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Preliminary comparisons conducted between two aerosol jet printed samples, an 

interconnect-over-fillet specimen and baseline test coupons, revealed strong differences 

in surface agglomeration characteristics. These differences were subsequently found to be 

strongly correlated with differences in thermal cycling durability. One potential cause 

could be the differences in the carrier and sheath gas flow rates at which the nanoparticle 

ink was deposited onto the substrate during the AJP process. A parametric study was 

conducted to explore any relationship between gas flow rates and print quality. 

Serpentine test structures were aerosol jet printed at parametrically varied carrier and 

sheath gas flow rates. For each serpentine, its macroscale and micromorphological 

features were assessed as quality metrics and investigated for a potential relationship with 

gas flow rates. Future studies will subject these printed serpentine test structures of 



varying quality to thermal cycling to establish possible correlations between gas flow rate 

and thermal cycling durability.  
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Chapter 1 – Introduction 

In this chapter, the problem statement for this thesis is defined followed by 

background information on the subject and a literature review. The rest of this thesis is 

structured as follows: Chapter 2 discusses the preliminary quality and reliability findings 

between printed hybrid electronics that were fabricated in a mostly similar fashion, 

Chapter 3 is motivated by the results of Chapter 2 and investigates the impact of varying 

carrier and sheath gas flow rate on print quality, and Chapter 4 summarizes all of the 

major findings and technical contributions provided. Some background information in 

this chapter will be repeated in Chapters 2 and 3 to make submitting journal publications 

easier.  

 

Section 1.1: Problem Statement 

The quality of printed conductors, specifically of silver nanoparticle inks, in 

printed hybrid electronics will be assessed as a function of print parameters, specifically 

carrier and sheath gas flow rates. Quality will be evaluated by the printed line’s 

macroscale and micromorphological features. 

 

Section 1.2: Background and Motivation 

With the advent of additive manufacturing in every field of engineering, printed 

hybrid electronics are no exception and on the rise because they help address the 

emergence of multifunctional structures with easier processing. Many companies are 

exploring printed electronic technologies because of some of its advantages and 
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functionalities (e.g., three-dimensional printed conformal form factors on curvilinear 

surfaces) that are not achievable through conventional technologies. 

The manufacturing quality, manufacturing defects, and manufacturing yield for 

printed hybrid electronics are of different scale as compared to that witnessed for 

conventional electronics. This stems from a large variety of different process parameters 

and process challenges. Currently there is little understanding of the field, specifically for 

aerosol jet printing (AJP). The employment of numerical simulations helps avoid long-

iterative trial and error. As a result, the present research team took a fundamental 

approach to the problem by computationally modeling the print process involving all the 

necessary parameters that dictate the process yield and quality (Chen et al., 2018). These 

simulations have been conducted down to the particle level and provides understanding 

that will help make these technologies successful. This project is all about exploring 

various aspects of this technology with a focus on the fabrication and reliability of these 

products.  

As additive manufacturing becomes more prevalent in the fabrication of 

electronics addressing the growing complexity of devices, there is a need to create well-

formed, robust circuitization, and interconnects between components mounted onto 

different leveled surfaces. To connect dies and different components on curvilinear 

substrates, the components will need to be bonded to the substrate. Conventionally, this 

has been achieved with wirebonds or soldering, but printed hybrid electronics offer a 

remarkable alternative via printed fillets with printed interconnects over them. The 

printed interconnect over fillet technology is discussed more in-depth in Chapter 2. 

Through printed hybrid electronics, new form factors can be obtained such as 



3 

 

conformable or embedded electronics with the hope that electronics can be fabricated 

directly into parts themselves without the need for printed circuit boards or surface-

mounted components. 

AJP is a direct-write printing technology built on the fundamentals of additive 

manufacturing. The process involves the liquid material of interest in atomized form 

creating a dense aerosol of micron-scale droplets with diameters typically ranging from 

one to five microns (Hon et al., 2008). The majority of inks, with a wide range of 

viscosities between 0.7 and 2,500 cPs, capable of being aerosolized can be used for the 

AJP. The aerosolized liquid drops are carried by nitrogen gas, denoted as carrier gas, to 

the deposition head through a mist tube and then focused within the head through the 

sheath gas before being sprayed onto the substrate. In addition to focusing and 

collimating the particles within the carrier gas flow, the sheath gas forms an outer layer 

around the aerosolized stream to prevent the contact between the aerosol particles and the 

inner walls (which in turn will prevent the condensation of solvents and hence help 

prevent clogging). Figure 1.1 shows the schematic of an ink stream as it enters the nozzle 

chamber from the mist tube through the nozzle and continuing to the substrate (Chen et 

al., 2018). 
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Figure 1.1: Schematic of the carrier and sheath gas flow geometry as well as a-c) 

different locations of interest in the AJP process (Chen et al., 2018). 

Unlike syringe printing, AJP is a non-contact, droplet-based technique that can be 

executed with a working distance of one to five millimeters away from the substrate 

leading to less dependence on the surface topology (Salary et al., 2017). Relative to inkjet 

printing, AJP allows finer printed features, which directly leads to more flexibility, 

scalability, and conformal printability. The printed features typically have controllable 

ink stream widths from five microns to five millimeters (Hon et al., 2008). Direct-write 

technologies and specifically AJP are a powerful tool in the world of microelectronics as 

it allows for rapid prototyping of various components such as interconnects, sensors, and 

thin film transistors to name a few (Hoey et al., 2012). Conventional electronics 

manufacturing techniques such as photolithography or electroplating are limited due to 

geometry, harsh operating conditions, and/or material properties that AJP helps overcome 

(Salary et al., 2017). 
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Adjustable parameters possible through the AJP process include but are not 

limited to carrier and sheath gas flow rate, nozzle diameter, working distance between the 

nozzle tip and substrate, stage speed, stage temperature, substrate type, and atomizer 

energy among others. The properties of the ink such as its surface tension, solids loading, 

viscosity, wettability, and other environmental conditions can also impact the final 

quality of the trace. Because of the several parameters that can be changed, defining a set 

printing parameter space is not trivial because some of a line’s morphological properties, 

such as trace width, can be achieved through different combination of parameters, but can 

then lead to a difference in another subtle features such as agglomerations. 

Silver inks that are used in a wide variety of printed hybrid electronics are a 

suspension of silver nanoparticles in an organic binder that is then evaporated and 

sintered. There are numerous different silver inks that are all different, but as a part of 

this study one ink was the primary focus, referred to as Ink A, with two other inks 

discussed in Appendix A1. The nanoparticle silver inks used for AJP are compatible with 

a pneumatic atomizer. Ink A has a viscosity of 1.1 Pa·s or 1,100 cP and contains 75.1 

mass percent of silver nanoparticles in a solvent according to the manufacturer. The silver 

lines were printed in a single or double pass using the Optomec Inc. AJ 200 series printer. 

Two initial specimens were printed at flow rates of 80 and 50 standard cubic 

centimeters per minute (sccm) for carrier gas and 50 and 30 sccm for sheath gas. A 

subsequent varying flow rate design of experiment was conducted with carrier gas flow 

rates of 30, 50, 65, 80, and 100 sccm and sheath gas flow rates of 30, 40, and 50 sccm. A 

nozzle with a 300-micron diameter and 7.5 mm length was used. The printer stage 

temperature was constant at 50 °C and the print speed was constant at 1 mm/s. The 
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printing was conducted on FR4 or silicon substrate with a dielectric layer of Polymer N 

either printed or spin coated onto the surface before depositing the silver ink. 

The printed lines were sintered in an oven at 150 °C for three hours after spending 

a half-hour at 80 °C as an intermediate dwell (Figure 1.2). The ramp rate was a half-hour 

from room temperature to 80 °C and then another half-hour to get from 80 °C to 150 °C. 

The sintering is done in two steps because reduced adhesion was observed without the 

intermediate dwell. Moreover, it minimizes the damage to the polymer substrate and to 

the interface between the printed silver trace and polymer substrate (Park et al., 2013). 

The preheating step removes the organic binder from the silver nanoparticle ink without 

abrupt vaporization, while the main sintering step completes the necking connectives 

among the silver nanoparticles for high electrical conductivity. 

 

Figure 1.2: Sintering temperature profile utilized for all silver nanoparticle inks 

throughout this research. 

Moving away from conventional technologies can also lead to a worry that the 

technologies that will replace something that has worked for so long will not be as 

reliable. Chapter 2 addresses thermal cycling durability testing conducted to investigate 
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the reliability of printed hybrid electronics. Chapter 2 also begins to investigate trace 

morphology attributes that qualify a printed trace and can impact a device’s functional 

integrity. A good quality printed line is homogenous and continuous across its length, 

width, and thickness as well as adheres well to its intended target. Conductive lines 

require narrow width for high-density circuity and sufficient thickness for large cross-

sectional area and high current carrying capacity. 

 

Section 1.3: Literature Review 

The current literature available on printed hybrid electronics has been thoroughly 

discussed, but print process variation and the trace’s corresponding quality and reliability 

has not been exhaustively researched and is an important next step for the field to move 

forward. 

 

Section 1.3.1: Printed Hybrid Electronics 

An algorithm to aerosol jet print fillet structures, a surface transition ramp, that 

enables an electrical transition between different leveled surfaces has been completed 

(Gu et al., 2017). Fine-pitch printed conductors over microstructure fillets allows the 

following advantages over wirebonding: (a) smaller space requirements, (b) decreased 

risk of short-circuits in high density interconnect regions, and (c) reduced electrical 

length of the interconnect leading to a small and controlled electrical impedance 

discontinuity. In a separate publication, Gu et al. (2017) devised a method for measuring 

the deposition rate of an AJP ink stream by printing material into an array of inkwells 

with known volumes that were fabricated using photolithography. 
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Chen et al. (2018) developed a three-dimensional computational fluid dynamics 

model of the aerosol carrier gas flow that is confined by an annular sheath gas flow to 

pinpoint the fundamental fluid mechanics principles that control the overspray as a 

function of droplet size distribution and sheath gas flow rate. Put simply, overspray is the 

ink particles that are deposited outside of the intended trace width. Their results explain 

that there is an abundance of smaller sized drops in the overspray region at low sheath 

gas flow rates, the overspray first reduces and then increases as the sheath gas flow rate 

increases, and there is no longer a prevalence of smaller particles in the overspray region 

at larger sheath gas flow rates. There is a point of diminishing return for sheath gas flow 

rate because at high enough levels, the particle droplets start to cross the nozzle axis and 

then travel back toward the axis resulting in over collimation and increased overspray. 

Roberson et al. (2011) characterized the morphology of inkjet printed traces made 

from a microparticle and nanoparticle silver ink. Scanning electron microscope (SEM) 

images for traces printed with the two different particle size silver ink as well as varying 

sintering profiles are provided. The nanoparticle ink can attain a more conductive 

microstructure since the nanoparticles can sinter at lower temperatures, but lines printed 

with the microparticle ink had similar resistivity. Microstructures with larger grains and 

less porosity are more conductive. 

Mahajan et al. (2013) found that a trace’s line width decreases with increasing 

focusing ratio, defined as sheath gas flow rate divided by carrier gas flow rate, as well as 

stage speed. The thickness or height of the traces also increases with an increasing 

focusing ratio, but decreases with increasing stage speed. The decrease in line width with 
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increasing focusing ratio is more dramatic in smaller nozzles. The complete general 

trends investigated by Mahajan are presented in Table 1.1 below. 

Process Variable Line Width Line Thickness 

Focusing Ratio Decreases Increases 

Nozzle Diameter Increases Decreases 

Carrier Gas Flow Rate Remains the Same Increases 

Stage Speed Decreases Decreases 

Table 1.1: Effect of independently increasing each process variables on printed line 

geometry. 

Smith et al. (2017) demonstrated that there is a general trend of decreasing line 

width with increasing substrate temperature and that overspray is more significant at 

higher temperatures. A higher substrate temperature also resulted in a more resistive line 

leading to a material resistivity four to five times larger than that of bulk silver at 100 °C 

for silicon, glass, and polyimide substrates. Ultrasonic atomization generates droplets of 

the ink and Agarwala et al. (2017) showed that the thickness of a printed line increases 

with increasing ultrasonic current. Salary et al. (2017) developed a computational fluid 

dynamics model that verified the overall line morphology trends observed through an in-

situ online monitoring camera when varying flow rate parameters. For a fixed carrier gas 

flow rate and print speed of 30 sccm and 1 mm/s, respectively, they recommended a 

process window between 40 and 100 sccm for the sheath gas flow rate to optimize the 

printed line density, edge quality, overspray, and line discontinuity. 

A limited amount of work has focused on the reliability of printed hybrid 

electronics. Salam et al. (2008) studied the reliability of printed interconnects by 

analyzing their microstructure, particularly surface roughness and heterogeneity. Cook 

(2013) reported the presence of crack formation in AJP fabricated copper traces subjected 

to mechanical and electrical fatigue, but no images were presented. Happonen (2016) 

studied the cyclic bending reliability of printed conductors fabricated by screen and roll-
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to-roll methods. Some of the key findings from this paper indicate (i) decreasing line 

width increased lifetime; (ii) multi-pass printing of a given line decreased lifetime; (iii) 

polymer film thick silver paste with the smallest volume fraction of conductive silver 

particles increased lifetime; and (iv) decreasing substrate thickness also increased 

lifetime. Hackler et al. (2017) printed on polyethylene terephthalate substrates using a 

roll-to-roll screen printing process and exposed these test coupons to high temperature 

operation life (HTOL) and low temperature operation life (LTOL) tests. The HTOL and 

LTOL tests were defined to run for 168 hours or one week at 125 °C (HTOL) and -25 °C 

(LTOL) in ambient air. At the time of their publication, the testing was not completed. 

 

Section 1.3.2: Gaps in the Literature 

There has been some work done to begin understanding the effects of different 

AJP printing parameters on the final quality of a printed trace, but there is still plenty 

more to be done. Operating process windows that others have suggested are specific to 

the AJP printer used for the study, the type of ink being utilized, and less quantifiable 

features such as the printer maintenance. Moreover, the definition of print quality as a 

function of print parameters has been mostly qualitative aside from quantifying a line’s 

overall macroscale geometry such as width and thickness and average bulk electrical 

properties such as conductivity. Few studies have investigated the micromorphology of 

the printed trace, such as its average agglomeration length scales in the bulk as well as on 

the surface. Moreover, limited work has been done on the long-term reliability and 

durability of printed hybrid electronics, specifically AJP, to estimate a life time for the 

traces when exposed to accelerated thermal cycling. 
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Section 1.4: Research Objectives 

This research study began with assessing the thermal cycling durability of two 

types of specimens: an interconnect over fillet (IoF) specimen and simple baseline test 

structures. These two specimens lasted vastly different lifetimes. The revelation of 

fundamentally different micromorphology between the two printed samples suggested a 

possible correlation between print quality and thermal cycling reliability. Observing these 

different correlations can lead to insights into the reliability of the trace without going 

through expensive and time consuming durability testing. Potential reasons for the 

difference in quality observed includes printing at different carrier and sheath gas flow 

rates as well as the ink condition. Attempts were made to increase the solids fraction of 

the ink by bubbling nitrogen to displace the solvent from the ink, but such trials led to 

minimal changes in the ink’s dryness. As a result, for this study, a systematic design of 

experiment into flow rate variation was conducted and an investigation into ink dryness’s 

role on trace quality was tabled for future work. Carrier and sheath gas flow rates were 

varied with the hopes of replicating varying quality traces to establish a correlation 

between the print parameters and the print quality. Although this correlation may be 

qualitatively generic, it is quantitatively specific to the printer, ink, and test specimen 

used in this design of experiments. The impact of this study can provide insights into the 

optimal range of print parameters for printing high quality traces. 
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Chapter 2 – Ink A Reliability Studies 

In this chapter, the thermal cycling durability of two different aerosol jet print 

batches using silver nanoparticle Ink A is compared and investigated for differences. 

 

Section 2.1: Introduction 

Additively manufactured printed hybrid electronics, especially those printed with 

aerosol jet printing (AJP), provide a unique opportunity for specialty products such as 

electronics printed on curved surfaces.  However, the print and sintering processes 

produce intrinsically different microstructures and defects compared to conventional 

processes like wirebonds and soldering. Therefore, an in-depth understanding of their 

robustness and reliability is imperative before printed hybrid electronics can replace 

conventional surface mounted assemblies in commercial products. AJP allows for many 

advantages over conventional technologies but can also be problematic given the 

innumerable permutations of issues related to the material being printed, the printer 

machine itself, and other process factors that can arise. These include but are not limited 

to the stage platen temperature (i.e. 25 °C or 50 °C), substrate type (i.e. FR4, silicon, 

glass slide), flow behavior (laminar or turbulent), atomizer energy (pneumatic or 

ultrasonic), stand-off distance (1 to 5 mm), nozzle length and tip diameter, print speed 

(0.1 to 10 mm/s), aerosol viscosity, carrier and sheath gas flow rate, ink chemistry and 

condition, integrity of translation stage, environmental conditions, and many more 

(Salary et al., 2017). 

A limited amount of work has focused on the reliability of printed hybrid 

electronics. Salam et al. (2008) studied the reliability of printed interconnects by 
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analyzing their microstructure, particularly surface roughness and heterogeneity. Cook 

(2013) reported the presence of crack formation in AJP fabricated copper traces subjected 

to mechanical and electrical fatigue, but no images were presented. Happonen (2016) 

studied the cyclic bending reliability of printed conductors fabricated by screen and roll-

to-roll methods. Some of the key findings from this paper indicate (i) decreasing line 

width increased lifetime; (ii) multi-pass printing of a given line decreased lifetime; (iii) 

polymer film thick silver paste with the smallest volume fraction of conductive silver 

particles increased lifetime; and (iv) decreasing substrate thickness also increased 

lifetime. Hackler et al. (2017) printed on polyethylene terephthalate substrates using a 

roll-to-roll screen printing process and exposed these test coupons to high temperature 

operation life (HTOL) and low temperature operation life (LTOL) tests. The HTOL and 

LTOL tests were defined to run for 168 hours or one week at 125 °C (HTOL) and -25 °C 

(LTOL) in ambient air. At the time of their publication, the testing was not completed. 

Limited work has been done on the long-term reliability and durability of printed hybrid 

electronics, specifically AJP, to estimate a life time for the traces when exposed to 

accelerated thermal cycling. 

In this study, the reliability of two different types of samples fabricated with AJP 

is investigated. Accelerated thermal cycling durability results are presented and an 

investigation to correlate the quality of the trace to its associated lifetime is suggested. 

 

Section 2.2: Test Specimens 

Silver inks that are used to print conductive features are used in a wide variety of 

printed hybrid electronics and they are typically a suspension of silver nanoparticles in an 
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organic binder or solvent. The solvent is then evaporated during sintering, after the ink is 

deposited on a substrate. There are numerous different silver inks, but for this study, a 

commercial ink (termed Ink A here) is utilized. Ink A has a viscosity of 1.1 Pa·s or 1,100 

cP and contains 75.1 weight percent of silver nanoparticles in a solvent, according to the 

manufacturer’s specification. In other studies detailed in Appendix A1, different 

conductor and non-conductor inks will be studied to determine which is best in various 

situations. 

 

Section 2.2.1: Interconnect over Fillet (IoF) Specimen 

To connect dies and different components on a substrate, pads on the components 

need to be bonded to corresponding pads on the substrate. Conventionally, in face-up dies 

this has been achieved with wirebond technology or soldering. However, the strain relief 

loop in wirebonds adds to the space requirements, increases parasitic losses, and 

increases the vulnerability of wire-sweep problems during transfer molding processes. 

Additive manufacturing methods offer alternate methods to perform this interconnection 

by using fillets with interconnects printed over them, as shown in Figure 2.1 (Gu et al., 

2017). The fillets serve as a ramp between the substrate and top of the die for the printed 

traces instead of printing down the die at a right angle, which would have an undesirable 

stress concentration and could be difficult to print. In Figure 2.1a, the IoF geometry is 

depicted with the substrate, fillet, and die components. These fillets are built-up layer by 

layer, using a commercial polymer dielectric material (designated as Polymer N in this 

study).  Polymer N is also used as a layer of adhesion-promoting dielectric film over the 

substrate and dies, to facilitate the adhesion of printed conductor traces that are printed 
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over the dies, fillets, and substrate. For this study, AJP and direct write methods were 

utilized to print the Polymer N fillets as well as the silver traces and Polymer N adhesion 

undercoating dielectric layer. 

 

      

Figure 2.1: a) schematic of fillet (red) technology with trace (black) traversing die (gray) 

and substrate (white), b) optical microscope image of fine pitch AJP traces printed over 

substrate, fillet, and die, and c) SEM image of AJP traces printed over substrate, fillet, 

and die. 

This IoF test specimen is populated with four 10-millimeter square silicon die of 

375-micron thickness on a FR4 substrate (Figure 2.2). For convenience of discussion, we 

have defined four directions of the substrate: North, South, East and West. A fillet is 

printed along the northern and southern edges of each die, resulting in a total of eight 

triangular prismatic fillets. The fillets and adhesion layer are printed with Polymer 

material N and cured with in-situ UV curing. The fillet geometry and print process are 

described elsewhere in the literature (Gu et al., 2017). A 10-micron thick layer of 



16 

 

Polymer N is also printed over these three regions (FR4 substrate, Polymer N fillet, and 

silicon die), as an adhesion and dielectric layer before the Ink A trace is printed on top.  

The IoF traces are printed at a carrier gas flow rate of 80 sccm and sheath gas 

flow rate of 50 sccm. Other print parameters include print speed (1 mm/s), deposition rate 

(0.00075 mm3/s), liquid thickness per pass (5 microns), ink stream width (150 microns), 

number of passes (2), and stage temperature (50 °C). The serpentine pattern of the trace 

allows for different geometry of traces, straight segments and right angles, as well as 

numerous trace segments for repeatability. This Ink A IoF specimen is denoted 

IoF171101. 

      

Figure 2.2: Interconnect over fillet specimen for Ink A (IoF171101). 
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These traces are connected to bond pads that are printed for in-situ DC resistance 

monitoring. Previous printed pad designs (outlined in Appendix A1) were unsuccessful 

due to sintered silver paste’s (which was used to connect a wire to a silver pad directly on 

FR4 substrate) poor durability during thermal cycling tests. As shown in Figure 2.3, this 

problem was remediated by using a conventional copper-clad FR4 substrate and forming 

copper bond pads by a conventional subtractive etching process. The printed silver pad 

contact terminals were printed on the copper pads, such that a wire could be soldered 

directly to that copper pad. This hybrid method provided a more reliable connection to 

the data acquisition equipment. 

 

Figure 2.3: Improved wire interconnection method for IoF171101 on FR4 substrate, with 

additive silver pad printed on a copper pad fabricated with a conventional subtractive 

process. 

 

Section 2.2.2: Baseline Test Coupons 

As a comparative benchmark, simple baseline test structures were fabricated in 

addition to the IoF171101 specimen, using the same Ink A. Each baseline test coupon 

board, with the batch denoted as DTC180201, is populated with 10 silver test traces that 

are three sides of a five-millimeter square (Figure 2.4a). Each test trace is connected to 

pads for in-situ DC resistance monitoring. Of the 10 structures, the lower row of five 
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structures had the same stack up as IoF171101, consisting of Ink A silver trace printed on 

top of a 10-micron thick adhesion and dielectric layer of Polymer N on top of FR4 

substrate. The upper row of five structures had an additional layer of Polymer N as a 

barrier layer on top of the silver trace, as seen in the cross-section depicted in Figure 

2.4b. The purpose of this buried test structure was to evaluate the effect of the barrier 

layer on the reliability of the printed electronic design. Five test coupon boards were 

fabricated for a total of 50 test structures to allow for sufficient statistical replicates.  
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Figure 2.4: a) Baseline test coupon board design and b) individual baseline test 

structures with and without additional Polymer N barrier layer. 

Before Ink A was hooked up to the printer’s atomizer for printing the DTC 

specimens, the solids fraction of the ink was measured and it was determined that solvent 

needed to be added in order to keep the ink within recommended specifications. This is 

needed because the act of printing and aerosolizing tends to remove solvent from the ink. 

As such, 0.8 mL of a specified co-solvent was added to the ink. To achieve the desired 

deposition rate (Rink = 0.00075 mm3/s), the DTC180201 traces were printed at a carrier 

gas flow rate of 50 sccm and sheath gas flow rate of 30 sccm. This flow rate is 

significantly lower than that used in the IoF171101 specimen potentially because the 

solvent content was different for the ink in the two cases. Other print parameters 

including print speed (1 mm/s), deposition rate (0.00075 mm3/s), liquid thickness per 

pass (5 microns), ink stream width (150 microns), number of passes (2), and stage 

temperature (50 °C) were kept the same as the IoF171101 fabrication. 
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Section 2.2.3: Macroscale Geometry 

From imaging the IoF171101 and DTC180201 trace’s surface and cross-section, 

the thickness and width was determined by extrapolating the microscope’s scale bar. The 

IoF171101 thickness was 7.2±1.2 microns with a sample size of six and the DTC180201 

thickness was 9.3±1.9 microns with a sample size of eight, while the widths were 

149±2.5 and 125±11.6 microns, respectively, with a sample size of 30.  

 

Section 2.2.4: Microscale Morphology 

Surface SEM images reveal coarser surface granularity (agglomerates of larger 

size and spacing) and porosity on the surface of the silver traces of IoF171101, compared 

to those of DTC180201 (Figure 2.5). The finer granularity in the baseline test coupons 

compared to the coarser surface granularity of the IoF171101 specimen, allows higher 

surface-to-volume ratios in the agglomerates, thus permitting greater degree of sintering 

and lower percentage of porosity. This can potentially result in higher bulk as well as 

interfacial strength and will be verified in subsequent thermal cycling durability tests, as 

reported in Section 2.4. Cross-section images confirmed higher bulk porosity in the traces 

of the IoF171101 specimen relative to the baseline test coupon (Figure 2.6). Extensive 

microscale porosity distributions can be observed in IoF171101, whereas the DTC180201 

cross-section nearly resembles homogeneous silver with only some extent of nanoscale 

porosity visible only under much higher magnification on SEM or atomic force 

microscopy (Appendix A4). 
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Figure 2.5: Coarser agglomerates can be seen on IoF171101’s Fillet 8 line segment 1 

after 250 cycles compared to DTC180201’s traces after 0 and 250 cycles. 

 

Figure 2.6: Bulk porosity (micron-scale pores) is identified to be greater in the cross-

section of the IoF171101 traces relative to that in the DTC180201 traces. 
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Through image processing with a commercial software and smart segmentation 

methodology described in Appendix A6, the percent bulk porosity in IoF171101 is 8.2 

percent, while in DTC180201 it is just 0.36 percent, which supports the visual 

observation that the former is more porous (Figure 2.7). The average pore diameter and 

area for the IoF171101 is 0.027 μm and 0.0019 μm2 across 2,617 features captured. 

 

Figure 2.7: Bulk porosity in IoF171101 highlighted through image processing 

thresholds. 
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Section 2.2.5: Effective Conductivity 

The printed traces are micro and nanoporous silver structures so at best it is 

possible to estimate a volume averaged, homogenized and effective resistivity and 

conductivity as is the case with other composite materials. As a result, these 

measurements will be higher than the typical resistivity of bulk silver of 1.59 x 10-8 ohm-

meters (Serway, 1994). The effective resistivity of the IoF171101 and DTC180201 traces 

before thermal cycling were estimated by dividing the measured two-wire DC resistance 

of the structure by the length of the trace and multiplying it by the cross-sectional area of 

the trace: ρ=R*A/L. In the future, four-wire resistance measurements need to be made in 

order to remove additional resistance the setup is adding leading to a higher calculated 

effective resistivity than in actuality. For the IoF171101, the cross-sectional area was 

estimated by a nominal trace width of 149 microns and a nominal thickness of 7.2 

microns. For the DTC180201, the cross-sectional area was estimated by a nominal trace 

width of 125 microns and a nominal thickness of 9.3 microns. Effective conductivity of 

the traces was then calculated by inverting the calculated effective resistivity. The 

statistics of the normalized, to the largest value, effective conductivity measurements are 

shown in Figure 2.8. The statistics of the IoF171101 specimen appears to follow a 

bimodal distribution, while that of the DTC180201 batch follows a unimodal distribution. 

This may suggest that the quality of the IoF171101 print was inferior to that of the 

DTC180201 prints. 
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Figure 2.8: Normalized effective conductivity histogram plots for a) IoF171101 and b) 

DTC180201. 

 

Section 2.3: Test Plan 

The temperature profile used for accelerated thermal cycling of IoF171101 and 

DTC180201 was between -40 and 125 °C. IoF171101 had a half-hour dwell at the hot 

temperature and 10 °C per minute ramps in between the two extreme temperatures, while 

the DTC180201 had 10-minute dwells at the hot and cold temperature and 8 °C per 

minute ramps in between the two extreme temperatures (Figure 2.9). Both profiles 
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completed one cycle in just over an hour. The slight changes in profile were made out of 

convenience based on the availability of thermal chambers in the lab and is not believed 

to have greatly affected obtained reliability results. 

 

Figure 2.9: Temperature profile for IoF171101 compared to DTC180201. 

The two or four-wire resistance of each sample during thermal cycling was 

monitored by connecting each structure’s pads to an Agilent 34980A data acquisition 

instrument (DAQ) that recorded data with a sampling frequency of one data-point per 

minute. The temperature inside of the chamber was also recorded by the DAQ with a 

Type K thermocouple. Two-wire resistance measurements were made at Pads 1, 2, and 3 

since they were secondary pads, while four-wire resistance measurement was made at 

Pad 4 of the IoF171101. Pad 4 monitors all the traces printed along the specimen, while 

Pad 1 only monitors the traces up to Fillet 2, Pad 2 only monitors the traces up to Fillet 4, 

and Pad 3 only monitors the traces up to Fillet 6. These secondary pads would help in 

locating a potential failure site. For example, a resistance spike in Pad 4 and not in any of 

the other pads, could indicate that the failure occurred beyond Fillet 6. 
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As expected early in the thermal cycling durability testing, the resistance of the 

IoF171101 traces varied smoothly as a function of temperature and no anomalous spikes 

were observed (Figure 2.10). The measured resistance values increase from Pads 1 to 2 to 

3 because those pads are monitoring increasingly longer trace length. Pads 3 and 4 

happen to measure similar magnitude resistances even though Pad 4 monitors a longer 

length of trace than Pad 3 because a four-wire connection measurement was made at Pad 

4, which eliminated the additional resistance added from the wires that were used to 

connect IoF171101 to a data acquisition instrument. Any resistance spikes in the 

secondary pads were also detectable in the pads after it.  

 

Figure 2.10: Temperature and resistance profiles for the first six thermal cycles that 

IoF171701 underwent. 

Also, as expected, early in the thermal cycling durability testing for DTC180201, 

the resistance of the printed traces varied smoothly as a function of temperature and no 

anomalous spikes were observed. All 50 test structures are not displayed in Figure 2.11 
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for simplicity, but four test structures are provided as representative examples. In 

accordance with industry standards, increases in DC resistance of at least 20 percent from 

nominal temperature dependent values were used as a failure indicator for both the 

IoF171101 and DTC180201. 

 

Figure 2.11: Temperature and resistance profiles for the first six thermal cycles that 

DTC180201 underwent. 

 

Section 2.4: Results 

The findings from the thermal cycling tests on the IoF171101 and DTC180201 

specimens are: (i) the changes in the electrical resistance of the traces as a function of 

thermal cycling; and (ii) destructive failure analysis of the specimens whose DC 

resistance exceeded a pre-defined failure threshold. 
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Section 2.4.1: Resistance Profiles 

The Pad 4 resistance values for IoF171101 at the end of the hot (125 °C) and cold 

(-40 °C) temperature dwell portions of the cycle was extracted following extensive 

MATLAB post-processing of the resistance data that was recorded at a sampling rate of 

one data point per minute. These resistance values were normalized based on the hot and 

cold temperature resistance recorded from the first cycle (Figure 2.12). The first spike in 

the cold temperature resistance was observed after the 65th cycle, but no spike in the hot 

temperature resistance was observed until after 250 cycles were completed. The hot 

temperature resistance of the IoF171101 specimen decreases with cycle number, which is 

expected because the printed traces could be undergoing further sintering during the 

temperature cycling process. 

 

Figure 2.12: Normalized resistance of IoF171101 at the hot and cold temperature dwells 

as a function of cycle number. 

For the DTC180201 print batch, 50 structures were monitored with in-situ DC 

resistance measurements. To avoid a plot that is too cluttered and difficult to interpret, the 
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hot and cold temperature resistance profiles for all 50 structures are provided in 

Appendix A3. Selected resistance profiles are provided here, including: 1) seven test 

structures that saw resistance spikes at the cold temperature dwell denoted as ‘failed’ 

structures (Figure 2.13); 2) a handful of representative structures that did not see any 

irregular resistance variations, denoted as ‘survivor’ structures (Figure 2.14); 3) four 

structures that showed an unusual intermittent drops in resistance before stabilizing to 

expected values, denoted as structures with ‘intermittent resistance anomalies’ (Figure 

2.15); and 4) two structures that had steadily rising resistances, denoted as structures 

exhibiting ‘continuous wearout’ (Figure 2.16). The seven failed structures were all 

covered traces with the additional burying layer of Polymer N and were grouped as failed 

because they had a resistance spike at the cold temperature dwell. Three of those seven 

also had resistance spikes later on at the hot temperature dwell, but for completeness all 

seven failed structure’s hot temperature resistances are plotted despite four structures not 

having a hot temperature dwell resistance spike. 
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Figure 2.13: Normalized resistance of DTC180201 failed structures at the a) hot and b) 

cold temperature dwells as a function of cycle number. 
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Figure 2.14: Normalized resistance of DTC180201 ‘survivor’ structures at the a) hot and 

b) cold temperature dwells as a function of cycle number. 
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Figure 2.15: Normalized resistance of DTC180201 structures with intermittent resistance 

anomalies at the a) hot and b) cold temperature dwells as a function of cycle number. 
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Figure 2.16: Normalized resistance of DTC180201 structures exhibiting continuous 

wearout (steadily increasing resistance) at the a) hot and b) cold temperature dwells as a 

function of cycle number. 

 

Section 2.4.2: Failure Analysis 

The IoF171101 specimen lasted 250 thermal cycles before a failure was observed 

in the hot temperature resistance values. Subsequent post-mortem investigations revealed 

that the failure site was in the top-most trace. The visible failure signature was manifested 

as localized longitudinal cracking and delamination and was unrelated to the fillet 

technologies (Figure 2.17). These results helped gain confidence in the durability of the 

IoF technology which includes the printed fillet as well as the traces printed on top of the 

fillet.1 Resistance values of this failed IoF specimen did indicate failures at cold 

temperatures prior to 250 cycles, but these resistance anomalies could not be observed 

                                                 
1 An identical IoF specimen was printed with another commercial ink as well and have bene subjected to 

this same thermal cycling test. That specimen has survived 200 cycles, corroborating the durability of the 

IoF technology. The test results for these additional specimens are reported in Appendix A1. 
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when documenting the specimen at room temperature. This is not uncommon in thermal 

cycling fatigue tests where small microcracks sometimes open up initially under local 

tensile stress states at one of the temperature extremes, hot or cold depending on the 

specimen architecture, but close-up under local compressive stress states at other 

temperatures, thus making it difficult to duplicate these resistance anomalies at room-

temperature post-mortem. Eventually such microcracks are observed to propagate and 

grow in severity, creating resistance increases at all temperatures. 

 

Figure 2.17: Trace delamination failure at the top of the specimen. 

The initial test plan was to repair the small crack and delamination and return the 

repaired specimen to thermal cycling. However, severe damage was observed upon more 

extensive failure analysis. During SEM documentation, transverse and longitudinal 

microcracks, which could be expected from such thermal cycling, were visible in several 

locations (Figure 2.18a). A day later, after the failed specimen was withdrawn from the 

test chamber, severe growth in delaminations and trace discontinuities were observed 

(Figure 2.18b). The in-situ DC resistance measurements during the thermal cycling had 

not picked up such circuit discontinuities, but was confirmed with multimeter resistor 

measurements after the delaminations and discontinuities were observed. This continuing 

post-test growth in the damage level may potentially be from the release of locked-in 
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residual stress that had evolved during the specimen fabrication and during the 

temperature cycling test (Figure 2.18c).  

   

 

  

Figure 2.18: a) SEM image of transverse and longitudinal microcracks observed in some 

of IoF171101’s traces after 250 thermal cycles, b) SEM image of trace delamination, and 

c) optical image of trace delamination and disintegration. 
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In addition to the already discussed surface view documentation, a portion of the 

IoF171101 was cross-sectioned and examined for internal features and damage signatures 

in the trace after undergoing 250 thermal cycles. Following grinding and polishing of the 

trace during sample preparation, SEM imaging revealed a crack in the printed line’s 

cross-section, which is in the middle of the trace that is speculated to correspond to the 

interface between the first and second print pass during fabrication (Figure 2.19). The 

two passes were used to reach the desired trace thickness of 10 microns. It is unknown 

whether this crack is the result thermal cycling damage accumulation or was preexisting 

in the specimen before temperature cycling. Later work suggested the interface failure 

was unrelated to stresses experienced during cross-sectioning, grinding and polishing. 

This interface does appear to be a site of embedded weakness compared to the rest of the 

structure, potentially acting as a latent defect site. 

 

Figure 2.19: SEM image of interfacial crack in one of IoF171101’s trace cross-section. 
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On the other hand, for DTC180201, despite thousands of thermal cycles, as 

summarized in Table 2.1, the Ink A baseline test coupons showed little damage to the 

traces. No serious anomalies in the electrical DC resistance values and no delamination or 

disintegration damage similar to that seen in the IoF171101 specimen were observed. 

This indicates that the DTC180201 print batch with Ink A is more robust than the 

corresponding IoF171101 print batch, since these DTC180201 structures have already 

survived thousands of thermal cycles. In contrast, the IoF171101 had exhibited 

microcracking after just 250 cycles. 

 

Table 2.1: Summary of thermal cycles exposure for each test coupon board printed with 

Ink A. 

The minimal damage seen in the Ink A test coupons mainly consisted of whisker-

like features extruding out of some traces, which is not uncommon for metallic materials 

(Figure 2.20). As an example, tin whiskers have been observed and documented in 

equipment that used tin-rich solder plating in the early 20th century (Lie et al., 2009). 

These whiskers can be problematic if they cause short circuits as is the case when they 

grow between metal solder pads or break-off and span across neighboring electrical 

elements. However, no resistance spikes or anomalies have been observed so far in this 

study as a result of whisker growth. 
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Figure 2.20: Three examples of whiskers found in Board 3 for the Ink A test coupons. 

For the seven test structures that exhibited resistance spikes at the cold 

temperature dwell, the root-cause is believed to be the delamination of the printed pads 

on top of the copper island (Figure 2.21). Although no cause for failure in the printed 

lines were found during documentation of these structures, resistance spiked did occur 

because there was a break in the circuit from the soldered wire to the actual test structure. 

This could suggest that larger sized printed features are more susceptible to thermal 

cycling. 

    

Figure 2.21: Optical images of pad lifting for DTC180201 B2C3. 
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Section 2.5: Summary 

Two different printed electronic specimens were successfully fabricated with Ink 

A. The first was an IoF specimen (IoF171101) that had printed lines traversing surfaces 

at different level (FR4 substrate and an elevated silicon die) with the help of an 

intervening polymer fillet ramp. The second specimen type was a baseline test coupon 

design (designated as DTC180201 specimen) that is simpler in nature, containing three 

sides of a five mm square on a single surface at a single level (without any different 

leveled surfaces). The IoF171101 and the DTC180201 specimens were documented with 

SEM imaging prior to any testing. The IoF171101 specimen showed coarser 

micromorphology and larger agglomerate features on the surface of the traces as well as 

greater bulk porosity within the trace. This difference is theorized to be the reason for 

vastly different reliability results following accelerated thermal cycling durability testing. 

The IoF171101 failed after just 250 thermal cycles, showing extensive microcracking as 

well as delaminations, whereas the DTC180201 structures lasted over 3,500 thermal 

cycles with failures unrelated to the printed traces and minimal observed damaged. The 

differences in the reliability results in these two different print batches of AJP traces 

appear to be the result of variable trace quality, as defined by micromorphological 

properties such as agglomeration and porosity. The ink condition such as solvent 

composition and content as well as the process parameters such as the flow rates of 

carrier gas and sheath gas for the IoF171101 and DTC180201 print batches were not 

identical, although both were printed with Ink A. Further work is needed to investigate 

the effect of ink condition namely dryness as defined by solids loading and solvent 

composition as well as gas flow rate on the quality of an AJP line. The impact of carrier 
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and sheath gas flow rate on trace quality will be the subject of further investigation in a 

separate study in the next chapter. 
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Chapter 3 – Effect of Gas Flow Rate on Trace Quality 

In this chapter, a design of experiment is conducted to understand the impact of 

carrier and sheath gas flow rate on aerosol jet printed trace quality. 

 

Section 3.1: Introduction 

Aerosol jet printing (AJP) is a direct-write printing technology built on the 

fundamentals of additive manufacturing. The process involves the liquid material of 

interest in atomized form creating a dense aerosol of micron-scale droplets with 

diameters typically ranging from one to five microns (Hon et al., 2008). The majority of 

inks, with a wide range of viscosities between 0.7 and 2,500 cPs, capable of being 

aerosolized can be used for the AJP. The aerosolized liquid drops are carried by nitrogen 

gas, denoted as carrier gas, to the deposition head through a mist tube and then focused 

within the head through the sheath gas before being sprayed onto the substrate. In 

addition to focusing and collimating the particles within the carrier gas flow, the sheath 

gas forms an outer layer around the aerosolized stream to prevent the contact between the 

aerosol particles and the inner walls (which in turn will prevent the condensation of 

solvents and hence help prevent clogging). Figure 1.1 shows the schematic of an ink 

stream as it enters the nozzle chamber from the mist tube through the nozzle and 

continuing to the substrate (Chen et al., 2018). The reliability of AJP electronics is related 

to the quality of the printed traces. To maintain consistent print quality, the effect of 

printing parameters and ink condition must be well understood. This study focuses on the 

influence of carrier and sheath gas flow rates on important macroscale and microscale 



42 

 

features of printed conductor traces, for a selected commercial ink printed with an aerosol 

jet printer. 

 

Figure 3.1: Schematic of the carrier and sheath gas flow geometry as well as a-c) 

different locations of interest in the AJP process (Chen et al., 2018). 

A prior study revealed that the reliability of two AJP fabricated conducting traces, 

printed with a selected commercial Ink A, was vastly different, despite using identical 

values for the majority of the print parameters such as deposition rate, print speed, and 

stage temperature. An interconnect over fillet specimen (IoF171101) printed with Ink A 

lasted just 250 accelerated thermal cycles from -40 to 125 °C before exhibiting 

microcracking as well as severe delamination of the traces. On the other hand, simpler 

baseline test coupons (DTC180201), also printed with Ink A, lasted over 3,500 

accelerated thermal cycles from -40 to 125 °C without exhibiting any significant damage 

to the printed lines. The suspected differences between the two print batches included the 

ink condition and flow rates of the carrier gas and sheath gas in the AJP process. 
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IoF171101 was printed at carrier and sheath gas flow rates of 80 standard cubic 

centimeters per minute (sccm) and 50 sccm, respectively, while DTC180201 was printed 

at corresponding flow rates of 50 sccm and 30 sccm, respectively. The reason for this 

difference in the flow rates is that the solvent content is suspected to be different in the 

two print batches, thus requiring different flow rates to achieve the same deposition rate 

(0.00075 mm3/s). The ink’s solvent content and the flow rates used to print could both 

have potentially contributed to the differences in the quality and reliability of the 

IoF171101 and DTC180201 prints. This study focuses on the influence of the flow rates 

on the print features, while the influence of ink condition is deferred to a future study. 

Chen et al. (2018) developed a three-dimensional computational fluid dynamics 

model of the aerosol carrier gas flow that is confined by an annular sheath gas flow to 

pinpoint the fundamental fluid mechanics principles that control the overspray as a 

function of droplet size distribution and sheath gas flow rate. Put simply, overspray is the 

ink particles that are deposited outside of the intended trace width. Their results explain 

that there is an abundance of smaller sized drops in the overspray region at low sheath 

gas flow rates, the overspray first reduces and then increases as the sheath gas flow rate 

increases, and there is no longer a prevalence of smaller particles in the overspray region 

at larger sheath gas flow rates. There is a point of diminishing return for sheath gas flow 

rate because at high enough levels, the particle droplets start to cross the nozzle axis and 

then travel back toward the axis resulting in over collimation and increased overspray. 

Roberson et al. (2011) characterized the morphology of inkjet printed traces made 

from a microparticle and nanoparticle silver ink. Scanning electron microscope (SEM) 

images for traces printed with the two different particle size silver ink as well as varying 
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sintering profiles are provided. The nanoparticle ink can attain a more conductive 

microstructure since the nanoparticles can sinter at lower temperatures, but lines printed 

with the microparticle ink had similar resistivity. Microstructures with larger grains and 

less porosity are more conductive. 

Mahajan et al. (2013) found that a trace’s line width decreases with increasing 

focusing ratio, defined as sheath gas flow rate divided by carrier gas flow rate, as well as 

stage speed. The thickness or height of the traces also increases with an increasing 

focusing ratio, but decreases with increasing stage speed. The decrease in line width with 

increasing focusing ratio is more dramatic in smaller nozzles. The complete general 

trends investigated by Mahajan are presented in Table 3.1 below. 

Process Variable Line Width Line Thickness 

Focusing Ratio Decreases Increases 

Nozzle Diameter Increases Decreases 

Carrier Gas Flow Rate Remains the Same Increases 

Stage Speed Decreases Decreases 

Table 3.1: Effect of independently increasing each process variables on printed line 

geometry. 

Salary et al. (2017) developed a computational fluid dynamics model that verified 

the overall line morphology trends observed through an in-situ online monitoring camera 

when varying flow rate parameters. For a fixed carrier gas flow rate and print speed of 30 

sccm and 1 mm/s, respectively, they recommended a process window between 40 and 

100 sccm for the sheath gas flow rate to optimize the printed line density, edge quality, 

overspray, and line discontinuity. 

There has been some work done to begin understanding the effects of different 

AJP printing parameters on the final quality of a printed trace, but there is still plenty 

more to be done. Operating process windows that others have suggested are specific to 

the AJP printer used for the study, the type of ink being utilized, and less quantifiable 
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features such as the printer maintenance. Moreover, the definition of print quality as a 

function of print parameters has been mostly qualitative aside from quantifying a line’s 

overall macroscale geometry such as width and thickness and average bulk electrical 

properties such as conductivity. Few studies have investigated the micromorphology of 

the printed trace, such as its average agglomeration length scales in the bulk as well as on 

the surface. The quality of the printed serpentine test structures is characterized in this 

study by a set of selected macroscale and micromorphological features described later. 

 

Section 3.2: Approach 

The study uses a design of experiment, where the two flow parameters (carrier gas 

flow rate and sheath gas flow rate) are parametrically varied and their influence on 

selected response variables (print features) are quantified. 

 

Section 3.2.1: Test Coupon 

Test structures were designed to have silver nanoparticle Ink A conductor traces 

of a serpentine design with five segments, for repeatability, printed on a Polymer N 

adhesion and dielectric layer that is spincoated on a FR4 substrate. The trace segments 

are 20 mm in length and are printed with one mm pitch (Figure 3.2). The FR4 substrate 

was designed to be 24 mm wide and 24 mm long to accommodate the 20 mm long 

serpentine design. A square substrate was utilized as it is easier to spincoat the Polymer N 

layer onto such a geometry. The additional space along the width of the substrate was 

used to print three serpentine structures on each substrate board. Typically, two print 

passes are always conducted to produce a thick enough trace for functionality purposes, 
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but it was presumed that differences in print features would be more obvious in a single 

pass trace because the second pass may be filling in potential defects and smooth over 

potential differences left from the first pass. To understand the effects of a second pass, a 

double pass segment was printed on the top three of the five segments (C-E) of each 

serpentine, highlighted in black, while a single pass segment was printed on the bottom 

two segments (A-B) of each serpentine, highlighted in white. Each substrate board is 

labeled with a board number on the rear and the bottom of each board is shaded with a 

Sharpie such that a structure number can be assigned, with the bottom serpentine being 

labeled as serpentine one and the top serpentine being labeled as serpentine three. 

 

Figure 3.2: Test structure and coupon design for varying flow rate design of experiments. 

 



47 

 

Section 3.2.2: Test Plan 

Ink A at a solids fraction of 73.4 mass percent silver nanoparticles in a 

commercial solvent was used to print the aforementioned serpentine test structures. 15 

test structures were printed across five test coupon boards, where each board was printed 

at a specified carrier gas flow rate. The carrier gas flow rate was parametrically varied, 

with values of 30, 50, 65, 80, or 100 sccm. On each test coupon, the three serpentines 

were printed at different sheath gas flow rates of 30, 40, or 50 sccm (Table 3.2). These 

upper and lower limits for both types of flow rates were guided by recommendations 

from the manufacturer of the aerosol jet printer used and by prior experience of the team 

members. Other important print parameters include print speed (1 mm/s) and stage 

temperature (50 °C). 

Board # Structure # Carrier (sccm) Sheath (sccm) 

1 1 50 30 

1 2 50 40 

1 3 50 50 

2 1 80 30 

2 2 80 40 

2 3 80 50 

3 1 65 30 

3 2 65 40 

3 3 65 50 

4 1 100 30 

4 2 100 40 

4 3 100 50 

5 1 30 30 

5 2 30 40 

5 3 30 50 

Table 3.2: Test matrix for varying flow rate design of experiments. 

In an effort to quantify the quality of each of the serpentines printed at these 

various flow rate combinations, several print features were investigated: 
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1. The corresponding deposition rate was measured using an inkwell technique (Gu 

et al., 2017).  

2. Laser profilometry was conducted and post-processed to determine multiple 

macroscale geometric features of the trace (i.e. width, thickness, overspray 

width). 

3. The resistance values of the serpentines were also measured to assess their 

effective conductivity.  

4. Scanning electron microscope (SEM) images were taken of the serpentines’ 

surface to examine other macroscale features such as crystalline deposits and 

longitudinal cracks. 

5. SEM images were taken of the serpentines’ surface as well as cross-section to 

analyze the micromorphology of the traces such as agglomeration characteristics.  

 

Section 3.3: Results 

The quality of the serpentine traces with varying flow rate parameters was 

quantified by measuring the deposition rate, macroscale geometric properties of the trace, 

effective conductivity, as well as the agglomeration size and spacing distribution on the 

surface and in the bulk. 

 

Section 3.3.1: Deposition Rate 

As expected due to the varying gas flow rates at which material is being 

transported in the AJP process, the deposition rate of each serpentine was different. The 

deposition rate was estimated for each flow-rate combination by noting the time required 
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to fill a calibrated inkwell of known volume (0.0063 mm3). This method was established 

and discussed in detail by Gu et al. (2017). The corresponding deposition rate for each 

gas flow rate combination is presented in Table 3.3 and plotted in Figure 3.3. As 

expected, the deposition rate increased with increasing carrier gas flow rate when more 

material is being drawn from the reservoir of ink and slightly decreased with increasing 

sheath gas flow rate, when the stream is being squeezed tighter. 

Carrier (sccm) Sheath (sccm) Deposition Rate (mm3/s) 

30 30 0.00019 

30 40 0.00016 

30 50 0.00013 

50 30 0.00126 

50 40 0.00097 

50 50 0.00090 

65 30 0.00210 

65 40 0.00158 

65 50 0.00126 

80 30 0.00315 

80 40 0.00210 

80 50 0.00180 

100 30 0.00350 

100 40 0.00315 

100 50 0.00252 

Table 3.3: Associated deposition rate for each combination of carrier and sheath gas 

flow rate. 
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Figure 3.3: Deposition rate as a function of carrier and sheath gas flow rate. 

 

Section 3.3.2: Profilometry 

A commercial confocal microscope was used to conduct laser profilometry on the 

printed serpentine traces with varying flow rates. Using a MATLAB post-processing 

code developed by Chen et al. (2018), the trace width, cross-sectional area, overspray, 

percent coverage, and thickness were estimated, based on the height map contour 

generated by the profilometry software. Examples of the height map contour plots and 

output from Chen’s post-processing code are presented in Figure 3.4. In the height map 

contour, the substrate is the blue area representing the lowest elevation, while the yellow 

and orange area represents the higher elevation and is the printed trace. Threshold criteria 

are selected for print height, to define the longitudinal boundaries (width) of the trace and 

overspray. Chen’s MATLAB code is then used to post-process the results and output (i) a 

three-dimensional image of the trace, (ii) a two-dimensional cross-section that is 

averaged over the length of the trace imaged, and (iii) an overhead view of the trace with 

width (red) and overspray (blue) boundaries. Quantitative data such as the trace width, 
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cross-sectional area, overspray length on each side, percent coverage, and maximum 

thickness or height are also generated. 
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Figure 3.4: Representative example of a) height contour plot from VK Analyzer and b) 

post-processing plots from MATLAB for Board 4 Serpentine 3 Segment C left edge. 

For the four corner cases of the design of experiment (carrier gas flow rate of 30 

and 100 sccm and sheath gas flow rate of 30 and 50 sccm) as well as for the middle case 

(carrier gas flow rate of 65 sccm and sheath gas flow rate of 40 sccm), multiple laser 

profilometry scans were completed along the single-pass portion of the serpentine. A 

total of 14 scans were conducted evenly spaced across the 40 mm of single-pass traces, to 

estimate the statistics of the variability of these parameters (Figure 3.5). The mean and 

standard deviation values are summarized in Table 3.4. Trace width, cross-sectional area, 

and maximum thickness increased, as expected, with increase in the carrier gas flow rate, 

whereas the effect of sheath gas flow rate was much smaller. The printed line’s coverage 

increased marginally with an increase in either carrier or sheath gas flow rates. Overspray 

was mostly similar across these five flow rate combinations. However, it was slightly 
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elevated in the trace with carrier gas flow rate of 100 sccm and sheath gas flow rate of 30 

sccm, because there was not enough sheath gas to focus the high amount of carried 

material leading to the overspray. This is the same reason why there was a larger spread 

in the distribution in trace width for the trace with carrier gas flow rate of 100 sccm and 

sheath gas flow rate of 30 sccm, because the ink was not consistently collimated to the 

center. 
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Figure 3.5: Distribution plots for trace a) width, b) cross-sectional area, c) overspray, d) 

coverage, and e) max thickness. 

 
Table 3.4: Mean and standard deviation for four corner and middle flow rate single-pass 

traces’ width, cross-sectional area, overspray, coverage, and max thickness. 

In addition to the built-up statistics for five of the serpentines, two laser 

profilometry scans were conducted on each of the 15 serpentine traces, one over a single-

pass trace and one over a double-pass trace. Those results are summarized in Table 3.5 

and plotted as a 3D bar chart for the double-pass traces in Figure 3.6. 

Flow Rates Width (μm) Area (μm2) Overspray (μm) Coverage (%) Thickness 

C = 30, S = 30 119±4.7 63.3±39.1 11.0±1.9 18.1±1.0 1.0±0.3 

C = 30, S = 50 112±5.7 70.5±37.8 9.8±1.9 19.1±1.4 1.3±0.5 

C = 65, S = 40 175±3.5 528±66.7 11.1±2.5 19.8±1.1 5.3±0.4 

C = 100, S = 30 190±15.8 621±107 15.8±3.8 19.7±1.7 5.5±0.8 

C = 100, S = 50 180±4.4 701±81.4 12.2±2.2 20.2±1.6 6.9±1.5 
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Table 3.5: Parameters calculated for all 30 different traces. 
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Figure 3.6: Trace a) width, b) cross-sectional area, c) coverage, d) overspray, and e) 

thickness for the double-pass prints as a function of gas flow rates. 

 

Section 3.3.3: Effective Conductivity 

Using a commercial precision LCR meter and commercial precision positioner to 

make exact contact, the two-wire resistance of the serpentine traces were measured and 

normalized per unit length (Table 3.6). Four-wire resistance measurements should have 

been made to ensure the removal of the resistance added from the probing setup. These 

values are plotted in Figure 3.7 with a full and abridged y-axis, the latter to best show the 

continued decreasing nature of resistance with increased carrier gas at the higher flow 

rates, which is to be expected given those traces have higher cross-sectional area and R/L 

= ρ/A. The 104 mm serpentine trace resistance went down as the carrier gas flow rate 

increased and was nearly independent of sheath gas flow rate. The intermediate sheath 

gas value of 40 sccm led to slightly higher resistances than the 30 or 50 sccm levels. At a 

carrier gas flow rate of 30 or 50 sccm, the resistance values were large as the printed 

serpentine density was likely below the percolation threshold because of the low 
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deposition rate. A resistance value could be measured across the top most segment of the 

serpentine, segment E, for a carrier gas flow rate of 50 sccm, but not for 30 sccm. 

Carrier Sheath Resistance per Length 

30 sccm 30 sccm OVLD 

30 sccm 40 sccm OVLD 

30 sccm 50 sccm 4173 ohm/meters 

50 sccm 30 sccm 1320 ohm/meters 

50 sccm 40 sccm 1770 ohm/meters 

50 sccm 50 sccm 2447 ohm/meters 

65 sccm 30 sccm 464 ohm/meters 

65 sccm 40 sccm 466 ohm/meters 

65 sccm 50 sccm 347 ohm/meters 

80 sccm 30 sccm 227 ohm/meters 

80 sccm 40 sccm 244 ohm/meters 

80 sccm 50 sccm 211 ohm/meters 

100 sccm 30 sccm 140 ohm/meters 

100 sccm 40 sccm 173 ohm/meters 

100 sccm 50 sccm 156 ohm/meters 

Table 3.6: Resistance per unit length measurements for serpentine traces. 
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Figure 3.7: Trace resistance per unit length as a function of gas flow rate plotted on a a) 

full y-axis and b) abridged y-axis. 

The printed traces are micro and nanoporous silver structures so at best it is 

possible to estimate a volume averaged, homogenized and effective resistivity and 

conductivity as is the case with other composite materials. As a result, these 

measurements will be higher than the typical resistivity of bulk silver of 1.59 x 10-8 ohm-

meters (Serway, 1994). AJP electronics with Ink A have been reported to have resistivity 

5.5 times larger than bulk silver, which has a typical value of 1.59 x 10-8 ohm-meters (Gu 

et al., 2017). The resistance values for the varying flow rate serpentines were normalized 

by geometry to determine the effective conductivity of each serpentine which is plotted in 

Figure 3.8 once normalizing to the largest value among flow rates. These values were 

calculated by taking the measured DC resistance of the structure dividing it by the length 

of the trace and multiplying it by the cross-sectional area of the trace to get the effective 

resistivity, ρ = R*A/L, and then taking the inverse, σ = 1/ρ. The cross-sectional area was 

taken from the profilometry post-processing results. Interestingly, effective conductivity 



62 

 

increases with increasing carrier gas despite the increasing agglomeration sizes that will 

be discussed in Section 3.3.5.  

 

Figure 3.8: Normalized effective conductivity as a function of carrier and sheath gas flow 

rate. 

 

Section 3.3.4: Surface Imaging and Crystalline Deposits 

SEM was utilized to document the surface of the serpentine traces with varying 

flow rate parameters. All 15 serpentines traces were imaged at 500x magnification, both 

for single pass and for double pass (Figure 3.9). There was not a noticeable difference 

among features on the surface between single and double pass traces (Figure 3.10). 
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Figure 3.9: Surface images for a) single and b) double pass traces at 500x magnification. 
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Figure 3.10: Comparison of trace surface between single and double pass traces. 

From these low magnification surface images, the presence of crystalline deposits 

were observed on top of these traces and visible on 90 percent of the 75 trace segments 

printed. Of the traces that did have the deposits, they were 1) aggregated mostly along the 

edge, 2) along the centerline, or 3) randomly dispersed throughout the width of the trace. 

The third case was the most predominant, but a total of four cases (including the case of a 

trace without any deposits) are presented in Figure 3.11. Energy dispersive X-ray 
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spectroscopy reveals that these crystalline deposits are likely of silver composition as the 

elemental spectroscopy curves on the deposits are nearly identical to those on the silver 

particles in the traces (Figure 3.12). Similar crystalline deposits in printed metal features 

have been reported elsewhere in the literature (Cook, 2013). Three areas on the trace 

were sampled as well as three areas on the deposits for completeness. The quantitative 

composition of both areas sampled were over 97 percent silver in each case. 

   

   

Figure 3.11: Example of traces with a) no crystalline deposits, b) deposits at the edges, c) 

deposits along the centerline, and d) deposits randomly dispersed. 
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Figure 3.12: Energy dispersive X-ray spectroscopy plots when sampling the printed trace 

and the crystalline deposits. 

Optical microscopy was also conducted to observe the surface features of the 

different serpentine traces. Not much new information was obtained from this avenue of 

imaging, compared to SEM, so just a few representative images are provided (Figure 

3.13). The double pass trace on the right is wider and taller, thus creating a larger optical 

shadow along the edges. 

   

Figure 3.13: Representative optical image with overhead view of Board 4 Serpentine 3 

single (Segment B) and double pass (Segment C) trace. 
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Section 3.3.5: Micromorphology 

The surfaces of the 15 serpentine traces were also imaged at 50,000x 

magnification for both the single and double pass traces to investigate the 

micromorphological features (Figure 3.14). Qualitatively, coarser agglomerate sizes are 

observed at the higher flow rates, which follows the trend seen from the IoF171101 (C = 

80, S = 50) and DTC180201 (C = 50, S = 30) specimens. The cross-sections of the 15 

serpentine traces imaged at that same length scale do not show this trend (Figure 3.15). 

a) Single-Pass Traces 
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b) Double-Pass Traces 

 

Figure 3.14: Surface images for a) single and b) double pass traces at 50,000x 

magnification. 

a) Single-Pass Traces 
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b) Double-Pass Traces 

 

Figure 3.15: Cross-section images for a) single and b) double-pass traces at 100,000x 

magnification. 

These high magnification images were digitally processed to quantify the size and 

spacing distribution of the agglomerates. This methodology is described in Appendix A6. 

The raw data extracted from the software included the agglomerate size for each feature 

counted as well as the shortest distance from one agglomerate to the nearest neighbors. 

This data was then post-processed to obtain various stochastic metrics (e.g. mean values, 

standard deviations, skewness, etc.).  

Five images were post processed for each of the four corner cases and for the 

middle case in the matrix of flow rate combinations (C = 30, S = 30; C = 30, S = 50; C = 

65, S = 40; C = 100, S = 30; C = 100, S = 50). This post-processing was repeated for both 

single-pass and double-pass trace segments as well as for both surface images and cross-

section images. The size and spacing distributions for each image was normalized before 

averaging across the five images, to avoid one image from dominating if there was an 
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unusually high number of agglomerates counted by the image processing software. All of 

this data was presented in several different formats, which are included in full in 

Appendix A7, with just one example of each format provided here because not all of the 

data led to significant conclusions: 

1. Number of agglomerates (Table 3.7 and Figure 3.16). These plots include the 

number of features the image processing software counted as an agglomerate 

through its smart segmentation algorithm, based on sample information provided 

by the user. The 3D bar charts present the number of agglomerates on the z-axis. 

The x-y plane contains the 15 different flow rate combinations corresponding to 

the 15 different serpentine traces. Furthermore, there is a figure distinguishing 

between single and double-pass traces as well as surface or cross-section images 

in A7.1. The data from the 3D bar charts are also provided in tabular form. 

Standard deviations are also provided for selected flow rate combinations (corner 

cases and middle cases), where multiple images were processed. 

2. Percent area covered by the agglomerates (Table 3.8 and Figure 3.17). The 3D 

bar charts plot the percent area out of 100 on the z-axis and again lays out the 15 

different flow rate combinations in the x-y plane. Again, there is a figure 

distinguishing between single and double-pass traces as well as surface or cross-

section images in A7.2. The data from the 3D bar charts are provided in tabular 

form and for the flow rate combinations (corners and middle cases) that there are 

multiple images processed for, the standard deviation is also provided. 

3. Agglomerate size and spacing distributions (Figure 3.18). For the four corner and 

middle flow rate combinations that were averaged, the size and spacing 
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distributions were then fit to a histogram with log-scale bins, to deal with the 

highly right skewed nature of the data. The five flow rate combinations were 

grouped in threes for the histograms in terms of major (C = 30, S = 30; C = 65, S 

= 40; C = 100, S = 50) and minor (C = 30, S = 50; C = 65, S = 40; C = 100, S = 

30) diagonals. Histograms are provided in A7.3 for major and minor diagonal 

cases, single and double-pass, surface and cross-section images, as well as 

agglomeration size and spacing. 

4. Variation in agglomerate size and spacing (Figure 3.19). The four corner flow 

rate combinations were grouped in twos for the plots in terms of major (C = 30, S 

= 30; C = 100, S = 50) and minor (C = 30, S = 50; C = 100, S = 30) diagonals. 

Plots are provided in A7.4 for major and minor diagonal cases, single and double-

pass, surface and cross-section images, as well as agglomeration size and spacing. 

5. Average agglomerate size and spacing as a function of flow rate (Table 3.9 and 

Figure 3.20). The 3D bar charts plot the average agglomerate size and spacing on 

the z-axis and lays out the 15 different flow rate combinations in the x-y plane. 

Furthermore, there is a figure distinguishing between single and double-pass 

traces as well as surface or cross-section images in A7.5. The data from the 3D 

bar charts are provided in tabular form with the average and standard deviation 

for the agglomeration size and spacing. 

6. Standard deviation of agglomerate size and spacing (Figure 3.21). The 3D bar 

charts plot the standard deviation of the agglomerate size and spacing on the z-

axis and lays out the 15 different flow rate combinations in the x-y plane. 
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Furthermore, there is a figure distinguishing between single and double-pass 

traces as well as surface or cross-section images in A7.6. 

7. Skewness of agglomerate size and spacing (Figure 3.22). From the histograms 

presented in A7.3 and exampled in Figure 3.18, a skewness factor can be 

calculated based on the log-scale based binning for the five serpentine traces with 

multiple image data averaged together. The more positive the skewness value, the 

more skewed right the histogram data is. The 3D bar charts plot the skewness of 

the agglomerate size and spacing on the z-axis and lays out the 5 different flow 

rate combinations in the x-y plane. Furthermore, there is a figure distinguishing 

between single and double-pass traces as well as surface or cross-section images 

in A7.7. 

 

Table 3.7: Number of agglomerations in single-pass trace on the surface. 

 

Figure 3.16: Number of agglomerations in single-pass trace on the surface as a function 

of carrier and sheath gas flow rate. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 225±161 145 101 158 64±14 

Sheath = 40 345 337 98±27 152 123 

Sheath = 50 230±90 210 181 140 83±36 
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Table 3.8: Agglomeration percent area in single-pass trace on the surface. 

 

Figure 3.17: Agglomeration percent area in single-pass trace on the surface as a 

function of carrier and sheath gas flow rate. 

 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 13.54±4.05 15.83 25.64 27.29 21.64±3.12 

Sheath = 40 9.89 15.62 20.96±1.33 17.03 25.85 

Sheath = 50 15.69±2.16 24.70 19.97 29.92 21.02±7.27 
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Figure 3.18: Agglomeration size in single-pass trace on the surface for major diagonal 

cases. 

 

Figure 3.19: Variation in agglomeration size in single-pass trace on the surface for 

major diagonal cases. 
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Table 3.9: Average agglomeration size in single-pass trace on the surface. 

 

Figure 3.20: Average agglomeration size in single-pass trace on the surface as a function 

of carrier and sheath gas flow rate. 

 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 0.008±0.015 0.009±0.016 0.021±0.033 0.014±0.036 0.028±0.041 

Sheath = 40 0.002±0.005 0.004±0.007 0.019±0.029 0.009±0.016 0.017±0.034 

Sheath = 50 0.006±0.017 0.010±0.044 0.009±0.016 0.017±0.034 0.022±0.037 
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Figure 3.21: Standard deviation of agglomeration size in single-pass trace on the surface 

as a function of carrier and sheath gas flow rate. 

 

Figure 3.22: Skewness of agglomeration size in single-pass trace on the surface as a 

function of carrier and sheath gas flow rate. 

 

A significant observation was that the agglomerates on the surface were bigger 

than those observed within the bulk of the trace, as evidenced by the histograms in Figure 
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3.23. This was the case for both the serpentine trace with the lowest flow rate 

combination, carrier gas of 30 sccm and sheath gas of 30 sccm, and the highest flow rate 

combination, carrier gas of 100 sccm and sheath gas of 50 sccm. The average 

agglomerate size on the surface for each of these two flow rate cases is 0.008 and 0.022 

microns2, respectively, while in the bulk it is 0.003 and 0.001, respectively. This might 

suggest that the clumping of the silver nanoparticles becomes progressively greater as the 

trace stacks up away from the substrate level. 
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Figure 3.23: Agglomeration size distribution for single-pass trace in the bulk vs. on the 

surface for the a) C = 30, S = 30 and b) C = 100, S = 50 serpentines. 

In Figure 3.24, the agglomerate size distribution on the surface for a single-pass 

trace is plotted for three different flow rate combinations: C = 30, S = 50; C = 65, S = 40; 

C = 100, S = 30. The trace with the lowest carrier gas of 30 sccm had predominantly the 

smallest agglomerates, while the trace with the highest carrier gas of 100 sccm had 

predominantly the largest agglomerates. This supports the previous qualitative 

observation made from looking at the raw high magnification surface images that the 

agglomerate sizes are coarser at higher carrier gas flow rates (Figure 3.14). Consistent 

with this trend, the intermediate carrier gas rate of 65 sccm predominantly has 

agglomerate sizes that are in between those for the end cases of 30 sccm and 100 sccm. 

The proportional relationship between agglomerate size and carrier gas flow rate is also 

supported by Figure 3.20 as the agglomerates get coarser from left to right as carrier gas 

flow rate increases. 
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Figure 3.24: Agglomeration size in single-pass trace on the surface for minor diagonal 

cases. 

In Figure 3.25, the agglomerate spacing distribution in the bulk for a double-pass 

trace is plotted for three different flow rate combinations: C = 30, S = 30; C = 65, S = 40; 

C = 100, S = 50. The trace with the lowest carrier gas flow rate of 30 sccm had 

predominantly the smallest spacing between agglomerates, while the trace with the 

highest carrier gas flow rate of 100 sccm had predominantly the largest spacing. 

Consistent with this trend, the intermediate carrier gas of 65 sccm predominantly has 

particle sizes that are in between the end cases of 30 sccm and 100 sccm. This also 

supports the idea that coarser agglomerates are occurring at higher carrier gas flow rates. 
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Figure 3.25: Agglomerate spacing in double-pass trace in the bulk for major diagonal 

cases. 

 

Section 3.3.6: Microcracking 

Another discovery from the low magnification surface imaging was the presence 

of microcracking at the higher carrier gas flow rates (Figure 3.26). At carrier gas flow 

rates greater than or equal to 65 sccm there was varying degrees of microcracking, 

predominantly aligned along the longitudinal direction, in all 45 traces examined, but at 

carrier gas flow rates less than or equal to 50 sccm there was not any visible 

microcracking in any of the 30 traces examined. There is not an apparent relationship 

between sheath gas flow rate and the prevalence of microcracking. The internal location 

of cracks, whether at the substrate interface, or at the interface between passes within the 

trace, or at both, was investigated during cross-sectioning. These longitudinal 
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microcracks are similar to those seen previously in IoF171101, which had a carrier gas 

flow rate of 80 sccm, after 250 thermal cycles. 

   

Figure 3.26: Examples of microcracking in serpentine traces with a) 80 and b) 100 sccm 

carrier gas flow rate. 

To further investigate the location of microcracking within the serpentine traces, 

they were cross-sectioned with grinding and polishing specimen preparation techniques 

to allow for SEM imaging of the bulk trace. Upon inspection, cracks were observed in a 

variety of locations within the cross-section. In the single-pass traces, cracks were 

observed rarely at the top (Figure 3.27a) and frequently in the middle (Figure 3.27b). In 

the double-pass traces, cracks were observed occasionally on the sides in the middle 

(Figure 3.27c) and frequently towards the bottom (Figure 3.27d). Additionally, poor 

adhesion was sporadically observed in both the single-pass and double-pass traces as 

there was not always complete and consistent contact made with the Polymer N coating 

on the substrate (Figure 3.28). A summary of the occurrence of cracks in all 30 cross-

sections documented, is provided in Table 3.10. The microcracking is most likely due to 

a combination of shrinkage stresses and capillary pressure, as the volatiles in the ink 

escape during the sintering process. Simple 1D models of capillary pressure in the 
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literature suggest that microcracking risks may be high for trace thickness beyond 10-100 

nm and may further increase with increasing trace thickness (Singh et al., 2007). The 

principle of such crack formation is the evaporation-mediated agglomeration of the 

nanoparticles, which narrows the passage for the flows leading to a buildup of the 

capillary pressure, which eventually leads to the formation of periodic cracks. The 

relevance of these simple cracking models will be discussed in future publications, in the 

light of our experimental evidence of microcracking. These cracks are not believed to be 

the result of shrinkage stress post-sintering as explained in Appendix A8. 
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Figure 3.27: Cross-section SEM images of traces with a) crack at the top of C = 65, S = 

30 single-pass, b) crack in the middle of C = 80, S = 50 single-pass, c) crack at the 

bottom of C = 100, S = 50 double-pass, and d) crack at the left in the middle of C = 100, 

S = 40 double-pass. 
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Figure 3.28: Cross-section SEM images of traces with poor adhesion between printed 

silver line and polymer substrate in a) C = 30, S = 50 double-pass and b) C = 100, S = 

50 single-pass. 

 

 
Table 3.10: Presence of cracks observed or not observed in serpentine traces for a) 

single-pass and b) double-pass traces. 

 

Section 3.4: Summary 

The desire to understand the effects of carrier and sheath gas flow rates on the 

quality of an aerosol jet printed trace motivated a design of experiment where 15 

serpentine traces were printed at varying flow rates and then analyzed to judge the print 

quality. The carrier gas flow rates were 30, 50, 65, 80, and 100 sccm and the sheath gas 

flow rates were 30, 40, and 50 sccm. Part of the serpentine traces were single-pass, while 

the other part had a second-pass, which is typical in the printing of specimens intended 

Single

Sheath 30 50 65 80 100

30 None None Crack at top Crack in middle and top Crack in middle

40 None None None Crack in middle Microcrack at bottom

50 None None Crack in middle Crack in middle Small microcracks

Carrier

Double

Sheath 30 50 65 80 100

30 None None Microcrack on left, right Microcrack across bottom None

40 None Small microcracks Small microcrack Crack at bottom Microcrack on left, bottom

50 None Small microcrack Small microcrack Crack at bottom Crack at bottom

Carrier
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for functional application. For each flow rate combination, the deposition rate was 

estimated and the influence of increasing carrier gas and decreasing sheath gas on 

increase of deposition rate was quantified. Profilometry was conducted to quantify the 

macroscale geometric features such as trace width, cross-sectional area, overspray, and 

coverage. The flow rate of the carrier gas had a larger impact relative to that of the sheath 

gas for most of these macroscale geometric quantities. The effective conductivity of the 

printed silver traces interestingly increased with an increase in carrier gas. The presence 

of large silver crystalline deposits were mostly randomly present on the surface of the 

majority of traces with seemingly no relation to flow rate. High magnification imaging of 

the trace surfaces and digital image post-processing revealed that agglomerate coarseness 

(size and spacing) increased as the carrier gas flow rate increased. The agglomerate 

coarseness within the bulk (interior) of the trace cross-sections did not show a definitive 

trend with flow rates, but the largest agglomerates imaged in the trace’s cross-section 

were noticeably smaller than those imaged on the surface of those same traces. 

Longitudinal microcracking was seen from an overhead view of the trace surface for the 

traces with higher carrier gas flow rates and these were also observed in cross-section 

images. The cracks appeared sometimes near the top, predominantly through the middle, 

and sometimes towards the bottom of the cross-section for various traces. These findings 

suggest that lower flow rates should be used to minimize microcracking and coarser 

agglomerations that cause the trace to be different from bulk and homogeneous silver. 

Given the lower deposition rates at lower carrier gas flow rates, additional passes or a 

lower print speed can be utilized to still reach the desired material deposition. 
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Chapter 4 – Summary and Future Work 

This chapter will condense all of the information presented in the previous three 

chapters to allow for quicker and more efficient transfer of knowledge for the 3D printed 

hybrid electronics community. 

 

Section 4.1: Summary and Discussion of Work Completed 

Two different printed electronic specimens were successfully fabricated with Ink 

A. The first was an IoF specimen (IoF171101) that had printed lines traversing surfaces 

at different level (FR4 substrate and an elevated silicon die) with the help of an 

intervening polymer fillet ramp. The second specimen type was a baseline test coupon 

design (designated as DTC180201 specimen) that is simpler in nature, containing three 

sides of a five mm square on a single surface at a single level (without any different 

leveled surfaces). The IoF171101 and the DTC180201 specimens were documented with 

SEM imaging prior to any testing. The IoF171101 specimen showed coarser 

micromorphology and larger agglomerate features on the surface of the traces as well as 

greater bulk porosity within the trace. This difference is theorized to be the reason for 

vastly different reliability results following accelerated thermal cycling durability testing. 

The IoF171101 failed after just 250 thermal cycles, showing extensive microcracking as 

well as delaminations, whereas the DTC180201 structures lasted over 3,500 thermal 

cycles with failures unrelated to the printed traces and minimal observed damaged. The 

damage observed in the IoF specimens were found to be unrelated to the fillet regions.  

The differences in the reliability results in these two different print batches of AJP traces 

appear to be the result of variable trace quality, as defined by micromorphological 
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properties such as agglomeration and porosity. The ink condition such as solvent 

composition and content as well as the process parameters such as the flow rates of 

carrier gas and sheath gas for the IoF171101 and DTC180201 print batches were not 

identical, although both were printed with Ink A at the same deposition rates. Further 

work is needed to investigate the effect of ink condition namely dryness as defined by 

solids loading and solvent composition. 

The desire to understand the effects of carrier and sheath gas flow rates on the 

quality of an aerosol jet printed trace motivated a design of experiment where 15 

serpentine traces were printed at varying flow rates and then analyzed to judge the print 

quality. The carrier gas flow rates were 30, 50, 65, 80, and 100 sccm and the sheath gas 

flow rates were 30, 40, and 50 sccm. Part of the serpentine traces were single-pass, while 

the other part had a second-pass, which is typical in the printing of specimens intended 

for functional application. For each flow rate combination, the deposition rate was 

estimated and the influence of increasing carrier gas and decreasing sheath gas on 

increase of deposition rate was quantified. Profilometry was conducted to quantify the 

macroscale geometric features such as trace width, cross-sectional area, overspray, and 

coverage. The flow rate of the carrier gas had a larger impact relative to that of the sheath 

gas for most of these macroscale geometric quantities. The effective conductivity of the 

printed silver traces interestingly increased with an increase in carrier gas. The presence 

of large silver crystalline deposits were mostly randomly present on the surface of the 

majority of traces with seemingly no relation to flow rate. High magnification imaging of 

the trace surfaces and digital image post-processing revealed that agglomerate coarseness 

(size and spacing) increased as the carrier gas flow rate increased. The agglomerate 
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coarseness within the bulk (interior) of the trace cross-sections did not show a definitive 

trend with flow rates, but the largest agglomerates imaged in the trace’s cross-section 

were noticeably smaller than those imaged on the surface of those same traces. 

Longitudinal microcracking was seen from an overhead view of the trace surface for the 

traces with higher carrier gas flow rates and these were also observed in cross-section 

images. The cracks appeared sometimes near the top, predominantly through the middle, 

and sometimes towards the bottom of the cross-section for various traces. These findings 

suggest that lower flow rates should be used to minimize microcracking and coarser 

agglomerations that cause the trace to be different from bulk and homogeneous silver. 

Given the lower deposition rates at lower carrier gas flow rates, additional passes or a 

lower print speed can be utilized to still reach the desired material deposition. 

 

Section 4.2: Research Contributions 

Though questions remain, this research into printed hybrid electronics and 

additive manufacturing has proven very successful. Test structures with a silver 

nanoparticle conductive Ink A on Polymer N coated silicon and FR4 have been 

successfully fabricated. An IoF specimen lasted 250 accelerated thermal cycles before 

trace failures were observed unrelated to the fillet features. This study is the first to 

demonstrate that that the AJP IoF technology may have sufficient robustness to be a 

viable alternative to wirebonds, under thermal cycling stresses. Additionally, this study is 

the first to report that the differences in thermal cycling durability observed in different 

AJP test specimens correlated with different levels of agglomeration coarseness and 



89 

 

porosity. This agglomeration coarseness is an important quality metric that is easy to 

check before conducting long and expensive thermal cycling durability testing. 

Through this gathering of data, much was learned about different diagnostic 

techniques. A conventional methodology of grinding and polishing to cross-section the 

trace will not lead to satisfactory SEM cross-section images if the micron-scale printed 

electronic is embodied in a non-conductive epoxy material that will charge in the 

chamber. Coating of the polished surface of the trace with a non-amorphous material like 

carbon at particle sizes of less than 30 nm can effectively ground the surface to the SEM 

stage without distorting any of the agglomeration features. Other methods such as AFM 

and laser profilometry on the polished cross-section surface did not yield reliable 

information about agglomeration coarseness as it was more susceptible to the level of 

polishing as detailed in Appendix A4 and A5. 

This study is also one of the first to systematically explore the relationship 

between AJP at different flow rates of carrier gas and sheath gas and the 

micromorphology of printed nanoparticle-based conductor inks (for thermal sintering). 

This study has been able to establish that higher flow rates are likely the cause of larger 

(coarser) agglomerations on the surface of traces, which was confirmed through SEM 

imaging and digital image processing. This methodology, detailed in Appendix A6, for 

quantifying the correlation is also a useful contribution of this study that can be helpful to 

others trying to quantify micromorphological features of printed hybrid electronics. 

Moreover, the presence of crystalline deposits observed informs other users of its 

occurrence. This study also establishes that higher carrier gas flow rates also leads to a 

higher probability of microcracking. This is an important guide for the AJP community.   
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Section 4.3: Limitations and Future Work 

This work was limited as the 15 serpentine traces printed at varying flow rate 

combinations were not subjected to thermal cycling durability testing. Such an endeavor 

would have allowed us to see if the higher carrier gas flow rate traces failed sooner as a 

result of the microcracking and coarser agglomerations that were already present after 

fabrication. Moreover, a direct comparison could have been made to the failure analysis 

study on the IoF171101 specimen. Moreover, because there is a clear effect on AJP trace 

quality when the print parameters are altered, this can be investigated through physics of 

failure modeling. This is recommended for a future study. 

Besides the change in gas flow rates, the other major difference between the 

printing of the IoF171101 and DTC180201 specimens was the addition of solvent to Ink 

A prior to the printing of DTC180201. This ensured that the ink was within solids 

fraction specifications. The solids fraction history of the ink before the two print batches 

is not known, but there is a chance that adding solvent to the ink immediately before 

printing may have been a reason for improved trace quality and reliability in the 

DTC180201. As a result, ink dryness which can be partially quantified by the ink’s solids 

loading is another important parameter to be investigated for its impact on trace quality. 

This conclusion is also supported by the literature. Solvent evaporation, especially as a 

result of continuous nitrogen gas flow over the ink surface in the atomization cup, 

weakens the ink and can affect the print quality (Wadhwa et al., 2015). Secor et al. (2018) 

integrated a solvent bubbler on the sheath gas flow line to dry the ink in a controlled 

manner before printing. By increasing the vapor concentration in the sheath gas to 

suppress drying, more material was deposited on the substrate as opposed to ink that is 



91 

 

too dry that will not impact or remain on the substrate. Preliminary work was completed 

to increase the solids fraction of Ink A by bubbling nitrogen to displace the solvent and 

plans were made to pull a partial vacuum. In addition to the effect of ink condition, the 

sintering temperature profile should also be investigated to see if slower ramp rates and 

more uniform solvent evaporation improves trace quality. This is recommended to be 

continued in a future study. 

In a future study, SEM imaging of the cross-section of traces can be divided into 

documenting the top and bottom of a double pass trace, the second and first print pass, 

respectively. This will shed light on if there is a difference in agglomeration size between 

multiple print passes and potentially understand how the sintering process interacts with 

each pass differently depending on its proximity to the surface or substrate. Image 

processing results from those sets of data can be compared as well as comparing the first 

print pass of a double pass trace to an ordinary single pass trace. Additional tasks that 

remain include 1) ranking the thermal cycling performance of different conductive inks, 

2) exploring ways to improve durability of under-performing inks, and 3) performing 

physics of failure modeling of print parameters and observed failures to quantify the 

agglomeration physics. 
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Chapter 5 – Appendices 

In this chapter, additional information and research conducted as a part of this 

thesis is discussed. 

 

A1: Reliability Results for Ink C and Ink D 

An interconnect over fillet (IoF) specimen, similar to the one previously discussed 

in Chapter 2, fabricated with Ink C underwent thermal cycling reliability testing (Figure 

5.1). This sample will be denoted IoF170601. 

 

Figure 5.1: a) Interconnect over fillet specimen for Ink C (IoF170601) and b) zoomed in 

digital image of the serpentine traces on one of the four silicon dies populated on the FR4 

circuit card. 
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An initial comparison between Inks A and C was a qualitative SEM image 

comparison of the traces before undergoing any thermal cycling (Figure 5.2). Ink A has 

more coarse particles that have agglomerated together whereas Ink C has a finer and 

more uniform spray of particles. Ink A also has a tighter distribution of particles meaning 

less overspray, which is something hard to control in the AJP process.  

 

Figure 5.2: Initial morphology comparison between Inks A and C from an overhead view. 

The temperature profile followed for accelerated thermal cycling of IoF170601 

was also between -40 and 125 °C with a half-hour dwell at the hot temperature and 10 °C 

per minute ramps in between the two extreme temperatures. As expected early on in the 

thermal cycling durability testing, the resistance of the traces varied smoothly as a 

function of temperature and no anomalous spikes were observed. The earliest failures 

were in the connection pads, not in the AJP traces or Polymer N fillets, but with the 

connection to the outside world to allow for in-situ DC resistance monitoring. The 

sintered silver paste that connected a wire to the silver pad accumulated too much strain 

in the glob and as a result lifted the entire silver pad off of the substrate creating an open 

(Figure 5.3a). This was indicated in the resistance profiles as unusual spikes occurred 

(Figure 5.3b). The solution was to etch away from the substrate to allow for a copper 



94 

 

island under the silver pad such that a wire could be soldered directly to that copper 

island and create a more reliable connection to the outside world (Figure 5.3c). 

      

 

Figure 5.3: a) Example of silver pad lifting off of substrate as result of sintered silver 

glob, b) spike in resistance profile indicating open circuit, c) improved wire 

interconnection method. 

After 200 thermal cycles from -40 to 125 °C, the Ink C IoF specimen (IoF170601) 

underwent failure analysis including SEM image documentation. Most of the traces 

showed little to no damage as exemplified by Fillet 5 in Figure 5.4a, which looked nearly 

the same as the pre-cycling images. Some damage was seen in Fillet 8 in Figure 5.4b with 

the presence of microcracking at the concave down bend in the fillet near the top of the 

die. It is possible that with further thermal cycling, a noticeable resistance change would 

have been observed in the in-situ monitoring as the crack grew to a full break in the trace. 
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Figure 5.4: a) little observable damage on the surface of the traces corresponding to 

Fillet 5 and b) signs of longitudinal microcracking at traces at the top of Fillet 8 after 

200 thermal cycles. 

In addition to the Ink A baseline test coupon boards (DTC180201) fabricated and 

discussed in Section 2.1.2, the same baseline test coupon boards were produced for Ink C 

(CTC180508) and a new ink, Ink D, (RTC180508). Ink C was the same silver 

nanoparticle ink used to fabricate IoF170601 and Ink D was a new non-conductive ink 

that has applications as a printed resistor. Similar to DTC180201, CTC180508 had little 

visible damage to the traces after over two thousand thermal cycles. The RTC180508 

structures had failures, beginning as the printed pads lifting off of the substrate, at the 

cold temperature portion of the thermal cycling profile (Figure 5.5). This was the result of 

unevaporated solvent meshing poorly with the Polymer N coating. This taught the group 

that a higher sintering temperature would be needed for Ink D to fully evaporate the 

solvent. 
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Figure 5.5: Example of pad lifting failure for RTC180508 
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A2: Investigating Scanning Electron Microscope as Potentially Damaging Printed Hybrid 

Electronics 

The baseline test coupons discussed in Chapter 2 were also used to ensure that the 

electron beam and vacuum environment of the scanning electron microscope used for 

failure analysis was not causing any unintended damage to the sample. This was done as 

due diligence because it has been documented in the literature that the SEM environment 

can cause damage to polymer materials and the printed hybrid electronic samples do 

utilize Polymer N (Kitching et al., 1998). The DTC180201 boards underwent different 

loading conditions including: (i) thermal cycling; (ii) SEM exposure; and (iii) 

combination of both to see if any unexpected damage was afflicted. 

The specimen selected for thermal cycling is designated Board 3, specimen 

selected for SEM exposure is designated Board 2, and the remaining specimens were 

selected for a combination of both are designated Board 1, 4, and 5. Board 2 was picked 

for SEM exposure because it had a slightly higher average resistance for its ten structures 

potentially meaning it was most likely to fail. The combination of both thermal cycling 

and SEM exposure occurred in two manners: 1) undergoing a certain number of thermal 

cycles (i.e. 50 or 150) initially and then five blocks of SEM exposure and storage or 2) 

alternating between 100 thermal cycles followed by one block of SEM exposure before 

returning to the thermal chamber and repeating the sequence. The first method was used 

for Boards 4 and 1, which underwent 50 and 150 thermal cycles, respectively, before five 

blocks of SEM exposure. Through this method, it can be seen if there is any delayed 

initiation or growth of damage due to locked-in residual stresses. The second method was 

used for Board 5, which underwent 100 thermal cycles followed by one block of SEM 
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exposure a total of four times. Each block of SEM exposure lasted approximately 30 

minutes in which the e-beam high voltage was 30 kilovolts and the pressure was 83 

Pascals. The test matrix discussed above is summarized in Figure 5.6. All structures 

subjected to accelerated thermal cycling were monitored in-situ with two-wire DC 

resistance measurement. 

 

Figure 5.6: Initial test matrix for Ink A baseline test coupons to investigate if SEM 

environment damages printed electronic samples. 

All 50 test structures were initially optically documented to allow for a baseline 

for later comparison to know if damage or failure was the result of thermal cycling, SEM 

exposure, or simply a pre-existing defect (Figure 5.7). 

 

Figure 5.7: Optical and scanning electron microscope images for a Board 2 structure. 

At aforementioned intervals, the appropriate test coupon board is removed from 

the test chamber for optical inspection to document thermal cycling damage. Then, the 

board is imaged with SEM as another means of documentation as well as loading the 

specimen with the e-beam and vacuum environment. Finally, the board is optically 

imaged again to re-document for any possible e-beam or vacuum damage. For example, 

Dates 3/7/2018 3/8/2018 3/9/2018 3/10/2018 3/11/2018 3/12/2018 3/13/2018 3/14/2018 3/15/2018 3/16/2018 3/17/2018 3/18/2018 3/19/2018

Board 2 SEM 1 SEM 2 Storage SEM 3 Storage SEM 4 SEM 5

Board 4 SEM 1 SEM 2 Storage SEM 3 Storage SEM 4 SEM 5

Board 5 SEM 1 SEM 2

Board 1 SEM 1 Storage SEM 2 SEM 3

Board 3

Thermal Cycling

Thermal Cycling

Thermal Cycling (Until Failure)

Storage

Storage

Storage

Storage

TC Storage

Thermal Cycling
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after 100 thermal cycles, Board 5 was pulled from the chamber to undergo SEM 

exposure. The test coupon board was optically documented before and after SEM 

exposure and showed no visible damage resulting from the thermal cycling nor the SEM 

environment (Figure 5.8). 

 

Figure 5.8: a) Optical microscope image after 100 thermal cycles and before SEM 

exposure, b) SEM image after 100 thermal cycles and first optical microscope 

documentation, and c) optical microscope image after 100 thermal cycles and after SEM 

exposure. 

Despite several rounds of SEM exposure as summarized in Table 5.1, the Ink A 

test coupons showed little damage to the traces. These results indicate that SEM exposure 

is not resulting in damage to the AJP Ink A traces with Polymer N adhesion and dielectric 

layer. 

Board No. 1 2 3 4 5 

SEM Exposures 7 8 1 8 4 

Table 5.1: Summary of number of SEM exposures each test coupon board with Ink A has 

been subjected to. 
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A3: DTC180201 Hot and Cold Temperature Normalized Resistance Plots 

In Figure 5.9, the hot and cold temperature normalized resistance plots as a 

function of cycle number are provided for all 50 baseline test structures fabricated with 

Ink A. These plots compliment the results presented in Section 2.3.1. 
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Figure 5.9: Normalized resistance of all DTC180201 structures at the a) hot and b) cold 

temperature dwells as a function of cycle number. 

 

  

0.0

0.5

1.0

1.5

0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
es

is
ta

n
ce

 [
o

h
m

s]

Cycle Number

DTC180201 Cold Temperature Normalized Resistance vs. 
Cycle Number

B1 UC1 B1 UC2 B1 UC3 B1 UC4 B1 UC5 B1 C1 B1 C2

B1 C3 B1 C4 B1 C5 B3 UC1 B3 UC2 B3 UC3 B3 UC4

B3 UC5 B3 C1 B3 C2 B3 C3 B3 C4 B3 C5 B4 UC1

B4 UC2 B4 UC3 B4 UC4 B4 UC5 B4 C1 B4 C2 B4 C3

B4 C4 B4 C5 B5 UC1 B5 UC2 B5 UC3 B5 UC4 B5 UC5

B5 C1 B5 C2 B5 C3 B5 C4 B5 C5 B2 UC1 B2 UC2

B2 UC3 B2 UC4 B2 UC5 B2 C1 B2 C2 B2 C3 B2 C4

B2 C5



102 

 

A4: Atomic Force Microscopy (AFM) Results 

As a method to potentially quantify the visible bulk porosity discussed in Section 

2.1.3, the team utilized AFM to characterize the cross-section topology of the IoF171101 

and DTC180201. The AFM consists of a small cantilever beam with a sharp tip, also 

known as a probe, on the end that scans the surface of the specimen. The tip radius of 

curvature is on the order of nanometers and when it is brought into proximity of a 

sample, either through static (contact) or dynamic (non-contact or tapping) mode, the 

forces generated deflects the cantilever based on Hooke's law. In addition to using both 

static and dynamic mode to map the cross-section topology, a phase plot, only possible 

through dynamic mode, was generated to differentiate the various materials (Figure 5.10). 

In the phase plots presented, the purple area represents the silver trace, while the yellow 

area represents the epoxy resin that the sample was potted in for grinding and polishing 

purposes. This is known because a lower phase represents a stiffer material. 
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Figure 5.10: a) surface topology and b) phase plot of IoF171101 as well as c) surface 

topology and d) phase plot of DTC180201. 

A modified fast Fourier transform was conducted on portions of the surface 

topology plot to see if there were any peaks in the IoF171101 history relative to the 

DTC180201 history that could be indicative of porosity. Such attempts were not fruitful 

as there was no high frequency corresponding to porosity size where the IoF171101 had a 

statistically significant higher magnitude than the DTC180201 (Figure 5.11). It is 

believed that the cross-section topology being captured by the AFM is telling the story of 

the level of grinding and polishing of the epoxy potted sample instead of any surface 

roughness as a result of varying levels of porosity. 
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Figure 5.11: Fast Fourier transform comparison between IoF171101 and DTC180201 

line roughness profiles generated by AFM. 
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A5: Laser Profilometry Results of Cross-Sectioned Samples 

A commercial confocal microscope was used to conduct laser profilometry on the 

cross-sectioned IoF171101 and DTC180201 potted samples. Surface and line topology 

plots were generated similarly to the AFM results presented in Appendix A4 (Figure 

5.12). 

 

 

Figure 5.12: Example of line roughness plots generated for a) IoF171101 and b) 

DTC180201. 
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Again, similarly to AFM, the results generated from the modified fast Fourier 

transform did not correlate to identifying porosity features (Figure 5.13). Based on these 

results as well as those gathered from AFM, topology type analyses were not continued 

as a method to quantify porosity in the Ink A serpentine traces printed at varying gas flow 

rates. 

 

Figure 5.13: Fast Fourier transform comparison between IoF171101 and DTC180201 

line roughness profiles generated by laser profilometry. 
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A6: Image Processing Methodology 

A commercial image processing software was used to quantify the particle 

agglomeration size and spacing distribution of printed traces on the surface and in the 

bulk. A SEM image of the region of interested at 50,000x magnification with file 

extension of .tiff was uploaded to the software (Figure 5.14). Using the smart 

segmentation feature available in the software, a region where an agglomerate is seen is 

selected as an object of interest in blue and what is not of interest is selected as 

background in yellow (Figure 5.15). All of the agglomerations counted by the software in 

Figure 5.14 are highlighted in blue and green in Figure 5.16. The distinction between the 

two colors of agglomerations is an example of the threshold capability of the software to 

distinguish agglomerations with areas larger or smaller than any amount. From these 

features that are counted, the area, diameter, and many other characteristics can be 

quantified by the software. To quantify the spacing of one agglomeration to the next 

closest agglomeration, a Voronoi diagram can be generated and the center-to-center 

minimum distance can be extracted (Figure 5.17). In the examples provided in this 

section, the objects of interest are agglomerations, but a similar methodology can be 

followed if the object of interest is porosity in which case voids would be circled in blue 

and the background would be the in-plane silver ink trace. 
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Figure 5.14: Example of original SEM image uploaded to software. 
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Figure 5.15: Example of agglomerations counted by software a) without and b) with 

shading over the counted objects. 
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Figure 5.16: Example of all agglomerations counted and highlighted. 
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Figure 5.17: Example of Voronoi diagram to quantify agglomerations spacing 

distribution. 
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A7: Additional Micromorphology Image Processing Results 

Several different manners to see if agglomeration size and spacing is correlated to 

gas flow rates are presented in full below after being discussed in brief in Section 3.3.5. 

 

A7.1: Number of Agglomerations as a Function of Flow Rate 

This section includes the number of features that the image processing software 

counted as an agglomerate through its smart segmentation algorithm. The 3D bar charts 

below plot the number of agglomerates on the z-axis and lays out the 15 different flow 

rate combinations corresponding to the 15 different serpentine traces printed in the x-y 

plane. Furthermore, there is a figure distinguishing between single and double-pass traces 

as well as surface or cross-section images. The data from the 3D bar charts are provided 

in tabular form and for the flow rate combinations, corners and middle, that there are 

multiple images processed for, the standard deviation is also provided. 

 

Table 5.2: Number of agglomerations in single-pass trace on the surface. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 225±161 145 101 158 64±14 

Sheath = 40 345 337 98±27 152 123 

Sheath = 50 230±90 210 181 140 83±36 
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Figure 5.18: Number of agglomerations in single-pass trace on the surface as a function 

of carrier and sheath gas flow rate. 

 

Table 5.3: Number of agglomerations in double-pass trace on the surface. 

 

Figure 5.19: Number of agglomerations in double-pass trace on the surface as a function 

of carrier and sheath gas flow rate. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 100±29 211 125 81 116±89 

Sheath = 40 260 185 90±49 126 62 

Sheath = 50 105±41 103 74 85 190±78 
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Table 5.4: Number of agglomerations in single-pass trace in the bulk. 

 

Figure 5.20: Number of agglomerations in single-pass trace in the bulk as a function of 

carrier and sheath gas flow rate. 

 

Table 5.5: Number of agglomerations in double-pass trace in the bulk. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 348±197 313 425 272 277±243 

Sheath = 40 426 370 1875±795 243 1106 

Sheath = 50 386±174 560 1284 554 141±101 

 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 754±260 332 651 541 225±323 

Sheath = 40 644 332 1625±1026 485 1241 

Sheath = 50 306±183 368 485 631 603±134 
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Figure 5.21: Number of agglomerations in double-pass trace in the bulk as a function of 

carrier and sheath gas flow rate. 

 

A7.2: Percent Area of Agglomerations as a Function of Flow Rate 

This section includes the percent area the agglomerations counted take up on the 

raw image that is fed into the image processing software. The 3D bar charts below plot 

the percent area out of 100 on the z-axis and lays out the 15 different flow rate 

combinations corresponding to the 15 different serpentine traces printed in the x-y plane. 

Furthermore, there is a figure distinguishing between single and double-pass traces as 

well as surface or cross-section images. The data from the 3D bar charts are provided in 

tabular form and for the flow rate combinations, corners and middle, that there are 

multiple images processed for, the standard deviation is also provided. 

 

Table 5.6: Agglomeration percent area in single-pass trace on the surface. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 13.54±4.05 15.83 25.64 27.29 21.64±3.12 

Sheath = 40 9.89 15.62 20.96±1.33 17.03 25.85 

Sheath = 50 15.69±2.16 24.70 19.97 29.92 21.02±7.27 
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Figure 5.22: Agglomeration percent area in single-pass trace on the surface as a 

function of carrier and sheath gas flow rate. 

 

Table 5.7: Agglomeration percent area in double-pass trace on the surface. 

 

Figure 5.23: Agglomeration percent area in double-pass trace on the surface as a 

function of carrier and sheath gas flow rate. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 13.67±3.69 24.99 22.05 16.04 14.70±9.39 

Sheath = 40 19.92 33.25 24.02±5.78 17.12 22.78 

Sheath = 50 14.45±4.33 11.08 19.54 16.09 16.40±8.01 
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Table 5.8: Agglomeration percent area in single-pass trace in the bulk. 

 

Figure 5.24: Agglomeration percent area in single-pass trace in the bulk as a function of 

carrier and sheath gas flow rate. 

 

Table 5.9: Agglomeration percent area in double-pass trace in the bulk. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 8.87±4.13 9.01 9.42 0.84 20.69±13.58 

Sheath = 40 6.50 16.55 24.61±7.48 12.33 32.14 

Sheath = 50 5.02±3.34 9.61 30.17 4.50 0.62±0.53 

 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 9.70±4.06 14.18 39.86 14.13 1.97±3.53 

Sheath = 40 3.50 5.05 17.66±8.46 23.70 3.10 

Sheath = 50 1.46±1.13 23.79 33.31 10.70 14.03±5.98 
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Figure 5.25: Agglomeration percent area in double-pass trace in the bulk as a function of 

carrier and sheath gas flow rate. 

 

A7.3: Agglomerate Size and Spacing Histograms 

For the four corner and middle flow rate combinations (C = 30, S = 30; C = 30, S 

= 50; C = 65, S = 40; C = 100, S = 30; C = 100, S = 50), five images were post-processed 

for single and double-pass as well as surface and cross-section cases. The size and 

spacing distributions for each image was normalized before averaging across the five 

images to avoid one image from dominating if there was an unusually high number of 

agglomerates counted by the image processing software. The size and spacing 

distributions were then fit to a histogram with log-scale bins, to deal with the highly right 

skewed nature of the data. The five flow rate combinations were grouped in threes for the 

histograms in terms of major (C = 30, S = 30; C = 65, S = 40; C = 100, S = 50) and minor 

(C = 30, S = 50; C = 65, S = 40; C = 100, S = 30) diagonals. Histograms are provided in 

this section for major and minor diagonal cases, single and double-pass, surface and 

cross-section images, as well as agglomeration size and spacing. 
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Figure 5.26: Agglomeration size in single-pass trace on the surface for major diagonal 

cases. 

 

Figure 5.27: Agglomeration size in single-pass trace on the surface for minor diagonal 

cases. 



121 

 

 

Figure 5.28: Agglomeration size in double-pass trace on the surface for major diagonal 

cases. 

 

Figure 5.29: Agglomeration size in double-pass trace on the surface for minor diagonal 

cases. 
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Figure 5.30: Agglomeration size in single-pass trace in the bulk for major diagonal 

cases. 

 

Figure 5.31: Agglomeration size in single-pass trace in the bulk for minor diagonal 

cases. 
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Figure 5.32: Agglomeration size in double-pass trace in the bulk for major diagonal 

cases. 

 

Figure 5.33: Agglomeration size in double-pass trace in the bulk for minor diagonal 

cases. 
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Figure 5.34: Agglomerate spacing in single-pass trace on the surface for major diagonal 

cases. 

 

Figure 5.35: Agglomerate spacing in single-pass trace on the surface for minor diagonal 

cases. 
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Figure 5.36: Agglomerate spacing in double-pass trace on the surface for major 

diagonal cases. 

 

Figure 5.37: Agglomerate spacing in double-pass trace on the surface for minor 

diagonal cases. 
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Figure 5.38: Agglomerate spacing in single-pass trace in the bulk for major diagonal 

cases. 

 

Figure 5.39: Agglomerate spacing in single-pass trace in the bulk for minor diagonal 

cases. 
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Figure 5.40: Agglomerate spacing in double-pass trace in the bulk for major diagonal 

cases. 

 

Figure 5.41: Agglomerate spacing in double-pass trace in the bulk for minor diagonal 

cases. 
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A7.4: Variation in Agglomerate Size and Spacing  

For the four corner flow rate combinations (C = 30, S = 30; C = 30, S = 50; C = 

100, S = 30; C = 100, S = 50), five images were post-processed for single and double-

pass as well as surface and cross-section cases. The size and spacing distributions for 

each image was normalized before averaging across the five images to avoid one image 

from dominating if there was an unusually high number of agglomerates counted by the 

image processing software. The mean and standard deviation for the size and spacing 

distributions were then calculated. To understand the variation in the data, the mean plus-

or-minus the standard deviation of the agglomeration size or spacing was plotted. The 

four corner flow rate combinations were grouped in twos for the plots in terms of major 

(C = 30, S = 30; C = 100, S = 50) and minor (C = 30, S = 50; C = 100, S = 30) diagonals. 

Plots are provided in this section for major and minor diagonal cases, single and double-

pass, surface and cross-section images, as well as agglomeration size and spacing. 
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Figure 5.42: Variation in agglomeration size in single-pass trace on the surface for 

major diagonal cases. 

 

Figure 5.43: Variation in agglomeration size in single-pass trace on the surface for 

minor diagonal cases. 
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Figure 5.44: Variation in agglomeration size in double-pass trace on the surface for 

major diagonal cases. 

 

Figure 5.45: Variation in agglomeration size in double-pass trace on the surface for 

minor diagonal cases. 
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Figure 5.46: Variation in agglomeration size in single-pass trace in the bulk for major 

diagonal cases. 

 

Figure 5.47: Variation in agglomeration size in single-pass trace in the bulk for minor 

diagonal cases. 
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Figure 5.48: Variation in agglomeration size in double-pass trace in the bulk for major 

diagonal cases. 

 

Figure 5.49: Variation in agglomeration size in double-pass trace in the bulk for minor 

diagonal cases. 
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Figure 5.50: Variation in agglomeration spacing in single-pass trace on the surface for 

major diagonal cases. 

 

Figure 5.51: Variation in agglomeration spacing in single-pass trace on the surface for 

minor diagonal cases. 
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Figure 5.52: Variation in agglomeration spacing in double-pass trace on the surface for 

major diagonal cases. 

 

Figure 5.53: Variation in agglomeration spacing in double-pass trace on the surface for 

minor diagonal cases. 
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Figure 5.54: Variation in agglomeration spacing in single-pass trace in the bulk for 

major diagonal cases. 

 

Figure 5.55: Variation in agglomeration spacing in single-pass trace in the bulk for 

minor diagonal cases. 
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Figure 5.56: Variation in agglomeration spacing in double-pass trace in the bulk for 

major diagonal cases. 

 

Figure 5.57: Variation in agglomeration spacing in double-pass trace in the bulk for 

minor diagonal cases. 
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A7.5: Average Agglomerate Size and Spacing as a Function of Flow Rate 

From the image processing of high magnification images for 15 serpentine traces 

with varying flow rate combinations, an agglomeration size and spacing distribution was 

produced. The 3D bar charts below plot the average agglomerate size and spacing on the 

z-axis and lays out the 15 different flow rate combinations corresponding to the 15 

different serpentine traces printed in the x-y plane. Furthermore, there is a figure 

distinguishing between single and double-pass traces as well as surface or cross-section 

images. The data from the 3D bar charts are provided in tabular form with the average 

and standard deviation for the agglomeration size and spacing. 

 

Table 5.10: Average agglomeration size in single-pass trace on the surface. 

 

Figure 5.58: Average agglomeration size in single-pass trace on the surface as a function 

of carrier and sheath gas flow rate. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 0.008±0.015 0.009±0.016 0.021±0.033 0.014±0.036 0.028±0.041 

Sheath = 40 0.002±0.005 0.004±0.007 0.019±0.029 0.009±0.016 0.017±0.034 

Sheath = 50 0.006±0.017 0.010±0.044 0.009±0.016 0.017±0.034 0.022±0.037 
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Table 5.11: Average agglomeration size in double-pass trace on the surface. 

 

Figure 5.59: Average agglomeration size in double-pass trace on the surface as a 

function of carrier and sheath gas flow rate. 

 

Table 5.12: Average agglomeration size in single-pass trace in the bulk. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 0.012±0.019 0.010±0.018 0.014±0.027 0.016±0.024 0.014±0.029 

Sheath = 40 0.006±0.013 0.015±0.041 0.024±0.045 0.011±0.015 0.030±0.043 

Sheath = 50 0.013±0.020 0.009±0.016 0.021±0.034 0.015±0.020 0.009±0.023 

 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 0.0028±0.006 0.0031±0.007 0.0038±0.003 0.0005±0.024 0.0146±0.020 

Sheath = 40 0.0015±0.001 0.0067±0.069 0.0029±0.045 0.0087±0.019 0.0024±0.20 

Sheath = 50 0.0009±0.002 0.0022±0.016 0.0040±0.004 0.0014±0.091 0.0009±0.002 
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Figure 5.60: Average agglomeration size in single-pass trace in the bulk as a function of 

carrier and sheath gas flow rate. 

 

Table 5.13: Average agglomeration size in double-pass trace in the bulk. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 0.0022±0.007 0.0074±0.030 0.0105±0.007 0.0045±0.003 0.0010±0.010 

Sheath = 40 0.0009±0.004 0.0026±0.019 0.0024±0.011 0.0084±0.044 0.0004±0.011 

Sheath = 50 0.0008±0.002 0.0111±0.007 0.0118±0.013 0.0029±0.002 0.0039±0.008 
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Figure 5.61: Average agglomeration size in double-pass trace in the bulk as a function of 

carrier and sheath gas flow rate. 

 

Table 5.14: Average agglomeration spacing in single-pass trace on the surface. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 0.044±0.043 0.054±0.046 0.062±0.039 0.030±0.032 0.070±0.059 

Sheath = 40 0.029±0.032 0.041±0.028 0.057±0.047 0.050±0.037 0.046±0.042 

Sheath = 50 0.036±0.036 0.040±0.028 0.040±0.034 0.039±0.031 0.068±0.058 
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Figure 5.62: Average agglomeration spacing in single-pass trace on the surface as a 

function of carrier and sheath gas flow rate. 

 

Table 5.15: Average agglomeration spacing in double-pass trace on the surface. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 0.071±0.058 0.026±0.024 0.048±0.049 0.062±0.067 0.067±0.061 

Sheath = 40 0.026±0.030 0.035±0.022 0.070±0.055 0.064±0.053 0.073±0.051 

Sheath = 50 0.077±0.069 0.079±0.067 0.086±0.048 0.084±0.048 0.028±0.036 
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Figure 5.63: Average agglomeration spacing in double-pass trace on the surface as a 

function of carrier and sheath gas flow rate. 

 

Table 5.16: Average agglomeration spacing in single-pass trace in the bulk. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 0.026±0.032 0.021±0.057 0.054±0.026 0.043±0.031 0.051±0.062 

Sheath = 40 0.023±0.136 0.025±0.028 0.014±0.020 0.063±0.028 0.022±0.026 

Sheath = 50 0.038±0.039 0.019±0.031 0.015±0.032 0.040±0.015 0.103±0.168 
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Figure 5.64: Average agglomeration spacing in single-pass trace in the bulk as a 

function of carrier and sheath gas flow rate. 

 

Table 5.17: Average agglomeration spacing in double-pass trace in the bulk. 

 Carrier = 30 Carrier = 50 Carrier = 65 Carrier = 80 Carrier = 100 

Sheath = 30 0.028±0.032 0.041±0.052 0.016±0.063 0.038±0.085 0.156±0.203 

Sheath = 40 0.012±0.028 0.073±0.036 0.022±0.015 0.026±0.057 0.014±0.022 

Sheath = 50 0.067±0.069 0.029±0.025 0.030±0.010 0.020±0.041 0.040±0.041 
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Figure 5.65: Average agglomeration spacing in double-pass trace in the bulk as a 

function of carrier and sheath gas flow rate. 

 

A7.6: Standard Deviation of Agglomerate Size and Spacing as a Function of Flow Rate 

From the image processing of high magnification images for 15 serpentine traces 

with varying flow rate combinations, an agglomeration size and spacing distribution was 

produced. The 3D bar charts below plot the standard deviation of the agglomerate size 

and spacing on the z-axis and lays out the 15 different flow rate combinations 

corresponding to the 15 different serpentine traces printed in the x-y plane. Furthermore, 

there is a figure distinguishing between single and double-pass traces as well as surface 

or cross-section images. 
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Figure 5.66: Standard deviation of agglomeration size in single-pass trace on the surface 

as a function of carrier and sheath gas flow rate. 

 

Figure 5.67: Standard deviation of agglomeration size in double-pass trace on the 

surface as a function of carrier and sheath gas flow rate. 
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Figure 5.68: Standard deviation of agglomeration size in single-pass trace in the bulk as 

a function of carrier and sheath gas flow rate. 

 

Figure 5.69: Standard deviation of agglomeration size in double-pass trace in the bulk as 

a function of carrier and sheath gas flow rate. 
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Figure 5.70: Standard deviation of agglomeration spacing in single-pass trace on the 

surface as a function of carrier and sheath gas flow rate. 

 

Figure 5.71: Standard deviation of agglomeration spacing in double-pass trace on the 

surface as a function of carrier and sheath gas flow rate. 
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Figure 5.72: Standard deviation of agglomeration spacing in single-pass trace in the 

bulk as a function of carrier and sheath gas flow rate. 

 

Figure 5.73: Standard deviation of agglomeration spacing in double-pass trace in the 

bulk as a function of carrier and sheath gas flow rate. 
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A7.7: Skewness of Agglomerate Size and Spacing as a Function of Flow Rate 

From the histograms presented in A7.3, a skewness factor can be calculated based 

on the log-scale based binning for the five serpentine traces with multiple image data 

averaged together. The more positive the skewness value, the more skewed right the 

histogram data is. The 3D bar charts below plot the skewness of the agglomerate size and 

spacing on the z-axis and lays out the 5 different flow rate combinations corresponding to 

the 5 different serpentine traces printed in the x-y plane. Furthermore, there is a figure 

distinguishing between single and double-pass traces as well as surface or cross-section 

images. The data from the 3D bar charts are provided in tabular form first. 
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Size Spacing 

Surface Surface 

Trace Skewness Trace Skewness 

B5S1 SP 0.593 B5S1 SP 2.478 

B5S3 SP 0.026 B5S3 SP 2.688 

B3S2 SP 0.314 B3S2 SP 0.198 

B4S1 SP 0.297 B4S1 SP 0.085 

B4S3 SP 0.405 B4S3 SP 0.944 

B5S1 DP 0.233 B5S1 DP 0.050 

B5S3 DP 0.072 B5S3 DP 0.221 

B3S2 DP 0.549 B3S2 DP 0.052 

B4S1 DP 0.682 B4S1 DP 2.822 

B4S3 DP 0.634 B4S3 DP 2.790 

Cross-Section Cross-Section 

Trace Skewness Trace Skewness 

B5S1 SP 0.255 B5S1 SP 3.254 

B5S3 SP 1.325 B5S3 SP 1.127 

B3S2 SP -0.302 B3S2 SP 2.790 

B4S1 SP 1.552 B4S1 SP 1.942 

B4S3 SP 0.449 B4S3 SP 3.016 

B5S1 DP 0.951 B5S1 DP 2.585 

B5S3 DP 0.628 B5S3 DP 2.653 

B3S2 DP 2.487 B3S2 DP 1.500 

B4S1 DP 1.113 B4S1 DP 3.182 

B4S3 DP 0.572 B4S3 DP 0.768 

Table 5.18: Skewness values for agglomeration size and spacing histograms for different 

flow rates, number of passes (SP – single pass or DP – double pass), and type of image 

(surface of cross-section). 
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Figure 5.74: Skewness of agglomeration size in single-pass trace on the surface as a 

function of carrier and sheath gas flow rate. 

 

Figure 5.75: Skewness of agglomeration size in double-pass trace on the surface as a 

function of carrier and sheath gas flow rate. 



152 

 

 

Figure 5.76: Skewness of agglomeration size in single-pass trace in the bulk as a function 

of carrier and sheath gas flow rate. 

 

Figure 5.77: Skewness of agglomeration size in double-pass trace in the bulk as a 

function of carrier and sheath gas flow rate. 
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Figure 5.78: Skewness of agglomeration spacing in single-pass trace on the surface as a 

function of carrier and sheath gas flow rate. 

 

Figure 5.79: Skewness of agglomeration spacing in double-pass trace on the surface as a 

function of carrier and sheath gas flow rate. 
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Figure 5.80: Skewness of agglomeration spacing in single-pass trace in the bulk as a 

function of carrier and sheath gas flow rate. 

 

Figure 5.81: Skewness of agglomeration spacing in double-pass trace in the bulk as a 

function of carrier and sheath gas flow rate. 
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A8: Finite Element Analysis on Shrinkage Stress 

In Section 3.3.6, we discussed a possible driving force for the microcracking 

reported in this study via capillary pressure gradients caused by escaping solvent volatiles 

during the sintering process. These pressure gradients can potentially cause separation 

between nanoparticle clusters before the sintering is completed, thus initiating the 

reported microcracks. There could also be other potential microcrack drivers, due to 

gradients of volumetric strain caused by the shrinkage as the solvent volatiles are 

depleted. This shrinkage is termed ‘chemical’ shrinkage in this discussion. Depending on 

the degree to which the material has already sintered during this chemical shrinkage, the 

local volume-averaged stiffness may be sufficient to generate non-trivial amounts of 

hydrostatic stress gradients in response to this volumetric chemical shrinkage. There is 

further thermo-mechanical shrinkage that occurs as the printed specimen is cooled from 

the sintering temperature of 150 °C to room temperature.  

To assess the possible role of these volumetric shrinkage strains in the 

microcracking process, a simplified two-dimensional finite element model was 

constructed to compare the stresses generated in a thin trace versus a thick trace. Based 

on laser profilometry conducted at different print conditions, the thinnest trace was 

modeled with a width of 0.0685 mm and height of 0.0029 mm, while the thickest trace 

was modeled with a width of 0.1674 mm and height of 0.0165 mm. Both traces were 

created with a three-point arc that had fillet edges, as shown in Figure 9. Both traces were 

placed on top of a substrate of Polymer N with a width of 0.75 mm and a thickness of 0.1 

mm. 
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Figure 5.82: Zoomed-in model geometry for a) thin and b) thick trace. 

Several simplifications and approximations were made to simplify the analysis. 

The results therefore are to be used only for the purposes of finding approximate bounds 

and qualitative trends in the estimated stresses. All materials were modeled as linear 

elastic isotropic materials. The FR4 substrate was modeled to have near-infinite stiffness 

compared those of the Polymer N and of the conductor Ink A. The evaporation 

(shrinkage) rate was assumed to be uniform throughout the cross-section. The silver trace 

material was assumed to progressively gain stiffness (due to progressive sintering) and 

the percentage gain in stiffness was assumed to be linearly proportional to the percentage 

loss of volatile volume. The chemical shrinkage problem was mimicked by an equivalent 

thermo-mechanical shrinkage problem, by using the material’s coefficient of thermal 

expansion as a surrogate for chemical shrinkage. Thus, cooling temperature was used as a 

proxy for the chemical shrinkage and associated sintering process.  
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Polymer N was modeled as an isotropic elastic solid with E = 1.1 GPa and ν = 

0.43. Ink A had shrinkage-dependent (temperature-dependent) material properties of E = 

1 GPa and ν = 0.47 at T = 1 and E = 25 GPa and ν = 0.37 at T = 0. As discussed above, 

these values for Ink A were guided by the approximation that initially the trace ‘material’ 

behaved as an incompressible nanoparticle suspension with zero modulus progressively 

sintered to a nano-porous solid state with a modulus given in the literature and Poisson’s 

ratio of bulk silver (Long et al., 2017). The relative difference in coefficient of thermal 

expansion (CTE) between the trace material and Polymer N was set to appropriate value 

to capture the differences in both chemical shrinkage during the sintering as well as the 

thermo-mechanical shrinkage during the subsequent cool down. Since the equivalent 

pseudo thermo-mechanical problem was modeled with a unit change in temperature, the 

printed trace was given an equivalent pseudo-CTE α = 0.0886. This was estimated from 

the known solvent content of the ink (26.6 percent) before sintering. The resulting 

volumetric change was divided by three to obtain the corresponding rectilinear shrinkage 

coefficient. As discussed above, subjecting this model to a simple temperature drop from 

T = 1 to T = 0 °C provided an approximate estimate of the resulting stress fields expected 

throughout the trace during the sintering and cool down.  

The maximum principal stress fields were then examined for qualitative insights 

into the possible influence of shrinkage stresses on the reported microcracking. The FEA 

results showed two counterintuitive trends:  

(i) The maximum principal stress was found to be higher in the thin trace than in the 

thick trace (Figure 10), thus suggesting that vulnerability to shrinkage driven 

microcracking could be inversely related to trace thickness. However, as 
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discussed earlier in Section C, the empirical evidence from this study suggests the 

opposite.  

(ii) Moreover, the maximum principal stress direction is predominantly parallel to the 

base-plane of the trace (Figure 11), thus implying that shrinkage-driven 

microcracking should have mostly been along planes orthogonal to the base-

plane. Once again, as discussed earlier in Section C, the empirical evidence in this 

study contradicts this inference and shows the microcracking predominantly 

parallel to the base-plane.  

Both of these results suggest that the stress from the chemical and thermo-

mechanical shrinkage during sintering and subsequent cool down of the printed trace are 

not the predominant cause of the horizontal microcracking observed in the thicker traces. 

By a process of elimination, we therefore infer that the more likely driver for the 

observed microcracking may have been nanoparticle separation caused prior to sintering 

by the capillary pressure gradients generated during evaporation of the volatiles in the 

solvent. 
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Figure 5.83: Maximum in-plane principal stress contours for the a) thin and b) thick 

trace. 

 

 

Figure 5.84: Maximum in-plane principal stress direction for the a) thin and b) thick 

trace. 
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