
  

 

 

 

 

 

ABSTRACT 

 

 

 

 

Title of Document: OF MICE AND MATH: A SYSTEMS 

BIOLOGY MODEL FOR ALZHEIMER‟S 

DISEASE 

  

 Christina Rose Kyrtsos 

Doctor of Philosophy 

2011 

  

Directed By: Dr. John S. Baras 

Professor 

Institute for Systems Research 

 

 

Alzheimer‟s disease (AD) is the most prevalent neurodegenerative disorder in the US, 

affecting over 1 in 8 people over the age of 65.  There are several well-known 

pathological changes in the brains of AD patients, namely: the presence of diffuse 

beta amyloid plaques derived from the amyloid precursor protein (APP), hyper-

phosphorylated tau protein, neuroinflammation and mitochondrial dysfunction.  

Recent studies have shown that cholesterol levels in both the plasma and the brain 

may play a role in disease pathogenesis, however, this exact role is not well 

understood.  Additional proteins of interest have also been identified (ApoE, LRP-1, 

IL-1) as possible contributors to AD pathogenesis.  To help understand these roles 

better, a systems biology mathematical model was developed.  Basic principles from 

graph theory and control analysis were used to study the effect of altered cholesterol, 

ApoE, LRP and APP on the system as a whole.  Negative feedback regulation and the 



  

rate of cholesterol transfer between astrocytes and neurons were identified as key 

modulators in the level of beta amyloid.  Experiments were run concurrently to test 

whether decreasing plasma and brain cholesterol levels with simvastatin altered the 

expression levels of beta amyloid, ApoE, and LRP-1, to ascertain the edge directions 

in the network model and to better understand whether statin treatment served as a 

viable treatment option for AD patients.  The work completed herein represents the 

first attempt to create a systems-level mathematical model to study AD that looks at 

intercellular interactions, as well as interactions between metabolic and inflammatory 

pathways. 
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Chapter 1: Introduction 

 

Alzheimer‟s disease (AD) is the most common form of dementia, affecting 

more than 4.5 million individuals in the US alone [65].  This number is expected to 

triple in the next four decades as the most affected age group (those over 65) 

surpasses 12 million.  The cost of care for individuals with AD is staggering- over 

$140 billion annually, which is also expected to rise in correlation with the affected 

number of individuals.  The exact cause of AD is uncertain, though at least two 

distinct forms of the disease are known to exist: early-onset and late-onset.  

 Early-onset AD is related to mutations in the amyloid precursor protein (APP) 

and presenilin, which increase the cleavage rate of APP into the amyloidogenic beta 

amyloid (Aβ).  Individuals with Down Syndrome (DS; also known as trisomy 21) 

also commonly have early-onset AD because the gene for APP is located on 

chromosome 21.  Late-onset AD has been linked to age, the presence of the 

apolipoprotein ε4 allele, cerebrovascular disease, cardiovascular disease (including 

atherosclerosis) and high plasma cholesterol, though the exact interactions between 

these co-occurring diseases are not well understood.   

 Regardless of the disease trigger(s), the resultant pathological characteristics 

are similar and involve the buildup of Aβ in the brain parenchyma, deposition of Aβ 

in the cerebral blood vessels (as cerebral amyloid angiopathy, CAA), as well as the 

presence of neurofibrillary tangles (NFTs).  Loss of hippocampal and cortical neurons 

has been observed [113].  Neuroinflammation with corresponding activation of 
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microglia has also been observed, as well as alterations in blood-brain barrier (BBB) 

permeability [121, 156-159, 6-67].  A combination of these cellular and sub-cellular 

changes is believed to lead to the symptoms most commonly associated with AD, 

including: gradual loss of memory, personality changes, depression, inability to 

communicate, and loss of voluntary muscle movements [94].   

 Even with the significant advances that have been made in the field of AD 

research, there is still no clear understanding between causality and observation of 

secondary symptoms.  Specifically, no systems-level, biomolecular reaction network 

exists to describe how different biomolecules that are known or thought to be 

involved in the pathogenesis are interrelated.  The goals of this dissertation were: 

1) To develop an interaction network model of the biomolecular processes 

involved in AD pathogenesis using systems biology and graph theory as the 

basis for analysis. 

2) To study the role of brain cholesterol and inflammation in the disease process 

via: 

a. Experimental methods that simultaneously decrease the level of brain 

cholesterol and neuroinflammation, and provide semi-quantitative data 

points for the effect of a network perturbed by such a decrease. 

b. Computational methods that utilize experimental data to describe 

connections and connection strengths between components in the 

network to determine key nodes. 
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This dissertation represents the first (known) attempt to create a systems biology 

model to better understand the processes that are co-occurring in AD and how these 

processes may trigger AD pathogenesis.  
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Chapter 2: Background 
 

 

History of neuroscience 

The human mind has been the center of much study and discussion since 

ancient times.  The earliest surviving manuscript referencing the brain and brain 

surgery is a collection of papyrus documents from Egypt dating back to 3000 BC.  It 

is not until nearly 2500 years later that Hippocrates describes the importance of the 

brain in intelligence and in feeling sensations.  This view is debated among several 

other prominent philosophers of the era, including Aristotle who believed that the 

heart was the source of sensations and mental processes.  Herophilus and his student, 

Erasistratus, conducted anatomical studies of the brain and believed that the ventricles 

were the source of human intellect and the soul.  Galen (129-199 AD) was the first to 

describe the brain, spinal cord and nerves as one system, the nervous system, and to 

conclude that the soul does not reside in the ventricles of the brain through 

experimental observation.   

Further understanding of the brain and nervous system paused during the 

Middle Ages, and resumed during the Renaissance and thereafter, with contributions 

by several major physicians and philosophers.  In 1543, Andreas Vesalius argued that 

brain function derives from the tissue surrounding the ventricles (the cortex and other 

regions of the brain), and not the ventricles.  The term “hippocampus” was introduced 

by Aranzi in 1564.  Description of the anatomy of cerebral blood vessels began to 



 

 5 

 

appear in 1609 when Guilio Casserio published drawings of the circle of Willis (a 

circle of arteries located at the base of the brain).  This work was expanded on by 

Thomas Willis in 1664 who published a work discussing the function of the arteries at 

the base of the brain that now carry his name.   

The 18
th

 century brought significant advances in the anatomical knowledge of 

the central nervous system, including description of the composition of cerebrospinal 

fluid, and identification of foramen of Monroe, the stripe of Gennari, the fovea and 

the insula.   It was also the first time that electrical impulses in nerves were studied in 

an animal model.  The first hospitals dedicated to helping those affected by mental 

illness also opened during the 18
th

 century.   

Neuroscience flourished in the 19
th

 century.  Basic anatomy and physiological 

functions of identified regions were described.  In 1837, Jan Purkyne (Purkinje) 

successfully identified neuronal nuclei and associated processes in cerebellar cells. 

Robert Remak described the difference between myelineated and unmyelineated cells 

in 1836; Schwann cells were soon after discovered by Theodor Schwann in 1838.  In 

1850, Augustus Waller first described degenerating neurons.  Richard Caton was the 

first person to record electrical activity from the brain in 1875, beginning the era of 

using electrical recordings to study brain functionality.  Many of the stains and 

methods that we still use today in histology were developed in the last 30 years of the 

19
th

 century (silver nitrate, 1873; hematoxylin to stain myelin, 1885; Nissl stain for 

neurons, 1894; formaldehyde to fix brains, 1897).  This was also the time period 

wherein Golgi and Ramon y Cajal did their groundbreaking histological work and 

developed the reticular and cellular theories of neuroscience, respectively. 
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The 20
th

 century continued this trend of rapid expansion of knowledge.  A 

single paragraph cannot do justice to the vast amount of information gained in the last 

111 years, but only touch on some of the key points.  Early in the century, glial cells 

(astrocytes, microglia and oligodendrocytes) were identified and their roles were 

characterized.  Cellular ultrastructure of all neural cell types was obtained in the 

1950s with the advent of the electron microscope, providing definitive proof of the 

validity of Ramon y Cajal‟s cellular theory for the brain.  This led to the development 

of neural circuit models to study physiological functioning and development in the 

brain.  Neurotransmitters were identified as the key electrochemical signaling 

molecule within the brain, leading to the concept of excitatory and inhibitory 

neurotransmitters, a key factor playing a role in a variety of neurological and 

psychiatric diseases.  It was also in this century that Alois Alzheimer first described 

the symptomology and amyloid beta plaques present in a patient with presenile 

degeneration, a disease that would later take on his name. 

Although our understanding of the brain, its anatomy, physiology and 

development has grown almost exponentially in the last 200 years, there are still 

many unknowns.  Of all of the subfields in biology and medicine, neuroscience is 

perhaps the last, towering frontier to understand and conquer.  With the advent of 

modern computing capabilities; technological advances in imaging, metabolomics, 

genomics and proteomics; and development of a mathematical language to help 

describe the interaction of a large number of biological networks, neuroscientists 

stand at the crest of a wave with regards to our understanding of the brain and how it 

works. 
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Anatomy of the brain 

 In humans, that brain starts to form during the first 3 weeks of gestation, with 

the ectoderm forming the neural plate, followed by the neural plate folding and 

closing to form the neural tube.  As development continues, the neural tube starts to 

take shape into the cerebral hemispheres, cerebellum and pons.  Continuing 

development of the brain proceeds throughout the early years following birth all the 

way into young adulthood, wherewith neurons are shed, neurons grow slowly, and 

near-constant pruning of dendrites and wiring/re-wiring occurs.  Development of the 

brain continues until the early- to mid-twenties, when rates begin to converge.  

Generation of neurons in the dentate gyrus has been shown to continue well into 

adulthood, however, the rates are quite slow comparatively.   

Together, the brain with the spinal cord, are known as the central nervous 

system (CNS).  The CNS can be divided into six majors divisions: spinal cord, 

medulla, pons and cerebellum, midbrain, diencephalon and cerebral hemispheres.  

Each of these regions performs a set of tasks; however, these tasks are not necessarily 

independent or unique from tasks performed by other CNS regions.  Each region can 

also be clearly subdivided into regions containing neuronal cell bodies (gray matter) 

and regions containing predominantly axons (white matter).  White matter is white 

due to the high concentration of myelin which surrounds the axons.  The CNS is 

surrounded by three layers of meninges which serve a protective, as well as 

circulatory role.    These three meninges are known as the dura mater, the arachnoid 

mater and the pia mater.  The dura mater contains large, low-pressure blood vessels 

which are part of the cerebral venous system.  The arachnoid mater separates the dura 



 

 8 

 

from the pia, creating the subdural space and the subarachnoid space, respectively.    

The subarachnoid space contains the veins and arteries that provide circulation to the 

surface of the CNS, as well as cerebrospinal fluid (CSF).  The following sections will 

describe in further detail the brief functions of each brain region aside from the spinal 

cord. 

The brain stem is composed of the medulla, pons, midbrain and cerebellum 

and has three main functions: (1) to receive sensory information from cranial nerves 

and control muscles of the head; (2) to regulate the level of arousal via blood pressure 

regulation and respiratory regulation by the combined effort of the medulla, pons and 

midbrain; and (3) to act as a multiplexor of information between the spinal cord and 

higher brain regions.  The cerebellum also plays a key role in the control of muscle 

movement, while the midbrain plays an important role in the control of eye 

movement. 

 The most developed regions of the human brain are the diencephalon and the 

cerebral hemispheres.  The diencephalon is subdivided into the thalamus and the 

hypothalamus.  The thalamus is responsible for transmitting information between the 

two cerebral hemispheres.  The hypothalamus is responsible for regulating release of 

hormones from the pituitary gland, as well as integrating the functions of the 

autonomic nervous system.  The sagittal fissure separates the two hemispheres of the 

cerebrum.  The cerebrum can be further divided into the cerebral cortex, basal 

ganglia, amygdala and hippocampus.  The basal ganglia, also known as the striatum, 

contribute to several higher brain functions, including control of movement, cognition 

and expression of emotions.  The cerebral cortex, the highly convoluted region of 
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neurons found on the surface of the cerebrum, is responsible for the many of the 

functions attributed to the brain.  The cerebral cortex can be divided into four distinct 

lobes: the frontal lobe, the parietal lobe, the temporal lobe and the occipital lobe. 

 

 

 

The frontal lobe is responsible for many of the higher mental functions of the 

brain, including suppressing unacceptable social responses, choosing between wrong 

and right, recognizing consequences and differentiating between objects, events or 

people.  The frontal lobe contains the majority of the neurons that are sensitive to 

dopamine; dopamine-sensitive neurons are responsible for actions associated with 

planning, drive, long-term memory, reward and attention.  The long-term memories 

stored in the frontal lobe are often associated with emotion-based memories inputted 

Figure 1: Sagittal view of right brain hemisphere.  Details of the brain stem (pons, 

medulla, midbrain and cerebellum) and the diencephalon.  Adapted from Gray’s Anatomy. 
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from the limbic system.  Lesions in the frontal lobe can be associated with loss of 

creativity and decreased ability to have higher mental processes. 

The parietal lobe is responsible for visual-spatial processing, understanding 

mathematics and abstract, symbolic representations, as well as integrating sensory 

input from different regions of the body.  The temporal lobe plays important roles in 

processing visual and auditory signals.  It contains the auditory cortex.  The occipital 

lobe participates heavily in visual processing and is the origin of dreams. 

 

 

 

 

The final two regions of the cerebral cortex are the amygdala and the 

hippocampus.  The amygdala is believed to be responsible for hormone release, 

coordination of the autonomic nervous system, and emotional responses.  The 

Figure 2: The four lobes of the cerebral cortex. Frontal: “moral differentiator”, emotion-

based memories; Parietal: Visuo-spatial processing, symbolic representation, integrating 

sensory input; Temporal: Auditory and visual processing, auditory cortex; Occipital: 

Visual processing, origin of dreams.  Adapted from Gray’s Anatomy. 
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hippocampus, the brain region that is initially and most severely affected in AD, is 

believed to play a role in episodic memory and spatial orientation.  The hippocampus 

can be further subdivided into 4 distinct regions: CA1, CA2, CA3 and DG (Cornu 

Ammonis and dentate gyrus, respectively).  Modulatory inputs are received from the 

dopamine, serotonin, and norepinephrine systems; from the nucleus reuniens of the 

thalamus via CA1; and cholinergic and GABAergic input from the medial septal area.  

Together, the hippocampus, amygdala, and portions of the midbrain and diencephalon 

form the limbic system, which is believed to be responsible for thought and mood in 

humans.  Disorders of the limbic system often lead to psychiatric disorders. 

 

 

 

Supplying each of these regions of the brain with nutrients and removing 

waste products is a complicated network of arteries, capillaries and veins.  On 

Figure 3: The hippocampus and surrounding regions. The hippocampus is believed to 

be responsible for episodic memory and spatial orientation.  Adapted from Gray’s 

Anatomy. 
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average, neurons are less than 50 μm away from an artery, ensuring that they receive 

an adequate supply of glucose and oxygen for metabolism, and removal of neurotoxic 

waste products.  These vessels are not immune from the buildup of plaques, leading 

to strokes, poor microcirculation or localized hypoxia, and eventual neuronal cell 

death.  In AD, beta amyloid plaques are found in cerebral blood vessels, which may 

play a causal role in disease pathogenesis. 

Cellular Neurobiology: 

 At the cellular level, the brain can be divided up into two main types of cells: 

neurons and glial cells.  The average brain contains over 100 billion neurons and 

more than four times that many glial cells.  Neurons are specialized cells that have 

been terminally differentiated.  Their predominant role is to receive incoming 

electrical signals from neighboring neurons, process the signal, and transmit the 

corresponding output signal to downstream neurons via the axon and synapse.  Glial 

cells participate in a range of supporting activities, from removing wastes and excess 

neurotransmitters from the synaptic cleft, to providing dendrites some guidance on 

where to grow and acting as the brain‟s immune system. 

 There is a rich diversity in the types of neurons in the brain.  Neurons vary in 

shape, size and length of axon (morphology), expression of receptors and proteins 

(proteomic variation), and in physiological function.  The basic components of any 

neuron are: a cell body, the axon, and the dendrites.  The dendrites are the location 

where axons from other neurons synapse onto a neuron, and signals are transmitted to 

the cell body for further processing.  The cell body is the predominant site of protein 

synthesis and the location where signals are integrated.  Action potentials are initiated 
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by the cell body and are transmitted down the axon in generally a unidirectional 

manner (there are a few exceptions to this).  The axon is encased in a layer of myelin, 

which insulates the axon and allows electrical signals to travel faster.  In mammals, 

the myelin covers distinct areas of the axon while leaving occasional areas un-

insulated.  These un-insulated areas are known as the nodes of Ranvier and give the 

action potential an appearance of “jumping” from node to node, an observance that 

has been named saltatory conduction. Together, this basic structural unit is capable of 

receiving, processing, and sending electrochemical signals that serve as the basis of 

brain function. 

 

 

Figure 4: A sampling of some of the types of neurons that are found in the brain.  

Notice how many different variations on the standard textbook neuron (cell body, axon, 

dendrites) there are, and how the dendritic structure can vary greatly.  Adapted from 

Neuroscience by Purves 2
nd

 edition 2001 [115]. 
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 At the axon terminal and dendrites, specialized proteins aggregate and help 

form what is known as the synapse.  The synapse is composed of two terminals (pre- 

and post-) and extracellular space in between the two known as the synaptic cleft.  As 

an action potential reaches the axon terminal, membrane depolarization causes 

membrane-gated Ca
2+

 to open, triggering the influx of calcium into the pre-synaptic 

terminal.  The increased calcium levels cause synaptic vesicles to move to the pre-

synaptic membrane and release neurotransmitter into the synaptic cleft.  

Neurotransmitter is then bound by receptors at the post-synaptic site, triggering an 

action potential in the post-synaptic cell.  Neurotransmitters can be excitatory, 

inhibitory or some combination thereof; that is, they can either increase the 

probability of an action potential (excitatory) or decrease the probability (inhibitory).  

Used neurotransmitter is released back into the synaptic cleft and either recycled by 

the pre-synaptic cell or degraded via enzymatic action.  The following table lists some 

of the most common neurotransmitters in the brain, their function and which type of 

neurotransmitter they are. 

Neurotransmitter Type Function 

Acetylcholine ---- Excitatory 

Dopamine Amine Excitatory & Inhibitory 

Epinephrine Amine Excitatory 

Nor-epinephrine Amine Excitatory 

Serotonin Amine Excitatory 

Glutamate Amino Acid Excitatory 

Glycine Amino Acid Mainly inhibitory 

GABA Amino Acid Inhibitory 

  

Table 1: Common neurotransmitters in the brain.  Neurotransmitters belong to one of 

three main groups: amine, amino acid or acetylcholine.  Within this distribution, 

neurotransmitters can be excitatory, inhibitory, or both to some extent. 
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 Glial cells, derived from the Greek word glia meaning glue, are also a very 

diverse cell type, ranging from Müller cells found in the retina, to astrocytes located 

in regions throughout the brain.  Some cell types are isolated to specific regions of the 

brain and perform specialized functions, while others are more broadly distributed 

and perform a wide variety of tasks.  Of all glial cells, there are only three main types: 

astrocytes, oligodendrocytes and microglia.  Astrocytes are star-shaped cells that are 

found in nearly all brain regions.  Oligodendrocytes are the oblong, heavily myelin-

producing cells that are found surrounding axons in the CNS.  Microglia are 

macrophage cells that function as the brain‟s immune cells.  Astrocytes and 

oligodendrocytes originate from neural stem cells, whereas microglia originate from 

the immune system. 

Glial Cell Type Main Function Sketch 

Astrocytes Biochemical support 

 

Microglia Immune system in brain 

 

Oligodendrocytes 
Provide myelin sheath for 

axons in CNS 

 
 

 

Table 2: The major types of glia.  Astrocytes, oligodendrocytes and microglia are the three 

main types of glial cells found in the CNS.  Each serves unique and important roles, helping to 

maintain normal functioning of neurons and the CNS in general. 
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 Glial cells were initially believed to play only supportive roles in the CNS, 

particularly for structural support.  Research over the last 25 years has shown that 

glial cells play an increasingly recognized and significant role in the functioning of a 

normal, healthy CNS.  Astrocytes serve a wide variety of roles in the brain.  Roles 

which directly help to maintain neurons include: 

 Provision of needed nutrients like lactate (metabolic support)  

 Maintenance of physical structure in the brain (structural support) 

Astrocytes also have roles that do not directly support neurons, but are necessary 

for normal brain function.  These roles include: 

 Maintenance of tight junctions at the blood-brain barrier via release of 

soluble molecules [74] 

 Control of cerebral blood flow in combination with neurons [74, 80, 134, 146] 

 Regulation of ion concentration in the extracellular space.  Neurons that are 

actively firing release potassium into the surrounding environment.  

Astrocytes have high expression of potassium channels which are responsible 

for clearing this possible excess in potassium from the extracellular space, 

particularly at the synaptic cleft. This process is necessary to prevent excess 

potassium in the extracellular space and subsequent abnormal depolarization 

(which has been shown to seizures). 

 Promotion of oligodendrocytes myelination.  Extracellular levels of ATP 

increase due to neuronal electrical activity.  In response to this, astrocytes 

secrete cytokine leukemia inhibitory factor, which in turn promotes 

myelineation by oligodendrocytes. 
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 Regeneration: Astrocytes fill the void left by injured cells (a glial scar), either 

helping to repair the damage or replacing cells that cannot regenerate 

(neurons) [134]. 

 Uptake and release of neurotransmitters: Astrocytes express ATP, glutamate 

and GABA transporters for neurotransmitters at their plasma membrane.  

Recent studies have also shown that they release ATP and glutamate in 

response to calcium waves, which can alter the amount of neurotransmitter 

present in the synaptic cleft and subsequently the functioning of the synapse 

[55]. 

 Modulation of synaptic connectivity and transmission:  In the CNS, synapses 

are surrounded by astrocytes, which provide both structural and functional 

support into the functioning of the synapse.  Many of these roles have already 

been discussed above. This close 

interaction between the pre- and post-

synaptic neurons, as well as the astrocytes, 

is known as the tripartite synapse.  

Astrocytes have also been shown to have 

an influence on synaptic connectivity, 

including synapse formation, functionality, 

plasticity and eventual elimination [49, 

153].   

 The brain is an isolated system, 

relatively speaking, since a healthy, 

Figure 5: The Tripartite Synapse Model. Synapses 

are ensheathed by astrocytes, which serve pertinent 

roles in modulating neurotransmitter activity and 

maintaining normal ionic and pH levels 
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functioning blood-brain barrier (BBB) prevents the passage of many molecules and 

substances that would otherwise be toxic or harmful to neurons and other neural cell 

types.  This separation implies that the brain is an “immune privileged” organ; that is, 

the brain must maintain its own immune system independent of the rest of the body‟s 

immune system.  Pathogens, infectious agents or toxic compounds that do traverse the 

BBB must be quickly and efficiently removed from the brain to decrease the 

inflammation and prevent damage to neurons.  Neurons and other cells can also be 

injured by physical injury or die of natural causes, and need to be removed from the 

brain to maintain structural homeostasis.  Microglia fill this necessary role of resident 

macrophages, protecting against invading pathogens that are capable of crossing the 

BBB, as well as clearing unwanted debris. 

 Although this is such an important role for normal brain functioning, 

microglia only compose about 20% of all glial cells in the brain.  Of mesenchymal 

origin, microglia are spread relatively uniformly under healthy conditions, and 

express a phenotype known as „resting or ramified microglia‟ [79].  Microglia move 

constantly within non-overlapping spaces, scavenging for debris and dead or injured 

cells.  Microglia engulf debris via site-directed phagocytosis.   

 They are also apt sensors of neuronal stress [8], expressing receptors and 

molecules capable of participating in a large variety of signaling pathways, 

communicating with neurons via neurotransmitter receptors, with other macroglial 

cells like astrocytes, and with macrophages and effector molecules of the immune 

system such as cytokines.  When a contagion, lesion or other CNS dysfunction is 

detected, microglia undergo a transformation from resting to active microglia.  
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Activated microglia are capable of releasing a variety of molecules at high 

concentration into the surrounding environment.  These molecules can be either 

beneficial to the nearby cells, aiding in their survival, or detrimental, especially if the 

microglia remain activated for extended periods of time.  It is important to note that 

activated microglia can migrate towards a site of infection and proliferate, possibly 

increasing the local level of inflammation.  Microglia and their related role in 

neuroinflammation, have been suggested to be key players in the pathogenesis of AD. 

Neurochemistry: The importance of lipids and proteins 

Important Biomolecules: 

 Metabolism in the brain is a highly complex process, encompassing basic 

glucose metabolism for energy usage, to neurotransmitter synthesis by neurons and 

myelin synthesis by oligodendrocytes.  The main source of energy in the brain is 

glucose; however, under conditions of starvation, ketone bodies produced from fatty 

acid metabolism can also provide energy for basic cellular processes.  Regulation of 

many biochemical pathways is often tightly controlled, though can easily be affected 

by changes in plasma glucose concentrations, oxygen levels, and other hormones.  

Locally-acting molecules, such as cytokines, paracrine and autocrine hormones, and 

nitrous oxide can also have significant effects on the metabolic functions of neurons 

and glial cells.   

Although many of the metabolic pathways are highly conserved and expressed 

across various cell types, expression patterns of lipids and proteins often vary 

depending on cell type.  For example, in the adult brain, cholesterol is only 

synthesized by astrocytes and oligodendrocytes since it is such an energy intensive 
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process [12].  The basic metabolic expression profile for the brain can be broken 

down into five parts corresponding to five main types of cells within the CNS: 

neuron, astrocyte, microglia, oligodendrocyte and endothelial cell.  All cell types 

express the molecules necessary for: 

 energy-producing metabolic processes (glycolysis, the citric acid cycle) 

 transcription and translation (RNAases, ribosomes, RNA enzymes, 

ribozymes) 

  anabolic and catabolic biochemical processes (lipid and carbohydrate 

generation and degradation) 

   The expression of the remaining types of biomolecules and metabolites are 

dependent on the functional roles of the individual cell types.  For example, neurons 

have relatively higher expression patterns for neurotransmitters, neurotransmitter 

receptors, axonal and axonal transport proteins, and synaptic proteins when compared 

to other CNS cell types, and although they do have functional mitochondrial 

pathways, do obtain a large percentage of their nutrient intake from nearby astrocytes.  

Astrocytes express neurotransmitters and their corresponding receptors at a 

significantly lower levels than neurons, but high levels of potassium and calcium 

channels, ATP and GABA receptors, and produce C-LIF to modulate myelineation by 

oligodendrocytes.  They are also responsible for producing and transporting 

cholesterol to neurons in the adult brain.  Oligodendrocytes have very high expression 

profiles for lipids, particularly cholesterol and fatty acids found in cell membranes.  

Microglia express a large variety of cytokines when activated, as well as many 

receptors to detect possible pathogens or toxins.  Endothelial cells express proteins 
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necessary transport of molecules across the blood-brain barrier and for formation of 

tight junctions, as well as many others. The following figure pictorially describes how 

these pathways vary among different cell types, and demonstrates the importance of 

differences in the expression of lipidomic, proteomic and inflammatory pathways on 

the interaction between cell types. 

 

Cholesterol: 

 Cholesterol is an important steroid molecule, having diverse roles throughout 

the human body.  Its molecular formula is C27H46O, atomic molecular weight is 

386.65 g/mol and is a white crystalline solid at room and body temperature. It is the 

main sterol produced by mammals.  Only a small amount of cholesterol is produced 

by plants and fungi, while bacteria produce only trivial amounts.  The word 

cholesterol is derived from the Greek words chole- (bile) and steros (solid); the suffix 

Figure 6: Expression Patterns of Different Cell Types in the Brain. Every cell type in 

the brain is capable of maintaining its own energy-producing pathway (metabolic 

pathway), though the expression levels of various proteins, channels and lipids varies 

across cell type, specialized to the main functions of that cell. 
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–ol is added to recognize that cholesterol is effectively an alcohol (hydroxyl group at 

the 3‟ carbon).  Cholesterol was first identified in gallstones in 1769 by Francois 

Poulletier de la Salle, and was later named cholesterine by Eugene Chevrul in 1815.  

The following figure shows the chemical structure 

Cholesterol is the main precursor for many very common hormones, including 

the sex hormones (progesterone, estrogen and testosterone), cortisol and other 

corticosteroids, and aldosterone produced by the adrenal gland.  Cholesterol is also 

the precursor for molecules such as beta-carotene, needed for vision; 

geranylgeranylpyrophosphate and farnesyl-PP, needed for memory and learning; and 

bile, which is produced by the liver and needed to solubilize fats in the intestine and 

aid in absorption of fat-soluble vitamins (A, D, E and K).  Cholesterol is a required 

precursor for the synthesis of vitamin D and a necessary component of cellular 

membranes.   

Within membranes, cholesterol modulates membrane fluidity in a 

temperature-dependent manner.  Increased cholesterol is believed to decrease 

membrane fluidity, while decreased cholesterol increases fluidity.  This is due 

partially to the fact that cholesterol is a lipophilic compound; polar head groups in the 

cellular membrane interact with the hydrophilic hydroxyl group of cholesterol, while 

the remainder of the cholesterol molecule interacts with the hydrophobic fatty acid 

tails of membranes.  Increased cholesterol levels in cellular membranes have also 

been shown to decrease membrane permeability to sodium ions and protons, helping 

to provide an effective ionic barrier for the cell. 
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Cholesterol has other functions within the cell.  At the cell membrane, 

cholesterol plays several roles: in intracellular transport as a required molecule for the 

formation of clathrin-coated pits and caveolae in endocytosis; in the formation of 

lipid rafts important in cellular signaling; and in the myelin sheath as an efficient 

insulator. 

The predominant sites of synthesis are the liver, the intestines and the brain.  

Cholesterol synthesized by the liver or intestines is only available to cells and organs 

outside of the CNS; the brain is responsible for synthesizing all of its cholesterol in-

house.   In the adult brain, only astrocytes are responsible for synthesizing cholesterol 

[12] since the process is highly energy-intensive.  Synthesis proceeds through a 28 

step process from HmgCoA to cholesterol.  The rate-limiting step in cholesterol 

synthesis is the conversion of HmgCoA to mevalonate; this has been capitalized on 

via the development of statins, which inhibit the action of HmgCoA reductase, the 

enzyme responsible for this conversion.  Cholesterol is also an inhibitor of its own 

synthesis (end-product inhibition); high levels of cholesterol lead to an increased 

degradation rate of HmgCoA reductase, and subsequently fewer molecules traverse 

the mevalonate pathway.  In essence, this creates a negative feedback loop between 

cholesterol and HmgCoA reductase. 
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Cholesterol levels are tightly regulated in the body by the SREBP (sterol-

regulatory element binding protein) protein and the end-product inhibition previously 

discussed.  The SREBP pathway is important for up-regulating genes in response to 

decreased intracellular cholesterol levels, working together with the SCAP (SREBP-

cleavage activating protein) protein and Insig-1 to achieve this.  In addition to 

cholesterol end-product inhibition, cholesterol synthesis levels can be reduced when 

HmgCoA reductase is phosphorylated by AMP-activated kinases, inhibiting the 

activity of HmgCoA.  AMP levels are high when ATP levels are low, thus, if there is 

mitochondrial dysfunction or a decrease in ATP levels, cholesterol synthesis stops, 

overriding the SREBP pathway. 

Figure 7: Cholesterol Synthesis Pathway. Simplified version of the cholesterol 

synthesis pathway with important by-products included. 
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Choline & Acetylcholine: 

 Both choline and acetylcholine are important biomolecules in the brain.  

Choline is an essential nutrient (intake required/body does not synthesize) that plays 

several key roles within the body.  It is one of the required precursors for 

acetylcholine production; it is important in maintaining the structural integrity of cell 

membranes and in cellular signaling pathways; and it serves as an important molecule 

in methyl group transfers via its metabolite, betaine, in the SAM-e pathway.  Diets 

low in choline are known to cause fatty liver, kidney necrosis, renal impairment, 

infertility, growth impairment, bone abnormalities and hypertension.  Choline 

deficiency can be identified by measuring liver enzyme ALT activity (increased 

levels indicate deficiency).  Other methyl group transfer molecules (B6, B12 and folic 

acid), as well as choline, are known to reduce homocysteine levels, and thus decrease 

the risk of heart disease.  Sources of choline include eggs, liver and peanuts.  Some 

vegetables also contain choline, but in significantly smaller amounts. 

Choline may also play an important role in DNA methylation, thus partially 

controlling the expression pattern of genes (epigenetics).  Phosphatidylcholine, a 

choline metabolite, is also an important precursor molecule for the arachidonate 

pathway (responsible for producing prostaglandins, pro-inflammatory molecules that 

act locally), as well as interacting with fatty acids to produce phospholipids at the 

membrane.  Changes in choline levels affect brain function, muscle function, liver 

and kidney function, and cardiovascular health in a direct manner.  Thus, there is a 

relationship between inflammation, brain health and cardiovascular health that should 

be elucidated further. 
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One of the most important role that choline plays within the nervous system is 

in the production of acetylcholine.  Acetylcholine (ACh) has several functions both in 

the CNS and the PNS.  In the PNS, acetylcholine activates muscles and participates in 

the autonomic nervous system as a neurotransmitter.  In the CNS, acetylcholine is the 

major neurotransmitter in the cholinergic system and is produced in neurons by 

choline acetyltransferase, an enzyme that combines Acetyl CoA and choline.  It is 

degraded by acetylcholinesterase, an enzyme that has been a key target in AD and is 

currently one of the few pharmacological treatments available (acetylcholinesterase 

inhibitor).  

ACh has important roles in plasticity, arousal, reward, sensory perception 

upon waking, attention, and in learning and short-term memory.  Experimental 

evidence has demonstrated that ACh enhances the amplitude of synaptic potentials 

following long-term potentiation (LTP).  Acetylcholine is also responsible for either 

increasing neuronal excitability or causing inhibition.  It is believed that layer-specific 

differences in the effects of ACh on neurons may help improve the signal-to-noise 

ratio of cortical processing.  This specificity of behavior is also related to the fact that 

there are two types of acetylcholine receptor: nicotinic and muscarinic.  Nicotinic 

ACh receptors are ionotropic receptors stimulated by nicotine and acetylcholine.  

These receptors are permeable to sodium, potassium and chloride, and are found in 

the CNS, the end plates of muscles and in ganglia participating in the autonomic 

system.  Conversely, muscarinic ACh receptors are metabotropic, act on neurons over 

longer periods of time, and are stimulated by muscarine and acetylcholine.  These 
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receptors are found in the CNS, PNS, upper gastrointestinal tract, lungs, heart and 

sweat glands. 

LRP-1: 

 The low-density lipoprotein receptor-related protein 1 (LRP-1) is a key 

receptor within the brain responsible for transporting a variety of molecules.  LRP-1 

receptors are found both on endothelial cells at the blood-brain barrier, as well as on 

neurons.  At the BBB, LRP-1 transports both free and ApoE-bound beta amyloid 

basolaterally (from the brain to the blood).  LRP-1 receptors are also found on 

neurons to allow cholesterol to be transported from astrocytes to neurons in the adult 

brain.  Inflammatory cytokines, such as IL-1, are known to up-regulate the expression 

of LRP-1. 

ApoE: 

Lipoproteins serve the important role of transporting lipid-soluble molecules, 

such as cholesterol, through an aqueous environment to their target destination.  Brain 

apolipoproteins, in particular apoE, coordinate the mobilization and re-distribution of 

cholesterol and phospholipids for the repair, growth and maintenance of myelin and 

neuronal membranes [28, 110-111].  ApoE is particularly important for synaptic 

remodeling, and is expressed in astrocytes, cells in the blood vessels and choroid 

plexus, neural stem cells and injured neurons [71].  Astrocytes have been shown to 

release cholesterol bound to one of the three different apoE isoforms: ε2, ε3 or ε4.  

The affinity of the apoE isoforms as a lipid acceptor was: apoE2 > apoE3 = apoE4 in 

astrocytes, and apoE2 > apoE3 > apoE4 in neurons [99].  The pro-inflammatory 

cytokine IL-1 is known to upregulate the expression of ApoE. 
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Neuroinflammation: 

The brain’s immune system: 

 For many years, the brain was believed to have its own separate immune 

system provided by resident macrophages (microglia) that are capable of responding 

to invading agents and toxins by phagocytosis and secretion of pro-inflammatory 

cytokines, in combination with protection from pathogens and toxins in the blood by 

the blood-brain barrier.  Under cases of extreme infection, such as meningitis, 

macrophages could be recruited from the blood to help combat the invading agent, 

but must be quickly subdued to prevent damage to neurons that are exquisitely 

sensitive to the effects of cytokines and other pro-inflammatory molecules.   

Recent research has shown that this model is not the full picture, and the 

systemic immune system in fact does interact with the brain and is capable of 

controlling behavior, neuroendocrine function, synaptic plasticity and 

neurotransmitter metabolism [24].  Pro-inflammatory cytokines, such as IL-1, that are 

produced in the periphery are capable of entering the CNS and interacting with the 

network of cytokines and microglia in the brain to effect these changes.  This can lead 

to significant changes in behavior, including insomnia, anxiety, depression, anorexia, 

psychomotor retardation and cognitive dysfunction [24].  Individuals with HPA-axis 

hyper-reactivity (over-reactive stress response) in combination with subclinical 

depression are at increased risk for developing such cytokine-induced depressive 

symptoms [23, 117]. 

Although they are capable of interacting with the brain, cytokines are not able 

to directly pass through a functional blood-brain barrier.  Several routes of passage 
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have been identified, including: active transport by brain endothelial cells; 

transmission via the vagus nerve; passage through „leaky‟ areas of the blood-brain 

barrier, such as the choroid plexus, or through dysfunctional blood-brain barrier; via 

activated monocytes; and by activation of brain endothelial cells stimulating release 

of prostaglandin G2 and nitric oxide [24, 116].    Passage of cytokines through one or 

more of these routes leads to disruption of the innate cytokine network in the brain, a 

network of neurons, microglia and astrocytes capable of expressing cytokines and 

cytokine receptors, and amplifying signals within the cytokine network [62].  Pro-

inflammatory cytokines that are normally expressed in the brain include IL-1, IL-1 

and TNFα.  The signaling cascade modulated by these cytokines can be disrupted by 

peripheral cytokines, leading to activation of the HPA axis, release of corticotrophin-

releasing hormone, and alteration of serotonin, norepinephrine and dopamine usage 

[100]. 

Under normal conditions (ie. no peripheral inflammation), the levels of 

acetylcholine play important roles in maintaining the balance of pro-inflammatory 

cytokines.  Acetylcholine achieves this by binding to nicotinic acetylcholine receptors 

on microglia, activating a signaling cascade that inhibits the release of pro-

inflammatory cytokines.  This pathway has no effect on anti-inflammatory cytokines, 

such as IL-10.  

 The inflammatory pathway within the brain walks a very thin line between 

being helpful and being harmful.  Over short time periods, pro-inflammatory 

cytokines can help to remove an invading pathogen or toxin, while producing 

minimal damage to neurons or glial cells.  Over longer periods of time, however, pro-
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inflammatory cytokines lead to decreased protein synthesis, decreased cellular energy 

levels due to decreased uptake and availability of glucose for non-immunological 

cells, changes in protein and lipid expression levels, and changes in neurotransmitter 

levels.  It is this imbalance in inflammation which may play a key role in AD.  

Mechanisms of action: 

 Interleukin-1 (IL-1) is one of the predominant cytokines produced by brain 

microglia.  The roles of IL-1 in the brain are diverse and cause different effects in 

different brain regions.  The highest density of IL-1 receptors is found on 

hippocampal cells in the dentate gyrus [11].  IL-1 levels have been shown to increase 

in response to stress, sleep deprivation, and long-term potentiation via NMDA 

receptors.  Prostaglandin E2, Aβ and glutamate are also known to increase the 

expression levels of IL-1.  IL-4 and interferon-γ are known to decrease levels of IL-1.  

It is interesting to note that IL-1 enhances neuronal acetylcholinesterase activity, thus 

increasing the rate at which acetylcholine is degraded (decreasing the level of ACh), 

though it‟s production is inhibited by acetylcholine.  This in effect is a common 

network topology with a dual negative feedback loop; the overall result is a switching 

behavior reminiscent of a clock used in digital logic. 

 IL-1 is known to have a relatively strong effect on neurotransmitter turnover 

rates: in the hypothalamus and hippocampus, noradrenaline turnover rates are 

increased; in the prefrontal cortex, dopamine utilization is increased; and in the 

hippocampus and prefrontal cortex, serotonin turnover is increased.  These changes in 

neurotransmitter turnover rates may have significant effects on the functions of each 

of these brain regions.  IL-1 is also known to modulate glucocorticoid levels by 
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decreasing the activation threshold for the hypothalamic-pituitary-adrenal axis 

(HPA); inhibit the hypothalamic-gonadal axis; increase the production of aldosterone; 

and cause hypoglycemia by lowering the glucose set point throughout the body. 

 Within the hippocampus, IL-1 has many of the same effects described above 

(increased acetylcholinesterase activity in neurons, same activating and inhibiting 

compounds).  IL-1 also causes increased serotonin turnover with an accumulation of 

tryptophan (the precursor amino acid for serotonin).  The amount of glucose available 

to neurons and other cell types is decreased, limiting energy production as well as 

production of proteins and lipids.  Increased levels of IL-1 that have been sustained 

for a short duration are known to stimulate the release of prostaglandins and reactive 

oxygen species into the local environment, enhancing seizure activity and increasing 

the rate of entry of calcium into cells via NMDA receptors.  

Alzheimer’s disease Pathology: 

Alzheimer‟s disease (AD) is the most common form of dementia, affecting 

more than 4.5 million individuals in the US alone [65]. This number is expected to 

increase almost 3-fold by 2050 as the number of people over 65 (the most affected 

group of individuals) surpasses 12 million. The cost of care for individuals with AD 

is staggering- over $140 billion annually, which is expected to rise in correlation with 

the number of affected individuals. The exact cause of AD is uncertain, though 

mutations in APP (amyloid precursor protein) and presenilin protein have been 

linked to early-onset of the disease. Age, the presence of the apolipoprotein ε4 allele, 

cerebrovascular disease, cardiovascular disease (including atherosclerosis) and high 
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plasma cholesterol have all been linked to an increased risk of AD later in life.  The 

following table summarizes the known risk factors for AD. 

Risk Factor Cause Possible Effects 

ApoE4 allele Genetic 
Less able to transport cholesterol to neurons, 

possibly less able to transport Aβ out of brain 

APP/PresenilinI mutation Genetic Increased cleavage of Aβ 

APP overexpression 
Genetic; Down 

syndrome 

Increased APP, suggested increase in Aβ 

cleavage 

Brain infection Inflammation ? 

Cerebrovascular disease 

Genetic, 

inflammation 

and/or lifestyle 

Increased inflammation, decreased glucose 

and oxygen transport 

Diabetes/insulin resistance 

Genetic, lifestyle 

and/or 

inflammation 

Increased inflammation of body system; 

inadequate transfer of glucose 

Dysregulation in steroid 

periodicity 
Stress/lifestyle 

Alterations in inflammation, neuronal cell 

death 

Decreased levels of 

neurosteroids, estrogen 

Genetic, 

stress/lifestyle 

Increased inflammation 

Chronically increased cortisol 

levels 
Stress/lifestyle 

Increased inflammation, alterations in 

metabolism 

Decreased LRP expression Genetic, aging Decreased Aβ clearance, cholesterol uptake 

Transferrin mutation Genetic 
Decreased ability to synthesize cholesterol, 

myelin 

Decreased hippocampal volume 

Stress, 

psychosocial 

events, injury 

Reduced neuron number increases effects of 

other alterations 

Traumatic brain injury Inflammation Increased inflammation 

Alterations in cholesterol 

Genetic, 

inflammation 

and/or lifestyle 

Alterations in Aβ cleavage rate, cellular 

metabolism; interaction with inflammation 

 

Regardless of the disease trigger, the resultant pathological characteristics are 

similar and involve the buildup of amyloid protein in the brain parenchyma and 

deposition in cerebral blood vessels (as cerebral amyloid angiopathy, CAA), as well 

as the presence of neurofibrillary tangles within affected neurons. Loss of neurons 

and synapses in the hippocampus, neocortex and other subcortical regions has been 

observed [113]. Activation of microglia (resident CNS macrophages) and 

Table 3: Risk Factors for AD. AD has several well-known risk factors, including the 

ApoE4 allele, cerebrovascular disease, and mutations in APP or presenilin I.  A combination 

of several of these factors is most likely needed to precipitate onset of AD. 
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neuroinflammation are also observed, as well as alterations in BBB permeability [66, 

121, 156-159]. The combination of these cellular and subcellular changes leads to the 

symptoms most commonly associated with AD, including: gradual memory loss, 

personality changes, depression, inability to communicate and loss of voluntary 

muscle movements [94]. Even with the significant advances that have been made in 

AD research, there is still no clear understanding of what the causal relationship is 

between these different symptoms, that is, what is the network connection created 

between different agents. 

AD: A gimesh of pathogenesis theories: 

The discovery of parenchymal amyloid plaques and NFTs by Alois Alzheimer 

in 1906 revolutionized the way that researchers looked at AD, providing the basis 

where many researchers begin their study.  As the wealth of knowledge on AD has 

grown significantly in the last 20 years, several different theories on the origins and 

pathogenesis of AD have emerged.  Biochemical studies in the 1980s lead to the 

discovery that the core protein in plaque deposits was beta amyloid (Aβ), leading 

many researchers to believe that the buildup of Aβ as plaques was the main causative 

factor in AD.  Further studies revealed that cleavage of the amyloid precursor protein 

(APP) by β-secretase and subsequently by γ-secretase leads to the 39-42 amino acid, 

amyloidogenic form of Aβ.  This monomeric form of beta amyloid often aggregates 

and forms oligomers, fibrils and eventually plaques.  Oligomers range from 2-100 Aβ 

peptides (1-3 nm in height by 5-10 nm in length), while fibrils are significantly longer 

and can achieve lengths ~ 200 nm [17].  Oligomeric forms of beta amyloid (<5 nm) 

have been found to be most neurotoxic [31]. 
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Amyloid Cascade Hypothesis: 

Early experimental data points in AD research led to the development of the 

first major hypothesis for AD pathogenesis: the amyloid cascade hypothesis.  This 

hypothesis, developed by Dennis Selkoe [130], 

states that the high extracellular levels of 

soluble Aβ oligomers are toxic to neurons, 

leading to synapse loss, activation of microglia 

and an inflammatory state.  This hypothesis is 

unable to account for the fact that there are 

individuals with high brain Aβ levels that do 

not have symptoms of AD or even cognitive 

decline.  However, since most assays for beta 

amyloid do not measure oligomeric beta 

amyloid, there is the chance that plaque load 

may be increased without having a concurrent 

increase in the level of Aβ oligomers.  This 

hypothesis does a good job describing the 

pathological characteristics of AD, but does 

not describe why there is an initial increase in 

Aβ, thus, still eluding our understanding of 

what actually triggers AD.  In the familiar forms of AD, the increase in Aβ is due to a 

mutation in APP or PS1, however, this mutation is not seen in late-onset AD.   

Figure 8: Amyloid Cascade Hypothesis. 

Simplified version of the amyloid cascade 

hypothesis. 
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Neurotransmitter Hypothesis: 

Another early hypothesis for the cause of AD is the cholinergic hypothesis.  

Biochemical studies in the late 1960s and early 1970s revealed decreased levels of 

choline acetyltransferase, the enzyme responsible for the synthesis of acetylcholine, 

as well as reduced levels of acetylcholine release, decreased choline uptake, and loss 

of cholinergic neurons in the basal forebrain and cholinergic transmission in the 

cerebral cortex [53].  These alterations were believed to lead to the cognitive decline 

in AD since they were present in the early stages of the disease. 

Neurotransmitter dysregulation is not uniform across all classes of 

neurotransmitters, nor is it constant over time.  Initially, only the cholinergic pathway, 

and to a lesser extent, the serotonergic and noradrenergic pathways are affected.  

GABA, dopamine and somatostatin remain unaltered in early disease stages [53].  

Changes in the serotonergic pathway are thought to be more related to the behavioral 

changes seen in AD, whereas cholinergic changes are believed to be more related to 

cognitive decline.  As AD progresses, the initially affected pathways are affected 

more, while the GABA and somatostatin pathway begin to be affected [123-124]. 

Given these recognized changes in neurotransmitter levels, particularly 

acetylcholine levels, cholinesterase inhibitors (Aricept, Exelon and Reminyl) are 

currently one of the only drugs available to treat AD.  These drugs work by inhibiting 

the breakdown of acetylcholine by acetylcholinesterase, thus increasing the level of 

acetylcholine in the brain.  The only other drug available to treat AD (Ebixa) blocks 

the release of glutamate and is supposed to prevent further damage to neuronal cells 

from glutamate excitotoxicity.  Although these drugs are capable of lessening some of 
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the symptoms of AD, they are not able to stop or prevent AD pathogenesis.  There are 

also some serious side effects related to their usage, often related to over-activity of 

the cholinergic pathway in the peripheral nervous system.  Again, although there are 

some benefits to increasing the acetylcholine levels pharmaceutically, the 

cholinergic/neurotransmitter hypothesis fails to describe some of the observed 

pathology, such as increased Aβ levels and decreased brain cholesterol. 

Inflammation Hypothesis: 

Neuroinflammation is a key characteristic of AD that leads to increased levels 

of cytokines, chemokines, complement proteins and free radicals, all of which are 

detrimental to the health of neurons [102-103].  Several groups of researchers have 

proposed that inflammation plays a significant, if not also a causative, role in AD 

pathogenesis [4-5, 34, 67, 82, 98, 127-128, 156, 161].  This hypothesis has been 

supported by several different studies.  A relatively recent study by Cagnin et al used 

positron emission tomography (PET) and volumetric magnetic resonance imaging 

(MRI) in patients with mild to moderate cognitive dementia and found that microglial 

activation occurred at very early stages in the AD process [20].  Epidemiological 

studies have also shown that there is a reduction in the risk of AD if non-steroidal 

anti-inflammatory medication is taken [140-141, 151].  Lim et al provided data that 

demonstrated that treatment of AD transgenics with ibuprofen reduced the levels of 

interleukin-1β and glial fibrillary acidic protein, while simultaneously decreasing the 

total number and area of amyloid plaques [89].  It has also been shown that cognitive 

decline and suppression of long-term potentiation occur before observable plaques 

develop in the same models that show microglial and astrocyte activation.   
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Much of this data suggests that inflammation occurs early in AD 

pathogenesis.  However, several questions still remain; in particular, even though 

inflammation occurs early in the AD process, it is not clear whether inflammation is 

the cause of neurodegeneration, what exactly triggers the inflammatory response, and 

whether it just helps to promote further neurodegeneration that has been started by a 

separate process.  There is also insufficient understanding about how amyloid plaque 

deposits in cerebral blood vessels that disrupt the blood-brain barrier may influence 

the initiation of the inflammatory process. 

 

LRP/RAGE Hypothesis: 

More recent studies have started to focus on the interplay between cerebral 

amyloid angiopathy (CAA) and the influx/efflux of Aβ at the blood-brain barrier 

(BBB).  Zlokovic et al have proposed a hypothesis that an increase in the blood-to-

brain transport of Aβ, combined with a decrease in the brain-to-blood efflux of Aβ, 

leads to Aβ accumulation in the extracellular space, as well as accumulation in the 

basement membrane of vessels as CAA [164-165].  This accumulation leads to the 

activation of microglia, amyloid fibril formation, reduction of cerebral blood flow, 

localized ischemia, degeneration of the endothelial cell wall leading to accumulation 

of metabolic waste, changes in pH, electrolyte imbalance, and eventually, neuronal 

cell death when the capillary unit collapses [165].  The changes in BBB transport are 

believed to be due to two receptors: RAGE (the receptor for advanced glycation end-

products; responsible for Aβ influx) and LRP-1 (the low-density lipoprotein receptor-

related protein; responsible for Aβ efflux).   
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Miller et al recently conducted a study using confocal microscopy of 

immunostained hippocampi to demonstrate that RAGE receptor levels on endothelial 

cells at the BBB are in AD patients when compared to controls, and that this increase 

is approximately a linear function of the severity of AD pathology [101].  Previous 

studies have confirmed this observation, noting the strong correlation between RAGE 

immunoreactivity in the microvasculature and low immunoreactivity in neurons [36-

39, 43, 77].   

LRP-1 expression levels have also been shown to be altered in AD.  Donahue 

et al clearly demonstrated a decrease in LRP-1 expression levels in the cerebral 

microvasculature in AD hippocampi when compared to controls [43].  This data 

correlates well with Zlokovic‟s hypothesis, however, further studies are needed to 

ascertain whether the changes in LRP-1/RAGE expression levels are due to changes 

other than just aging (such as blood vessel abnormalities or atherosclerosis), whether 

cerebral amyloid deposition occurs before expression changes take place, whether 

there is a correlation between changing receptor expression levels and cholesterol, 

and whether decreased LRP-1 receptor levels affects ApoE binding and delivery of 

cholesterol to neurons and other cells. 

Cerebrovascular Hypothesis: 

One of the more recent areas of focus in AD research is studying the 

connection between lipid metabolism, cerebrovascular dysfunction and onset of AD 

[95].  Epidemiological studies have shown that several cardiovascular risk factors 

overlap with AD risk factors, including diabetes, hypertension, high cholesterol and 

having the apoE4 allele [159].  Ischemic white matter lesions and severe 



 

 39 

 

atherosclerosis of the circle of Willis that lead to reduced cerebral blood flow are also 

often found in individuals with AD [122, 133].  Hemorheologic abnormalities have 

also been observed with a relatively high frequency in individuals with AD, including 

an increase in whole blood viscosity and significantly higher markings on a severity 

index for vasculopathy [132].  It is interesting to note that the apoE4 allele is one of 

the genetic links between atherosclerosis and AD [51].  An initial study into the 

relationship between AD pathology and hypercholesterolemia found that diet-induced 

high cholesterol led to an increase in the Aβ plaque load in the CNS, as well as an 

increase in the density and size of plaque deposits [118-119], however no one has 

crossed an AD transgenic mouse with a mouse strain prone to atherosclerosis.  All of 

this data seems to indicate that the large overlap between AD risk factors and 

atherosclerosis risk factors implicates the need for further study to determine if there 

is an underlying similarity in pathogenesis. 

Cholesterol Hypothesis: 

Lipid metabolism, particularly processing of cholesterol, has come to the 

forefront of AD research in the past decade.  As mentioned previously, cholesterol 

has important roles in the maintenance and survival of neurons in the CNS.  Recent 

studies have demonstrated that cholesterol levels help to regulate the generation and 

clearance of Aβ [63, 113].  The belief here is that an increase in cholesterol, which is 

seen in the blood plasma of many individuals with AD, causes an increase in the 

production and deposition of amyloid beta peptides [72, 113].  However, there is 

contradictory evidence on this matter.   
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A recent study by Liu et al demonstrated that increasing the level of APP, 

particularly the γ-secretase cleavage product AICD, led to a decrease in LRP-1 

expression levels, an increase in apoE levels and a decrease in cholesterol [90].  

Further studies have shown that decreased brain levels of cholesterol are found in 

both apoE4 knock-in mice and in AD brains [64, 86-87].  The Framingham study 

which tracked 1894 individuals over the course of 16-18 years found that low or 

normal levels of cholesterol were correlated with lower cognitive performance levels 

[48].  This apparent contradiction between different studies may be due in part to the 

fact that under normal circumstances, the BBB prevents the transport of lipoprotein-

bound cholesterol from leaving circulation and entering the brain [12].  However, 

once plaques form in the basement membrane of cerebral blood vessels, the integrity 

and protective function of the BBB may dissipate.  Likewise, the presence of this 

contradiction highly recommends the need for further study and understanding of the 

interplay between changes in brain cholesterol levels and AD.  

One treatment method that is currently being studied by researchers is the use 

of cholesterol-lowering drugs (statins) to prevent and possible reverse damage done 

by Aβ buildup and deposition. Several studies on the effects of cholesterol lowering 

drugs (statins) have been completed in the last few years. Fassbender et al studied the 

effect of simvastatin and lovastatin on primary hippocampal neurons and mixed 

cortical neurons and found that this led to decreased levels of Aβ40 and Aβ42 [51]. 

They also observed similar results using a guinea pig model. Refolo et al expanded on 

this by studying the effects of cholesterol-lowering drug BM15.766 on transgenic 
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mice expressing an AD phenotype and saw that plasma cholesterol levels, brain Aβ 

peptides and Aβ load were all decreased [119].  

These and other studies are serving as the basis for the current movement to 

treat AD with statins. Nevertheless, one of the most interesting studies to recently 

come out clearly demonstrates that reducing the levels of brain cholesterol may not 

prevent AD pathogenesis, as is suggested by previous studies. In this study, Halford 

and Russell crossed transgenic AD mice with cholesterol 24-hydroxylase knockout 

mice, creating a mutant strain that was prone to AD, as well as had a 50% reduction 

in brain sterol synthesis to find that Aβ plaque deposition did not vary statistically 

between the mutant and AD control strains [63].  Another recent study by Kölsch et al 

measured the levels of cholesterol and cholesterol precursors in the CSF and plasma 

and found that these levels were significantly decreased in AD patients when 

compared to control patients, suggesting that de novo synthesis of cholesterol by 

astrocytes within the CNS might be reduced [81]. 

More recent studies of the effects of statin treatment on AD pathology have 

shown a different picture.  Long-term treatment with atorvastatin in aged beagles did 

not lead to a change in Aβ levels [105].  In a similar experiment with beagles, long-

term atorvastatin treatment did not change Aβ levels, although protein oxidation and 

lipo-peroxidation were decreased [9].  Long-term statin treatment has also been 

shown to decrease CoenzymeQ10 levels significantly, leading to impairment in 

energy metabolism in the heart, liver and skeletal muscles [13].  Additionally, 

lipophilic statins, such as simvastatin, have been shown to increase oxidative stress 

via nitric oxide and other reactive oxygen species [109].  Several recent clinical 
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studies have shown that statins did not improve cognitive function in the elderly or 

had only a very weak improvement on mild cognitive impairment [10, 68, 136].  

Recent epidemiological studies have also had similar outcomes.  The PROSPER 

study showed that treatment with pravastatin did not improve cognitive function; 

similar studies with atorvastatin and simvastatin showed similar results (no significant 

improvement with statin treatment; 52, 152, 155].  Only one recent study has shown 

that long-term treatment with atorvastatin led to improvement in cognitive 

functioning [137], though the constraints that were placed on the analysis were 

somewhat biased and may have altered results.   

Statin treatment is also known to have several significant side effects, 

including decreased levels of isoprenylation, decreased pro-inflammatory cytokines 

(which could be good or bad depending on the condition of the body), and decreased 

ability to learn and remember in long-term treatment [18].  Levels of farnesyl 

pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are also decreased 

in statin treatment.  Both FPP and GGPP are necessary for correct subcellular 

localization and trafficking of intracellular proteins.  FPP is also the precursor for 

dolichol, a major membrane-anchoring molecule, and coenzymeQ10, which is 

necessary for energy metabolism.  Given all of these results, caution should be used 

when treating AD patients with statins and further studies are needed to determine the 

efficacy and safety of using statins. 

Drug/Dosage/ Sample Length of 

Treatment 

Results Reference 

Simvastatin, 40 

mg/day, humans 

12 weeks No change in Aβ, 

decreased 24SHChol 

Serrano-Pozo et al 2010 

Simvastatin, 40 

mg/day, humans 

4 months No changes in CSF levels 

of Aβ or τ 

Carlsson et al 2008 

Simvastatin, 40 

mg/day, humans 

14 weeks Decreased phosphor-τ in 

CSF, no changes in sAPP, 

Riekse et al 2006 
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Aβ 

Simvastatin, 20 

mg/day, humans 

1 year No change in CSF or 

plasma Aβ 

Hoglund et al 2005 

Simvastatin, 5 µM, 

human neuroblastoma 

& primary astrocytes 

2 days No change in APP levels, 

decreased τ on astrocytes, 

increased τ on 

neuroblastoma cells 

Dong et al 2009 

Simvastatin, 4 µM, 

primary hippocampal 

neurons from rats 

2-3 days Decreased Aβ in cell 

culture medium 

Fassbender et al 2001 

BM15.766, 250 

mg/kg/day, APP/PS1 

transgenic mice 

5 weeks Reduced amyloidogenic 

processing 

Refolo et al 2001 

 

Role of Chronic Stress: 

 Chronic stress is generally considered a causal factor in a wide variety of 

diseases, from cancer, to cardiovascular disease, to diabetes and metabolic syndrome.  

Stress is also known to play a negative role in neurological and psychiatric diseases, 

worsening symptoms or inducing the appearance of new symptoms.  Chronic stress is 

also believed to be a negative modulator of learning and memory, decreasing the 

ability of hippocampal neurons to form and maintain long-term potentiation (LTP).    

Clinical studies of those with AD have shown that affected individuals have increased 

plasma cortisol levels when compared to controls [3].  Epidemiological studies have 

expanded on this and shown that individuals who are stressed or are more prone to 

being stressed have a significantly increased chance of developing mild cognitive 

impairment (MCI) and AD over non-stressed controls [76, 138-139, 150].  

Furthermore, both clinical and animal model studies have shown that glucocorticoids, 

the main effector molecule of stress in the brain, play a role in the regulation of APP 

levels in the brain [59, 125, 135, 154].   

Table 4: Review of statin treatments on markers for AD: Short review of some of the recent 

studies that have looked at the effects of statins on markers for AD pathology.  The most recent 

reviews in humans suggest that treatment with simvastatin leads to no changes in AD pathology 

and would be unbeneficial as a treatment option. 
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 Steroid hormones have unique and important roles in everyday functioning of 

the body.  Steroids are produced both in relation to circadian rhythms, as well as in 

response to external cues.  Adrenal steroids, produced by the adrenal gland, are 

secreted in response to an experience, such as fear, stress, aggression or sexual 

encounter.  This includes glucocorticoids such as cortisol.  The response of these 

steroids is often reversible; however, over time and with repeated exposure, 

adaptative effects resulting from repetitive stress do appear.  These adaptive changes 

include: alterations in synaptic vesicle proteins, high-affinity GABA (γ-amino butyric 

acid) transport, neurotransmitter-stimulated cyclic AMP formation, and central 

serotonin and noradrenergic sensitivity [97].  In all cases, activation of the 

hypothalamic-pituitary-adrenal (HPA) axis occurs, which leads to increased secretion 

Figure 9: Role of chronic stress in Dementia and related disease processes: Chronic stress is known 

to play a major causal role in cardiovascular disease, cerebrovascular disease, insulin resistance (type 

II diabetes), and glucose dysregulation.  Chronically high levels of cortisol (the main marker for 

system stress state) lead to the suppression of the immune system, increasing the risk of individuals to 

acquire an illness.  Recent evidence has started to suggest the role of chronic stress in the 

pathogenesis of AD and other types of dementia. 
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of glucocorticoids into the blood.  Neural, neuroendocrine and neuroendocrine-

immunological mechanisms are activated, with cortisol and epinephrine acting as the 

main mediators. 

 Under most circumstances, allostasis is advantageous to the organism, since 

maintaining homeostasis and stability during change is a necessary precursor to 

survival.  Adaptive brain response via allostatic loading, however, comes at a price, 

since constant or fluctuating levels of cortisol and epinephrine leads to „wear and 

tear‟ and eventual damage to neurons.  Allostatic loading can be caused by several 

different events: 

1) Repeated activation by many stressful events; 

2) Failing to shut off after the challenge is removed; 

3) Or, the inability to be adequately activated, allowing other systems that are 

normally counter-regulated to become overactive (such as the inflammatory 

system). 

Allostatic loading is necessary for adaptation in the short term for maintaining 

survival and homeostasis.  However, in the long-term, this leads to significant 

changes and imbalances in the CNS, neuroendocrine and immune systems, affecting 

plasticity, brain structures, and hormonal functioning.  Allostatic loading due to 

chronic stress is particularly damaging to the hippocampus because it is the only 

region of the brain that contains glucocorticoid receptors.  Chronically high levels of 

cortisol lead to changes in synaptic vesicle proteins, high-affinity GABA transport, 

neurotransmitter-stimulated cAMP formation, and sensitivity of serotonergic and 

noradrenergic pathways (steroid hormone action in the brain book).  Neurons also 
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begin to atrophy, especially those in the CA3 region of the hippocampus.  This 

atrophy may be caused by excitatory amino acids, such as glutamate and can be 

blocked by NMDA receptor antagonists.  This is an interesting paradox: in the short-

run, adrenal steroids exert neuronal protection; in the long-run though, neuronal 

damage occurs if the allostatic response is not properly managed.  Though little data 

is currently available to support this as the main cause of AD, it is well established 

that stress can play contributory factors to many diseases, and further research is 

needed to determine what role chronic stress may play in development of AD. 

Summary: 

 This section has discussed the majority of theories about AD pathogenesis, 

covering everything from the initial theories (cholinergic hypothesis and amyloid 

cascade hypothesis), to the more recently developed theories (LRP, cholesterol and 

inflammation hypotheses).  Though each theory looks at a specific set of symptoms or 

changes in protein or lipid expression, no current theory links all of these ideas and 

observations together, or looks at the role of lifestyle factors like chronic stress, in the 

development of AD.  By bringing each of these perspectives together, the hope is that 

a new hypothesis that takes into account the role of inflammation, changes in protein 

expression, changes in neurotransmitter levels, changes in lipids and the role of stress 

and cerebrovascular disease can be formed that also appropriately maps the 

timescales of such changes, allowing for a clear understanding of AD pathogenesis 

and development of effective therapeutic treatments.  One of the goals of the systems 

biology math model developed in this thesis is to bring together all of the information 

that is known about AD to come up with a more complete theory looking at the 
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disease from various aspects and attempting to figure out the interconnections 

between interacting pathways, be they cellular, molecular or regulatory, beginning 

this process.  The following table summarizes the current theories for AD. 

 

Theory Evidence for: Evidence Against: 

Amyloid Cascade 

Hypothesis 

- High concentrations of Aβ are 

toxic to neurons & lead to 

synapse loss 

- Aβ activates inflammation & 

reactive astrocytes 

- Unable to account for why beta amyloid 

is increased 

- Increased beta amyloid is seen in non-

pathological controls 

Neurotransmitter 

Hypothesis 

- Decreased levels of acetylcholine 

& serotonin observed 

- Alterations in enzymes related to 

acetylcholine processing 

- Unable to describe why Aβ is increased 

and why cholesterol is also dysregulated 

in the brain 

- Acetylcholinesterase inhibitors are 

unable to stop progression of disease 

Inflammation 

Hypothesis 

- Microglial activation observed 

early in AD 

- NSAIDs help reduce risk of 

developing AD 

- Abnormal increase in activated 

microglia 

- Does not explain why Aβ forms plaques 

in the parenchyma and the walls of 

cerebral blood vessels 

- NSAIDS cannot stop progression of AD 

LRP Hypothesis 

- RAGE expression levels increase 

with aging 

- LRP1 expression levels are 

reduced in both normal aging & 

in patients with CAA and AD 

- Aβ found in the brain is produced by 

neurons; only minor fractions are 

thought to be derived from the blood 

- Increases in RAGE expression levels are 

not unique to AD 

Cerebrovascular 

Hypothesis 

- Overlapping risk factors between 

AD & cardiovascular disease 

- Hemorheologic abnormalities 

seen frequently in AD 

- Having these risk factors does not mean 

an individual will get AD definitively 

Cholesterol 

Hypothesis 

- Epidemiological & experimental 

studies demonstrate that altered 

cholesterol metabolism occurs in 

AD 

- Cholesterol is able to modulate 

levels of Aβ 

- Cholesterol is an important 

molecule within the brain, as 

well as an important precursor 

molecule for neurosteroids 

- Interacts with the inflammatory 

pathways 

- Statin treatment is not efficacious in 

preventing AD 

- Having altered cholesterol levels, either 

in plasma or in the brain, cannot be used 

as a definitive marker for AD  

Table 5: Review of current hypotheses for AD pathogenesis: There are a variety of pathogenesis 

theories that have been developed for AD.  Many of these theories look only at one perspective of the 

disease, failing to recognize that AD is a complex disease affecting a multitude of pathways on various 

time scales.  A unified hypothesis that looks at AD from this aspect is needed to truly understand 

pathogenesis and to create effective treatments. 
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Systems Biology: why use math? 

 Over the last few hundred years, much of biology has been studied using the 

reductionist method; that is, taking apart the entire system and focusing on one or two 

components of interest.  Reductionism offers several advantages, including ease of 

studying function of individual proteins or other small molecules and reduction in 

system complexity to better help control for undesired system changes, there are 

however, several significant disadvantages.  One of the main problems with 

reductionism is that it has a tendency to oversimplify a complex, interconnected 

system of network such that the actual network connectivity and interacting nodes 

may be lost in the process, thus stifling the ability of researchers to fully grasp the 

overarching impact that specific proteins or molecules may have on a multitude of 

interacting networks.  This mindset, of looking at subsystems in isolation, prevents 

fully understanding system level interactions.  

For many years, the main hindering block in studying data across a wider 

scale has been the lack of methods and technologies to accurately control for cross-

system variables, as well as a minimal number of methods to accurately analyze 

biological data, which contains a relatively large amount of experimental noise and 

variation. With the advance of technology, newer methods have become available for 

studying large amounts of data across a system –level model such as microarrays, 

ELISAs and optimized Western blotting methods, opening up the avenue for a new 

form of biology, systems biology.   

Systems biology, a branch of science that combines systems-level biology 

with mathematical biology, aims to study biological organisms from a systems-level 
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approach.  The main goal of systems biology is to develop mathematical models to 

study various aspects of a single system function (for example, the interaction of 

molecules that individually have been known to lead to inflammation), or to develop 

models for disease processes, such as diabetes and cancer.  As of yet, very few 

systems biology models have been applied to neurodegenerative and neurological 

disorders, perhaps owing to the fact that the available methods to study the brain and 

its metabolic networks in real-time are fairly limited.  As imaging technologies 

advance and new assays are developed, this drawback may dissipate in the near 

future. 

Advantages of modeling 

 Systems biology offers several advantages over pure biology or pure math.  

By developing models that look at the interactions between various molecules and 

networks, a more complete picture of how the system works can be defined.  This, in 

turn, will help researchers develop more effective treatments for diseases and other 

ailments.  Through the enmeshed interaction between model development, network 

definition, and parameter estimation from obtained data, detailed network 

architectures can be developed. 

 Systems biology also offers several advantages over conventional biological 

techniques.  One of the most commonly used techniques in biology to study the effect 

of different compounds or try to understand regulation is cell culture.  Although cell 

culture is simple and easy to test many hypotheses, the results fail to allow 

researchers to view the interaction of one cell type with other cell types, and thus, the 

validity of such results is called into play in complex disease states, such as AD. 
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Drawbacks 

 One of the main drawbacks to systems biology is the complexity of networks 

that are often obtained from data analysis require significant understanding of a 

variety of metabolic and regulatory networks, a task that is not easy to achieve for 

many people and at times, may seem overwhelming.  Another drawback is that data 

obtained from microarrays, ELISAs and Western blots carries a very high margin of 

noise, often with the signal-to-noise ratio approaching one [6].  This can lead to 

development of inaccurate network topologies or incorrect parameter estimation, 

which would severely affect downstream model estimations.  Further work on the 

development of mathematical tools to analyze such data would help to prevent this.  

A final drawback is that many networks contain dozens to hundreds of nodes, and an 

order or more number of interacting edges, which makes most models 

computationally intensive to model and require significant computing resources to 

achieve relevant model simulations without simplification of network topology. 

Previous models pertaining to AD 

 Although a relatively new approach to studying AD, several models have been 

developed to study various aspects of the AD disease process.  The earliest models 

studied the kinetics of beta amyloid fibril formation using data and rate constants 

obtained from experimental work [91, 107].  Later models started to look at the 

interactions between genes that have been linked with AD, such as ApoE, and the 

interactions between different cell types.  Macdonald and Pritchard developed a 

detailed Markov model that uses epidemiological data to derive rate constants for 

transitions between no disease, disease, institutionalization, and death, in relation to 
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an individual carrying the ApoE gene.  The main goal of this model was to determine 

the expected long term care costs associated with patients having AD. 

 More recent models have started to look at the roles of microglia in the AD 

disease process.  Edelstein-Keshet and Spiros developed a model that studied the 

development of Aβ plaques in silico, which included the involvement of 

inflammation by microglia, effects of cytokines on neurons and a role for astrocytes 

in the disease process [46].  Luca et al developed a model describing the aggregation 

of microglia in AD in response to increased levels of Aβ, performing a stability 

analysis on their system of equations and suggesting that stochastic differences in 

cells may lead to the development of senile plaques [92].  Only one recent paper, 

which has some striking similarity to our work, has been published that uses a 

network model to study the role of cross-talk between neurons, microglia and 

astrocytes [114].  A literature review showed no systems biology models had been 

developed to study AD.  Thus, the network systems biology model described herein is 

the first such model of its kind. 
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Chapter 3: Starting Point: A systems biology model of 

Alzheimer‟s disease incorporating spatial-temporal distribution 

of beta amyloid 

 

Introduction and Model Goals: 

 As described in the background section, AD has many possible causative 

culprits: A, cholesterol, ApoE, LRP-1, amongst several other contenders.  To study 

the role of each of these molecules, an initial model was developed to simulate the 

spatial-temporal distribution of beta amyloid within a region of the brain.  The model 

looked at generation rate of beta amyloid by neurons within the hippocampus and 

mapped the change in beta amyloid distribution with respect to time and location.  A 

McCulloch-Pitts model was modified to study how neuron number changed over time 

dependent on the A concentration level.  A network that describes the interaction 

between astrocytes and neurons during cholesterol synthesis in the brain was also 

modified from one found in the literature to include possible interactions of 

cholesterol with APP processing.   The initial goal of this model was to study the 

relationship between APP, A and cholesterol processing in the brain, with particular 

emphasis on the effects of low brain cholesterol and LRP-1 expression levels in the 

initiating phases of AD and neurodegeneration.  Although this was not accomplished 

with this version of the systems biology model, the framework was laid for the 

development of future model versions.  This was the only model developed that 

studied the spatial distribution of beta amyloid; it was later decided that spatial 
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distribution was rather trivial if we were focusing on the hippocampus and more 

specifically, the CA1 region. 

Local Network for A & Cholesterol Processing in the Adult Brain: 

 As discussed in the background, beta amyloid is believed to be the causative 

factor in AD given its increased concentration levels in the brain in individuals with 

AD, as well as it‟s predominant presence in amyloid plaque deposits in both the brain 

parenchyma and cerebral vasculature. The amyloid precursor protein is cleaved in a 

two-step cleavage process by -secretase and subsequently -secretase to form A.  

Alternatively, APP is cleaved by -secretase to form non-amyloidogenic sAPP.  

Both sAPP and A are expressed during normal conditions and are believed to play 

key roles in neuronal excitability, enhanced synaptic plasticity, learning/memory and 

development, response to neuronal injury, and synapse formation, respectively. 

 In the adult brain, cholesterol is produced by de novo synthesis by astrocytes, 

with subsequent transport via lipoproteins and uptake by neurons.  Oligodendrocytes 

are also capable of producing their own cholesterol, but were not studied in this 

model.   Astrocytic cholesterol synthesis proceeds through the same pathway that is 

seen in other cell types, proceeding through an energy-intensive process that starts 

with Acetly-Coenzyme A and finishes with cholesterol.  Cholesterol is then packaged 

into ApoE, the main lipoprotein in the brain, transported out of astrocytes via the 

ABCA1 receptor and shuttled to neurons.   

At the neuronal membrane, cholesterol-laden ApoE binds to LRP-1 and 

releases cholesterol to the neuron.  It is not well understood whether or not 
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cholesterol plays a role in APP processing.  Excess cholesterol or aged cholesterol is 

degraded via action of the CYP46 cytochrome, which processes cholesterol to form 

the brain-specific end product, 24S-hydroxycholesterol (24SOH).  24SOH is 

transported out of the brain and can then be transported across the BBB to the blood 

to be cleared from the brain.  It has also been suggested that a portion of the 24SOH 

is transported back to astrocytes to help modulate cholesterol synthesis, since tight 

regulation over neuronal cholesterol levels is absolutely necessary for normal 

neuronal function.  The following figure describes this process in visual detail. 

 

Derivation of the Reaction-Diffusion Equation for A Distribution: 

 In AD, the most severely affected regions of the brain are the hippocampus, 

the amygdala and the cerebral cortex.  Given that the hippocampus is the initially 

Figure 10: Cholesterol processing in the adult brain. 
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affected brain region and is also known to play a role in memory, this model focuses 

on the distribution of A in the hippocampus. A deterministic model was chosen 

following calculation of the number of beta amyloid molecules within both healthy 

individuals and individuals with AD.  Briefly, the volume of the hippocampus can be 

approximated as 6 cm
3
 [22].  Assays of the total brain beta amyloid in healthy and 

diseased individuals were found to be 0.6 µM and 8.8 µM, respectively, which 

corresponds to 2.2x10
15

 and 3.2x10
16

 molecules of A.  Thus, for the case of a single 

neuron or small group of neurons, a statistical model would be adequate, however, in 

the case of larger sections of the hippocampus, such as the CA1 region which we are 

interested in studying, a statistical model becomes intractable given the inefficiency 

of simulation.  This potential difficulty was overcome by using a reaction-diffusion 

equation (RDE) to model A distribution: 

  

  
    (

   

   
 

   

   
  

   

   
)      

where c is the concentration of beta amyloid, DAB is the diffusion coefficient of Aβ 

and Ri represents the reactions that occur within the control volume.  The reaction 

term, Ri, can be expanded to account for beta amyloid production by neurons, 

degradation by proteases, fibril formation and uptake by microglia respectively as: 

    ∑  (              )     ,   -             
   ∑   ( 

             )      
 

The first term represents beta amyloid production, which occurs only in the cell body 

of neurons.  The location of each neuron is represented by a delta function (point 

source), while the production rate of beta amyloid, , is given by a Poisson 

distribution whose mean is a function of: 
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 Beta amyloid production if also dependent on: the extent of inflammation, the 

general stress level, and on whether neurons are recovering or remodeling.  

Degradation by proteases depends on the reaction rate, , the A concentration and 

the concentration of insulin-degrading enzyme (IDE).  A simplified model for A 

fibril formation is described where the two rates constants, 1 and 2, represent the 

attachment of beta amyloid monomers onto an oligomer or fibril and the initial 

formation of an oligomer, respectively.  The rate of uptake by microglia, given by , 

is dependent on the beta amyloid concentration.  The location of microglia is defined 

by a delta function for simplicity in modeling. 

 A key player in the overall dynamics of the model is the flux rate of beta 

amyloid across the blood-brain barrier (BBB).  Clearance of A from the brain occurs 

either by direct transport of beta amyloid via the LRP-1 receptor, or more commonly, 

by the transport of ApoE-bound beta amyloid.  Net flux is given as the sum of active 

and passive transport across the BBB, where active transport requires some source of 

energy (ATP, GTP, etc) to transport a substance, while passive transport often occurs 

down a concentration gradient or by molecules that are easily diffusible through cell 

membranes (lipophilic molecules).  A simplified version of the Kedem-Katchalsky 

equations were used to model passive transport of beta amyloid; physically, passive 

transport of A can be likened to leakage across a semi-permeable BBB.  Passive 

transport occurs only in late stages of AD beta amyloid plaque deposition (cerebral 

amyloid angiopathy, CAA) or inflammation of the neurovascular unit leads to 

localized breakdown of the BBB.  Thus, during the initiating stages of the disease that 
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we are trying to study, passive transport contributes only a trivial amount of A 

clearance from the brain. 

 Active transport has been modeled as the major contributor to A clearance 

during the initial stages of AD.  To model this interaction, we assume that A must 

first be bound to the ApoE molecule, then diffuse through the brain parenchyma 

before reaching the BBB.  At the BBB, A-ApoE molecule must bind to the LRP-1 

receptor, which will subsequently transport the A across the BBB, while ApoE is 

recycled to the cellular surface for re-use.  Binding kinetics between the A-ApoE 

complex and LRP-1 have been modeled using Michaelis-Menten kinetics: 

   
     (      )

     (      )
 

where Rmax is the maximum rate of reaction, KM is the Michealis constant and c 

represents the concentration of Aβ within a narrow boundary region around the BBB.  

The net reaction rate is also dependent upon the rate at which Aβ binds to apoE to be 

transported and on the density of LRP1 receptors along the BBB: 

      (,    - ,    - ,        -) 

For our model, the role of LRP1 to the reaction rate will be written as a ratiometric 

coefficient, L, where L ranges from 0 to 1 as follows: 

  
  ,    -    

   ,    -   
 

The rate at which apoE and Aβ bind is defined macroscopically as: 

 

,        -    ,   -,    - 

The total flux of Aβ across the BBB is described by the reaction rate (Rs) and the total 

cross-sectional area of BBB that we are studying: 
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Experimental values for the Michaelis constant and the Rmax for Aβ40 were derived 

by Shibata et al to be 15.3 nM and 70-100 nM, respectively [131].  Values for Aβ42 

are not necessary since LRP-1 predominantly transports the 40 amino acid length 

protein as opposed to the 42 amino acid form of Aβ.  Additionally, Aβ40 is the form 

found in cerebrovascular plaques, so we have assumed that this will be the form 

localized near LRP-1 receptors. 

Derivation of Aβ Diffusion Coefficient: 

The diffusion coefficient for Aβ (DAB) moving through brain tissue is not a 

readily available parameter due to the difficulty in obtaining accurate measurements.  

To overcome this, DAB was calculated using a combination of the Stokes-Einstein 

equation and a previously described method [70].  The effective diffusion coefficient 

through brain tissue can be given by: 

    
 

  
 

where D is the theoretical value for the diffusion coefficient given by the Stokes-

Einstein relationship in a fluid medium free of any obstacles and λ is the tortuosity, or 

the average hindrance of a complex medium relative to an obstacle-free medium.  In 

the brain, λ is typically ~1.6, though this value can increase during insult or stress to 

the brain, decreasing the effective diffusion.  The Stokes-Einstein relationship is: 

  
   

    
 

 

where kB is the Boltzmann constant (1.38e-23 J/K), T is the temperature in Kelvin 

(310.15 K), η is the effective viscosity (0.7-1 mPa∙s, [14], and r is the effective radius 
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of Aβ (estimated as 2 nm, [30]). Substituting these values into the given equations 

gives an effective diffusion coefficient of DAB ~1.14x10
-6

 cm
2
/s. 

Modeling Microglial Movement through the Brain and Uptake of A 

 As discussed previously in the background section, the CNS maintains it‟s 

own immune system separate from that of the rest of the body, partially due to the 

presence of the BBB.  CNS macrophages, known as microglia, are distributed 

relatively uniformly throughout the brain during healthy, resting states.  During 

disease, microglia become activated, take on a ramified form and migrate towards the 

site (or sites) of infection, releasing pro-inflammatory cytokines and phagocytosing 

invading cells or material. 

 The movement of microglia within the brain has been modeled parametrically 

and depends on whether the microglia are activated or ramified (resting).  Ramified 

microglia are modeled using a simple random walk along a continuous plane: 

                   ( ) 

where xc is a matrix that tracks the position of the center of mass of each of the i
th

 

microglia at time t, and ξ(t) is Gaussian white noise with the constraint that the center 

of mass of two microglia cannot be less than 2R (R=microglial radius) distance from 

each other at the same time point (microglial aggregation only occurs in the activated 

state).  Microglia are assigned initial positions prior to running the simulation.  

Ramified microglia have several other constraints: microglia do not traverse the BBB 

and are confined to brain tissue; and under extreme circumstances, macrophages in 

the blood may cross into the brain and differentiate into microglia.  Microglia can 

switch to the activated state once a specified threshold difference has been exceeded.

 When the local concentration of Aβ in the brain reaches 200 nM or greater, 
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microglia become activated and migrate up the concentration gradient towards the 

main source of Aβ.  Experimentally, this has been shown to occur near neurons or 

near the basement membrane of blood vessels.  The directed movement of microglia 

towards a chemoattractant (chemotaxis) has been modeled using the Langevin 

equation of motion: 

 ̇   ( )    ( )       (       ) 

 

where xc represents the position of the i
th

 microglia at time t,  ϕ represents the Aβ 

concentration gradient, ξ represents Gaussian white noise that the microglia would 

experience during chemotaxis, α is a positive constant that describes the strength of 

chemotaxis (α = 1 for our simulations), and κ describes whether it is positive 

chemotaxis (κ = +1; value used for our simulations) or negative chemotaxis (κ = -1). 

Neural Network Model for Neurons: 

 Neurons were modeled using a modified McCulloch-Pitts model previously 

developed by Butz et al [19].  The network is defined by several variables: N, NE, C, 

θ, Φ and β. N represents the number of logical neurons, NE is the number of 

excitatory neurons (1 to NE are excitatory, while NE to N are inhibitory), C is the 

NxN matrix of connections between neurons, θ is the common threshold of all 

neurons, Φ is the relative weight of inputs from inhibitory neurons, and β is the noise 

level in the threshold function.  The state of the network at any given time, t, is 

defined by the vector z
t
: 

   (  
       

 )   
  *   +           

The network connectivity matrix is defined as: 

   (

               

     
               

) 
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where ci,j is the strength of the connection from neuron j onto neuron i.  From a 

biological standpoint, C represents the probability for synaptogenesis between two 

neurons (Butz 2006).  The membrane potential for neuron i is: 

   
   ∑      

    ∑       
 

 

      

  

   

 

The probability of neuron i being active in the next time instant is governed by the 

threshold potential (θ), the actual membrane potential (MP), the noise level (β), and 

the percentage afference (α) as: 

    (  
   )   

 

   (   
     ) (  )

 

The percentage afference models the shift in the probability of firing, and is 

related to the relative levels of Aβ.  Changes in network connections are modeled by 

updating the connectivity matrix at each time step with respect to changes in pre- and 

post-synaptic elements.  Decay of pre- and post-synaptic elements is proportional to 

the strength of existing connections and the relative level of Aβ. Pre-synaptic 

elements that are connected to a post-synaptic element that is lost are able to 

recombine and form a new synapse in future time steps, whereas the „lost‟ post-

synaptic element is removed from the post-synaptic pool.  Free pre- and post-synaptic 

elements are updated to account for synaptic losses, recombinations, and 

strengthening of existing contacts.  The number of possible contact offers is 

dependent on the number of free contacts that a neuron contributes to the network. 

 The number of neurons in the network is varied during the simulation 

depending on the neuronal activity level, as well as the local concentration of beta 

amyloid.  Neuron loss is modeled by the calcium set-point hypothesis in combination 
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with apoptosis occurring above a maximal beta amyloid concentration.  Calcium   

previously determined that a neuron‟s activity level should remain between 

0.25<si<0.85.  The neuron number in the system at a given time point is defined by a 

vector of N elements given as: 

         {

                                  

     (   )        

                                  
                               

 

Chapter Conclusion: 

In this chapter, we have discussed the initial approach that was used to model 

pathogenesis of AD. A reaction-diffusion equation was used to model the spatial-

temporal aspects of A distribution within the CA1 region of the hippocampus.  No 

effect of geometry was studied, aside from the total volume of CA1.  A deterministic 

method was chosen since the expected number of beta amyloid molecules, even in a 

healthy brain, is greater than 10
15

.  Equations for the diffusion coefficient and key 

reaction rates were derived.  Movement of microglia was modeled as a random walk 

along a continuous plane, while the number of neurons was described by a modified 

McCulloch-Pitts model.  Simulations of this model were not run for several reasons: 

difficulty of implementing an appropriate algorithm across such a variety of modeling 

modalities; lack of pertinent rate constants or values needed to iteratively solve the 

RDE; and the subsequent belief that the spatial distribution of A was relatively 

trivial in the actual initiation of the disease process. To overcome these issues, a 

network  model was developed that looked at this problem from a more systems level 

approach.  The following chapters will discuss this model in further detail.
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Chapter 4: What do Networks Have to do with AD?  An Initial 

Network Model for AD 

 

Introduction & Model Goals 

AD is a multi-faceted disease most likely caused by the interaction of several 

simultaneous dysfunctions.  In recent years, a large interest has been put on 

understanding the possible role of cholesterol in AD pathogenesis.  

Neuroinflammation has also been suggested to play a key role in disease progression.  

Although several experimental trials with statins and epidemiological trials measuring 

plasma and brain cholesterol have been undertaken, results have been relatively 

inconsistent.  Some of these inconsistencies may be due to hidden factors: biological 

pathways that may be interacting in previously unsuspected manners.  Given the 

inherently high-connectivity and cross-reactivity and regulation existing between 

many biological pathways, a network-based mathematical model would help to 

elucidate some of these underlying interactions, not only by helping to visualize and 

fully list the entirety of all known and suspected interacting pathways, but to also 

provide a method to discover how pathways currently thought to be unrelated may 

contribute or play a role in disease progression, as well as to study how these 

interactions change over time as the system moves from a healthy state to a disease 

state. 

 Systems biology provides a nice format to develop such a proposed model, 

bringing together data from biological experiments and simulation results from 

mathematical models that are based on understanding the system as a sum of 
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interacting parts at multiple levels of interaction (molecular, cellular, tissue, organ, 

body).  To achieve this notion, an initial network describing the interactions between 

the metabolic, lipidomic and proteomic networks was developed. One of the main 

goals of this model, and all subsequent models, was to study the role of cholesterol in 

AD pathogenesis since a growing body of literature has suggested the cholesterol 

levels in both the brain and plasma may play roles in disease progression.  Within the 

plasma, experimental results generally seem to concur that high plasma levels of 

cholesterol is a risk factor for developing AD; however, the exact role of cholesterol 

in the brain with respect to A production, transcription of other proteins, metabolic 

pathways and induction of inflammation are not well understood.   The following 

figure describes the possible regulatory interactions between A and cholesterol. 

 

This simple network model represents the first known attempt to study AD 

from a systems biology approach.  The network derived here consists of 6 high level 

Figure 11: Possible regulatory interactions between cholesterol and beta amyloid.  Green 

arrows correspond interactions that increase the production rate, while red lines with the 

blunted end correspond to inhibitory interactions. 
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nodes: 5 nodes representing the various cell types present in the brain and a single 

node representing the brain extracellular matrix.  Each cellular node contains an 

interconnected sub-network representing the biomolecular pathways specific to that 

cell type.  Sub-networks are capable of interacting and influencing each other, leading 

to changes in the weights of sub-network nodes.  Basic simulations were run using 

Matlab, demonstrating a key role for regulation of beta amyloid generation by 

cholesterol inhibition.  Further simulations also looked at the role that LRP-1, apoE, 

cholesterol transfer rate between astrocytes and neurons, and the effect of sinusoidal 

cholesterol inputs on the concentration of APP and Aβ. 

Hierarchies of Networks in Biological Systems 

One way of quantitatively thinking about diseases is to view them as aberrant 

networks.  In this manner, any given organism can be represented as a hierarchy of 

interacting networks, from the biomolecular-level all of the way to the organism-

level.  Networks interact within their respective hierarchal level, and can also interact 

with other levels.  Take, for example, energy production in multicellular organisms.  

At the cellular level, mitochondria are responsible for producing sufficient ATP to 

keep cellular processes running smoothly (biomolecular to cellular level interactions).  

In turn, mitochondrial output is also controlled by the local environment (whether the 

cell is being attacked by pathogens, whether local oxygen and nutrient levels are 

normal, etc); by usage demands (whether the cell is resting or in an active state, such 

as a muscle cell during exercise); and by cross-talk between other organs or the 

external environment via release of hormones, other signaling molecules and 

epigenetic and RNA regulatory control mechanisms.  
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 These hierarchies are important to understand and take into account when 

modeling biological systems. One of the key properties that hierarchal network 

structures convey to a system is a time delay between input signal at one level and 

response at another level, analogous to that seen in control systems with feedback 

loops.  This is an important feature that is indeed observed in biological systems.  For 

example, if one were to look at what seems to be a relatively simple system process to 

model such as ingesting a meal, it would quickly become obvious that many different 

organs are involved and affected.  Simply the thought of having food when one is 

hungry causes salivation (activation of salivary glands in response to “hunger 

sensations”).  Downstream, muscles in the face and throat are used, enzymes are 

released by the salivary glands, pancreas and liver to digest food, hydrochloric acid is 

produced and released by cells lining the stomach, sodium bicarbonate is released by 

cells in the small intestine, receptors all along the intestines absorb broken down 

nutrients and water, the kidneys and liver filter absorbed nutrients to remove wastes 

or unnecessary nutrients, intestinal smooth muscle is activated to maintain peristalsis, 

and finally, the anal sphincter is contracted to expel solid waste (liquid wastes pass 

through the urethra).  This very simple process activates a multitude of system levels 

in the body, from cellular to organ, all working in unison to achieve a final goal, but 

uniquely to achieve their specific part in the process, while also initiating several time 

delays between different levels to maintain the proper feedback regulation and 

control.   
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In essence, many biological processes encompass a basic pattern of interaction 

between biochemical networks, proteomic networks and genomic networks.  The 

genome provides the basic outline for what proteins are transcribed and translated, 

while epigenetic material (RNA, histones, DNA methylation) controls the finer 

details of how the organism responds to the environment through modification of 

protein transcription.  It has been suggested that genetic networks can be modeled 

with Boolean or digital logic approaches, with switches and multi-input gates leading 

to convergence along key regulatory pathways.  In turn, the proteins produced interact 

with other cellular structures to maintain the biochemical pathways necessary to keep 

the cell alive and functioning via enzymatic reactions, catalysis, transport of 

precursors from the extracellular space into the intracellular space via transporters, 

receptors to respond to the environment, and cytoskeletal proteins.  Proteomic 

networks can be modeled with a combination of Boolean logic, network theory, and 

Figure 12: Basic Interaction Pattern Between Heirarcheal Networks: The three basic pathways that 

interact within any given cell are genomic, proteomic and biochemical networks.  Each network can be 

modeled using a variety of approaches, though most commonly, genetic networks are modeled using 

Boolean logic, while proteomic networks are modeled using a combination of network theory and 

chemical rate kinetics. 
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chemical rate kinetics.  Biochemical networks, running in the background, form many 

of the basic components necessary for the formation and function of a cell: ATP, 

lipids, cholesterol, carbohydrate side groups, and specialty molecules.  Chemical rate 

kinetics and Michaelis-Menten kinetics are two of the most commonly used methods 

to model biochemical networks.  With all of these networks and processes running 

simultaneously, one could easily imagine that the cell is like a mini-computer and the 

different interacting pathways are the run-time stack, microprocessor and bus. 

Diseases as System States 

 If we look at the many biological processes „running‟ in a given organism, a 

unique idea that comes to mind is the convolution of each of these processes into an 

overall net process, or state of the system.  That is, the state of a biological organism 

can be described by the sum total of the various genomic, proteomic and biochemical 

pathways that are currently being expressed by that organism.  This varies from 

phenotype, which has more to do with how the genetic and proteomic pathways 

interact to form certain physical or behavioral characteristics, with little regard to the 

role that biochemical pathways can provide feedback and indirectly modulate the 

phenotype (ie. environmental or nutritional factors). 

 The concept of an organismal state can be expanded to help differentiate more 

quantitatively the differences present during health and disease.  Assume that 

initially, each organism starts in a healthy state i, where all pathways are interacting 

as expected and expression levels are also at the expected values.  Over time, external 

influences, responses to the environment, oxidative stress and other stimuli cause the 

system to shift from state i -> state j, which represents one of the many possible states 
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of a perturbed network that is operating less efficiently.  There is a range of healthy 

states that are possible for a single organism to take one; that is, small deviations in 

the expression level or interaction between pathways lead to only minor changes in 

the system, which, as a whole, can adjust to such a perturbation.  However, as enough 

of the networks become perturbed, expression and concentration levels slowly begin 

to deviate from the expected range, which leads to downstream consequences in other 

network topologies.  This is the suggested beginning of many disease processes.  The 

system may attempt to compensate initially, but if the external stimulus (environment, 

stressor, etc) is not removed or its effect ameliorated, the system converges to an 

alternative steady state, where pathways are running non-optimally, alternate 

pathways may be activated, and eventually networks must adapt and concentration 

levels change. 

From a mathematical standpoint, the state of the system can be represented 

using two matrices: one matrix which represents the current concentration levels of 

all molecules of interest (MOI), and a second matrix which represents the level of 

interaction between two given MOI.  MOI can be protein products, enzymes, lipids, 

cytokines or any other molecule involved in a proteomic, lipidomic or metabolic 

pathway.  To simplify our model here, genomic data has not been included, though 

future models will look at this to be more accurate.  The interaction matrix can 

change over time to reflect inherent changes in the system interaction and changes in 

network topology that may occur.   

This setup is very similar to a Markov process and in many ways, the state of 

many interactions in a biological system can be thought of as a Markovian finite state 
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space.  The state is Markovian because the future state of a complex biological 

network depends only on the current state.  It does not matter how the system reached 

the current state, only that it is at the current state; that is, the current state is pathway 

independent.  This implies that various, differing inputs can lead to a similarly 

convergent output or end result.   

Logically, this follows closely to what is seen in biological systems.  Take, for 

example, the activation of beta cells in the pancreas (responsible for producing 

insulin).  When these cells receive the appropriate input stimulus (high blood glucose 

levels), they begin producing and releasing insulin.  Assuming that there is not a 

malfunction in the control system regulating this as in diabetes, beta cells will not 

have any memory of previous times that they were stimulated to produce insulin.  

Another logical point to make here is that the Markovian memoryless property fails 

when the frequency of input signals passes a threshold.  In this case, there is not a 

sufficient time delay to allow the system to recover from the applied input and input 

signals begin to „merge‟ with each other, causing the system to shift states. 

Alternatively, the interactome of a biological system can be represented by a 

set of differential equations that describe the interactions between various molecules.  

This is somewhat easier to model over well-defined time steps, however, the main 

drawback is the need for having rate constant data and other parametric constants 

available to make the model results most accurate.  A system of differential equations 

is also a direct application of graph theory and can be expanded to include a bipartite 

structure; in effect, this graph theoretic approach represents the interactome of 

different cell types within the brain.   



 

 71 

 

Model Assumptions 

 The networks described in the last section have been simplified and 

normalized to those that would be expressed across the various cell types within the 

brain.  At the cellular level, networks in neurons, astrocytes, microglia, 

oligodendrocytes and brain endothelial cells are important to model, as well as their 

interaction with the brain extracellular space. 

 

 

 

 

 

 

 

In deriving the system of equations to describe the network topology that we 

have given, several key assumptions were made.  Abstracting the network to the 

higher hierarchy (from intracellular to cellular level), we see that each cell of a given 

cell type (neuron, microglia, astrocyte or brain endothelial cell) has a similar 

biochemical and proteomic network to neighboring cells of the same cell type, with 

minor variations existing between cells within a local vicinity.  This is true because 

all cells have the same genetic background, and cells of the same type exposed to the 

Oligodendrocyte 

Figure 13: Interaction Graph Between Different Cell Types in the Brain: Directed graph 

describing the interactions present between different cell types in the brain.   
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same local environment should have similar epigenetic material, as well as activation 

of similar proteomic and biochemical pathways.  This implies that single or small 

groups of aberrant cells do not have a distinct effect on the system as a whole, and are 

often removed via apoptosis.  Within the brain, it is reasonable to assume that besides 

synaptic transmission and paracrine signaling of hormones from the HPA axis, there 

is minimal, direct chemical cross talk between metabolic pathways (glycolysis, lipid 

metabolism, etc) in neurons.  This implies that the biochemical network between 

neurons is independent from each other, allowing us to represent each cellular node 

within the cellular network as a sum of all biochemical pathways being expressed by 

that cell type.  This sum can be described by a sample distribution given by: 

 

X(node) ~ Normal(μj,k ,σj,k/√    ) 

 

 

 

 

 

 

 

Model Goals 

Taking these ideas into account, two unique systems biology models were 

developed to study the role of cholesterol in AD.  The first model was developed to 

study the role of negative feedback regulation in the mixed lipidomic-proteomic-

metabolic pathway, while the second model was developed to help ask several 

questions: (1) What are the key nodes and regulatory points in the described network? 

(2) Does inhibition of BACE activity by cholesterol fit with the known data? (3) How 

does varying the expression levels of LRP-1 alter steady state levels of Aβ? 
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 A topological network describing the interactions between the simplified 

proteomic, lipidomic and metabolic pathways has been derived for both models 

(Figure 13).  The network was simplified to include only those molecules that are 

most relevant from a biological standpoint and directly relevant to the questions that 

we were trying to ask.  In the first network, there are 10 molecules of interest in the 

network and 11 rate constants associated with the model.  There is no 

compartmentalization of the model equations into different cell types, and limited 

data exists for the rate constants.  Therefore, the rate constants were approximated as 

fractions of molecules that would interact within the defined time step. 

The second model includes compartmentalization and thus an increase in the 

number of molecules and rate constants; there are 15 rate constants and a total of 17 

molecules in this network.  The degree of each major node was calculated and is 

listed in Table 6.  All molecules are assumed to reside in one of two compartments: 

the brain (limited concentration levels) and blood (infinite sink for any molecule 

being transported across the BBB).  Within the brain, the cholesterol was subdivided 

between astrocytes and neurons, while the ApoE pool was subdivided into astrocytic 

and free ApoE.  Rate constants in this model were also approximated as the fraction 

of molecules interacting per time step and fitted to maintain a stable simulation 

environment. 

Model 1 Network & Equations 

 

 A simplified network encompassing the molecules pertinent to cholesterol and 

Aβ production was developed.  The network consists of 10 molecules (only 8 

molecules are simulated and change with time; pyruvate is modeled as a constant and 
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fatty acid levels are not tracked), 7 reaction edges and 3 regulatory edges (negative 

feedback).  The following figure represents the model that is being studied here. 

 

 

 

 

 

 

 

 Acetyl coenzyme A (AcetylCoA) is produced from the action of pyruvate 

dehydrogenase (PDH) on pyruvate, and is itself the precursor to both the cholesterol 

and fatty acid synthesis pathways (HmgCoA and MalonylCoA respectively).  

AcetylCoA generation is believed to be at least partially inhibited by beta amyloid 

[66].  

 
where kβ is the strength of inhibition and is dependent on the concentration of beta 

amyloid, k5 is the rate of AcetylCoA degradation, kcholkT is the ratio of AcetylCoA 

Figure 14: Network topology for model 1 network demonstrating the interactions that 

exist between the cholesterol production and Aβ generation pathways.  This model was 

developed to study the role of negative feedback inhibition in the level of Aβ, particularly 

by cholesterol since this exact regulation is not well understood.  No 

compartmentalization was added. 
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that is converted to HmgCoA, kγ is the strength of inhibition provided by cholesterol 

on own synthesis (end-product inhibition), and kFAkT is the ratio of AcetylCoA that is 

converted to MalonylCoA and other fatty acids.  From AcetylCoA, both HmgCoA 

and MalonylCoA are produced.  The rate of this production is dependent on several 

factors, of which the concentration of both cholesterol and fatty acids is accounted for 

when the system decides to choose one pathway over the other: 

 
The cholesterol pathway is then simplified to include only mevalonate and cholesterol 

production.  The rate limiting step in cholesterol production is HmgCoA to 

mevalonate, which is regulated by the current level of cholesterol in the cell via the 

SREBP/SCAP pathway.  For simplification sakes, it has been assumed that all 

HmgCoA is converted to mevalonate, as well as all mevalonate is converted to 

cholesterol. 

 

 

 

Lastly, beta amyloid levels were modeled as a function of APP concentration, with 

inhibition from cholesterol: 
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Model 2 Network & Equations 

 The second model presents the first-ever systems biology model used to study 

the role of cholesterol in AD.  This model was developed to help ask several 

questions: (1) What are the key nodes and regulatory points in the described network? 

(2) Does inhibition of BACE activity by cholesterol fit with the known data? (3) How 

does varying the expression levels of LRP-1 alter steady state levels of Aβ? 

 A topological network describing the interactions between the simplified 

proteomic, lipidomic and metabolic pathways have been derived (Figure 14).  The 

network was simplified to include only those molecules that are most relevant from a 

biological standpoint and directly relevant to the questions that we were trying to ask.  

There are 15 rate constants and a total of 17 molecules in the network.  The degree of 

each major node was calculated and is listed in the table.  All molecules are assumed 

to reside in one of two compartments: the brain (limited concentration levels) and 

blood (infinite sink for any molecule being transported across the BBB).  Within the 

brain, the cholesterol was subdivided between astrocytes and neurons, while the 

ApoE was subdivided into astrocytic ApoE and free ApoE. 

 A system of non-linear differential equations was developed to represent the 

described network.  The majority of metabolic reactions were described by direct 

conversion rates from precursor to product molecule.  Inhibitory interactions within 

metabolic reactions or between metabolic, proteomic or lipidomic sub-networks were 

described by Michaelis-Menten-like rate kinetics.  Neuronal cholesterol levels were 

maintained at a constant value throughout simulations via feedback control.  This 

feedback mechanism also affected cholesterol levels in astrocytes, the level of ApoE 

in both astrocytes and in the interstitial space, and synthesis levels of HmgCoA by 
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astrocytes, demonstrating the highly interdependent nature of cholesterol and ApoE 

concentrations in different cell types within the brain.  The following sections 

describe these equations in further detail. 

   

 

 

 

 

 

Node Degree 

AcetylCoA 5 

HmgCoA 3 

Mevalonate 2 

Cholesterol 4 

Aβ 3 

ApoE 3 

LRP-1 2 

 

Figure 15: Network topology for mixed proteomic-lipidomic network to study AD. 

Precursor molecules (green boxes), lipidomic molecules (orange), and proteomic 

molecules (blue, purple and red) are described.  Inhibitory interactions are given by a 

red line with a blunted bar, metabolic reactions between precursor and product are 

described by solid black lines, and binding interactions between molecules are given by 

dotted, black lines. Table (right inset): Degree of Key Nodes.  AcetylCoA has the 

highest degree, followed by cholesterol.  Acronyms used: APP: amyloid precursor 

protein; ApoE: apolipoprotein E; AICD: APP intracellular domain; Aβ: beta amyloid; 

CTF: C-terminal fragment; HmgCoA: 3-hydroxy-3-methylglutaryl-coenzyme A; LRP-

1: low density lipoprotein receptor-related protein; PDH: pyruvate dehydrogenase; 

TCA: the citric acid cycle 
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Metabolic Interactions: 

 Metabolic interactions encompass all interactions represented by green boxes 

in Figure 14.  AcetylCoA is generated from pyruvate via action of pyruvate 

dehydrogenase (PDH).  The rate of this reaction has been shown to be influenced by 

the concentration of Aβ [66].  Since the concentration of PDH is believed to be 

constant during AD, the rate equation was modified to be independent of PDH 

concentration: 
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 A small fraction of this AcetylCoA (k2) will be converted to HmgCoA.  

Conversion of HmgCoA to mevalonate is the rate-limiting step in cholesterol 

synthesis, and is negatively inhibited by cholesterol (negative feedback loop).  When 

neuronal cholesterol (cholN) is below the threshold value, all HmgCoA that is 

synthesized is used to make mevalonate: 
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 When neuronal cholesterol levels are normal, there is relative excess of 

HmgCoA, which can then be used for other metabolic processes or degraded: 

       

  
   ,    -    (

 

   ,     -
) ,      -    ,      - 

Lipidomic Reactions & Interactions: 

 Mevalonate is the precursor to cholesterol; the cholesterol synthesis pathway 

actually has 19 steps between mevalonate and cholesterol, however, these steps have 

been considered trivial for the goals of this model and the average production rate for 

cholesterol has been used: 
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 All cholesterol synthesis occurs in astrocytes.  This cholesterol must then be 

bound to ApoE and transported from astrocytes to neurons, at a rate t1.  Astrocytic 

cholesterol is also degraded at an extremely slow rate (half-life of 5 years): 

      

  
   ,   -    ,     -    ,     - 

Proteomic Interactions: 

 When neuronal cholesterol is at or above the threshold value, there is no need 

to transport cholesterol to neurons; in this case, the middle term is trivial. The 

concentration of ApoE in astrocytes would also vary similarly (birth minus death 

minus amount transported): 

      

  
       ,     -  (,     -  ,     -) 

 Neuronal cholesterol levels vary depending on the amount of cholesterol being 

transferred from neurons; cholesterol also degrades very slowly (same half-life as 

astrocytic cholesterol): 

      
  

    ,     -    ,     - 

 The ApoE that is used to transport cholesterol from astrocytes to neurons is 

often recycled back to the cell surface and, in combination with ApoE that is 

generated by neurons, can be used to transport Aβ from the brain to the blood in a 

two-step process of Aβ binding to ApoE, followed by transport across the blood-brain 

barrier via LRP-1: 
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(,     -  (
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 ,   -,     -,    -

   ,     -    ,    - 

When neuronal cholesterol levels are above threshold, there is only trivial amounts of 

cholesterol-laden ApoE being transferred to neurons, and thus, very minimal 

recycling of ApoE back to the surface to be part of the free ApoE pool.  The amount 

of total LRP in the system is assumed to stay at a constant value. 

APP Processing: 

 APP is processed into Aβ via a two-step process by action of beta-secretase, 

followed by cleavage by gamma-secretase.  No difference has been made between the 

40 and 42 amino acid length forms.  Beta-secretase activity is believed to be regulated 

by levels of neuronal cholesterol.  In this model, we have used the evidence presented 

by Crameri et al to introduce an inhibitory effect of cholesterol on beta-secretase 

activity: 

    

  
    ,   -    ,   - (

 

   ,     -
)     ,   - 

Beta amyloid is produced from this cleavage, but is also degraded via endocytosis or 

binding and removal by ApoE/LRP-1: 

      

  
    ,    -      ,     -     ,     -,    -    ,    -,   -  

Rate constants for generation and degradation of most key molecules were 

approximated using data from the literature.  Forward binding rates, interaction rates 



 

 81 

 

Table 6: Values used for Rate Constants.  Rate constants were derived from the 

literature or estimated as a fraction of where the output would go.  All rate constants 

were estimated except for the degradation rate of cholesterol (t1). 

and the strength of inhibition were all approximated and fitted to create a stable 

simulation environment.  All rates have units of x/day
-1

.  Table 6 describes the rate 

constants that were used in the model. 

Simulation Methodology 

 The system of equations was solved numerically using ODE45 solver in 

Matlab.  Initial conditions, rate constants, magnitude and frequency of input, and 

expression levels of different proteins were varied to study their effect on the system 

and more specifically, on the beta amyloid levels (though increased beta amyloid 

levels does not inherently imply that the system has shifted to a disease state, simply 

that the system being modeled is behaving similarly to what is seen in a disease 

model).  The time step for each simulation was a single day.  The model was 

initialized with values that would be found in an average 20 year old and run for a 

total of approximately 55 years (final age 75 years) to correspond to the time period 

Rate Value (day-1) Rate Value (day-1) Rate 
Value (day-1) 

k1 0.9 bn 2000 
t2 0.5 

k2 0.05 ba 750 
kf1 0.005 

k3 0.05 d1 0.8 
kf2 0.001 

k4 1 d2 1/1825 
kf3 0.005 

k5 1 d3 0.8336 
α 0.001 

k6 1 d4 8000 
β 0.01 

k7 0.8 
d5 1 γ 0.8 

a1 0.9 
d6 0.9 endo 0.25 

b1 1 
t1 1824/1825 kt 0.00025 



 

 82 

 

Figure 16: Reference 

simulation.  Standard simulation 

showing a subtle increase in the 

levels of APP.  Only trivial 

increases in Aβ are noticed. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

500

1000

1500

2000

2500

Timestep (Days)

#
 m

o
le

c
u
le

s

 

 

HmgCoA

cholA

Abeta

APP

apoeA

cholN

apoe

when cognitive changes begin to be apparent in individuals who will have 

Alzheimer‟s disease or dementia in late life. 

Simulation Results 

A simulation using all rate constants as described in Table 6 was run as a 

reference.  Convergence was reached for all simulated molecules within the first 6000 

days of the simulation.  Only APP continued a slowly upward trend during the 

entirety of the simulation, increasing from an initial value of 1000 to a final value of 

1183.  Not shown is AcetylCoA levels, which converged from 10,000 to 8845.   

 

 

 

Effect of increased APP and Aβ generation 

Several simulations were run to study the effect that increased initial 

concentrations of APP or increased generation of Aβ have on the system as a whole.  

In two cases (increased initial APP concentration and 25% increased Aβ generation 

rate) led to significant increases in the concentration of APP, and subsequently 

increased levels of Aβ. 
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Effect of sinusoidal input functions 

Steroids and other molecules derived from cholesterol often have a sinusoidal 

generation rate related to circadian rhythms.  To study the possible effect of 

oscillatory cholesterol input on the system, we varied cholesterol generation by 

introducing a periodic generator function.  The period of the sinusoid was 

approximately one day, while the magnitude of the function was varied from 0 to 1 

(normal range), 0.25 to 1 (assumes a basal generation rate), and 0 to 2 or 4 (assuming 

an increase in the cholesterol production).  Figure 17 displays simulation results. 

Effect of decreased LRP 

LRP-1 levels have been shown to be decreased in individuals with AD.  To 

study this, we varied the LRP levels from 25% to 75% of levels used in the reference 

simulation.  Figure 18 displays these results. 
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Figure 17: Effect of Increased Initial APP concentration or increased Aβ cleavage. (a) 

Initial APP levels were doubled, leading to a significant increase in the amount of APP and 

Aβ present in the system.  HmgCoA levels began to drop slightly as Aβ levels started to 

increase. Final APP level: 2672; final Aβ level: 40 (b) Aβ generation rates were increased by 

25%, leading APP levels to nearly double.  Ironically, Aβ levels did not change significantly.  

Final APP level: 1821; final Aβ level: 27 (c) Aβ generation rates were increased by 12.5%, 

leading APP levels to increase slightly.  Aβ levels did not change significantly.  Final APP 

level: 1345; final Aβ level: 20 
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 Effect of decreased Neuronal Cholesterol 
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Figure 18: Effect of Periodic Cholesterol Generation.  (a) Sinusoidal generation of cholesterol 

assuming a basal generation rate.  Magnitude of generation rate varies from 0.25 to 1.  k5 = 

0.375*sin(2πt-π/2)+0.625. Final APP: 1349; final Aβ: 20. (b) Magnitude of generation rate varied 

from 0 to 1.  k5 = 0.5sin(2πt-π/2)+0.5. Final APP: 1187; final Aβ: 18. (c) Magnitude of generation 

rate varied from 0 to 2.  k5 = sin(2πt-π/2)+1. Final APP: 1297; final Aβ: 19. (d) Magnitude of 

generation rate varied from 0 to 4.  k5 = 2sin(2πt-π/2)+2. Final APP: 1858; final Aβ: 27. 

(a) (b) 

(c) (d) 
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Recently, a lot of interest has been paid to the effect of cholesterol on APP 

processing and Aβ levels in the brain.  Although treatment with a statin is now being 

studied as a possible treatment paradigm, there are a multitude of conflicting results.  

In these simulations, the effect of decreased neuronal cholesterol on the system was 

studied.  Specifically, the effect of decreased initial cholesterol concentration, as well 

as a decrease in the transfer of cholesterol from astrocytes to neurons, was studied.  

Results are presented in Figure 19. 

 

  

 

 

Figure 19: Effect of Decreased LRP: (a) LRP levels decreased by 25%.  Final APP: 1520; 

final Aβ: 23.  (b) LRP levels decreased by 50%.  Final APP: 1431; final Aβ: 22.  (c) LRP 

levels decreased by 75%.  Final APP: 1828; final Aβ: 29.   
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(b) 
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Discussion: 

Effect of increased APP and/or Aβ generation: 

 Increasing the initial concentration of APP led to a significantly increased 

concentration of APP in the long-term (2672 versus 1183), as well as a nearly double 

increase in Aβ (40 versus 18).  This seems to imply that, at least in this model, there 

are few mechanisms keeping the APP levels in check, and if a significant increase in 

APP occurs during the formative years, it may have significant negative 

consequences years later. 

Increasing the generation rate of Aβ by 25% led to a significant increase in the 

amount of APP in the system.  However, the levels of Aβ only increased moderately 
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Figure 20: Effect of Decreased 

Neuronal Cholesterol: (a) Initial 

neuronal cholesterol decreased by 

½.  Final APP: 1207; final Aβ: 

18.  (b) Cholesterol transfer rate 

decreased by 50%.  Final APP: 

781; final Aβ: 12.  (c) Cholesterol 

transfer rate decreased by 90%.  

Final APP: 14; final Aβ: 0.   

(b) 

(c) 

(a) 
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(27 versus 18).  It is a bit unexpected that the APP levels would increase so 

dramatically without an equally significant increase in Aβ levels.  This could be 

explained by the fact that Aβ cleavage is a relatively uncommon event in the first 

place, and that a critical level of APP must be achieved before significant changes in 

Aβ are also observed.  This seems to be a bit counterintuitive and not necessarily in 

agreement with biological data, since APP levels are not significantly increased in 

AD, and increases in Aβ are thought to be due more to decreased clearance rather 

than increased generation.  Further studies on this effect, as well as refinement of the 

model to prevent the increase in APP that is seen over time even in the standard 

reference simulation. 

Effect of sinusoidal input functions: 

 Oscillatory generation of astrocytic cholesterol led to significant changes in 

the system output only in the case where the magnitude of the generation rate 

constant was varied from 0 to 4.  This would correlate to „uncalibrated‟ generation of 

cholesterol by astrocytes.  This increased level of cholesterol in astrocytes led to an 

increase in the amount of APP and a moderate increase in Aβ, which was unexpected 

given the inhibitory regulation that is supposed to exist between cholesterol and APP 

processing by beta-secretase.  Since neuronal cholesterol levels stay approximately 

constant, and it is these levels that effect APP processing, it may be possible that the 

increased APP may be due to other factors that have not been directly studied here.  It 

is also interesting to note that the degradation rate for APP was highly sensitive and 

even small changes from the chosen value could lead to chaos (data not shown).  This 
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in itself may provide some insight into why APP levels may respond to such small 

changes in other molecules in the system. 

Effect of Decreased LRP: 

 Decreasing LRP-1 levels led to an increase in APP as well as Aβ.  This was 

the expected result since LRP-1 is necessary to clear Aβ from the brain.  Future 

computational models should further subdivide the LRP into neuronal and endothelial 

to make an even more accurate model. 

Effect of Decreased Neuronal Cholesterol: 

 Decreasing the initial value of neuronal cholesterol did not change the 

outcome of the system for any of the molecules studied.  This was expected, given 

that a strong feedback loop was used to keep neuronal cholesterol within tight 

bounds.  Future simulations should study the effect of this feedback to get a better 

idea of its importance in maintaining the system within the realm of stability.  

Decreasing the rate of transfer of cholesterol from astrocytes to neurons significantly 

decreased the levels of APP and Aβ.  Such a situation might arise if ApoE did not 

carry cholesterol as well, or if fewer LRP receptors were present on neurons.  

However, it is interesting to note that even with a decreased efficiency of transfer, 

neuronal cholesterol levels were maintained at approximately constant levels.  Just as 

in the study of the effects of oscillatory cholesterol production by astrocytes, the 

sensitivity of the APP reaction may be the cause of the observed increase in APP and 

Aβ. 

Conclusion: 

(b) (a) 
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In this section, we have presented one of the first systems biology models for 

Alzheimer‟s disease.  We have studied in computational detail the interactions 

between cholesterol, ApoE, LRP-1 and Aβ.  Simulation results showed several 

unexpected phenomena, including a decrease in APP and Aβ when the transfer rate of 

cholesterol between astrocytes and neurons is decreased.  These results show that 

cholesterol and LRP levels play significant roles in the development of increased Aβ 

levels in the brain, one of the key markers for AD.  Future models should study these 

effects in further detail and incorporate aspects of inflammation that are believed to 

play a role in AD pathogenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) (a) 
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Chapter 5:  Biological Experiments 
 

Simvastatin Treatment: 

 C57BLK mice on a mixed background (n= 44, donated by Dr. Mary Ann 

Ottinger), as well as B6C3-Tg(APPswe, PSEN1dE9)85Dbo/J mice (n=13, Jackson 

Laboratories) were used in experiments.  These mice contained a double transgene for 

APP/PS1, which has been shown to lead to plaque development by 6 months of age, 

and cognitive impairments soon after.  An equal number of age-matched controls 

were also obtained.  Mice were treated with 100 mg/kg/day of simvastatin (Fisher 

Scientific) for either 2 or 8 weeks, in addition to normal chow and free-range water.  

Mice were weighed initially to ascertain that the correct dosage per weight was being 

given.  Simvastatin was diluted into 40% Tween-20 to ensure accurate dosage in each 

mouse, and mixed with peanut butter to be more palpable (Giant brand natural peanut 

butter, Greenbelt, MD).  Control mice received peanut butter loaded only with the 

40% Tween-20 daily for the duration of the trial.  The same control animals were 

used for both the 2 week and the 8 week trials.   

Group Treatment (with simvastatin) # in each group 

Control (wild-type) 

mice 

Short (2 weeks) 

No treatment N = 2 for WB 

100 mg/kg 
 N = 10 for WB 

N = 2 for IHC 

Long (8 weeks) 

No treatment 
N = 4 for WB 

N = 2 for IHC 

100 mg/kg 
N = 5 for WB 

N = 2 for IHC 

APPswe;PS1ΔE9 

transgenic mice 

Short (2 weeks) 

No treatment N = 1 for WB 

100 mg/kg 
N = 7 for WB 

N = 2 for IHC 

Long (8 weeks) 

No treatment N = 2 for IHC 

100 mg/kg 
N = 6 for WB 

N = 2 for IHC 

 
Table 7: Treatment table summarizing mice usage in simvastatin trial.  Distribution of mice into 

specified treatment groups and breakdown of numbers used for the Western blotting (WB) and 

immunohistochemistry (IHC). 
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Measurement of serum 24S-hydroxycholesterol: 

 Blood from terminal mouse bleeds was collected from mice, separated using a 

serum separation tube and stored at -80C until further processing.  To isolate the 

sterol components of the serum, a previously developed protocol was modified.  

Briefly, serum was thawed to room temperature and 50 μL of serum was spiked with 

24S-hydroxycholesterol- d7 internal standard (Avanti Lipids) at a concentration of 4 

ppm.  Samples were saponified for 1 hour at 37°C after addition of 200 l of 0.9 M 

sodium hydroxide (diluted in 90% ethanol in water).  The saponification product was 

diluted into 100 l of aqueous sodium chloride and the organic layer was extracted 

using 700 l of hexane and dried by applying light flow of nitrogen gas.  Prior to 

being running through HPLC, the dried product was dissolved into 10 l of the 

mobile phase (methanol at a 14:1 ratio with deionized water).   

 An AccuTOF-CS ESI-TOF (electrospray ionization time of flight) mass 

spectrometer equipped with an atmospheric pressure chemical ionization (APCI) 

source was used to run HPLC samples. The protocol used here was modified from a 

previously developed protocol for detecting 24S-hydroxycholesterol from plasma 

samples [40].  The ionization interface was operated in the positive mode using the 

following settings: desolving chamber temperature, 350 °C; oriface temperature, 100 

°C; corona discharge current, 4kV; chamber pressure, 49 barr; flow rate, 0.250 

ml/min. The LC-MS system was composed of an in-line auto-sampler and HPLC 

pump.  Oxysterols were separated using a C18 RP-HPLC column. The HPLC column 

temperature was room temperature (25 °C). The mobile phase consisted of 

methanol/water (14:1 by volume), delivered at a flow rate of 0.25 ml/min. A 20 
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minute column wash was included. The injection volume was 10 ul in mobile phase.  

A single pole MS system to monitor for specific elution times in reference to the 

standards elution time, as well as m/z of 305, 329, 330, 367, 373/374 and 385.  The 

385 and 367 mass-to-charge ratios were barely detectable in the majority of samples, 

so are not included in the final data set that was analyzed. 

Measurement of total serum cholesterol: 

 Blood from mice (50-100 μL/mouse) was taken prior to initiation of treatment 

via saphenous vein bleeding.  Initially, bi-weekly bleeding was done for several mice, 

though bleeding was stopped when a few mice (n=2) became infected and ill.  

Terminal blood was collected immediately after sacrifice to determine the value of 

the final cholesterol concentration.  Blood was collected into serum separator tubes 

(Becton Dickinson, Franklin Lakes, NJ, US) to separate serum from red blood cells, 

and spun on a table-top centrifuge kept at 4⁰C for 10 minutes at 4000 rpm.  Samples 

were then stored at -80⁰C until further usage.   

Serum cholesterol levels were measured using the Amplex Red Cholesterol 

Assay (Invitrogen, CA).  Briefly, standard cholesterol solutions were prepared using 

the supplied cholesterol stock solution and used to create a standard curve (Range: 0-

25 μg/μL).  Sample serum was diluted 1:100 in reaction buffer and mixed with the 

Amplex Red solution, before being incubated for 30 minutes in a hot water bath kept 

at 37⁰C.  Detergents in the reaction buffer (Triton-X) prevented the formation of large 

aggregates of lipid-soluble molecules.  Following incubation, fluorescence intensity 

of samples was measured using a plate reader with fluorescence reading abilities 
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(Molecular Devices SpectraMax5 microplate reader, Sunnyvale, CA, US; 

excitation/emission: 540/580 nm).  

Western Blotting: 

Western blotting was performed using standard procedures to assay for the 

approximate expression levels of several proteins of interest: synaptophysin (Sy38, 

pre-synaptic marker); post-synaptic density 95 (PSD95, post-synaptic marker, used 

with Sy38 to quantify if changes in synaptic density occur); apolipoprotein E (ApoE); 

glial fibrillary acidic protein (GFAP, astrocytic and inflammatory level marker); low 

density lipoprotein receptor-related protein (LRP-1); amyloid precursor protein 

(APP) and beta amyloid (A).  These levels were assessed to study how they changed 

during simvastatin treatment, as well as to gather key data for development of more 

realistic concentration ratios and constants used in the systems biology math model. 

Samples were prepared using the following protocol.  Briefly, six hours 

following the final treatment, mice were sedated using isoflurane and sacrificed via 

decapitation.  Immediately following sacrifice and terminal bleeding, brains were 

excised and the hippocampus was isolated.  Both the hippocampus and the whole 

brain (minus the cerebellum and meninges) were transferred to a pre-chilled 

centrifuge tube and frozen at -80⁰C until further usage.   

To prepare samples for Western blotting, brain tissue was thawed to room 

temperature and 500 μL of ice-sold lysis buffer containing 10 U/ml protease inhibitor 

was added (Sigma).  Samples were then sonicated to homogenize tissue, followed by 

centrifugation at 1,000 rpm for 10 minutes at 4⁰C to remove unhomogenized tissue.  

Protein content of the supernatant was assayed by mixing 10 μL of sample with 500 
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μL of Coomassie reagent and measuring the absorbance at 595 nm.  Bovine serum 

albumin protein standards (0-2 mg/ml) were also assayed to calculate the approximate 

protein concentration in samples.  Samples were then mixed with 1x GSB and 

normalized to 1-3 mg/ml of protein. 

 Several different gels were used to run the Western, depending on which 

protein was being assayed.  Higher molecular weight proteins (APP, LRP) were run 

on 6% gels, lower molecular weight proteins (Sy38, PSD 95, ApoE, GFAP) were run 

on 10% gels, and beta amyloid Westerns were run on 4-20% gradient gels (Bio-Rad, 

Hercules, CA).  All gels were run in triplicate using one of three loading schema to 

account for possible variations in running or transfer conditions due to 

instrumentation or other factors associated with the gel boxes.   

Twenty micrograms of protein was loaded into each sample lane (30 μg for 

Aβ gels); a standard ladder was also loaded onto each gel (ECL-Plex ladder, GE 

Healthcare, Piscataway, NJ, US) and the appropriate standard for each protein.  Beta 

amyloid gels were run at 100 V for 40 minutes in MES buffer (2-

[morpholino]ethanesulfonic acid buffer, 20x, Fisher Scientific, Pittsburgh, PA, US).  

Samples were specially prepared to contain 100 mM DTT (dithiothreitol) as a 

reducing agent (1.54 μl of 1 mg/ml stock DTT into 100 μl of sample).  Blots were 

transferred using standard transfer buffer (3 g Tris base, 14.4 g glycine, diluted into 

1600 ml ddH2O, brought up to 2 L with methanol) at room temperature kept under 

ice for 60 minutes.  All other gels were run at 100 V for 75 minutes using standard 

running buffer (25 mM Tris base, 250 mM glycine, 0.1 % w/v SDS, pH 8.3) and 

transferred using standard transfer buffer for 75 minutes kept under ice.  In both 
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cases, gels were transferred to nitrocellulose membranes that had been pre-wet in 

methanol.   

Following transfer, blots were incubated in blocking solution (1% bovine 

serum albumin, 0.1% Tween-20 into 1x phosphate buffer solution) for 1 hour at room 

temperature, agitated gently on a shaker.  Blots were then incubated in primary 

antibody overnight on a shaker at 4˚C.  After primary incubation, blots were rinsed 3 

times for 5 minutes each in blocking solution, incubated for 1.5 hours in the 

appropriate secondary antibody (mouse Cy3/Cy5, rabbit Cy3/Cy5, AlexaFluor 555 

goat-anti-chicken secondary, or AlexaFluor 633 donkey-anti-goat secondary) and 

rinsed 3 additional times for 5 minutes each in blocking solution before being imaged 

with a blot scanner (Typhoon Scanner, GE Healthcare, Piscataway, NJ, US).  The 

following table describes in further detail the primary and corresponding secondary 

antibodies that were used. 

Analysis of Western Blot Data 

Data was analyzed using ImageQuant software (GE Healthcare, Piscataway, 

NJ, US).  Briefly, scanned gel images were loaded into the software program, lanes 

were manually created, the background was thresholded to remove noise, and the 

intensity of the band in each lane was measured.  Values were tabulated and saved in 

an Excel file for further statistical analysis. 

Immunohistochemistry 

 Immunohistochemistry was performed to determine the cellular localization of 

ApoE in astrocytes in response to simvastatin treatment; the relative density of LRP-1 

in cerebral blood vessels in treated and untreated mice; and the extent of Aβ plaque 
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load.  All protocols described below were approved by the University of Maryland 

IACUC committee (protocol #R10-21, renewed March 2011).  Briefly, mice were 

anesthetized using isoflurane, the thoracic cavity was accessed and 20 ml pre-warmed 

PBS was injected into the left ventricle following puncture of the right atrium to clear 

blood from the vessels and allow for a better perfusion.  Terminal blood was collected 

in serum separator tubes prior to pumping of the pre-warmed PBS and stored as 

described previously.   

Protein 
Primary 

Antibody 
Dilution 

Secondary 

Antibody 
Dilution 

Synaptophysin 

Sy38  

(mouse monoclonal, 

Abcam, ab8049) 

1:500 Mcy5 1:2500 

Post-synaptic 

density marker 

PSD95  

(rabbit polyclonal, 

Abcam, ab18258) 

1:500 RCy3 1:2500 

ApoE 

apoE  

(rabbit polyclonal, 

Santa Cruz Biotech, 

M-293) 

1:200 RCy5 1:2500 

GFAP 

GFAP  

(chicken polyclonal, 

Abcam, ab4674) 

1:5000 

AlexaFluor555 

goat anti-chicken 

(Invitrogen) 

1:1000 

LRP 

LRP  

(goat polyclonal, 

Santa Cruz Biotech, 

N-20) 

1:200 

AlexaFluor633 

donkey anti-goat 

(Invitrogen) 

1:1000 

APP 

APP  

(rabbit polyclonal, 

Abcam, ab2072) 

1:1000 RCy5 1:2500 

Aβ 6E10 (Covance) 1:1000 MCy5 1:2500 

 

After completion of injection of PBS, mice were fixed with 4% 

paraformaldehyde (PFA; Fisher Scientific), decapitated and the brain was removed.  

The cerebellum was removed and the remaining portions of the brain were placed 

into 4% PFA overnight to ensure complete fixation.  Brains were then sunk in 30% 

sucrose (diluted in 0.1 M phosphate buffer) overnight at 4˚C.  The following day, 

brains were rinsed in 30% sucrose, extraneous material was removed, and the brain 

Table 8: Summary of antibodies used in Western blotting. 



 

 97 

 

was mounted on a freezing microtome with a sucrose stand.  Twenty µm slices were 

obtained and stored in cryoprotectant at -20˚C until further usage. 

On the day of primary incubation, 20 slices from each treatment group (10 

slices per mouse; n =2 for each immunohistochemistry group) were thawed at room 

temperature briefly before being rinsed 4 times for 5 minutes each in 1x PBS at room 

temperature.  Sections were then permeabilized by incubating in 2% Triton-X in 

sodium phosphate buffer for 1 hour at room temperature.  Following 

permeabilization, slices were incubated in ice cold methanol for 10 minutes to quench 

background signal.  Slices were then rinsed again 4 times for 5 minutes each in 1x 

PBS on a gentle rotator and incubated for 1 hour in blocking solution (10% normal 

donkey serum, 1% Triton-X, 4% BSA in 1x PBS) at room temperature.  Finally, 

sections were incubated in primary antibody overnight, either at room temperature or 

at 4˚C.  All primary antibodies were diluted into the same blocking solution 

consisting of 1.5 ml normal donkey serum, 0.5 ml 20% Triton-X, and 6 ml of 10% 

BSA into 7.35 ml of 1x PBS.  

Following primary incubation, slices were rinsed 4 times for 5 minutes each in 

1x PBS to remove excess primary antibody, incubated in the appropriate secondary 

antibody in blocking solution (1.5% normal donkey serum in 1x PBS) for 2 hours at 

room temperature on a gentle rocker, protected from light, and rinsed again after 

incubation (4x for 5 minutes each time).  Slices were incubated for ten additional 

minutes prior to being mounted on superfrost slides (Fisher Scientific, Pittsburgh, PA; 

pre-cleaned with 70% ethanol) and air-dried overnight protected from light.  DAPI 

(1:100 dilution, Invitrogen, Carlsbad, CA, US) was added to beta amyloid slices 10 
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minutes prior to the secondary antibody incubation ending.  The next day, slices were 

cover-slipped with mounting solution (ProLong Gold Anti-fade mounting solution, 

Invitrogen), excess mounting solution was removed with Kimwipes, and allowed to 

dry overnight. Cover-slipped slides were sealed with clear nail polish.  The following 

tables describe in further detail the antibodies that were used for each set of slices and 

the incubation conditions. 

Purpose of 

Staining 

Primary 

Antibody 

Dilution Incubation 

Conditions 

Secondary 

Antibody 

Dilution 

Label ApoE in 

neurons and 

astrocytes 

apoE  

GFAP  

NeuN  

1:50 

1:500 

1:100 

Overnight, 

25°C 

Donkey anti-rabbit 488 

Goat anti-chicken 555 

Donkey anti-mouse 450 

1:500 

1:200 

1:200 

Label LRP-1 levels 

in cerebral blood 

vessels 

LRP 

CD31 

NeuN 

1:50 

1:50 

1:100 

Overnight, 

4°C 

Donkey anti-goat 633 

Donkey anti-rabbit 488 

Donkey anti-mouse 450 

1:200 

1:500 

1:200 

Quantify Aβ 

plaque density 

6E10 

DAPI 

1:500 

1:100 

Overnight, 

4°C 

(DAPI for 10 

minutes) 

Donkey anti-mouse 450 1:200 

 

 

Imaging Acquisition & Analysis 

 Immunohistochemistry sections (n= 360, ~120 per group) were imaged using 

a Zeiss LSM confocal microscope (Zeiss, Germany).  ApoE and LRP sections were 

imaged with a 40x oil objective, while Aβ sections were imaged with a 10x objective.  

The CA1 region of the hippocampus was identified with the visual view and 

Antibody Clonality Vendor/Catalog # Antibody Clonality Vendor/Catalog # 

GFAP 
Chicken 

polyclonal 
Abcam/ab4674 CD31 

Rabbit 

polyclonal 
Abcam/ab28364 

ApoE 
Rabbit 

polyclonal 

Santa Cruz 

Biotech/M-293 
Aβ 

Mouse 

monoclonal 
Covance/6E10 

LRP 
Goat 

polyclonal 

Santa Cruz 

Biotech/N-20 
NeuN 

Mouse 

monoclonal 

Millipore/MAB3

77 

Table 9: (Top) Details on dilution and incubation conditions used for immuno-histochemistry.  

(Bottom) Clonality and suppliers for antibodies that were used. 
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subsequently imaged.  Images were taken with Zeiss software program, at 1024 x 

1024 bits set at speed 6 to optimize the resolution of the image.  Overall image area 

was 212.3 x 212.3 µm.  pixel size was set to 0.21 µm.  Images quantifying the levels 

of LRP used the 405, 488 and 633 lasers at the following settings: 405: laser power 

was set to 4.0, pinhole was 47.6, gain was 626, offset was -7 and digital gain was 1.1; 

488:  laser power was set to 1.8, pinhole was 47.6, gain was 790, offset was -1 and 

digital gain was 1.2; 633: laser power was set to 15.0, pinhole was 47.6, gain was 

727, offset was -8 and digital gain was 1.0.  For GFAP images, laser settings were as 

follows: 405: laser power was set to 4.0, pinhole was 57.7, gain was 556, offset was -

7 and digital gain was 1.3; 488:  laser power was set to 1.8, pinhole was 57.7, gain 

was 597, offset was -8 and digital gain was 1.3; 555: laser power was set to 1.5, 

pinhole was 57.7, gain was 431, offset was -5 and digital gain was 1.2.  For beta 

amyloid images, only the 405 and 633 lasers were used: 405: laser power was set to 

4.0, pinhole was 47.6, gain was 735, offset was -6 and digital gain was 1.1; 633: laser 

power was set to 15.0, pinhole was 47.6, gain was 660, offset was -7 and digital gain 

was 1.0. 

 Images were analyzed using the software program Volocity (PerkinElmer, 

Waltham, MA, US).  For ApoE and LRP slices, image stacks were loaded into 

Volocity, images were split into their corresponding z stacks by channel, and the four 

images with the highest signal intensity for ApoE and LRP were selected and re-

merged.  A protocol was then created to identify all regions of that image where 

astrocytes (stained by GFAP; red channel) and cerebral blood vessels (stained by 

CD31; green channel) were.  The protocol computed the intensity the opposing 
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channel within the identified region (red and green channels for both ApoE and LRP 

sections), and the sum of this intensity was calculated for each image.  The total 

volume of the image was also calculated and used to determine the overlapping 

intensities between the two channels per volume (effective “co-localization” density). 

Cholesterol & 24S-hydroxycholesterol levels in plasma 

Data from the cholesterol assay was tabulated and analyzed using Excel.  

Cholesterol values derived from brain samples were normalized against the µg of 

protein in the sample, while plasma samples were simply measured in µg/ml of 

plasma.  A standard control curve was obtained and all sample fluorescence values 

were normalized to this curve and the concentration adjusted to account for 

differences in dilution. 

 Data from the brain cholesterol assay was analyzed using Excel.  Normality of 

data sets was assessed using the histogram function.  Bar graphs were used to 

visualize data.  Brain cholesterol levels were analyzed using a single factor ANOVA 

for each genotype of mice.  There was no statistically significant difference in the 

brain cholesterol levels for APP mice, regardless of treatment regime.  Conversely, 

WT mice had statistically significant differences at 90% confidence levels (F=3.013, 

p-value = 0.072).  This was further verified by t-tests, which showed that the 

differences between both the 2 week treatment and 8 week treatment groups were 

statistically significant at 90% confidence (for 2 week: t = 1.82, p-value<0.056; for 8 

week: t= 1.48, p-value<0.087).  This seems to suggest that treatment with simvastatin 

affected the WT mice differently than the transgenic APP mice, leading to decreased 
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levels of brain cholesterol in WT mice.  An increased sample size in future 

experiments will help to elucidate this role further. 

 

 

 

A single factor ANOVA done on wild-type and transgenic groups separately 

demonstrated that both pre-treatment groups had no statistical difference between the 

mean values across any treatment group (for WT: F = 0.435, p-value = 0.655; for 

APP: F = 0.49, p-value = 0.622).  This implies that all groups of mice started out with 
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Figure 21: Variation of Brain Cholesterol Levels. Cholesterol assay data was visualized 

using histograms to check whether or not the data was normal and could be analyzed 

using ANOVA and other parametric tests.  Only wild-type mice treated with simvastatin 

for 2 or 8 weeks showed a statistically significant decrease in brain cholesterol levels (for 

2 week: t = 1.82, p-value<0.056; for 8 week: t= 1.48, p-value<0.087).  No statistically 

significant variation was observed in APP transgenic mice.  Simvastatin treatment 

appears to decrease the overall variability in the brain cholesterol level across both wild-

type and transgenic mice.  Long-term treatment with simvastatin does not appear to lead 

to substantial and maintained changes in APP transgenic mice. 



 

 102 

 

approximately the same level of total plasma cholesterol.   Single-factor ANOVA on 

post-treatment WT and APP groups demonstrated that means across the three 

treatment groups varied with 95% and 90% confidence, respectively (for WT: F = 

6.53, p-value = 0.009; for APP: F= 3.307, p-value = .057).   Further analysis with t-

tests showed that only the 2 week APP treatment group was statistically different 

from the control APP group (t=2.609, one-tail P-value=0.0114, 95% significance).  

All other control versus treatment group t-tests showed no statistical significance; the 

control versus 2 week WT treatment group was statistically significant at 90% 

significance (t=1.898, P-value=0.0532) but not at 95% significance.  One reason for 

the statistical indifference in our data set is the small sample size that was used.  

Increasing the sample size will help to minimize the variation and is suggested for 

future experiments.   

The differences between the mean pre- and post-treatment values were also 

analyzed using ANOVA and t-tests.  In this case, differences in means across the APP 

transgenic group were statistically significant (F= 5.177, p-value < 0.022), whereas 

differences across the WT groups were not (F=2.34, p-value <0.167).  Only the 2 

week APP treatment group showed statistical significance in differences in mean pre- 

and post-treatment plasma TC values (t = 3.522, p-value <0.012), suggesting that 

treatment with simvastatin for 2 weeks in transgenic mice was able to prevent the 

observed increase in plasma total cholesterol (TC).  All other groups were statistically 

insignificant.  Although a similar trend is observed in the WT data set in terms of a 

decreased mean post-treatment TC at 2 weeks, due to the relatively large variability in 

this dataset it was not statistically significant. 
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Figure 22: Differences between Pre- and Post-Treatment Plasma Cholesterol. Plasma 

cholesterol levels (mg/dl) were measured at an initial time point before treatment was 

started, and then again terminally to study how cholesterol levels changed over the course 

of treatment.  In all groups studied, the cholesterol levels increased between the initial 

and the final measured time points.  This could be due to the high fat content of peanut 

butter.  Although there is an increase in plasma cholesterol in all groups, the magnitude 

of this difference in statistically significant in the APP transgenic mice (F = 5.176, p-

value = 0.022, α = 0.05), and more specifically, this difference exists between the control 

and 2 week treatment group (t = 3.522, p-value = 0.0122, α = 0.05). 
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 Correlation between total plasma cholesterol and total brain cholesterol levels, 

as well as between total plasma cholesterol levels and age of the mice during 

treatment was investigated.  No significant correlation existed between pre- and post-

treatment plasma cholesterol levels (linear regression, R
2
 = 0.1784).  Plotting total 

plasma cholesterol versus total brain cholesterol for all samples that could be matched 

revealed only a very weak positive correlation between total plasma cholesterol levels 

and total brain cholesterol levels (R
2
 = 0.2002), indicating that increased plasma total 

cholesterol levels were associated with a minor increase in brain total cholesterol 

levels across all groups. 
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Figure 23: Correlation 

between Plasma 

Cholesterol and Brain 

Cholesterol Levels. (top 

inset) Pre- and post-

treatment total plasma 

cholesterol levels were 

plotted to determine if any 

correlation existed between 

the pre- and post- treatment 

values.  A weak positive 

correlation was found (R
2
 = 

0.1784), suggesting that 

higher values of pre-

treatment cholesterol led to 

a more significant increase 

in post-treatment cholesterol 

levels.  (bottom inset) 

Correlation between post-

treatment plasma cholesterol 

levels and brain cholesterol 

levels also showed a weak 

positive correlation (R
2
 = 

0.2002), suggesting that 

increased plasma cholesterol 

levels may affect brain 

cholesterol levels.  

However, removing the few 

data points that appear to be 

outliers (n=2), this 

correlation all but 

disappears and is therefore 

more an artifact of relatively 

small sample size. 
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 Correlation analysis was also completed by separating the data by treatment 

group (WT and APP grouped together).  It can be seen that the majority of the 2 week 

treatment group is clustered in the lower left corner, indicating that the data has the 

least variation of the three treatment groups, as well as a limited range of values.  In 

this sense, treatment of either WT or transgenic mice with simvastatin seemed to 

normalize the effect between plasma cholesterol and brain cholesterol.  Analogously, 

the 8 week treatment group had a wide range for possible plasma total cholesterol 

values, but a very limited range on the corresponding brain cholesterol values, 

demonstrating that simvastatin treatment provides a normalizing or convergent effect 

on brain cholesterol levels.  Although the means in total brain cholesterol were not 

statistically different between the treatment groups for either the WT or the APP 

transgenic groups, the variability between measurements was decreased. Correlation 

data showed weak positive correlation: control:  R
2
 = 0.2848; 2 week treat: R

2
 = 

0.248; 8 week treat: R
2
 = 0.3631.  In the future, a larger sample size would help to 

possibly eliminate some of the variability that is seen here, as well as in other data 

sets.  The regression data also seems to suggest that as plasma cholesterol increases, 

total brain cholesterol increases mildly, though more sample data is needed to draw 

such a statistical conclusion. 

 Lastly, age versus cholesterol levels was studied.  To determine whether the 

observed increase in post-treatment plasma cholesterol in the control and 8 week 

treatment groups was due to increasing age, a scatter plot of the data was done for 

both pre- and post-treatment cholesterol as a function of age, as well as scatter plots 

for pre-treatment only and post-treatment only.  Correlation analysis revealed no 
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linear  correlation between age and total plasma cholesterol levels in either the pre- or 

post-treatment groups (for pre: R
2
 = 0.0113, negative correlation; for post: R

2
 = 

0.0012, positive correlation), suggesting that plasma TC levels are independent of 

mouse age.  This independence of age from plasma TC is most apparent in the pre-

treatment group, where mice of the same age at starting have significant variability in 

their plasma TC levels (41 weeks in the pre-treatment scatter plot is a good example 

of this).  This variability in plasma TC levels also appears to be independent of 

genotype.  Looking at the post-treatment TC by treatment group, the correlation 

between age and TC levels seems to be mixed.  Control WT, 2 week APP, 8 week 

0

20

40

60

80

100

120

0 50 100 150 200

T
o

ta
l 

B
ra

in
 C

h
o

le
st

er
o

l 
(m

g
/d

l)
 

Total Plasma Cholesterol (mg/dl) 

Correlation between Plasma TC and Brain TC across different 

treatment groups 

Control Groups

2 wk treat

8 wk treat

Figure 24: Correlation between Plasma and Brain Total Cholesterol. Brain cholesterol 

levels (mg/dl) were plotted as a function of post-treatment total plasma cholesterol levels.  

Very weak correlation was found between plasma cholesterol and brain cholesterol levels 

(control:  R
2
 = 0.2848; 2 week treat: R

2
 = 0.248; 8 week treat: R

2
 = 0.3631), which, 

upon removal of outliers, disappeared.  This suggests that the correlation seen here 

between plasma cholesterol levels and brain cholesterol levels is quite weak and would 

need a larger sample size to verify its accuracy.  The data here do show though that 

treatment of mice with simvastatin appears to decrease the variability in the brain 

cholesterol levels when compared to control treated mice. 
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APP have mild negative correlations (R
2
 = 0.054, 0.0086 and 0.1664, respectively), 

while control APP, 2 week WT, and 8 week WT have positive correlations (R
2
 = 

0.3706, 0.1499, and 0.3784, respectively).  The only statistically relevant correlations 

are control APP and 8 week WT.  This implies, like the net data analyzed above, that 

there is no distinct correlation between age of the mouse and level of brain total 

cholesterol. 

     Other confounding factors may also have been at play.  For example, there were 

some issues with the 8 week treatment mice that they adjusted to the peanut butter 

with drug and refused to eat duped peanut butter samples.  Although this was 

overcome by dosing the mice briefly with drug in baby food, this may have had an 

unexpected effect on our outcomes for this group.  The increase in cholesterol may 

have been due to an age-dependent effect, as has been suggested; however, there is 

not statistically relevant data in this sample to make that conclusion.  Another factor 

that may have been at play is the fact that peanut butter, due to its high fat content, is 

expected to increase cholesterol over long term treatment.  Within the shorter time 

periods, this increase in fat in the mouse‟s diet should not have had an effect on the 

plasma cholesterol values.  The exact time point when this mild increase in fat to the 

mice‟s diet would lead to increased cholesterol levels has not been investigated for 

the mice that were used here.  Also, although mice were age-matched for final time 

points, the initial blood draw occurred immediately before the group was started on 

treatment (either 2 or 8 weeks before treatment finished).  This may have led to 

different rates of changes in the plasma cholesterol depending on the age of the 

animal.  There are several data points in the control samples (n=4 in WT; n = 2 in 
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APP) that were treated as control (peanut butter plus Tween-20 only) for 2 week 

periods of time.  These samples show a normal pre-treatment value for TC, with a 

qualitative increase in final TC levels equal to or greater than mice that had been on 

treatment for the entire 8 week period.  Finally, the increased cholesterol in the 8 

week treatment group may have been caused by a „rebounding‟ effect often seen in 

human subjects treated with statins longer than 12 months [50].  Previous studies 

have also shown that a similar simvastatin dosage does not actually lead to decreased 

plasma cholesterol, and in apoE null mice, actually leads to an increase in plasma 

cholesterol after only 4 weeks of treatment [29]. 
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Figure 25: Average Cholesterol as a Function of Age. Brain cholesterol levels (mg/dl) 

were plotted as a function of the age of mice before and after treatment.  No correlation 

was found between age and total post-treatment plasma cholesterol levels (for pre: R
2
 = 

0.0113, negative correlation; for post: R
2
 = 0.0012, positive correlation), suggesting that 

plasma cholesterol levels are independent of age and that the observed increases in 

plasma cholesterol seen in mice are due to treatment with peanut butter, as opposed to an 

increase associated with aging in mice. 
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Figure 26: Average Cholesterol as a Function of Age. Brain cholesterol levels (mg/dl) 

were plotted as a function of the age of mice before and after treatment on separate plots.  

No correlation was found between age and total pre-treatment plasma cholesterol levels. 

Weak correlations were seen in two groups in the post-treatment plot: control APP (R
2
 = 

0.3706) and 8 week WT (R
2
 = 0.3784), while no correlation was seen in other groups 

(both positive and negative correlations were seen).   This suggests that plasma 

cholesterol levels are independent of age and genotype. 
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Western Blot Results & Quantification 

 Western blots were used to assess protein levels semi-quantitatively to 

determine whether statistically significant changes or relevant trends were apparent in 

the data following treatment with simvastatin.  Of particular interest was how ApoE, 

LRP and Aβ changed in response to simvastatin so results could be compared to the 

immunohistochemistry results.  Although n=15 blots per group were performed (more 

blots were run in many cases), many groups did not have more than 12 blots with 

usable data, thus sample size was somewhat lacking.  However, trends in the data 

could still be seen, as discussed further here, though they are not statistically 

significant. 

APP & Aβ Results: 

 Western blot results for APP and beta amyloid are shown in the following 

figure.  No statistically significant level of beta amyloid expression was observed 

between treatment group (p< 0.288; two-way ANOVA).  There was also no 

interaction between genotype or treatment group (p<0.118).  There was a noticeably 

increased expression of beta amyloid by the transgenic group as compared to the 

wild-type group, however, this difference was not statistically significant (p<0.123). 

It is also important to note that there were three main bands that were observed on the 

beta amyloid westerns: a large band at ~100 kDa representing APP, a medium-sized 

band at ~52 kDa representing C-terminal fragments that had been cleaved from APP, 

and a small band at ~31 kDa representing oligomeric beta amyloid.  Monomeric or 

small oligomeric beta amyloid was not detected in samples, though the Aβ42 

monomeric form was detected in the sample standard lane.  This suggests that only 
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non-detectable levels of oligomeric beta amyloid were present in this sample (<10 

µg/lane).   

Within the APP western blots, a similar trend with no statistical significance 

between genotype or treatment was observed.  There was a decreasing trend in the 

level of APP expression in the transgenic group treated with simvastatin, though the 

change was only very minor (p<0.063 and 0.399, respectively, for between genotype 

and between treatment groups; two-way ANOVA). 

ApoE, GFAP & LRP Results: 

 Again, there were no statistically significant differences between genotype or 

treatment group in the ApoE, GFAP and LRP Western blotting groups.  Within the 

ApoE group, two-way ANOVA analysis revealed relatively high p-values for 

differences in genotype and treatment (p<0.368 and 0.412, respectively).  Within the 

Figure 27: Western Blot Results for APP & Aβ: Western blots for APP and beta 

amyloid showed no statistically significant changes in expression levels of either 

protein.  There was a decreasing trend for APP expression amongst the treated 

transgenic group, though. 
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GFAP and LRP groups, p-values were also quite high (p<0.7 and 0.45, respectively, 

and 0.84 and 0.62, respectively for LRP). 

Sy38 & PSD95 Results: 

 Post-synaptic density 95 (PSD95) showed the only statistically significant 

difference (p<0.029), suggesting that APP mice had a significant increase in PSD95 

expression when compared to WT mice.  This is an interesting result because AD is 

Figure 28: Western Blot results for ApoE, GFAP & LRP:  Western blots for ApoE, 

GFAP and LRP showed no statistically significant changes in expression levels of either 

protein.  There was a weak increasing trend in the LRP levels in the 2 week treatment 

groups for both WT and APP, whoever this increase was not statistically significant. 
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usually associated with a decrease in synaptic density; a similar trend is also seen in 

the Sy38 expression in the control group.  PSD95 levels appear to have a decreasing 

trend with respect to treatment time, though this decrease is not significant (p<0.845).  

Ironically, WT mice show an increase in PSD95 expression in response to simvastatin 

treatment, suggesting that simvastatin may potentially affect transgenic mice 

differently than wild-type mice. Synaptophysin expression also appeared to have a 

decreasing trend between control and 2 week treatment groups in APP transgenics, 

suggesting that treatment with simvastatin may inhibit the maintenance of synapses, 

however, this difference was not statistically significant (p<0.55  and 0.19, 

respectively between genotype and treatment group, two-way ANOVA).  This was 

the expected result since cholesterol is absolutely necessary for forming and 

maintaining synapses, and treatment with simvastatin would be expected to decrease 

cholesterol levels and subsequently decrease the synaptic density. 

Figure 29: Sy38 & PSD95 Expression Levels: Expression levels of Sy38 and PSD95 had 

a decreasing trend in the APP transgenic group, though no trend was observed in the WT 

groups. PSD95 expression was significantly increased between WT and APP groups. 
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Immunohistochemistry Results & Quantification 

Beta Amyloid Results: 

 Beta amyloid levels in the brain were measured semi-quantitatively by 

immunohistochemistry to study the density of plaques, as well as the localization of 

these plaques.  Stained Aβ was divided up into two groups depending on the size of 

the stained region: large plaques (area > 5 µm
3
) and small Aβ plaques (area < 5 µm

3
).  

A plot of this data shows that mice treated with simvastatin, regardless of whether 

they are WT or APP transgenic, have an increased number of beta amyloid plaques.   

Statistical analysis was performed using single factor ANOVA for both wild-

type and APP transgenic mice, which showed that treatment of both WT and 

transgenic mice with simvastatin led to a statistical difference between the means of 

these groups (for WT: F=12.60115, p-value<0.0000323; for APP: F=14.01905, p-

value<0.00000978).   Analyzing further with t-tests revealed that a statistically 

significant difference between control WT and control transgenic mice exists 

(t=5.805, p-value<0.000055), whereas no statistical difference exists between the 2 

week treatment or 8 week treatment groups (p-value<0.163 and 0.090, respectively).  

A statistical difference between the means of the control-treated mice and the 2 and 8 

week-treated mice also exists (for WT: p-value<0.00038 and 0.0029, respectively; for 

APP: p-value<0.028 and 0.000012, respectively).  This seems to further suggest that 

treatment with simvastatin leads to an increase in the Aβ plaque density, regardless of 

whether the mouse is WT or APP transgenic.  This is an interesting outcome which 

seems to suggest that treatment with simvastatin may actually lead to increased 

plaque load and worsening AD.   
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Control WT 

 
Control APP 

 
2 wk WT 

 
2 wk APP 

 
8 wk WT 

 
8 wk APP 

Figure 30: Aβ Plaque Density in Mice across Different Treatments.  Beta amyloid plaque 

densities were assayed using immunohistochemistry (IHC).  Dual staining was used to detect 

Aβ (6E10, magenta channel) and neurons (DAPI, blue channel).  Increased levels of Aβ were 

seen in groups treated with simvastatin when compared to controls.  Plaques were not 

identified as intra- or extracellular. 
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Figure 31: Plaque Density in Mice across Different Treatments.  Beta amyloid 

plaque densities were measured for in control, 2 week and 8 week treatment with 

simvastatin.  Treatment with simvastatin, regardless of group type (WT or APP) led 

to an increased plaque density. 

Additionally, this suggests that decreasing cholesterol levels may lead to an increase 

in Aβ expression, a relationship that has been suggested by others in the literature and 

also included in our mathematical model.  
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Correlation analysis was completed to determine whether plaque density was 

dependent on the age of the mouse.  All mice used for immunohistochemistry were 

greater than 6 months of age, which is the time when beta amyloid plaques have been 

shown to develop at an easily measurable level.  Plaque levels were expected increase 

with age.  Grouping both WT and APP transgenic mice into the same plot showed a 

weak positive correlation between age in plaque density (R
2
 = 0.0764).  Separating 

these out by group type showed a very weak negative correlation with age between 

the APP group (R
2
 = 0.0019), while the WT group showed a weak positive 

correlation (R
2
 = 0.2219). 

Although there appears to be a no measurable correlation between age and 

plaque density, looking at the 6 possible data pairs of old mouse and young mouse for 

each treatment group, we see that in 4 of these 6 pairs, the older mouse has increased 

plaque density (the exceptions being the control WT and 2 week APP groups).  This 

relative lack of correlation may be due again to the relatively small sample size that 

was used (n=2 for each group), which is quite small and can lead to skewed results. 

It is also interesting that the WT mice that were treated with simvastatin 

showed increased Aβ plaque densities.  These seems to suggest that treatment of mice 

with simvastatin, which significantly reduces plasma cholesterol in the 2 week 

treatment group, may have a negative effect on APP processing, leading to increased 

generation of the amyloidogenic processing pathway.  There are several papers in the 

literature which describe a similar trend as well [1, 33], and points towards the role of 

cholesterol as an important modulator in APP processing.  Recent research has also 

shown that decreased levels of membrane cholesterol can inhibit the degradation of 
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beta amyloid, thus leading to increased Aβ levels [144].  This also agrees with 

epidemiological studies that have shown that individuals with AD have decreased 

brain cholesterol, particularly in regions most affected by the disease [86].  Given the 

small sample size, however, it is not fair to put much backing in this result without 

further experimentation with a larger sample size. 
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Figure 32: Correlation between Mouse Age & Plaque Density: No correlation was 

apparent between age and plaque density, suggesting that changes in plaque density 

were due to treatment and were not directly dependent on age. 
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Figure 33: Average ApoE Intensity of Overlap with Astrocytes in Mice across 

Different Treatments.  Average intensity of ApoE overlap on astrocytes was 

measured in control mice, and in mice treated for 2 and 8 week with simvastatin.  

Intensities were normalized to the total area of astrocytes in each image.  Treatment 

with simvastatin for 2 weeks increased the average intensity of ApoE on astrocytes, 

while 8 week treatment significantly decreased the average intensity of ApoE, 

irrespective of genotype. 

Co-localization of ApoE with astrocytes: 

 The average density of ApoE „co-localizing‟ with astrocytes was studied to 

determine if treatment with simvastatin altered expression levels of this key protein.  

The overlapping intensities between the red (astrocyte) and green (ApoE) channels 

was measured for each image in the set (n=15-20 per treatment group) and plotted in 

a bar graph.  Data showed an increase in ApoE on astrocytes in the 2 week treatment 

group for both WT and APP transgenics, but a significant decrease in ApoE on the 8 

week WT and APP transgenics. 
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A single factor ANOVA was done separately for the WT and APP transgenic 

mice to study the statistical difference between the means of treatment groups in these 

samples.  In WT mice, the means between control, 2 week treat, and 8 week treat 

were statistically difference (F=9.49, p-value<0.00031); in APP transgenics, the 

means between these three groups were also statistically significant (F=28.61, p-

value<5.58e-9).  It is important to note that there was considerable variability within 

each group, which can be seen by the relatively wide confidence intervals for each 

group/ relatively large standard deviations.  This could be due to minor changes in the 

laser power at different imaging times, or relative differences in staining that are 

possible even for slices that are placed into the same well (due to folding, not exactly 

the same thicknesses, or relative placement within the well during primary 

incubation).  Still, however, this data suggests that statistically different changes in 

the average intensities were obtained. 

To further study these changes, t tests were performed between matched 

groups.  No statistical difference between WT and APP controls, 2 week, or 8 week 

treated mice was observed for a two-tailed test (for control: t = 0.042, p-value<0.97; 

for 2 week treat: t = 0.995, p-value<0.327; for 8 week: t = 0.11, p-value<0.915).  

Amongst WT mice, a statistical difference was observed between control and 2 week 

treatment, and control and 8 week treatment (p-values<0.028 and 0.014, respectively, 

one-tailed test).  A similar trend was observed in APP transgenic mice where there 

was a significant increase in ApoE in the 2 week treatment group, and a significant 

decrease in the 8 week treatment group (p-values<0.00026 and 0.0019, respectively, 

one-tailed test). 
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Figure 34: GFAP IHC: Hippocampal slices were triple-labeled with GFAP (red channel; glial 

fibrillary acidic protein; labels astrocytes), ApoE (green channel; labels apolipoprotein E) and NeuN 

(blue channel; labels neuronal cells). 

 

 



 

 122 

 

 The average number of astrocytes in each image was also measured to verify 

that the observed changes in ApoE were not due to changes in the number of 

astrocytes.  The mean astrocyte number in across all groups ranged from 20 to 25 

astrocytes per image.  A single factor ANOVA for WT and APP groups, done 

separately, indicated that there was no statistical difference between these mean 

values (for WT: F=1.12, p-value < 0.3335; for APP: F=0.803, p-value<0.453).  T 

tests done between control/2 week and control/8 week treat for both WT and APP 

samples showed no statistical difference between the mean astrocyte number per 

image (for WT: p-values<0.368 and 0.588; for APP: p-values<0.316 and 0.732, 

respectively; two-tailed test).  This suggests that the observed differences in ApoE are 

more likely due to changes in protein expression rather than changes in astrocyte 

number. 

 Combining the result in this section for ApoE with the cholesterol assay 

results, it is reasonable to suggest that decreasing the plasma cholesterol levels leads 

to a decrease in the observed ApoE expression on astrocytes.  This, in fact, agrees 

with some of the data in the literature (Liu 2007).  The 8 week treatment results are a 

little bit more difficult to interpret, since cholesterol levels were at similar levels to 

the control treated group in both WT and APP mice.  Since ApoE expression is 

increased when cholesterol levels are low and/or when IL-1 levels are high, the 

converse being true also, it is reasonable to suggest that cholesterol levels may have 

been sufficient enough, but inflammation low enough, to prevent an increase in ApoE 

expression.  This would imply that the 8 week treatment of mice with simvastatin has 

no statistical effect on cholesterol levels, but does seem to normalize the level of 
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Figure 35: Average Astrocyte Density: Average astrocyte density did not vary 

significantly across genotype or treatment group, ranging from 20-25 astrocytes per 

image field. 

inflammation, and thus decrease the expression level of ApoE.  However, the 

astrocytes in the 8 week treated groups do appear to be reactive state rather than in the 

resting state, suggesting that inflammation is actually not decreased.  Further 

experiments measuring the level of inflammation by ELISA or Western blot analysis 

of IL-1 and TNFα would be needed to better determine whether inflammation is 

increased or decreased in treated mice. 

 

 

Co-localization of LRP on cerebral blood vessels & neurons: 

 

 The final set of immunohistochemistry experiments that was done studied the 

expression levels of LRP on both cerebral blood vessels and on neurons to determine 

whether these levels changed individually, and whether the ratio of LRP on cerebral 

blood vessels to that on neurons varied across genotype or treatment.  Plotting the 
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data for LRP on cerebral blood vessels showed an increase in LRP in 2 week treated 

WT and a mild increase in 2 week treat APP mice.  Little change between the control 

and 8 week treatment groups were seen in either WT or APP transgenic mice. 

 
Control wt 

 
Control app 

 
2 wk wt 

 
2 wk app 

 
8 wk wt 

 
8 wk app 

Figure 36: LRP IHC: Hippocampal slices were triple-labeled with LRP (red channel; labels LRP 

protein), CD31 (green channel; labels blood vessels) and NeuN (blue channel; labels neuronal cells). 
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Figure 37: Average LRP Intensity on Cerebral Blood Vessels: Average LRP intensity 

on cerebral blood vessel was increased significantly only in the 2 week and 8 week WT 

groups (*), although all treatment groups showed an increase with respect to the control 

group.  There was no significant increase in either treatment group for APP mice.  The 

difference in LRP intensity in the control and 8 week treatment groups between WT and 

APP was also statistically significant (p-values<0.017 and 0.023, respectively). 

 

 

 Single factor ANOVA for all treatment groups with the WT genotype 

revealed statistically different values in the means (F=11.86, p-value<3.55e-5).  There 

was no statistical difference between the means in the APP transgenic group 

(F=0.744, p-value<0.48).  Further analysis with one-tailed t tests showed that the 

average intensities of LRP between control WT/control APP and 8 week WT/8 week 

APP are statistically different (p-values<0.017 and 0.023, respectively), though there 

is no statistical difference between the 2 week treatment WT and APP groups (p-
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Figure 38: Average Blood Vessel Density: Average cerebral blood vessel density did 

not vary significantly across genotype or treatment group, ranging from 6-8 blood 

vessels per image field. 

 

value<0.135).  One-tailed t tests between treatment groups with the same genotype 

demonstrated that LRP was increased significantly in both the 2 week and the 8 week 

treatment WT groups (p-values<0.00023 and 0.043, respectively); there was no 

statistical difference in the increased LRP that were observed for the APP group (p-

value<0.124 and 0.139, respectively). 

Again, the average number of blood vessels was measured to determine the 

observed changes in LRP on cerebral blood vessels was due to differing levels of 

blood vessels within the images taken.   No statistical difference was found across 

different genotypes or between treatment groups by either a single factor ANOVA 

with α=0.05 or two-tailed t tests with 95% significance (for WT: F = 1.205, p-value 

<0.307; for APP: F = 2.713, p-value<0.0745).  Average values ranged from 6-8 blood 

vessels per image.  This suggests that changes in the observed LRP levels are not due 
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Figure 39: Average Intensity of LRP on Neurons: Although LRP was increased on 

neurons in all groups, this difference was only statistically significant on the control 

WT/2 week WT and control APP/8 week APP groups (p-values<0.004 and 0.033, 

respectively).   

to differences in the number of blood vessels per image.  The data also suggest that 

the blood vessel density does not change significantly with simvastatin treatment. 

The average intensity of LRP was also measured on neurons.  Bar graphs 

showed that the average intensity of LRP on neurons increased during treatment with 

simvastatin for both WT and APP groups.  This difference was statistically significant 

in the WT groups (single factor ANOVA, F = 3.997, p-value<0.023, α=0.05), but 

insignificant in the APP group (F=2.074, p-value<0.134, α=0.05).  One-tailed t tests 

showed that the difference between control WT and 2 week WT was statistically 

significant (p-value<0.004), as well as the difference between control APP and 8 

week APP (p-value<0.033).  There was no statistical difference between control WT 

and 8 week WT or control APP and 2 week APP. 

 *  
* 

0

200

400

600

800

1000

1200

Control 2 week 8 week

A
v
er

ag
e 

In
te

n
si

ty
 o

f 
L

R
P

 o
n
 n

eu
ro

n
s/

u
m

^
3

 

Average Intensity of LRP on Neurons per um3 

WT

APP



 

 128 

 

  Overall, the levels of LRP increased on both cerebral blood vessels and on 

neurons in all treatment groups, however this increase was only statistically 

significant in 2 week WT (blood vessels and neurons), 8 week WT (blood vessels) 

and 8 week APP (neurons).  This corresponds with the data that shows that brain 

cholesterol levels were significantly decreased in the 2 and 8 week WT mice, while 

brain cholesterol was lowest in the 8 week treatment APP mice (of all other APP 

mice), suggesting that decreased brain cholesterol is associated with an increase in 

LRP on cerebral blood vessels (an inverse relationship).  This was somewhat 

unexpected since both LRP and brain cholesterol have been shown to be decreased in 

AD patients, and decreased LRP has been associated with increased levels of APP 

and ApoE.  Also, since LRP expression levels are usually directly related to IL-1 

(inflammation) and cholesterol levels, a decrease in LRP would have been the 

expected result.  One explanation for this result is that simvastatin treatment helps to 

increase LRP expression by a method not previously described.   

It is interesting to note that if the ratio of LRP on blood vessels to LRP on 

neurons is plotted, it follows a symmetric curve similar in shape to the curve that was 

obtained for blood vessel density in images.  These seems to imply that although the 

neuron density is not statistically different across treatment groups, there may be an 

artificial increase in the LRP levels on blood vessels due to this minor difference.  

This may help to explain the observed increase in LRP in the 2 week WT group. 

The 8 week APP group is somewhat easier to interpret.  Cholesterol levels in 

this group were on par with those of the control group, suggesting that although 

simvastatin treatment lowered these cholesterol levels slightly (though not 
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Figure 40: Ratio of LRP on blood vessels to LRP on neurons: The ratio of LRP on blood 

vessels and on neurons followed a trend very similar to that observed for the number of 

blood vessels per image.  This suggests that the increase in LRP observed in the 2 week 

groups is more related to the increased number of blood vessels than an actual increase in 

LRP.  This data represents the ratio of the averages, thus no standard error bars are 

included. 

significantly), astrocytes still appeared in an activated state (associated with an 

increase in inflammation).  Since increased inflammation and levels of IL-1 are 

associated with increased LRP expression, it is reasonable to conclude that increased 

inflammation in the 8 week APP group led to this increase in LRP, though further 

experiments on the levels of IL-1 would be needed to confirm this definitely.  

 

 

Conclusions 
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simvastatin showed a decreasing trend in brain cholesterol levels, though the trend 

was not statistically significant.  Plasma cholesterol levels increased during both the 

control treatment and the simvastatin treatment.  This was believed to be due to an 

effect of the high fat content of the peanut butter causing an increase in plasma 

cholesterol, as opposed to differences in the ages of the mice (verified via correlation 

analysis).  Two week treatment with simvastatin decreased the difference between 

pre- and post-treatment plasma cholesterol concentrations, and was significant in the 

2 week APP group, suggesting that 2 week treatment with simvastatin was able to 

decrease both brain and plasma cholesterol in these groups.  The 8 week treatment 

group for both WT and APP transgenic mice showed no difference when compared to 

the respective control groups.  This could possibly be due to a rebounding effect that 

has been observed in animals and humans exposed to statins: after an initial treatment 

period where the cholesterol levels are significantly reduced, the liver adapts, leading 

cholesterol levels to initially overshoot before returning to baseline [50].  Also, as 

stated before, the cholesterol levels in the brain and plasma for the 8 week treatment 

group may have been slightly inaccurate due to changing the dosage method from 

peanut butter to baby food temporarily.  Definitively, though, plasma cholesterol 

levels in the 2 week treatment groups for both WT and APP were decreased 

significantly, while brain cholesterol levels were significantly decreased in 2 week 

WT (only a trend exists in 2 week APP). 

 Immunohistochemistry analysis showed several interesting alterations in 

protein expression.  The Aβ plaque density increased significantly in all groups 

treated with simvastatin (both WT and APP).  This increase was not correlated with 
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the age of the mouse.  Since only the 2 week treatment groups showed significant 

decreases in brain and plasma cholesterol, these results suggest that decreased 

cholesterol levels correlate with increased Aβ levels.  The results of the 8 week group 

are harder to discuss since there was no statistically significant decrease in brain 

cholesterol observed in these groups. It is thus suggested that decreased cholesterol 

levels provided by simvastatin treatment leads to an increase of beta amyloid levels, 

though further experiments are still needed to definitively make this statement.  

ApoE levels increased in the 2 week treated groups in both APP and WT mice 

(only WT mice were statistically significant though), while mice on 8 week treatment 

had a decrease in ApoE levels.  This would correspond with the expected result that 

as cholesterol levels decreased, ApoE would increase.  The 8 week group can be 

explained by the fact that cholesterol levels were not statistically decreased and 

astrocytes appeared to be activated in images when compared to control or 2 week 

treatment images.  Inflammation is correlated directly with an increase in ApoE.  The 

results for LRP were a bit more difficult to interpret, since the increased levels of 

LRP in the 2 week group do not seem to agree with what is known in the literature 

(LRP is decreased in AD and in models where APP is increased).  The observed trend 

in the data (increased LRP at 2 weeks on both cerebral blood vessels and on neurons; 

increased in 8 weeks on neurons) is believed to be explained by the fact that there is a 

similar trend in the number of blood vessels per image in these groups, which, 

although is not enough to be statistically different, may be artificially increasing the 

LRP levels.  Alternatively, simvastatin treatment for 2 weeks may increase LRP 

levels by a previously unknown mechanism, which warrants further study.  
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 Western blotting data for nearly all groups were not statistically 

significant.  Beta amyloid, ApoE and GFAP data showed no clear trends, while APP 

showed a decreasing trend across the APP group and LRP showed and increasing 

trend across the WT (but not APP) group.  In both WT and APP mice, synaptophysin 

showed a trend of decreasing expression with simvastatin treatment.  PSD95 levels 

also showed a decreasing trend amongst APP transgenics, though no trend was 

observed in the WT group.  This decreased expression levels of Sy38 and PSD95 in 

the APP group suggests that as brain cholesterol levels decrease, the levels of proteins 

associated with synapses also decreases.  This follows logically from the fact that 

cholesterol is needed to form and maintain synapses, and the loss of cholesterol in the 

brain should hypothetically lead to a decreased number of synapses.  

Immunohistochemistry could be used to determine synaptic density in order to further 

understand this relationship.  One reason that the western blot data may have had no 

statistical significance is the loss of information from the homogenization method that 

was used since all cell types and cellular compartments are lumped together.  This 

implies that there may have been changes that were specific to neurons, astrocytes or 

other cell types, but the Western method that was used was not able to distinguish 

this.  In future experiments, a differential centrifugation method could be used to 

separate cell types and cell components. 
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Chapter 6:  When experimental data meets math: final systems 

biology model incorporating data & inflammatory pathway 

 

Model Assumptions: 

 The brain can be considered a system consisting of interactions between 

several key cell types: neurons, astrocytes, microglia, and brain endothelial cells 

(ECs).  The brain parenchymal space, filled with a combination of cerebral spinal 

fluid and a predominantly proteoglycan mesh extracellular matrix network, surrounds 

all cell types, except for brain ECs, which contact the blood on one side.  At an even 

higher level, the brain can be effectively modeled as two main compartments: the 

cerebral blood vessels and the parenchymal space.  The ventricles and the areas 

outside of this described region are neglected from this model. 

 The brain has a finite volume, thus, there exists a limit, or carrying capacity or 

concentration threshold, for the number of cells, proteins, signaling molecules, lipids 

and other biomolecules that can be contained in this volume.  Above these 

concentration thresholds, regulatory systems are triggered in an effort to return the 

system back to a state of homeostasis.  Independent of these regulatory mechanisms, 

cellular damage can occur due to activation of inflammatory pathways, mechanical 

loading, activation of apoptosis or necrosis, or changes in local osmolarity.  In this 

model, the blood is considered to be a relatively infinite sink (as in previous models 

that we have developed) since the rate of blood flow is considered to be sufficient 
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enough to transport any molecule that is transported across the BBB and out of the 

brain. 

 The key cell types in the brain and their interactions with each other can be 

represented as a directed graph with both weak and strong connection strengths.  Not 

all cell types interact with each other, and only the brain ECs have a direct connection 

with the blood for waste removal.  Within this cellular network, each cell type 

possesses its own set of metabolic, lipidomic and proteomic pathways that are 

expressed depending on what genes are currently active.  This cellular sub-network 

can be considered cell-dependent topology.  

 

 
Figure 41: Two-level hierarchal network used to model our system.  In this model, the brain 

has been modeled as a two-level hierarchal network.  The higher level consists of the cellular 

network (neurons (N), astrocytes (A), microglia (M) and brain endothelial cells (EC).  Each of 

these cell types also has a sub-cellular network that models lipid metabolism (L), protein 

metabolism (P), energy metabolism (M) and regulatory pathways (R).   
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 As discussed in chapter 4 briefly, the brain can be thought of as having 

different “states”, similar to the idea of a Markovian process.  In the case described 

here, the current overall state of the brain can be modeled as the convoluted sum of 

the individual pathways that are currently being expressed by that cell type.  Initially, 

this sum would be considered the healthy state, where pathways are running 

efficiently, all biomolecules are within the normal, physiological ranges, energy 

levels are kept constant and inflammatory processes are balanced.  Over time though, 

the system may become perturbed from environmental or other triggers.  If not 

properly adjusted for, the expression of certain molecules or of pathways may be 

altered such that the system is no longer in a healthy state, but has entered into one of 

many possible disease states.  These switches from health to disease states can be 

modeled as discrete logic transitions since they occur only when a critical threshold 

for a biomolecule or other constraint condition has been reached.  The entire network 

of metabolic, lipidomic and proteomic pathways can still be modeled using 

continuous-time ordinary differential equations as described in previous chapters, 

while these discrete switching conditions are used to model regulatory mechanisms 

that shift the system state.  These switches activate the expression of new pathways or 

significant changes in the expression of currently expressed pathways, such that the 

new state is represented by an alternative set of ODEs and/or rate constants.  In this 

manner, a model similar to a hybrid automaton will be described to model the system 

as it evolves over time. 

 The following figure visually describes how the brain‟s state can evolve over 

time depending on the environmental conditions or, in future models, what genes are 
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activated.  The system state is allowed to switch from healthy  disease, from 

disease state  disease state, and under some conditions, return from a disease state 

to a healthy state.  Disease states can also combine to form conditions which are even 

further from the healthy state.  The farther that a node is removed from the healthy 

state, the lower the probability that the system will return to the healthy state. 

  

 

 

Figure 42: Disease Processes as a Markovian State Space.  It is being proposed here that diseases, 

regardless of their underlying pathogenesis mechanisms, can be modeled as Markov state space.  

The highest probability is to find the system in the healthy state, which transitions to other states 

(unhealthy states) upon exposure to an environmental stimulus or other external factor.  Over time, 

these transitions can tend towards a disease state.  Depending on the disease, this may be a final, 

absorbing state, or there may be opportunities to escape this state and return towards a healthier 

state. 
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Time delays play a key role in the interaction graph between the cell types, as 

well as the in the modeling of the biochemical pathways in continuous-time.  Delays 

can be caused by time needed for transcription/translation, diffusion, activation of a 

specific pathway via a cascade process, or changes in mRNA expression due to such 

activation.  As can be seen in the topology of the two-level hierarchy graph, time 

scales can vary across levels of the network as well.  At the sub-cellular level, most 

reactions take place in milliseconds-minutes range; while interactions at the cellular 

level occur in the seconds to hours range.  Overall changes at the organ may take 

hours to years to occur at an observable or measurable rate. 

Trends from biological experiments & the literature: 

 From the biological experiments that were described in the previous chapter, 

several trends from the data were important in developing the final topology of the 

network.  Decreasing cholesterol levels led to an increase in beta amyloid.  This 

suggests that the proposed role of cholesterol as an inhibitor of BACE activity is 

correct and has been included as a definitive inhibitory edge in the model.  

Experimental evidence from other sources also describe a similar trend [1, 33].  

Although there is data available that states that cholesterol promotes the generation of 

beta amyloid by increasing the activity of BACE, the experiments did not take into 

account the fact that treatment with a statin not only lowers cholesterol, but also 

decreases inflammation.  Additionally, many of these experiments have been done on 

cell lines which may not give the most accurate or relevant results when compared to 

the actual body.  Decreased cholesterol also led to an increase in ApoE and LRP 

expression.  This trend was included in the model by making ApoE and LRP 
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generation rates dependent on the astrocytic cholesterol concentration.  Increased 

levels of ApoE are commonly seen in AD brains [42]. 

 From the literature, it is known that increased IL-1 expression levels, as seen 

during an inflammatory response, decreases cholesterol synthesis by 25-60% [112].  

This was modeled by adding an inhibitory rate constant to the equation for modeling 

cholesterol generation by astrocytes.  IL-1 is also known to increase the expression 

levels of ApoE and LRP, while decreasing the conversion of tryptophan precursors to 

serotonin, causing a buildup of tryptophan.   Finally, IL-1 is also known to stimulate 

the production of beta amyloid, thus creating a positive feedback loop between beta 

amyloid (which stimulates production and secretion of IL-1).   

Beta amyloid synthesis was set at 5% of the products cleaved from APP, using 

a rate that has been previously described [28].  It is interesting to note that beta 

amyloid production is not increased in AD, though a 30% decrease in clearance has 

been seen [96].  The average half-life for beta amyloid is 2 hours [30].  This half-life 

includes degradation by proteases, uptake by astrocytes and microglia, and clearance 

from the brain via the LRP-1 receptor on brain endothelial cells. 

The model was derived using Michaelis-Menten rate kinetics since a major 

assumption was that metabolic reactions were at steady state.  These reactions were 

assumed to proceed much faster than the overall rate at which the system was 

changing.  The steady state value could shift, but the actual rate at which chemical 

species were flowing through the pathway was trivial. 

Network Topology: 
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 Given the hierarchal nature of this model, the biochemical pathways that are 

being expressed by various cell types have been minimized to those which are either 

absolutely essential for cell survival, or required for the cell‟s main function.  The 

pathways have been divided by cell type, though several pathways, such as the need 

to have functional mitochondria and fatty acid synthesis for maintaining cell 

membranes, are included in all cell types.  Additional pathways are specific to cell 

type function; proteomic pathways have been limited to include only those proteins 

that have been implicated in playing a causal role in AD. 

Networks for Each Cell Type 

Neurons: 
- Metabolic (energy, 

neurotransmitter synthesis) 

- Fatty acid synthesis 

- Proteomic (APP, LRP) 

- 24SOH 

- Trivial amount of cytokines 

Microglia: 
- Metabolic (energy) 

- Fatty acid/cholesterol synthesis 

(for self) 

- Cytokine production (IL-1, TNFα) 

- Function: phagocytose Aβ 

Astrocytes: 
- Metabolic (energy) 

- Fatty acid & cholesterol 

synthesis (for self & neurons) 

- Proteomic (ApoE, ABCA1) 

Brain ECs: 
- Metabolic (energy) 

- Fatty acid/cholesterol synthesis 

(for self) 

- Proteomic (LRP) 

- Function: transport Aβ across 

BBB 

  The following figures describe in detail the network topology that was used 

for each cell type.  Chemical species are represented as nodes, while chemical 

reactions or interactions (inhibitory or promoting) are represented by edges.  

Molecules belonging to metabolic networks have green nodes, lipid molecules are 

Table 10: Networks for Each Cell Type.  Each cell type expresses a distinct set of 

metabolic pathways, with overlapping networks on key pathways (such as energy 

metabolism). 
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orange, proteins are blue, cytokines are red, and all other molecules are purple.  

Inhibitory interactions are represented by red edges; promoting interactions are given 

by green edges; all chemical reactions are given by black edges. 

 

 

 

Figure 43: Network Topology for Neurons.   



 

 141 

 

 

 

 

 

Figure 44: Network Topology for Astrocytes (top) and brain endothelial cells (bottom).   
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System of Equations: 

 A system of equations was derived to describe these interactions.  Similar 

equations were derived for each of the reactions in glycolysis, with only variations in 

the rate constants used.  Glucose metabolism in all cell types was modeled as the 

conversion of glucose to acetyl coenzyme A, modeling only steps that are key nodes 

for other important end products or important regulatory steps.  In neurons glucose 

conversion and Acetyl CoA were modeled by the following equations: 

 

Figure 45: Network Topology for Microglia 
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 Equations for glucose usage and AcetylCoA were similar in other cell types; 

the only difference was the rate constants.  Beta amyloid was modeled as a pseudo-

one-step cleavage product of APP.  Neuronal cholesterol levels inhibited this 

generation and were modeled by adding an inhibition term to the Michaelis-Menten 

rate constant.  Beta amyloid could be degraded enzymatically, by astrocyte and 

microglia uptake or by clearance via LRP-1 on brain endothelial cells: 

 

LRP was modeled as a simply generation rate minus a degradation rate, with 

an added generation term (h) that described increased LRP production upon exposure 

to IL-1: 

 

 In astrocytes, cholesterol metabolism was modeled using simplified equations 

that studied the conversion of AcetylCoAHmgCoAmevalonatecholesterol, 

with the key regulatory step being the conversion of HmgCoA to mevalonate: 
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Derivation of rate constants: 

 Rate constants for the metabolic network were derived by applying a modified 

version of Kirchoff‟s current law to each node in the energy production pathways.  

This assured that material constraints were being met (conservation of mass).  Other 

rates constants were derived as percentage changes as found in the literature, or 

estimated from what data was available in the literature or through experiment. 

Nodal Analysis: 

 Nodal analysis is a useful method in identifying possible key nodes in a 

network.  The degree of every node within the sub-cellular level of the hybrid 

network described here was determined.  Nodes were divided between in nodes and 

out nodes since the graph is directed.  No difference in the degree was noted 

regardless of whether the edge was inhibitory, the step in a chemical reaction, or a 

promoting factor.  Nodes that served roles for transporting other molecules were 

assigned 1 for node in and 1 for node out.  The following table describes both the 

degree in and degree out for every node. 

Network/Chemical 

Species 
Degree In Degree Out 

(Neuron)   

Glucose 1 1 

Glycolysis 1 4 

Pyruvate 1 1 

AcetylCoA 2 3 

TCA 1 0 

Malonyl CoA 1 0 

Serotonin 2 0 

Dopamine 1 0 

Phosphatidylcholine 2 0 

Choline 1 2 

Acetylcholine 2 0 

APP 1 2 

sAPP 1 0 

Aβ 3 4 

Cholesterol 1 3 

LRP 3 1 
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Astrocyte   

Glucose 1 1 

Pyruvate 1 1 

AcetylCoA 2 3 

TCA 1 0 

MalonylCoA 1 0 

HmgCoA 1 1 

Mevalonate 2 1 

cholesterol 2 2 

ApoE 2 1 

ABCA1 2 1 

LRP 3 1 

Microglia   

Glucose 1 1 

Pyruvate 1 1 

AcetylCoA 2 3 

TCA 1 0 

MalonylCoA 1 0 

Cholesterol 1 0 

IL-1 2 6 

Brain Endothelial Cell   

Glucose 1 1 

Pyruvate 1 1 

AcetylCoA 1 3 

MalonylCoA 1 0 

Cholesterol 1 0 

TCA 1 0 

LRP 3 1 

 

The degree distribution, which describes the fraction of nodes having degree k, was 

also determined for this network.  The most frequent degree in was one, while the 

most frequent degree out was 0/1.  This suggests that many of the molecules that are 

modeled by this network are terminal reactions in relation to the network topology.  

There are however several nodes with relatively high degree: AcetylCoA, Aβ, LRP 

and IL-1 all have degree in or out >=2, suggesting that these are key nodes in this 

network. Creating the log-log plot of the degree versus the probability of that degree 

showed a scale-free network given by a power law with an exponent ~2.  This 

Table 11: Nodal Analysis. Descriptions of the degree in and degree out are described. 
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suggests the presence of several hubs (molecules with high degree) and many spokes 

(terminal reactions). 

Degree In 

(k) 

0 1 2 3 4 5 6 

P(k) 0 26/41 11/41 4/41 0 0 0 

Degree 

Out (l) 

0 1 2 3 4 5 6 

P(l) 15/41 15/41 3/41 5/41 2/41 0 1/41 

 

 

Simulation Conditions:  

 Simulations were run for 14600 days (40 years), starting from initial 

conditions that were supposed to represent the values found in the brain of an average 

25 year old.  The simulations end time point would be 65 years of age.  The system of 

equations was solved numerically using ODE45 in Matlab.  The cases were 

represented with IF statements that switched the set of differential equations or rate 

constants being used in the ODEs to those described by the specific case.  Figures 
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Figure 46: Degree Distribution (top) Degree distribution for the final network 

topology. (bottom) Log-log of the degree versus the degree distribution, demonstrating 

a scale-free network. 
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describing the temporal concentration distribution of several key molecules were 

obtained.  Results were normalized against their initial values. 

Simulation Results: 

Reference Simulation: 

 A reference simulation was run to determine the normal expression levels for 

all molecules that were being studied.  Normal values were as follows: APP- 95; Aβ-

0.132; neuronal cholesterol- 375; astrocytic cholesterol- 37; ApoE- 962; IL-1- 14; 

LRP on brain ECs- 447.  A fast convergence is observed in most simulations. 
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Figure 47: Reference Simulations. 
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Effect of Decreased Cholesterol Transfer Rate: 

 Decreasing the rate of transfer of cholesterol from astrocytes to neurons led to 

an increase in beta amyloid levels, a significant increase in neuronal cholesterol, a 

sustained increase in astrocytic cholesterol and mild increases in APP and ApoE.  

There are also noticeable changes in the time course at lower transfer rates, leading to 

a delay. 

Effect of Decreasing Cholesterol Production: 

 Decreasing the cholesterol production rate by astrocytes led to significant 

increases in Aβ, and mild increases in ApoE, neuronal and astrocytic cholesterol.  

These results match those that were derived from the experimental section in terms of 

a similar trend in the data. 
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Figure 48: Effects of Decreased Cholesterol Transfer. Decreasing the rate at which 

cholesterol was transferred from astrocytes to neurons led to an increase in steady 

state beta amyloid, neuronal cholesterol and astrocytic cholesterol.  
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Figure 49: Effect of Decreased Acetyl CoA to HmgCoA Conversion: Decreasing 

the amount of acetyl CoA to HmgCoA conversion led to a significant increase in 

steady state levels of beta amyloid.  Levels of other molecules only changed slightly 

or not at all. 
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Effect of Single Pulse Inflammation: 

 Short pulses of increased IL-1 expression (modeled to represent short duration 

infections) led to sustained increases in ApoE and LRP levels.  Neuronal cholesterol 

levels were perturbed during the duration of the sickness, and included an initial 

decrease, followed by an overshoot, before returning to baseline levels.  In all 

simulations, the final level of Aβ was increased during the duration of the illness, 

before returning to a level slightly higher than baseline (~5% increase).  ApoE levels 

also increased during the duration of the illness before returning to baseline. 
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Figure 50: Effect of Short-term Inflammatory response: Short duration inflammatory 

responses were modeled using step functions to temporarily increase IL-1 levels.  This led to a 

temporally-associated increase in  ApoE, neuronal cholesterol and astrocytic cholesterol.  Aβ 

levels were increased significantly during the illness period (~200%), before returning to 

slightly higher baseline levels (~5% increase). 
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Effects of Periodic Inflammation: 

 Periodic inflammation that returned to a state of no inflammation (acute 

inflammation) led to corresponding oscillatory increases in beta amyloid levels, as 

well as significant increases in ApoE and cholesterol levels during the high 

inflammatory state.  A very weak shift upwards in beta amyloid levels was observed 

over time (~4%).  Under chronic inflammation, beta amyloid levels increased 

significantly (>10x) that was sustained for the duration of inflammation.  Under these 

conditions, ApoE levels increased significantly (~40%) while LRP levels increased 

mildly (<10%).  Neuronal cholesterol was trivially increased (<1%). 
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Figure 51: Effect of Acute Periodic Inflammation. Levels of different chemical 

species correspond temporally to increases in IL-1.  Beta amyloid levels increased 

slightly (~5%). 
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Effect of Decreased Available Glucose: 

 Decreasing the amount of glucose available to all cells led a significant 

increase in Aβ levels (~50%) for the most extreme case to be modeled, a significant 

decrease in both astrocytic and neuronal cholesterol, and a mild increase in ApoE. 
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Figure 52: Effect of Chronic Periodic Inflammation. Chronic inflammation led 

to a significant increase in beta amyloid (>10x) and ApoE (~40%).  Neuronal 

cholesterol levels were increased only mildly (<1%) 

Figure 53: Effect of Decreased 

Glucose Levels: Decreasing 

glucose levels led to an 

increase in beta amyloid and 

ApoE, with a significant 

decrease in cholesterol levels. 
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Effect of Increased Aβ Production: 

 Increasing the production rate of beta amyloid only led to a mild increase in 

beta amyloid and APP.  No other molecules were affected significantly. 
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Figure 54: Effect of increased Aβ cleavage on the network. Increasing the cleavage 

rate of beta amyloid from APP led to increased levels of beta amyloid and APP.  Other 

molecules were not significantly affected. 
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Discussion & Conclusion: 

 In this chapter, an updated version of the systems biology model that was 

developed in chapter 4 was developed.  This model expanded to include 41 nodes and 

was compartmentalized into 4 different cell types.  The model was expanded to 

include the role of inflammation, particularly the role of IL-1.  Several different 

simulation runs were made, looking at the roles of decreased cholesterol, increased 

inflammatory state and increased beta amyloid production.   

Decreasing the production rate of cholesterol by astrocytes led to an increase 

in beta amyloid and ApoE, which was very similar to that which was seen in the 

biological experiments that studied the effect of simvastatin.  Chronic inflammation 

was found to profoundly affect the system, leading to prolonged increases in the level 

of ApoE and Aβ.  This suggests that inflammation may play a unique causal role in 

AD pathogenesis that warrants further simulation and experimentation.  Increasing 

the cleavage rate of beta amyloid had little direct effect on other molecules in the 

system over the range that was studied.  This suggests that increased cleavage does 

not have a significant effect on the network system unless other factors or triggering 

events are met.  This is not to say that increased beta amyloid levels do not play a role 

in the pathogenesis of AD, such as that seen in familial AD, but that several things 

may be at play for why increased beta amyloid levels are present and affect the 

system.  For example, significantly increased levels of any protein will negatively 

affect the state of a biological system, putting strain on resources to clear the protein, 

possibly competitive interactions between the increased protein and other proteins 

that share the same receptors or transport proteins, and changing the local osmolarity 
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and viscosity of the extracellular fluid, all of which could have negative downstream 

effects.  Thus, the increased Aβ generation rates seen in familial AD may initially 

operate under a different pathogenesis mechanism, before converging onto a similar 

disease process that is observed in late-onset AD.  The model developed here further 

suggests that unless beta amyloid levels pass a threshold level and initiate an 

inflammatory response that beta amyloid alone may not be able to initiate the 

pathologic profile seen in AD.   

It should be noted that the simulation results converged quite quickly since the 

equation used were written to model the steady state approximations and simply study 

the changes in steady states observed after different perturbations.  This model is the 

first network model for AD for looking not just at cellular interactions, but also at the 

metabolic, proteomic and lipidomic networks that underlie these cellular interactions, 

and represents a significant advance forward in using mathematical modeling to 

better understand disease processes. 
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Chapter 7:  Conclusions & Future Work 

 

Conclusions: 

 As stated back in Chapter 2, there are an array of risk factors for AD, many of 

which inflammation plays a significant role in pathology.  It is well-accepted in the 

medical field that metabolic syndrome, another disease caused by general 

inflammation in the body, that it is not a single or small number of risk factors that 

lead to initiation of the disease process.  The same idea has been proposed for cancer 

and diabetes.  In the same manner of thinking, it is reasonable to propose that having 

only 1or 2 risk factors for AD (excluding those factors which are purely genetic) does 

not guarantee that AD will occur in the future.  It is only when several or more risk 

factors are present that disease occurs, that is, that there is a relative „catastrophe‟ in 

the biological system which disrupts multiple interdependent biochemical networks.  

This concept would help to explain some of the variability seen between studies 

(aside from the variability due to biased or poorly designed experiments).  It also 

would help to bring together many studies that would otherwise seem unrelated or 

contradictory, and give the results of epidemiological studies a better understanding. 

 In addition to this, importance should be placed on how AD pathology relates 

to disease causation and symptomology.  For example, although Aβ levels are 

increased in the brains of nearly all individuals affected by AD, leading to the 

traditional belief that these plaques or oligomers are the cause of disease, this 

perspective fails to take into account the possibility that Aβ buildup may just be a 

symptom of an underlying disease process, and not the actual cause of the disease.  
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Just like increased white cell count is not the cause of an infection, but nearly the 

response to an infection, Aβ may also have a similar role in AD pathogenesis.   

Along this same perspective, disease states in general can be viewed as the 

response of a system to different inputs.  Preceding a disease, many different inputs 

may be received by the body.  These inputs must be „decrypted‟, processed, 

interpreted correctly and a decision must be made as to how to keep the organism in a 

state of homeostasis.  A simple survey of regulatory and signal transduction pathways 

clearly demonstrates that differing inputs often have convergent outputs and 

moreover these pathways may converge even before a response is taken.  For 

example, intracellular levels of calcium change in response to neurotransmitter 

binding, ligand binding, and in response to the IP3/DAG pathway.  This similarity in 

network topology, and mutual sharing of common chemical nodes with high traffic, is 

an evolutionarily advantageous method that living organisms have capitalized on to 

prevent the need of extra molecules necessary for functioning and putting an upper 

bound on the amount of genetic material that an organism would need to survive.  

This does, however, have drawbacks when a mutation occurs in one of these 

pathways, or if the regulation of a pathway is in disarray.  In such a case, the 

robustness of the system is lost and a disease state is necessitated if balance is not 

maintained within the system. 

 Inflammation is perhaps the single most important state that has to be 

balanced in the human body.  Mild to moderate levels of inflammation over short 

periods of time may actually be beneficial to the body as a system, stimulating the 

removal of old, dysfunctional or dead cells and promoting regeneration and creation 
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of new, healthy cells.  In AD and many other disease states, this balance is off, 

leading to cell death and disease.  The importance of the inflammatory pathway was 

demonstrated by the results of the final model, which showed that for even a short 

duration increase of the pro-inflammatory molecule, IL-1, there are significant and 

long-term changes the expression patterns of ApoE and LRP-1, in addition to short-

term alterations in cholesterol metabolism.  It is interesting to note that changes to 

cholesterol levels were relatively more transient than those to protein expression 

levels, though it provides nice insight into the possible disease process. 

 From the experimental results, cholesterol metabolism does seem to play a 

contributory, if not significant role, in the progression of AD.  This role, which may 

be prominent due to the high interconnectivity of the cholesterol pathway with other 

key metabolic pathways, has effects on several other pathways that may not directly 

be connected to cholesterol or its metabolites.  

Future Work 

 Modeling AD and the multitude of pathways and interactions related 

or possibly related to the disease process is an enormous task.  The work presented 

here just starts to touch the tip of what is possible in terms of using mathematical 

modeling to better understand disease processes, particularly AD.  There are many 

avenues of open research in this area.  Of particular interest to myself would be to 

look at the role of genetics and epigenetics in AD pathogenesis, as well as the role 

that chronic stress and adrenal hormones may play in the disease process, in 

combination with continued biological experiments.  Additionally, it would be 

particularly interesting to study the interaction between the immunological, 
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psychological, and endocrinological aspects of AD in hopes of creating a unified 

model for AD pathogenesis that looks at the disease from the various aspects.  Future 

experiments with human subjects would help to gather more relevant data for the 

model, needed rate constants and further information about the topology of the 

interacting networks.  Expanding this model to include stochastic rate constants, and 

additional genomic and proteomic interactions would help to make an even more 

accurate mathematical description for AD pathogenesis that, when combined with 

biological data and interpreted in the light of such data, could help to create new 

treatment paradigms in the future. 
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Appendix I 

 

Figure 1: Updated figure for the compartmentalized network used in the final math model. 

Appendix II 
 

 

 

 

 

 

 

Figure 2: ~50% increased levels of beta amyloid when no feedback control by cholesterol.  

When feedback by Aβ is removed, normal levels of cholesterol and Aβ observed. 
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