanine betaine (Bala et al., 2002) 

• Polyols (Nelson et al., 1999) 

In addition, trehalose is another such sugar which is known to be an important 

osmoprotactant in many eukaryotic and prokaryotic organisms. However osmotic stress 

response studies have indicated that trehalose does not have a significant role as 

osmoprotactant in plants (Wingler, 2000). The common antioxidants which have been 
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known to be utilized for oxidative stress response of Salt stress are (Hamilton and 

Heckthorne, 2001): 

• Ascorbate (Vitamin C) 

• Α-tocopherol (Vitamin E) 

• Glutathione 

• Anti-oxidant enzyme (Catalase, Copper/Zn dimutase)  

In recent years there have been several efforts to engineer more osmotolerant plants by 

introducing gene(s) involved in biosynthesis of Osmoprotectants or related regulatory 

enzymes (Apse and Blumwald, 2002; Ronetein et al., 2002, Nuccio et al., 1999) which 

have met with mixed success in achieving the desired goal. Better understanding of the 

stress response in plants at metabolic level will allow more efficient engineering 

strategies for introducing osmoprotection trait in commercial agricultural and bio-energy 

crops.  The results obtained from the current analysis are described in the following 

sections. 

5.2.2   Metabolomic profiling results 

Polar Metabolomic Profiles were obtained using the optimized protocol and experimental 

conditions described in Chapter 3 and Chapter 4, respectively, of this report. One of the 

liquid cultures (harvested at 12h in NaCl treatment) weighed abnormally low (12.8 gm), 

about 53% of average of all sample (22.8 gm) and 50% of its bio-replicate (15.2 gm), and 

was also identified as an outlier in metabolomic analysis and hence was removed from 
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the analysis. In addition 2 out of 4 and 1 out of 2 A. thaliana liquid cultures representing 

0h and 1h, respectively, were removed mid-way through the analysis due to media 

contamination and hence were not used in the current analysis. In the acquired 

metabolomic profiles, 550, among which 147 known, metabolite methoxime (Meox)-

trimethylsilyl (TMS)-derivative peaks were detected. After data correction, normalization 

and filtering, the set of metabolite peak areas that were finally considered in the analysis 

included 82 annotated and 169 unidentified. Among the 82 known metabolites, 55 

correspond to metabolites forming only one TMS-derivative, 9 to one of the two 

geometric isomer derivatives of ketone-group containing metabolites (see Chapter 3), and 

18 to cumulative peak areas of amine-group containing metabolites. Each timepoint 

(except control 1h, 12h) was represented by at least 4 (2 biological x 2 instrumental 

replicate) spectra. Data correction, filtering and normalization were done as described 

earlier in Chapter 3 to obtain normalized peak areas for control and perturbed 

experiments. The log ratio of this normalized peak profiles is shown in Figure 5-10. As 

can be seen from the figure up to 30 fold increase as well as decrease in metabolites is 

observed in response to 50 mM NaCl stress in plants. From the 82 known metabolites 10 

showed more than 4 fold increase at at-least one time point (Trehalose, Galactinol, 

Galacturonase, Xylulose, Glycerol, Indole-3-acetamide, Glutamine, Allantoin, N-

acetylglutamate, β-alanine) where as 5 known metabolites showed more than 4 fold 

decrease at, at-least one time point (Glutamine, allantoin, adenosine, valine, nicotinate).   
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Figure 5-10: Log2 Ratio Normalized Peak Area (NPA) profiles of Perturbed (NaCl Stress) to  NPA 

Control  profiles indicate up to 30 fold increase - decrease in metabolite levels. 
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5.2.3 PCA Analysis 

According to TIGR MeV Principal Component Analysis (PCA), the control metabolomic 

profiles can be clearly differentiated from their perturbed counterparts (Figure 5-11). This 

implies that the physiology of the plant liquid cultures is affected significantly by the 

applied perturbation at the metabolic levels, even during the first 30h of treatment. It is 

further interesting to note that most of the variation in metabolism in response to NaCl 

stress is along principal component 1 which accounts for 45% of the total variation and is 

almost perpendicular to the time variation in the control samples which is mostly along 

principal component 2 which accounts for only 14% variation. PCA analysis thus clearly 

indicates that the salt stress creates a significant response in the A. thaliana metabolism. 

PC1: 43%, PC2: 18%, PC3: 13% - Total: 74%
PC 2

NaCl

Control

PC2

PC1PC3

PC1: 43%, PC2: 18%, PC3: 13% - Total: 74%
PC 2

NaCl

Control

PC2

PC1PC3

 
Figure 5-11: Principal Component Analysis (PCA) of Salt Stress response using TIGR MEV 3.0 

shows a significant difference in metabolism of A. thaliana liquid cultures even during the 1-30h. 
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5.2.4 SAM and MiTimeS Results 

Paired-SAM analysis identified (delta=1.5, 1.2% FDR) identified 32 (11 known) and 48 

(11 known), respectively, positively and negatively significant metabolites in response to 

50 mM NaCl stress (Figure 5-12). MiTimeS analysis (Dutta et al., 2007), on the other 

hand, identified many more positively and negatively significant metabolites at the 

individual timepoints (average 67 and 72, respectively) for the same significance 

threshold value and a slightly higher average median FDR (1.7%) (Figure 5-12). The 

significance level profiles over time along with the paired-SAM result for all known 

metabolites are discussed individually in subsequent sections in the context of their 

biology.   
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Figure 5-12:  Number of Positively, Negatively and Total significant metabolites along with % 

median False Detection Rate (FDR) obtained for overall analysis and individual time points, using 

paired-SAM and MiTimeS analysis. 
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MiTimeS analysis (Dutta et al., 2007) also allowed calculation of Significance Variability 

Score (SV Score) which represents the amount of fluctuations in the significance level for 

each metabolite on a scale of 0-2 as described earlier in Chapter 3. SV score of 0 

represents the metabolite does not undergo change in its significance level and maintains 

the same significance level at all time points. In contrast SV score 2 represents oscillatory 

metabolite, i.e. the metabolite changes its significance level from positively significant to 

negatively significant and vice-versa at each and every time point. The SV score 

distribution which plots the SV score against the fraction of the detected polar 

metabolites at each SV score is shown in Figure 5.13. As can be seen from the figure, in 

response to salt stress, 11 metabolites (4.4% of total) were observed in the same 

significance level at all timepoints (i.e. SV score = 0). From these 11, 2 were known 

metabolites: Xylulose was positively significant at all time points and Glycerate was 

negatively significant at all time points. The other 9 were unknown metabolites from 

which 5 and 4 metabolites were positively and negatively significant, respectively, at all 

time points. This again indicates none of the metabolite was non-significant at all time 

point, i.e. all the detected metabolites showed significant variations at least at one time 

point. The highest dynamics was shown by 2 metabolites (2-oxoglutarate and a unknown 

sugar) with SV score 1.29.   

According to Figure 5-12, the highest numbers of total and negatively significant 

metabolites (~70%) were identified at 1h and 24h where as the highest number of 

positively significant metabolites were identified at 9h. These time points also showed 

maximum difference between number of positively and negatively significant 

metabolites, as for the rest of the time points they were more or less equal. A possible 
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explanation for these variations could be that at 1h, in response to salt stress the plant 

produces the necessary Osmoprotectants and proteins required to counter the salt stress. 

These create a significant drain on the metabolite pools giving rise to a large number of 

negatively significant metabolites at 1h (Figure 5-12). Gradually from 1h-9h, through 

improved carbon fixation or increased breakdown of carbon storage compounds like 

sucrose and starch, these metabolite pools are replenished and the production of 

Osmoprotectants and metabolite precursors for the necessary macromolecules is 

increased. This gives rise to gradual decrease in number of negatively significant 

metabolites and increase in number of positively significant metabolites (Figure 5-12). 

Beyond 9h, possibly, the plant has utilized the majority of stored carbon source or is 

unable to fix more CO2 and hence the opposite phenomenon is observed from 12-24 h 

with the highest number of negatively significant metabolites (Figure 5-12).     
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Figure 5-13: Significance Variability (SV) Score distribution of metabolites in response to NaCl stress 

shows the overall dynamics of the system. Note almost 5% of the total metabolites show  the same 

significant level at all time points and hence has SV score 0.  
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The time point correlation network based on, both the positively and negatively 

significant metabolites (Figure 5-14A) indicate strong correlation between timepoints 1h-

6h and between 18h-30h with the 9h time point showing the most unique response with 

least number of connections in both positively and negatively significant SCM networks. 

These suggests 9h to be the turning point at which, most probably the plant shifts from 

the immediate response to salt stress to a more long term strategy to resist salt stress. The 

detailed difference between these two responses will be discussed in more detail in the 

context of individual biological pathways. 
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Figure 5-14: Time point correlation networks based on the common between time points (A) 

positively and (B) negatively significant metabolites in response to salt stress. Two time points are 

connected, if their correlation coefficient is larger than the indicated threshold, the latter being 

selected in each case as the average of all between different timepoints correlation coefficients. 
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5.2.5 Analysis of Individual Pathways 

Photorespiration Pathway 

Carbon and oxygen “compete” for Rubisco activity (Figure 5-15) as the Rubisco 

catalyses both the carboxylation and oxidation reaction. The pathway for regenerating 

Calvin cycle intermediate from the oxygenation product is known as Photorespiration 

pathway. Though effect of changes in the CO2/O2 ratio has been shown to affect the flux 

distribution between the two pathways (Siedow and Day, 2001; Dey and Harborne, 1997; 

Coschigano et al., 1998) however the effect of salt stress on photorespiration pathway has 

not been studied before. As can be seen from Figure 5-15, in response to salt stress two of 

the three organic acids, Glycolate and Glycerate were negatively significant at 1-12h, 1-

30h and paired SAM respectively. The third organic acid glyoxilate, which also takes part 

in the glyoxilate pathways which is an alternative to TCA cycle for lipid respiration, was 

positively significant. This suggests for the first time, that photorespiration may be 

inhibited in response to salt stress. However the increase in glyoxilate would require 

more explanation since it was not possible to determine the change in glyoxilate level in 

photorespiration pathway and glyoxylate cycle pathway independently from metabolomic 

analysis alone.   

Tri-Carboxylic Acid (TCA) Cycle Metabolites 

Tri-Carboxylic acid Cycle (Figure 5-16) is the primary aerobic respiration pathway in the 

mitochondria for most eukaryotic systems (Tiaz, 2000). TCA cycle is responsible for the 

production of energy in the form of ATP and reducing power in the form of NADH and 
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Figure 5-15: Observed effect of the salt stress on the physiology of photorespiration, at the metabolic 

levels. Positively and negatively significant metabolites are color-coded as described in the caption of 

Figure 5-7. 

FAdH2 by oxidation of pyruvate (derived from sucrose) into CO2 (Tiaz, 2000). Apart 

from the osmotic stress effect of the salt stress, the salt stress is also known to cause 

oxidative stress which is known to significantly affect mitochondrial function. In fact, 

mitochondria are the first locations in cells for salt stress damage in plants (Hamilton and 

Heckthorne, 2001). However the exact mechanism of the same is still being studied 

(Hamilton and Heckthorne, 2001) and its effect on the TCA cycle in plants has not been 
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studied before. As can be seen from Figure 5-16, in response to salt stress, the TCA cycle 

intermediates from citrate to fumarate show significant increase in their concentration 

with the highest increase in concentration observed for aconitate, fumarate and iso-

citrate, two of which were also found to be positively significant from paired-SAM 

analysis. In contrast, malate showed significant decrease in its concentration in response 

to the salt stress at all time points except 9h and also from overall analysis. 

These results suggest increased activity in the TCA cycle to meet the increased ATP 

demand during salt stress. Prior metabolic flux analysis of Corynobacterium glutamicum 

under salt stress conditions also indicated an increased flux through glycolysis and TCA 

cycle pathway. The only exception of the metabolite pool of malate could be due to 

following reasons: 

• Role of malate in maintaining ion balance between vacuole and cytoplasm which 

is known to balance Cl- ions (Netting, 2001) 

• Role of malate in regulating guard cell movements which regulate stomata 

closing, one of the response to stop water loss by plants (Netting, 2001) 

• Possibility of activation of C4 / CAM pathways in which malate stored in 

vacuoles is converted to OAA and the carbon released is fixed by the Calvin 

Cycle. This pathway allows plants to close vacuoles and generate a very high 

concentration of carbon within the cells. This pathway also inhibits 

photorespiration as the CO2 concentration generated using this pathway is much 

higher.  
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Figure 5-16: Observed effect of the applied perturbation on the physiology of the Tri Carboxylic Acid (TCA) cycle and amino acid biosynthesis at the 

metabolic level. Positively and negatively significant metabolites are color-coded as described in the caption of Figure 5-7. 
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Since the current metabolomic analysis used whole plant extracts, it is not possible to 

determine if the decrease in malate was due to reduced production from fumarate or due 

to the other reasons mentioned above. However there is still a strong possibility of 

increase in TCA cycle flux based on the rest of the metabolites. In addition the response 

also identified another unique aspect about TCA cycle. The conversion from citrate to 

iso-citrate and the reverse reaction are both catalyzed by the gene aconitate hydratase 

with aconitate as an intermediate. In response to elevated CO2 however, aconitate shows 

a significantly more relative increase in concentration as compared to citrate and iso-

citrate which are expected to be at near equilibrium concentrations. This can not be 

explained based on the known information about aconitate hydratase and needs further 

investigation.  

Nitrogen Assimilation and Amino Acid Biosynthesis 

Nitrate Reductase (NR) gene, is the first enzyme in the nitrogen assimilation pathway and 

light, nitrate ions and carbohydrates, have shown to induce expression of NR mRNA 

(Larios et al., 2001; Cheng et al., 1991; Cheng et al., 1992). Presence of salt stress is 

known to suppress NR expression an activity (Dluzniekwza et al., 2007; Debouba et al., 

2006), however this suppression is also dependent on salt concentration and duration of 

stress. A number of heat shock, anti-oxidant and structural proteins are also induced in 

response to salt stress. Finally in some plant species and tress, polyamine compounds 

such as spermidine, spermine, citruline, etc are also expected to play the role of 

Osmoprotectants (Sannazaro et al., 2006; Tang, et al., 2007 ). The combined effect of this 
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is expected to drain the available organic/inorganic nitrogen pools in response to salt 

stress.  

As can be seen from Figure 15.6, in response to salt stress from the four nitrogen storage 

and transport amino acids: aspartate, asparagine, glutamate and glutamine: asparagine 

and glutamine were negatively significant at four out of eight time points. Glutamine was 

also positively significant at 6h, which was also the time point when glutamate showed a 

significant decrease. Glutamate and aspartate were identified as positively significant as 

positively significant at later time points (18h,30h & 12h,30h) respectively. This together 

suggests as expected there is a slight decrease / no decrease during the first 9h and at later 

timepoints there may be slight increase / no change in the overall nitrogen pools as 

aspartate and glutamate show a moderate increase where as glutamine and asparagine 

show slight decrease during these time points. 

From the other amino acids: homoserine, methionine, β-alanine showed significant 

increase at most of the time points and also from paired-SAM analysis of the overall-

response. In addition, glycine, N-acetylglutamate and allantoin showed significant 

increase at 5, 4 and 3 time points respectively. These significant increases in amino acids 

can be explained based on known physiology as follows: 

• The significant increase in homoserine and methionine in response to salt stress 

suggests an increased production of S-Adenosyl-Methionine (SAM) and Ethylene 

precursor 1-amino-cyclopropane-1-carboxylic acid. SAM is the most important 

methyl donor in plants and is especially need for biosynthesis of Glycine Betaine 

the main osmoprotactant in A. thaliana. Prior studies of stress response have also 
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shown increase in SAM methylation activity (Sanchez et al., 2004; Tabuchi et al., 

2005). In addition, ethylene production is also known to be increased in response 

to salt stress (Cao et al., 2007).  

• The significant increase in glycine confirms increased glycine-betaine levels, one 

of the two major known osmoprotectants in A. thaliana.   

• The significant increase in β-alanine suggests that in A. thaliana liquid cultures, 

β-alanine betaine (which is produced by successive methylation of β-alanine by 

SAM) plays an important role as an osmoprotectant. This is the first time we 

show that β-alanine betaine contributes to A. thaliana stress response, as so far 

there is only study which has speculated this role in the plant family 

Plumbaginaceae (Bala et al., 2000).  

• The significant increase in allantoin and N-acetylglutamate (at some time points 

more than 4 fold) suggests that polyamines which are produced using these 

intermediates also show a significant increase in response to salt stress. As 

discussed earlier, increased polyamine levels in trees and a number of other plant 

species have been shown to impart osmoprotection. The results from our 

metabolomic analysis indicate that the same also may be true for A. thaliana 

liquid cultures. 

Along with this increase in amino acids, three amino acids: Lysine, Valine and GABA 

also showed a significant decrease at most of the time points and from paired-SAM 

analysis. This is also the first time that significant decrease in their metabolite pools in 
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response to salt stress has been identified. Another interesting observation from Figure 5-

16 is that for each significant increase in the amino acid, we observe a significant 

decrease in the competing pathway. For e.g. homoserine-methionine show significant 

increase, however in its competing pathway lysine (and possibly iso-leucine whose 

concentration decreased in response to salt stress falling bellow detection limit at some 

timepoints and hence was removed during data normalization) showed a significant 

decrease in its concentration. Similarly: (a) β-alanine showed significant increase, but 

asparagine which competes for aspartate was negatively significant at 3 time points (b) 

N-acetylglutamate shows a significant increase but GABA (4-aminobutyric acid) shows a 

significant decrease at all time points (c) tyrosine shows significant decrease where as 

phenylalanine shows a moderate increase which is discussed later in secondary 

metabolism.  

These examples suggest that in the immediate response to salt stress, production of 

specific amino acids is increased for production of osmoprotactants. However in many 

case, a significant part of this increase was possibly achieved by re-configuration of 

metabolic flux from the competing pathways. These also suggest nutrient limitation either 

for carbon or nitrogen in response to salt stress which makes re-distribution of flux a 

more efficient mechanism for production of osmoprotectants as compared to production 

from starch degradation, CO2 fixation and NO3
- fixation. 

Sugar Metabolite Pools 

In response to the salt stress several sugar and sugar based metabolites showed significant 

increase in their concentration as shown in Table 5-4. Specifically, Galactinol – which is 
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a combination of myo-Inositol and galactose, is known to be an osmoprotactant in 

various plants (Taji et al., 2002), showed significant increase at 7/8 time points and from 

overall analysis as well. Inositol, the precursor of galactinol also showed significant 

increase at 3 timepoints. Sucrose which is also known to be induced in response to stress 

showed significant increase at later time points beyond 6h confirming the similarity 

between the current and previous studies. In addition, since all known metabolites were 

monitored in the current analysis, we were also able to identify significant increase in 

Cellobiose at all time points beyond 6h and from overall paired SAM analysis as well 

suggesting possibly cellulose degradation in response to salt stress. Xylulose was another 

sugar which showed significant increase in response to salt stress, with more than four 

fold increase at several time points as described earlier. Xylitol which is produced from 

Xylulose also showed significant increase at 3 time points. Unlike other sugars whose 

main role is for carbon storage and assimilation or regulation by signaling, Xylulose with 

Arabinose are mainly used for producing hemi-cellulose family of compounds known as 

Xyloglucans and Arabinoglucans respectively. In the present analysis however we do not 

see an increase in arabinose, but specifically in Xylulose. 

The change in hemi-cellulose, along with significant increase in cellobiose (produced 

from cellulose breakdown), suggests a novel long-term stress response strategy by plants 

in which the cell wall composition is changed to consist of more hemi-cellulose than 

cellulose. In addition, the hemi-cellulose composition would also undergo change to 

contain more Xyloglucans than Arabinoglucans. This is a novel observation, being made 

for the first time, and can provide an additional strategy for engineering more stress 

tolerant plants. 
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Table 5-5: Significance level of Sugar, Sugar Phosphates and Sugar Alcohols at individual time 

points and paired-SAM analysis in response to salt stress.  Positively and negatively significant 

metabolites are as described in Table 5-1.  

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Sucrose sugar P3840 -1 1 1 1
Trehalose Sugar P3983 -1 1
Cellobiose Sugar P4025 1 1 1 1 1 1 1

Glucose Sugar P2655 1 -1
Fructose Sugar P2601 1

Glucose 6 P Phosph P3548 -1 -1 -1 1
Fructose 6 P Phosph P3513 -1 -1
Inositol-1/2-Phosphate Phosph P3581 -1 1 1

Arabinose sugar P2242 -1 1 1
Rhamnose Sugar P2320 -1 -1 -1 -1 -1
Xylulose Sugar P2284 1 1 1 1 1 1 1 1 1
Xylitol alc P2230 1 1 1
myo-Inositol alc P2910 1 1 1
Galactinol alc-sugar P4270 1 1 1 1 1 1 1 1  

Secondary Metabolite Pools 

The three aromatic amino acids: tryptophan, tyrosine and phenylalanine; are the 

precursors for many secondary metabolites which are important for a host of important 

physiological functions in plants which were discussed earlier in Section 5.1.5. From the 

three amino acids, as with elevated CO2 response, the tryptophan metabolite pools were 

very low and below the detection limit in the A. thaliana liquid culture plants. From the 

other two secondary amino acids, tyrosine showed a significant decrease in its metabolite 

pools at seven time points and also from paired SAM analysis as shown in Figure 5-17. 

In contrast, phenylalanine showed a significant increase at 4 time points. This suggests a 

partition of flux from tyrosine to phenylalanine derived products which play important 

role in stress response. This was further supported by the fact that benzoic acid and 

methyl benzoic acid, both derived from phenylalanine showed significant increase in 
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their metabolite pools at 4/8 and 6/8 timepoints as well as from paired-SAM analysis. 

Particularly between 12-30h, both benzoate and methyl benzoate showed significant 

increase. A related plant signaling molecule (2-hydroxybenzoate or Salicylic acid) also 

showed significant increase at 9h and 30h. In contrast, from the secondary metabolites 

produced from tryptophan, the concentration of nicotinate showed significant decrease at 

6/8 time points and from paired-SAM analysis as well. The rest of metabolites, including 

plant hormone IAA’s precursor 3-Indole-acetamide showed slight variation in    from 

timepoint to timepoint. Thus it appears that in response to salt stress, phenylalanine and 

compounds derived from phenylalanine, showed significant increase in their metabolite  

negatively or non-significant between 3-30h. From these two, nicotinate was also 

identified as negatively significant from paired-SAM analysis suggesting relative pools, 

possibly with decreased flux towards tyrosine and tryptophan biosynthesis. 

Butanoate Metabolism  

Butanoate metabolism is based on precursors from TCA cycle and is important for the 

production of Poly-hydroxybutyrates (PHBs) as well as intermediates for ketone bodies. 

PHBs are currently being commercialized as an important renewable, biodegradable 

alternative to petroleum based polymers. The pathway producing PHBs in plants 

however, is still being studied. GC-MS metabolomic analysis identified several 

metabolites belonging to the known PHB pathways (2-hydroxyglutarate, 3-

hydroxybutanoate, 4-hydroxybutanoate) as well as some related metabolites (3-hydroxy-

3-methylglutarate, 2,3-dihydroxybutanoate, 3,4-dihydroxybutyrate) which may also be 

involved in Butanoate metabolism. 
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Figure 5-17: Response of metabolite pools in A. thaliana secondary metabolism pathways in response to 50 mM salt stress. Positively and negatively 

significant metabolites are color-coded as described in the caption of Figure 5-7. 
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As shown in Table 5-6, in response to salt stress, most metabolites with the exception of 

3,4 hydroxybutyrate were negatively significant before 6h and beyond 24h. 3,4-

hydroxybutyrate was the only metabolite which was negatively significant at 5/8 

timepoints and from paired SAM. 

Table 5-6: Significance level of metabolite pools belonging to Butanoate metabolism at individual 

time points and paired-SAM analysis in response to 50 mM salt stress. Positively and negatively 

significant metabolites are color-coded as described in the caption of Table 5-1. 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
2-hydroxyglutarate acid P2184 -1 -1 1 -1 -1
3-Hydroxy-3-methylglutarate acid P2197 -1 1 -1 -1
4-hydroxybutanoate acid P1279 -1 1 -1 1 1
3,4-dihydroxybutyric acid acid P1744 -1 -1 -1 -1 -1 -1
2,4-dihydroxybutanoic acid acid P1704 -1 -1 -1  

Lipid Metabolism 

Lipid Metabolism showed a significant increase in response to salt stress during the first 

12 hours. As can be seen from Table 5-7, all known FA and the sterols, tocopherol pools 

showed significant increase in their concentration during the first 12 hours.  In addition 

the sterols and tocopherol showed significant increase in their metabolite pools also at 24 

and 30h, as well as from overall paired-SAM analysis. This suggests an important role of 

steroids in NaCl salt stress response in Arabidopsis which has not been studied so far. 

From these metabolites only the tocopherol was known to be produced for its anti-

oxidant property in response to the salt stress and it is the first time we also see a 

significant increase in other sterols and fatty acid pools during first 12 hours.  

Other Metabolite Pools 

The other metabolite pool group consists of metabolites (a) whose exact role and the 
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Table 5-7: Significance level of fatty acid and sterol metabolite pools at individual time points and 

paired-SAM analysis in response to salt stress. Positively (1) and negatively (-1) significant 

metabolites are color-coded as described in the caption of Table 5-1. 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Stearic Acid FA P3432 1 1 1 -1
Linolenic acid FA P3461 1 1 1 1 -1
alpha-Linolenic acid FA P3536 1 1 -1
Gama Linolenic Acid FA P3509 1 1 1 -1
Icosanoic acid FA P3747 1 1 1 1 1
Stigmasterol Sterol P5045 1 1 1 1 1 1 1 1
CampeSterol Sterol P5007 1 1 1 1 1 1 1
Tocopherol Pherol P4850 -1 1 1 1 1 1 1  

biosynthesis of the metabolites is still not known e.g. erythretol, pyrole-2-carboxylic acid, 

citramalate (b) isolated metabolite pairs like Adenosine-Adenine, Ascorbate-Threonate. 

From these metabolite erythretol shows a significant decrease in response to the salt 

stress. From Ascorbate-threonate, ascorbate is known to play a role in oxidative stress 

response and its metabolite pools decreased significantly falling below the detection 

limited in response to the salt stress, suggesting also a significant decrease. In the case of 

Adenosine-Adenine, which are involved in Adenosine triphosphate (ATP) and  methyl 

donor S-Adenosyl-Methionine (SAM) metabolites, their concentration showed significant 

increase at 2/8 timepoints and 6/8  timepoints after a slight decrease in Adenosine 

concentration at 3h. This further supports increase in ATP, SAM production suggested by 

increase in TCA cycle and methionine biosynthesis pathway metabolites. 

Unknown Metabolite Pools 

The response of 90 unknown metabolites with at least some clue about their identity is 

shown in Appendix II (Table A2-2). 
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Table 5-8: Significance level of other known metabolite pools at individual time points and paired-

SAM analysis in response to salt stress. Positively (1) and negatively (-1) significant metabolites are 

as described in Table 5-1. 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Sorbitol alc P2608 -1 -1 1
Erythritol alc P1776 -1 -1 -1 -1 -1 -1 -1
Pyrrole-2-carboxylic acid acid P1716 1 -1 -1
Citramalate acid P1868 -1 1 1 -1 1
Adenoise sugar P4227 -1 1 1
Adenine (2TMS) purine P3120 1 1 1 1 1 1 1
Threonate acid P2042 -1 1 -1
Ascorbate acid P2948 ? ? ? ? ? ? ? ?  

Some of the interesting biologically interesting observation are as follows: 

• An unknown sugar metabolite showing a strong similarity to Maltitol shows 

significant increase in response to salt stress like Galactinol. 

• An unknown FA showing close similarity to C-18 Fatty acids shows similar 

significance pattern as other FAs i.e. positively significant during first 12h and 

negatively significant at -24h. 

From phosphor compounds, two unknown metabolites which are most probably 

Mannose-6-phosphate and ethanolamine phosphate show significant decrease in their 

metabolite pools at 7/8 time points and from paired-SAM analysis as well. Ethanolamine 

phosphate is known to be an important regulatory metabolite in the glycine betaine 

production pathway (Sakamoto and Murate, 2001) further supporting evidence of 

increase in its production. 
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5.2.6 Conclusions 

In summary, time-series metabolomic analysis of the short-term 50 mM salt stress 

response of A. thaliana liquid cultures revealed following: 

• In response to osmotic stress A. thaliana liquid cultures produce previously 

reported osmoprotectants like glycine betaine, sucrose and Raffinose-family 

oligosaccharides. In addition, they also produce β-alanine betaine and polyamines 

which have been known to be osmoprotectants in other plants. 

• To counter the oxidative stress A. thaliana liquid cultures use tocopherol (Vitamin 

E) and ascorbate (Vitamin C). Where as in case of tocopherol a significant 

increase was observed in response to stress, in case of ascorbate, in contrast a 

significant decrease was observed, suggesting increased use of ascorbate without 

replenishing the supply by equivalent amount. In addition all the other known 

sterols were also found to increase significantly in response to the salt stress. 

• TCA cycle metabolites showed a significant increase, specially fumarate, 

aconitate and iso-citrate, suggesting increased flux through TCA cycle to support 

increased demand for ATP. 

• Malate was the only TCA cycle metabolite which showed a significant decrease 

in its concentration, giving rise to possibility of utilization of malate pools in 

vacuoles as either carbon source, regulation of guard cell movements or balancing 

Cl- ions in vacuoles, which needs to be investigated further. 
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• Salt stress seems to have mild effect on the nitrogen storage and transport 

metabolite pools, suggesting not a significant change in nitrogen assimilation.  

• Amino acids connected to the biosynthesis of osmoprotectants (β-alanine, 

homoserine-methionine, N-acetylglutamate, glycine) showed significant increase 

in their concentration. A large part of this increase is achieved by re-distribution 

of flux from competing pathways resulting in significant decrease of amino acids 

pools in those pathways (asparagine, lysine, GABA, serine). This also suggests 

possibility of limitation of organic carbon or nitrogen nutrients resulting in 

competition of resources. 

• Another salt stress response strategy which was observed for the first time, is the 

possible re-configuration of the cell wall. Variations in sugar concentrations 

suggest possibility of increase in hemi-cellulose content, specifically xyloglucans, 

in the plant cell wall. In addition, at least in the short term, fatty acid 

concentrations also seem to be increasing. 

The above results, suggest four novel strategies for engineering plants with higher 

osmotic stress tolerance which have not so far been tried out: 

• Engineering plants to increase methionine and Adenosine biosynthesis increasing 

SAM production and/or increasing β-alanine betaine biosynthesis. 

• Increasing hemi-cellulose xyloglucan production. 

• Increasing increased carbon utilization for TCA cycle flux to increase ATP 

production, specifically increasing aconitate hydratase / iso-citrate lyase. A 
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possible strategy also could be to increase malate production outside the TCA 

cycle using genes such as malate synthase. 

• Increasing sterol production by increasing flux through the HMG-CoA 

mevalonate pathway currently also being engineered in bacteria to increases anti-

malaria drug Artemisinin production. 

These four strategies independently or in combination with existing strategies to increase 

osmoprotectants proline, glycine betaine and polyamines, can significantly increase 

osmo-tolerance of plants. In addition, the present analysis also suggests a different 

mechanism for increasing methionine concentration in plants, a commercially important 

project for animal feed industry. The present analysis also shows the advantage of time-

series metabolomic analysis to understand regulatory mechanisms in eukaryotic systems 

to develop novel strategies for engineering strains with desired traits.    
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5.3 TREHALOSE (SUGAR) SIGNAL RESPONSE  

In plants, sugar concentrations play an important role in regulating biological processes at 

both molecular and physiological level. Trehalose, is a disaccharide of glucose, and is 

known to be an important osmoprotectants in most biological systems (Wingler, 2002). 

However in plants when genes involved in trehalose biosynthesis were discovered few 

years ago even their presence was a surprise to plant biochemists and physiologists 

(Goddijns and Smeekens, 1998). Several subsequent experiments in the current decade 

have shown that trehalose does not play a significant role as osmoprotectant (which was 

also seen in the osmotic stress response study described in earlier section). Instead 

trehalose has been known to regulate carbon storage and utilization between source and 

sink tissues (Eastmond and Graham, 2003; Wingler 2002). However the detailed analysis 

of how this is achieved and other processes regulated by trehalose has not been studied so 

far. In this section the results obtained by introducing 12 mM trehalose signal in the 

media of Arabidopsis thaliana liquid culture are presented which improve the existing 

knowledge of role o trehalose in regulating primary metabolism of plants. Since trehalose 

is known to regulate carbon assimilation and utilization in plants, any new insights would 

also be valuable for current efforts to engineer plants which are more efficient fixers of 

carbon dioxide. 

5.3.1 Review of Trehalose (Sugar) Response in Plants 

Trehalose is produced from UDP-Glucose and Glucose-6-Phosphate via Trehalose-6-

Phosphate (T-6-P) as shown in Figure 5-18 (Wingler 2002). In spite of a plethora 
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trehalose synthesis genes present in A. thaliana(Layman, 2001), under normal conditions, 

very small amount of trehalose is accumulated due to very high activity of trehalose 

catabolism gene 
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Figure 5-18: Trehalose metabolism in plants with key regulatory enzymes 

trehalase (Wingler, 2002) which carries out hydrolysis of trehalose to two glucose 

molecules. After the discovery of these genes in Arabidopsis, subsequently similar genes 

have been found in most of the plants suggesting ubiquitous nature of trehalose in plant 

systems. However as mentioned earlier, unlike prokaryotic and certain mammalian 

system where trehalose is used for carbon storage and protection of proteins under stress 

(specially water and osmotic stress) (Wingler, 2002), in plants it was expected to play a 

role in carbon allocation (Wingler, 2002). 

The initial hypothesis of the role of trehalose in plants was derived from yeast where it 

functions is to regulate sugar levels (Goddijns and Smeekens, 1998; Wingler, 2002). 

Specifically, trehalose was expected to increase carbohydrate storage where as its 

intermediate trehalose-6-phosphate (T6P) was expected to regulate flux of glucose into 

glycolysis by regulating hexokinase activity, as is the case is in yeast. However 
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subsequent experiments have shown that in plants, trehalose-6-phophate does not have 

the hexokinase regulatory activity. So far studies of trehalose activity have used 

(Wingler, 2002):  

• Arabidopsis mutants in trehalose biosynthesis pathway 

• Inhibitors of trehalase (validamycin A)  

• Feeding studies feeding trehalose to plants 

These experiments carried out mainly in last decade have shown (Wingler, 2002): 

• Trehalose induces storage of carbohydrates in photosynthetic tissues 

• In Arabidopsis trehalose induces expression of ApL3 ADP-Glucose 

pyrophosphorylase gene which regulates starch biosynthesis in plants. These 

results in over accumulation of starch in leaves and reduction in root growth. 

• In Barley, trehalose induced expression of regulatory genes involved in fructan 

biosynthesis from sucrose. 

• Transgenic tobacco plants encoding E-coli trehalose phosphate synthase (TPS) 

gene which is expected to increase T6P levels show a more efficient 

photosynthetic activity per unit area. 

• T6P accumulation due to over-expression of (TPS) or mutation in (TPS) results in 

shunted growth and leaf development.  
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• T6P is also supposed to regulate starch biosynthesis by post transcriptional redox 

regulation of AGPase involved in starch biosynthesis  

Even though the results of the effects of trehalose and treahlsoe-6-phosphates have been 

now known for some time, the exact mode of this regulation in most cases is still not well 

understood. Further the effect of trehalose on the rest of the metabolism has not been 

investigated before. In the following sections, the results of time-series metabolomic 

analysis, the response of A. thaliana liquid cultures to trehalose feeding (12 mM) will be 

shown which gives a more system level understanding of regulation of metabolism by 

trehalose.  

5.3.2 Metabolomic profiling results 

Polar Metabolomic Profiles were obtained using the optimized protocol and experimental 

conditions described in Chapter 3 and Chapter 4, respectively, of this report. Specifically, 

in trehalose feeding experiments 2 out of 4 and 1 out of 2 A. thaliana liquid culture bio-

replicates representing 0h and 1h, respectively, were removed mid-way through the 

analysis due to media contamination/irregular-growth and hence were not used in the 

current analysis. In the acquired metabolomic profiles, 550, among which 147 known, 

metabolite methoxime (Meox)-trimethylsilyl(TMS)-derivative peaks were detected. After 

data correction, normalization and filtering, the set of metabolite peak areas that were 

finally considered in the analysis included 89 annotated and 188 unidentified. Among the 

89 known metabolites, 61 correspond to metabolites forming only one TMS-derivative, 9 

to one of the two geometric isomer derivatives of ketone-group containing metabolites 

(see Chapter 3), and 19 to cumulative peak areas of amine-group containing metabolites.  
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Figure 5-19: Log2 Ratio Normalized Peak Area (NPA) profiles of Perturbed (Trehalose Signal) to  

NPA Control  profiles indicate up to 20 fold increase - decrease in metabolite levels. 
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Each timepoint (except control 1h) was represented by at least 4 (2 biological x 2 

instrumental replicate) spectra. Data correction, filtering and normalization were done as 

described earlier in Chapter 3 to obtain normalized peak areas for control and perturbed 

experiments. The log ratio of this normalized peak profiles is shown in Figure 5-19.  

The highest variation in concentration observed was for intra-cellular trehalose. This is 

directly the result of exogenous trehalose supplied in the media. As can be seen from 

Figure 5-19, trehalose is represented by the blue line showing the highest increase in 

concentration in the known metabolite chart. The intra-cellular trehalose concentration 

increases significantly reaching 50 times the original concentration after 30h. Even 

though this result is expected result of a externally applied trehalose signal, it still 

confirms: 

• External trehalose in transported into the cells by plants and its transport is not 

inhibited by internal trehalose concentration. 

• In control plants, as discussed earlier from previous literature, trehalase activity 

ensures that trehalose concentration within the cell remains very low, however 

when trehalose is supplied exogenously, as can be seen from Figure 5-19, there is 

appreciable amount of trehalose accumulation, suggesting the trehalase activity is 

not increased significantly, if any, and this allows actual accumulation of 

trehalose and not just increased flux. 

• Other than trehalose and another polyamine metabolite allantoin, most of the 

other known metabolites showed up-to only 4 fold increase and decrease (+/- 2 in 
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log2 scale) in their relative concentration beyond 6 hours, suggesting smaller 

perturbations as compared to NaCl and CO2 stress response.    

5.3.3 PCA Analysis 

According to TIGR MeV Principal Component Analysis (PCA), the control metabolomic 

profiles can be clearly differentiated from their perturbed counterparts (Figure 5-20). This 

implies that the physiology of the plant liquid cultures is affected significantly by the 

applied perturbation at the metabolic levels, even during the first 30h of treatment. It is 

further interesting to note that the trehalose treated plant group, has almost the opposite 

scores as compared to the control plants. Hence the variation with time and variation due 

to trehalose response are similar and are mostly accounted by principal component 1 

which accounts for only 34% of the total variation.  

5.3.4 SAM and MiTimeS Results 

Paired-SAM analysis identified (delta=1.26, 0.8% FDR) identified 17 (10 known) and 23 

(4 known), respectively, positively and negatively significant metabolites in response to 

12 mM Trehalose signal (Figure 5-21). MiTimeS analysis (Dutta et al., 2007), on the 

other hand, identified many more positively and negatively significant metabolites at the 

individual timepoints (average 50 and 71, respectively) for the same significance 

threshold value and a slightly higher average median FDR (1.2%) (Figure 5-21). The 

significance level profiles over time along with the paired-SAM result for all known 

metabolites are discussed individually in subsequent sections in the context of their 

biology. 
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Figure 5-20: Principal Component Analysis (PCA) of Trehalose Signal response using TIGR MEV 

3.0 shows a significant difference in metabolism of A. thaliana liquid cultures even during the 1-30h.  
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Figure 5-21:  Number of Positively, Negatively and Total significant metabolites along with % 

median False Detection Rate (FDR), in response to Trehalose signal obtained for overall analysis and 

individual time points, using paired-SAM and MiTimeS analysis. 
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MiTimeS analysis (Dutta et al., 2007) also allowed calculation of Significance Variability 

Score (SV Score) which represents the amount of fluctuations in the significance level for 

each metabolite on a scale of 0-2 as described earlier in Chapter 3. SV score of 0 

represents the metabolite does not undergo change in its significance level and maintains 

the same significance level at all time points. In contrast SV score 2 represents oscillatory 

metabolite, i.e. the metabolite changes its significance level from positively significant to 

negatively significant and vice-versa at each and every time point. The SV score 

distribution which plots the SV score against the fraction of the detected polar 

metabolites at each SV score is shown in Figure 5.22. As can be seen from the figure, in 

response to salt stress, 6 metabolites (2% of total) were observed in the same significance 

level at all timepoints (i.e. SV score = 0). From these 6, only 2 were known metabolites: 

Trehalose was positively significant at all time points and Tyrosine was negatively 

significant at all time points. The other 4 were unknown metabolites from which 3 and 1 

metabolites were negatively and non-significant, respectively, at all time points. This also 

indicates only one metabolite was non-significant at all time point, i.e. almost all the 

detected metabolites showed significant variations at least at one time point. The highest 

dynamics was shown by only 1 metabolite Galactinol with SV score 1.29.   

According to Figure 5-21, in response to trehalose stress the total number of significant 

metabolites is less than 40% of the total for most of the time points except 1h, 12h and 

30h, where this was 70%, 53% and 64% respectively. Also at most of the time points, the 

number of negatively significant metabolites were higher or equal to positively 

significant metabolites except at 30h where almost 60% of metabolite pools showed a  
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Figure 5-22: Significance Variability (SV) Score distribution of metabolites in response to 12 mM 

trehalose signal shows the overall dynamics of the system.  

significant increase in comparison to 4% of the total metabolites showing significant 

decrease. This identifies 30h as having a unique response which could have been the 

result of very high trehalose concentration within the plant, as this is also the time point 

at which the trehalose concentration was the maximum. The result also indicates a 

possibility that trehalose might have different regulation of the metabolism at different 

concentration levels. At very high concentration, trehalose apart from having a regulatory 

role may also be utilized as a source of carbon increasing significantly majority of the 

polar metabolite pools. This however needs further investigation by either increasing the 

trehalose concentration in the medium or conducting the experiment for longer time. 

The time point correlation network based on, both the positively and negatively 

significant metabolites (Figure 5-23) indicates strong correlation between consecutive 
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timepoints as well as between short (1h,3h,6h) and long time points (12h, 18h, 24h) 

except for 30h which showed the most unique response which was also indicated from 

the number of significant metabolites. The correlation within the time points suggests 

lower variability in the system which is also indicated by SV score distribution which had 

a lower mean and median as compared to NaCl and CO2 stress. The biological 

significance of the response is discussed in the context of individual biological pathways 

in the following section. 
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Figure 5-23: Time point correlation networks based on the common between time points (A) 

positively and (B) negatively significant metabolites in response to 12 mM trehalose signal. Two time 

points are connected, if their correlation coefficient is larger than the indicated threshold, the latter 

being selected in each case as the average of all between different timepoints correlation coefficients. 
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5.3.5 Analysis of Individual Pathways 

Photorespiration Pathway 

Carbon and oxygen “compete” for Rubisco activity (Figure 5-24) as the Rubisco 

catalyses both the carboxylation and oxidation reaction which form 3-phosphoglycerate 

and 2-Phosphoglycolate respectively. The pathway for regenerating Calvin cycle 

intermediate from the oxygenation product is known as Photorespiration pathway. As can 

be seen from Figure 5-24, in response to trehalose signal there was a mild decrease in the 

three organic acids in the pathway at 3/4 timepoints during first 24h. Only metabolite in 

the pathway showing significant response was Glycine which showed significant 

increase, however this was the result of overall increase in amino acid biosynthesis which 

is described later in this section. This suggests trehalose signal has no significant effect or 

very mild repression of the photorespiration pathway. 

Tri-Carboxylic Acid (TCA) Cycle Metabolites 

Tri-Carboxylic acid Cycle (Figure 5-25) is the primary aerobic respiration pathway in the 

mitochondria for most eukaryotic systems (Tiaz, 2000). TCA cycle is responsible for the 

production of energy in the form of ATP and reducing power in the form of NADH and 

FAdH2 by oxidation of pyruvate (derived from sucrose) into CO2 (Tiaz, 2000). As can be 

seen from Figure 5-25, trehalose does not have any significant overall effect on TCA 

cycle metabolites. Most of the metabolites are positively or negatively significant at 2/3 

timepoints. However it is interesting to see that as observed earlier, even though citrate 
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and iso-citrate show similar variation in significance level, their intermediate aconitate 

does not follow the same trend suggesting additional regulatory elements for aconitate 
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Figure 5-24: Observed effect of the trehalose signal on the physiology of photorespiration, at the 

metabolic levels. Positively and negatively significant metabolites are color-coded as described in the 

caption of Figure 5-7 
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Figure 5-25: Observed effect of the trehalose signal on the physiology of the Tri Carboxylic Acid (TCA) cycle and amino acid biosynthesis at the 

metabolic level. Positively and negatively significant metabolites are color-coded as described in the caption of Figure 5-7. 
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Amino Acid Biosynthesis 

Since trehalose was primarily known to affect carbohydrate metabolism, all the studies 

trying to understand the regulatory role of trehalose were focused on carbohydrate 

metabolism. However in the current experiment, metabolomic analysis showed in 

response to trehalose signal, most of the amino acids showed significant increase in their 

concentration.  As can be seen from Figure 5-25, 9 amino acids showed significant 

increase at most of the time-points and also from paired-SAM analysis. This accounted 

for all the known metabolites showing significant increase along with intra-cellular 

trehalose concentration in response to trehalose signal. In addition to these 9 metabolites, 

lysine, alanine, (ornithine + arginine) and glutamate were also found to be positively 

significant at 5/8, 3/8, 2/8 and 1/8 timepoints respectively. Aspartate and tyrosine (Figure 

5-26) were the only amino acids which were negatively significant at most of the time 

points and also from paired-SAM analysis. In addition valine, N-acetyl glutamate and 

serine also showed significant decrease in concentration at 5/8, 3/8 and 1/8 time points 

respectively. This suggests a significant increase in amino acid pools and most probably 

also in nitrogen assimilation in response to trehalose signal in plants.  

Nitrate Reductase (NR) gene, is the first enzyme in the nitrogen assimilation pathway and 

light, nitrate ions and carbohydrates, have shown to induce expression of NR mRNA 

(Larrios et al., 2001; Cheng et al., 1991; Cheng et al., 1992)]. Previous studies of sucrose 

feeding in dark grown A. thaliana seedlings (Cheng et al., 1992) and elevated CO2 stress 

response (Larrios et al., 2001) have shown induction of NR gene expression. This is the 

first time we show that trehalose signal also increases nitrogen assimilation. Further the 
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increase in amino acids in response to trehalose is much stronger and uniform as 

compared to the effect of elevated CO2. This result thus demonstrates the advantage of 

using high-throughput techniques which allow us to identify phenomenon without a 

priory hypothesis. 

Sugar Metabolite Pools 

In response to trehalose signal, most sugar metabolite pools show a significant decrease 

at 1h as can be seen from Table 5-9. Increased intra-cellular trehalose levels are known to 

result in accumulation of starch. Accordingly in response to trehalose signal we see a 

significant decrease in sucrose at 1hr and 12 hr (which is the alternate carbon storage 

compound) and in maltose (which is formed by degradation of starch) at 1hr, 6hr, 12hr, 

18hr and 24hr. Both these observation and lack of significant increase in other sugar 

levels indicate starch accumulation is increased. However suggested mechanism for 

trehalose induced starch accumulation has been increased production of starch by 

increased expression of gene ADP-glucose-phosphopyrolase. But the significant decrease 

in maltose concentration at 5 of the 8 time points suggest role of trehalose in not only 

increasing starch production (based on earlier studies) but also in decreasing starch 

breakdown. This is the first-time role of trehalose in regulating starch break-down for 

accumulating starch has been observed. It would be interesting to further study through 

future experiments if the increased production or the reduced break-down is the major 

cause behind starch accumulation as a result of increased trehalose concentrations in 

plants. 
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Table 5-9: Significance level of Sugar, Sugar Phosphates and Sugar Alcohols at individual time 

points and paired-SAM analysis in response to trehalose signal.  Positively and negatively significant 

metabolites are as described in Table 5-1.  

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Sucrose sugar P3840 -1 -1 1
Trehalose Sugar P3983 1 1 1 1 1 1 1 1 1
Maltose Sugar P3923 -1 -1 -1 -1 -1
Cellobiose Sugar P4025 -1 1

Glucose Sugar P2655 1
Fructose Sugar P2601 1

Glucose 6 P Phosph P3548 -1 -1
Fructose 6 P Phosph P3513 1 -1 1
Inositol-1/2-Phosphate Phosph P3581 -1 -1 -1

Arabinose sugar P2242 -1 -1 1
Rhamnose Sugar P2320 -1 -1 -1 1
Xylulose Sugar P2284 -1 1
Xylitol alc P2230 -1 -1 -1 -1 -1 -1 -1 -1 -1
myo-Inositol alc P2910 1 1
Galactinol (9TMS); alpha-D-Gal-(1,3)-myo-I P4270 1 1 1 -1 1 1  

In addition to regulation of starch accumulation, metabolomic analysis also indicated a 

significant decrease in Xylitol concentration in response to trehalose accumulation in 

plants. This could also indicate regulation of xyloglucans biosynthesis which is the major 

end use for xylitol by trehalose. The only sugar metabolite to show a significant increase 

was galactinol at 1h, 6h, 12h and 24h and myo-inositol at 1h. This is further significant as 

these metabolites show significant increase at 1h and 12h timepoints, at which more than 

40-50% of the metabolite pools showed significant decrease. This further suggests 

trehalose may regulate Inositol based oligosaccharide biosynthesis. Finally at 30h 

majority of the sugar and sugar acid compounds showed a significant increase which was 

expected, as more than 60% of the total metabolite pools showed significant increase in 

response to the trehalose signal. Finally it was interesting to see that the concentration of 

glucose and fructose remain almost constant (non-significant) at all the time points except 



166 

30h. The constant glucose levels suggest that trehalose degradation by trehalase, 

producing glucose remained at almost the same levels, or alternatively the utilization of 

glucose is increased to the same extent as the increased trehalase activity.  

Secondary Metabolite Pools 

The three aromatic amino acids: tryptophan, tyrosine and phenylalanine; are the 

precursors for many secondary metabolites which are important for a host of important 

physiological functions in plants which were discussed earlier in Section 5.1.5. From the 

three amino acids, as with elevated CO2 and NaCl stress response, the tryptophan 

metabolite pools were very low and below the detection limit in the A. thaliana liquid 

culture plants. From the other two secondary metabolite, tyrosine metabolite pools 

(Figure 5-26) showed significant decrease at all time points in response to trehalose 

signal where as the concentration of phenylalanine remained almost constant. From the 

other known secondary metabolites derived from tryptophan and phenylalanine, most of 

the metabolites showed slight decrease at 2 or 3 time points during first 18h with the 

exception of benzoate which showed a slight increase at 2 time points. Finally a number 

of secondary metabolites showed a significant increase at 30h, the time point at which 

there was a large increase in number of significant metabolites. Overall these results 

suggests except for significant decrease of tyrosine, (which seem to have been governed 

by amino acid biosynthesis rather than secondary metabolite production), trehalose has 

little of no significant role in regulating secondary metabolite biosynthesis. 
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Figure 5-26: Response of metabolite pools in A. thaliana secondary metabolism pathways in response to 12 mM trehalose signal. Positively and 

negatively significant metabolites are color-coded as described in the caption of Figure 5-7. 
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Butanoate Metabolism  

Butanoate metabolism is based on precursors from TCA cycle and is important for the 

production of Poly-hydroxybutyrates (PHBs) as well as intermediates for ketone bodies. 

The pathway producing PHBs in plants however is still under investigation. GC-MS 

metabolomic analysis identified several metabolites belonging to the known PHB 

pathways (2-hydroxyglutarate, 3-hydroxybutanoate, 4-hydroxybutanoate) as well as some 

related metabolites (3-hydroxy-3-methylglutarate, 2,3-dihydroxybutanoate, 3,4-

dihydroxybutyrate) which may also be involved in Butanoate metabolism. From these 

metabolites as shown in Table 5-10, metabolite 3.4-dihydroxybutyrate undergoes 

significant decrease at 7/8 time points and also from over-all analysis. Further, most of 

the other metabolites in this pathway, except 4-hydroxybutanoate, were found to be 

negatively significant at 2 to 4 timepoints in response to the stress. At 30h however as a 

result of overall increase in metabolite pools, metabolites belonging to Butanoate 

metabolism pathway also showed a significant increase. In conclusion trehalose does 

seem to affect Butanoate metabolism significantly, reducing concentration of its 

metabolite pools at a number of time points, though the exact mechanism or the purpose 

of this regulation is not clear based on current analysis and needs further investigation. 

Table 5-10: Significance level of metabolite pools belonging to Butanoate metabolism at individual 

time points and paired-SAM analysis in response to trehalose signal. Positively and negatively 

significant metabolites are color-coded as described in the caption of Table 5-1. 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
2-hydroxyglutarate acid P2184 -1 -1 1
3-Hydroxy-3-methylglutarate acid P2197 -1 -1 -1 1
4-hydroxybutanoate acid P1279 1 1 1
3,4-dihydroxybutyric acid acid P1744 -1 -1 -1 -1 -1 -1 -1 -1
2,4-dihydroxybutanoic acid acid P1704 -1 -1 -1 -1  
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 Lipid Metabolism 

Trehalose had very small effect on the lipid metabolism. Most of the FA and sterols were 

negative significant at 12h and 1h the time points at which largest decrease in overall 

metabolite pools was observed as seen from Table 5-11. Similarly most of the lipids were 

positively significant at 30h when majority (60%) of the metabolite pools show a 

significant increase in concentration. Thus trehalose does not seem to affect lipid 

metabolism significantly and most of the changes in the pathway seems to be as a result 

of more global increase in free metabolite pools. 

Table 5-11: Significance level of fatty acid and sterol metabolite pools at individual time points and 

paired-SAM analysis in response to trehalose signal. Positively (1) and negatively (-1) significant 

metabolites are color-coded as described in the caption of Table 5-1. 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Stearic Acid FA P3432 1 1
Linolenic acid FA P3461 -1 1
alpha-Linolenic acid FA P3536 -1 -1
Gama Linolenic Acid FA P3509 -1 1
Icosanoic acid FA P3747 -1 -1
Stigmasterol Sterol P5045 -1 -1 1 1
CampeSterol Sterol P5007 -1 -1 1
Tocopherol Pherol P4850 -1 -1 1  

 Other Metabolite Pools 

The other metabolite pool group consists of metabolites (a) whose exact role and the 

biosynthesis of the metabolites is still not known e.g. erythretol, pyrole-2-carboxylic acid, 

citramalate (b) isolated metabolite pairs like Adenosine-Adenine, Ascorbate-Threonate. 

In response to trehalose signal, these metabolites show similar response to lipid 

metabolism i.e. metabolites show significant decrease at 1h and 12h but significant 
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increase at 24/30h timepoint. The only exception was ascorbate which was positively 

significant during first 3 hours.  

Table 5-12: Significance level of other known metabolite pools at individual time points and paired-

SAM analysis in response to trehalose signal. Positively (1) and negatively (-1) significant metabolites 

are as described in Table 5-1. 

 

Unknown Metabolite Pools 

The response of 95 unknown metabolites to trehalose signal with at least some clue about 

their identity is shown in Appendix II (Table A2-3). They show a similar pattern as 

known metabolites, showing significant decrease at 1h and 12h and increase at 30h. 

However four unknown sugar metabolites showed a significant decrease in their 

concentration at most of the time points where as two higher weight sugar metabolites 

showed a significant increase, suggesting perturbations in the carbohydrate metabolites as 

was also observed from the known metabolite pools.   

5.3.6 Conclusions 

In summary, time-series metabolomic analysis of the short-term 12 mM trehalose 

response of A. thaliana liquid cultures revealed following: 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Sorbitol alc P2608 -1 -1 -1 1
Erythritol alc P1776 -1 -1 1
Pyrrole-2-carboxylic acid acid P1716 -1 -1 -1 1
Citramalate acid P1868 -1 -1
3,4-dihydro-2(3H)-Furanone SecM P1841 1 1 1
Adenoise sugar P4227 -1 -1 -1
Adenine (2TMS) purine P3120 -1
Threonate acid P2042 -1 -1 1
Ascorbate acid P2948 1 1 -1 1 1
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• Exogenously applied Trehalose is accumulated inside the cells and its 

concentration gradually builds up increasing to 50 times the original concentration 

in plants at the end of 30h. In control wild type conditions in which most of 

trehalose produced is broken down by trehalase so very small quantity of 

trehalose is accumulated. Hence trehalose accumulation within the cells suggests, 

trehalase activity is not regulated by trehalose concentration or beyond a certain 

concentration, trehalase activity is not sufficient to breakdown majority of 

trehalose produced or transported.    

• Metabolomic analysis also indicates possibility of starch accumulation. The 

known mechanism by which trehalose regulates starch accumulation in plants is 

by activating genes regulating starch biosynthesis. Metabolomic analysis 

however, also indicated an additional mechanism of regulating starch 

accumulation by inhibiting break down of starch to malate and subsequently to 

glucose.  

• Trehalose did not effect the concentration of glucose (produced by trehalose 

hydrolysis by trehalase enzyme) and fructose during the 1-24 hours.  

• Trehalose significantly decreased xylitol concentration and showed significant 

increase in Galactinol concentration. Thus in addition to previously observed 

effect of trehalose increasing fructan biosynthesis (Muller et al., 2000), trehalose 

may also increase xyloglucan and Raffinose family oligosaccharides. 
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• Trehalose has very small effect (possibly secondary) on TCA cycle, 

Photorespiration, Secondary metabolism, Lipids and Butanoate metabolism.  

• The most significant effect of Trehalose signal is observed in amino acids 

productions. In response to trehalose, 12 amino acids showed significant increase 

(from which 9 were also observed from paired SAM). In contrast only 4 amino 

acids showed decrease in concentration of which only 1 (aspartate) was 

negatively significant at most time points.  

• Trehalose increased 60% of the total metabolite pools at 30h when intracellular 

trehalose concentration was the highest (50 times the original). This suggests 

possibility of a different response at very high trehalose concentration. 

The above results, demonstrate the advantage of using high-throughput analysis which 

allowed identification three new regulatory roles of trehalose which would not have been 

detected simultaneously based on traditional analysis approach. Specifically the 

regulation of amino acid biosynthesis by trehalose is an important result which can help 

in engineering efforts to produce plants which have a better ability to assimilate nitrogen 

and plants which can produce more amino acids there by improving the nutritional 

quality.   
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5.4 ETHYLENE RESPONSE  

5.4.1 Review of Ethylene Response 

Ethylene is an important gaseous plant hormone. In plants, ethylene regulates: seed 

germination, seedling elongation, hook formation, pathogen/disease response, wounding 

response, leaf abscission and ripening (Taiz, 2002). Due to importance of ethylene in 

these important physiological and developmental events, ethylene has been studied in 

great detail for almost a century (Taiz, 2002). Throughout these period focus of the 

research has focused on understanding (Benavante et al., 2005, De Paepe et al.,2005)  

ethylene biosynthesis, identifying ethylene binding sites, dissecting the ethylene signaling 

pathways, identifying genes and transcription factors induced by ethylene and identifying 

interaction between ethylene and other hormone regulatory networks (Van loon 2006) 

Thus most of the research on ethylene, except for understanding regulation of ethylene 

biosynthesis pathway, has been to understand the change in gene expressions and change 

in physiology or development. However changes in gene expression, if encoding 

enzymes in metabolic pathway, are also likely to affect the metabolism of plants. 

Similarly changes in physiology (like shoot elongation or leaf abscission) also require 

complementing changes in metabolism of the plants. Thus metabolism of plants is also 

likely to be significantly effected; however no studies have been made so far to study the 

response of ethylene at the metabolic level.  In this section, the results from the first 

metabolomic analysis (time-series or not) of the response of Arabidopsis thaliana liquid 

cultures to ethylene signal are presented.  
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Ethylene is an important plant hormone regulating plant development and morphology 

(Guo and Ecker, 2004). Ethylene is produced in the plants through the oxidation of 1-

aminocyclopropane-1-carboxylate (ACC) by oxygen in the presence of ascorbate and 

iron; ACC oxidase is activated by CO2 (Godzinski 2004). As described earlier in Chapter 

4 of this report, ethylene signal was introduced to the plants by adding ACC to the liquid 

media so that its final concentration was 0.01 MM. ACC is known to get readily 

converted to ethylene and has been a common choice for many studies involving ethylene 

response. Once ethylene is produced by ACC oxidase, the ethylene signal is sensed and 

transmitted through a signaling cascade in A. thaliana and higher plants involving a large 

number of genes (Chen 2005), whose regulation and specific role in transduction has 

been studied for a long time, and still many aspects of the same are currently under study. 

The response of ethylene in plants has also been studied before using DNA microarrays 

analysis (De Paepe et al., 2004. The transcriptomic analysis indicated even short 

treatment of ethylene (1-6h) created significant differences at the gene expression level. 

However as discussed earlier, the effect of these changes at metabolic level has not been 

studied before. The results from our study are described in the following sections. 
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Figure 5-27: Ethylene Biosynthesis Pathway from Methionine. 
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5.4.2 Metabolomic profiling Results 

Polar Metabolomic Profiles were obtained using the optimized protocol and experimental 

conditions described in Chapter 3 and Chapter 4, respectively, of this report. In the 

acquired metabolomic profiles, 550, among which 147 known, metabolite methoxime 

(Meox)-trimethylsilyl(TMS)-derivative peaks were detected. After data correction, 

normalization and filtering, the set of metabolite peak areas that were finally considered 

in the analysis included 87 annotated and 199 unidentified. Among the 87 known 

metabolites, 60 correspond to metabolites forming only one TMS-derivative, 9 to one of 

the two geometric isomer derivatives of ketone-group containing metabolites (see 

Chapter 3), and 18 to cumulative peak areas of amine-group containing metabolites. Each 

timepoint was represented by 4 (2 biological x 2 instrumental replicate) spectra. Data 

correction, filtering and normalization were done as described earlier in Chapter 3 to 

obtain normalized peak areas for control and perturbed experiments. The log ratio of this 

normalized peak profiles is shown in Figure 5-28. In response to ethylene, the known 

metabolites showed up to 8 fold increase or decrease (+/-3 log2 ratio). Maltose showed 

the highest significant increase at all the time points. Alanine showed the largest decrease 

in concentration during the first 9 hours. Most of the other known metabolites showed 4 

fold increase or decrease at most of the time points. In contrast, the unknown metabolites 

showed a much larger variation in their metabolites showing variation of up to 30 fold 

increase or decrease from original concentration during first-12 hours and up to 10 fold 

after 12-hours. The figure also clearly showed a change in metabolism from 9-12 hours 

suggesting a shift in the response to ethylene around this time points. 
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Figure 5-28: Log2 Ratio Normalized Peak Area (NPA) profiles of Perturbed (Ethylene Signal) to  

NPA Control  profiles indicate up to 20 fold increase - decrease in metabolite levels. 
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5.4.3 PCA Analysis 

According to TIGR MeV Principal Component Analysis (PCA), the control metabolomic 

profiles can be clearly differentiated from their perturbed counterparts (Figure 5-29). 

However the most dramatic feature of the principal component analysis is the separation 

between of the first 12 hour timepoints in response to ethylene. As can be seen from the 

figure, the A. thaliana liquid cultures undergo a dramatic change in their metabolism 

even at 1h which is sustained up to 12h. At the end of 12h however the metabolism shifts 

back again closer to the control plants, but still showing a distinct separation from the 

control time points. These variations in ethylene response will be discussed in greater 

details in their biological context later in this section. 

5.4.4 SAM and MiTimeS Results 

Paired-SAM analysis identified (delta=1.45, 0.7% FDR) identified 43 (15 known) and 19 

(6 known), respectively, positively and negatively significant metabolites in response to 

0.01 MM ACC - Ethylene signal (Figure 5-30). MiTimeS analysis (Dutta et al., 2007), on 

the other hand, identified many more positively and negatively significant metabolites at 

the individual timepoints (average 90 and 52, respectively) for the same significance 

threshold value and a slightly higher average median FDR (0.96%) (Figure 5-30). The 

significance level profiles over time along with the paired-SAM result for all known 

metabolites are discussed individually in subsequent sections in the context of their 

biology. 
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Figure 5-29: Principal Component Analysis (PCA) of Ethylene response using TIGR MEV 3.0 shows 

a significant difference in metabolism of A. thaliana liquid cultures even during the 1-30h.  
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Figure 5-30:  Number of Positively, Negatively and Total significant metabolites along with % 

median False Detection Rate (FDR), in response to ethylene signal obtained for overall analysis and 

individual time points, using paired-SAM and MiTimeS analysis. 
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According to Figure 5-30, in response to ethylene stress almost 50% - 60% of the 

metabolite pools show a significant change in their metabolism during the first 12 hours. 

During 3-12h time period the number of positively significant metabolites are much more 

as compared to negatively significant metabolites. However beyond 12h, the number of 

significant metabolites drops gradually from almost 60% of the metabolite pools to 40% 

of the total metabolite pools at 24h and 30h. Further at 18 and 24h, we also see more 

negatively, rather than positively, significant metabolites. This correlates to the 

significantly different response observed during first 12h from the PCA analysis. 

MiTimeS analysis (Dutta et al., 2007) also allowed calculation of Significance Variability 

Score (SV Score) which represents the amount of fluctuations in the significance level for 

each metabolite on a scale of 0-2 as described earlier in Chapter 3. SV score of 0 

represents the metabolite does not undergo change in its significance level and maintains 

the same significance level at all time points. In contrast SV score 2 represents oscillatory 

metabolite, i.e. the metabolite changes its significance level from positively significant to 

negatively significant and vice-versa at each and every time point. The SV score 

distribution which plots the SV score against the fraction of the detected polar 

metabolites at each SV score is shown in Figure 5.31. As can be seen from the figure, in 

response to salt stress, 8 metabolites (3% of total) were observed in the same significance 

level at all timepoints (i.e. SV score = 0). From these 8, only 3 were known metabolites: 

Maltose and Stigmasterol was positively significant at all time points and Threonine was 

negatively significant at all time points. The other 5 were unknown metabolites from 

which 2 and 3 metabolites were positively and negatively significant, respectively, at all 

time points. This also indicates none of the metabolites were non-significant at all time  
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Figure 5-31: Significance Variability (SV) Score distribution of metabolites in response to ethylene 

signal shows the overall dynamics of the system.  

points i.e. almost all the detected metabolites showed significant variations at least at one 

time point in response to ethylene. The metabolites which showed the highest dynamics 

was Glycine with SV score 1.29, followed by Adenine (SV score 1.14) and pyruvate (SV 

score 1).   

The time point correlation network based on, both the positively and negatively 

significant metabolites (Figure 5-32) indicates strong correlation between 1h to 12h 

timepoints for both positively and negatively significant metabolites. In case of positively 

significant metabolites, there is only one connection between the initial 12h time points 

and longer time points suggesting a big change in metabolism which was also observed 

from PCA analysis variation of significant genes between time points. The negatively 

significant metabolites however showed more correlations between the time points. 
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However in both the networks 18h and 30h showed the least connections indicating most 

unique response at these time points. 
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Figure 5-32: Time point correlation networks based on the common between time points (A) 

positively and (B) negatively significant metabolites in response to ethylene signal. Two time points 

are connected, if their correlation coefficient is larger than the indicated threshold, the latter being 

selected in each case as the average of all between different timepoints correlation coefficients. 

5.4.5 Analysis of Individual Pathways 

Tri-Carboxylic Acid (TCA) Cycle Metabolites 

Tri-Carboxylic acid Cycle (Figure 5-33) is the primary aerobic respiration pathway in the 

mitochondria for most eukaryotic systems (Tiaz, 2000). TCA cycle is responsible for the 

production of energy in the form of ATP and reducing power in the form of NADH and 

FAdH2 by oxidation of pyruvate (derived from sucrose) into CO2 (Tiaz, 2000). Finally, 

TCA cycle also provides the carbon backbone in the form of α-ketoglutarate and 

oxaloacetate for amino acids biosynthesis.  
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Figure 5-33: Observed effect of the ethylene signal on the physiology of the Tri Carboxylic Acid (TCA) cycle and amino acid biosynthesis at the 

metabolic level. Positively and negatively significant metabolites are color-coded as described in the caption of Figure 5-7. 
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As can be seen from Figure 5-33, ethylene has a very different response on two parts of 

TCA cycle. All the metabolites from citrate to α-ketoglutarate are positively significant at 

most of the time points and paired-SAM analysis. In addition, amino acids glutamate, 

glutamine, GABA and allantoin derived from α-ketoglutarate also showed significant 

increase in their pools at most of the time points and from paired-SAM analysis. Where 

as metabolites in the other half of the TCA cycle, which convert α-ketoglutarate to 

oxaloacetate did not show much change except at 1 or 2 time points. This again suggests 

that the flux through the first part of the TCA cycle in response to ethylene is governed 

mainly by the need for carbon skeleton for amino acid biosynthesis rather than the overall 

TCA cycle goal of ATP and NADH production. These results for the first time show that 

Ethylene in addition to regulating physiological development and gene expressions also 

regulates concentration of metabolite pools of the TCA cycle intermediates at the 

metabolic level. 

Amino Acid Biosynthesis 

In response to ethylene, as can be seen from Figure 5-35, all the nitrogen storage and 

transport amino acids: glutamate, glutamine, aspartate and asparagine; showed significant 

increase in their metabolite pools. Particularly, glutamate and glutamine were also found 

to be positively significant from overall response using paired-SAM analysis. These 

results suggest nitrogen assimilation is significantly increased in response to ethylene 

signal. In addition valine, iso-leucine, ornithine + arginine, non-protein amino acids – 4-

aminobutyric acid (gaba) and β-alanine and polyamine allantoin showed significant 

increase in their concentration. In contrast four amino acids, alanine, threonine, lysine 
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and tyrosine (discussed later during secondary metabolism) showed a significant decrease 

in response to ethylene at most of the time points as well as for overall response from 

paired-SAM analysis.  Serine showed a slight decrease in its concentration at two time 

points, where as glycine, methionine and homoserine fluctuated between positively and 

negatively significant levels. These results for the first time show the role of ethylene in 

increasing nitrogen assimilation and differential regulation of various amino acid 

biosynthesis pathways.    

Sugar Metabolite Pools 

In response to ethylene signal Maltose was the only sugar metabolite which showed 

significant increase (up to 30 fold) in its relative concentration at all timepoints and also 

from overall paired-SAM analysis. In addition to maltose, Inositol also showed 

significant increase at a number of time points. Sucrose, sugar phosphates showed a 

slight decrease at 1h and also at 6h for sucrose. Hexose sugars Glucose and Fructose were 

also insignificant at most of the time points and showed a slight decrease at 18h and 

increase at 24h. Hence the most prominent effect of ethylene on sugar metabolite pools 

was the significant increase in maltose concentration.  

The main source of maltose biosynthesis is from starch breakdown. The 30 fold increase 

in maltose concentration thus clearly indicates ethylene enhances breakdown of starch in 

plants. This is the first time the regulation of starch breakdown by ethylene in vegetative 

growth phase of plants has been shown. 
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Table 5-13: Significance level of Sugar, Sugar Phosphates and Sugar Alcohols at individual time 

points and paired-SAM analysis in response to ethylene signal.  Positively and negatively significant 

metabolites are as described in Table 5-1.  

 

Secondary Metabolite Pools 

The three aromatic amino acids: tryptophan, tyrosine and phenylalanine; are the 

precursors for many secondary metabolites which are important for a host of important 

physiological functions in plants which were discussed earlier in Section 5.1.5. From the 

three amino acids, as with elevated CO2, NaCl and trehalose stress response, the 

tryptophan metabolite pools were very low and below the detection limit in the A. 

thaliana liquid culture plants. From the other two secondary amino acids, tyrosine 

metabolite pools (Figure 5-34) showed significant decrease at all time points (except 9h) 

and from paired-SAM analysis. Where as phenylalanine concentrations increased 

significantly between 3-12 hour time points. At these time points, which also showed the 

highest amount of positively significant metabolites, along with phenylalanine, secondary 

metabolites derived from it – namely sinapinic acid and its derivative also showed  

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Sucrose sugar P3840 -1 -1
Trehalose Sugar P3983 -1 -1 1 1
Maltose Sugar P3923 1 1 1 1 1 1 1 1 1
Cellobiose Sugar P4025 -1 -1
Glucose Sugar P2655 -1 1 -1
Fructose Sugar P2601 1 -1

Glucose 6 P Phosph P3548 -1 -1 -1
Fructose 6 P Phosph P3513 -1 1 -1
Inositol-1/2-Phosphate Phosph P3581 -1 1 1

Arabinose sugar P2242
Rhamnose Sugar P2320 1 1 1
Xylulose Sugar P2284 -1 1 -1
Xylitol alc P2230 -1 1
myo-Inositol alc P2910 1 1 1 1 1
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Figure 5-34: Response of metabolite pools in A. thaliana secondary metabolism pathways in response to ethylene signal. Positively and negatively 

significant metabolites are color-coded as described in the caption of Figure 5-7. 
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significant increase in their relative concentration. These metabolites are part of the lignin 

/ Syringin biosynthesis pathway, suggesting increase in its synthesis in response to 

ethylene signal in the first 12 hours. Similar result was also seen in nicotinic acid, which 

is produced starting from tryptophan and has important cellular functions such as 

nucleotide biosynthesis.  

Ethylene responsive elements are also known to interact with other plant hormones to co-

ordinate disease and wounding response. The interaction between their signaling 

pathways has been a subject of significant study in recent times. From our analysis, 

ethylene significantly reduces the concentration of the Auxin intermediate Indole-3-

acetamide at 1h and 6h, however at rest of the time points it is non-significant. A stronger 

inhibiting effect of ethylene is seen however of Salicylic Acid and its intermediate 

Benzoic acid which were found to be negatively significant at (1h, 6h, 12h, 18h, 24h) and 

(3h, 9h, 12h, 18h, 24h, 30h also from paired-SAM), respectively, as can be also seen 

from Figure 5-34. The increase in both lignin and nucleotide intermediate at the same 

timepoints 3h-12h suggest possibility of increase in cell division of plant growth in 

response to ethylene signal. However beyond 12h, there seems to be a dramatic change as 

both these metabolites were non-significant at time points beyond 12h. 

Calvin Cycle and Photorespiration Pathway 

Carbon and oxygen “compete” for Rubisco activity (Figure 5-24) as the Rubisco 

catalyses both the carboxylation and oxidation reaction which form 3-phosphoglycerate 

and 2-Phosphoglycolate respectively. The pathway for regenerating Calvin cycle 

intermediate from the oxygenation product is known as Photorespiration pathway. As can  
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Figure 5-35: Observed effect of the ethylene signal on the physiology of photorespiration, at the 

metabolic levels. Positively and negatively significant metabolites are color-coded as described in the 

caption of Figure 5-7. 

be seen from Figure 5-24, in response to ethylene signal from the three organic acids in 

these pathway: glycerate, glycolate and glyoxylate; glycolate shows significant decrease 

at 7/8 time points, however is also positively significant at 9h. Glyoxylate shows slight 

decrease at 1h and 12h, where as glycerate is positively significant at 3-6h but is later 

negatively significant at 18-24h. Due to the variation in response of metabolite 

intermediates at different time points it is difficult to determine the effect of ethylene on 
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photorespiration, however significant decrease in glycolate at 7/8 time points suggests 

possible inhibition of the photorespiration. The competing Calvin cycle, however, 

seemed to be significantly increasing during first 12h as 3-phosphoglycerate of the triose-

phosphate pool was positively significant at these time points. 

Lipid Metabolism 

Ethylene significantly increased the concentration of all five known fatty acids during the 

first 12h as shown in Table 5-14 below. Especially the increase was seen more in the 

unsaturated forms of (C18) stearic acid (linolenic and γ-linolenic acid).  These seem to 

further support increased cell division and growth in response to ethylene signal during 

first 12 hours. 

In sterol biosynthesis, all the three know sterols/pherol were positively significant at 3h 

and 9h. However Stigmasterol was the only one which was positively significant at all 

eight time points and also from overall paired-SAM analysis. Usually Brassinosteroid is a 

plant hormone which is usually associated with regulation of cell division and growth.  

Table 5-14: Significance level of fatty acid and sterol metabolite pools at individual time points and 

paired-SAM analysis in response to ethylene signal. Positively (1) and negatively (-1) significant 

metabolites are color-coded as described in the caption of Table 5-1. 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Stearic Acid FA P3432 1 1
Linolenic acid FA P3461 -1 1 1 1 1 -1
alpha-Linolenic acid FA P3536 -1 1 -1
Gama Linolenic Acid FA P3509 -1 1 1 1 1 1
Icosanoic acid FA P3747 1 1 -1
Stigmasterol Sterol P5045 1 1 1 1 1 1 1 1 1
CampeSterol Sterol P5007 1 1
Tocopherol Pherol P4850 -1 1 1  
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Campesterol is the important plant sterol which is involved in Brassinosteroid production. 

However recent studies (He et al., 2002) have shown that other plant sterols like 

Stigmasterol and sitosterol are also involved in regulation of cell division and cellular 

growth. From the results of the current experiment shows that ethylene increase 

production of Stigmasterol (and possibly also sitosterol which was not identified) but not 

of campesterol which is involved in Brassinosteroid pathway. These suggests a possible 

mechanism by which ethylene regulates specific aspects of cell division and growth using 

phytosterols rather than another plant hormone Brassinosteroid. This further supports a 

recent comparison of transcriptomic response of young Arabidopsis seedlings to all plant 

hormones (He 2005) which concluded that different plant hormones regulate the same 

physiological phenomenon (in this case cell division) through different signaling and 

regulatory cascades. This further supports the assertion in a previous paper that the 

phytosterols can independently regulate cell division and growth like Brassinosteroid.         

Butanoate Metabolism  

Butanoate metabolism is based on precursors from TCA cycle and is important for the 

production of Poly-hydroxybutyrates (PHBs) as well as intermediates for ketone bodies. 

The pathway producing PHBs in plants however is still under investigation. GC-MS 

metabolomic analysis identified several metabolites belonging to the known PHB 

pathways (2-hydroxyglutarate, 3-hydroxybutanoate, 4-hydroxybutanoate) as well as some 

related metabolites (3-hydroxy-3-methylglutarate, 2,3-dihydroxybutanoate, 3,4-

dihydroxybutyrate) which may also be involved in Butanoate metabolism. From these 

metabolites as shown in Table 5-15, metabolite 3.4-dihydroxybutyrate undergoes 
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significant decrease at 7/8 time points and also from over-all analysis in response to 

ethylene signal. Further, 2,4 dihydroxybutanoate was also negatively significant during 

first 12 hours. The rest of the metabolites showed variation in their significant levels with 

time as can be seen from Table 5-15.  

Table 5-15: Significance level of metabolite pools belonging to Butanoate metabolism at individual 

time points and paired-SAM analysis in response to ethylene signal. Positively and negatively 

significant metabolites are color-coded as described in the caption of Table 5-1. 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
2-hydroxyglutarate acid P2184 -1 1 1 -1
3-Hydroxy-3-methylglutarate acid P2197 1 1 1 -1
4-hydroxybutanoate acid P1279 -1 1 1
3,4-dihydroxybutyric acid acid P1744 -1 -1 -1 -1 -1 -1 -1
2,4-dihydroxybutanoic acid acid P1704 -1 -1 -1 -1  

Other Metabolite Pools 

The other metabolite pool group consists of metabolites (a) whose exact role and the 

biosynthesis of the metabolites is still not known e.g. erythretol, pyrole-2-carboxylic acid, 

citramalate (b) isolated metabolite pairs like Adenosine-Adenine, Ascorbate-Threonate 

(c) Phosphate ions. As shown in Table 5-16, in response to ethylene signal, pyrole-2-

carboxylic acid showed significant decrease in concentration at 1h, 9h and 18-30h. In 

addition significant increase in major phosphate pools – phosphoric acid and methyl 

phosphoric acid (which could be a result of methanol extraction) – showed significant 

increase in response to ethylene signal. This suggests ethylene also up-regulates 

phosphorus uptake.   

Unknown Metabolite Pools 

The response of 91 unknown metabolites to ethylene signal with at least some clue about 
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Table 5-16: Significance level of other known metabolite pools at individual time points and paired-

SAM analysis in response to ethylene signal. Positively (1) and negatively (-1) significant metabolites 

are as described in Table 5-1. 

1 hr 3 hr 6 hr 9 hr 12 hr 18 hr 24 hr 30 hr SAM
Sorbitol alc P2608 -1 1
Erythritol alc P1776 1 1
Pyrrole-2-carboxylic acid acid P1716 -1 -1 -1 -1 -1
Citramalate acid P1868 -1 1
3,4-dihydro-2(3H)-Furanone SecM P1841 1 1 1 1 1
Adenoise sugar P4227 1 1 -1
Adenine (2TMS) purine P3120 -1 -1 1 -1
Threonate acid P2042 -1 1 -1
Ascorbate acid P2948 1 1 1 -1
Phosphoric Acid Phosph P1465 1 1 1 1 1 1 1
MonomethylPhosphate Phosph P1337 1 1 1 1 1 1  

their identity is shown in Appendix 2 (Table A2-4). They show a similar pattern as 

known metabolites, showing significant increase in number of metabolites, especially 

secondary metabolites during first 12 h. Also organo-phosphate pools especially of 

unknown metabolites matching Inositol phosphate and ethanol amine phosphate (both 

involved in phospholipids formation) increased significantly at most of the time points 

and also from paired-SAM analysis. In addition for sugars having mass spectra matching 

(hence suggesting similar structures) turanose, maltose, trehalose, iso maltose showed 

significant increase in response to ethylene stress at most of the time points. Among 

metabolites showing significant decrease were, some unknown sugar metabolites and 

lactones and an unknown proline like compound which shows a strong similarity to 

proline mass spectra suggesting a proline derivative like methyl proline.   

5.4.6 Conclusions 

In summary, time-series metabolomic analysis of the short-term ethylene response of A. 

thaliana liquid cultures revealed following: 
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• Ethylene significantly increases starch degradation at all time points as suggested 

by significant increase in maltose concentration (up to 30 fold).  

• Ethylene significantly increases concentrations of first half of the TCA cycle 

intermediates (citrate, iso-citrate, α-ketoglutarate) and a number of amino acids at 

most of the time points during first 30h. The carbon available from starch seems 

to have been used primarily to increase TCA cycle intermediates, amino acids for 

protein, and secondary metabolite production possibly to support faster cell 

division and plant growth.  

• The increase in precursors for protein (amino acids), lignin (sinapinic acid), and 

nucleotides (nicotinate) biosynthesis, unsaturated lipids, phosphor-lipid precursors 

especially during first 12 hours, also suggest the possibility of increased rate of 

cell division and plant growth in response to ethylene signal specially during first 

12 hours. However these observation needs to be further investigated with more 

experiments.  

• Ethylene achieves the regulation of increased cell division and cellular growth by 

regulating Stigmasterol (and possibly other phytosterols) rather than using the 

Brassinosteroid regulation machinery. 

All of the above are novel findings, being reported for the first time. They demonstrate at 

metabolic level changes taking place in plants to achieve the increased cell division or 

growth at the macro-molecular level. In addition to adding to our understanding of 
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ethylene stress response, the analysis also indicated regulatory nodes in the A. thaliana 

liquid culture metabolic network as demonstrated by following examples: 

• In response to ethylene, starch breakdown increases, however most of the carbon 

is stored in the form of maltose which shows the highest increase (30 fold) rather 

than fructose / glucose or their phosphates, suggesting maltose catabolism as one 

of the regulating nodes.  

• In response to ethylene, TCA cycle intermediates citrate, iso-citrate and α-

ketoglutarate show a significant increase in their pools. However the rest of the 

TCA cycle metabolites do not show similar increase. Instead the increased flux is 

used for production of glutamate and other amino acids derived from α-

ketoglutarate. This suggests α-ketoglutarate to be an important node which 

regulates the flux towards further TCA cycle reactions or amino acid biosynthesis.  

From the discussion in this chapter, time-series metabolomic analysis of the response of 

A. thaliana liquid cultures to four stresses: elevated CO2, salt stress, trehalose (sugar) 

signal and ethylene signal; have provided significantly new information about the 

regulation of primary metabolism in plants. These analyses have also demonstrated 

clearly the importance of time-series and high-throughput nature of our study. In the next 

chapter, compassion of the individual stress responses and analysis of combined stresses 

(of the last three with elevated CO2) will demonstrate the advantages of multiple 

combined systematic perturbations of the same biological system.   
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66   TIME-SERIES METABOLOMIC ANALYSIS 

OF MULTIPLE STRESS RESPONSES 

In complex biological system, simultaneously many biological processes are taking place. 

These processes are tightly controlled and interact and regulate one another. In the case 

of a plant which is an example of such a complex system, simultaneously there might be 

carbon fixation, nitrogen fixation, plant defense response taking place along with many 

developmental and regulatory processes. These processes are usually controlled tightly to 

either maximize the utilization of available nutrient and sources of energy OR to 

maximize growth of the plant OR the most likely case a combination of these and many 

other parameters which could change depending on the developmental stage of the plant 

and changing environmental conditions. In order to achieve this desired function, a 

complex regulatory network exist involving cross-talk or cross-regulation between these 

simultaneously occurring biological processes. Due to this the response of the biological 

system to a given perturbation is very seldom expected to be a linear independent 

response.  

In spite of the non-linearity of regulation of biological processes, most research, 

especially in high-throughput metabolomic analysis so far, focuses on response of the 

system to one perturbation at a time. However some of the most interesting and some 

time exquisitely beautiful regulatory mechanisms are seen in interaction between 

different biological processes. From a practical stand point also, and efforts to engineer a 
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complex system like plants, is expected to require more than one genetic change of the 

system. Already we are close to the commercial release of the next generation of 

genetically modified crops which combine along with insect protection other traits such 

as better water tolerance. Thus it is really important to study the effects in the biological 

systems when more than one perturbations are applied simultaneously using the available 

high-throughput measurement techniques. With this motivation in mind, as described in 

Chapter 4 we carried out combined perturbations where we increased the CO2 level to 1% 

in the growth chamber and simultaneously also modified the media composition with (a) 

Salt (b) Trehalose Signal (c) Ethylene Signal and measured the response of the system at 

metabolic level in a dynamic manner using GC-MS metabolomic analysis. In this 

chapter, we first compare the effect of individual perturbations which were discussed in 

the previous chapter to understand the similarities and differences between these 

perturbations followed by results obtained from the combined perturbation. 

6.1 COMPARISON OF INDIVIDUAL PERTURBATION 

In order to study the regulation of primary metabolism of Arabidopsis thaliana liquid 

cultures four different perturbations were applied which involved a primary plant carbon 

source, environmental abiotic stress, sugar signal and hormone signal. The response of 

the system to these stresses at metabolic level was studied using metabolomic analysis 

and significant metabolites at each timepoint were identified using MiTimeS analysis 

(Dutta et al., 2007) and discussed in detail individually in the previous chapter. In these 

section their results are compared with each other and later in the chapter the effect of 

their combination will be discussed. 
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6.1.1 Principal Component Analysis 

Comparison of principal component analysis (PCA) of the dynamic metabolomic profiles 

in response to four perturbations is shown in Figure 6-1. Following observations can be 

made from the comparison of PCA analysis for individual experiments: 

• As can be seen form the Figure 6-1 all the four stresses show a clear separation 

from the control experiment. 
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1-12h

 
Figure 6-1: Comparison of principal component analysis of four individual perturbations with 

respect to control. 
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• The first 12h of ethylene signal and Salt (NaCl) stress show the largest difference 

in the metabolism. 

• The Salt (NaCl) moves the metabolism almost in a perpendicular manner 

suggesting a dramatic change in the metabolic profiles. 

• Where as trehalose signal creates a shift in metabolomic profiles mainly along 

Principal Component 1 which has the maximum contribution, Elevated CO2 stress 

moves it along Principal Component 3 which accounts for the smallest 

contribution of the three principal components.  

Based on the PCA analysis and the distance between the control and the perturbed 

experiments, 1-12h of ethylene has the strongest response, followed by Salt (NaCl) stress, 

Trehalose Signal and elevated CO2 in that order.  

6.1.2 Significant Metabolites 

PCA analysis of metabolomic profiles identified a significant change in the metabolic 

profiles of A. thaliana liquid cultures in response to the four perturbations. The 

metabolites which were responsible for these significant changes were identified using 

Paired Significance Analysis of Microarrays (paired-SAM) for the overall analysis for all 

the time points and at individual timepoints using MiTimeS analysis (Dutta et al., 2007). 

Figure 6.2 shows the comparison of the significance level from paired-SAM and 

individual time points for these perturbations. Since the total number of metabolites 

varied from each stress comparison, in MiTimeS analysis results all significant 

metabolites were normalized with the total metabolites in each comparison.  
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A. Paired-SAM Analysis Results 
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B. MiTimeS Analysis 
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Figure 6-2: Comparison of significant metabolites for four individual perturbations from (A) paired-

SAM and (B) MiTimeS analysis. 
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The comparisons of paired-SAM and individual time-point significance results indicate: 

• The number of metabolites showing a significant change in response to 

perturbation at individual time points is much higher as compared to those 

identified from the overall analysis using paired-SAM analysis. 

• Ethylene showed the highest number of positively significant metabolites from 

overall-analysis where as Salt stress showed the highest number of negatively 

significant (and also total) metabolites.  

• Metabolomic profiles show a large dynamics / variability in response to stress as 

up to 70-80% of the metabolites show a positive / negative significance at a 

given time point. 

• Ethylene shows the highest sustained significant increase in metabolite pools 

during first 12 hours suggesting ethylene signal perturbs a large number of 

metabolite pathway. This also confirms the large change observed in these time 

points from PCA analysis. 

• In contrast trehalose shows smallest positively significant metabolite pools 

except at 30h suggesting a more specific and focused response. 

• All perturbations show a much higher number of metabolite pools showing 

significant decrease (<50%) at 1h as compared to increase. The only exception 

to this was elevated CO2, which was the only perturbation which showed a large 

number of metabolites (~60%) pools showing significant increase at 1h. 
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• For all perturbations, the number positively significant metabolite increase from 

24h - 30h while those for negatively significant metabolites show decrease 

during the same time. This suggests, possibly a developmental change taking 

place at the beginning of 14th day which trumps the effects of stress response and 

results in overall increase in metabolite pools. 

6.1.3 Significance Variability (SV) Score Distribution 

In order to study the dynamics of the response and variability in the significance level 

Significance Variability (SV) scores were calculated. Figure 6-3 shows the comparison of 

SV score distributions in response to individual perturbations. In the distribution, SV 

score of 0 indicates a metabolite which maintains the same significance level at all time 

points while the SV score of 2 indicates a metabolite which changes state from positively 

significant to negatively significant and vice versa at each consecutive timepoint. The 

closer the distributions to SV score 0 or the smaller the mean and median, the smaller the 

variability in the response. The comparison of SV score distribution shows: 

• Elevated CO2 response shows highest SV score distribution i.e. most variability in 

significance and lowest fraction of metabolites with SV score 0.  

• NaCl shows the lowest SV score distribution i.e. least variation in significance 

level of metabolites and highest fraction of metabolites with SV score 0.  

• Highest Recorded SV score for all distributions was 1.2 to 1.4 and most of the 

metabolites showed a score below 1 which indicates an average change from 

significant to non-significant at each consecutive time points. 
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Figure 6-3: Comparison of Significance Variability (SV) Score distribution of four individual 

perturbations. SV score 0 represents no change in significance state, SV score 2 represents highest 

possible variability in significance state. 

6.1.4 Significance Correlation Network 

From the variation in number of significant metabolites and SV score distribution it is 

clear that the response of metabolic pools to different perturbations shows different 

dynamics. In order to identify which time-points show similarity in their response a 

Significance Correlation Matrix was used which is a part of MiTimeS software suite 

(Dutta et al., 2007). The results were converted to a graphical form in the form of 

Significance Correlation Network for positively and negatively significant metabolites in 

response to each stress. The comparison of these networks for positively and negatively 

significant metabolites is presented in Figure 6-4 and Figure 6-5 respectively. A 

connection between two timepoints represents a stronger than the average (cut off)  
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Figure 6-4: Comparison of Significance Correlation Matrix (SCM) Network for Positively Significant 

metabolites for four individual perturbations. A connection between two timepoints represents a 

stronger than the average (the cutoff) correlation between timepoints in the given experiment.  

correlation between timepoints in the given experiment. A highly connected network 

indicates strong correlation and sustained responses to stress. A non-connected timepoint 

in contrast indicates a unique or transient response to the stress at that time point.  
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Figure 6-5: Comparison of Significance Correlation Matrix (SCM) Network for Negatively 

Significant metabolites for four individual perturbations. A connection between two timepoints 

represents a stronger than the average (the cutoff) correlation between timepoints in the given 

experiment.  

Comparison of positively and negatively significant SCM networks suggests:  

• Most of the SCM networks showed strong correlation between timepoints during 

first 12h and especially for the first 6h. This suggests that most system level 

changes in response to stress are conserved for at least 6 to 12 hours.  
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• None of the SCM networks show a link between all consecutive timepoints. The 

closest to this scenario is the trehalose negatively significant network which 

showed links between all consecutive time points except between 9 and 12h and 

24 and 30h.  

• Among consecutive time points, 12h and 18h were disconnected in 7 out of 8 

networks (trehalose negatively significant being the exception), suggesting a shift 

in the response of the system during these time frame.   

• Among all the perturbation, salt stress showed the highest average correlation 

(cut off) for both positively and negatively significant metabolites but fewer 

connections, suggesting an even stronger correlation between the connections in 

Salt Stress SCMs. 

• In contrast, among all perturbations CO2 showed the lowest mean correlation 

values for both positively and negatively significant metabolites and also fewer 

connections suggesting a more dynamic system.  

• Trehalose with about average mean correlation values showed the highest 

number of links for both positively and negatively significant metabolites. 

6.1.5 Conclusions 

The comparison of the results from Principal Component Analysis, Paired-SAM analysis, 

Variation in Significant metabolites, Significance Variability (SV) Scores and 
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Significance Correlation Matrix (SCM) allowed following conclusions to be made about 

the response of A. thaliana liquid cultures to four individual perturbations: 

• The strongest response in metabolism was shown for Salt Stress (NaCl) and first 

12h of Ethylene Signal, followed by Trehalose and Elevated CO2. 

• The dynamics showed two common patterns: 

o Strong correlation in response between timepoints from 1h-6h or 1h-12h. 

o Low correlation between response at 12h and 18h at all time points, 

suggesting a shift in the response in between these timepoints. 

o Increase in metabolite pools (more positively significant metabolites and 

less negatively significant metabolites) between 24 to 30h. 

• The stronger the response of the system to the stress, the more conserved was the 

response showing lower dynamics or variability between timepoints. Hence NaCl 

stress showed the least variability and the Elevated CO2 stress showed the highest 

variability. 

Thus comparison of the same system allows additional general conclusions to be made 

about the dynamic regulations in the system in addition to the information about the 

specific response of the system to each individual stress. The effects on variability and 

dynamics of the system response, when these stresses with widely varying dynamic 

effects are combined, have been discussed in the following sections. 

    



209 

6.2 COMBINED SALT (NACL) AND ELEVATED CO2 

PERTURBATIONS 

In the previous chapter, the effect of individual perturbations on the metabolism of plants 

to four individually applied stresses was studied using time-series metabolomic analysis. 

To further gain insight into the response of the system and regulation of plant primary 

metabolism, for the first, time-series metabolomic analysis was used to study effect of 

combined perturbations. The unique experimental design, not only allows us to 

understand the effect of the combined stress, but because the individual and combined 

stress were applied at the same biological growth phase of the plants, also allow us to 

study the interaction between the two perturbations. As discussed in previous section of 

this Chapter, the two stresses 50 mM NaCl and 1% elevated CO2 stress have very 

different effects on the system which were almost perpendicular to each other as 

observed from Principal component analysis. In this section, the results from the 

combined stress and its comparison with individual stress are reported.   

6.2.1 Principal Component Analysis 

The principal component analysis of the combined stress metabolomic profiles and 

control experiment is shown in Figure 6-6, along with the comparison with the individual 

stress. As can be seen from Figure 6-6, the combined stress also shows a perpendicular 

response showing a separation along principal component 1 which accounts for the 

highest variation in the system. However unlike NaCl stress it also shows a significant 

spread along principal component 2, which is the direction of the time variation in the  
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Figure 6-6: Comparison of Principal Component Analysis (PCA) of elevated CO2, Salt (NaCl) and 

the combined perturbations.  

control experiments. The combined PCA of all four stresses in Figure 6-6 clearly shows: 

• The combined stress has unique response separate from the individual response. 

• The combined stress shows a shift of metabolism in the direction of salt stress but 

is closer to the control stress than only salt stress. 

Thus PCA analysis thus clearly indicates a unique response of the system which seem to 

be reducing the strong effect of the salt stress in the plants.  



211 

6.2.2 Significant Metabolites 

Paired-SAM analysis and MiTimeS algorithm were used for identifying the significant 

metabolites from overall analysis and individual time points as before. The effect of the 

combined stress could be identified by comparing the time profiles of the control 

experiment with the NaCl and CO2 combined stress experiment. However in addition 

there were two more comparisons possible as shown in Figure 6-7. Thus comparisons 

between the control experiment, individual stress experiments and the combined stress 

experiment as shown in Figure 6-7 allow us to identify: 

• Elevated CO2 response 

• Salt (NaCl) Stress response 

• Elevated CO2 + NaCl Combined Stress Response 

• Elevated CO2 response in presence of NaCl stress referred to as CO2 (NaCl)  

• NaCl response in presence of elevated CO2 conditions referred to as NaCl (CO2) 

The comparison of the significant metabolites for each of these responses from paired-

SAM and MiTimeS algorithm are shown in Figure 6-7. The comparison shows following 

general features about the response: 

• The combined stress has less significant metabolites as compared to NaCl stress 

but more significant metabolites as compared to elevated CO2 stress. 

• CO2 (NaCl) has more significant metabolites as compared to CO2 alone from 
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Figure 6-7: Comparison of positively and negatively significant metabolites from overall analysis and 

elevated CO2, Salt (NaCl) Stress, Combined Stress, CO2 Stress in presence of NaCl stress – CO2 

(NaCl) and NaCl Stress in presence of CO2 stress – NaCl(CO2 ) from (A) paired-SAM (B) MiTimeS 

analysis. 

paired SAM analysis. This indicates elevated CO2 perturbation on its own but in 

presence of NaCl perturbs more biochemical pathways than individually. Converse is 

true for NaCl (CO2) which shows a decrease from NaCl response.    
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Similarly from Figure 6-7 (B) following observations can be made about the significant 

metabolites at each individual time points: 

• The significant increase in more than 60% of metabolite pools observed in 

response to elevated CO2 effect alone was not observed in CO2 effect in presence 

of NaCl or the combined response. 

• The number of significant metabolites in the combined stress showed lower 

variation in significant metabolites as compared to the individual CO2 and NaCl 

stress. For e.g. for positively significant metabolite the large increase in number 

of positively significant metabolites in response to elevated CO2 at 12h and in 

response to NaCl at 9h was not observed in response to the combined stress. 

• Finally the profile for variation in number of significant metabolites for 

NaCl(CO2) and CO2 (NaCl) showed similar trends as the combined stress 

(CO2+NaCl) profile rather than the response of the two stresses individually. 

These results show that the variability in the system in response to individual stress is 

reduced significantly in case of combined stress.  Also even though the CO2 and NaCl 

stress were perpendicular stresses, i.e. showing very different regulation of the 

biochemical network, when applied in combination, they significantly altered response of 

each other. If these two stresses were indeed independent, a more closer similarity would 

have been observed between CO2 (NaCl) and CO2 and similarly between NaCl (CO2) and 

NaCl however this was not the case based on the observations above of the significant 
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metabolites. This clearly suggests both the stresses interact and moderate the other 

stress’s response.  

6.2.3 Significance Variability (SV) Score Distribution 

In order to better understand this effect, the SV score distribution of the metabolites in 

response to the five comparisons were plotted as shown in Figure 6-8. All three plots 

clearly indicate that the combination of stress significantly reduces the variability. 

Specifically the plots show: 

• CO2 (NaCl) i.e. CO2 effect in presence of NaCl had SV score distribution with 

similar profile but shifted closer towards 0, suggesting lower variability, with 

higher number of metabolites with SV score 0, lower mean and median as 

compared to elevated CO2 stress only. 

• NaCl (CO2) i.e. NaCl effect in presence of elevated CO2 had SV score distribution 

with similar profile but shifted closer to 0 with a significantly lower mode, mean 

and median as compared to NaCl stress only. 

• The combined stress NaCl + CO2 also shows a similar shift, though to a lesser 

extent, moving towards left closer to zero. 

These observations reinforce the previous observations from PCA (Figure 6-6) and 

variation of significant metabolites (Figure 6-7) analysis that the combined stress reduces 

the effects of individual stress and brings system closer to control conditions. However 

they are based only on the statistical analysis. 
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Figure 6-8: Comparison of Significance Variability (SV) Score distribution for elevated CO2, Salt 

(stress), Combined stress, Salt Stress Response in presence of CO2 stress NaCl (CO2) and CO2 stress 

in presence of Salt Stress – CO2 (NaCl).  SV score 0 represents no change in significance state, SV 

score 2 represents highest possible variability in significance state.  

In order to understand this better the response of the system will be analyzed in the 

context of TCA cycle and Amino acid biosynthesis pathways which was perturbed 

significantly in response to both the perturbations. 

6.2.4 TCA cycle and Amino Acid Biosynthesis in Combined Stress 

The effect of elevated CO2 and NaCl stress on these pathways has been discussed in 

detail in Chapter 5 of this report. The most important observation in response to elevated 

CO2 in these pathways were: 

•  Elevated CO2 significantly increased the concentration of most amino acids 

during first 12 hours, but decreased concentration at later time points for most 

amino acids. 
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• Elevated CO2 had difference response on two parts of the TCA cycle, from Citrate 

to α-ketoglutarate, and the other between succinate to malate. 

Similarly, the most important observation in response to Salt Stress in these pathways 

were: 

• Salt stress increased concentration of amino acids involved in production of 

osmoprotectants along with some other amino acids but decreased concentration 

of several amino acids in the competing pathway. 

• Salt stress significantly increased concentration of most TCA cycle intermediates 

except Malate.  

The significance level of all known metabolites in this pathway in response to both these 

stress are reproduced along with the response of these metabolites pools to the combined 

stress in Figure  6-9 for easy comparison. Comparison of the individual perturbations 

with the combined perturbation immediately shows: 

• The increase in TCA cycle intermediates from aconitate to fumarate observed in 

response to NaCl is not observed in the combined stress.  

• Malate which was negatively significant at almost all time points in NaCl stress is 

non-significant at most time points in the combined stress. 

• A number of amino acids which showed significant increase (homoserine, 

methionine, β-alanine and glycine) in response to Salt stress showed a much 

lower increase (methionine , β-alanine)  in response to the combined stress, with 
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Figure 6-9: Comparison of Significance levels of individual metabolites in the TCA cycle and amino acid biosynthesis pathway at individual time points 

in response to Elevated CO2, Salt Stress and the Combined Elevated CO2 and Salt Stress Perturbations.  
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some even becoming negatively significant (homoserine, glycine) at some of the 

timepoints. 

• Amino acids which showed significant decrease in metabolite pools at most time 

points in response to NaCl stress (asparagine, lysine, gaba, valine)were instead non-

significant (valine) and even positively significant (aspargine, lysine and gaba) at 

those timepoints in response to the combined stress. 

The above observations based on Figure 6-9 clearly show that most of the metabolite pools 

showing significant change in response to Slat stress the stronger of the two individual 

stress did not show the same effect in the combined stress, with some metabolites even 

showing opposite trend. In addition, some of the amino acids glycine and homoserine 

which show a significant increase in response to elevated CO2 as well as Salt stress during 

the first 12 hours, showed significant decrease at these time points in response to the 

combined stress. These observations suggest significant changes in metabolomic pools in 

response to NaCl stress are altered in presence of elevated CO2 levels in the combined 

stress. Thus CO2 in presence of NaCl stress seem to be creating an opposite effect of salt 

stress so that the overall variability of the system is reduced. In order to see this “opposite” 

effects of elevated CO2 response to that of individual Salt stress, the significance level of 

metabolites for these comparisons is shown in Figure 6-10. As can be seen from the figure 

13 of the total 26 metabolite pools in these pathways showed opposite significance level in 
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Figure 6-10: Comparison of Significance levels of individual metabolites in the TCA cycle and amino acid biosynthesis pathway at individual time 

points in response to Salt Stress and response to Elevated CO2 in presence of Salt Stress.  
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response to elevated CO2 in presence of NaCl as compared to NaCl stress alone. These 

results clearly show that in the combined stress, elevated CO2 seem to relieve the strong 

effect of salt stress reducing its impact by using the available additional CO2 (and 

possibly corresponding increase in nitrate reductase providing additional nitrogen)  to 

produce the osmoprotectants rather than re-configuring available metabolite pools 

(indicated by opposite response of competing amino acids) in Salt stress. Similar 

observations were also made for several other metabolites though the same are not shown 

in the current report. 

This is an important observation which provides an additional direction for engineering 

plants with better osmotic stress tolerance by improving their carbon or nitrogen fixation 

or reducing starch accumulation in favor of more metabolite pools, rather than simply 

increasing concentration of osmoprotectants. In order to however validate this further 

more experiments are needed looking at long term physiological and molecular effects of 

the combined stress to ensure this short-term response can be sustained over a longer 

period of time.  

The above result from the systems biology perspective also clearly shows the non-

linearity of the response of plant system suggested at the beginning of this chapter. 

Seemingly perpendicular or independent stresses also alter each other significantly when 

applied together creating a unique response. Thus it is not the strength or independence, 

but the biological role of each perturbation which seem to regulate the response of the 

combined stress. One more similar example of response of A. thaliana liquid cultures to 
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moderate but less dynamic sugar stress (trehalose) and elevated CO2 are combined is 

presented in the next section. 

6.3 COMBINED TREHALOSE SIGNAL AND ELEVATED 

CO2 PERTURBATIONS 

The combined effect of elevated CO2 and Salt stress showed a significantly altered 

response which reduced the strong effects of NaCl stress. In this section the effect of 

combination of Trehalose and elevated CO2 stress are presented to further understand the 

common elements of the response of the system to combined stress by similar 

comparisons and statistical analysis as was described in the previous section. 

6.3.1 Principal Component Analysis 

The Principal Component Analysis (PCA) of the combined stress metabolomic profiles 

and control experiment is shown in Figure 6-11, along with the comparison with the 

individual stresses. The comparison of the four stresses allow following observations: 

• Individual application of Trehalose and Elevated CO2 perturbations, move the 

overall metabolism in principal component 1 and principal component 3 

respectively, however in both cases the time variation of the experiments of 

control, elevated CO2 and trehalose signal experiments is along principal 

component 2.  
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Figure 6-11: Comparison of Principal Component Analysis (PCA) of Elevated CO2, Trehalose and 

the Combined perturbations.  

• PCA analysis of control, individual perturbations and the combined perturbation 

shows similar response as individual plots. The Control and CO2 experiments are 

close to each other and are not separated completely. Trehalose stress shows a 

clear separation from the rest of the stress moving down parallel to the control 

stress. The combined stress showed maximum variation and was perpendicular 

similar to NaCl stress. 
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• The combined elevated CO2 + Trehalose perturbation shows a strong response 

similar to NaCl with a clear separation along principal component 1 which 

accounts for the most variation of the system. 

• Unlike combined NaCl and CO2 stress, the combined Trehalose and elevated 

Stress shows a stronger effect and moves trehalose stress away from the control 

stress along principal component 1. 

The principal analysis thus itself shows significant difference of effect of combined stress 

in NaCl and trehalose. It seems to enhance the effect of trehalose rather than reduce the 

effect of NaCl. This will be analyzed in further detail from significance metabolite 

analysis and biological pathways in subsequent sections. 

6.3.2 Significant Metabolites 

Paired-SAM analysis and MiTimeS algorithm were used for identifying the significant 

metabolites from overall analysis and individual time points as before. The effect of the 

combined stress could be identified by comparing the time profiles of the control 

experiment with the Trehalose Signal and CO2 combined stress experiment. However in 

addition there were two more comparisons possible like NaCl stress and as shown in 

Figure 6-12. Thus data analysis strategy for comparison between the control experiment, 

individual stress experiments and the combined stress experiment as shown in Figure 6-

12 allow us to identify: 

• Elevated CO2 response 
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Figure 6-12: Comparison of positively and negatively significant metabolites from overall analysis 

and Elevated CO2, Trehalose Signal, Combined Stress, Elevated CO2 Stress in presence of Trehalose 

– CO2 (Trehalose) and Trehalose Stress in presence of CO2 stress – Trehalose(CO2 ) from (A) paired-

SAM (B) MiTimeS analysis. 

• Trehalose Signal response 

• Elevated CO2 + Trehalose Signal Combined Stress Response 



225 

• Elevated CO2 response in presence of Trehalose Signal referred to as CO2 

(Trehalose)  

• Trehalose response in presence of elevated CO2 conditions referred to as 

Trehalose (CO2) 

The comparison of the significant metabolites for each of these responses from paired-

SAM and MiTimeS algorithm are shown in Figure 6-12. The paired-SAM comparison 

(Figure 6-12A) shows following general features about the response: 

• The combined stress showed the highest number of significant metabolites as 

compared to individual stresses. 

• Both interaction between the stress CO2 (Trehalose) and Trehalose (CO2) show a 

significantly higher number of positively significant metabolite as compared to 

negatively significant metabolites. 

Similarly from Figure 6-12 (B) following observations can be made about the variation of 

significant metabolites at each individual time points: 

• The combined stress shows many more significant metabolites as compared to 

trehalose stress at all time points except at 30h. 

• Large increase in number of positively significant metabolites at 12h and 30h in 

elevated CO2 and trehalose respectively is not observed in the combined stress, 

thus reducing variability. 
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• CO2 (Trehalose) also showed a higher number of positively significant 

metabolites at 1h which was also observed in the individual perturbation. 

• The large increase in number of negatively significant metabolites at 12 h in 

trehalose and 24h in elevated CO2 was not observed in the combined stress 

reducing variability in significance. 

These results show that the variability in the system in response to individual stress is 

reduced significantly specially when compared to elevated CO2 stress. As compared to 

trehalose stress the number of positively significant metabolites increased significantly.  

This seems to suggest both the stresses interact and enhance response to trehalose and 

reduce dynamics of elevated CO2 stress.  

6.3.3 Significance Variability (SV) Score Distribution 

In order to better understand this effect, the SV score distribution of the metabolites in 

response to the five comparisons were plotted as shown in Figure 6-13. All three plots 

clearly indicate that the combination of stress significantly reduces the variability. 

Specifically the plots show: 

• CO2 (Trehalose) i.e. CO2 effect in presence of Trehalose had SV score 

distribution with similar profile but shifted closer towards 0, suggesting lower 

variability, with higher number of metabolites with SV score 0 (highest number 

with SV score zero in all comparisons, 15% of total metabolite pools), lower 

mean and median as compared to elevated CO2 stress only. 
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Figure 6-13: Comparison of Significance Variability (SV) Score distribution for Elevated CO2, 

Trehalose, Combined stress, Trehalose Response in presence of Elevated CO2-Trehalose(CO2) and 

Elevated CO2 in presence of Trehalose–CO2(Trehalose).  SV score 0 represents no change in 

significance state, SV score 2 represents highest possible variability in significance state. 

• Trehalose (CO2) i.e. Trehalose effect in presence of elevated CO2 had SV score 

distribution almost similar with a slight decrease in mean. 

• The combined stress Trehalose + CO2 also shows a similar shift, though to a 

lesser extent when compared to trehalose, moving towards left closer to zero 

These observations reinforce the previous observations from variation of significant 

metabolites (Figure 6-12) analysis that the combined stress reduces the variability in 

significance or dynamics of the metabolite profiles specially when compared to elevated 

CO2.  

6.3.4 TCA cycle and Amino Acid Biosynthesis in Combined Stress 

The effect of elevated CO2 and Trehalose stress on these pathways has been discussed in 

detail in Chapter 5 of this report. The most important observation in response to elevated 

CO2 in these pathways were: 
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•  Elevated CO2 significantly increased the concentration of most amino acids 

during first 12 hours, but decreased concentration at later time points for most 

amino acids. 

• Elevated CO2 had difference response on two parts of the TCA cycle, from Citrate 

to α-ketoglutarate, and the other between succinate to malate. 

Similarly, the most important observations in response to Trehalose response in these 

pathways were: 

• Trehalose significantly increased concentration of most of the amino acids. 

• Trehalose had very small effects on TCA cycle intermediates.  

The significance level of all known metabolites in this pathway in response to both these 

stresses are reproduced along with the response of these metabolites pools to the 

combined stress in Figure 6-14 for easy comparison. Comparison of the individual 

perturbations with the combined perturbation immediately shows: 

• Amino acids which showed a significant increase in response to trehalose also 

showed significant increase in response to the combined perturbation. 

• Aspartate and Valine the amino acids which were negatively significant in 

response to trehalose showed a lower decrease and were also positively 

significant at few time points, further suggesting increase in amino acid 

productions.  
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Figure 6-14: Comparison of Significance levels of individual metabolites in the TCA cycle and amino acid biosynthesis pathway at individual timepoints 

in response to Elevated CO2, Trehalose Signal and the Combined Elevated CO2 and Trehalose Signal Perturbations.  
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• TCA cycle metabolites were found to be more negatively significant in response 

to combined stress, suggesting possibly a reduction in respiration. Malate showed 

the largest decrease among all TCA cycle metabolites, while α-ketoglutarate, the 

precursor for major amino acids was more positively significant. 

• Lactate showed a significant decrease suggesting decrease in anaerobic 

respiration in response to the combined stress which was not observed in 

individual stress. 

In addition to similarity in TCA cycle and amino acids biosynthesis pathway similar 

trend was also shown in other pathways specially the sugar metabolites. Two metabolites 

which showed a significant increase as compared to individual stress in the combined 

stress were intracellular trehalose and galactinol. Figure 6-15 shows the relative peak area 

of trehalose in the four experiments. The figure showed a significant increase in trehalose 

concentration in response to the combined stress. Thus CO2 in presence of trehalose 

increases trehalose uptake rate thus increasing its intracellular concentration. The higher 

concentration could also be the main reason behind a stronger trehalose response in the 

combined stress. The trehalose profile further shows after reaching the highest trehalose 

concentration at 9h, the trehalose concentration does not increase but decreases slightly 

over time suggesting possibly an increase in trehalase enzyme activity at these high 

trehalose concentrations. 
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Figure 6-15: Intracellular Trehalose concentration in Control, Elevated CO2, Trehalose and the 

combined Trehalose+CO2 perturbation suggests, a significant increase in intracellular concentration 

of trehalose in the combined stress accumulating up to 30 times the original concentration.  

6.3.5 Comparison of Combined Stresses 

Comparing the effect of individual and combined stress with elevated CO2 stress suggests 

the same elevated CO2 stress can play different regulatory roles depending on the 

presence of the other stress. In case of salt stress, elevated CO2 decrease the perturbation 

due to salt stress by showing an opposite regulation of primary metabolism as the 

individual stress. In contrast, in trehalose stress the CO2 significantly magnifies the 

trehalose response by showing a larger change for the combined stress in the same 

direction as the combined stress. The three elevated CO2 stresses: only Elevated CO2, 

CO2 in presence of NaCl and CO2 in presence of Trehalose show completely different 

significance profiles, SV score distribution and biology with no significant overlap 

between them. These results, from the systems biology perspective also clearly 
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demonstrate the non-linear nature of the biological processes and their regulation in 

complex biological systems such as plants. In addition they provide a frame-work for 

designing future combined perturbations studies and their multivariate data analysis. 

6.4 RECONSTRUCTION OF BIOCHEMICAL NETWORK  

One of the important motivations for Metabolic Engineering and Systems Biology studies 

is to re-construct the regulatory networks which are present in complex biological 

systems. Detailed regulatory networks of biological systems can then be exploited for: 

• Developing strategies to identify and correct these networks whenever they are 

disturbed causing a disease state. 

• Developing strategies for engineering systems to add or remove regulatory 

elements to develop the desired traits (such as over production of metabolites) 

Dynamic metabolomic profiles obtained in response to systematically perturbed network 

contain within them the results of changes taking place in transcriptomic and proteomic 

levels in response to the perturbations. These profiles are expected to show a strong 

correlation when: 

• Metabolites are regulated by a common regulatory elements 

• Metabolites are in near equilibrium reactions  

• Metabolites belong to the same pathway whose enzymatic activities are regulated.  
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Thus systematically measuring correlation of metabolites can allow re-construction of 

biochemical regulatory networks governing the response of the system to the 

perturbations. In case of systematically perturbed biological system, the variation in 

correlation between metabolites between different experiment can even help 

identification of gene/protein responsible for disrupting the co-regulatory networks.  

An immediate practical advantage of such re-construction of metabolomic networks is 

identification of novel pathways in plants which are not yet identified. This is especially 

important in plants, since as compared to microbial systems and even mammalian 

systems, information about several pathways is putative or derived from other biological 

systems. In-spite of these advantages, there have been very few studies so far with limited 

success at re-construction of the pathways due to non-availability of dynamic profiles in 

systematically perturbed network. 

In order to re-construct the biochemical network using dynamic metabolomic profile 

obtained from different perturbations, Pavlidis Template Matching (PTM) was used. 

Specifically, methionine time profile was used as a template to match metabolite profiles 

which showed strong correlation in control, elevated CO2, salt stress, trehalose signal and 

ethylene signal perturbations, representing 40 different metabolic states under different 

conditions (time and/or environment). Identifying correlations in profiles in response to 

all these perturbations reduces the possibility of a “chance” correlation and is expected to 

show a match with a high confidence (or very p-values). In order to see which profiles  
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Figure 6-16: Results from Pavlidis Template Matching (PTM) for the metabolomic time profiles 

obtained from five different experiments with Pearson Correlation distance matrix. PTM results at 

different p values using methionine as a template. The analysis indicates presence of a novel 

biochemical pathway or co-regulatory elements for methionine, glycine and an unknown metabolite.  

were most correlated, PTM analysis was used with successively increasing stringency 

(decreasing p-values). The results from these PTM analyses are shown in Figure 6-16. 



235 

As can be seen from the Figure 6-16,  p-value cut off of 0.01 identified 11 metabolites 

matching the methionine pathway. These metabolite matches were all across the 

pathways and with 4 unknown metabolites. As the stringency of match was increased and 

p-value cutoff was decreased to 0.001, only four metabolites (glycine, lysine, β-alanine 

and an unknown) showed a match to methionine at this stringency. From these lysine,  β-

alanine and methionine are bio-chemically connected as they are all derived from 

aspartate. Further increasing the stringency to p-value cut off to 0.00001, showed a match 

with only glycine and an unknown metabolite. The profile of these metabolites is shown 

in Figure 6-17 below. As can be seen from the figure all these metabolite show a similar 

pattern of variation in response to perturbations though the absolute values of response 

are different. These pattern is conserved across all four perturbations even when these 

metabolites show up to 8 times increase in their original concentration at 0h. 
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Figure 6-17: Time profiles of metabolites showing strong correlations to methionine during all 

perturbations using PTM analysis (see Figure 6-15).  
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These correlations suggest a strong possibility of co-regulation between methionine and 

glycine which can not be explained easily based on the existing knowledge as their 

biochemical pathways are expected to be independent. A further study of the biochemical 

pathways involved in their production suggested two possible links between these two 

metabolites (glycine and methionine) shown in Figure 6-18. 

As can be seen from the figure, based on the current knowledge, methionine is produced 

by methylation of homocysteine. This methylation step requires a methyl donor. The 

Arabidopsis genome contains a number of genes which produce enzymes catalyzing this 

methylation steps. The known methyl donors for this reaction are S-Adenosylmethionine 

(which is produced from methionine itself and is a methyl donor in a number of other 

reactions) and 5-methyltetrahydropteroyltriglutamate. However there is an additional 

methyl donor-gene system common to several biological system  but whose presence or 

gene (5-methyltetrahydrofolate-homocysteine S-methyltransferase or vitamin B12 

dependent S-methyltransferase) involved has not yet been identified in Arabidopsis as 

yet, which uses 5-methyltetrahydrofolate as the methyl donor. The de-methylated product 

of the methyl donor is known to be the substrate for the gene producing glycine from 

serine as shown in Figure 6-18.  The gene converting the product – 5,10-

methyleneltetrahydrofolate to the methyl donor of methionine biosynthesis has also been 

identified in Arabidopsis. These pathway suggest the methyl group required for 

methionine biosynthesis effectively is received from the demethylation of serine to form 

glycine. Thus the amount of glycine produced regulates the methyl groups available for 

methionine production. In addition it also suggests a common regulatory element – folic 

acid which provides the main skeleton for the methyl donors.  
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Figure 6-18: Two possible co-regulatory elements between methionine and glycine (A). The 

possibility of presence of an enzyme in Arabidopsis EC 2.1.1.13 links methionine and glycine through 

tetrahydrofolate.  (B) S-Adenosylmethionine (SAM) produced from methionine regulates Glycine 

Betaine production, which could also be converted to glycine thus being the common regulator.  

The other possible known pathway which connects the two enzymes is one of the major 

use of methionine is to produce SAM which along with phospho-cholin through a series 

of steps produces glycine betaine which is one of the important osmoprotectant in plants. 

Glycine-betain is also known to undergo successive methylation to produce glycine. 

However the second pathway involves many genes and is known to be differentially 

regulated specially during slat stress conditions so is less likely to be the case. Hence 
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most possible explanation of the presence of strong correlation between the glycine and 

methionine could be the presence of reaction catalyzed by B12 dependent S-methyl-

transfarase gene. The above results also indicate that this is also the major methionine 

producing pathway if present, since it is regulating the overall methionine concentration. 

In an effort to identify this gene, the methionine and glycine profile will also be 

compared with the transcriptomic profiles from the same experiment to identify possible 

targets for genes catalyzing this reaction. 

Thus PTM analysis using methionine as the template provides an example of the ability 

to use the dynamic profiles for re-construction of the metabolic regulatory networks. 

Similar analysis with malate as a template showed the strongest correlation (p-value 1E-

09) with the citramalate (2-methylmalate) profile. Arabidopsis does not have a gene to 

directly convert malate into citramalate or vice-versa however genes catalyzing such 

reaction have been previously reported in bacterial systems. These are just two examples 

of the ability of using systematically perturbed time-series profiles for re-constructing the 

biochemical networks which can provide important regulatory information or metabolic 

engineering targets (in this case high corn methionine – an important nutrient for the feed 

industry) in plants.  

 

 

 

 



239 



240 



241 

77    SUMMARY OF RESULTS - FUTURE WORK 

The late 19th and the beginning of the 20th century were marked by a series of discoveries 

which allowed us to identify the structure of fundamental unit of matter – an atom. The 

discoveries identified the constituents of atom, the atomic structure and forces governing 

(regulating) their motion (behavior). This knowledge gained about these systems over a 

period of two-three decades inspired a host of technologies from nuclear energy and 

weapons to medical imaging and finally culminating into the computer revolution. Our 

ability to measure, understand and model the constituents and response of the atoms and 

molecules was key to the development of these technologies over the entire century. 

In almost a comparable way, we are today in the midst of another revolution which is 

based on the biological systems. The OMICs revolution of the 1990s which allowed 

successful sequencing of many organisms was followed by a number of high-throughput 

techniques to measure various cellular levels of the biological system. Once again, our 

ability to measure, understand and model the regulation of constituents (gene, protein and 

metabolites being the most important ones) of the biological systems will be the key to 

utilize these systems for developing technologies which benefit the mankind (which 

always is the hope of the scientists). The recent environmental changes and likely 

shortage of energy; difficult to control diseases like cancer, AIDs and possible threat of a 

Avian flue pandemic have also raised the stakes for increasing our understanding of the 

biological systems. Already our ability to precisely monitor the cellular level of microbes 

using techniques in the metabolic engineering tool box like: metabolic flux analysis and 
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In Silico modeling has allowed rational engineering of microbes to produce monomers 

(1,3-propanediol), animal feed amino acids (lysine), biopolymers (PHBs) and bulk drugs 

(Artemisinin) from renewable biological resources. However the use of these techniques 

for systematic identification of targets for engineering plants, or other complex eukaryotic 

systems, has met with only limited success. In addition these techniques are not high-

throughput in nature, especially for complex biological system, limiting the ability to 

design experiments for integrating it with other cellular fingerprints obtained in the high-

throughput manner. Thus a highthroughput alternative to these techniques is needed to 

monitor the response of the biological systems at the metabolic level. 

7.1 METABOLOMIC ANALYSIS 

Metabolomic analysis, with its ability to measure hundreds of small metabolites, 

provided a highthroughput alternative for obtaining the metabolic fingerprint of the 

biological system. Since metabolites are the ultimate products of changes taking place in 

gene expression and protein activity; and are the most commonly used source of cell-to-

cell communications; our ability to measure them in an accurate manner will be of prime 

importance in achieving the goal of building new technologies utilizing biological 

systems.   

7.1.1 Method Development 

The main aim of my PhD thesis project was to develop a set of experimental tools and 

data analysis methodologies for using metabolomic analysis to understand regulation in a 

complex biological system. Being the newest of the OMICs techniques, metabolomic 
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analysis is still in its early days of development and standardization. During the course of 

the project an optimized metabolomic profiling protocol was developed using the most 

common platform (GC-MS). During method development, parameters which need to be 

optimized for any GC-MS metabolomic study were systematically identified and 

procedures and criteria for their optimization were prepared.  

7.1.2 Data Normalization Methodology 

There were additional challenges, inherent to the analysis, which could not be addressed 

by optimizing experimental condition. To overcome this limitation of GC-MS 

metabolomic analysis following algorithms were developed: 

• A data validation algorithm to ensure constant GC-MS conditions for all the 

samples analyzed which is a pre-requisite for metabolomic analysis. 

• A data correction algorithm which removed biases introduced during sample 

preparation (derivatization) in metabolomic analysis without jeopardizing the 

highthroughput nature of the analysis. The problem was a critical limitation for 

analyzing biological samples using GC-MS for more than 3 decades. 

• A data validation and normalization algorithm was finally developed 

incorporating these algorithms, internal standard normalization, filtering outliers 

and normalization with biological reference standards. This was the first 

comprehensive data normalization approach for metabolomic data which takes 

into account all sources of variability and ensures that the biological conclusions 

derived from the GC-MS metabolomic profiles is free of experimental biases. 
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This data normalization strategy is being used not only in plants, but also for 

metabolomic analysis for (a) yeast (b) mammalian cell cultures (c) brain tissue 

samples and (d) zebra fish in our group.   

7.1.3 Time-series Metabolomic Data Analysis 

Most initial metabolomic analysis studies were driven by snap-shot analysis. This was 

one of the earliest systematically perturbed time-series metabolomic analyses. In order to 

systematically identify significant metabolites from overall analysis and at individual 

time-points, methods used in transcriptomic analysis, paired-SAM and MiTimeS 

respectively, were studied and incorporated for metabolomic analyses. The current 

project is the first example of time-series metabolomic analysis in which significant 

metabolites were identified at individual time points using multivariate statistical 

techniques, rather than using just fold change of different responses as criteria to 

determine significance in time-series metabolomic analysis.  

Using these techniques, a data analysis strategy was worked out for studying the effect of 

simultaneously identified perturbations and comparison of the same with individual 

perturbations. The analysis allowed along with identification of effect of combined 

perturbation, interaction between the regulatory effects of individual perturbations.  

In order to reduce time of data analysis, A Mathcad algorithm which incorporated all the 

data normalization, filtering and data correction steps was developed. In addition, paired-

SAM and MiTimeS algorithm were also incorporated in Mathcad reducing significantly 
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the time required for data analysis which is currently the major bottle neck for 

metabolomic analysis.    

7.1.4 Reconstruction of Metabolic Regulatory Network 

In response to perturbation in a biochemical network, the response of metabolites within 

the network is expected to be correlated if (a) metabolites are regulated by a common 

regulatory element (b) metabolites are in near equilibrium reactions (c) metabolites 

belong to the same pathway whose enzymatic activities are regulated. Based on this 

assumption, carrying out Pavlidis Template Matching in dynamic metabolomic profiles 

in response to perturbations it was possible to re-construct the metabolic regulatory 

network. Such reconstruction identified possibility of novel metabolic pathways, which 

are known to exist in other organisms were thought be absent in plants. This is the first 

known example of reconstruction of metabolic network and identification novel 

biochemical pathways / co-regulatory elements in plants using time-series metabolomic 

analysis data from a systematically perturbed network.  

Thus, the import contributions of the research performed in the current PhD project can 

be summarized as: 

• Optimized methodology for GC-MS metabolomics and procedure for developing 

the same in a new lab. 

• Data validation, data correction and data normalization technique which is likely 

to benefit all researchers using GC-MS metabolomic analysis. 
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• Incorporated data analysis methods for time-series metabolomic analysis from 

methods used from transcriptomic analysis. 

• Developed a data analysis strategy to compare simultaneously applied 

perturbations to identify interaction between the stresses. 

• A methodology to re-construct biochemical networks and identify novel 

biochemical pathways or co-regulatory elements using time-series data.  

7.2 REGULATION OF PLANT PRIMARY METABOLISM 

Plants play an important role in the food chain on earth due to their ability to harness 

solar energy to reduce carbon dioxide and nitrate ions into organic carbon and nitrogen 

compounds respectively. Engineering the primary metabolism of complex biological 

systems like plants is a very difficult but equally important task for a renewable source of 

energy and chemicals. Incomplete information (as compared to microbes) about their 

metabolism and lack of steady state make it difficult to use metabolic flux analysis to 

study regulation in plants. Instead in the present analysis, high-throughput time-series 

metabolomic analysis was used to study the regulation of Arabidopsis thaliana (plant 

model system) liquid cultures primary metabolism. The system was systematically 

perturbed with a number of perturbations and their response was monitored using 

dynamic metabolomic profiling analysis. Summary of the insights about primary 

metabolism obtained from the same are described below. 
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7.2.1 Common Observations about Metabolic Regulations 

From comparison of all the perturbations applied in this project a number of common 

perturbations were easily made about the overall regulation of the free small metabolite 

pools: 

• In response to perturbations the maximum increase/decrease in metabolite pools 

was up to 30 times their original concentrations. 

• In response to stress at any given point of time, up to 70% of the metabolite pools 

showed significant variations. This indicates perturbations can have global effects 

on the metabolome. In addition the number of metabolites showing increase or 

decrease can very greatly between time-points in response to the stress. 

• In response to each stress, at least 95% of the metabolites showed a significant 

change at least at 1 time point. 

• In response to each stress, less than 10% of the metabolites maintained same 

significance level at all timepoints, the rest changed significance level at least at 

one of the time points. 

• Metabolomic analysis identified a number of metabolites whose position in the 

biochemical pathways were not known. This suggests possibility of new pathways 

not known still in plants. 
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7.2.2 CO2 stress 

Elevated CO2 levels in plants significantly alter the metabolism of plants. Some of the 

main changes taking place are summarized below: 

• Increased metabolite levels significantly for majority of metabolites at 1 h, the 

only stress to do so. CO2 stress also showed the highest dynamics of significance 

level of metabolites. 

• Inhibited photorespiration and decreased concentration of organic acid pools of 

the pathway. 

• Increased nitrogen assimilation and amino acid pools during first 12 hours, but the 

concentration of the amino acid pools decreased beyond 12h. 

7.2.3 Salt (NaCl) Stress 

50 mM Salt (NaCl) stress in plants causes oxidative and osmotic stress which is fatal in 

A. thaliana 4 days from the application of stress. Time-series metabolomic analysis of 

salt stress showed:  

• A. thaliana liquid cultures produce their known osmoprotectants like glycine 

betaine, sucrose and Raffinose-family oligosaccharides (Galactinol).  

• A. thaliana liquid cultures also produce β-alanine betaine and polyamines which 

have been known to be osmoprotectants in woody plants. 
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• thaliana liquid cultures use tocopherol (Vitamin E) and ascorbate (Vitamin C) to 

counter oxidative stress. All the other known sterols also show increase. 

• TCA cycle metabolites showed a significant increase, specially fumarate, 

aconitate and iso-citrate, suggesting increased flux through TCA cycle. This was 

observed for the first time in plants. 

• In contrast Malate also a TCA cycle metabolite, showed a significant decrease 

suggesting regulation of malate pools by its role in regulation of guard cell 

movements or balancing Cl- ions in vacuoles. These needs further investigation. 

• Salt stress seems to have mild effect on the nitrogen storage and transport 

metabolite pools, suggesting not a significant change in nitrogen assimilation.  

• Amino acids connected to the biosynthesis of osmoprotectants (β-alanine, 

homoserine-methionine, N-acetylglutamate, glycine) showed significant increase 

in their concentration suggests increased flux through their metabolite pools.  

• Increase in AAs involved in osmoprotectant is achieved by re-distribution of flux 

from competing pathways resulting in significant decrease in their pools. This 

suggests possibility of limitation of organic carbon or nitrogen. 

• In response to stress possibly hemi-cellulose content is increased, specifically 

xyloglucans, in the plant cell wall. This is a novel effect of salt stress response. 

The above results, suggest four novel strategies for engineering plants with higher 

osmotic stress tolerance: 
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• Engineering plants to increase methionine and adenosine biosynthesis increasing 

SAM production and/or increasing β-alanine betaine biosynthesis. 

• Increasing hemi-cellulose xyloglucan production. 

• Increasing carbon utilization for TCA cycle flux to increase ATP production,  

• Increasing sterol/ tocopherol production. 

These four strategies independently or in combination with existing strategies to increase 

osmoprotectants proline, glycine betaine and polyamines, can significantly increase 

osmo-tolerance of plants.  

7.2.4 Sugar (Trehalose) Signal 

• Exogenously applied Trehalose is accumulated inside the cells and its 

concentration gradually builds up increasing to 50 times the original concentration 

in plants at the end of 30h. In presence of the high concentration of trehalose, the 

trehalase activity is not sufficient to breakdown majority of trehalose produced or 

transported.    

• Metabolomic analysis also indicates possibility of starch accumulation by 

decreasing starch breakdown in contrast to current theory that accumulation is 

achieved by increasing gene expression in starch biosynthesis. 

• Trehalose did not effect the concentration of glucose (produced by trehalose 

hydrolysis by trehalase enzyme) and fructose during the 1-24 hours.  
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• Trehalose significantly decreased xylitol concentration and showed significant 

increase in Galactinol concentration. Trehalose hence may also increase 

xyloglucan and Raffinose family oligosaccharides production. 

• Trehalose has very small effect (possibly secondary) on TCA cycle, 

Photorespiration, Secondary metabolism, Lipids and Butanoate metabolism.  

• In response to trehalose, 12 amino acids showed significant increase (from which 

9 were also observed from paired SAM). In contrast only 4 amino acids showed 

decrease in concentration of which only 1 (aspartate) was negatively significant at 

most time points.  This effect of trehalose on AA production is observed for the 

first time. 

• Trehalose increased 60% of the total metabolite pools at 30h when intracellular 

trehalose concentration was the highest (50 times the original). This suggests 

possibility of a different regulatory response at very high trehalose concentration. 

The regulation of amino acid biosynthesis by trehalose is an important result which can 

help in engineering efforts to produce plants which have a better ability to assimilate 

nitrogen and plants which can produce more amino acids there by improving the 

nutritional quality. 
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7.2.5 Hormone (Ethylene) Signal 

Ethylene is a plant hormone which regulated several developmental and stress response 

in plants, however its effect on metabolism have not been studied so far. The first ever 

time-series metabolomic study of ethylene response: 

• Up to 30 fold increase in maltose suggest increased starch degradation  observed 

for the first time.  

• Significant increases in first half of the TCA cycle intermediates (citrate, iso-

citrate, α-ketoglutarate) and glutamate derived amino acids. 

• Increase in precursors for protein (amino acids), lignin (sinapinic acid), and 

nucleotides (nicotinate) biosynthesis, unsaturated lipids, phosphor-lipid precursors 

especially during first 12 hours – which show the strongest response of all 

stresses. 

• Regulation of increased cell division and cellular growth by ethylene is achieved 

by regulating Stigmasterol (and possibly other phytosterols) rather than using the 

Brassinosteroid regulation machinery. 

All of the above are novel findings, being reported for the first time.  They demonstrate at 

metabolic level changes taking place in plants to achieve the increased cell division or 

growth at the macro-molecular level. In addition to adding to our understanding of 

ethylene stress response, the analysis also indicated regulatory nodes in the A. thaliana 

liquid culture metabolic network as demonstrated by following examples: 
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• In response to ethylene, starch breakdown increases, however most of the carbon 

is stored in the form of maltose which shows the highest increase (30 fold) rather 

than fructose / glucose or their phosphates, suggesting maltose catabolism as one 

of the regulating nodes.  

• In response to ethylene, TCA cycle intermediates citrate, iso-citrate and α-

ketoglutarate show a significant increase in their pools. However the rest of the 

TCA cycle metabolites do not show similar increase. Instead the increased flux is 

used for production of glutamate and other amino acids derived from α-

ketoglutarate. This suggests α-ketoglutarate to be an important node which 

regulates the flux towards further TCA cycle reactions or amino acid biosynthesis.  

7.2.6 Novel Biochemical Pathways 

In addition to specific information about response of primary metabolism pathways in 

response to stress, the large number of dynamic perturbations also allowed identification 

of novel biochemical pathways of co-regulation elements based on strong correlation 

between the metabolites. Using Pattern matching algorithm (PTM) with the time profile 

of methionine as a template, showed a very strong correlation (p-value 1E-05) between 

methionine and glycine. Similar strong correlation was also observed between malate and 

citramalate (p-value 1E-09) with malate as a template. The correlation between these 

metabolite pairs was much stronger than the correlation between the known co-regulated 

metabolites. This correlation was observed not only in one of the experiments but across 

a number of perturbations. Currently there are no known biochemical pathways or 

common regulatory elements between malate and citramalate in plants, but such a 
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pathway does exist in some bacteria. The result from metabolic network reconstruction 

thus suggests possibility of the existence of the pathway also in plants.   

7.3 FUTURE WORK   

Metabolomic analysis is rapidly emerging as a technique of choice to obtain metabolic 

fingerprint in many different biological systems. In spite of the ability of the metabolomic 

analysis to add a wealth of information about the biological systems being studied, there 

is still room to improve the biological knowledge which can be generated using 

metabolomic analysis. One of the obvious, but difficult, steps in this direction is to build 

better metabolite libraries which allow identification of at least 80-90% of metabolites 

being studied. This would not only add a number of pathways which are still not being 

studied, but also improve information content of the existing pathways by adding more 

known metabolites in the pathway. Such an exercise is also likely to identify more 

metabolites whose biochemical role or position in the biochemical networks is still not 

known pointing future research direction.  

The additional advantage of knowing most of the metabolites in the sample are it would 

then become possible to prepare a synthetic sample which consists of all the known 

metabolites. The advantages of having such a synthetic sample are: 

• It will significantly improve data normalization strategy and allow cross 

comparison between data generated in different labs. This would be critical for 

metabolomic applications in the field of medical diagnostics. 
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• It will allow us to obtain absolute concentrations of the metabolites being studied 

in a high-throughput manner.  

• Ability to measure absolute concentrations will also allow us to design data 

analysis strategies which take into account three orders of magnitude difference 

between metabolite pools.  

• Better understanding of all known metabolites with ability to measure their 

dynamic concentrations will allow us to obtain dynamic flux information in a 

high-throughput manner. 

In the current analysis also, a synthetic sample consisting of 30 known metabolites was 

prepared which was the starting point for identification of the problems of derivatization 

which resulted in the data correction algorithm.  

In addition to creating a synthetic sample the other steps which can significantly improve 

the interpretation of the results are as listed below: 

• Developing software which combines multiple data analysis steps of metabolomic 

analysis into single software with ability to integrate the results in biochemical 

pathway reducing significantly the time it takes to go from GC-MS runs to 

biological results. 

• Creation of a data base which summarizes past results involving individual 

metabolites. This would make it easier to interpret result as to what changes in the 

high-throughput analysis mean biologically. 
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• Extending the metabolome to include important biological energetic state 

molecules like ATP/ADP, reductive state NADP/NADPH and nucleotides.  

• If possible parallel highthroughput analysis to also measure macromolecules like 

starch, total protein and lipid contents in a high-throughput manner or develop a 

total metabolite extraction technique which breakdown the macromolecules into 

their monomers which can then be analyzed separately in a highthroughput 

manner.  

These changes would allow us to get a really global view of all the changes taking place 

in the biological system. Once we have acquired this ability or some of the important 

parts of it we can also improve biological sampling looking at individual cell types or 

even compartments within the cell. Already advances in the field of laser micro-

dissection have allowed researchers to look at transcriptomic data for individual cell 

types of roots in plants (Galbraith and Birnbaum, 2006) and the same also been shown to 

work with metabolomic analysis (Schad et al., 2005). These results can then be integrated 

with information available from transcriptomic, proteomic and ionomics fingerprints. 

This would allow us to develop highly complex compartmentalized models for changes 

taking place in the biological system taking us one step closer to engineer them for the 

benefit of all life forms on this beautiful plant we call home.  
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APPENDICES 

Appendix I: Data Correction Algorithm Additional Tables 

Table A1-1: Composition of the standard metabolite mix 1. Actual weights of each 
metabolite in the 600 μL solution are provided in column 2 (first published in Kanani and 
Klapa, 2007). 

 Metabolite Concentration 
(μg/mL) 

Amount  in 600 μL 
Solution (μg) 

1 Alanine 2.5 1.5 

2 Asparagine 83.3 50.0 

3 Aspartic acid 11.1 6.7 

4 Citric Acid 111.2 66.7 

5 Fructose 83.3 50.0 

6 Fumarate 11.7 7.0 

7 Galactose 16.7 10.0 

8 Glucose 116.7 70.0 

9 Glutamic acid 133.3 80.0 

10 Glutamine 50.0 30.0 

11 Glycine 8.3 5.0 

12 iso-Leucine 0.2 0.1 

13 Lactose 1.7 1.0 

14 Leucine 0.3 0.2 

15 Lysine 3.3 2.0 

16 Malic acid 83.3 50.0 

17 Maltose 1.7 1.0 

18 Mannitol 0.8 0.5 

19 Methionine 0.8 0.5 

20 nor-Leucine 13.3 8.0 

21 Phenylalanine 0.8 0.5 

22 Proline 16.7 10.0 

23 Ribitol (Internal Standard) 33.3 20.0 
24 Serine 8.3 5.0 

25 Succinic acid 12.4 7.4 

26 Sucrose 83.3 50.0 

27 Threonine 5.0 3.0 

28 Valine 8.3 5.0 
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Table A1-2: Measured relative (with respect to the internal standard ribitol) peak areas of 
the derivative forms of the category-3 metabolites listed in Tables 3-1 &3-2 in the 
metabolomic profiles used for the estimation of the M

1w weight values listed in Table 3-2 
(first published in Kanani and Klapa, 2007).  

 

 Plant Sample 1-RPA    
Derivatization Time  6 hr 11 hr 12 hr 17 hr 18 hr 23 hr C Values
Glutamate 3 TMS 0.251072 0.237657 0.217070 0.196430 0.191739 0.161459  

Pyroglutamate 2 TMS 0.230808 0.258363 0.251117 0.280638 0.289289 0.326998  Glutamate 

Cumulative 0.4826 0.4962 0.4682 0.4765 0.4802 0.4868  0.4819  

Asparagine 3 TMS 0.027924 0.024085 0.022217 0.018717 0.017888 0.012792  

Asparagine 4 TMS 7.543E-03 7.517E-03 7.928E-03 8.411E-03 8.381E-03 8.488E-03  

Asparagine 5 TMS 
( putative) 

1.380E-03 3.208E-03 3.318E-03 4.598E-03 5.188E-03 7.011E-03  
Asparagine 

Cumulative 0.0368 0.0369 0.0365 0.0369 0.0372 0.0366  0.0368  

Glutamine 3 TMS 0.135769 0.079174 0.070707 0.035678 0.029325 0.005884  

Glutamine 4 TMS 2.075E-03 5.912E-04 5.638E-04 2.03E-04 n.d. n.d.  

Pyroglutamine 3 TMS 
(putative) 

3.248E-03 8.745E-03 0.010159 0.012590 0.013769 0.015121  Glutamine 

Cumulative 0.1412 0.1376 0.1444 0.1392 0.1435 0.1400  0.1411  

Serine 2 TMS 0.007493 0.006191 0.005855 0.004677 0.005350 0.004558  

Serine 3 TMS 0.021300 0.015568 0.017809 0.018195 0.012529 0.016312  

Serine 4 TMS 2.88E-04 6.270E-04 6.76E-04 1.025E-03 1.153E-03 1.587E-03  
Serine 

Cumulative 0.0309 0.0280 0.0280 0.0274 0.0287 0.0309  0.0291  

Threonine 2 TMS 6.056E-03 4.895E-03 4.965E-03 4.110E-03 4.787E-03 4.290E-03  

Threonine 3 TMS 0.018956 0.015755 0.016772 0.018428 0.013826 0.017302  

Threonine 4 TMS n. d. 7.85E-05 8.18E-05 1.42E-04 1.37E-04 1.98E-04  
Threonine 

Cumulative 0.0261 0.0238 0.0245 0.0242 0.0248 0.0263  0.0250  

Homoserine 2 TMS 4.847E-04 3.745E-04 4.470E-04 3.108E-04 3.469E-04 3.024E-04  

Homoserine 3 TMS 3.408E-03 2.327E-03 2.691E-03 2.701E-03 1.708E-03 2.385E-03  

Homoserine 4 TMS n. d. 2.43E-04 2.34E-04 3.83E-04 4.17E-04 6.01E-04  
Homoserine 

Cumulative 3.943E-03 3.624E-03 4.156E-03 3.670E-03 3.766E-03 4.124E-03 3.943E-03 
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 Plant Sample 2 –RPA  
Derivatization Time  8 hr 9 hr 14 hr 15 hr 20 hr 21 hr 

 

Glutamate 3 TMS 0.289357 0.293374 0.261782 0.255368 0.229210 0.218927 

Pyroglutamate 2 TMS 0.279567 0.284105 0.313765 0.315481 0.331679 0.334087 Glutamate 

Cumulative 0.5696 0.5782 0.5754 0.5706 0.5601 0.5521 

Asparagine 3 TMS 0.032668 0.033411 0.027955 0.025636 0.021702 0.020932 

Asparagine 4 TMS 6.415E-03 7.382E-03 8.145E-03 8.133E-03 8.741E-03 7.858E-03 

Asparagine 5 TMS 
( putative) 

1.606E-03 1.840E-03 3.181E-03 3.318E-03 4.338E-03 4.465E-03 
Asparagine 

Cumulative 0.0385 0.0412 0.0409 0.0394 0.0393 0.0373 

Glutamine 3 TMS 0.192906 0.203068 0.143653 0.132696 0.093441 0.086970 

Glutamine 4 TMS 5.550E-03 6.313E-03 3.332E-03 3.037E-03 1.594E-03 1.324E-03 

Pyroglutamine-3-TMS 
(putative) 

2.487E-03 4.748E-03 8.254E-03 8.587E-03 0.012801 0.012199 
Glutamine 

Cumulative 0.2082 0.2432 0.2044 0.1971 0.1939 0.1814 

Serine 2 TMS 0.016386 0.013592 0.014349 0.012940 0.013015 0.013913 

Serine 3 TMS 0.014420 0.023790 0.016139 0.016093 0.016631 0.014616 

Serine 4 TMS 4.972E-04 5.877E-04 8.927E-04 9.636E-04 1.373E-03 1.529E-03 
Serine 

Cumulative 0.0569 0.0521 0.0545 0.0508 0.0544 0.0577 

Threonine 2 TMS 9.091E-03 7.413E-03 8.188E-03 7.588E-03 7.916E-03 7.897E-03 

Threonine 3 TMS 0.011811 0.017305 0.012697 0.012903 0.013443 0.011824 

Threonine 4 TMS n.d. 8.00E-05 9.95E-05 1.05E-04 1.26E-04 1.31E-04 
Threonine 

Cumulative 0.0338 0.0327 0.0344 0.0327 0.0347 0.0342 

Homoserine 2 TMS 6.956E-04 6.306E-04 5.353E-04 4.300E-04 4.797E-04 5.086E-04 

Homoserine 3 TMS 1.073E-03 2.178E-03 1.210E-03 1.084E-03 1.207E-03 1.004E-03 

Homoserine 4 TMS 0.00E+00 0.00E+00 2.41E-04 3.02E-04 3.70E-04 3.38E-04 
Homoserine 

Cumulative 4.776E-03 4.608E-03 4.409E-03 3.855E-03 4.390E-03 4.445E-03 
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 Standard Metabolite Mix1 – RPA 
Derivatization Time --> 6 7 9 10 14 15 17 18 C Values 

Alanine NO 0.033705 0.031266 0.031235 0.033505 0.024798 0.027107 0.023076 0.025426  
Alanine NNO 5.026E-03 5.728E-03 9.281E-03 9.862E-03 0.013905 0.014379 0.017820 0.018751  Alanine 
Cumulative 0.03844 0.03648 0.03920 0.04198 0.03618 0.03891 0.03745 0.04057 0.038732 
Glycine N O 0.02105 0.02007 0.02182 0.02070 0.02319 0.02120 0.02781 0.02680  
Glycine NNO 0.72804 0.72662 0.70297 0.71781 0.67659 0.69549 0.62924 0.65167  Glycine 
Cumulative 0.76059 0.75025 0.74842 0.74941 0.74091 0.73687 0.74770 0.75557 0.749086 
isoLeucine O 1.689E-03 1.475E-03 1.526E-03 1.424E-03 1.637E-03 1.172E-03 1.306E-03 1.371E-03  
isoLeucine NO 0.01692 0.01659 0.01579 0.01754 0.01500 0.01666 0.01489 0.01592  isoLeucine 
Cumulative 0.01988 0.01903 0.01842 0.01977 0.01797 0.01831 0.01702 0.01814 0.018613 
Lysine NNNO 0.06040 0.05917 0.05770 0.05861 0.05454 0.05636 0.05305 0.05375  
Lysine NNNNO n.d. n.d. 1.149E-03 1.640E-03 1.968E-03 1.982E-03 2.859E-03 3.225E-03  Lysine 
Cumulative 0.06040 0.05917 0.06043 0.06238 0.05899 0.06085 0.05939 0.06087 0.060400 
Methionine N O 0.01786 0.01773 0.01697 0.01675 0.01650 0.01696 0.01457 0.01389  
Methionine NNO 8.944E-03 7.429E-03    0.01327 8.703E-03 9.172E-03 8.257E-03 9.106E-03 7.777E-03  Methionine 
Cumulative 0.02866 0.02791 0.02896 0.02700 0.02681 0.02713 0.02405 0.02260 0.026801 
Valine O 0.02708 0.02674 0.02927 0.03026 0.02946 0.02649 0.02946 0.02463  
Valine NO 0.09162 0.09102 0.08668 0.08856 0.08164 0.08834 0.07891 0.08520  Valine 
Cumulative 0.1217  0.1207  0.1211  0.1243  0.1171  0.1180  0.1148   0.1123      0.11870 
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 Standard Metabolite Mix2- RPA   
Derivatization Time --> 6 8 10 12 14 16 18 20 22 C Value 

B Alanine NNO 15.2052 15.9998 14.5027 16.9377 15.2167 15.6929 12.8514 15.4956 14.7220  
B Alanine O 0.4060 0.3413 0.4135 0.1890 0.3697 0.3473 0.5662 0.4221 0.4116  B Alanine 
Cumulative 15.8151 15.8786 15.3175 15.2793 15.5019 15.6854 15.3475 16.1912 15.4768 15.6112 
Dopamine NOO 0.3132 0.2421 0.2989 0.1722 0.2684 0.2752 0.4074 0.2924 0.3045  
Dopamine 
NNOO 3.6453 3.9818 3.7981 4.5306 3.8138 3.8572 3.1544 3.7618 3.6517  Dopamine 

Cumulative 3.9576 3.9066 4.0093 4.0151 3.8938 3.9537 3.9924 3.9559 3.9261 3.9585 
Phenylalanine O 1.2511 1.2399 1.2708 1.1471 1.2631 1.2961 1.4528 1.3148 1.3454  
Phenylalanine 
NO 0.7122 0.7373 0.6171 0.9357 0.6722 0.6665 0.1132 0.5630 0.5240  Phenylalanine 

Cumulative 1.9631 1.9606 1.9432 1.9351 1.9596 1.9996 1.9384 1.9744 1.9955 1.9633 
Tyrosine O 0.3300 0.2500 0.3200 0.1700 0.2900 0.2900 0.4400 0.3100 0.3200  
Tyrosine NO 1.6205 1.6723 1.7182 1.8711 1.7497 1.6662 1.5229 1.7727 1.7961  
Tyrosine NOO 0.0310 0.0712 0.0716 0.0424 0.0775 0.1019 0.0281 0.0107 0.0891  

Tyrosine 

Cumulative 1.9221 1.8866 2.0127 1.9712 2.0084 1.9363 1.9598 2.0362 2.0906 1.9815 
 

Derivatization Time --> 8 10 12 14 16 20 22   C Value 
Cysteine NSO 0.1635 0.1727 0.1277 0.1772 0.1647 0.1716 0.1729    
Cysteine NNO 2.869 2.2392 3.5237 2.4538 2.803 2.0037 2.0115    Cysteine 
Cumulative 3.1331 3.0166 2.9217 3.1530 3.1239 2.9155 2.9349   3.0325 

 
Derivatization Time --> 8 10 13 16 19 22 25   C Value 

Ornithine N2N2N5O 1.256 1.355 1.383 1.374 1.392 1.400 1.466    
Ornithine N5N5N2O 0.552 0.711 0.668 0.566 0.593 0.542 0.566    Ornithine 
Cumulative 1.647 1.832 1.842 1.783 1.816 1.800 1.884   1.8080 
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Pure Metabolite Standards – RPA    
Derivatization Time --> 6 6.5 13 13.5 27 27.5 C Value 

Aspartate OO 2.108E-03 1.883E-03 2.418E-03 2.492E-03 0.018432 0.016652  
Aspartate NOO 0.30668 0.29906 0.29415 0.30321 0.05375 0.02309  Aspartate 
Cumulative 0.0760 0.0757 0.0750 0.0767 0.0818 0.0694 0.0760 

  

Derivatization Time --> 7 11 15 19 23  C Value 
Allantoin NNN 7.532E-03 4.482E-03 7.887E-03 3.986E-03 2.368E-03   
Allantoin NNNN 0.462107 0.529965 0.600697 0.709147 0.680483   
Allantoin NNNNN 6.212E-03 5.406E-03 4.733E-03 0.012829 0.024902   

Allantoin 

Cumulative 0.44864 0.40573 0.52793 0.50390 0.47335  0.47585    
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Table A1-3: Retention times (RT) for the derivative forms of the 26 category-3 

metabolites listed in Table 3-1; they correspond to the GC-MS operating conditions at 

which all data discussed in the paper were acquired (first published in Kanani and Klapa, 

2007). 

Amino Acid RT Derivative 1 
Min 

 RT Derivative 2 
Min 

RT Derivative 3 
Min 

Alanine 7.96 14.83  
Arginine 25.19 25.39 29.30 
Asparagine 24.77 20.30 28.13 
Aspartate 19.48 20.30  
Cysteine 16.56   20.89 21.29 

Glutamate 22.64 23.00  
Glutamine 27.01 23.45 21.78 
Glycine 9.06 13.54  
Histidine 32.00 31.75 31.02 
Iso-Leucine 12.04 13.38 19.35 
Leucine 11.21 12.74 18.27 
Lysine 23.62 27.25 30.93 
Methionine 21.11 26.03  
Phenylalanine 24.00 23.73  
Proline 14.45   
Serine 14.20 15.43 20.04 
Threonine 14.81 15.83 22.01 

Tryptophan 39.01 37.75 36.08 
Tyrosine 26.15 30.44 37.59 
Valine 9.30 11.10 11.729 
Allantoin 35.91 29.34 27.59 
β-Alanine 8.11 11.42 17.06 
GABA 14.727 19.694  

Dopamine  26.97 30.95  
Homoserine 16.90 17.75 22.47 
Ornithine 25.19    25.39 29.30 
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Appendix- II Significance Level Of Unknown Metabolites 

Table A2-1: Significance level of unknown metabolite pools at individual time points and 

paired-SAM analysis in response to elevated CO2 stress. Positively (1) and negatively (-

1) significant metabolites are color-coded as described in the caption of Table 5-1. 

Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
acid Hydroxy-pyruvic acid/Ara Col leaf 2 / 4-keto Glucose diMeox P1906 -1 -1 -1
acid Glyceric Acid like unknown P2793 -1 -1 -1
acid Ara Col Leaf 012 or 2-keto gulonic acid Methoxime P1361 -1 -1 -1 -1
acid 2 Pentenoic Acid 1 TMS P0769 -1 -1 -1 -1 -1 -1 -1 -1 -1
acid unknown similar to Malic Acid 3 TMS / à Keto isovaleric acid P1677 -1 -1 -1 -1 -1 -1
acid Ascorbic Acid derivative in Tomato leaf ? P2322 -1 -1 -1 -1 -1 -1
acid ARTH unknown 1534-21-1 / 3-ketovalaric acid P1570 -1 -1 -1 -1 -1 -1
acid unknown  similar to Citramalate ? (Citramaleate ?) P1655 1 -1 -1 -1 -1
acid 2,3 dihydroxybutanedioic /pentanoic acid / galactonic acid P2077 1 -1 -1 1 -1
acid 2-keto-gluconic acid / Potato 015 unknown sugar P2427 1 1 -1
acid Propenoic acid, 2,3,3-tris[(trimethylsilyl)oxy]-, trimethylsilyl P2893 1 1 1 1
acid acid ester P1391 1 1 1 1 1 1
acid small mol. Wt. acid (C3 acid ?) P0479 1 -1
acid small mol. Wt. acid (C3 acid ?) P0421 1 -1 -1
acid Propane, 2-methyl-1,2-bis(trimethylsiloxy)- /3-Methyl-1,3-bis( P0802 1 -1
acid Ketone / Aldehyde (Tartaric acid - Glyceraldehyde) P0871 1 1 1 1
alcohol like Galactinol P2835 -1 -1 -1 -1 -1 -1 -1
Alcohol Coniferyl alcol (2TMS) P4691 1 -1 -1 -1
FA unknown FA P3188 1 1 1 1 -1
FA Heptadecanoic acid 1 TMS P3263 1 1 1 1 1
FA 9,12-Octadecadienoic acid, tert-butyldimethylsilyl ester, (Z,Z) P3635 1 -1 -1
FA Docosanoic acid, trimethylsilyl ester P4040 1 1 -1 -1
FA? methylanthraquinone, O,O'-bis(trimethylsilyl P3295 1 -1 -1 -1 -1
oxime Trehose / Erythrose Methoxiamine OR Glycolic acid P1091 -1
Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
SecM - SuScopolin, tetra(trimethylsilyl)- ? P1750 -1 -1 -1 -1 -1
secM biphenol 2 TMS P2234 -1 -1 -1 -1 -1 -1 -1 -1
SecM unknown trimethylsillyl estrone ? Aromatic ring P1790 -1 -1 -1 -1 -1 -1 -1
SecM unknown secondary metabolite P2113 -1 -1 -1 -1 -1 -1 -1
SecM unknown P2224 -1 -1 -1 -1 -1
SecM 1H-Indole-2,3-dione P3559 -1 -1 -1 -1
SecM  2-Piperidinecarboxamide, 1-butyl-N-(2,6-dimethylphenyl)- P4718 1 -1 1 -1 -1
SecM unknown P3636 1 -1 -1 -1
SecM Cholest-2-eno[2,3-b]naphthalene, 5'-amino- P3620 1 -1 -1 -1
SecM Cholest-2-eno[2,3-b]naphthalene, 5'-amino- P5165 1 -1 -1 -1
Similar to Proline like compound - methyl proline ? P1629 -1 -1 -1
SecM unknown secondary metabolite P1801 -1 -1 -1
SecM Secondary Metabolite P3252 -1 -1 -1
SecM Secondary Metabolite P3656 -1 -1 -1
secM unknown secondary metabolite large mol P4833 1 -1 1 1 1 -1
SecM no 73 peak - non hydroxy/carboxy/amine TMS compound P2350 1 -1 1 1 1 -1
SecM similar to (1-methyl-1-phenylethoxy)- P5082 1 1 1 -1 -1
SecM unknown P5073 -1 1 -1
SecM Benzamide, 3,4-dimethoxy- derivative P3154 1 1 1 -1
SecM Secondary amine P3521 1 1 1 -1
SecM secondary aromatic metablite P5050 1 1 1 -1
SecM 1'H-Cholest-2-eno[3,2-b]indole, 5'-methoxy-, (5?)- P4646 1 1 -1
SecM 4-hydroxybenzoic acid P2391 1 -1 1
SecM 5-Aminocarboxy-4,6-dihydroxypyrimidine P2435 1 1 -1
SecM Benzoic acid derivative P1923 -1
SecM non-TMS compound P5001 1 1 1 1 1 1
SecM secondary metabolite (imidazole derivative ?) P3211 1 1 1 1 1
SecM Benzoic acid, 5-methoxy-2-oxy-TMS P5105 1 -1 -1 -1 -1
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Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
Phospho cSugar Phosphate (MPIMP-ID:221004-21-1) P3438 1 1 -1
Phospho cSugar Phosphate P3681 1 1 -1
Phospho cTriose (2,3 Propanediol) phosphate P3372 1 1 1 -1 -1
Phospho cMannose Phosphate P3502 1 1 -1 -1
Phospho cEthanolamine - phosphate P2643 1 1 -1
Phospho cInositol phosphate P4125 1 1 1 -1 -1
Phospho cmyo-Inositol-1 or 2- Phosphate P3705 1 1 1 1 1
Phospho ccould be other inositol phosphate P3585 1 -1 -1 1 -1 -1
Phospho CSugar Phosphate P3611 1 -1 1
Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
Sugar 027 / POTATO TUBER 019 / Glucose impurity P2957 1 1 1 1 1 1
Sugar similar to fructose / ketogluconic acid non-meox P2412 1 1 1 1 1
Sugar d-Turanose / di-tri sachharide P3288 1 1 1 1 -1 -1
Sugar AmAdenosine, N-(trimethylsilyl)-2',3'-bis-O-(trimethylsilyl)-, 5'-[bisP4882 1 1 1 1 -1
Sugar MPIMP-ID:196004-45-1 / Melizitose / Maltose / iso Maltose P2922 1 1 1 -1 1
Sugar P3867  Meox 1 ? P3867 1 1 1 1 -1
Sugar Sugar like Trehalose P4631 1 -1 1 1 -1
Sugar Trehalose ? P4784 1 1 1 -1 -1
Sugar unknwn Sugar / Ploem Cmax 013 P2054 1 -1 -1 1 1
Sugar D-Gal-(1,6)-D-Glc (8TMS)] P4510 1 1 1 -1
Sugar unknown similar to Fructose 5 TMS P2457 -1 1 1 1
Sugar P4295 1 1 1 -1
Sugar Maltose Methox ? P3991 1 1 1 -1
Sugar P4814 1 1 1
Sugar Isomaltose/Melibiose/Cellibiose (900 Reverse match) P4140 1 1 1
Sugar (8TMS); alpha-D-Gal-(1,6)-D-Glc (8TMS)]/Mannose P3400 1 -1 -1 1 -1 -1
Sugar (11TMS) ) / alpha-D-Glc-(1,3)-beta-D-Fru-(2,1)-alpha-D-Glc P2980 1 1 -1 -1 -1
Sugar Nigrose P3816 -1 -1 1 1 -1
Sugar di / tri saccharide / Trehalose/Maltose/Lactose P3013 1 -1 -1 1 -1
Sugar (fur1/Ribofuranose/Xylofuranose/Arabinofuranose/Phloem C P2083 1 1 -1 -1
Sugar Ara Col Leaf 094 / MPIMP-ID:250001-20-1 /Lactose P3677 1 -1 -1 1
Sugar Ath Sugar - MPIMP-ID:213-21-1 P3726 1 -1 1
Sugar Galactinol (9TMS); alpha-D-Gal-(1,3)-myo-Inositol (9TMS)] P4312 1 1 -1
Sugar mono / di /  saccharide P3046 1 1
Sugar sugar/Pentonic acid (5TMS) P2445 -1 -1 -1 1 -1 -1 -1
Sugar Alc Maltitol P4024 -1 1 -1 -1 -1
Sugar Galacto-lactone or sugar acid P2203 1 -1 -1 -1 -1
Sugar P3867 Meox 2 P3890 1 -1 -1 -1 -1
Sugar Arabidopsis Col Leaf 046 / Altrose / Galactofuranose / P2509 1 -1 -1 -1
Sugar Gulose / Potato Tuber 032 P4167 1 -1 -1 -1
Sugar 2-keto-L gulonic acid methoxime / Xylofuranose/Ribofuranos P2000 1 -1 -1 -1
Sugar Glucose derivative unknown ? P1324 1 -1 -1
Sugar Matches Sucrose - quite large peak / Trehalose /Melizitos P4692 1 -1 -1
Sugar P4756 1 -1
Sugar Gluconic Acid 4 TMS lactone ? P2823 -1 -1 -1 -1 -1 -1 -1
Sugar Raffinose P4455 -1 -1 -1 -1 -1 -1 -1
Sugar Glucose derivative ? P1540 -1 -1 -1 -1 -1 -1
Sugar di / tri saccharide P3033 -1 -1 -1 -1
Sugar P3387 -1 -1 -1
Sugar Cellobiose ? P3106 -1 -1 -1
Sugar alpha-D-Glc P4053 -1 -1 -1
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Table A2-2: Significance level of unknown metabolite pools at individual time points and 

paired-SAM analysis in response to salt stress. Positively (1) and negatively (-1) 

significant metabolites are color-coded as described in the caption of Table 5-1. 

Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
acid Glyceric Acid like unknown P2793 -1 1 1 1 1 1
acid Ara Col Leaf 012 or 2-keto gulonic acid Methoxime P1361 1 1 1 1 1 1 1 1 1
acid unknown similar to Malic Acid 3 TMS / à Keto isovaleric acid P1677 -1 -1 -1 -1 -1 -1
acid Ascorbic Acid derivative in Tomato leaf ? P2322 -1 -1 -1 -1 -1 -1 -1
acid unknown  similar to Citramalate ? (Citramaleate ?) P1655 -1 -1 -1 -1
acid 2,3 dihydroxybutanedioic /pentanoic acid / galactonic acid P2077 1 -1
acid 2-keto-gluconic acid / Potato 015 unknown sugar P2427 -1 -1 -1 -1 -1
acid Propenoic acid, 2,3,3-tris[(trimethylsilyl)oxy]-, trimethylsilyl P2893 1 1 1 1 -1
acid acid ester P1391 1 1 1
acid Propane, 2-methyl-1,2-bis(trimethylsiloxy)- /3-Methyl-1,3-bis( P0802 -1 -1 -1 -1 -1 -1
alcohol like Galactinol P2835 -1 -1 -1 1 -1
Alcohol Coniferyl alcol (2TMS) P4691 1 -1
FA unknown FA P3188 -1 -1 1 -1
FA Heptadecanoic acid 1 TMS P3263 -1 1
FA (Z,Z)-9,12-Octadecadienoic acid TMS ester P3635 1 1 1 1 -1
FA Docosanoic acid, trimethylsilyl ester P4040 -1 1 1 -1
FA? TMS[1Docosanol(1TMS)]1,6Dihydroxy3methylanthraquinon P3295 -1 1 1
oxime Trehose / Erythrose Methoxiamine OR Glycolic acid P1091 -1 -1 -1 -1 -1 -1 -1
Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
SecM - SuScopolin, tetra(trimethylsilyl)- ? P1750 -1 -1 -1 -1 -1
SecM unknown trimethylsillyl estrone ? Aromatic ring P1790 1 1 1 1 -1
SecM unknown P2224 -1 -1 1 -1
SecM 1H-Indole-2,3-dione P3559 -1 -1 -1 1
SecM  2-Piperidinecarboxamide, 1-butyl-N-(2,6-dimethylphenyl)- P4718 -1 1 1
SecM unknown P3636 -1 -1 -1 -1 -1 -1
SecM Cholest-2-eno[2,3-b]naphthalene, 5'-amino- P3620 -1 1 -1 1
Similar to Proline like compound - methyl proline ? P1629 -1 -1 -1 1
SecM Secondary Metabolite P3252 1 1 1 1 -1 1
secM unknown secondary metabolite large mol P4833 -1 -1 -1 -1 -1 -1 -1 -1
SecM no 73 peak - non hydroxy/carboxy/amine TMS compound P2350 -1 1 1 1
SecM similar to (1-methyl-1-phenylethoxy)- P5082 1 -1
SecM unknown P5073 -1 -1 -1 1 -1 -1 -1 -1
SecM Benzamide, 3,4-dimethoxy- derivative P3154 -1 1 -1 1
SecM Secondary amine P3521 -1 -1 -1 1 -1
SecM secondary aromatic metablite P5050 1 -1 -1
SecM 1'H-Cholest-2-eno[3,2-b]indole, 5'-methoxy-, (5?)- P4646 -1 -1 -1 -1 -1 -1
SecM 4-hydroxybenzoic acid P2391 -1 1 1 -1
SecM 5-Aminocarboxy-4,6-dihydroxypyrimidine P2435 1 1 -1 1
SecM Benzoic acid derivative P1923 1 1 1 -1 -1 1
SecM non-TMS compound P5001 1 1 1 1 1 1 1 1
SecM secondary metabolite (imidazole derivative ?) P3211 -1
SecM Benzoic acid, 5-methoxy-2-oxy-TMS P5105 -1 -1 -1    

Continued.. 
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Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
Phospho cSugar Phosphate (MPIMP-ID:221004-21-1) P3438 -1 -1 1 -1
Phospho cSugar Phosphate P3681 -1 1 1
Phospho cTriose (2,3 Propanediol) phosphate P3372 -1 -1 1 1
Phospho cMannose Phosphate P3502 -1 -1 -1 -1 -1 -1
Phospho cEthanolamine - phosphate P2643 -1 -1 -1 -1 -1 -1 -1
Phospho cInositol phosphate P4125 -1 1 1 1
Phospho cmyo-Inositol-1 or 2- Phosphate P3705 -1 1 1
Phospho ccould be other inositol phosphate P3585 -1 1 1 1
Phospho CSugar Phosphate P3611 -1 1 1
Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM

Sugar Digalactosylglycerol (9TMS); 882; Melibiose (8TMS); P4510 1 1 1 1 1 1 1 1
Sugar Alc Maltitol P4024 1 1 1 1 1 1 1 1
Sugar P4756 1 1 1 1 1 1 1 1
Sugar Mannonic Acid/MPIMP-ID:203003-31-1TOMATOLEAF027 P2957 1
Sugar similar to fructose / ketogluconic acid non-meox P2412 -1 1 1
Sugar MPIMP-ID:196004-45-1 / Melizitose / Maltose / iso Maltose P2922 1 -1 1 1 -1
Sugar P3867  Meox 1 ? P3867 1 1 -1
Sugar Sugar like Trehalose P4631 -1 -1 -1 1 -1 -1 -1
Sugar Trehalose ? P4784 1 -1 -1
Sugar unknown similar to Fructose 5 TMS P2457 -1 1
Sugar P4295 -1 -1 -1 1 -1
Sugar P4814 -1 -1 -1 1 -1
Sugar Isomaltose/Melibiose/Cellibiose (900 Reverse match) P4140 -1 1 1 1
Sugar (8TMS); alpha-D-Gal-(1,6)-D-Glc (8TMS)]/Mannose P3400 1 1
Sugar (11TMS) ) / alpha-D-Glc-(1,3)-beta-D-Fru-(2,1)-alpha-D-Glc P2980 -1 -1 -1 -1 -1
Sugar Nigrose P3816 1 1 -1
Sugar di / tri saccharide / Trehalose/Maltose/Lactose P3013 -1 1 1
Sugar (fur1/Ribofuranose/Xylofuranose/Arabinofuranose/Phloem C P2083 -1 1 1 -1
Sugar Ara Col Leaf 094 / MPIMP-ID:250001-20-1 /Lactose P3677 -1 1 -1
Sugar Galactinol (9TMS); alpha-D-Gal-(1,3)-myo-Inositol (9TMS)] P4312 -1 -1 -1
Sugar mono / di /  saccharide P3046 -1 -1 1 1
Sugar sugar/Pentonic acid (5TMS) P2445 -1 -1 -1 -1 -1 -1 -1
Sugar Galacto-lactone or sugar acid P2203 -1 -1 1 -1 1
Sugar P3867 Meox 2 P3890 -1 1 1
Sugar Arabidopsis Col Leaf 046 / Altrose / Galactofuranose / P2509 -1 -1 -1 -1 -1 -1 -1
Sugar Gulose / Potato Tuber 032 P4167 1 1 1 1 1
Sugar 2-keto-L gulonic acid methoxime / Xylofuranose/Ribofuranos P2000 -1 -1 -1 1 1 1
Sugar Matches Sucrose - quite large peak / Trehalose /Melizitos P4692 1 -1
Sugar Gluconic Acid 4 TMS lactone ? P2823 -1 -1 -1 -1 -1 -1 -1 -1
Sugar Raffinose P4455 -1 -1 -1 -1 -1 -1 -1
Sugar Glucose derivative ? P1540 1 -1 -1
Sugar di / tri saccharide P3033 -1 -1 -1 1 -1
Sugar P3387 -1 -1 1 -1
Sugar Cellobiose ? P3106 -1 1 1
Sugar Melezitose (11TMS) P4053 -1 1 1 1  
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Table A2-3: Significance level of unknown metabolite pools at individual time points and 

paired-SAM analysis in response to Trehalose stress. Positively (1) and negatively (-1) 

significant metabolites are color-coded as described in the caption of Table 5-1. 

 

Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
acid Hydroxy-pyruvic acid/Ara Col leaf 2 / 4-keto Glucose diMeox P1906 -1 -1
acid Glyceric Acid like unknown P2793 -1 1
acid Ara Col Leaf 012 or 2-keto gulonic acid Methoxime P1361 1 1 1 1 1 1
acid Ascorbic Acid derivative in Tomato leaf ? P2322 -1 -1 -1 -1
acid ARTH unknown 1534-21-1 / 3-ketovalaric acid P1570 -1 -1 1 1
acid unknown  similar to Citramalate ? (Citramaleate ?) P1655 -1 -1
acid 2,3 dihydroxybutanedioic /pentanoic acid / galactonic acid P2077 -1 1
acid 2-keto-gluconic acid / Potato 015 unknown sugar P2427 -1 -1 1
acid Propenoic acid, 2,3,3-tris[(trimethylsilyl)oxy]-, trimethylsilyl P2893 1 1 1 1 1
acid Propane, 2-methyl-1,2-bis(trimethylsiloxy)- /3-Methyl-1,3-bis( P0802 1 1
acid Ketone / Aldehyde (Tartaric acid - Glyceraldehyde) P0871
alcohol like Galactinol P2835 -1 -1 -1 -1 -1
Alcohol Coniferyl alcol (2TMS) P4691 -1 -1 1
FA unknown FA P3188
FA Heptadecanoic acid 1 TMS P3263 1
FA (Z,Z)- P3635 1 1
FA Docosanoic acid, trimethylsilyl ester P4040 -1 1
FA? methylanthraquinone, O,O'-bis(trimethylsilyl P3295 -1 -1 1
oxime Trehose / Erythrose Methoxiamine OR Glycolic acid P1091 -1
Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
SecM - SuScopolin, tetra(trimethylsilyl)- ? P1750 -1 1 1
secM biphenol 2 TMS P2234 -1 -1 -1
SecM unknown trimethylsillyl estrone ? Aromatic ring P1790 -1 1 1
SecM unknown P2224 -1 -1 -1
SecM 1H-Indole-2,3-dione P3559 -1 -1 -1 -1 -1 -1 -1 -1
Similar to Proline like compound - methyl proline ? P1629 -1 -1 -1 -1 -1 -1 -1
SecM  2-Piperidinecarboxamide, 1-butyl-N-(2,6-dimethylphenyl)- P4718 -1 1
SecM unknown P3636 -1 -1 -1
SecM Cholest-2-eno[2,3-b]naphthalene, 5'-amino- P3620 -1 -1 -1 -1 -1
SecM Cholest-2-eno[2,3-b]naphthalene, 5'-amino- P5165 -1 -1 1
SecM Secondary Metabolite P3252 -1 -1 -1 -1 1
secM unknown secondary metabolite large mol P4833 -1 -1 1
SecM no 73 peak - non hydroxy/carboxy/amine TMS compound P2350 1 1 1
SecM similar to (1-methyl-1-phenylethoxy)- P5082 -1 1
SecM unknown P5073 -1 -1 1
SecM Benzamide, 3,4-dimethoxy- derivative P3154 1
SecM secondary aromatic metablite P5050 -1 1
SecM 1'H-Cholest-2-eno[3,2-b]indole, 5'-methoxy-, (5?)- P4646 -1 -1 -1 1
SecM 4-hydroxybenzoic acid P2391 1 1 1
SecM 5-Aminocarboxy-4,6-dihydroxypyrimidine P2435 1 1
SecM non-TMS compound P5001 -1 -1 1 1 1
SecM secondary metabolite (imidazole derivative ?) P3211 -1 1  
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Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
Phospho cSugar Phosphate (MPIMP-ID:221004-21-1) P3438 -1 -1
Phospho cSugar Phosphate P3681 -1 1 1 1
Phospho cTriose (2,3 Propanediol) phosphate P3372 1
Phospho cMannose Phosphate P3502 -1 -1 -1 1
Phospho cEthanolamine - phosphate P2643 -1 1
Phospho cInositol phosphate P4125 -1 1
Phospho cmyo-Inositol-1 or 2- Phosphate P3705 -1 -1 1 1
Phospho ccould be other inositol phosphate P3585 -1 -1
Phospho CSugar Phosphate P3611 1 1
Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
Sugar unknwn Sugar / Ploem Cmax 013 P2054 -1 -1 -1 -1 -1 -1
Sugar di / tri saccharide P3033 -1 -1 -1 -1 -1 -1 -1
Sugar P3387 -1 -1 -1 -1 -1 -1 -1 -1
Sugar Raffinose P4455 -1 -1 -1 -1 -1 -1 -1 -1
Sugar Cellobiose ? P3106 -1 -1 -1 1
Sugar D-Gal-(1,6)-D-Glc (8TMS)] P4510 1 1 1 1 1 1
Sugar Unknown Sugar P4756 1 1 1 1 1 1 1
Sugar similar to fructose / ketogluconic acid non-meox P2412 -1 1
Sugar d-Turanose / di-tri sachharide P3288 1 1 -1 1
Sugar MPIMP-ID:196004-45-1/Melizitose/Maltose/iso Maltose P2922 1 -1 1
Sugar Mannonic acid / Tomato Leaf 027/ Potato Tuber 019 P2957 -1
Sugar P3867  Meox 1 ? P3867 -1 -1
Sugar Sugar like Trehalose P4631 -1 -1 -1
Sugar Trehalose ? P4784 -1 1
Sugar unknown similar to Fructose 5 TMS P2457 -1 -1
Sugar P4295 -1 -1 -1 -1 -1
Sugar Maltose Methox ? P3991 -1 -1
Sugar P4814 -1 1 1 1
Sugar Isomaltose/Melibiose/Cellibiose (900 Reverse match) P4140 -1 1
Sugar (8TMS); alpha-D-Gal-(1,6)-D-Glc (8TMS)]/Mannose P3400 1
Sugar Melezitose (11TMS) ) / alpha-D-Glc-(1,3)-beta-D-Fru-(2,1)-al P2980 1 -1
Sugar Nigrose P3816 -1 1 1
Sugar di / tri saccharide / Trehalose/Maltose/Lactose P3013 -1 -1 -1
Sugar (furRibofuranose/Xylofuranose/Arabinofuranose/Phloem C Max P2083 -1 -1 -1
Sugar Ara Col Leaf 094 / MPIMP-ID:250001-20-1 /Lactose P3677 -1 1
Sugar Ath Sugar - MPIMP-ID:213-21-1 P3726 -1 1 1
Sugar Galactinol (9TMS); alpha-D-Gal-(1,3)-myo-Inositol (9TMS)] P4312 -1 1
Sugar mono / di /  saccharide P3046 -1 1 1
Sugar Galactonic acid /2-keto-gluconic acid / Potato 015 unknown sP2445 -1 -1 -1 1
Sugar Alc Maltitol P4024 -1
Sugar Galacto-lactone or sugar acid P2203 -1 -1 1
Sugar P3867 Meox 2 P3890 -1 -1 -1
Sugar Arabidopsis Col Leaf 046 / Altrose / Galactofuranose / P2509 1 1 -1 1
Sugar Gulose / Potato Tuber 032 P4167 -1 -1 1
Sugar 2-keto-L gulonic acid methoxime / Xylofuranose/Ribofuranos P2000 -1 1
Sugar Matches Sucrose - quite large peak / Trehalose /Melizitos P4692 -1 -1 1
Sugar Gluconic Acid 4 TMS lactone ? P2823 -1 -1 1
Sugar Glucose derivative ? P1540 -1 -1
Sugar alpha-D-Glc P4053 -1 -1 1  

 

 



272 

Table A2-4: Significance level of unknown metabolite pools at individual time points and 

paired-SAM analysis in response to Ethylene stress. Positively (1) and negatively (-1) 

significant metabolites are color-coded as described in the caption of Table 5-1. 

Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hrSAM
acid Hydroxy-pyruvic acid/Ara Col leaf 2 / 4-keto Glucose diMeox P1906 1 1
acid Glyceric Acid like unknown P2793 1 -1 -1
acid Ara Col Leaf 012 or 2-keto gulonic acid Methoxime P1361 1 1 1 1
acid Ascorbic Acid derivative in Tomato leaf ? P2322 1 1 1 1
acid ARTH unknown 1534-21-1 / 3-ketovalaric acid P1570 1 1 1 1 1 1 1
acid unknown  similar to Citramalate ? (Citramaleate ?) P1655 -1 -1 1
acid 2,3 dihydroxybutanedioic /pentanoic acid / galactonic acid P2077 1 1 1
acid 2-keto-gluconic acid / Potato 015 unknown sugar P2427 1
acid Propenoic acid, 2,3,3-tris[(trimethylsilyl)oxy]-, trimethylsilyl P2893 1 1 1 1
acid acid ester P1391 -1 -1 1
acid Propane, 2-methyl-1,2-bis(trimethylsiloxy)- /3-Methyl-1,3-bis( P0802 1 1 1 1
acid Ketone / Aldehyde (Tartaric acid - Glyceraldehyde) P0871
alcohol like Galactinol P2835 1 -1
Alcohol Coniferyl alcol (2TMS) P4691 -1 1 1 1
FA unknown FA P3188 1 1 1
FA Heptadecanoic acid 1 TMS P3263 -1 1
FA (Z,Z)- P3635 -1 1 1 1 1 -1
FA Docosanoic acid, trimethylsilyl ester P4040 1 1 1 1 -1
FA? methylanthraquinone, O,O'-bis(trimethylsilyl P3295 -1 1 -1
oxime Trehose / Erythrose Methoxiamine OR Glycolic acid P1091 -1 1 -1 -1 -1
Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hrSAM
SecM - SuScopolin, tetra(trimethylsilyl)- ? P1750 1 1 1 1 -1
secM biphenol 2 TMS P2234 1 1 1 1 1 -1 1
SecM unknown trimethylsillyl estrone ? Aromatic ring P1790 1 1 1 1 1
SecM unknown P2224 -1 1 1
SecM 1H-Indole-2,3-dione P3559 1
SecM  2-Piperidinecarboxamide, 1-butyl-N-(2,6-dimethylphenyl)- P4718 -1 1 1 1 1 -1
SecM unknown P3636 1 1 1
SecM Cholest-2-eno[2,3-b]naphthalene, 5'-amino- P3620 -1
SecM Cholest-2-eno[2,3-b]naphthalene, 5'-amino- P5165 -1 -1 -1 -1
Similar to Proline like compound - methyl proline ? P1629 -1 -1 -1 -1 -1 -1 -1 -1 -1
SecM unknown secondary metabolite P1801 ### ### ### ### ### ### #N/A ### ##
SecM Secondary Metabolite P3252 1 1 1 1 1 1 1
SecM Secondary Metabolite P3656 ### ### ### ### ### ### #N/A ### ##
secM unknown secondary metabolite large mol P4833 -1 1 -1
SecM no 73 peak - non hydroxy/carboxy/amine TMS compound P2350 1 1 1 1 1 1 1 1 1
SecM similar to (1-methyl-1-phenylethoxy)- P5082 -1 1 1 1 -1 1
SecM unknown P5073 -1 1 1 -1 -1
SecM Benzamide, 3,4-dimethoxy- derivative P3154 1 1 1 1
SecM Secondary amine P3521 ### ### ### ### ### ### #N/A ### ##
SecM secondary aromatic metablite P5050 1 1 1 1 -1 -1
SecM 1'H-Cholest-2-eno[3,2-b]indole, 5'-methoxy-, (5?)- P4646 -1 1 1 1 1 1
SecM 4-hydroxybenzoic acid P2391 1 1 1 1
SecM 5-Aminocarboxy-4,6-dihydroxypyrimidine P2435 -1 1 1 -1
SecM Benzoic acid derivative P1923 1 1 1 1 1 1 1 1
SecM non-TMS compound P5001 -1 1 1
SecM secondary metabolite (imidazole derivative ?) P3211 1 1 -1
SecM Benzoic acid, 5-methoxy-2-oxy-TMS P5105 1 1 1 1 1 1 1  
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Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
Phospho cSugar Phosphate (MPIMP-ID:221004-21-1) P3438 1 1 1 1 -1
Phospho cSugar Phosphate P3681 1 1 1
Phospho cTriose (2,3 Propanediol) phosphate P3372 1 1 1 1
Phospho cMannose Phosphate P3502 -1 1 1 -1
Phospho cEthanolamine - phosphate P2643 1 1 1 1 1 1
Phospho cInositol phosphate P4125 1 1 1 1 1 1
Phospho cmyo-Inositol-1 or 2- Phosphate P3705 1 1
Phospho ccould be other inositol phosphate P3585 -1 -1 -1 1
Phospho CSugar Phosphate P3611 1 1
Category Best Match Peak ID 1 hr 3 hr 6 hr 9 hr 12 hr18 hr24 hr30 hr SAM
Sugar 027 / POTATO TUBER 019 / Glucose impurity P2957 -1 -1 -1 1 -1
Sugar similar to fructose / ketogluconic acid non-meox P2412 1 1 -1
Sugar d-Turanose / di-tri sachharide P3288 1 1 1 1 1 1 1 1
Sugar MPIMP-ID:196004-45-1 / Melizitose / Maltose / iso Maltose P2922 1 1 1 1 1 1
Sugar P3867  Meox 1 ? P3867 -1 -1 -1 -1 -1 -1 -1
Sugar Sugar like Trehalose P4631 -1 1 -1 -1
Sugar Trehalose ? P4784 1 1 1 1 1 1 1
Sugar unknwn Sugar / Ploem Cmax 013 P2054 1 1 1 1 1 1 1 1
Sugar D-Gal-(1,6)-D-Glc (8TMS)] P4510 -1 1 1 1 -1 -1
Sugar unknown similar to Fructose 5 TMS P2457 1 -1 1
Sugar P4295 -1 1 -1 -1
Sugar P4814 1 1
Sugar Isomaltose/Melibiose/Cellibiose (900 Reverse match) P4140 -1 1 1
Sugar (8TMS); alpha-D-Gal-(1,6)-D-Glc (8TMS)]/Mannose P3400 1 1
Sugar (11TMS) ) / alpha-D-Glc-(1,3)-beta-D-Fru-(2,1)-alpha-D-Glc P2980 1 1 1 1 1 1 1 1
Sugar Nigrose P3816 -1 -1 1
Sugar di / tri saccharide / Trehalose/Maltose/Lactose P3013 1
Sugar (fur1/Ribofuranose/Xylofuranose/Arabinofuranose/Phloem C P2083 -1 1 1 1
Sugar Ara Col Leaf 094 / MPIMP-ID:250001-20-1 /Lactose P3677 -1 1 -1 -1
Sugar Ath Sugar - MPIMP-ID:213-21-1 P3726 1 -1
Sugar Galactinol (9TMS); alpha-D-Gal-(1,3)-myo-Inositol (9TMS)] P4312 -1 1 1 -1
Sugar mono / di /  saccharide P3046 -1 -1 -1 -1 -1 -1 -1
Sugar sugar/Pentonic acid (5TMS) P2445 1 1 1
Sugar Alc Maltitol P4024 1 1 1
Sugar Galacto-lactone or sugar acid P2203 -1 -1 -1 -1
Sugar P3867 Meox 2 P3890 -1 -1 1 -1
Sugar Arabidopsis Col Leaf 046 / Altrose / Galactofuranose / P2509 1 1 1 1 1 1 1
Sugar Gulose / Potato Tuber 032 P4167 -1 -1 -1 1
Sugar 2-keto-L gulonic acid methoxime / Xylofuranose/Ribofuranos P2000 1 1 -1
Sugar Glucose derivative unknown ? P1324 1
Sugar Matches Sucrose - quite large peak / Trehalose /Melizitos P4692 -1 1 1 1
Sugar Gluconic Acid 4 TMS lactone ? P2823 -1 -1 -1 -1 -1 -1 -1 -1
Sugar Raffinose P4455 -1 -1 -1 -1 -1 -1
Sugar Glucose derivative ? P1540 -1 1 -1 -1
Sugar di / tri saccharide P3033 -1 1 -1 -1
Sugar P3387 1 1 -1 -1
Sugar Cellobiose ? P3106 -1 -1 -1 -1 -1 -1 -1 -1
Sugar alpha-D-Glc P4053 -1 -1 1 -1  
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