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Many in the survey research community have expressed concern at the

growing popularity of nonprobability surveys. The absence of random

selection prompts justified concerns about self-selection producing biased

results and means that traditional, design-based estimation is inappropriate.

The Total Survey Error (TSE) paradigm’s designations of selection bias as

attributable to undercoverage or nonresponse are not especially helpful for

nonprobability surveys as they are based on an implicit assumption that

selection and inferences rely on randomization.

This dissertation proposes an alternative classification for sources of selection

bias for nonprobability surveys based on principles borrowed from the field of

causal inference. The proposed typology describes selection bias in terms of

the three conditions that are required for a statistical model to correct or

explain systematic differences between a realized sample and the target



population: exchangeability, positivity, and composition. We describe the

parallels between causal and survey inference and explain how these three

sources of bias operate in both probability and nonprobability survey samples.

We then provide a critical review of current practices in nonprobability data

collection and estimation viewed through the lens of the causal bias framework.

Next, we show how net selection bias can be decomposed into separate

additive components associated with exchangeability, positivity, and

composition respectively. Using 10 parallel nonprobability surveys from

different sources, we estimate these components for six measures of civic

engagement using the 2013 Current Population Survey Civic Engagement

Supplement as a reference sample. We find that a large majority of the bias

can be attributed to a lack of exchangeability.

Finally, using the same six measures of civic engagement, we compare the

performance of four approaches to nonprobability estimation based on

Bayesian additive regression trees. These are propensity weighting (PW),

outcome regression (OR), and two types of doubly-robust estimators: outcome

regression with a residual bias correction (OR-RBC) and outcome regression

with a propensity score covariate (OR-PSC). We find that OR-RBC tends to

have the lowest bias, variance, and RMSE, with PW only slightly worse on all

three measures.
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Chapter 1: Introduction

Since the mid-to-late 1990s when internet access first became widely available

to the general public, the share of survey research conducted online has grown

dramatically. Most of these surveys have not relied on random samples of

individuals drawn from reasonably complete population frames but rather on

samples of individuals who self-selected into eligibility by choosing to join a

panel or clicking on an online advertisement. At first, these surveys were

primarily used for market research, but as the costs of probability-based

surveys have risen and response rates have declined, they have become more

and more common in both academic survey research and public-opinion

polling (Callegaro et al., 2014).

The American Association for Public Opinion Research (AAPOR) has

attempted to address the issue of quality in nonprobability survey samples. It

has produced task force reports on online opt-in panels (Baker et al., 2010),

nonprobability surveys more broadly (Baker et al., 2013), and a report entitled

“Evaluating Survey Quality in Today’s Complex Environment” that included

guidance on assessing the quality of nonprobability samples (Baker et al.,

2016). The consistent theme of these reports has been that nonprobability

methods are comprised of a wide variety of disparate practices, the

appropriateness of which will depend on the specific research application.

There is little in the way of specific guidance that could be applied broadly to

nonprobability research writ large.

Over the years, a number of studies have compared the accuracy of different

nonprobability samples to each other and to probability-based surveys across a

variety of population benchmarks. A study conducted in 2004 comparing a
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random digit dial (RDD) telephone survey, a probability-based web survey,

and seven different nonprobability samples found that the nonprobability

samples were consistently less accurate than the probability-based surveys and

that the overall level of bias varied widely between samples from different

vendors (Yeager et al., 2011). A 2013 study conducted by the Advertising

Research Foundation compared samples from 17 different online sample

vendors and an RDD telephone survey and also found that the RDD sample

showed the lowest bias across a variety of benchmarks. Again, the accuracy of

the nonprobability samples varied considerably from vendor to vendor

(Gittelman et al., 2015). A report by Pew Research Center compared 9 online

nonprobability samples and the Center’s probability based American Trends

Panel (ATP) across 24 different government benchmarks. In this study, one

nonprobability sample proved consistently more accurate than both the ATP

and the other samples, though again, there was substantial variation in the

level of accuracy across the nonprobability sample vendors (Kennedy et al.,

2016). While these studies have succeeded at measuring the magnitude of

error across nonprobability sample sources and demonstrated that it is at least

possible for nonprobability samples to produce accurate survey estimates, they

have been less successful at explaining why some samples perform better than

others.

A major source of difficulty has been the fact that most of this research has

attempted to apply the tools and frameworks that have evolved over time for

the study of probability-based methods to the study of nonprobability

methods. In general, they have not proven helpful. It is worth considering why

this might be the case.

It is certainly not because the field is unfamiliar with the potential risks
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associated with the use of nonrandom survey samples. The 1936 Literary

Digest poll – that famously predicted Alfred Landon would defeat Franklin

Roosevelt 54% to 41% – remains the go-to cautionary tale about the dangers

of nonrandom sampling (Lusinchi, 2012). Polling by George Gallup that same

year proved more accurate. Gallup attributed this success to the ostensibly

more scientific method of quota sampling in which interviewers select

respondents purposively to obtain a pre-specified number of interviews among

certain geographic and demographic groups (Lusinchi, 2017). However quota

sampling was also discredited after a report by the Social Science Research

Council identified it as one of many causes behind the spectacular failure of

the polls to correctly predict the 1948 election – an event memorialized in the

famous photos of a newly elected Harry Truman holding up a copy of the

Chicago Daily Tribune with the headline “Dewey Defeats Truman” (Mosteller

et al., 1949; Mosteller, 2010). Subsequently, most public opinion and social

science research transitioned to probability-based methods, for which a more

robust statistical theory had already been developed, and which had already

been adopted by the federal government for its own research (Converse, 1987;

Hansen et al., 1953; Neyman, 1934).

That theory, which has come to be known as design-based inference, requires

that every unit in the population has a known, nonzero probability of

selection. When survey samples are randomly selected in this way, there are

strong mathematical guarantees that over repeated sampling, survey samples

will match the population distribution with respect to any population

characteristic provided that it can be measured accurately (Horvitz and

Thompson, 1952). Over the intervening years, the vast majority of statistical

and methodological research into survey sampling and data collection has been

premised on the idea of random sampling. Model-based approaches to survey
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sampling and inference that do not fundamentally depend on random selection

have been developed, but even modelers recommend random sampling because

it protects the validity of model-based estimates against misspecification (e.g.

Little and Zheng, 2007; Valliant et al., 2000, pp. 19-21).

During the 1980s and 1990s, the Total Survey Error (TSE) framework became

the dominant research paradigm in survey methodology. The strength of the

TSE approach lies in its recognition that there are multiple sources of error in

surveys besides variability from random sampling. It categorizes error in

survey estimates according to the stage in the survey process during which the

error was introduced, which makes it possible to isolate, identify, and eliminate

or reduce specific causes of survey error. It identifies noncoverage, when some

members of the population have no chance of being selected, and nonresponse,

the failure of some portion of sampled units to complete the survey, as the

primary sources of systematic selection bias in survey estimates (Biemer, 2010;

Groves, 1989; Groves et al., 2009; Groves and Lyberg, 2010). Under the TSE

framework, data quality depends most on the process used to produce a sample

rather than characteristics of the sample itself. Noncoverage and nonresponse

describe features of the data collection process with the potential to

undermine the guarantees provided by random selection - also a characteristic

of the data collection process. Although rarely achieved in practice, the goal is

to make the survey process hew as closely as possible to the ideal of perfect

random selection in order to reduce or eliminate the need to rely on statistical

models or untestable assumptions in analysis after the data has been collected.

This digression through the history of survey research is meant to illustrate

just how deeply the idea of random sampling is embedded in the field of

survey methodology. In fact, the very premise of Jerzy Neyman’s foundational
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paper describing stratified random sampling is to contrast random and

purposive sampling. In it, he concludes “. . . the only method which can be

advised for general use is the method of stratified random sampling” (Neyman,

1934, pp. 588). Since the field’s inception the solution to the kinds of

problems observed in 1936 and 1948 is randomization, not a better form of

purposive selection. That would be like trying to improve the design of a

two-legged stool. Better to just add a third leg.

The 2013 AAPOR report on nonprobability sampling acknowledges the

underlying problem when it states in its conclusion:

If non-probability samples are to gain wider acceptance among

survey researchers there must be a more coherent framework and

accompanying set of measures for evaluating their quality. One of

the key advantages of probability sampling is the toolkit of

measures and constructs (such as TSE) developed for it that

provides ways of thinking about quality and error sources. Using

that toolkit to evaluate non-probability samples is not especially

helpful because the framework for sampling is different. Arguably

the most pressing need is for researched [sic] aimed at developing

better measures of the quality of non-probability sampling

estimates that include bias and precision (Baker et al., 2013,

pp. 109).

This dissertation attempts to address the absence of a coherent framework for

evaluating the error properties of nonprobability samples, specifically the

matter of selection bias that can arise in the absence of random sampling.
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1.1 Problems with the Total Survey Error framework

Figure 1.1 depicts the way in which the TSE framework classifies survey error

according to the stage in which it enters the survey process. It distinguishes

between errors of measurement which relate to the ability to accurately record

the characteristics of individual units, and errors of representation which arise

because of differences between the composition of a sample and the target

population. TSE further distinguishes between errors that are random

(variance) and those that are systematic (bias) (Groves, 1989). This research

is focused on systematic errors of representation, more commonly known as

selection bias.

The procedure for moving from the full target population to a survey statistic

describing that target population consists of a set of sequential and

conceptually distinct steps. The first step is constructing a sampling frame

that contains as much of the target population as possible. If units are

omitted from the frame, the magnitude of bias depends on how different those

units are and their share of the population. The second step is selection from

the sampling frame. As long as this is done randomly, it should not introduce

any new systematic errors, although different procedures will vary with respect

to statistical efficiency. Step three involves interviewing the selected units. If

the chosen data collection procedure does not successfully interview all of the

sampled units, the level of bias in a statistic will depend on how many are

missing and how distinct they are with respect to the outcome variable.

Finally, there is adjustment error. This step involves any weighting or

statistical modeling aimed at correcting biases introduced at earlier phases of

the process. The goal of the TSE framework is to minimize the need for

post-survey adjustment that requires making assumptions about the nature of
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Figure 1.1: Components of error under the Total Survey Error framework
(Groves et al., 2009)

the missing data (Kalton and Flores-Cervantes, 2003; Little and Rubin, 2002).

These assumptions are discussed in detail in Chapters 3 and 4 of this

dissertation.

The framework is elegant and has proven enormously useful for design-based

survey research. In theory, if one were able to devote sufficient resources to

obtaining a sampling frame with perfect coverage and implement a data
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collection procedure that resulted in perfect response, one could entirely

eliminate systematic selection biases. Although this is almost never possible in

practice, it sets a standard against which different survey designs can be

evaluated and permits survey designers to weigh the advantages and

disadvantages of different design features in a principled and coherent way.

Even for model-based sampling procedures such as balanced sampling or cube

sampling, the TSE framework is helpful. These methods generally involve the

selection of a finite sample from a complete population frame. The selection

algorithms are all based on well defined probability models and generally

involve a great deal of randomization, even if they are not technically

‘design-based’. Complete coverage and response helps ensure that the modeling

assumptions that underpin these methods remain valid (Deville and Tillé,

1998, 2000; Deville, 2004; Little and Zheng, 2007; Särndal et al., 1992; Valliant

et al., 2000).

In contrast, the kinds of nonprobability samples that are the subject of this

thesis, online opt-in samples in particular, differ from more traditional samples

in important ways that make the TSE framework inapplicable. First, there is

generally no pretense or even aspiration to complete coverage of the

population. Even panels that contain millions of individuals contain only a

tiny fraction of the whole population. It is tempting to think of a panel as a

sort of sampling frame with very poor coverage (e.g. Fahimi et al., 2015). This

is not necessarily wrong, but it is also beside the point. Increasing the fraction

of the population that is included in a panel to a level that could be said to

reduce the risk of coverage bias, as the TSE framework would recommend, is

simply not within the set of possible actions that could be taken to improve

data quality. Instead, efforts are made to recruit diverse kinds of individuals
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and make sure that there are no specific types of person missing from the

panel, but this moves away from the TSE conception of coverage and back

toward purposive selection and raises the question of how to determine what

the relevant types of people would be.

Second, the process by which individuals are selected for a specific survey does

not typically resemble the well-defined procedures of design-based or

model-based survey sampling. The actual algorithms are usually considered

proprietary, and there is no set of standard procedures that are consistently

applied across vendors. Moreover, there is often not any sort of finite sample.

Usually, there is a set of quotas specifying a desired distribution of respondent

characteristics, and panelists are continuously directed to the survey until the

criteria are met. Often panelists are not even selected for a specific survey but

are routed to one of many currently fielding surveys based on algorithms

designed to efficiently allocate sample (Brigham et al., 2014; Gittelman et al.,

2015). This effectively negates the conceptual utility of nonresponse error as

there are no clear groups of people who can be coherently defined as

respondents and nonrespondents. Even in the instances where a finite sample

is selected, there is no way to disentangle bias that occurs because some

people choose not to participate from the bias that occurs because panel

membership is self-selected. The issues of panel recruitment and sampling are

discussed more in Chapter 2, Sections 2.4.1 and 2.4.2.

The tidy, linear depiction of representation error in Figure 1.1 becomes an

intractable knot when applied to the typical nonprobability survey. It is not

possible to separate bias due to coverage, sampling, and nonresponse in any

meaningful way. A TSE analysis of nonprobability surveys would effectively

recommend that they convert themselves in to probability-based surveys.
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Again, this might be desirable from a statistical perspective, but it is beside

the point.

Perhaps the most fundamental disconnect between the TSE framework and

nonprobability survey sampling is that TSE seeks to eliminate the need to rely

on models and assumptions. The power and appeal of random sampling is

that, when unthreatened by problems such as nonresponse and noncoverage,

one need not know anything in particular about the target population other

than that it has been fully enumerated. Data quality is determined by the

process that generated the data, and strong assumptions are unnecessary for

analysis. Once the data has been collected, analysts are free to conduct their

analyses as they see fit as long as they account for design features.

For nonprobability samples, attempting to minimize or eliminate strong

assumptions is to make a category error. There is no avoiding strong

assumptions either in practice or in principle. While the data collection

process is of critical importance, there is no mechanism that provides the same

sorts of theoretical guarantees as random selection. Instead, the validity of

population inferences depends entirely on a set of modeling assumptions that

explain the relationship between the realized sample and the target population.

Rather than minimize assumptions, an error framework for nonprobability

sampling should instead shine a spotlight on them. It should make it easy for

analysts to know what assumptions they are making and give them the

analytical tools to assess whether or not those assumptions are reasonable.

1.2 A framework inspired by causal inference

Fortunately, survey research is not the first field that has had to grapple with

problems of nonrandom data. The field of causal inference holds a great deal
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in common with survey inference. When trying to measure the effect of some

treatment such as a drug, medical procedure, or social program, the field of

causal inference has also relied on randomization to provide valid statistical

inferences. Just as survey research has relied on random selection to ensure

that sampled and nonsampled units are comparable, causal inference has

relied on random assignment to ensure that treatment and control groups are

comparable.

However, there are instances where random treatment assignment is not

feasible, either for ethical reasons or because the treatment is outside the

control of the researcher. For instance, political scientists who wish to measure

the effects of Latino immigration into communities on support for presidential

candidates have no way of randomly assigning different levels of immigration

to different communities and measuring the difference (e.g. Newman et al.,

2018). For these sorts of instances, statisticians have developed a framework

clarifying what conditions must hold in order to make valid causal claims on

the basis of observational data. It happens that the conditions that must hold

in order to conduct causal inference with observational data are very similar to

the conditions that are necessary to draw valid population inferences from

nonprobability survey samples.

Building on the similarities between these fields, this dissertation proposes an

alternative framework for considering selection bias in nonprobability survey

samples and probability-based samples with noncoverage or nonresponse.

Chapter 2 of this dissertation elaborates on the parallels between causal

inference and survey inference. Drawing on these parallels, it proposes a

typology for different kinds of selection bias that is based on causal inference

principles. Specifically, it describes bias not in terms of defects in the data
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collection process but in terms of the validity of assumptions about the

relationship between a survey sample and the target population conditional

upon a proposed model and set of covariates. This proposed framework is

appropriate both for nonprobability surveys and probability-based surveys

with nonresponse or noncoverage.

Specifically, the framework classifies selection bias as attributable to problems

of exchangeability, which requires that a model relating sample to population

must condition all of the covariates that are necessary to make sampled and

nonsampled units equivalent (Greenland and Robins, 1986, 2009; Little and

Rubin, 2002; Rosenbaum, 2002; Rubin, 1974); positivity, which requires that

all of the necessary types of respondent defined by the model covariates are

represented in the sample (Hernán and Robins, 2006; Petersen et al., 2012);

and composition, which requires that the distribution of the model covariates

must match their distribution in the larger target population. After providing

a conceptual description of these types of bias, Chapter 2 proceeds with a

critical review of current practices in nonprobability sampling and estimation

from the perspective of the causal framework and discusses their implications

for reducing or increasing selection bias in survey estimates.

The causal framework proposed in Chapter 2 has spoken to a clear need in the

survey community. It was first presented as part of a special session on the

future of survey research at the 2016 AAPOR conference and published in the

associated special issue of Public Opinion Quarterly (POQ) (Mercer et al.,

2017). It has been subsequently presented at conferences focused on

nonprobability survey research sponsored by the European Survey Research

Association and the National Institute for Statistical Science. It has been

presented to audiences as diverse as the Advertising Research Foundation’s
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2017 FORECASTxSCIENCE conference and the 2018 Conference of the

American Association for the Advancement of Science. It was most recently

presented at the DC chapter of AAPOR’s POQ Special Issue Conference. In

each of these venues these ideas have provoked thoughtful discussion and

commentary from statisticians, pollsters, market researchers, and survey

methodologists who felt that the standard analytic toolkit did not sufficiently

address their needs.

Chapter 3 further develops the causal framework for selection bias by

providing a more formal, mathematical description of these biases based on

conditional probabilities. It goes on to demonstrate that total selection bias

can be decomposed into additive components associated with exchangeability,

positivity, and composition respectively. When an appropriate reference

sample is available, these components can be estimated conditional on a set of

chosen covariates.

Using Bayesian Additive Regression Trees (BART) (Chipman et al., 2010), the

magnitude of each type of bias is estimated for six measures of civic

engagement that were measured on 10 different nonprobability samples

commissioned by Pew Research Center. These include the 9 nonprobability

samples analyzed in the study by Kennedy et al. (2016) and a survey that was

sampled via Amazon’s Mechanical Turk that used the same questionnaire. It

finds that exchangeability bias from unobserved confounding variables is

generally the largest source of bias for individual estimates.

Chapter 4 compares two doubly-robust approaches to survey estimation with

singly-robust approaches based on propensity weighting (PW) and outcome

regression (OR). Doubly-robust estimation involves fitting separate regression

models predicting both sample inclusion and the outcome variable of interest.
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As long as one or the other model is correctly specified, the resulting estimates

will be asymptotically consistent (Bang and Robins, 2005; Kang and Schafer,

2007; Robins et al., 1994). The doubly-robust estimators considered are

outcome regression with a residual bias correction (OR-RBC) and outcome

regression with a propensity score covariate (OR-PSC) (Kang and Schafer,

2007). All four approaches are implemented using BART, making them similar

to methods evaluated by Tan et al. (2018).

The analysis is conducted using the same 10 samples and outcome variables as

in Chapter 2. Because many of these variables are known to suffer from

unobserved confounding, none of the estimators entirely eliminate selection

bias. We find that OR-RBC tends to have the lowest bias, variance, and

RMSE, with PW only slightly worse on all three measures. OR and OR-PSC

also perform similarly but result in larger variances and appear more likely

than PW and OR-RBC to inflate rather than reduce bias.

The nonprobability survey data analyzed in Chapters 3 and 4 are publicly

available for download from Pew Research Center at

http://www.people-press.org/datasets/2015/. The code used to conduct these

analyses can be found on GitHub at

https://github.com/awmercer/fpbb-inference and in Appendix C. This

repository is accompanied by a preliminary R package called bestimate

(https://github.com/awmercer/bestimate) that aims to permit others to

conduct the same kinds of estimation and bias decompositions with BART

that are employed in this dissertation. The dissertation itself is written in

bookdown, and can also be found on GitHub at

https://github.com/awmercer/amercer_dis.
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Chapter 2: A causal inference framework for selection

bias1

The growing use of surveys that do not use traditional probability sampling

has provoked both interest and concern from the survey community. Rising

data collection costs coupled with declining response rates have highlighted

the appeal of lower cost, nonprobability surveys that can be fielded rapidly

online. However, respondent self-selection into these surveys renders

design-based methods of survey inference inapplicable, and raises concerns

about the potential for biased results.

Selection bias refers to systematic differences between a statistical estimate

and the true population parameter caused by problems with the composition

of the sample (rather than errors in measurement). Traditionally, survey

researchers think of selection bias as resulting from noncoverage – when the

sampling frame omits portions of the target population – or nonresponse –

when selected units do not complete the survey. These concepts are tied to a

process of starting with a complete population and randomly selecting a

subset. These categories may prove limiting when applied in a nonprobability

context. Many nonprobability surveys do not originate from anything

resembling a sampling frame. Even the idea of a sample as a finite set of units,

some of which may fail to respond, does not apply to many nonprobability

surveys. For nonprobability surveys, the processes that lead to a respondent
1This chapter is a pre-copyedited, author-produced version of an article accepted for

publication in Public Opinion Quarterly following peer review. The version of record: Mercer,
Andrew W., Frauke Kreuter, Scott Keeter, and Elizabeth A. Stuart. 2017. “Theory and
Practice in Nonprobability Surveys: Parallels Between Causal Inference and Survey Inference.”
Public Opinion Quarterly 81 (S1): 250–71 is available online at: https://doi.org/10.1093/
poq/nfw060
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being included in a sample are numerous, potentially arbitrary, and may not

resemble the traditional probability-based survey process at all.

Rather than evaluate nonprobability surveys using concepts designed for a

different inferential framework and different data collection practices, we

propose a more general framework that emphasizes the characteristics of the

realized sample, regardless of how it was generated. The underpinnings of this

framework are not new, but come from research into the estimation of causal

effects from experimental and non-experimental data. In fields such as

epidemiology, political science and economics where randomized experiments

are frequently not possible and observational studies are commonplace,

research has focused on identifying the conditions under which valid statistical

inferences about causal effects can be made using observational data. In the

causal context, the parameter of interest is a contrast between experimental

treatments, whereas surveys measure a broad range of estimates including

means, totals, correlations and other measures of association. Despite

differences, the conditions that produce selection bias in causal analyses also

apply in a survey context.

Others have noted similarities between causal inference and survey inference.

Little and Rubin (2002) apply many of these same concepts to experiments,

observational studies, survey nonresponse, and imputation. Groves (2006) uses

a causal framework to describe when nonresponse will produce bias in survey

estimates. Keiding and Louis (2016) reviewed the many objectives and

challenges shared by both epidemiological studies and surveys, and suggest

that both fields could benefit from sharing methodologies.

Drawing on this work, we identify three components that determine whether

or not nonrandom selection could lead to biased results:
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• Exchangeability – Are all confounding variables known and measured for

all sampled units?

• Positivity – Does the sample include all of the necessary kinds of units in

the target population, or are certain groups with distinct characteristics

missing?

• Composition – Does the sample distribution match the target population

with respect to the confounding variables, or can it be adjusted to

match?

In this paper, we first describe how this framework applies in the familiar

context of randomized experiments and probability based-surveys before

demonstrating how it extends to cover observational studies and

nonprobability surveys. Second, we demonstrate the mechanics by which each

component can produce bias in survey estimates by way of a simplified

example. Finally, through the lens of this framework, we provide a critical

review of current practices in online, nonprobability data collection and their

implications for selection bias.

2.1 Randomization and unbiased inference in experiments and

surveys

Questions about causal effects are usually framed in terms of potential

outcomes or counterfactuals (Rubin, 1974). A patient’s outcome may be

different if he is given Treatment A or Treatment B. Prior to choosing a

treatment, either outcome is possible, but we observe only the results under

the treatment that is actually provided to the patient. We can never observe

what would have happened if a different treatment had been applied. The

causal effect is the difference between the two potential outcomes. Although
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we can never observe both outcomes on a single individual, we can compare

the average outcome for people who receive Treatment A to that of people

who receive Treatment B to make inferences about which treatment is better.

When treatments are assigned randomly, we can be reasonably confident that

observed differences in the outcomes across treatment conditions are due to

the treatments themselves and not some other difference between the two

groups. When treatments are not assigned randomly, these assessments are

more difficult. For instance, if patients who receive Treatment A tend to do

worse, but Treatment A is usually given to sicker patients, it is difficult to

know if the difference is due to the treatment or due to the fact that the

patients who received it were in worse shape to begin with. The baseline level

of sickness is known as a confounder. Confounders are variables associated

with both the choice of treatment and the outcome of interest, and are the

primary source of selection bias in causal analyses.

The parallels between causal inference and survey inference are substantial. A

probability-based survey is essentially a randomized experiment where the

pool of subjects is the set of units on the sampling frame and the treatment is

selection into the survey. Unlike experiments where we observe outcomes on

both treated and untreated subjects, in surveys we observe outcomes only on

the selected units, with the expectation that there should be no difference

between selected and non-selected units. The conditions under which causal

effects can be estimated without selection bias are analogous to the conditions

that produce unbiased estimates in surveys. Before discussing nonprobability

surveys, we will first examine how these conditions are met in the context of

randomized experiments and probability-based surveys.
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2.1.1 Strong Ignorability – Exchangeability and Positivity

Rosenbaum and Rubin (1983b) devised the notion of strong ignorability to

describe the conditions under which inferences about causal effects can be

estimated without selection bias for a given sample. Strong ignorability

consists of two requirements. The first, known as “exchangeability” (Greenland

and Robins, 1986, 2009), “ignorability”, “no unobserved confounding,” or “no

hidden bias” (Rosenbaum, 2002), requires the mechanism by which subjects

are assigned a treatment to be independent of the measured outcome either

unconditionally or conditional upon observed covariates. Unconditional

exchangeability is analogous to the notion of data that is missing completely

at random (MCAR), whereas conditional exchangeability corresponds to data

missing at random (MAR) (Little and Rubin, 2002). When unobserved

confounders are present, it is not possible to isolate the effect of the treatment

from the effect of the confounder without additional assumptions.

Second, it must be possible for any subject to have received any of the

treatments. This requirement is called positivity because it requires all

subjects have a positive probability of receiving treatment. If certain types of

subjects receive only treatment or control, it is not possible to learn about

causal effects for those subjects, and the treatment and control groups will

have systematic differences that cannot be resolved. In practice, we generally

require not just a positive probability but also enough cases to produce

sufficiently precise statistical estimates (Hernán and Robins, 2006; Petersen

et al., 2012).

In experiments, random treatment assignment guarantees that on average, the

exchangeability and positivity conditions will be met. Randomization ensures

exchangeability by preventing any relationship between treatment assignment
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and unobserved variables and ensures positivity because any subject has a

chance of receiving any treatment. In probability-based surveys, random

selection functions in much the same way. By randomly selecting a sample

from the entire population, there can be no unobserved variables

systematically associated with selection, and all members of the population

have a chance of being included.

2.1.2 Composition

For experiments, the composition of treatment groups with respect to

potential confounders is important in two respects. First, the distribution of

potential confounders in the treatment group needs to match the distribution

in the control group. Random treatment assignment guarantees that this will

occur naturally on average, and this equivalence between treatment groups is

implied whenever unconditional exchangeability holds. Second, the

composition of the experimental sample affects the degree to which findings

can be generalized to an external population.

Strong ignorability guarantees only that the results of an experiment are

generalizable to the group of subjects included in an experiment; in other

words, it ensures “internal validity” but does not necessarily imply “external

validity” (Shadish et al., 2002). It is rare for samples in randomized trials,

which have historically prioritized internal validity, to match a larger

population. Because of this there has been a growing literature on methods to

allow the generalization of experimental results to target populations,

including reweighting strategies that aim to equate the experimental sample

and the population with respect to observed characteristics (Cole and Stuart,

2010; Kern et al., 2016; Stuart et al., 2015). Pearl and Bareinboim (2014) refer

to the transportability of empirical findings from one sample to a separate
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target population. They note that generalization requires one to know the

distribution of the outcome conditional upon treatment and any confounders,

as well as the joint distribution of the confounding variables in the target

population. Put simply, to generalize beyond the experimental sample to a

target population, the sample needs to look like (or be made to look like) the

target population with respect to the distribution of confounding variables.

The situation for surveys is somewhat less complex than for causal analyses.

Whereas experiments must be concerned with the comparability of treatment

and control as well as sample and population, surveys need be concerned only

about sample and population. It is understood that the composition of a

sample will match that of the population when all units have an equal

probability of selection, implying unconditional exchangeability. When

probabilities of selection are unequal but known for every unit in the frame,

the situation is equivalent to conditional exchangeability, and weighting

observations by the inverse of the probability of selection yields unbiased

population estimates (Horvitz and Thompson, 1952). In either case, random

selection ensures that on average the sample will match the target population

on the distribution of any variables measured on the survey.

2.2 Extending the Framework to Non-Random Samples

For causal analyses and surveys random treatment assignment and respondent

selection provide a powerful mechanism for producing the conditions necessary

for unbiased estimation of causal effects and population parameters. However,

these conditions are guaranteed only when randomization is 100% successful.

In practice, this is rarely the case. In experiments subjects drop out of trials

or are lost to follow-up. In surveys, the sampling frames may not perfectly

cover the target population, and nonresponse means that some share of
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sampled units is never observed. When such problems occur, the usual

response is to perform statistical adjustments to correct any imbalance. In

experiments methods such as matching or propensity score weighting can be

used to adjust for imbalances between experimental treatment groups (see

Imbens and Rubin, 2015, Part VI). In probability surveys corrections involve

nonresponse weighting adjustments for which a variety of techniques exist (see

Kalton and Flores-Cervantes, 2003; Valliant et al., 2013).

When we perform these adjustments to randomized experiments or probability

surveys, we are no longer relying solely on randomization to produce unbiased

estimates. Rather, these adjusted estimates are conditional upon a model that

assumes that positivity and exchangeability hold and that the adjustment

reconstructs the correct sample composition for the confounding covariates.

Even if we perform no adjustment, we are implicitly assuming a model where

the correlation between missingness and the outcome of interest is zero, or

unconditional exchangeability.

In the causal world, it is recognized that as long as exchangeability and

positivity hold, it is possible to make unbiased inferences about causal effects

from non-experimental data (Greenland and Robins, 1986, 2009; Rosenbaum

and Rubin, 1983b; Rubin, 1974, 1978). Quasi-experimental designs such as

regression discontinuity and instrumental variables models are techniques that

can be used to identify causal effects from non-experimental data when the

appropriate conditions are met (Angrist and Pischke, 2009; West et al., 2008).

Methods such as matching, marginal structural models and structural nested

models have been developed to estimate causal effects from observational data

and have been proven to produce unbiased estimates when their underlying

assumptions are met (Cole et al., 2003; Robins, 1999a,b; Stuart, 2010b).
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However, for all of these techniques, one can never be certain if the

exchangeability and positivity conditions have been met. Therefore, the bar

for accepting results from non-experimental data is much higher than for

randomized experiments.

The same is true for surveys that do not use probability sampling. When units

are not randomly selected from the target population, researchers must rely on

statistical models to generalize back to the target population.

Probability-based surveys with undercoverage or nonresponse must also

specify a model that relates the observed units to the unobserved (Brick, 2013;

Valliant et al., 2000). For probability samples the initial design performs most

of the work in ensuring exchangeability, positivity, and correct sample

composition. Statistical models are employed during estimation to correct

what are hopefully minor biases. In contrast, nonprobability samples cannot

rely on randomization to help meet these requirements, and instead must rely

on models at all stages of the survey process from sample selection to

estimation. As in causal analyses, researchers can never know with certainty

that these requirements have been met.

2.3 Mechanics of Selection Bias in Surveys

In this section we focus specifically on the survey context and demonstrate

through a simplified example the mechanics behind each of the components in

this framework to show how they can introduce bias into survey estimates.

2.3.1 Exchangeability

Suppose we have a sample intended for estimating what share of the

population will vote for the Democratic and Republican candidates in an

election, and that we have measured each respondent’s candidate preference
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and age. Let us also assume that some feature of the recruitment process

over-represents older people but that there are no additional unmeasured

confounders. Because older people tend to vote Republican more than young

people, an estimate of the overall vote using this sample would be biased in

favor of the Republican candidate. However, because inclusion depends only

on age, estimates of the vote within the younger and older subgroups would

still be correct. In this case, the sampled individuals are exchangeable with

non-sampled individuals within the same age group. When sampled

observations are conditionally exchangeable, subgroups are internally unbiased

with respect to the outcome of interest, even if some groups are over or under

represented relative to their share of the target population. Because there are

no additional confounders the overall proportion of the sample voting

Democratic would be biased, but measures of the relationship between age and

vote preference would be unbiased prior to any adjustment.

However, if inclusion in the sample depends on an unmeasured characteristic

related to the survey outcome, the distribution of the outcome variable within

the observed subgroups will no longer match that of the target population. In

our voting example, suppose our sample also over-represents respondents who

live in big cities but, unlike age, this has not been measured. Because urban

dwellers tend to vote Democratic, the Democratic vote share among both

young and old respondents will be too high. In this case, young and old

respondents in our sample are not exchangeable with their non-sampled

counterparts because they are more urban, making urbanicity an unmeasured

confounder. The bias in favor of the Democrat due to an excess of city

dwellers could actually offset some of the Republican bias produced by having

too many older respondents. In this scenario, the estimated vote for the full

sample could be close to the true population value while subgroup estimates
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would be biased. Note that the crucial aspect of exchangeability is not which

cases are included in the sample but what characteristics have been measured.

If we knew which cases were urban and which were rural, we could adjust by

both age and urbanicity to recover the correct sample composition.

In practice, the biases need not cancel out. The unobserved variable could

have opposite effects for young and old respondents, or there could be different

unobserved variables affecting different subgroups. Because the confounding

variables are unobserved, it is impossible to know from the data alone whether

or not the exchangeability requirement is met.

The associations that produce bias need not be direct. If we took this same

sample but measured something such as eye color, which is not directly related

to either age or urbanicity, we might still achieve biased estimates if eye color

is associated with race. Over-representing urban respondents likely also means

over-representing racial groups that live in urban areas which could in turn

affect the distribution of observed eye colors. The reverse is also true.

Variables that are not confounders themselves but are closely correlated with

confounders may help reduce bias by serving as proxies during adjustment.

2.3.2 Positivity

The positivity requirement states that even if we know and have measured all

potential confounders, all of the subgroups defined by confounding variables

must also be represented in the sample (Hernán and Robins, 2006). Groups

that are underrepresented but present can be weighted up. However, it is not

possible to weight up groups that were not surveyed. Returning to our

example where inclusion depends on age and urbanicity, suppose that there

are no older, urban respondents included in the sample. Even if we were able
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to record both age and urbanicity, there is no adjustment we can perform that

will make up for the absence of older, urban respondents, although subgroup

estimates for those groups that were observed would remain unbiased. On the

other hand, if older and younger city dwellers are the same with respect to

their voting preference, the absence of older urbanites would not introduce

bias because younger urbanites could stand in for them in the sample with no

change to the estimate. When a group is entirely missing from the set of

observed units, the researcher requires a theoretical justification for believing

that the missing group is not systematically different from other, superficially

similar groups that were surveyed.

2.3.3 Composition

In our example, we have assumed that our sample composition does not match

the target population on age and urbanicity. If it can be adjusted to match

the distribution in the target population, our estimates of the vote will be

unbiased. We have already alluded to the simplest approach, which is to

weight each group to be proportional to its share of the target population.

Sample composition can be managed by design as well as through post-hoc

adjustment. Random selection yields the correct sample composition in

expectation, though individual samples will not match exactly. If the

confounders are known in advance, purposive methods such as quota sampling,

where we pre-determine the number of interviews required in each group, can

be used to produce an exact sample match(Gittelman et al., 2015).

Managing sample composition through design or adjustment rather than

random selection requires the researcher to be confident that all confounders

are truly known and measured. When exchangeability or positivity does not
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hold, bias will not be eliminated and may even be magnified. In our example,

if we adjust only for age but not urbanicity, we would eliminate the

pro-Republican bias caused by an older sample but not the pro-Democratic

bias due to an excess of urban respondents. The biases no longer offset each

other and the adjusted estimate would be more biased toward the Democrats

than it was before weighting.

2.4 Current Practices for Managing Bias in Online, Nonproba-

bility Surveys

We can use this framework to consider current practices in fielding

nonprobability web surveys and producing statistical estimates from the

resulting samples. We distinguish between recruitment, whereby an individual

becomes eligible for inclusion in one or more surveys (e.g., joining a panel) and

sampling, the process by which an individual is selected for a particular survey

after recruitment. After reviewing these two features of the data collection

process, we discuss alternative approaches to post-survey adjustment and

estimation.

2.4.1 Recruitment

The most common form of recruitment involves inviting individuals to join

opt-in panels, which are lists maintained by sample providers of individuals

who have agreed to participate in surveys on an ongoing basis. Individuals can

become empanelled in a variety of ways, such as directly through a panel

website, clicking on banner advertisements, or when corporations grant panel

vendors access to members of their customer loyalty programs. Panels provide

an opportunity to collect a large amount of profile information on their

members that can be used in both sampling and adjustment. Maintaining
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respondent profiles across many dimensions can aid in providing

exchangeability only if the correct variables are measured. On the other hand,

some fear that panel conditioning and attrition may mean that panel members

may become less reflective of their non-empanelled counterparts over time,

potentially reducing exchangeability (Callegaro and DiSogra, 2008; Callegaro

et al., 2015; Couper, 2000).

The main alternative to panels is river sampling, in which potential

respondents are recruited via similar sources, but are directed to a one-off

survey rather than asked to join a long-term panel (Callegaro et al., 2014).

River sampling avoids panel attrition and conditioning, but provides no profile

data on respondents in advance. Respondent characteristics must be obtained

at the time of the survey, limiting the number of characteristics that can be

measured. Some online survey providers have begun using a mixture of panel

and river respondents (e.g. Lorch et al., 2010; Young et al., 2012).

Both panels and river sampling face an immediate threat to the positivity

requirement because individuals who do not use the internet cannot

participate. Studies conducted on the Pew Research Center’s American Trends

Panel and the Dutch LISS panel, two probability-based panels that take steps

to cover individuals without internet access, found that the exclusion on

non-internet individuals produced only small differences in most survey

estimates. However, for outcomes pertaining to technology use, differences in

estimates could be large. The Pew Research study also found that indicators

of socioeconomic status differed considerably for some subgroups such as the

elderly or racial minorities (Eckman, 2016; Keeter et al., 2015).

Obtaining a diverse array of potential respondents is crucial to the success of

any recruitment method. Pettit (2015) demonstrated that respondents
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recruited via different websites can exhibit dramatically different demographic

distributions. Respondents recruited from different sources likely vary on other

characteristics as well; for instance, individuals recruited via a website

dedicated to video games could differ from those recruited from websites

devoted to personal finance with respect to variables such as interest in

retirement planning or their use of leisure time. Recruiting from a diverse set

of sources necessarily improves the probability of meeting the positivity

requirement; however, it also increases the complexity of the recruitment

process, potentially creating a trade-off between positivity and exchangeability.

As the number of sources increases, it may become more difficult to know

which characteristics distinguish between individuals recruited from different

sources.

To date, the great majority of research into nonprobability surveys has relied

on data from online panels. Many of these studies have compared different

panels to one another and found that while some nonprobability surveys

compare favorably to probability-based surveys, the same survey fielded on

different panels can result in dramatically different results (Callegaro et al.,

2014; Craig et al., 2013; Erens et al., 2014; Kennedy et al., 2016; Schnorf et al.,

2014; Yeager et al., 2011). However, none of these studies were designed to

evaluate alternative methods of panel recruitment or isolate the design

features that produce such varying results.

Very little research has directly compared panels to river sampling. One such

analysis found that after weighting for demographic characteristics, panel

respondents were largely similar to river respondents, although panelists were

more likely to be registered to vote and more likely to use Twitter. River

respondents were closer to the chosen benchmark on both measures (Clark
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et al., 2015). A study performed as part of the Foundations of Quality 2

(FOQ2) initiative compared the demographic composition of surveys using

panels and the river sampling. It found that on average, the river samples

yielded demographic compositions similar to non-river samples, and required

somewhat less extreme weighting when adjusted to match demographics not

used in the sampling process (Bremer, 2013). Unfortunately, there was no

evaluation of differences in other non-demographic estimates.

At present, there is not enough research to recommend one recruitment

method over the other. The availability of profile data on panels offers

flexibility and control for the purposes of sampling and adjustment, but the

limited empirical research discussed previously does suggest some possible

advantages to river samples. Other practices such as profiling, sampling or

quota design may also be more important than the recruitment process.

2.4.2 Sampling

Nonprobability surveys generally rely on purposive selection to achieve the

desired sample composition while data collection is ongoing. This is commonly

achieved through quotas, where the researcher pre-specifies a particular

distribution across one or more variables. Usually these are cells defined by a

cross-classification of demographic characteristics such as gender by age, with

each cell requiring a specified number of completed interviews in that category.

The end result is a sample that matches the pre-specified distribution across

the chosen variables. The use of quotas relies on the assumption that

individuals that comprise each quota cell are exchangeable with non-sampled

individuals who share those characteristics. If that assumption is met, the

sample will have the correct composition on the confounding variables,

allowing for the estimation means and proportions that generalize to the
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target population.

Most contemporary web surveys that employ quotas define the cells across no

more than a handful of demographic variables. However, there is a growing

consensus that basic demographic variables such as age, sex, race, and

education are insufficient for achieving exchangeability. A recent study using

the FOQ2 data compared three progressively more stringent sets of

demographic quotas. Across a range of benchmarks, the application of more

stringent quotas did nothing to reduce bias, and post-survey weighting

actually increased the average bias for all but five out of seventeen sample

providers. The study also evaluated three quota schemes that incorporated

additional, non-demographic variables, however their success was mixed. (The

details of the methods employed were not specified to avoid identifying the

sample providers (Gittelman et al., 2015)). This finding is consistent with

research in causal inference suggesting that demographics alone are generally

insufficient for eliminating bias in observational studies (Cook et al., 2008).

If traditional quota methods are insufficient for producing strong ignorability,

sampling methods that allow researchers to control both more and different

dimensions may improve the ability to condition on a more appropriate set of

potential confounders. The best documented of these methods is implemented

by YouGov on surveys conducted using its panel in the United States.

YouGov first draws a random sample of cases from a high quality data source,

such as the American Community Survey (ACS) Public Use Microdata

Sample, that is believed to reflect the true joint distribution for a large

number of variables in the target population. This subsample is referred to as

a synthetic sampling frame (SSF) and serves as a template for the eventual

survey sample. Each panelist who completes the survey is matched to a case
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in the SSF with similar characteristics using a distance measure such as

Euclidean distance. When every record in the SSF has been matched with a

suitably similar respondent, the survey is complete (Rivers, 2007).

Because a limited number of covariates are available on any single survey such

as the ACS, it is possible to impute additional variables onto the SSF using

models built with other data sources. This was the approach taken on the

2008 Cooperative Congressional Election Study which augmented an SSF

drawn from the ACS with estimates of voter registration and turnout from the

Current Population Survey Voting and Registration Supplement, and of

internet use, religion and interest in politics from Pew Research Center

surveys. The resulting survey sample produced estimates of the presidential

vote that closely matched national exit polls and the American National

Election Studies (Ansolabehere and Rivers, 2013).

This approach is appealing in its capacity to flexibly match the target

population on a larger number of covariates than is possible with traditional

quota methods. For this approach to succeed, the composition of matching

variables in the SSF must accurately match the target population, and any

models used to combine datasets must be correctly specified. More

importantly, the matching variables must be the correct variables for ensuring

conditional exchangeability, and the panel must be able to supply respondents

that are close matches to each case in the SSF. If there are remaining

confounders that are not accounted for, resulting survey estimates will be

biased. One side-benefit of this approach is that problems with positivity

should be immediately apparent if there are portions of the SSF for which no

clear matching respondents can be found.

Another approach to sampling on a higher number of dimensions is the use of

32



propensity score matching to construct quota cells. Under this approach, a

probability survey that is assumed to accurately reflect the target population

is fielded in parallel with a nonprobability survey. Using a set of common

covariates collected on each survey, a propensity model is estimated by

combining the two samples and predicting the probability that each

respondent belongs to the probability survey. When subsequent online surveys

are fielded, the propensity model is used to calculate a propensity score for

each respondent as they are screened for the new survey. Quotas are set not

on particular respondent characteristics but are based on quintiles of the

propensity score distribution (Terhanian and Bremer, 2012).

As with the SSF used in sample matching, much hinges on how well the

parallel reference survey matches the target population. If the reference survey

suffers from its own nonresponse or coverage bias, those biases will be

transferred into the nonprobability survey. On the other hand, the researcher

could tailor the contents of the baseline surveys to include any variables

believed to be necessary to ensure conditional exchangeability. Under other

approaches, researchers are limited to covariates that are available from

preexisting data sources. This method performed well in a simulation, however

the data used to construct the propensity model was the same data used to

generate the simulated survey. The evaluation also generated only a single

simulated dataset (Terhanian and Bremer, 2012). As such, it is difficult to

know how this technique performs on new samples and over repeated

applications. Dividing the propensity score into quintiles will result in a loss of

information contained in the full distribution of propensity scores, though it is

also possible that quintiles provide a sufficient foundation of balance and

positivity that can be further refined through post-survey adjustment.

Additional research comparing this approach with the matching approach
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described above would be valuable, particularly if the same survey and set of

covariates can be used.

Another, less understood component of the sampling process for many

nonprobability surveys is the use of routers. Most nonprobability survey

vendors have many surveys fielding simultaneously. When a router is

employed, rather than draw separate samples for each survey, respondents are

invited to participate in an unspecified survey. The actual survey taken is

determined dynamically based on the characteristics of the respondent and the

needs of active surveys with respect to quotas or screening criteria. This

makes for a more efficient use of sample, but means the sample for any one

survey depends on what other surveys are in the field simultaneously. If there

are ample respondents and few competing surveys, routers may pose little

threat of bias. On the other hand, the presence of surveys focused on rare

groups may mean that individuals belonging to those groups are not routed to

other surveys. In such an event, the routing process becomes a confounder

that would be difficult to observe and account for.

The only empirical study evaluating routers compared the effects of three

different routing methods against a non-routed control and found that all four

conditions produced similar estimates. In a set of simulations, the authors did

find that routing could produce bias for questions that are highly correlated

with the selection criteria for other surveys in the field. This study evaluated

routing under a narrow set of conditions that the authors recognize may not

generalize to many circumstances observed in practice (Brigham et al., 2014).

Additional experiments and simulations testing alternative algorithms and

scenarios, or observational studies comparing router performance over time for

different vendors would be of substantial benefit.
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2.4.3 Post-survey Adjustment

Because it may not be feasible to achieve the desired sample composition

through sampling alone, post-survey adjustment is still needed. Most of the

research on adjusting nonprobability samples has focused on adapting the

methods used to perform non-response adjustment with probability samples.

Calibration and propensity score weighting are the two most common

approaches to weighting.

Calibration methods directly adjust the composition of the sample to match a

known distribution of variables in the target population. The simplest form of

calibration is post-stratification, in which the sample is divided into mutually

exclusive cells that are weighted up or down such that the proportion of each

cell in the sample matches the corresponding proportion in the target

population. Whereas post-stratification requires knowledge of the joint

distribution of the stratification variables in the target population, other

calibration methods such as raking and generalized regression estimation

require only knowledge of the marginal distribution of any adjustment

variables (Deville and Särndal, 1992; Kalton and Flores-Cervantes, 2003).

Calibration methods generally require that the outcome be a linear function of

the calibration variables, and may not perform well in the presence of

nonlinear relationships between the outcome and adjustment variables or

unmodeled interactions (Valliant et al., 2000).

Propensity score weighting involves combining a nonprobability sample with a

parallel probability or gold-standard data source as a reference sample. A

model predicting sample membership is fit to these combined data, and

observations in the nonprobability sample are weighted by the inverse of their

probability of appearing in the nonprobability sample (Lee, 2006; Taylor, 2000;

35



Terhanian and Bremer, 2000; Valliant and Dever, 2011). Valliant and Dever

(2011) demonstrated that for propensity score adjustment to be effective, the

propensity model must incorporate any nonresponse adjustment and bias

correction that has been applied to the reference sample. Otherwise, those

biases will be transferred to the nonprobability sample.

Given the same set of covariates, generalized regression estimation (GREG)

has been found to perform comparably to propensity score weighting,

suggesting that a parallel reference survey may be unnecessary when the

requisite population totals are available (Valliant and Dever, 2011).

Propensity score weighting can more easily accommodate nonlinear

associations and interactions between confounding variables. If there are a

large number of confounders or it is unknown which of the observed covariates

are confounders, machine learning methods such as boosting or random forests

can fit high dimensional propensity models if a suitable reference sample with

common covariates is available (Buskirk and Kolenikov, 2015; Lee et al., 2010).

Some have explored matching as an alternative to weighting for post-survey

adjustment of nonprobability surveys. Traditionally, matching is used in causal

inference in order to adjust for differences in composition between treatment

groups (see Stuart (2010a) for a review of their use in causal inference). With

matching, the idea is to create groups containing one or more observations

from both a reference sample and a nonprobability sample that are similar on

a set of auxiliary variables believed to be associated with selection. Groups in

the nonprobability sample are then weighted so that their distribution

matches the distribution in the reference sample. For example, a reference

sample might be dived into cells based on a set of covariates or a propensity

score, while cases in the nonprobability in matching cells would be weighted so
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that the proportion in each cell matches the proportion in the reference

sample. In this sense, matching is very similar to propensity score weighting or

poststratification with one important exception. In many applications,

observations for which there is no acceptable match are removed from the final

dataset. When this happens, information is lost, and inference is only possible

for those portions of the samples that overlap. On the other hand, identifying

a lack of overlap forces researchers to evaluate the validity of the positivity

assumption in ways that other methods may not. Unlike standard weighting

methods that will generally produce a weight for every observation (even if

some are quite large), matching software often automatically identifies those

observations in a reference sample for which no counterparts exist in the

nonprobability sample (e.g. the MatchIt package for the R statistical software

platform (Ho et al., 2011)). Dutwin and Buskirk (2017) found that raking to

basic demographics was more effective at reducing bias than matching on a

more extensive set of demographics; however, a two-stage process of matching

followed by raking reduced bias more than raking alone.

A final approach to post-survey estimation is multilevel regression and

poststratification (MRP). In traditional poststratification, a sample is divided

up into mutually exclusive cells, each of which is weighted to be proportional

to their representation in the target population. As the number of cells

becomes large, the number of observations in each cell becomes small and

estimates become unstable. MRP enables poststratification using a large

number of cells by fitting a multilevel model that pools information about cells

sharing similar characteristics and allows for the estimation of cell means even

when cells are sparse. A weighted mean is then constructed using the

estimated cell means (Ghitza and Gelman, 2013; Lax and Phillips, 2009; Park

et al., 2004).
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This approach performed well when used to predict 2012 presidential election

results using a survey conducted via the Microsoft Xbox platform whose

sample composition differed radically from the population of voters and for

which unadjusted estimates were wildly inaccurate (Wang et al., 2014).

Unweighted, the sample was 93% male, only 1% 65 years old or older, and

showed Barack Obama losing badly to Mitt Romney. On the surface, it seems

unlikely that such a survey could produce accurate estimates. However, the

Xbox study enjoyed two benefits not available to many other studies. The first

is a very large sample size (345,858 unique respondents), which means that

even groups that are dramatically underrepresented in the sample in relative

terms still have enough observations in absolute terms to avoid problems with

positivity. The 1% of the sample 65 years old or older yields 3,400

observations – more than enough cases to produce stable estimates for that

subgroup. The second is that the authors had a very powerful set of

covariates, including party identification and ideology, making it much more

likely that the exchangeability requirement was satisfied for the purpose of

predicting partisan voting behavior.

Another study using only demographic covariates met with less success. It

compared MRP based estimates of presidential approval and country direction

to estimates from the Pew Research Center’s probability-based telephone

surveys over the same time period. For the share of the population that thinks

the country is on the right track, the MRP estimates were not different from

the estimates obtained using a simple post-stratification adjustment, and lower

than the telephone based estimates. On the other hand, Presidential approval

changed dramatically, moving from an underestimate to an overestimate

relative to the comparison telephone survey (Petrin and El-Dash, 2015).

Although the telephone survey benchmarks are themselves estimates and have
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their own biases, if the goal of adjustment was to match that particular

benchmark, neither MRP nor traditional post-stratification were successful.

Each of these approaches to estimation comes with advantages and

disadvantages. When control totals are available for the confounders and their

relationship with the survey outcome is linear, calibration methods are quite

powerful and easy to apply. Propensity score methods provide a great deal of

flexibility at the cost of requiring an auxiliary dataset with a shared set of

covariates. It is less clear if matching offers substantial benefits over

propensity score weighting or calibration. For approaches that produce

weights, there is some indication that methods applied in combination may

offer an improvement over the use of a single method (Brick, 2015; Dutwin

and Buskirk, 2017; Lee and Valliant, 2009; Mercer et al., 2018). MRP may be

most efficient at extracting information from smaller datasets, but at the cost

of computational complexity and the fact that a separate model is required for

each outcome variable. Additional research directly comparing adjustment

methods to one another would be valuable in helping researchers choose the

most appropriate tool.

All of these methods will fail if the exchangeability and positivity requirements

are not met, or if the model specification does not correctly replicate the

target composition on the confounding variables. If exchangeability and

positivity are met, the best method is the one that can most closely mirror the

correct sample composition using the available data and information. If

exchangeability and positivity are not met, there is no a-priori reason to

believe that any of these methods will perform better than any other.
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2.4.4 Variable Selection

Given the centrality of exchangeability and positivity in achieving unbiased

estimates from nonprobability surveys, what variables should practitioners

measure and utilize in sampling and adjustment? A number of researchers

have attempted to find sets of variables that can reliably serve to achieve at

least partial exchangeability for a broad range of survey topics. These include

so-called “webographics,” early adopter characteristics and other behavioral

and attitudinal factors intended to differentiate between survey participants

and the broader population (DiSogra et al., 2011; Fahimi et al., 2015;

Schonlau et al., 2004, 2007). While such general-purpose variables may fill a

need, their effect will be limited unless they are correlated with the outcome

to be measured.

Researchers will be best served if they can identify a likely set of theoretically

grounded confounders prior to data collection, and use these as the starting

point for a research design. For example, in studies of U.S. politics, many

outcome variables of interest with be related to respondents’ underlying

political engagement and partisanship. These may be effective confounders to

use in sampling and adjustment. In the absence of strong theory regarding the

survey topic, achieving exchangeability will prove extremely challenging.

Researchers must also be confident that the variables they have identified can

account for any indirect confounding resulting from idiosyncrasies associated

with recruitment or sampling. Although some vendors consider sampling

practices proprietary, vendors must be fully transparent about any variables

used in the selection process to ensure that researchers are aware of any

potential for confounding.
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2.5 Discussion

Whereas the emphasis in probability based surveys has traditionally been to

develop processes that minimize confounding, the emphasis suggested here is

to first identify likely confounders and design the data collection and analysis

so that they are measured and actively accounted for. To be clear, this is more

a shift in emphasis than a full-scale departure. Probability based surveys

generally seek to measure and account for specific characteristics that are

associated with bias, and we have discussed how data collection practices may

introduce or mitigate confounding in nonprobability surveys.

Grounding this framework in causal inference suggests that there may be other

techniques from that field that can be applied in a survey context. Testing the

sensitivity of findings to unmeasured confounding is another common practice

in causal inference whose adoption would likely benefit the survey field

(Rosenbaum, 2005). Unlike probability surveys where the maximum range of

bias is bounded by the size of the nonresponding sample, selection bias is

unbounded and non-identifiable in nonprobability surveys. Although some

methods such as pattern mixture models have been developed to evaluate

selection bias under such constraints, they are not widely used in practice

(Andridge and Little, 2011). Other techniques that do not rely on assumptions

about the probability of selection may also prove useful for nonprobability

surveys (e.g. Manski, 2007; Robins et al., 1999). Additionally, the use of

causal diagrams and other methods of identifying confounders represent

another worthwhile area for future research (e.g. Myers et al., 2011; Pearl,

2009b; Steiner et al., 2010).

Finally, it is one thing to know in principle that exchangeability, positivity and

composition must be achieved in order to avoid selection bias in
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nonprobability survey estimates. It is another thing to achieve them

successfully in practice. Even when the subject matter is well known and

many likely confounders are identified, it may prove difficult to have complete

confidence that there is not some yet unknown factor quietly introducing bias

into survey estimates. Nevertheless, by making explicit a set of assumptions

that to date have been largely implicit, the notions of exchangeability,

positivity and composition provide a framework by which to evaluate and

critique specific research findings and improve methodological practice.
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Chapter 3: Decomposing selection bias in nonprobabil-

ity surveys

For both probability and nonprobability surveys, researchers devote a great

deal of effort to identifying and mitigating sources of selection bias in survey

estimates. By selection bias, we mean a difference between a survey estimate

and the true population quantity that arises because some aspect of the

selection process results in samples whose composition does not match that of

the population. This is in contrast with sampling error, which is not

systematic, and errors of measurement. The Total Survey Error (TSE)

framework identifies noncoverage and nonresponse as the primary sources of

selection bias in surveys. Noncoverage occurs when units in the population are

missing from the sampling frame and have no possibility of selection.

Nonresponse is when units that have been selected fail to complete the survey

(Biemer, 2010; Groves, 1989; Groves and Lyberg, 2010). Bias results when the

noncovered or nonresponding units are systematically different from the

observed units with respect to the outcome of interest.

The TSE framework was developed under the probability-based survey

paradigm where the validity of statistical inferences comes from the fact that

sampled units are randomly selected from the population. When a sample is

selected randomly from a frame, undercoverage and nonresponse describe ways

in which the actual data collection process differs from the ideal of perfect

randomization. In principle, selection bias could be eliminated from

probability-based surveys by achieving 100% coverage and response. The same

cannot be said for nonprobability surveys. In the absence of random selection,
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perfect coverage and response provide no information about the possibility of

systematic differences between a sample and the population.

For nonprobability surveys, statistical inferences are not – by definition –

based on randomization. Rather, they are based on a model that (explicitly or

implicitly) assumes a relationship between the units in the sample and the

target population. Bias results when the model used to produce an estimate

incorrectly specifies this relationship. Whereas reducing bias in

probability-based estimates requires identifying deficiencies in the

randomization mechanism (i.e. undercoverage and nonresponse), reducing bias

in nonprobability estimates requires identifying deficiencies in the modeling

assumptions.

Most previous research into selection bias in nonprobability samples has

applied a standard estimation procedure to different nonprobability and

probability-based samples and compared the resulting estimates either to each

other or to population benchmark values. Some of this research found that

nonprobability samples yielded consistently inferior estimates to probability

samples (e.g. Chang and a. Krosnick, 2009; Yeager et al., 2011). Other studies

have found nonprobability survey estimates to compare favorably to

probability-based estimates (e.g. Ansolabehere and Rivers, 2013; Ansolabehere

and Schaffner, 2014; Wang et al., 2014). Those studies that have evaluated

estimates from several different nonprobability sample vendors have generally

found that the level of bias varies considerably across nonprobability sample

vendors (Craig et al., 2013; Erens et al., 2014; Gittelman et al., 2015; Kennedy

et al., 2016; Yeager et al., 2011).

Most studies at least mention the need to make assumptions about selection

being ignorable given some set of adjustment variables, but aside from noting
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the presence or absence of biased estimates there is rarely any additional

probing into whether these assumptions are violated and how. This may be

attributable in part to the fact that under the standard TSE approach to

survey error, and design-based inference more broadly, the goal is to minimize

reliance on unverifiable assumptions and focus attention on measurable

phenomena such as coverage and nonresponse. For nonprobability surveys,

however, there is no escaping unverifiable assumptions. A better understanding

of the sources of and solutions to selection bias in nonprobability surveys

requires a framework that places the assumptions front and center and puts

the focus on assessing the degree to which those assumptions are justified.

In the previous chapter, we proposed such an alternative framework focused

on the three conditions that must be met in order for nonprobability surveys

to produce population estimates that are free from selection bias:

exchangeability, positivity, and composition. Exchangeability is the

requirement that the researcher has measured any variables necessary to

render the survey outcome conditionally independent of sample membership.

Positivity is the requirement that there are no portions of the population that

are entirely absent from the sample. Composition is the requirement that the

joint distribution of any confounding variables either matches or can be made

to match the population distribution. When all three of these requirements

are met, there can be no systematic selection bias in survey estimates. These

ideas are not new, but are drawn from the field of causal inference which has

grappled with the problem of estimating causal effects from non-experimental

data for decades (e.g. Rubin, 1974).

The current chapter further develops the proposed framework by providing a

more rigorous formulation for the different types of selection bias. In section
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3.1, we describe exchangeability, positivity, and composition in detail in the

form of conditional probabilities. In section 3.2.1, we show that the net

selection bias in a survey estimate can be decomposed into separate, additive

components associated with exchangeability, positivity, and composition

respectively by taking the differences of several conditional means. We then

show how to estimate the values of these components if a satisfactory reference

dataset is available. In section 3.3, we provide an empirical example. We

estimate bias components for six different outcome variables related to civic

engagement for the nine nonprobability samples evaluated by Kennedy et al.

(2016) as well as an additional sample collected using Amazon Mechanical

Turk. We assess the how the magnitude of each bias component varies both

for individual survey outcomes and across sample sources.

3.1 Survey estimates and selection bias

For a target population of size N , let S = 1 indicate a set of n units included

in a survey sample. For nonsampled units S = 0. Assume there is a variable

X that is measured for every unit in the population, a variable U that is

unknown for every unit in the population, and an outcome variable Y that is

measured for the units in the sample but unknown for the nonsampled units.

Specific realized values of Y , X and U are indicated in lower case as y, x, and

u respectively. For pedagogical simplicity, we will assume that Y is binary and

that X and U are univariate and discrete, and that n is small relative to N

such that n/N ≈ 0.

To produce estimates from the sample that generalize to the larger population,

the distribution of the observed variable in the sample must match the

distribution in the larger population such that
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Pr (Y | S = 1) = Pr (Y ) . (3.1)

Because n/N ≈ 0, we assume Pr (Y ) = Pr (Y | S = 0), which means we can

formulate bias as a systematic difference between sampled and nonsampled

units

δY = Pr (Y | S = 1)− Pr (Y | S = 0) . (3.2)

Under this formulation, δY is analogous to a treatment effect in causal

inference where S = 1 and S = 0 are the treatments. In causal studies, Y is

measured on both treated and nontreated units in the population and the

groups are compared. In surveys, we generally assume that sampled and

nonsampled units are not systematically different and that measurements on

the sampled units will also accurately describe the nonsampled units. If we

accept that there is no direct causal relationship between inclusion in the

sample and Y , then any observed difference between population and sample

values must be the result of differences between Pr (Y,X, U | S = 1) and

Pr (Y,X, U | S = 0).

As in causal inference, the nature of selection bias can be represented in terms

of the conditional dependencies between Y , X, U and S (Hernán et al., 2004;

Pearl, 2009a; Rosenbaum and Rubin, 1983a). To produce unbiased population

estimates from a sample, three conditions must be met: exchangeability,

positivity and composition. If we assume knowledge of Pr (Y | X,S) and

Pr (X | S), it is possible to construct a set of hypothetical survey and

population means. By taking the differences of these quantities, we can

partition the net bias δY into separate terms associated with each component
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such that:

δY = δexch + δpos + δcomp (3.3)

We will restrict our focus to estimates of population proportions, but this

approach can be applied to other types of estimates as well. In this section we

will describe the exchangeability, positivity, and composition requirements in

terms of conditional probabilities.

3.1.1 Exchangeability

Exchangeability describes the situation where the distribution of Y is the

same for both sampled and nonsampled units, either unconditionally or

conditional on some set of observed characteristics X. When Y is

unconditionally independent of S, denoted Y ⊥⊥ S, we say that the sampled

and nonsampled cases are unconditionally exchangeable with respect to Y .

This is the case in expectation under probability sampling when all units have

an equal probability of selection, and implies that

Pr (Y | S = 1) = Pr (Y | S = 0). If Pr (Y ) 6= Pr (Y | S = 1) then sampled

observations are not exchangeable and sample estimates will be biased unless

Y can be made independent of S by conditioning on observed variables.

If Y ⊥⊥ S | X then nonsampled units are said to be conditionally exchangeable,

which implies that Pr (Y | X = x, S = 1) = Pr (Y | X = x, S = 0). If all

possible values of x in X have been observed in the sample and the population

distribution of X is known, then the unconditional population distribution of

Y can be recovered as follows:
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Pr (Y ) = Pr (Y | X,S = 1) Pr (X | S = 0) . (3.4)

If Y 6⊥⊥ S | X then sampled and nonsampled units are not exchangeable,

meaning that we would need to condition on U in order to make Y ⊥⊥ S.

Since U is unobserved for the sampled units, it cannot be conditioned upon

and as a result the population distribution of Y cannot be recovered without

strong assumptions (Greenland and Robins, 1986, 2009). In the survey

context, the key to achieving conditional exchangeability is ensuring that all

confounding variables are measured for all sampled units.

Unconditional and conditional exchangeability are often referred to as

missingness completely at random (MCAR) and missingness at random (MAR)

respectively (Little and Rubin, 2002). We prefer the term exchangeability as it

more directly emphasizes the necessity of equivalence between sampled and

nonsampled units that share a set of observed characteristics.

If we accept that Y ⊥⊥ S | X,U it follows that

Pr (Y | X,U) = Pr (Y | X,U, S) . (3.5)

We can marginalize over either U or S on the right hand side of (3.5) to

demonstrate that

Pr (Y | X,S) = Pr (Y | X,U) , (3.6)

thus implying that any observed difference between Pr (Y | X,S = 1) and

Pr (Y | X,S = 0) is the result of confounding by U . Effectively, S serves as an

instrumental variable for measuring the effect of U on Y (Angrist et al., 1996).
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The magnitude of the bias due to the confounding influence of U on the

population proportion is

δexch =
∑
x∈X

[Pr(Y | X = x, S = 1)− Pr(Y | X = x, S = 0)] Pr (X = x | S = 1).

(3.7)

This is equivalent to the average effect of treatment on the treated (ATT) in

causal inference terminology, and is the weighted sum of conditional average

treatment effects on the treated (CATT) over X, where “treatment” is

inclusion in the sample. Because there is no true treatment effect of S, we

refer to δexch as a confounding effect. Confounding effects may not be the

same for all values of X, and we can think of δexch
x as a conditional

confounding effect for a particular value of X. We can think of δexch
i as the

expected difference between sampled and nonsampled units who share the

same value of x as the ith unit in the sample.

3.1.2 Positivity

Conditional exchangeability is a necessary but insufficient condition for

producing unbiased population estimates. The positivity requirement states

that if Y is conditionally exchangeable given X, all distinct values of X must

be observed in the sample, or that Pr (S = 1 | X = x) > 0 for all values of

x ∈ X (Hernán and Robins, 2006; Petersen et al., 2012). To illustrate why this

is the case, we can reformulate (3.4) as

Pr (Y ) =
∑
x∈X

Pr (Y | X = x, S = 1) Pr (X = x | S = 1)
Pr (S = 1 | X = x) . (3.8)

If there are any instances where Pr (S = 1 | X = x) = 0 (i.e. excluded from
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the sample), (3.8) is undefined. Intuitively, groups that are underrepresented

but present in the sample provide some information that can be used to

generalize back to similar units in the population, but we have no information

about groups that are missing from the sample altogether.

The magnitude of bias resulting from a failure of positivity is simply the

difference between the population mean for those portions of the population

that are represented in the sample and the mean for the full population. Let

φx = 1 if Pr (S = 1 | X = x) > 0 and 0 otherwise. We can quantify the bias

due to a failure of positivity as

δpos = Pr (Y | S = 0, φx = 1)− Pr (Y | S = 0) (3.9)

which is equivalent to

δpos = Pr (φx = 0 | S = 0) [Pr (Y | S = 0, φx = 1)− Pr (Y | S = 0, φx = 0)]

(3.10)

Equations (3.9) and (3.10) are similar to the traditional formulations for

coverage and nonresponse error in probability-based surveys with the

difference being that φx is necessarily conditional on an observed X and

therefore conditional on a model in which X has been specified. In contrast,

noncoverage and nonresponse are not necessarily conditional on any chosen set

of covariates but rather on the survey design and execution (Groves, 1989). As

with coverage and nonresponse error in probability-based surveys, the

magnitude of bias due to a lack of positivity depends on what proportion of

the population is systematically excluded and how different the excluded units
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are with respect to Y .

When exchangeability and positivity both hold, the condition is known as

strong ignorability (Rosenbaum and Rubin, 1983b). Under strong ignorability,

the conditional distribution of Y | X in the sample matches that of

nonsampled population, and unbiased predictions can be made about any

units in the target population for which X is known. In causal studies, strong

ignorability of treatment assignment only guarantees internal validity in that

it permits unbiased causal inferences about the units included in the study

(Shadish et al., 2002). The ability to generalize from an experimental sample

to a larger population, or external validity, requires an additional layer of

strong ignorability with respect to inclusion in the study (Stuart et al., 2011).

The survey context is less complicated in that only inclusion in the sample

must be strongly ignorable for the outcomes of interest.

3.1.3 Composition

When the exchangeability and positivity requirements are both met, it is

possible to make predictions about individual units in the population if we

know their value for X. However to estimate population parameters we must

also know the distribution of X in the population, or Pr (X | S = 0). Bias that

results from problems with composition amounts to the error that comes from

having the necessary kinds of units in the sample but in the wrong proportions.

More formally, it is the difference between the sample mean if there were no

confounding and the mean for the set of nonsampled units where φx = 1:

δcomp =
∑
x∈X

Pr (Y | X = x, S = 0) [Pr (X = x | S = 1)− Pr (X = x | S = 0, φx = 1)].

(3.11)
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We might be tempted to think of a violation of the positivity requirement as a

special case of a composition problem where Pr (X = x | S = 1) = 0, and in a

sense this is correct. However, the critical distinction lies in the fact that

problems with composition can be corrected if the distribution of X is known,

whereas an absence of positivity cannot be rectified without additional strong

assumptions. It is worth noting that conventional methods of adjusting for

noncoverage and nonresponse used in both probability-based and

nonprobability surveys, such as raking and generalized regression estimation

(GREG, rely on an assumption of strong ignorability and as such can only

correct problems with composition. Additionally, such techniques only work if

the population distribution of X is known (Kalton and Flores-Cervantes,

2003). In some instances, it may be possible to achieve strong ignorability only

by conditioning on an observed variable whose population distribution is

unknown. In this case, it is not possible to estimate population parameters

(although it remains possible to make predictions about individual units in the

population given).

3.2 Bias decomposition

For estimates of a population mean or proportion, it is most straightforward

to see how each of these bias terms add up to the net bias if we consider the

following conditional means. Let ȳ(1)
s1 be the mean for the realized survey

sample. The superscript (1) indicates that the value is confounded (i.e. based

on Pr (Y | X,S = 1)). The subscript s1 indicates that the value is based on

the distribution of units in the in the survey sample Pr (X | S = 1). Let ȳ(0)
s0

be the true mean for the population where (0) indicates that the value is

unconfounded (i.e. based on Pr (Y | X,S = 0) and subscript s0 indicates that

the value is based on the distribution of units in the target population, that is
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Pr (X | S = 0). In principle, both of of these quantities are observable. Let

ȳ
(0)
s0,φ=1 denote the true mean for the share of the population for which common

support exists in the sample. This is not observable unless for some reason φ

is known. Finally, let ȳ(0)
s1 denote the counterfactual mean that is based on the

observed distribution of X in the sample but is unconfounded. It follows that

δnet = ȳ(1)
s1 − ȳ

(0)
s0 =

(
ȳ(1)
s1 − ȳ

(0)
s1

)
︸ ︷︷ ︸

δexch

+
(
ȳ

(0)
s0,φ=1 − ȳ(0)

s0

)
︸ ︷︷ ︸

δpos

+
(
ȳ(0)
s1 − ȳ

(0)
s0,φ=1

)
︸ ︷︷ ︸

δcomp

. (3.12)

3.2.1 Estimation

To calculate δexch, δpos, and δcomp for a given nonprobability sample, we need

to know Pr (Y | X,S) and Pr(X | S) as well as φX . To estimate these

quantities, we require data for the nonsampled units in the population in

addition to a nonprobability dataset. Since this is impossible in most

situations, we employ a reference dataset that is assumed to accurately reflect

the population joint distribution Pr(Y,X). Depending on the application, this

could be administrative or census data or a high quality probability-based

survey in which both Y and X have been measured. Let Ys and Xs represent

the vectors Y and X for dataset s ∈ S = {0, 1} where 0 and 1 indicate

membership in the reference and nonprobability datasets respectively. Let ysi

and xsi represent the realized values of Y and X for unit i in dataset s. For

convenience, we will use s0 and s1 respectively to refer to the reference and

nonprobability datasets in their entirety.

We can estimate the values δ̂exch, δ̂pos, and δ̂comp by modeling the outcome Y

as a function of X and S and calculating the expected counterfactual
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outcomes ŷ(1)
si = E (Y | xsi, s1) and ŷ(0)

si = E (Y | xsi, s0) for each unit in the

nonprobability and reference samples. This is paired with a propensity score

model for Pr (S = 1 | X) that is used to estimate φ̂i for each observation in

the reference dataset. Finally, we rely on the observed distribution of X in the

reference and nonprobability datasets themselves for Pr (X | S).

To model the conditional distribution Pr (Y | X,S), we fit models to predict

Ŷ (s) = f(Xs) on the reference and nonprobability datasets separately. By

estimating these functions separately, we are implicitly conditioning on S, and

we refer to these models as fs(·). While it would be possible to combine the

two datasets and fit a single model estimating f(X,S), if there is substantial

covariate imbalance or lack of overlap between the two samples, those regions

of X that are highly correlated with S will function as instruments or partial

instruments for S. In such situations, Pearl (2010) demonstrated that

conditioning on both a treatment variable and an instrument at the same time

leads to biased estimates of treatment effects. By fitting models for each

dataset separately, we avoid this problem because S is never included in the

same model as any potential instruments. For each observation in both

datasets, we calculate the values ŷ(0)
si = f0(xsi) and ŷ(1)

si = f1(xsi).

For φX , we need to identify those observations in the reference dataset for

which no comparable units exist in the nonprobability dataset. If X is high

dimensional, sparsity makes it likely that there will be many observations for

which no exact match exists in the nonprobability dataset. The causal

inference literature contains many approaches to identifying the region of X

for which common support exists (e.g. Crump et al., 2009; Dehejia and Wahba,

1999, 2002; Heckman et al., 1997, 1998; Hill and Su, 2013; King and Zeng,

2006; Lechner, 2008; Porro and Iacus, 2009). Here we opt for the simple
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approach used by Dehejia and Wahba (1999) which identifies units lacking

common support as those control units with propensity scores outside the

range of scores observed on the treated units. Evaluating alternative methods

for defining the area of common support for nonprobability samples may be a

useful area of future research.

To estimate φX , the reference and nonprobability datasets are stacked into a

single dataset, and we fit a propensity model π̂ = g(X) where

π̂x ≈ Pr(S = 1 | X = x). We can then define φ̂ as follows:

φ̂si =


1, if π̂si < min(π̂1i)

0, otherwise
(3.13)

Note that this implies that φ̂x = 1 for all observations in the nonprobability

dataset. This is primarily for completeness as φ̂x is only needed on the

reference dataset for this exercise.

With these estimated values, we can now calculate δ̂exch as

δ̂exch = 1
n1

∑
i∈s1

(
ŷ

(1)
i − ŷ

(0)
i

)
(3.14)

where n1 is the number of observations in the nonprobability sample.

We calculate δ̂pos as

δ̂pos =
∑
i∈s0 ŷ

(0)
i φ̂i∑

i∈s0 φ̂i
−
∑
i∈s0 ŷ

(0)
i

n0
, (3.15)

and δ̂comp as
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δ̂comp =
∑
i∈s1 ŷ

(0)
i

n1
−
∑
i∈s0 ŷ

(0)
i φ̂i∑

i∈s0 φ̂i
. (3.16)

3.3 Estimating selection bias components on measures of civic

engagement

3.3.1 Data

To demonstrate an empirical application of this framework, we estimate the

components of selection bias for several questions related to civic engagement.

These questions originally come from the 2013 Current Population Survey

(CPS) Civic Engagement Supplement, which we treat as the reference dataset

representing the true population distribution of outcomes and covariates. To

minimize the potential effects of measurement error due to proxy reporting we

use the supplement self-respondent weight (PWSRWGT) which yields an

unweighted sample size of 27,566. These questions were also asked on a set of

nine parallel nonprobability surveys conducted by Pew Research Center in

2015 and described in a report by Kennedy et al. (2016). These surveys were

conducted with eight different online sample vendors and are labeled Samples

A through I. We also include a survey fielded using Amazon’s Mechanical

Turk, a crowdsourcing platform where individuals are paid to complete online

tasks. The MTurk survey, also sponsored by Pew Research Center, used the

same questionnaire as the the surveys examined in Kennedy et al. (2016). The

field dates and sample sizes are listed in Table 3.1. We do not report response

rates as they are not substantively meaningful for nonprobability surveys.

We do not apply any weighting adjustments to the nonprobability samples. As

such, the estimated bias components will not necessarily reflect a final
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estimate, but instead provide a sense of the distribution of bias prior to any

attempt to correct it. Because (3.14), (3.15), and (3.16) are based on

predicted values for individual units, calculating weighted versions of these

quantities is straightforward.

Table 3.1: Survey field dates and sample sizes

Survey Field dates Sample size

Sample A Feb. 25, 2015 1,022

Sample B Feb. 26 - Mar. 3, 2015 1,049

Sample C Feb. 25-27, 2015 1,178

Sample D Feb. 25-27, 2015 1,005

Sample E Feb. 24 - Mar. 8, 2015 1,022

Sample F Feb. 25-26, 2015 1,008

Sample G Oct. 1-6, 2015 1,010

Sample H Oct. 2-8, 2015 1,007

Sample I Aug. 19-31, 2015 1,000

MTurk Sep. 25 - Oct. 2, 2015 1,017

For each of these surveys, we are interested in estimating population

percentages for the following six survey outcomes (Y ) coded as binary

indicators:

• Always votes in local elections.

• Trusts all or most people in their neighborhood.

• Typically talk to their neighbors every day or a few times a week.

• In the last twelve months, participated in a school, neighborhood or

community group.

• In the last twelve months, participated in a civic or service organization.
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• In the last twelve months, participated in a sports or recreation

organization.

For adjustment covariates, we use sex, age, race and Hispanic ethnicity,

educational attainment, and the Census Bureau’s administrative region.

Where categories or scales differed between the CPS and the comparison

surveys, variables were recoded into a common set of categories. The question

wording for all variables used in this analysis can be found in Appendix A. A

description of variable coding can be found in Appendix B along with a

description of the process used to singly impute missing values for the

demographic variables. With the exception of Census region, none of the

demographic variables on any of the samples were missing for more than 2% of

the cases. For region, missingness ranged from 1% to 5%. Imputing the few

missing values in these variables permits us to retain all of the interviews and

avoid any additional biases that would be introduced by performing a

complete case analysis. The cost is that variance estimates will be slightly

underestimated, though this effect should be largely negligible.

In the study by Kennedy et al. (2016), the weighting also incorporated

population density and cellular telephone usage. These variables are not

included in the CPS Civic Engagement Supplement and so cannot be included

in this analysis. However, even in their absence, the remaining variables

represent a standard set of demographics that are often used in quotas and

weighting adjustments for both probability and nonprobability surveys. These

were the primary demographics used in weighting by Yeager et al. (2011) and

to compare quota schemes by Gittelman et al. (2015). They are also the

variables used in nonresponse adjustment for a number of major media surveys

conducted with both probability and nonprobability samples (e.g. GfK Public
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Affairs, 2016; Ipsos Public Affairs, 2016; The Washington Post and ABC News,

2016). As a result, this analysis speaks directly to current scholarship and

practice in the area of nonprobability surveys.

Because the CPS Civic Engagement Supplement is an

interviewer-administered telephone survey while the comparison surveys are

self-administered, it is possible that some portion of observed differences are

the result of mode differences, particularly if measures of civic engagement are

socially desirable (Kreuter et al., 2008). To the extent such measurement

differences are present in the outcome variables, they will affect the

exchangeability component, δexch. This makes sense in that the factors that

cause differential measurement are not observed on both samples, making

them effectively unobserved confounders that are associated with measurement

rather than selection. Given that Kennedy et al. (2016) found that the

nonprobability samples exhibited higher levels of civic engagement than the

benchmarks, the presence of social desirability bias in the CPS would imply

that the true level of selection bias is greater than our estimates would suggest.

Although we expect differential measurement to be minimal for the chosen

demographic variables, to the extent that it is present its impact will vary

depending on the the nature of the error and its correlation with Y and S.

Another possible reason for differences between the CPS and nonprobability

estimates would be if the true population value changed substantially between

2013, when the supplement was fielded, and 2015 when the nonprobability

surveys were conducted. This is impossible to know for certain. To the extent

that there is true population change, this would also manifest as bias due to a

lack of exchangeability.

Finally, although the supplement is a high quality, government sponsored
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survey with a high response rate, it is subject to sampling and nonresponse

error of its own. As such, estimated bias components should be viewed as

comparisons to the best available measurements of the outcomes of interest

rather than deviations from a hypothetical “true value”.

3.3.2 Estimating bias components with BART

In principle, we could estimate the functions fs(·) and g(·) using any kind of

regression method (Snowden et al., 2011). However, we often lack knowledge

of the correct functional form, and linear models can be misspecified if

interactions or nonlinearities are not accounted for in the model. In such

instances, machine learning methods can help us avoid this kind of model

misspecification as they permit us to fit models using a potentially large

number of covariates while automatically detecting non-linear associations and

complex interactions. In particular, for this sort of exercise we are not

interested in drawing inferences about these model parameters but rather

about their predicted values. As such, the black-box nature of many such

techniques does not pose a problem.

In particular, algorithms that use ensembles of classification and regression

trees (CART) such as random forests, bagging, and boosting have attracted

interest because of their flexibility, ease of use, and generally high predictive

performance (Breiman, 1996, 2001; Friedman, 2002). Lee et al. (2010) found

that for propensity score estimation, boosted regression trees (Friedman, 2002)

performed almost as well as linear models with respect to bias and mean

squared error when the associations between predictors and treatment were

linear and additive and performed much better when the associations involved

nonlinearities and complex interactions. Austin (2012) had similar results for

boosted regression trees when they were used to model the outcome directly.
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In this paper, we use Bayesian additive regression trees (BART) to estimate

both fs(·) and g(·) (Chipman et al., 2010). Hill (2011) proposed the use of

BART for estimating causal effects by directly modeling the outcome as a

function of treatment assignment and baseline covariates, and demonstrated

its efficacy in a simulation. Green and Kern (2012) also demonstrated BART’s

utility in estimating heterogeneous treatment effects, while Kern et al. (2016)

found BART to be particularly effective for generalizing causal effects from

experimental samples to larger populations. Hill et al. (2011) also found

BART to outperform other machine learning and parametric approaches to

estimating propensity scores.

Similar to boosted regression trees, BART approximates a function f(·) with

an additive model consisting of m trees where

yi = f(xi) ≈ ȳ +
m∑
j=1

h(xi;Tj,Mj) + εi (3.17)

where Tj refers to the splitting rules and structure of tree j, Mj refers to the

set of expected values for each terminal node in the tree, and ε ∼ N(0, σ2). To

prevent overfitting, BART employs a regularization prior for Tj, Mj and σ

that keeps individual trees small in terms of the number of splits, and shrinks

the values of Mj toward 0. The hyperparameters that define the prior

distribution can be tuned to provide more or less regularization. One

appealing attribute of BART is that the default values of these

hyperparameters have been found to perform very well on a wide variety of

problems. Here we use the default values, though it is also possible to find

optimal values via cross-validation (Chipman et al., 2010).

The model is fit using a Gibbs sampling algorithm where the structure of each
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Tj is randomly perturbed over many iterations according to a procedure

described by Chipman et al. (1998). The series of iterations is a Markov chain,

draws from which are used to approximate the posterior distribution of f(X)

once it has converged.

For dichotomous outcomes of the sort considered here, BART fits a probit

model. We use this probit implementation of BART estimate both fs(·) and

g(·) using the BART package for the R statistical computing platform

(McCulloch et al., 2018; R Core Team, 2017). After 1,000 burn-in iterations of

the Markov chain, we estimate δ̂exch
k , δ̂pos

k , and δ̂comp
k over k = 1 . . . 1000 draws

from the posterior distributions of fs(·) and g(·) to quantify the uncertainty of

the estimates. For point estimates, we report the posterior mean value for a

statistic and 95% credibility intervals as measures of uncertainty.

Because BART is not compatible with the complex sample design features of

the CPS, we use the finite population Bayesian bootstrap (FPBB) to create a

synthetic population based on the weighted distribution of observations in the

reference sample (Cohen, 1997; Dong et al., 2014; Ghosh and Meeden, 1997;

Zhou et al., 2016). To create the synthetic population, we follow the procedure

described by Dong et al. (2014) using the CPS supplement as the reference

sample. First, the weights for each observation are scaled so that they sum to

the sample size which we denote nr. Next, we resample a total of N − nr

observations from the reference sample using a weighted Pólya urn scheme,

where N is the size of the full target population. In practice, the size of the

synthetic population only needs to be many times larger than the reference

sample. In this case, we create a synthetic population that is 100 times larger

than the original CPS dataset. These resampled units are then combined with

the original nr units to create a synthetic population of size N . Effectively,
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this procedure is imputing the N − nr unobserved units in the population

based on a posterior predictive distribution generated from the weighted

reference sample. This process creates a dataset that retains the same joint

distribution as the weighted CPS sample but can be used with procedures that

do not accommodate survey weights. To fully incorporate the sampling

variance from the CPS into our estimates of uncertainty we would create a

large number of synthetic populations and replicate the analysis on each of

them. Through experimentation we found that very little changed with

multiple synthetic populations, so for simplicity we use only a single synthetic

population in this analysis.

We do not fit the BART models for the outcomes or inclusion propensities

with the entire synthetic population dataset but rather with a subsample

equal in size to the nonprobability sample. This serves two purposes. First,

fitting the models to such a large dataset would be computationally

intractable. Second, this creates a balanced number of reference and survey

cases when we fit the inclusion propensity models. This improves the quality

of the estimated inclusion propensities. When the two datasets are

substantially imbalanced (as would be the case if we combined the entire

synthetic population with the survey sample), the estimated probabilities tend

to be biased in favor of predicting membership in the larger group. We

subsample the synthetic population rather than oversample the survey data so

that we do not artificially increase the level of precision for our estimates

(Wallace et al., 2011).

The code used to fit these models and estimate the conditional mean values

used to calculate the bias components can be found in Appendix C.
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Figure 3.1: Mean signed bias by outcome averaged over all samples. Bars
depict 95% credibility intervals.

3.4 Results

Having estimated δ̂exch, δ̂pos, and δ̂comp for each outcome across all 10

nonprobability datasets, we have several primary research questions. First, in

the aggregate, do individual outcomes exhibit different patterns with respect

to the relative contribution of each component, and are these patterns

consistent in magnitude across vendors? Similarly, is the variability in average

bias across sample sources disproportionately attributable to specific bias

components, and are the patterns consistent across individual outcomes?

Figure 3.1 depicts the the net bias for each question and the values for the

three bias components averaged over all samples. The exchangeability

component is clearly the primary source of selection bias at the question level.

Positivity, on the other hand, contributes almost nothing to bias. Bias

attributable to incorrect composition, while present, tends to be small, with

the largest component estimated at just under two percentage points for the

share that participated in a recreational association in the past year.

However, Figure 3.2 suggests a more complicated pattern when it comes to

individual samples. Samples displaying the highest mean absolute net bias

tend to have correspondingly high values for the exchangeability component.
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Figure 3.2: Mean absolute bias for samples averaged over all six outcome
variables. Bars depict 95% credibility intervals.

Once again, the contribution of positivity to net selection bias appears

minimal. This is likely because the share of the population for which common

support holds tends to be quite high, ranging from 96% to nearly 100% for the

conventional nonprobability samples. The exception is Mechanical Turk,

which only covers an estimated 88% of the target population. Even there, the

mean absolute bias attributable to positivity is estimated at under 1

percentage point. For composition, the estimated mean absolute bias ranges

from 1 to 3 percentage points for the conventional samples and reaches a

maximum of 4 points for Mechanical Turk.

There also appears to be an inverse relationship between composition and

exchangeability. Figure 3.3 plots this relationship directly at the sample level.

The pattern suggests that, on average, the samples with demographic

distributions that most closely match the population also tend to suffer from a

higher degree of confounding for these outcome variables.

Figure 3.4 shows the absolute values of bias components for each outcome

within samples, which are sorted from left to right by average absolute net

bias across all six outcome variables. While it is clear that there is a great deal

of variability within samples when it comes to the level of exchangeability bias

for individual estimates, the loess regression line shows clearly that the level of
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Figure 3.3: Scatterplot of average absolute bias due to exchangeability and
composition for all samples. Estimates are averaged over all outcome variables.
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Figure 3.4: Bias components for individual questions across samples. Circles
are the absolute estimated bias component values for individual variables.
Samples are ordered from highest to lowest by mean absolute net bias across
all six outcomes.

exchangeability bias is, to a large degree, a function of the sample. We can

also see that the average absolute exchangeability bias for Sample I is

disproportionately affected by one particularly large outlier – always voting in

local elections – that is roughly 9 percentage points higher than the next

highest item.

If we organize the data by individual outcome variables as in Figure 3.5 we

can see that for individual estimates, exchangeability is by far the strongest

contributor to net bias despite variability in the level of exchangeability bias

67



within samples. Here the circles reflect the estimated value of a specific bias

component on the vertical axis and the net bias for the item on the horizontal

axis. For all but voting in local elections and trusting neighbors, the regression

lines for positivity and composition are flat, meaning that differences between

samples in the net bias for individual survey outcomes are not strongly

associated with either of these error sources. For trusting neighbors, the two

samples with the highest net biases show a roughly equal mix of bias from

exchangeability and composition, while the remaining samples generally only

suffer from one or the other. Voting in local elections is particularly interesting.

One sample – Mechanical Turk – shows a large, negative bias that is almost

entirely attributable to composition. The conventional survey samples all have

positive bias due to confounding, although we also see several instances where

negative biases from composition offset this effect and reduce the overall net

bias. In fact, Sample C has the lowest absolute net bias at 4 percentage points,

but only because a large bias term for exchangeability (10 points) is offset by a

sizable bias term in the opposite direction (-6 points) for composition.

3.5 Discussion

In this chapter, we have demonstrated mathematically how exchangeability,

positivity, and composition relate to the total selection bias for a survey

estimate and shown how these individual components can be estimated when

a reference dataset of sufficient quality and containing the necessary variables

is available. The empirical example nicely illustrates the framework’s potential

utility.

Given the overall high level of confounding bias relative to positivity and

composition, the most obvious finding is that the basic demographics we have

conditioned on in this study are generally poor covariates for explaining
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Figure 3.5: Scatterplots of estimated bias components by net bias across
outcomes. Variables are ordered from highest to lowest by average absolute
net bias across all 10 samples.
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differences between these samples and the larger population. That bias due to

a lack of positivity is negligible could be considered a positive result. On the

other hand, the fact that bias due to composition also tended to be low

suggests that statistical adjustments that condition on these demographics

should be expected to have limited success. While this study can only speak

to these six civic engagement variables, other studies have found that

demographic variables are often insufficient for the purposes of correcting

selection bias (e.g. Lee, 2006; Mercer et al., 2018; Schonlau et al., 2007). Of

course finding that they are insufficient tells us little about which variables

would improve things.

However, the ability to disentangle problems of exchangeability from positivity

and composition opens up a variety of new paths for identifying possible

solutions. For example, replicating this analysis among subgroups would make

it easier to identify specific problem groups and to determine if the possible

solutions involve adjusting weighting (composition), recruiting additional

types of respondents (positivity), or soliciting expert help to identify possible

confounders (exchangeability). If additional confounders were found and

incorporated into this kind of analysis, we would see the bias shift from

exchangeability into either positivity or composition depending on whether the

additional detail identifies certain types of units as missing entirely or simply

out of proportion. Repeating this kind of analysis with different sets of

covariates may also help identify variables that are either ineffective or

actually amplify bias when used for weighting (Kreuter and Olson, 2011; Pearl,

2010). When estimates appear to have little to no bias, estimating these bias

components could help determine if the estimate really is free of bias or if

there are offsetting biases that cancel each other out.
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Perhaps more interesting is the possibility of an inverse relationship between

exchangeability and composition bias. It is plausible that efforts to force a

sample to meet a rigid demographic profile could result in something that

matches the population very closely on demographics but introduces new

confounders. For instance, if an online panel went out of its way to recruit

Hispanics by partnering with a corporation whose customers were all located

in California, it might have an easier time meeting quotas, but the empanelled

Hispanics would not be representative of the broader Hispanic population.

While one study involving a limited set of outcome variables is in no way

definitive, it does suggest a potentially fruitful avenue for future research.

It might be argued that this kind of analysis is only possible with a sufficiently

detailed reference dataset that already contains the true population values.

This is certainly true, but this criticism is equally true for research into

nonresponse or coverage error in probability-based surveys. Even when this

sort of reference data is unavailable, the causal framework provides a ready set

of tools for hypothesizing about problems and reasoning about potential

solutions. Most importantly, it makes it easier for researchers to identify and

scrutinize their own assumptions during survey design and analysis.
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Chapter 4: Doubly-robust inference for nonprobability

surveys with BART

In Chapter 2, we described a variety of methods for correcting selection bias in

nonprobability samples, all of which depend on an assumption of strong

ignorability (Rosenbaum and Rubin, 1983b). All of these methods involve the

creation of a statistical model that induces conditional independence between

survey outcomes and inclusion in the sample, although they go about it in

different ways. Some, such as propensity weighting and sample matching, do

this by modeling the probability of inclusion in the sample (Lee, 2006; Rivers,

2007; Rivers and Bailey, 2009; Valliant and Dever, 2011). Others, such as

calibration methods and multilevel regression and poststratification (MRP) do

this by modeling the outcome variable (Ghitza and Gelman, 2013; Park et al.,

2004). Elliott and Valliant (2017) describe these two approaches as

quasi-randomization and superpopulation inference respectively.

Doubly-robust estimation constitutes a third approach. Doubly-robust

estimation involves fitting both a propensity model and an outcome regression

model and requires that only one or the other be correctly specified to produce

consistent population estimates (Bang and Robins, 2005; Kang and Schafer,

2007; Robins et al., 1994).

In this chapter, we compare two approaches to doubly-robust estimation to

singly-robust estimation using propensity weighting (PW) and outcome

regression (OR). The specific doubly-robust estimators are outcome regression

with residual bias correction (OR-RBC) and outcome regression with a

propensity score covariate (OR-PSC). Each of these is described in detail in
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Section 4.1. As in Chapter 3, we use Bayesian additive regression trees

(BART) to construct all four of these estimators (Chipman et al., 2010). For

details on the BART algorithm see Chapter 3, Section 3.3.2.

For online nonprobability samples, doubly-robust estimation has an intuitive

appeal. Given the general lack of visibility into the recruitment and sampling

process, having two chances to correctly specify a model seems like a

potentially useful hedge against the inherent uncertainty about the selection

mechanism. That said, there are disadvantages as well. A doubly-robust

estimator will usually be less efficient than a correctly specified estimate based

on outcome regression. Bang and Robins (2005) suggest that additional bias

robustness is worth some loss of efficiency given that all models are likely to

suffer from some degree of misspecification. In contrast, Kang and Schafer

(2007) evaluated a variety of different doubly-robust estimators and found that

when both models were misspecified, a singly-robust estimate based only on

outcome regression had lower bias and root mean squared error (RMSE) than

all of the doubly-robust alternatives. In his commentary, Tan (2007)

demonstrated that this finding is by no means universal and the relative

performance of singly or doubly-robust estimators will vary depending on the

situation and the specific estimator.

The findings of both Bang and Robins (2005) and Kang and Schafer (2007)

are based on simulations. In practice, researchers will rarely have the

necessary information required to determine the optimal type of estimator.

For online nonprobability surveys, there is some empirical evidence that

doubly-robust estimation may be more helpful than not. Studies comparing

propensity weighting to other techniques have generally found it to be less

effective than calibration for reducing bias on a variety of benchmarks.
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However, a first-stage propensity adjustment followed by a second stage of

calibration does appear to yield somewhat more bias reduction than

calibration on its own (Dutwin and Buskirk, 2017; Mercer et al., 2018). Brick

(2015) described this as a compositional approach and showed that it is a form

of doubly-robust estimation. Lee and Valliant (2009) proposed a similar

two-stage procedure but did not describe it in terms of double-robustness.

These empirical studies and the aforementioned simulations all rely on

parametric linear models for both propensity and outcome estimation. This

means that a failure to correctly capture interactions or nonlinearities in either

the outcome or propensity models remains a potential source of error in

addition to omitted confounders or lack of common support. The partial

exception is the study by Mercer et al. (2018) which used random forests, a

tree-based machine learning algorithm, to estimate propensity scores

(Breiman, 2001).

Such flexible machine learning algorithms are appealing in that they can

automatically detect interactions and nonlinearities, and readily accommodate

a large number of covariates. For outcome regression, a number of studies

have found BART performs particularly well in a variety of applications

including imputation (Tan et al., 2018; Xu et al., 2016), estimating causal

effects (Green and Kern, 2012; Hill, 2011; Hill et al., 2011), and generalizing

from experimental samples to target populations (Kern et al., 2016).

Tree-based methods such as random forests and boosted regression trees have

been found to be effective for the purpose of estimating propensity scores

(Buskirk and Kolenikov, 2015; Kern et al., 2016; Lee et al., 2010; McCaffrey

et al., 2004). We are aware of only one study to use BART for propensity

weighting. It found that propensity scores estimated with BART were less
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variable than scores estimated using any of boosted regression trees, logit, and

probit regression. At the same time, the propensity weights estimated with

BART also produced better covariate balance than the alternatives. Even so,

the same study found that an outcome regression model using BART was

preferable to estimates based on propensity scores (Hill et al., 2011).

In a simulation study focused on imputation of missing data, Tan et al. (2018)

used BART to extend two doubly-robust estimators: augmented inverse

probability weighting (AIPW) (Robins et al., 1994) and penalized spline of

propensity prediction (PSPP) (Zhang and Little, 2009). They found that

estimators that replaced linear propensity and outcome models with BART,

which they called AIPW with BART and BARTps respectively, generally

resulted in estimates with lower bias and RMSE than standard AIPW and

PSPP when both models were misspecified. The added robustness came with

only a minimal loss of efficiency relative to linear models when both outcome

and propensity models were correctly specified. BARTps proved the most

effective method under dual misspecification when the mean and propensity

functions involved complex nonlinearities and interactions. An estimator based

only on outcome regression with BART was close to but not quite as robust as

BARTps. The authors did not evaluate a pure propensity weighting estimator.

In this chapter, we assess whether doubly-robust estimation with BART can

be similarly useful for online nonprobability surveys and measure the extent to

which the resulting estimates differ from singly-robust approaches based purely

on propensity scores or prediction. Because all of our estimators rely on

BART, we adopt a different naming scheme from that used by Tan et al.

(2018). We compare estimates produced using propensity weighting (PW),

outcome regression (OR), and two doubly-robust estimators. The first is OR
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estimation with a residual bias correction (OR-RBC) in which the mean of

propensity weighted residuals is added to the OR estimate similar to an AIPW

estimator (Kang and Schafer, 2007; Robins et al., 1994). The second is an

outcome regression estimator that includes the propensity score as a covariate

(OR-PSC) similar to the BARTps estimator from Tan et al. (2018).

We compare the performance of these estimators for six binary measures of

civic engagement taken from the 2013 Current Population Survey (CPS) Civic

Engagement Supplement. The estimates are calculated using 10 different

nonprobability surveys commissioned by Pew Research Center in 2015. In the

previous chapter, we demonstrated that these items suffer from nonignorable

selection bias conditional on demographics. Consequently, we do not expect

any of these methods to produce entirely unbiased estimates. Instead, we wish

to see if any of these approaches produces consistently superior results in

terms of bias, variance, and mean squared error across a diverse set of samples

from different vendors on a set of outcomes that, while focused on the topic of

civic engagement, serve as exemplars of the kind of problems that can occur in

practice.

This chapter proceeds as follows: in section 4.1, we describe each of these

estimators in detail and consider their advantages and disadvantages when

exchangeability and positivity assumptions are violated. In section 4.2, we

compare the performance of each estimator with respect to bias, variance, and

root mean squared error (RMSE) for five measures of civic engagement on 10

different nonprobability samples. In section 4.3 we discuss the extent to which

these results may generalize to other situations and conclude with suggestions

for future research.
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4.1 Alternative approaches to nonprobability survey inference

Each of the estimators considered in this study requires unit level microdata

that reflects the true joint distribution of the covariates to be used in

estimation. As in Chapter 3, we use the 2013 CPS Civic Engagement

Supplement microdata as a reference dataset that is assumed to accurately

reflect the true population distribution for sex, age, race and Hispanic

ethnicity, educational attainment, and the Census Bureau’s administrative

region for U.S. adults ages 18 or older. Because BART is not compatible with

the complex sample design features of the CPS, we the same finite population

Bayesian bootstrap (FPBB) procedure as in Chapter 3, Section 3.3.2 to create

a synthetic population based on the weighted distribution of observations in

the reference sample (Cohen, 1997; Dong et al., 2014; Ghosh and Meeden,

1997; Zhou et al., 2016).

Beyond “undoing” the survey weights, the FPBB can also permit us to

account for the CPS’s complex design in measures of uncertainty for the

nonprobability estimates. Although Dong et al. (2014) and Zhou et al. (2016)

describe FPBB methods that account for clustering and stratification in

addition to unequal weights, these techniques require the original cluster and

strata variables, which are not available for CPS public use data. Instead, we

treat the CPS reference sample as if it were a single stage survey with unequal

probabilities of selection.

In most applications, one would create a large number of synthetic populations

to capture the sampling variance associated with the complex design. This is

of particular importance when the synthetic populations are to be used for

primary analysis as described by Dong et al. (2014) or for multiple imputation

as in Zhou et al. (2016). In this case, some experimentation demonstrated that
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measures of variability were almost entirely unaffected by the use of multiple

synthetic populations. This is likely due to the large sample size of the

reference sample (27,566 adults) both in absolute terms and relative to the

nonprobability samples which have sample sizes of approximately 1,000. This

is similar to the situation that arises when ignoring the additional variance

attributable to the use of estimated control totals in calibration weighting.

This added variance is generally minimal when the estimated control totals are

very precise and the benchmark sample is many times larger than the analytic

sample (Dever and Valliant, 2016). Therefore, for ease of explanation we

present results using only a single synthetic population. Though the resulting

variance estimates may be smaller than if the CPS’s complex design was fully

accounted for, the differences appear to be minimal.

To create the synthetic population, we follow the procedure described by Dong

et al. (2014) using the CPS supplement as the reference sample. First, the

weights for each observation are scaled so that they sum to the sample size (as

opposed to the population size as is the case for most government surveys).

Next, we resample a total of N − nr observations from the reference sample

using a weighted Pólya urn scheme, where N is the size of the full target

population and nr is the size of the CPS sample. In practice, the size of the

synthetic population only needs to be many times larger than the reference

sample. In this case, we create a synthetic population that is 100 times larger

than the original CPS dataset. These resampled units are then combined with

the original nr units to create a synthetic population of size N . Effectively,

this procedure is imputing the N − nr unobserved units in the population

based on a posterior predictive distribution generated from the weighted

reference sample.
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For the purposes of this study we proceed as if this synthetic population

reflects the true population distribution for both the outcome variables and

the demographic covariates. It is important to note that the synthetic

population is itself derived from a survey and as such suffers from sampling,

nonresponse, and other survey errors. As a result, the measures of bias

discussed in subsequent sections of this chapter are most appropriately

understood as approximations.

For the remainder of this analysis, we will refer to the synthetic reference

population size as N with reference units indexed with j = 1 . . . N , and the

survey sample size as n with survey respondents indexed as i = 1 . . . n. Let Ȳ

be the synthetic population mean for outcome variable Y which we assume to

be the true population value, and ȳ denote a sample estimate.

4.1.1 Quasi-randomization inference with propensity weighting

Quasi-randomization inference assumes that each unit i in the target

population has an unknown, nonzero probability of inclusion in the sample

denoted πi. If πi were known, then weighting each case in the sample by its

inverse would correct any selection bias. Because πi is unknown, we rely on an

estimate based on a statistical model denoted π̂i (Elliott and Valliant, 2017).

The most common concern with propensity weighting is the possibility of a

few cases having extremely large weights which can result in highly unstable

estimates. This can occur when there is a high degree of covariate imbalance

between the reference and survey samples, even if strong ignorability holds.

When the positivity assumption is violated the result is not only extreme

weights and large variance but also bias as the weights will not be capable of

producing covariate balance (Cole and Hernán, 2008).
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Variable selection for propensity weighting is of particular importance. If

variables in the model are strongly correlated with inclusion but not the

outcome, the best case result will be an increase in variance without any bias

reduction. However if there are omitted confounders associated with both

inclusion and the outcome, weighting on variables that are only predictive of

inclusion can magnify confounding bias considerably (Kreuter and Olson, 2011;

Myers et al., 2011; Pearl, 2010). Therefore, simply selecting variables that are

strongly predictive of inclusion without consideration of their association with

the outcome can backfire. If there are no omitted confounders and the

weighting variables are strongly correlated with both inclusion and the

outcome variable, the result can be a decrease in both bias and variance

(Little and Vartivarian, 2005).

Here, we estimate response propensities by combining the observations from

the nonprobability sample with those in the synthetic population and using

BART to estimate the function π̂i = g (xi), where xi is the vector of

demographic covariates measured on each unit in both the reference and

opt-in samples.

Rather than use all of the observations in the synthetic population, we take a

subsample with the same number of observations as the opt-in sample. The

subsampling serves two purposes. First, because the synthetic populations of

size N may be quite large, subsampling reduces the computational burden

considerably. More importantly, having an equal number of population and

sampled units greatly improves the performance of many machine learning

methods used to estimate the propensity scores (Wallace et al., 2011).

Because the propensities are estimated relative to an equal sized subsample

from the synthetic population, the weights are calculated based on the odds of
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the propensity score rather than its inverse:

wi = 1− π̂i
π̂i

. (4.1)

Weighting by the odds in this way treats the covariate distribution in the

reference sample as the “correct” distribution and attempts to mirror that

distribution in the nonprobability sample (Hirano et al., 2003; Schonlau et al.,

2007). The more familiar approach of weighting by the inverse attempts to

reproduce the covariate distribution for the union of the nonprobability and

reference samples which is not generally the desired outcome.

For making inferences about the posterior distribution of propensity weighted

estimates, we adopt a procedure for Bayesian propensity score estimation

similar to that of Kaplan and Chen (2012). They propose creating M sets of

propensity weights based on the posterior predictive distribution of the

propensity model and then aggregating the M weighted point and variance

estimates to capture the variance associated with both the propensity model

and the estimated quantity. To account for uncertainty attributable to the

fact that the propensities are estimated, we take m = 1 . . .M draws of π̂im

from the posterior distribution for π̂i returned by BART and create M sets of

propensity weights. To account for the sampling variance that would be

implied by the differential inclusion probabilities, we apply a weighted finite

population Bayesian bootstrap to create b = 1 . . . B synthetic populations of

size N∗ for each set of propensity weights (Dong et al., 2014). Because the

focus here is on estimating proportions, we convert each of these synthetic

populations into a set of frequency weights where each unit’s weight w∗imb is

equal to the number of times that unit was selected for synthetic population

mb.
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For each propensity weighted synthetic population

ȳ
(pw)
mb =

n∑
i=1

w∗imbyi

N∗
(4.2)

and we treat the set of MB estimates of ȳ(pw)
mb as an approximation to the

posterior distribution of ȳ(pw).

4.1.2 Superpopulation inference with outcome regression

Whereas quasi-randomization relies on a statistical model to predict sample

inclusion, superpopulation inference relies on a statistical model for the

outcome Y . The model is then used to predict values for the unobserved units

in the population. The frequentist theory behind this approach is detailed by

Valliant et al. (2000). The Bayesian version of this approach, which relies on a

prior distribution rather than a hypothetical superpopulation, has been

described in several papers by Rod Little (see Little, 2004; Little and Zheng,

2007; Little, 2012, 2015).

When ignorability requirements do not hold, error manifests differently for

estimates based on outcome regression. When positivity is violated,

predictions from a model based on the survey sample may not generalize to

units in the population with no representation in the sample. Unlike

propensity weighting, where a lack of common support will result in large

weights or a failure to balance covariates, outcome regression will not give any

signs that anything is wrong. On the other hand, if the model does correctly

generalize to the non-covered portion of the population, then this approach

can produce efficient, unbiased estimates when propensity weighting would at

best be highly variable and at worst both biased and variable. One attractive
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feature of BART is the fact posterior predictive intervals are automatically

wider for units with poor representation in the survey sample, dynamically

inflating measures of uncertainty if there are a large number of such units in

the population. Hill and Su (2013) proposed taking advantage of this feature

to detect violations of common support in causal inference questions.

Adopting a similar approach in a survey setting could be a valuable piece of

future research.

If there are confounding variables associated with both the outcome and

selection that are not accounted for in the model, the associations between the

model covariates and the outcome may differ from the associations that would

be observed for the whole population. For example, if the young people in a

sample are more liberal than young people in the overall population, but a

measure of ideology is omitted from the model, the predicted values for young

people will reflect this liberal bias. This in turn will carry through to the

estimated quantity. As a result, simply selecting variables that are highly

predictive of the outcome in the sample can lead to bias if the strength of the

association is an artifact of selection. It is possible that when used for outcome

regression with nonprobability samples, machine learning methods such as

BART will detect correlations or interactions that are present in the sample

due to confounding. These kinds of models may be maximally tuned to pick

up ommitted variable biases in ways that simpler linear models are not.

Here we use BART to estimate ŷi = f (xi) using the units in the

nonprobability sample. Next, we use this model to generate M posterior

draws of the predicted ŷim for each unit in the reference population. For each

set of predicted values m
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ȳ(or)
m =

N∑
j=1

ŷjm

N
, (4.3)

and these M estimates reflect the posterior distribution for ȳ(or). Note that in

this case, the nonprobability sample is only used to estimate the conditional

distribution Pr (Y | X), and we rely exclusively on the synthetic population

for the marginal distribution Pr (X).

4.1.3 Doubly-robust inference

Outcome regression with residual bias correction

Perhaps the most basic doubly-robust estimator is the AIPW of Robins et al.

(1994). Because the propensity weights used in this study are based on the

odds rather than the inverse of the propensity, we refer to this estimator as

OR-RBC using the more general terminology proposed by Kang and Schafer

(2007). This type of estimator is closely related to model-assisted estimators

for probability-based surveys (Särndal et al., 1992) which have been readily

adapted to incorporate machine learning approaches to prediction (Breidt and

Opsomer, 2017).

The OR-RBC estimator is simply the basic OR estimator described above plus

the mean of propensity weighted residuals from the nonprobability sample.

Because we have M draws of ȳ(or)
m but MB sets of weights w∗mb, we

approximate the posterior distribution of ȳ(rbc) by calculating

ȳ
(rbc)
mb = ȳ(or)

m +

n∑
i=1

w∗imb (yi − ŷim)

N∗
. (4.4)

Thus for each of the M instances of ȳ(or)
m there we calculate the second term B
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times for a total of MB posterior draws.

Because the propensity weights are based on the odds of π̂ rather than its

inverse, this is a bias-corrected estimate for the synthetic population mean. In

a survey nonresponse setting, this estimator is described by Kang and Schafer

(2007, p. 532) as a bias-corrected estimate of the nonrespondent mean. It is

doubly-robust in the sense that if the outcome model is correct, then the

second term will equal 0 in expectation. If the outcome model is incorrect but

the propensity model is correct, then the second term is equivalent in

expectation to Ȳ − ȳ(or), thus negating any bias in ȳ(or).

Outcome regression with a propensity score covariate

This approach is an extension of the PSPP model in which a penalized spline

of the propensity score is included in an outcome regression model along with

the model covariates (Little and An, 2004; Zhang and Little, 2009). A variant

of this approach, which used piecewise constant coefficients for a binned

propensity score in place of a spline, was found by Kang and Schafer (2007) to

be more robust under dual-misspecification than the other doubly-robust

estimators in their study.

This version, also described as BARTps by Tan et al. (2018) involves first

fitting the propensity model with BART as before and then including the

posterior mean propensity score as a covariate in the outcome regression

model such that ỹi = f (xi, π̂i). The estimate for the population mean is then

the same as for the basic OR estimate but substituting ỹ for ŷ for each unit in

the synthetic population
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ȳ(psc)
m =

N∑
j=1

ỹjm

N
(4.5)

and make posterior inferences over the M values of ȳ(psc)
m . Tan et al. (2018)

found that this estimator performed best when both the mean and propensity

functions were particularly complex, although a less complex PSPP approach

that only used BART to estimate the propensity score

4.2 Results

For each of the 10 online nonprobability samples, we estimate the population

percentage for six measures of civic engagement using each of these four

estimators. We set the number of posterior draws M = 1000, and to keep

computation manageable, we set N∗ = 20× n and set B = 25. For purposes of

comparison, we also include an unweighted estimate of each population

percentage, and estimate its variance using a standard Bayesian bootstrap

(Rubin, 1981). Thus, for the unweighted, OR, and OR-PSC estimates we have

a total of M = 1000 posterior draws for each estimate of ȳ, while for PW and

OR-RBC we have M ×B = 1000× 25 = 25000. We compare each estimator

with respect to absolute bias, posterior variance, and root mean squared error

(RMSE).

The code used to fit these models and generate the posterior draws for each

estimate can be found in Appendix C.

Table 4.1 displays the measures of performance averaged over all samples and

outcome variables. Because all of the estimates are percentages, and the

measures are on common scales, we simply average them without additional

standardization. While the unweighted estimates have the lowest average
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Table 4.1: Average estimator performance on bias, variance, and RMSE.

Estimator Avg. Absolute Bias Avg. Posterior Var. Avg. RMSE
Unweighted 7.8 1.9 8.0
PW 6.6 2.7 7.0
OR 7.3 2.9 7.6
OR-RBC 6.4 2.5 6.7
OR-PSC 7.4 3.5 7.8
Note:
Estimates are averaged over all 10 samples and six outcome variables.

variance, all of the modeled estimates are preferable in terms of both bias and

RMSE. With respect to bias and RMSE, all of the methods are preferable to

unweighted estimates. In contrast to Tan et al. (2018) we see that the

OR-RBC estimator (similar to their AIPW with BART estimator) has the

lowest bias, variance, and RMSE on average, while OR-PSC (analogous to

their BARTps) has the highest. PW performs nearly as well as OR-RBC on

all three measures. Likewise, OR-PSC has slightly higher variance than OR,

but does not offer any added benefit with respect to bias.

When broken out by sample and outcome variable, a more complex picture

emerges. Figure 4.1 shows the absolute bias for each estimate broken out by

sample and outcome variable. For none of the samples is it the case that a

particular estimator is always preferable. The closest is sample E where the

lowest bias always belongs to either OR-RBC or PW, both of which reduce

bias relative to no adjustment. For sample I, which has the lowest average

unweighted bias to begin with, nearly all of the options increase bias relative

to doing nothing. More typically, the option with the least bias varies by

outcome. Of all 60 items, the unweighted estimate has the lowest bias for 16.

Figure 4.2 presents the same information somewhat differently. It shows the

change in absolute bias relative to no weighting. Several patterns become
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Figure 4.1: Absolute bias by sample and outcome variable. Estimates are
presented on a percentage point scale. Samples are ordered by unweighted
average absolute bias across all six outcome variables. Outcome variables are
ordered by unweighted average absolute bias across all 10 samples.
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Figure 4.2: Change in absolute bias relative to unweighted. Estimates are
presented on a percentage point scale. Samples are ordered by unweighted
average absolute bias across all six outcome variables. Outcome variables are
ordered by unweighted average absolute bias across all 10 samples.

clear. Overall, PW and OR-RBC tend to produce very similar estimates, and

with few exceptions, one or the other is most often the estimate with the

lowest bias. When there is bias reduction, OR-RBC almost always performs

somewhat better than PW. When there is bias amplification, PW tends to

perform somewhat better. The same does not appear to hold for OR and

OR-PSC. The differences between the two tend to be smaller and their

relative performance is not clearly related to the presence of bias reduction or

amplification.

The exceptions to this pattern are also notable. For trusting neighbors, OR

and OR-PSC both consistently outperform PW and OR-RBC across samples

with respect to bias, even if only slightly in some samples. Additionally, OR

90



and OR-PSC do well on the Mechanical Turk sample when others do not,

particularly on talking to neighbors and voting in local elections. The

Mechanical Turk sample is not a traditional survey sample and did not employ

any sort of quotas or other demographic controls during data collection.

Additionally, if we follow the same procedure as Chapter 3 and define the

covered region of common support as those units in the synthetic population

with a propensity score higher than the minimum score in the survey sample,

the coverage rate for Mechanical Turk is only 88% (Dehejia and Wahba, 1999).

The other samples all have estimated coverage rates between 96% and 100%.

It is likely that this lower common support contributes to the worse

performance for PW and OR-RBC in the Mechanical Turk sample.

Figure 4.3 shows the design effect (deff ) for each estimate relative to the

unweighted estimate. The design effect is equal to the posterior variance for

the estimate divided by the unweighted posterior variance. While the rank

ordering of the estimators with respect to design effect is mostly consistent

across samples with OR-RBC the lowest followed by PW, OR and OR-PSC,

the magnitude of the differences between the estimators clearly depends on

the sample. In particular, the deffs for OR and OR-PSC varies to a much

greater degree than OR-RBC and PW. For example, the average deff over the

six variables for OR-RBC is under 1.5 for all but two samples and only rises as

high as 2.1 for Mechanical Turk. For OR-PSC, only three samples are under

1.5, four are over 2, with Mechanical Turk at 3.7. The patterns for PW and

OR are similar but less extreme, with PW closer to OR-RBC and OR closer

to OR-PSC. Once again, Mechanical Turk is notably different from the other

samples, having the highest average deff for all four estimators.

In terms of overall error, figure 4.4 makes clear that RMSE is almost entirely a
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Figure 4.4: RMSE vs. absolute bias for all variables, estimators, and and
samples. Estimates are presented on a percentage point scale. The enlarged
and highlighted points are the Mechanical Turk estimates for frequency of
talking to neighbors. They illustrate an instance where bias was largely
eliminated with OR and OR-PSC but RMSE remained high.

function of bias. Because bias is generally so large for these items, error from

estimates that fall higher or lower than the posterior mean largely cancel out.

There are a few exceptions such as frequency of talking to neighbors in the

Mechanical Turk sample where OR and OR-PSC successfully eliminated

nearly all of the bias but the relatively high variance no longer cancels. The

resulting RMSE is actually slightly higher than the more biased estimates

based on PW and OR-RBC. These sorts of exceptions only occur in instances

where the bias was relatively low to begin with.
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Figure 4.5: Position of 95% credibility intervals relative to population value:
Participatied in a school group, Talk with neighbors weekly.
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Figure 4.7: Position of 95% credibility intervals relative to population value:
Always votes in local elections, Trusts all/most people in neighborhood
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While lower variance is usually considered a desireable property of an

estimator, a larger posterior variance could prove beneficial if it results in

higher coverage of the true population value within the credibility or

confidence interval. However, for these estimates, the frequently wider

intervals for OR and OR-PSC do not appear to offer such an advantage when

compared to OR-RBC and PW. Figures 4.5, 4.6, and 4.7 show the position of

95% credibility intervals relative to the benchmark value. Again,the differences

between the different estimators are not dramatic, but there is a consistent

pattern accross samples and outcome variables where the intervals for teh

OR-RBC and PW estimates tend to be closer to benchmark value, even when

the OR or OR-PSC intervals are wider. This is perhaps most clearly visible for

participation in a recreational or sports association depicted in Figure 4.6.

Here we again see close similarity between the OR-RBC and PW intervals on

one hand and the OR and OR-PSC intervals on the other. Even in instances

where the OR and OR-PSC intervals are wider (as they are for samples E, F,

G, and Mechanical Turk), the OR-RBC and PW intervals are still closer to

the benchmark value. Trust in neighbors is again the exception where the

intervals for OR-PSC and OR tend to be closer to the benchmark.

4.3 Discussion

In this chapter we have compared the performance of four approaches to

estimation in nonprobability surveys using BART: singly-robust PW and OR

and doubly-robust OR-RBC and OR-PSC. As expected, given the high degree

of nonignorable selection bias, none of the methods was entirely successful at

eliminating bias. Overall, OR-RBC tended to perform best with respect to

bias, variance, and RMSE, although PW performed nearly as well. Given that

OR-RBC requires an outcome model for each variable while a single set of
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propensity weights can be used for for multiple variables, it would be

reasonable to weigh the added analytical complexity of the doubly-robust

estimator against the modest improvement it yielded over PW alone. OR and

OR-PSC also performed similarly and tended to exhibit higher bias.

In particular, it would seem that OR and OR-PSC had a greater tendency to

inflate bias than PW and OR-RBC. Both OR and OR-PSC resulted in higher

bias for 31 out of 60 estimates across the samples. This is in contrast to 17

and 19 for PW and OR-RBC respectively. Additionally, while OR and

OR-PSC produced point estimates that were nearly identical, OR-PSC had

consistently higher variance and RMSE.

The differences between the relative performance of the two singly-robust

estimators is surprising given PW’s relatively poor showing in other studies

(e.g. Dutwin and Buskirk, 2017; Mercer et al., 2018; Valliant and Dever, 2011).

While the differences were not usually large, often less than a percentage point,

they were consistent across samples and outcome variables (with the

important exceptions of Mechanical Turk and trust in neighbors). One

possible explanation is that BART (and likely other machine learning

algorithms) fit models that are very well tuned for the sample but reflect a

spurious conditional distribution for X when exchangeability does not hold.

The better performance of calibration methods relative to propensity

weighting in other studies may be due to the fact that their comparatively

simple functional forms serve to prevent this kind of overfitting.

The differences between the two doubly-robust estimators was similarly

notable. The relatively high variance of both OR and OR-PSC suggests that

the demographic covariates used in this analysis are not highly predictive of

the outcomes. Given that the propensity score is in a sense a univariate
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summary of the covariate distribution, it is perhaps not surprising that its

inclusion as a covariate added little information to the basic OR estimator

given BART’s already powerful ability to approximate Pr (Y | X). In contrast,

the OR-RBC involves greater separation between the propensity scores and

the outcome regression model. In the presence of confounding, the propensity

weights and outcome regression may be more successful at offsetting each

other’s weaknesses.

Additional research comparing singly and doubly-robust estimators using

different combinations of more and less complex outcome and propensity

models would be greatly beneficial. In particular, additional evaluation of

model performance in the presence of exchangeability violations seems

particularly important, and should be done using both simulated and real

survey data. In this study, we saw that the usual patterns of estimator

performance were largely reversed, likely due to the lack of exchangeability for

the civic engagement measures that we identified in Chapter 3. These patterns

may not hold for other variables with different confounders, but some degree

of confounding is likely to be the norm for nonprobability survey samples. A

fuller understanding of its impact on different estimation approaches may go a

long way toward the improving the quality of survey estimates under less than

ideal conditions.
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Chapter 5: Conclusion

In this dissertation, we proposed an alternative framework for describing how

survey estimates from nonprobability samples can affected by selection bias.

In the absence of randomization, any statistical inferences are based on an

implicit or explicit model that explains the relationship between a sample and

the target population. When models are implicit, it is more likely that they

have not been subject to scrutiny and are at a greater likelihood of being

inappropriate. To date, the tools available to survey researchers have not

offered a simple and coherent way to think about and analyze the assumptions

that they make, consciously or not, when they make inferences from data with

nonexistent or imperfect randomization. The framework proposed here, based

on principles from causal inference, offers a simple checklist of the the three

conditions that must be true for such inferences to be valid: exchangeability,

positivity, and correct composition.

In Chapter 2 we examined the theoretical similarities between causal inference

and survey inference and showed how principles from the former can be

applied fruitfully to the latter. We demonstrated the conceptual utility of the

causal framework for thinking about selection bias in surveys and showed how

it can be used to reason about why some methods and practices seem to work

better than others. The goal of this Chapter was to describe these concepts in

an accessible and nontechnical manner that can be readily understood by

practitioners as well as methodologists and statisticians.

Chapter 3 went a step further and provided the mathematical details for how

exchangeability, positivity, and composition bias affect survey estimates. The
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total bias can be decomposed into separate additive components associated

with each error source. This permits researchers to target specific kinds of

error and develop research methods that are focused on eliminating specific

kinds of modeling error in much the same way that the TSE framework helps

designers of probability-based surveys eliminate specific threats to

randomization inference introduced at each stage of the data collection

process. Moreover, these components can be estimated given the appropriate

reference data. Although such data may be unavailable for many survey

outcomes, this is also true for those trying to study coverage or nonresponse

error in probability-based surveys.

When such data are available, there are clear practical benefits. We were able

to see with the civic engagement items that there were clear patterns with

respect to the average level of exchangeability bias between samples despite

high within-sample variability. It is easy to see how this analysis could be

extended to explain not only differences between a nonprobability sample and

the target population but also differences between samples from different

sources. To date, studies comparing data quality from different samples have

had little success in explaining why data quality is so variable (Gittelman

et al., 2015; Kennedy et al., 2016; Yeager et al., 2011). In such instances,

researchers would not be limited to only those variables that are available on a

reference sample but could use many different questions from parallel surveys

to diagnose and explain differences between different nonprobability sample

sources This sort of approach could also be used to identify instances where it

might be fruitful to combine data from different sources and when to avoid

doing so.

In Chapter 4 we compared the performance of four approaches to estimation

102



under conditions of nonignorable selection. In Chapter 2 the civic engagement

items were shown to suffer from high levels of confounding bias in general. In

such instances, any model that assumes ignorability will be automatically

misspecified. We saw that for this application, the doubly-robust outcome

regression with residual bias correction (OR-RBC) generally performed best

for bias, variance, and RMSE while outcome regression with a propensity

score covariate (OR-PSC) performed worst on all three. Likewise, there were

clear similarities between OR-RBC and propensity weighting (PW) and

between OR-PSC and outcome regression (OR). That these findings differ

from those of Tan et al. (2018) suggest that studying the performance of

various estimators when exchangeability and positivity assumptions are

violated may be as important as studying their performance under ignorability.

A fruitful avenue for future research in this vein would be to extend the

analysis from Chapter 3 and derive the bias decompositions for these different

kinds of estimators in order to better understand the conditions under which

one approach or another should be preferred.

5.1 Next steps

There are many directions in which research could proceed from here. Some of

the most immediate would include the extensions described above as well as

replications of these analyses using different sample sources, reference samples,

and outcome variables. Re-analyses of earlier comparative studies of

nonprobability samples could help uncover explanations for the variation in

data quality that has been observed across sample sources. It would also be

worthwhile to experiment with different types of machine learning procedures

and try to find the most effective way to estimate these bias components.

We can also see how this framework could be applied in the development of a
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variety of diagnostic procedures. For instance, when reference data is available,

it is possible to estimate δ̂exch for individual cases using BART or other

machine learning methods. These values could then be analyzed using

procedures such as classification and regression trees. These estimated values

could also be treated as outcome variables. This would make it easy to see

how δ̂exch is affected by different estimation procedures without necessarily

having to derive a new formula. One can imagine that an analytic formulation

for a method such as OR-PSC with BART, where estimates from one complex

model are used as inputs to a second, could be difficult or impossible to derive,

but applying OR-PSC to estimated values of δ̂exch would make evaluation

straightforward.

In many instances, a reference sample with the covariate distribution will be

available but not the outcome variable of interest. This prevents the

estimation of these bias components, but approaches to sensitivity analysis

such as the version proposed by Robins et al. (1999) – in which a hypothetical

confounding effect is added to the value of an outcome variable for each unit

in a sample – could prove powerful in conjunction with a propensity model to

measure the robustness of results to different levels of unobserved confounding.

More broadly, the 2013 AAPOR task force report called for both a framework

and standard metrics that can used to evaluate the quality of estimates from

nonprobability samples (Baker et al., 2013). This dissertation has proposed a

framework. Going forward it will be important to take the next step and

create metrics that can be used as measures of data quality. While response

and completion rates are not especially meaningful for many nonprobability

surveys, it would certainly be possible to develop measures summarizing what

share of the population is missing relative to a reference dataset. Another
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possibility would be to develop a family of indicators measuring balance

relative to a reference sample – much like the R indicators that have been

developed for probability-based samples where auxiliary data is available for

nonrespondents (Schouten et al., 2009, 2011, 2012).

One problem that has plagued public-opinion polling in particular is the

inadequacy of the “margin of sampling error” as a measure of data quality. It

may be that this framework could be employed, perhaps in conjunction with

methods such as those developed by Manski (2007) to calculate error bounds

that incorporate both bias and variance based on estimated common support,

compositional differences, and some reasonable assumptions about potential

confounding.

The fact that all these diagnostics are themselves model-based and involve

their own sets of assumptions should not be considered problematic. As we

have stated repeatedly, there is no escaping assumptions; evaluating our

assumptions requires making further assumptions about assumptions. What is

important is that the assumptions are reasonable, useful, and above all

transparent.

5.2 Revisiting Total Survey Error

We began this dissertation by outlining the ways in which the Total Survey

Error (TSE) framework falls short as an approach for researching error in

nonprobability survey samples and proposed the causal framework as a more

appropriate alternative. While TSE attempts to isolate sources of error that

results from defects in the sampling and data collection processes, the causal

framework proposed here is focused on defects in the statistical model that is

used to relate sample to population. From an inferential perspective, it makes
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sense for surveys that aspire to base inferences on randomization to prioritize

the TSE framework. Likewise, for surveys where randomization plays no

meaningful inferential role, it makes sense to focus on modeling assumptions

and interrogating the manner in which those assumptions could be incorrect.

In practice though, probability-based surveys suffer from undercoverage and

nonresponse, forcing researchers to rely on statistical models and assumptions.

Likewise, users of nonprobability surveys still need to worry about data

collection.

There are a variety of ways in which the two approaches can be complementary.

The bias components and estimation procedures described in this dissertation

are equally applicable to probability-based surveys. Given high rates of

nonresponse, probability-based surveys have become more and more reliant

upon models and statistical adjustment to correct for problems with coverage

and nonresponse. Additional tools for evaluating these models can only help.

Even though coverage and nonresponse do not hold the same sort of

inferential significance for nonprobability samples as they do for

probability-based samples, the use of recruitment strategies that appeal to a

more diverse set of potential panelists or survey designs that are more likely to

result in respondent participation are important both for efficiency and to

ensure that survey designs produce samples that are consistent with the

models used for estimation and do not introduce additional confounds. These

are the types of problems where TSE’s focus on the data collection process

can be helpful no matter what inferential framework a survey uses.

In conclusion, it is our hope that this dissertation has raised more questions

than it has answered. When it comes to studying error in nonprobability

survey samples much of the difficulty has been figuring out the right questions
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to ask. The error framework and analyses included in this dissertation are

only a first step. With luck, they will be further refined and built upon both

in our own future work and in that of other statisticians, methodologists, and

practitioners who can use the framework to improve the quality of their own

research.
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Appendix A: Question wording

Below is the question wording for the civic engagement and demographic items

as it appeared in the 10 nonprobability surveys analyzed in this dissertation.

For the text of the full questionnaire, see Appendix F of the original report by

Kennedy et al. (2016). The variable label for the corresponding item from the

2013 Current Population Survey Civic Engagement Supplement (CPS) is

included in brackets after the question number. Question wording for the civic

engagement items matches the wording that was used in the CPS.

Q0002 [PES15] During a typical month in the past year, how often did you
talk with any of your neighbors?

1. Basically every day
2. A few times a week
3. A few times a month
4. Once a month
5. Not at all

Q0004 [PES18] How much do you trust the people in your neighborhood? In
general, do you trust. . .

1. All of the people in your neighborhood
2. Most of the people in your neighborhood
3. Some of the people in your neighborhood
4. None of the people in your neighborhood

Below is a list of types of groups or organizations in which people sometimes
participate. Have you participated in any of these groups during the last 12
months, that is since February 2014?

• Q0009 [PES5a] A school group, neighborhood, or community association
such as PTA or neighborhood watch group?

1. Yes
2. No

• Q0010 [PES5b] A service or civic organization such as American Legion
or Lions Club?

109

http://assets.pewresearch.org/wp-content/uploads/sites/12/2016/04/Appendix-F-Questionnaire.pdf


1. Yes
2. No

• Q0011 [PES5c] A sports or recreation organization such as a soccer club
or tennis club?

1. Yes
2. No

Q0029 [PES1] The next question is about LOCAL elections, such as for mayor
or a school board. Do you. . .

1. Always vote in local elections
2. Sometimes vote in local elections
3. Rarely vote in local elections
4. Never vote in local elections

And finally, a few questions about yourself and your household.

Q0042 [PESEX] What is your gender?

1. Female
2. Male

Q0043 [PRTAGE] What is your age?

[PROGRAMMING NOTE: Numeric text box, 5 characters wide, range
18-120] _______years

Q0044 [PRDTHSP] Are you of Hispanic, Latino, or Spanish origin, such as
Mexican, Puerto Rican or Cuban?

1. Yes, Hispanic or Latino
2. No, not Hispanic or Latino

Q0045 [PTDTRACE] Which of the following describes your race?

[You can select as many as apply]

1. White
2. Black of African-American
3. Asian
4. American Indian or Alaska Native
5. Native Hawaiian or other Pacific Islanders
6. Some other race, specify:___________

Q0050 [PEEDUCA] What is the highest grade or year of school you
completed?

1. Never attended school or only attended kindergarten
2. Grades 1 through 8 (Elementary School)
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3. Grades 9 through 11 (Some High School)
4. Grade 12 or GED (High School Graduate)
5. Completed some college
6. Completed technical school
7. Associate degree
8. Bachelor’s degree
9. Completed some postgraduate
10. Master’s degree
11. Ph.D., law, or medical degree
12. Other advanced degree beyond a Master’s degree

Q0055 [GEREG] What is your zip code?

[PROGRAMMING NOTE: Numeric text box, 5 characters wide, range
0-99999]
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Appendix B: Variable coding

The data from the nonprobability and CPS samples was recoded and

processed as follows:

1. Each of the six measures of civic engagement was coded as a binary

variable. The category or categories chosen as the outcome variable were

coded as 1 and all other responses (including item nonresponse) were

coded as 0. These reflect the original variable codings used in the the

report by Kennedy et al. (2016). These were:

• Always votes in local elections.

• Trusts all or most people in their neighborhood.

• Typically talk to their neighbors every day or a few times a week.

• In the last twelve months, participated in a school, neighborhood or

community group.

• In the last twelve months, participated in a civic or service

organization.

• In the last twelve months, participated in a sports or recreation

organization.

2. The demographic variables in both the nonprobability and CPS

reference samples were recoded into the categories listed below.

3. For both the nonprobability and CPS datasets, item nonresponse to the

demographic items was imputed using the mice package and a version of

the random forest imputation algorithm described by Doove et al. (2014)

implemented with the ranger package (van Buuren and

Groothuis-Oudshoorn, 2011; Wright and Ziegler, 2017). While mice is a
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procedure for performing multiple imputation, we use it more for its

ability to jointly impute several variables at once. We use only a single

imputed dataset to avoid overly complicating the analysis. With the

exception of Census region, none of the demographic variables on any of

the samples were missing for more than 2% of the interviews. For region,

missingness ranged from 1% to 5% of interviews.

The demographic variables were coded as follows:

• Sex

1. Male

2. Female

• Age

– 18 through 85: Age was left continuous. Respondents who reported

being more than 85 years old were topcoded to 85 in order to be

consistent with the CPS coding.

• Race/ethnicity

1. Non-Hispanic White: Respondents were coded as non-Hispanic

white if they only selected white as their race and did not identify

as Hispanic or Latino in the ethnicity question.

2. Non-Hispanic Black: Respondents were coded as non-Hispanic

black if they only selected black as their race and did not identify

as Hispanic or Latino in the ethnicity question.

3. Hispanic: Respondents were coded as Hispanic if they identified as

Hispanic or Latino in the ethnicity question. This coding was

unaffected by responses to the race question.

4. Other: Respondents who did not identify as Hispanic or Latino in

the ethnicity question and selected multiple races or a race other

114



than white or black.

• Education

1. High school or less: Respondents were coded as high school or less

if they indicated that their highest level of education was Grade 12

or a GED or below.

2. Some college: Respondents were coded as some college if they

reported completing some college, technical school, or an associate’s

degree.

3. College graduate: Respondents were coded as college graduates if

they reported completing a bachelor’s degree or higher.

• Census region

Census region was coded according to state based on respondent

reported zip code. See the U.S. Census Bureau’s webpage for details on

the states included in each region.

1. Northeast

2. Midwest

3. South

4. West

115

https://www2.census.gov/geo/docs/maps-data/maps/reg_div.txt


116



Appendix C: Code

The following code estimates all of the conditional means that are used in

Chapter 3 to estimate bias components. It also produces the estimates used in

Chapter 4.

library(BART)
library(tidyverse)
library(bayesboot)
library(bestimate)
library(timefactory)
library(stringr)

## NOTE: timefactory and bestimate can be installed with:
## devtools::install_github("awmercer/timefactory")
## devtools::install_github("awmercer/bestimate")

# timefactory is for timing code
# bestimate contains functions to make working with BART easier

get_estimate_posteriors = function(samp_id,
samp,
ref,
synth_pop_ids,
x_vars,
y_vars,
draws,
pweight_synth_pops,
cores) {

from_start = timefactory()

## Convert synthetic population idices into frequency weights for each
## record in the synthetic population
sp_wts = tibble(ids = synth_pop_ids) %>% group_by(ids) %>%

summarise(wt = n()) %>%
pull(wt)
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# List containing output
res = list()

## Convenience data structures
x_ref = ref[, x_vars]
x_samp = samp[, x_vars]
n_samp = nrow(samp)

# Get subsample of reference
ref_subsamp_ids = synth_pop_ids[sample(seq_along(synth_pop_ids),

n_samp,
replace = FALSE)]

ref_subsamp = ref[ref_subsamp_ids, ]
x_ref_subsamp = ref_subsamp[, x_vars]

## Estimate response propensities
origin = c(rep(1, n_samp), rep(0, n_samp))
comb = bind_rows(x_samp, x_ref_subsamp)

# Pre-filled in BART call with standard parameters
bart_partial = partial(

pbart2,
ndpost = draws,
verbose = FALSE,
keeptrainfits = FALSE,
mc.cores = cores,
nskip = 1000

)

cat("Fitting propensities ")
propensity_timer = timefactory()
propensity_fit = bart_partial(x.train = comb,

y.train = origin)

sample_propensities = pbart_posterior(propensity_fit,
newdata = x_samp,
mc.cores = cores)

cat(sprintf("%.1f\n", propensity_timer()))

# Fit OR models - confounded and unconfounded

y_fits_timer = timefactory()
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cat("Fitting y models ")
y_fits_confounded = y_vars %>%

map(~ bart_partial(x.train = x_samp, y.train = samp[[.x]]))

y_fits_unconfounded = y_vars %>%
map(~ bart_partial(x.train = x_ref_subsamp, y.train = ref_subsamp[[.x]]))

cat(sprintf("%.1f\n", y_fits_timer()))

# Add posterior mean propensity score to x_samp for OR-PSC
x_samp_prop = x_samp %>%

mutate(pi_hat = rowMeans(sample_propensities))

dr_fits_timer = timefactory()
cat("Fitting OR-PSC models ")
y_psc_fits = y_vars %>%

map(~ bart_partial(x.train = x_samp_prop, y.train = samp[[.x]]))
cat(sprintf("%.1f\n", dr_fits_timer()))

cat("Saving BART fits ")
save_timer = timefactory()
# Save BART fits to file for reuse later
saveRDS(

file = sprintf("data/bart_models/bart_fits_%s.RDS", samp_id),
object = list(

sample_id = samp_id,
propensity_fit = propensity_fit,
y_fits_confounded = y_fits_confounded,
y_fits_unconfounded = y_fits_unconfounded,
y_psc_fits = y_psc_fits,
synth_pop_ids = synth_pop_ids

)
)
cat(sprintf("%.1f\n", save_timer()))

## Estimate posteriors and other quantities

est_timer = timefactory()
cat("Starting estimates:\n")

# Calculate weights as odds of being in the population over sample
sample_weights = map(sample_propensities, ~ (1 - .x) / .x)
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# For each propensity weight create a set of FPBB weights
cat("Creating fpbb propensity weights ")
fpbb_timer = timefactory()
sink("/dev/null")
sample_weight_synth_pops = map(

sample_weights,
~ fpbb_synth_pops(

weights = .x,
L = pweight_synth_pops,
N = length(.x) * 20

)
)
sink()
cat(sprintf("%.1f\n", fpbb_timer()))

# Get "true" population means
res$y_bar_pop = y_vars %>%

map_dfc(function(y_var) {
weighted.mean(ref[[y_var]], sp_wts)

})

# Estimate propensity weighted means
res$y_bar_propwt = y_vars %>% map_dfc(function(y_var) {

map(sample_weight_synth_pops, function(sp_wts) {
map_dbl(sp_wts, function(wt) {

weighted.mean(samp[[y_var]], wt)
})

}) %>% unlist()
})

cat(sprintf("finished propensity means %.1f\n", est_timer()))

# Bayesian bootstrap weights to simulate SRS sampling variance
bb_weights = t(rudirichlet(draws, n_samp) * n_samp) %>%

as_tibble() %>%
as.list() %>%
set_names(sprintf("bb_wt_%s", seq_along(.)))

# Estimate simple unweighted bayes bootstrap means
res$y_bar_samp_bayesboot = map_dfc(y_vars, function(y_var) {

map_dbl(bb_weights, ~ weighted.mean(samp[[y_var]], .x))
})
cat(sprintf("finished bayesboot means %.1f\n", est_timer()))
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# Estimate basic OR means
res$y_bar_pred = map_dfc(y_fits_confounded, function(y_fit) {

y_hat_pos = pbart_posterior(y_fit,
newdata = x_ref,
mc.cores = cores)

map_dbl(y_hat_pos, ~ weighted.mean(.x, sp_wts))

})

cat(sprintf("finished pred means %.1f\n", est_timer()))

# Estimate DR-RBC means
res$y_bar_drrbc = map_dfc(y_vars, function(y_var) {

# Get the posterior distribution for the OR mean based on ref
y_bar_pred_pos = res$y_bar_pred[[y_var]]

# Get OR model for y_var
pred_fit = y_fits_confounded[[y_var]]

# Get posterior predicted values for sample based on OR model
y_hat_pos_samp = pbart_posterior(pred_fit,

newdata = x_samp,
mc.cores = cores)

# Calculate the OR-RBC mean for each sp weight associted with each
# posterior draw
pmap(list(y_bar_pred_pos, y_hat_pos_samp, sample_weight_synth_pops),

function(y_bar, y_hat, sp_wts) {
resid = samp[[y_var]] - y_hat

# For each sp_weight associated with the draw
# calculate a weighted mean residual and add it
# to the predicted mean for that draw
map_dbl(sp_wts, function(wt) {

y_bar + weighted.mean(resid, wt)
}) %>% unlist()

}) %>% unlist()
})
cat(sprintf("finished DR RBC means %.1f\n", est_timer()))

# Get propensities for reference sample
ref_propensities = pbart_posterior(propensity_fit,
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newdata = x_ref,
mc.cores = cores)

# Esitimate OR-PSC means
x_ref_prop = x_ref %>%

mutate(pi_hat = rowMeans(ref_propensities))

res$y_bar_drpsc = map_dfc(y_psc_fits, function(y_fit) {
pos = pbart_posterior(y_fit, newdata = x_ref_prop, mc.cores = cores)
map_dbl(pos, ~ weighted.mean(.x, sp_wts))

})

cat(sprintf("finished DR PSC means %.1f\n", est_timer()))

# Estimate quantities for bias decomposition
ref_phi = map2(sample_propensities, ref_propensities,

function(s_prop, ref_prop) {
min_s_prop = min(s_prop)
phi = ref_prop >= min_s_prop

})

res$y_bar_samp_confounded = y_vars %>%
map_dfc(function(y_var) {

y_pos = pbart_posterior(y_fits_confounded[[y_var]],
newdata = x_samp,
mc.cores = cores)

y_bar_samp_confounded = colMeans(y_pos)
})

res$y_bar_samp_unconfounded = y_vars %>%
map_dfc(function(y_var) {

y_pos = pbart_posterior(y_fits_unconfounded[[y_var]],
newdata = x_samp,
mc.cores = cores)

y_bar_samp_unconfounded = colMeans(y_pos)
})

# Unconfounded estimates for full population
y_bar_pop = y_vars %>%

map(function(y_var) {
y_pos = pbart_posterior(y_fits_unconfounded[[y_var]],

newdata = x_ref,
mc.cores = cores)

list(
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# Posterior for for unconfounded population mean
y_bar_pop_unconfounded = colMeans(y_pos),

# Posterior for unconfounded population mean among region
# of common support
y_bar_pop_unconfounded_cs = map2_dbl(y_pos, ref_phi,

function(y, phi) {
weighted.mean(y, phi)

})
)

}) %>%
transpose()

res = c(res, y_bar_pop)

cat(sprintf("Finished everything %.1f\n", from_start()))
return(bind_rows(res, .id = "est"))

}

np = readRDS("data/cleaned/cleaned_np_civic_data.RDS")
cps = readRDS("data/cleaned/cps_civic_full_edited.RDS")
draws = 1000
pweight_synth_pops = 25
save_output = TRUE

x_vars = c("age", "sex", "racethn", "educcat", "fcregion")
y_vars = str_subset(names(np), "y_") %>% set_names()
np_samples = unique(np$sample_id) %>% set_names()

## Comment out when not testing
# np = filter(np, sample_id %in% c("A", "B")) %>% sample_n(400)
# cps = sample_n(cps, 500)
# draws = 10
# pweight_synth_pops = 10
# save_output = FALSE
# np_samples = np_samples[1:2]
# y_vars = y_vars[1:2]
# save_output = FALSE
# np_samples = "A"
# y_vars = y_vars[1]
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# Create synthetic population for use as reference sample
set.seed(1234)
synth_pop_ids = fpbb_synth_pops(

weights = cps$pwsrwgt,
L = 1,
N = nrow(cps) * 100,
return_weights = FALSE

)

## Loop over each sample and estimate all of the necessary conditional means
start_timer = timefactory()
est_pos_full = np_samples %>%

set_names() %>%
map(function(samp_id) {

est_pos = get_estimate_posteriors(
samp_id = samp_id,
samp = filter(np, sample_id == samp_id),
ref = cps,
synth_pop_ids = synth_pop_ids[[1]],
x_vars = x_vars,
y_vars = y_vars,
draws = draws,
pweight_synth_pops = pweight_synth_pops,
cores = 10

)
if (save_output) {

saveRDS(est_pos,
sprintf("data/posteriors/est_pos_%s.RDS", samp_id))

}
est_pos

}) %>% bind_rows(.id = "sample_id")

if (save_output) {
saveRDS(est_pos_full, "data/posteriors/est_pos_full.RDS")

}
cat(sprintf("Whole thing took %.1f seconds.\n", start_timer()))

### Get minimum inclusion propensitities for each sample and
### calculate the portion of the population with common support

synth_pop_wts = synth_pop_ids %>% group_by(sp_idx_1) %>%
arrange(sp_idx_1) %>%
summarise(sp_wt = n()) %>% pull(sp_wt)
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fit_files = list.files("data/bart_models", full.names = TRUE)

pop_common_support = map(np_samples, function(samp_id) {
samp = np %>% filter(sample_id == samp_id)

fits = readRDS(sprintf("data/bart_models/bart_fits_%s.RDS", samp_id))

# Get % phi for population based on propensity model
samp_propensities = pbart_posterior(fits$propensity_fit,

newdata = samp,
mc.cores = 10)

samp_mins = map_dbl(samp_propensities, min)
pop_propensities = pbart_posterior(fits$propensity_fit,

newdata = cps,
mc.cores = 10)

pop_phi = map2_dfc(pop_propensities, samp_mins, ~ .x < .y) %>%
colMeans()

tibble(pct_common_support = pop_phi,
samp_min_pi = samp_mins)

}) %>% bind_rows(.id = "sample_id")

saveRDS(pop_common_support, "data/posteriors/common_support.RDS")
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