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Chapter 1

Introduction

Supersymmetric Quantum Mechanics is, by definition, a Quantum Mechan-

ics equipped with a positive definite space of energy states H = HB ⊕ HF , where

one can think of HB as the collection of states affected by the bosonic fields and

HF as the collection of states affected by the fermionic fields. Supercharge oper-

ators, Q, map objects between HB and HF and produce a graded Q−complex on

H. One of the primary objectives of Supersymmetric Quantum Mechanics is the

determination of Supersymmetric Ground States, or zero energy states. In particu-

lar, we seek ground states that preserve supersymmetric transformations. Often, it

necessary to deform the Lagrangian, by adding a constant function, called the su-

perpotential function. Adding this superpotential function produces a modification

of the supersymmetry transformations and supercharge actions. Without adding

this superpotential function, we can only describe classes of information about our

ground states. The additional structure provides us with more specialized informa-

tion about these ground states. This gives rise to the notion of twisted cohomology

group. In particular, H represents an algebra of differential forms, Ω(M), and Q

can be identified with a differential operator, d, on Ω(M). If ϕ : M → R represents

our superpotential function, our modified supercharge operator, which we’ll call Q̃,
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defines a differential dϕ on Ω(M) by letting dϕ = d+dϕ∧ where d is the usual differ-

ential on our manifold. Since Q̃ is related to Q by the transformation Q̃ = eϕQe−ϕ,

the graded complex Q̃−complex is isomorphic to the graded Q−complex. However

if dϕ is replaced by a closed 1−form ω that is not exact, then the graded Q̃−complex

is actually different from the usual Q− complex. We then say that the added ω∧ is

a twisting of the usual differential complex thereby producing twisted cohomology

groups, the topic of this paper.

One can relate the twisted cohomology group to purchasing a used car. On

the lot, two cars can seem identical. However, a scan of each car’s odometer can

reveal that one car has more milage than the other. Further inspection might reveal a

scratch on the dashboard or a misalignment of the tires. In the end, it is determined

that the two cars are, in fact, different. Similarly, the cohomology group provides a

classification of various spaces while the twisting gives us a little more information.

Moreover, the more complex the twisting, the more additional information can be

obtained. There has been a fair amount of discussion of the twisted cohomology

group for the case where the differential complex is twisted by a closed 3-form.

While twisting by a 3-form is quite useful, because of a connection (via the Chern

character) to twisted K-theory, this involves more advanced techniques, and so we

won’t go into it any further.

There are two main objectives to this paper. The first objective is to introduce

a more general twisted cohomology group. That is, we will prove the existence of

a twisted cohomology group where the complex is twisted is by an arbitrary closed
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(2k + 1)−form. The second objective is to provide a proof of various properties of

this twisted cohomology group without using the advanced techniques used by our

predecessors.
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Chapter 2

Preliminaries

2.1 De Rham Cohomology

Recall that an n−manifold is a topological space that locally looks like Rn.

One can think of an n−manifold to be little pieces of Rn glued together by home-

omorphisms. A n−manifold is smooth (or differentiable) if the homeomorphisms

are diffeomorphisms. Suppose M is a smooth n−manifold with local coordinates

x1, . . . , xn. Consider the cotangent space T ∗(M) with local basis dx1, . . . , dxn. We

can define a bundle of algebras over M ,
⊕

q Λq(T ∗(M)), to be the quotient space of

the tensor algebra bundle on T ∗(M) modulo the ideal generated by the symmetric

tensors. For example,

Λ2(T ∗(M)) = T ∗(M)⊗ T ∗(M)/
(
dxπ(1) ⊗ dxπ(2) + dxπ(2) ⊗ dxπ(1)

)
.

Λq(T ∗(M)) has basis
{
dxπ = dxπ(1) ∧ · · · ∧ dxπ(q) | π(1) < · · · < π(q)

}
and maintains

the relations:

dxπ(i) ∧ dxπ(j) = −dxπ(i) ∧ dxπ(j) i 6= j

dxπ(i) ∧ dxπ(i) = 0

Definition 1. Let Ωq(M) denote the space of smooth sections of Λq(T ∗(M)). A

differential q-form ω is an element of Ωq(M) and is written as

ω =
∑

fπdxπ
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where fπ : M → R is a sufficiently smooth function on M . We then call Ωq(M) the

vector space of all differential q-forms.

Observe that Ω0(M) = M and Ω1(M) = T ∗M . The wedge product of two

differential forms is a bilinear map Ωp(M)×Ωq(M) → Ωp+q(M) defined by (ω, η) 7→

ω ∧ η such that if ω =
∑
fπdxπ and η =

∑
fσdxσ,

ω ∧ η =
∑
π,σ

fπgσdxπ ∧ dxσ

Proposition 1. Suppose ω ∈ Ωp(M), η ∈ Ωq(M) and ν ∈ Ωr(M) are differential

forms. Then the following properties are satisfied:

1. (Associativity) (ω ∧ η) ∧ ν = ω ∧ (η ∧ ν)

2. (Distributivity) ω ∧ (η + ν) = ω ∧ η + ω ∧ ν

3. (Anticommutativity) ω ∧ η = (−1)pqη ∧ ω

Example 1. Let M = R3 and suppose

ω = xdx− ydy

ν = zdx ∧ dy + xdy ∧ dz

η = zdy

Then ω ∧ ν ∧ η = 0 since

ω ∧ ν = (xdx− ydy) ∧ (zdx ∧ dy + xdy ∧ dz)

= xdx ∧ (zdx ∧ dy + xdy ∧ dz)− ydy ∧ (zdx ∧ dy + xdy ∧ dz)

= xdx ∧ zdx ∧ dy + xdx ∧ xdy ∧ dz − ydy ∧ zdx ∧ dy − ydy ∧ xdy ∧ dz

= xzdx ∧ dx ∧ dy + x2dx ∧ dy ∧ dz + yzdx ∧ dy ∧ dy − xydy ∧ dy ∧ dz

= x2dx ∧ dy ∧ dz
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So

ω ∧ ν ∧ η = (ω ∧ ν) ∧ η = (x2dx ∧ dy ∧ dz) ∧ zdy = 0.

Definition 2. Suppose ω is a differential q-form. The exterior derivative d acts on

ω in the following manner:

ω =
∑

fπdxπ =⇒ dω =
∑

dfπ ∧ dxπ

where dfπ =
∑

k ∂fπ/∂xkdxk.

From this definition, we see that the exterior derivative gives a linear map

d : Ωq(M) → Ωq+1(M).

Proposition 2. The exterior derivative satisfies the following properties:

1. if ω, ν ∈ Ωq(M), then d(ω + ν) = dω + dν.

2. if ω ∈ Ωq(M) and η ∈ Ωp(M), then d(ω ∧ η) = dω ∧ η + (−1)q(ω ∧ dη).

3. d2 = 0.

Proof.

1. This follows directly from Proposition 1(2) and the fact that, for any differen-

tiable functions f and g on M , d(f + g) = df + dg.
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In particular, if ω =
∑
fπdxπ and ν =

∑
gσdxσ, then

d(ω + ν) = d
(∑

fπdxπ +
∑

gσdxσ

)
= d

(∑
π,σ

fπdxπ + gσdxσ

)

=
∑

π

dfπ ∧ dxπ +
∑

σ

dgσ

= dω + dν

2. Define ω as above and suppose η =
∑
hρdxρ ∈ Ωp(M)

d(ω ∧ ν) = d
(∑

fπdxπ ∧
∑

hρdxρ

)
= d

(∑
π,ρ

fπhρdxπ ∧ dxρ

)

=
∑
π,ρ

(d(fπ) ∧ hρ + fπ ∧ d(hρ)) ∧ (dxπ ∧ dxρ)

= dω ∧ η + (−1)pω ∧ (dη) by Proposition 1.

3. Define ω as above. Then

d2ω = d(dω) = d
(
d
∑

dfπ ∧ dxπ

)
= d

(
n∑
k

∂f

∂xπ(k)

dxπ(k) ∧ dxπ

)

Since dxi ∧ dxi = 0,

d2ω =
n∑

i<j

∂2f

∂xπ(i)∂xπ(j)

dxπ(i) ∧ dxπ(1) ∧ · · · ∧ d̂xπ(i) ∧ · · · ∧ d̂xπ(j) ∧ · · · ∧ dxπ(n)

where d̂xπ(k) = dxπ(k−1) ∧ dxπ(k+1).

Since f is sufficiently smooth, the mixed partials agree so, for each i and j,

we obtain two copies of ∂2f/(∂xπ(i)∂xπ(j)). However since dxπ(i) ∧ dxπ(j) =

−dxπ(j) ∧ dxπ(i), these terms cancel and d2ω = 0.
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Example 2. Consider ω and ν from Example 1.

d(ω ∧ ν) = dω ∧ ν + (−1)2ω ∧ dν

= d(xdx− ydy) ∧ (zdx ∧ dy + xdy ∧ dz)

+ (xdx− ydy) ∧ d(zdx ∧ dy + xdy ∧ dz)

= [d(xdx)− d(ydy))] ∧ (zdx ∧ dy + xdy ∧ dz)

+ (xdx− ydy) ∧ [d(zdx ∧ dy) + d(xdy ∧ dz)]

= (dx ∧ dx− dy ∧ dy) ∧ (zdx ∧ dy + xdy ∧ dz)

+ (xdx− ydy) ∧ (dz ∧ dx ∧ dy + dx ∧ dy ∧ dz)

= 0 + (xdx− ydy) ∧ (2dx ∧ dy ∧ dz)

= 0

This is an expected result since d : Ωp(M) → Ωp+1(M). In particular, M = R3 so

there are no nontrivial forms of degree > 3. Since ω ∧ ν is a 3-form, d(ω ∧ ν) would

be a 4-form. Hence d(ω ∧ ν) must equal zero.

The naturally graded algebra, Ω(M) =
⊕n

k Ωk(M), together with the exterior

derivative yields a Z graded chain complex

· · · d // Ωq−1(M)
d // Ωq(M) d // Ωq+1(M)

d // · · ·

called the de Rham Complex.

Definition 3. A q-form, ω is closed if dω = 0. It is exact if ω = dη for some

(q − 1)-form η.
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Observe that Proposition 2 (3) implies that every exact form is a closed form.

Since d increases the degree of the complex (instead of reducing the degree as usual),

we can define the de Rham cohomology groups by computing the ”homology” of

the complex. In particular,

Definition 4. The qth de Rham cohomology group is given by the quotient

Hq
dR(M) =

ker d : Ωq(M) → Ωq+1(M)

im d : Ωq−1(M) → Ωq(M)
=
{closed forms}
{exact forms}

.

Definition 5. Suppose ω, ω̃ ∈ Ωq(M). Then ω and ω̃ belong to the same coho-

mology class if, for some η ∈ Ωq−1(M), ω − ω̃ = dη. The class of ω is denoted

[ω].

Suppose [ω] and [ν] represent classes of differential forms ω ∈ Ωq(M) and

ν ∈ Ωp(M). Proposition 2(3) implies the existence of a well defined bilinear mapping

Hp
dR(M)×Hq

dR(M) → Hp+q
dR (M)

defined by

(ν, ω) 7→ ν ∧ ω.

With this bilinear mapping, H•
dR(M), the direct sum of all cohomology groups, is a

graded algebra.

Example 3. Let’s compute the de Rham cohomology group for M = R.

ker d : Ω0(M) → Ω1(M) = {ϕ : R → R | ϕ : x 7→ {pt}} = R so H0(M) = R.
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ker d : Ω1(M) → Ω2(M) = {f(x)dx | f ∈ C∞(R)} (by Proposition 2(3)). If ω ∈

im d : Ω0(M) → Ω1(M), then there is a smooth function ϕ : R → R, such that

dϕ = ω.

so im d : Ω0(M) → Ω1(M) = {dϕ | ϕ ∈ C∞(R)} =
{
ϕ

′
(x)dx | ϕ ∈ C∞(R)

}
. Since

every smooth function f : R → R has an antiderivative ϕ, H1(M) = 0.

Hence,

H•
dR(M) =


R • = 0

0 • > 0

Observe that this coincides with the usual cohomology of R. In fact,

Theorem 1.

H•
dR(M) ∼= H•(M,R)

Due to Theorem 1, we can ignore the subscript dR when discussing the de Rham

cohomology.

In particular, if M is an n-manifold, then Hk(M) = 0 for k > n. The proof of this

theorem relies on the Mayer-Vietoris sequence:

2.1.1 Mayer - Vietoris sequence

The Mayer-Vietoris sequence is a very useful tool. It allows one to determine the

cohomology of complicated (and not so complicated spaces) by considering smaller

subspaces.
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Suppose ϕ : M → N is a smooth mapping between an m-manifold M and an n-

manifold N . The map ϕ induces a pullback map ϕ∗ : N → M . Recalling that

Ω0(M) = C∞(M) and Ω0(N) = C∞(N), we can generalize this notion to discuss

induced forms.

Definition 6. Suppose f : M → N is a smooth mapping. Then there is an induced

form given by the mapping

f ∗ : Ωq(N) → Ωq(M)

defined by

f ∗(
∑

gπdyπ) =
∑

(gπ ◦ f)dfπ

where dfπ(k) = d(yπ(k) ◦ f).

In this case, we say that Ωq is a contravariant functor.

Proposition 3. Suppose ϕ : M → N and ψ : N → R are smooth mappings. Then

1. (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗

2. For differential forms ω and ν, ϕ∗(ω ∧ ν) = ϕ∗(ω) ∧ ϕ∗(ν)

3. For differential form ω, d(ϕ∗(ω)) = ϕ∗(dω)

Suppose M = U ∪V where U and V are open subspaces. The contravariant functor,

Ωq, induces a short exact sequence,

0 // Ωq(M) // Ωq(U)⊕ Ωq(V ) // Ωq(U ∩ V ) // 0

11



where the map Ωq(U)⊕Ωq(V ) → Ωq(U∩V ) is given by Ωq : (ω, ν) 7→ ω|U∩V −ν|U∩V .

Since, closed forms map to closed forms and exact forms map to exact forms, the

short exact sequence induces the sequence on the cohomology groups:

· · · // Hq(M) // Hq(U)⊕Hq(V ) // Hq(U ∩ V )

d∗

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Hq+1(M) // Hq+1(U)⊕ Ωq+1(V ) // Hq+1(U ∩ V ) // · · ·

This sequence is called the Mayer-Vietoris sequence.

Proposition 4. The Mayer-Vietoris sequence is exact.

Proof. As usual, a short exact sequence of cochain complexes gives a long exact

sequence in cohomology.

2.1.2 Poincaré Lemma

Definition 7. If X and Y are topological spaces, a homotopy is a map H : X ×

[0, 1] → Y . Two maps h0, h1 : X → Y are said to be homotopic if there is a

homotopy H : X × [0, 1] → Y such that H(x, 0) = h0(x) and H(x, 1) = h1(x) for

each x ∈ X. If for a map f : X → Y , there exists a map g : Y → X such that

gf ' 1X and fg ' 1Y , then X is homotopy equivalent to Y . We may write this

equivalence as X ' Y .

Definition 8. A space is said to be contractible if it is homotopy equivalent to a

point.

Lemma 2. If two manifolds have the same homotopy type, then they have the same

cohomology groups.
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Proof. It is important to first make use of another Lemma:

Lemma 3. Homotopic maps induce the same maps on cohomology.

In particular, suppose M and N are manifolds and let h0, h1 : M → N with

h0 ' h1. Then h∗0 = h∗1.

Proof. Let H : M ×R → N be a homotopy map with H(m, 0) = h0 and H(m, 1) =

h1. Suppose ι0 and ι1 represent the embeddings of M as M × {0} and M × {0}

into M × R, respectively, and consider the projection map π : M × R →M . Since,

π ◦ ιk = Id, (k = 1, 2), ι∗k ◦ π∗ = Id on the chain level; but, since ιk ◦ π 6= Id,

π∗ ◦ ι∗k 6= Id. However, π∗ ◦ ι∗k ' Id on the chain level. To illustrate this, we can

introduce a degree lowering homotopy operator, K : Ωp(M × R) → Ωp−1(M × R).

If η ∈ Ωq(M × R), we can write η in the form

η(x, t) =
∑

I

fI(x, t) dxI ∧ dt+
∑

J

gJ(x, t) dxJ .

Here the fI(x, t) and gJ(x, t) are smooth real-valued functions on M×R, x is a local

coordinate on M , I runs over multi-indices of length q−1, J runs over multi-indices

of length q, and t is the usual coordinate on R. Then K is given by

Kη(x, t) =
∑

I

(∫ t

0

fI(x, s) ds

)
dxI

(note that the dxJ terms are all killed). From Bott and Tu [1], it follows that the

operator K satisfies the identity

±(K ◦ d− d ◦K) = 1− π∗ ◦ ι∗0

So 1 = π∗ ◦ ι∗0 on cohomology. Similarly, we also have that 1 = π∗ ◦ ι∗1 on cohomology

and
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π∗ι∗1 = π∗ι∗0 .

By composing with the induced map H∗,

π∗ ◦ ι∗1 ◦H∗ = π∗ ◦ ι∗0 ◦H∗ =⇒

π∗ ◦ (H ◦ ι1)∗ = π∗ ◦ (H ◦ ι0)∗

Since H ◦ ι0 = H(m, 0) = h0 and H ◦ ι1 = H(m, 1) = h1,

π∗ ◦ (H ◦ ι1)∗ = π∗ ◦ (H ◦ ι0)∗ =⇒

π∗ ◦ h∗1 = π∗ ◦ h∗0

Therefore, h∗1[ν] = h∗0[ν] for any closed form ν ∈ Ωp(N).

Now, let f : M → N and g : N →M where f and g are homotopy inverses of

one another. That is, gf ' 1M and fg ' 1N . Then

(gf)∗ = f ∗g∗ = 1 : H•(M) → H•(M) and

(fg)∗ = g∗f ∗ = 1 : H•(N) → H•(N).

So f ∗ : H•(N) → H•(M) is the inverse to g∗ : H•(M) → H•(N) and the cohomology

groups agree.

Proposition 5. (Poincaré Lemma) If M is contractible, then H•(M) = H•({pt}).

In particular, every closed form is exact.

Proof. That H•(M) = H•({pt}) follows immediately from Lemma 2.

Example 4. Let U ⊆ Rn be a star shaped set. That is, U is an open subset of Rn

such that if x ∈ U , then there is a line segment joining x, to the ”origin,” x0 ∈ U .
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By defining h0 : U → {x0} by x 7→ x0 and h1 : {x0} → U by x0 7→ x0, we see that

U ' {x0} so U is contractible. In particular, Rn is a star shaped set so

H•(Rn) =


R • = 0

0 otherwise

Proposition 6. If a manifold, M , is of finite type, then its cohomology is finite

dimensional.

Proof. Suppose M has dimension n. Since M is of finite type, then M has a

nonempty good cover, i.e., a finite open cover {Uα}α∈{1,...,m} of size m, with each

Uα ∈ {Uα} and every nonempty finite intersection, Uα1 ∩ · · · ∩Uαj
, diffeomorphic to

Rn.

We can proceed by induction on m.

If m = 1, then by Proposition 5, H•(M) is finite dimensional. Assume then, that

H•(M) is finite dimensional for all good covers of size k and suppose M has a good

cover of size k + 1. Let U = U1 ∪ · · · ∪ Uk and V = Uk+1 so M = U ∪ V .

By the Mayer-Vietoris sequence,

· · · // Hq(U ∩ V ) d∗ // Hq+1(M)
r // Hq+1(U)⊕ Ωq+1(V ) // · · ·

so

Hq+1(M) ∼= ker r ⊕ im r ∼= im d∗ ⊕ im r

and Hq+1(M) is finite dimensional since Hq+1(U), Hq+1(V ) and Hq(U ∩ V ) are

all finite dimensional (note: that Hq(U ∩ V ) is finite dimensional follows from the
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induction hypothesis since U ∩V = (U1 ∩Um+1)∪ · · · ∪ (Um ∩Um+1) is a finite good

cover of size k). Hence, H•(M) is finite dimensional.

2.2 Cohomology with local coefficients

In the discussion thus far, we have relied on the fact that our manifold, M

is simply connected. But what happens when M is not simply connected? This

question leads us to the discussion of a cohomology group with local coefficients,

H•(M,L). Before describing the nature of H•(M,L), lets first introduce some

necessary vocabulary.

2.2.1 Sheaves and Presheaves

Definition 9. Suppose R is a PID (recall that a PID is an integral domain with the

property that all ideals are principal) and let M be a topological space. A Sheaf, S

of R−modules over M is a topological space S with a map π : S →M such that the

following conditions hold:

1. π is a local homeomorphism of S onto M ;

2. π−1(m) is an R−module for each m ∈M ; and

3. composition laws are continuous in the topology on S.

Definition 10. A presheaf P = (SU , ρU,V ) on M is a collection of R−modules, SU

for each open set U ⊂ M and homomorphisms ρU,V : SU → SV for each inclusion

U ⊆ V of open sets in M such that the following conditions are satisfied.
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1. ρU,U = idSU

2. If U ⊆ V ⊆ W , then ρU,W = ρU,V ◦ ρV,W

If U ⊂M , the functor Ωq : U → { q−forms on U } is an example of a presheaf.

There is a natural identification between sheaves and presheaves. If S is a

sheaf, then for each open set U ⊂ M , one can associate an R−module, Γ(S, U) of

sections of S over U . Conversely, each presheaf has a unique associated sheaf, called

the ”sheafification” S. If P = (SU , ρU,V ) is a presheaf on M , then the stalk of S over

m is lim−→SU , the limit taken over finer and finer neighborhoods of m.

For example, if N is a manifold, the set of germs of C∞ functions on M is a

sheaf. The corresponding presheaf attaches C∞(U) to each open set U .

Definition 11. Suppose S and S
′
are two sheaves over M with projections π and

π
′
respectively. A sheaf homomorphism is a map ψ : S → S

′
such that π

′ ◦ ψ = π.

Definition 12. A sheaf S over M is said to be fine if it has partitions of unity. That

is, for any open cover {Ui} of M , there is a family of endomorphisms such that

1. supp(ϕi) ⊆ Ui; and

2.
∑

i ϕi = id

Definition 13. A sheaf, S, on M is locally constant if for any m ∈ M , there is a

neighborhood N of m such that the restriction of S to N is isomorphic to a product

N ×G, where the coefficient module G is given the discrete topology.

17



2.2.2 H•(M,L)

Suppose M is a manifold that is not simply connected, with universal cover M̃

and covering map π. If L is a representation space of π, then there is a cohomology

group of M with local coefficients in L, denoted H•(M,L). Note that in the special

case where L = C, with the trivial representation, H•(M,L) is just the usual

cohomology group, H•(M,C).

H•(M,L) can be described as the sheaf cohomology of the locally constant

sheaf L whose local sections can be identified with the locally constant functions

on M̃ with values in L that transform according to the representation f(g ·m) =

σ(g) · f(m).
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Chapter 3

Twisted Cohomology Group

In Chapter 2, we introduced the notion of cohomology with local coefficients,H•(M,L).

One can think of the twisted cohomology group as a generalization of H•(M,L). In

particular, suppose ω is a closed (not necessarily exact!) differential (2k+1)-form on

a manifold M . A twist on the usual cohomology can be constructed from the space

of differential forms, Ω∗(M), by defining a differential dω = d + ω∧ where d is the

usual exterior derivative d : Ωq(M) → Ωq+1(M). Noting that, for any differential

form η,

d2
ωη = dω(dη + ω ∧ η) = d2η + ω ∧ dη + dω ∧ η − ω ∧ dη + ω ∧ ω ∧ η = 0,

we see that dω induces a Z2k graded differential complex:

· · · dω // Ωj mod2k(M)
dω // Ωj+1 mod2k(M)

dω // Ωj+2 mod2k(M)
dω // · · ·

Observe that if k = 0, dω induces a Z graded complex and if k = 1, dω induces a

Z2 graded complex. Additionally, for k ≥ 1, the action by dω sends forms of odd

degree to forms of even degree and forms of even degree to forms of odd degree. We

then define the twisted cohomology group to be the quotient group

H•
ω(M) =

ker dω : Ω•(M) → Ω•+1(M)

im dω : Ω•−1(M) → Ω•(M)

Proposition 7. Hω(M) forms a group under addition and satisfies the following

functorial properties:
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1. (Normalization) If ω = 0, then H•
ω(M) = H•(M)

2. (Cup Product) If ω and ω
′
are two odd forms, there is a cup product homo-

morphism

Hp
ω(M)⊗Hq

ω′ (M) → Hp+q

ω+ω′ (M)

3. (Naturality) If f : M → N is a smooth map, then there is a homomorphism

f ∗ : Hp
ω(N) → Hp

f∗ω(M)

Proof.

1. If ω = 0, then dω = d+ ω = d and

H•
ω(M) =

ker dω : Ωeven(M) → Ωodd(M)

im dω : Ωodd(M) → Ωeven(M)
=

ker d : Ωeven(M) → Ωodd(M)

im d : Ωodd(M) → Ωeven(M)
= H•(M).

2. If suffices to show that if dω = 0 and dω
′ = 0, where ω ∈ Ωp(M) and ω

′ ∈

Ωq(M), then dω+ω′ = 0. In particular,

dωα = 0 ⇐⇒ dα = −ω ∧ α and dω′β = 0 ⇐⇒ dβ = −ω ∧ β

Then

d(α ∧ β) = dα ∧ β + (−1)deg(α)α ∧ dβ

= −ω ∧ α ∧ β + (−1)deg(α)+1α ∧ ω′ ∧ β

= −ω ∧ α ∧ β − ω
′ ∧ α ∧ β

= −(ω + ω
′
) ∧ (α ∧ β)

So dω+ω′ = 0.
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3.

f ∗dωη = f ∗(d+ ω∧)η

= f ∗(dη) + f ∗(ω ∧ η)

= d(f ∗η) + (f ∗ω) ∧ (f ∗η)

= df∗ωη̃ where η̃ = f ∗(η)

Corollary 4. H•
ω(M) is a Z2k graded module over H•(M).

Proof. By Proposition 8(1), the cup product homomorphism in Proposition 8(2)

defines an action

Hp(M)⊗Hq
ω(M) → Hp+q

ω (M)

whose module properties follow directly from the usual wedge product properties.

Since d2
ω = 0, the module Hq

ω(M) is Z2k graded.

Theorem 5. If ω and ω
′
are closed (2k+1) forms in the same de Rham class, then

H•
ω(M) ∼= H•

ω′ (M).

Proof. Since [ω] = [ω
′
], then, for some η ∈ Ω2k(M), ω

′−ω = dη. It is then sufficient

to show that eη conjugates dω to dω
′ . In particular, we wish to show that

e−ηdωe
η = dω′ .
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Suppose ν ∈ Ωq(M). Then

e−ηdωe
ην =e−η(d+ ω∧)eην

=e−ηd(eη ∧ ν) + ω ∧ ν

=e−ηd(eη) ∧ ν + e−ηeη ∧ dν + ω ∧ ν

=e−ηeηdη ∧ ν + dν + ω ∧ ν (since d(eη) = eηdη)

=(dη ∧+d+ ω∧)ν

=((ω
′ − ω) ∧+d+ ω∧)ν = (d+ ω

′
)ν = dω′ν.

3.1 Twisting by a one form

A special case to note is when k = 0. As mentioned in the introduction,

twisting by a one-form arises naturally in the study of Supersymmetry.

Define a map

pω : π1(M) → R by

γ 7→
∫

γ

ω.

By Stokes’ Theorem, pω is a homomorphism and so defines a local coefficient system

L. We identify L with the sheaf of germs of C∞ functions f such that df = −ωf .

Note that when ω ≡ 0, this is just the constant sheaf R.

Theorem 6. Suppose M is a differentiable manifold and ω a closed one form. Then

H•
ω(M) ∼= H•(M,L)

Proof. Note that

0 // L // Ω0(M)
d+ω // Ω1(M)

d+ω // Ω2(M)
d+ω // · · ·
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is a fine resolution of L, since the Ωj(M) are fine sheaves (see Warner [9]) and by

construction of L, we have exactness at Ω0(M). So the cohomology groups for the

fine resolution L coincide with the twisted cohomology groups for the 1-form ω.

That is,

H•
ω(M) ∼= H•(M,L).

Example 5. Let M = S1 = R/Z. Let’s compute the twisted cohomology group

H•
ω(M).

First, observe that, since ω ∈ Ω1(M), ω = h(x)dx for h(x) ∈ C∞(M). Lift h(x) to

a periodic function on R. Then if [ω] = 0,
∫ 1

0
h(x)dx = 0.

Now,

ker
(
dω : Ω0(M) → Ω1(M)

)
= {f ∈ C∞(M) | dωf = 0} .

The condition dωf = 0 says that f ′(x) = −h(x)f(x) or f(x) = f(0)e
∫

h(x).

But if f ∈ C∞(M) then f(1) = f(0) so

e−
∫ 1
0 h(x)dx = 1 =⇒

∫ 1

0

h(x)dx = 0.

Therefore, if ω is exact, ker dω = R · e
∫

h(x)dx and H0
ω(M) ∼= R; and if ω is not

exact, ker dω ≡ 0 and H0
ω(M) = 0.

If α ∈ im dω : Ω0(M) → Ω1(M), then for some f ∈ C∞(M) , α = dωf . Additionally,

since M = R/Z, we can consider behavior on the universal cover M̃ = R. Since

23



α ∈ Ω1(M), we can denote α = g(x)dx for some g ∈ C∞(R). So

dωf =g dx ⇐⇒

(d+ ω)f =g dx ⇐⇒

f
′
+ hf = g.

Solving the first order linear differential equation, we see that

f(x) = e−
∫

hdx

∫
g · e

∫
hdxdx+ Ce−

∫
hdx.

Letting H(x) = e
∫

h(x)dx, we see that

H(0) = e
∫ 0
0 h(x)dx = 1

and

f(x) =
1

H(x)

[∫ x

0

g(t) ·H(t)dt+ C

]
.

Note that

f(0) =
1

H(0)

[∫ 0

0

g(t) ·H(t)dt+ C

]
= C

So

f(x) =
1

H(x)

[∫ x

0

g(t) ·H(t)dt+ f(0)

]
. (3.1)

So α is exact precisely when a solution to (3.1) descends to M ; in particular, if (3.1)

has a periodic solution. It is then necessary to consider two cases:

• Case I: [ω] = 0 (ω is exact): Again,
∫ 1

0
h(x)dx = 0 so H(1) = H(0) = 1 so,

from (3.1), we have

f(x) =
1

H(x)

[∫ x

0

g(t) ·H(t)dt+ f(0)

]
and

f(1) =

∫ 1

0

g(t) ·H(t)dt+ f(0)
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Since f(x) ∈ C∞(M), f(1) = f(0), so α is exact with respect to the twisted

differential on M if and only if
∫ 1

0
g(x) ·H(x)dx = 0 . So, H1

ω
∼= R.

• Case II: [ω] 6= 0 (ω is not exact):

If ω is not exact, then H(1) = A 6= 1 = H(0).

f(x) =
1

H(x)

[∫ x

0

g(t) ·H(t)dt+ f(0)

]
and

f(1) =
1

A

[∫ 1

0

g(t) ·H(t)dt+ f(0)

]
Again, since f(0)− f(1) = 0 and f ∈ C∞(M),

f(0) =
1

A

[∫ 1

0

g(x) ·H(x) + f(0)

]
dx ⇐⇒

f(0) =
1

A− 1

∫ 1

0

g(x) ·H(x)dx.

So there is exactly one periodic solution and α is exact with respect to the

twisted differential.

Hence, if ω is exact,

H•
ω =


R • = 0, 1,

0 otherwise.

If ω is not exact, then

H•
ω = 0,

which agrees with the usual cohomology with local coefficients of S1.
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3.2 An Example with k > 0

Suppose M = S2k+1 with k ≥ 1 and ω ∈ Ω2k+1(M). Let us calculate the

twisted cohomology group H•
ω. If [ω] = 0, then, by Theorem 5,

Heven
ω (M) ∼= H0(M) = R and

Hodd
ω (M) ∼= H2k+1(M) = R.

However, if [ω] 6= 0, then Heven
ω = 0. We can see this by first supposing that

η ∈ Ωeven(M). Then η = η0 + η2 + · · · + η2k where deg(ηa) = a. If η is dω−closed,

then dωη = 0 so

(d+ ω∧)η = dη0 + dη2 + · · ·+ dη2k + ω ∧ η0 + ω ∧ η2 + · · ·+ ω ∧ η2k = 0.

For dimensional reasons, this implies that dη2j = 0 for j ∈ {0, . . . , k − 1}. Addi-

tionally, dη0 = 0 =⇒ η0 = C for some C ∈ R so it follows that

dη2k + ω ∧ η0 = 0 ⇐⇒ dη2k = −Cω.

Since [ω] 6= 0, C = η0 = 0 =⇒ dη2k = 0 (otherwise, ω would be exact). Since

Hdeg ηa(M) = 0, the ηa are exact so there exist νb ∈ Ωodd(M) such that η2j = dν2j−1

for j ∈ {1, . . . , k}. Hence,

η = η0 + η2 + · · ·+ η2k = dν1 + dν3 + · · ·+ dν2k−1 = d(ν1 + ν3 + · · ·+ ν2k+1) = dν.

Since ν ∈ Ωodd(M), for dimensional reasons, dν = dων. So every closed form is

exact in the twisted differential complex and Heven
ω (M) = 0.
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Similarly suppose that ν ∈ Ωodd(M). Then ν = ν1 +ν3 + · · ·+ν2k+1 where deg(νa) =

a. If ν is dω−closed, then dων = 0 so

(d+ ω∧)ν = dν1 + dν3 + · · ·+ dν2k+1 + ω ∧ ν = 0.

For dimensional reasons, ω ∧ ν = 0 and dν2j+1 = 0 for j ∈ {0, . . . , k}.

Since Hdeg νa(M) = 0, for a ∈ {1, . . . , 2k − 1}, the corresponding νa are exact so

there exist µb ∈ Ωeven(M) such that ν2j+1 = dµ2j for j ∈ {0, . . . , k − 1}. Now,

since [ω] is a generator of H2k+1(M), ν2k+1 − µ0 ∧ ω = Cω + dµ2k, i.e., ν2k+1 =

(C + µ0∧)ω + dµ2k for some constant C ∈ R and µ0, µ2k ∈ Ωeven(M). So

ν = ν1 + ν3 + · · ·+ ν2k+1 = dµ0 + dµ2 + · · ·+ dµ2k + (C + µ0∧)ω

= d(µ0 + µ2 + · · ·+ µ2k−2) + (C + µ0∧)ω + dµ2k

= dω(µ+ C).

So if [ω] 6= 0, Hodd
ω (M) = 0.

Hence, for [ω] 6= 0

Heven
ω (M) = Hodd

ω (M) = 0

3.3 The double complex

The Z2k graded twisted differential complex can actually be viewed as coming

from a double complex. In particular, by definition of the exterior derivative, we

have a Z graded complex

· · · d // Ωq−1(M)
d // Ωq(M) d // Ωq+1(M)

d // · · ·
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and since ω is a closed odd form, we also have a complex

· · · ω∧ // Ωq−2k−1(M)
ω∧ // Ωq(M) ω∧ // Ωq+2k+1(M)

ω∧ // · · ·

Together, these two complexes produce a double complex with Ωp+q(2k+1)(M) in the

(p, q) position:

q

...
...

OO

...
...

· · · d // Ω4k+1(M)
d //

ω∧
OO

Ω4k+2(M)
d //

ω∧
OO

Ω4k+3(M)
d //

ω∧
OO

Ω4k+4(M)
d //

ω∧
OO

· · ·

· · · d // Ω2k(M)
d //

ω∧

OO

Ω2k+1(M)
d //

ω∧

OO

Ω2k+2(M)
d //

ω∧

OO

Ω2k+3(M)
d //

ω∧

OO

· · ·

Ω0(M)
d //

ω∧

OO

Ω1(M)
d //

ω∧

OO

Ω2(M)
d //

ω∧

OO

· · · // p

To show that the twisted differential complex arises from this double complex,

it is sufficient to show that the actions d and ω∧ anticommute. This condition is

satisfied since, for any differential form η, d(ω ∧ η) = dω ∧ η − ω ∧ dη = −ω ∧ dη.

Note that the anticommuting property is necessary since d : Ωp(M) → Ωp+1(M),

ω∧ : Ωp(M) → Ωp+2k+1(M).

3.3.1 Spectral Sequences

Definition 14. A spectral sequence is a sequence of differential groups {Ek, dk}

such that Ek = H(Ek−1).

Spectral Sequences are extremely useful for computing cohomology and ho-

mology groups. By considering the twisted cohomology group as the cohomology of
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the total complex of a double complex, we can obtain the following results involving

spectral sequences:

Theorem 7. There is a spectral sequence converging to H•
ω(M), with E1 term

H•
deR(M) and differential d1 given by cup product with the de Rham class of ω.

Proof. This is immediate from §III.14 of Bott and Tu [1].

Corollary 8. If M has finite type, then the twisted cohomology groups H•
ω(M) are

finite-dimensional, with dimH•
ω(M) ≤ dimH•

deR(M).

Proof. Since Ek = H(Ek−1) with E1 = H•
deR(M), dimEk ≤ dimEk−1 for each k so

dimH•
ω(M) ≤ dimH•

deR(M).

Corollary 9. Assume M has finite type. Then the Euler characteristic of the twisted

cohomology, dimHeven
ω (M)−dimHodd

ω (M), agrees with the usual Euler characteristic

χ(M).

Proof. This follows from the Euler-Poincaré principle, which says that the homology

of a chain complex of finite type has the same Euler characteristic as the original

complex. Thus,

χ(H•
ω(M)) = χ(E∞) = χ(E1) = χ(H•

deR(M)) = χ(M).
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