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Abstract

We consider an approximation scheme for solving Markov Decision Processes (MDPs) with

countable state space, finite action space, and bounded rewards that uses an approximate solu-

tion of a fixed finite-horizon sub-MDP of a given infinite-horizon MDP to create a stationary

policy, which we call “approximate receding horizon control”. We first analyze the performance

of the approximate receding horizon control for infinite-horizon average reward under an ergod-

icity assumption, which also generalizes the result obtained by White [36]. We then study two

examples of the approximate receding horizon control via lower bounds to the exact solution to

the sub-MDP. The first control policy is based on a finite-horizon approximation of Howard’s

policy improvement of a single policy and the second policy is based on a generalization of the

single policy improvement for multiple policies. Along the study, we also provide a simple alter-

native proof on the policy improvement for countable state space. We finally discuss practical

implementations of these schemes via simulation.
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1 Introduction

We consider an approximation scheme for solving Markov Decision Processes (MDPs) with count-

able state space, finite action space, and bounded rewards. The scheme, which we call “approximate

receding horizon control”, uses an approximate solution of a fixed finite-horizon sub-MDP of a given

infinite-horizon MDP to create a stationary policy to solve the infinite-horizon MDP.

The idea of receding horizon control has been applied to many interesting problems in various

contexts to solve the problems in an “on-line” manner, where in this case we obtain an optimal

exact solution with respect to a “small” moving horizon at each decision time and apply the

solution to the system. For example, it has been applied to planning problems (e.g., inventory

control) that can be modeled as linear programs [14] and that can be represented as a shortest path

problem in an acyclic network (see [13] for example problems and references therein), a routing

problem in a communication network by formulating the problem as a nonlinear optimal control

problem [2], dynamic games [8], aircraft tracking [31], the stabilization of nonlinear time-varying

systems [21, 26, 28] in the model predictive control literature, and macroplanning in economics [20],

etc. The intuition behind the approach is that if the horizon is “long” enough to obtain a stationary

behavior of the system, the moving horizon control would have good performance. Indeed, for

MDPs, Hernández-Lerma and Lasserre [16] showed that the value of the receding horizon control

converges geometrically to the optimal value, uniformly in the initial state, as the value of the

moving horizon increases. For infinite-horizon discounted reward case, it converges geometrically

fast with a given discounting factor in (0,1), and for infinite-horizon average reward case, it converges

geometrically fast with a given “ergodicity coefficient” in (0,1). Furthermore, it has been shown

that there always exists a minimal finite horizon H such that the receding H-horizon control

prescribes exactly the same action as the policy that achieves the optimal infinite-horizon rewards

at every state (see [6] for the discounted case, and [17] for the average reward case with ergodicity

assumptions).

Unfortunately, a large state-space size makes it almost impossible to solve the MDPs in practice

even with a relatively small receding horizon. Motivated by this, we first analyze the performance

of the approximate receding horizon control for the infinite-horizon average reward. The analysis

also generalizes the result obtained by White [36] for finite state space with a unichain assumption.

We show that the infinite-horizon average reward obtained by following the approximate receding

horizon control is bounded by the error due to the finite-horizon approximation that approaches

to zero geometrically fast with a given ergodicity coefficient and the error due to the approxima-

tion of the optimal finite-horizon value so that if the receding horizon is “long” enough and the

approximation of the optimal finite-horizon value is good, the performance bound will be relatively

small.

We then study two examples of approximate receding horizon control via lower bounds to the
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exact solution of the sub-MDP problem of the given infinite-horizon MDP, where both examples

can be implemented easily by Monte-Carlo simulation. The first control policy is based on a finite-

horizon approximation of Howard’s policy improvement of a single policy and the second policy

is based on a generalization of the single policy improvement for multiple policies. In the study

of the first policy, we provide a simple alternative proof of the policy improvement principle for

countable state space, which is rather cumbersome to prove (see, e.g., Chapter 7 in [12] for a

proof via the vanishing discount approach for finite state space or [27] for general state space).

The Monte-Carlo simulation implementation of the first policy is an extension of an “on-line”

simulation method, called “rollout”, proposed by Bertsekas and Castanon [4] to solve MDPs for

the total reward criterion.

The rollout approach is promising if we have a good base policy. Indeed, several recent works

reported successful results in this direction (see Subsection 4.1 of the present paper for a brief

survey). Suppose we have multiple base policies available instead of a single base policy. Because

we cannot predict each policy’s performance easily in advance, it is difficult to select which policy

to rollout or to use to be improved upon. Furthermore, it is often true that the available policies are

distinct in that each policy’s performance is good in different sample paths, in which case one wish

to combine the multiply available policies to create a single control policy. To this end, we consider

a generalization of the single policy improvement for multiple policies and study its properties. One

of the properties of the generalized policy improvement principle is that if there exists a “best”

policy that achieves both the best bias and the best gain among the multiple policies, the generalized

policy improvement method improves the infinite-horizon average reward of the best policy in the

set. As in the rollout policy case, we also approximate the generalized policy improvement principle

in a finite horizon sense, generalizing the rollout policy. We call the resulting policy as “parallel

rollout”. We analyze the performances of the two example policies relative to the policies being

rolled out within the framework of the approximate receding horizon approach.

All of the analysis in this paper is based on an “ergodicity” assumption on a given MDP as in the

work of Hernández-Lerma and Lasserre [16]. This assumption allows us to discuss the relationship

between the value of the receding horizon and the performance of the approximate receding horizon

approach. We note that analysis work along this line for the cases of infinite-horizon discounted

reward and total reward are reported in [10].

This paper is organized as follows. In Section 2, we formally introduce Markov decision processes

and in Section 3, we define the (approximate) receding horizon control and analyze its performance.

We then provide two examples of the approximate receding horizon control and analyze their

performances in Section 4. We conclude the present paper in Section 5.
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2 Markov Decision Process

In this section, we present the essentials of the MDPs we consider and the properties we use in the

present paper. For a more substantial introduction, see Puterman’s book [33] or the survey paper

by Arapostathis et al. [1]. We consider an MDP with a countable state set X, a finite action set A,

a nonnegative and bounded reward function R such that R : X × A → R+, and a state transition

function P that maps the state and action pair to a probability distribution over X. We will denote

the probability of transitioning to state y ∈ X from state x ∈ X by taking an action a ∈ A at x as

p(y|x, a). For simplicity, we assume that every action is admissible at each state.

Define a stationary policy π as a function π : X → A and denote Π as the set of all possible sta-

tionary policies. Given an initial state x, we define the infinite-horizon average reward of following

a policy π ∈ Π as

Jπ
∞(x) := lim inf

H→∞
1
H

E

{
H−1∑
t=0

R(xt, π(xt))
∣∣∣∣x0 = x

}
, (1)

where xt is a random variable denoting the state at time t following the policy π and we use the

subscript ∞ to emphasize the infinite horizon. We seek an optimal policy that achieves

J∗
∞(x) = sup

π∈Π
Jπ
∞(x), x ∈ X.

Because there might not always exist such an optimal policy in Π that achieves J∗∞(x) [1, 12, 33],

we impose an ergodicity assumption throughout the present paper (see, e.g., the page 56 in [18] for

stronger assumptions) stated as follows:

Assumption 2.1 Define K := {(x, a)|x ∈ X,a ∈ A} and p(y|k) := p(y|x, a) for all (x, a) ∈ K.

There exists a positive number α < 1 such that

sup
k,k′∈K

∑
y∈X

|p(y|k) − p(y|k′)| ≤ 2α.

The above ergodicity assumption implies that there always exists an optimal policy π∗ in Π,

and that for any policy π ∈ Π, Jπ∞(x) is independent of the starting state x, from which we write

Jπ∞ omitting x, and that there exists a bounded measurable function hπ on X and a constant Jπ∞
such that for all x ∈ X,

Jπ
∞ + hπ(x) = R(x, π(x)) +

∑
y∈X

p(y|x, π(x))hπ(y). (2)

We refer to Eq. (2) as the Poisson’s equation with respect to π.

Let B(X) be the space of real-valued bounded measurable functions on X endowed with the

supremum norm ‖V ‖ = supx |V (x)| for V ∈ B(X). We define an operator T : B(X) → B(X) as
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T (V )(x) = max
a∈A


R(x, a) +

∑
y∈X

p(y|x, a)V (y)


 , V ∈ B(X), x ∈ X (3)

and let {V ∗
n } be the sequence of value iteration functions V ∗

n := T (V ∗
n−1) where n = 1, 2, ... and we

assume that V ∗
0 (x) = 0 for all x ∈ X. V ∗

n might not converge to a function in B(X) as n → ∞.

However, an appropriate transformation of V ∗
n does converge. We state this fact by the following

theorem (see Theorem 4.8 (a) in [18]).

Theorem 2.1 Assume that Assumption 2.1 holds. For all n ≥ 0,

− ‖R‖
1 − α

· αn ≤ inf
x
|V ∗

n+1(x) − V ∗
n (x)| − J∗

∞

≤ sup
x

|V ∗
n+1(x) − V ∗

n (x)| − J∗
∞ ≤ ‖R‖

1 − α
· αn.

Let us define an operator Tπ : B(X) → B(X) for π ∈ Π as

Tπ(V π)(x) = R(x, π(x)) +
∑
y∈X

p(y|x, π(x))V π(y), V π ∈ B(X), x ∈ X

and let {V π
n } be the sequence of value iteration functions with respect to π, V π

n := Tπ(V π
n−1) where

n = 1, 2, ... and V π
0 (x) = 0 for all x ∈ X. We can see that V π

n is the total reward over horizon of

length n following the policy π, i.e, V π
n (x) = E{∑n−1

t=0 R(xt, π(xt))|x0 = x}. The above theorem

immediately implies the following corollary:

Corollary 2.1 Assume that Assumption 2.1 holds. For all n ≥ 0, and any π ∈ Π, and all x ∈ X,

− ‖R‖
1 − α

· αn ≤ V π
n+1(x) − V π

n (x) − Jπ
∞ ≤ ‖R‖

1 − α
· αn.

3 Receding Horizon Control

We define the receding H-horizon control policy πH ∈ Π with H < ∞ as a policy that satisfies for

all x ∈ X,

T (V ∗
H−1)(x) = TπH

(V ∗
H−1)(x).

It has been shown that there always exists a minimal finite-horizon H such that πH(x) = π∗(x)

for all x ∈ X, where π∗ is the policy that achieves supπ∈Π(Jπ∞) under Assumption 2.1 [17]. In

addition to the existence of such a finite horizon, the paper [17] provides an algorithm (stopping

rule) to detect such a horizon in a finite number of time steps. Furthermore, Hernández-Lerma and

Lasserre [16] showed that

0 ≤ J∗
∞ − JπH∞ ≤ ‖R‖

1 − α
· αH−1,
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where we can see that the performance of the receding horizon control policy provides a good

approximation for the optimal infinite-horizon average reward and the error approaches zero ge-

ometrically with α. Unfortunately, obtaining the true H-horizon optimal value is often difficult,

e.g., due to the large state space (see, e.g., [29] for a discussion of the complexity of solving finite-

horizon MDPs). Motivated by this, we study an approximate receding horizon control that uses

an approximate value function as an approximate solution of V ∗
H−1 for some H < ∞.

3.1 Analysis of approximate receding horizon control

We start with a general result that we will use throughout the present paper.

Lemma 3.1 Assume that Assumption 2.1 holds. Given V ∈ B(X), consider a policy πV ∈ Π such

that

T (V )(x) = TπV (V )(x) for all x ∈ X.

Then a stationary distribution P πV
over X exists and JπV

∞ =
∑

y∈X [T (V )(y) − V (y)]P πV
(y).

Proof: The proof here is similar to that on the page 65 in [18]. We provide the proof of this

lemma for completeness. From Remark 3.2 (b) in [18], for any stationary policy π ∈ Π, there

is a unique stationary probability distribution P π satisfying the invariance property of P π(x) =∑
y∈X p(x|y, π(y))P π(y). From the definition of πV ,

T (V )(x) = R(x, πV (x)) +
∑
y∈X

p(y|x, πV (x))V (y).

Now summing both sides with respect to the stationary distribution P πV
,∑

x∈X

T (V )(x)P πV
(x) =

∑
x∈X

R(x, πV (x))P πV
(x) +

∑
x∈X

∑
y∈X

p(y|x, πV (x))V (y)P πV
(x).

The first term on the right side is equal to JπV

∞ by Lemma 3.3 (b.ii) in [18], and the second term

on the right side is equal to
∑

y∈X V (y)P πV
(y) from the invariance property. Rearranging terms

yields the desired result.

We define the approximate H-horizon control policy πV as a policy such that for a given

V ∈ B(X) such that for some n ≥ 0, |V ∗
n (x) − V (x)| ≤ ε for all x ∈ X, it satisfies

T (V )(x) = TπV (V )(x), x ∈ X.

We now state and prove one of our main theorems.

Theorem 3.1 Assume that Assumption 2.1 holds. Given V ∈ B(X) such that for some n ≥ 0,

|V ∗
n (x) − V (x)| ≤ ε for all x in X, consider a policy πV such that for all x ∈ X, T (V )(x) =

TπV (V )(x). Then,

0 ≤ J∗
∞ − JπV

∞ ≤ ‖R‖
1 − α

· αn + 2ε.



Approximate receding horizon approach for MDPs 7

Proof: We first prove that if |V ∗
n (x)− V (x)| ≤ ε for all x ∈ X, then |T (V ∗

n )(x)− T (V )(x)| ≤ ε for

all x ∈ X. This simply follows from

|T (V ∗
n )(x) − T (V )(x)| ≤ max

a∈A

∣∣∣∣∣∣
∑
y∈X

[V ∗
n (y) − V (y)]p(y|x, a)

∣∣∣∣∣∣ ≤ sup
x

|V ∗
n (x) − V (x)|,

where the first inequality follows from Hinderer’s proposition (page 123 in [18]). Therefore, we have

that

T (V ∗
n )(x) − V ∗

n (x) − 2ε ≤ T (V )(x) − V (x) ≤ T (V ∗
n )(x) − V ∗

n (x) + 2ε

for all x ∈ X with simple algebra. Now by Lemma 3.1, Jπ∞ =
∑

y∈X [T (V )(y) − V (y)]P π(y). It

follows that

Jπ
∞ =

∑
y∈X

[T (V )(y) − V (y)]P π(y) ≤
∑
y∈X

[T (V ∗
n )(y) − V ∗

n (y)]P π(y) + 2ε

≤ sup
x

|T (V ∗
n )(x) − V ∗

n (x)| + 2ε ≤ J∗
∞ +

‖R‖
1 − α

· αn + 2ε,

where the last inequality is from Theorem 2.1. The lower bound is trivial by the definition of J∗∞.

We remark that the infinite-horizon average reward of following the approximate receding hori-

zon control via V is bounded by a term due to the finite-horizon approximation and a term due to

the approximation of V , so that if the receding horizon is “long” enough and the approximation by

V is good, the performance bound will be relatively small. If ε = 0, the result coincides with the

one obtained in [16]. As n → ∞, the error approaches 2ε, which coincides with the result obtained

by White [36] for finite state space with a unichain assumption. Furthermore, the above result can

be extended to general state space (Borel space) with appropriate measure-theoretic arguments.

4 Examples of Approximate Receding Horizon Control

4.1 Rollout—finite-horizon approximation of Howard’s policy improvement

Given a policy π ∈ Π, suppose we solved the Poisson’s equation with respect to π given by Eq. (2):

Jπ
∞ + hπ(x) = Tπ(hπ)(x), x ∈ X,

obtaining a function hπ and Jπ∞ for π. Define a new policy π̄ such that for all x ∈ X,

Tπ̄(hπ)(x) = T (hπ)(x).

That is, for all x ∈ X,

π̄(x) ∈ arg max
a∈A


R(x, a) +

∑
y∈X

p(y|x, a)hπ(y)


 . (4)
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It is well-known that π̄ improves π in the sense that J π̄∞ ≥ Jπ∞ under an appropriate condition for

a given MDP, and it is called Howard’s policy improvement. See, e.g., Chapter 7 in [12] for a proof

with a finite state space under an irreducibility condition via the vanishing discount approach.

For general state space, see, e.g., [27]. In general, the proof of the policy improvement for the

average reward case is not straightforward. We provide here a simple alternative proof under

Assumption 2.1:

J π̄
∞ =

∑
x

[T (hπ)(x) − hπ(x)]P π̄(x) from Lemma 3.1

≥
∑

x

[Tπ(hπ)(x) − hπ(x)]P π̄(x)

=
∑

x

[Jπ
∞ + hπ(x) − hπ(x)]P π̄(x)

= Jπ
∞.

Unfortunately, obtaining the hπ-function is often very difficult, so we consider an approximation

scheme that is implementable in practice via Monte-Carlo simulation. As a finite approximation

of the policy improvement scheme, we replace hπ by the finite-horizon value function of the policy

π. The value of following the given policy π can be simply estimated by a sample mean over a

set of sample-paths generated by Monte-Carlo simulation. The very idea of simulating a given

(heuristic) policy to obtain an (approximately) improved policy originated from Tesauro’s work in

backgammon [35] and recently, Bertsekas and Castanon extended the idea into an on-line policy

improvement scheme called “rollout” to solve finite-horizon MDPs with total reward criterion. It is

an on-line scheme in the sense of “planning”. That is, at each decision time t, we rollout the given

base policy to estimate the utility (called Q-value) of taking an initial action at state xt and take

the action with the highest utility, which creates effectively an improved policy of the base policy

in an on-line manner.

Formally, we define the H-horizon rollout policy πro,H ∈ Π with a base policy π and H < ∞ as

the policy:

πro,H(x) ∈ arg max
a∈A


R(x, a) +

∑
y∈X

p(y|x, a)V π
H−1(y)


 , x ∈ X. (5)

Note that V π
H−1(x) is a lower bound to the V ∗

H−1(x) for all x ∈ X. From the result of Theo-

rem 3.1, if V π
H−1 is a good approximation of V ∗

H−1, the resulting performance will be close to that

of the true receding horizon control policy. Note also that the finite-horizon approximation of the

policy improvement does not use a function that approximates hπ directly but we use an approxi-

mation function for V ∗
H−1(x). We will discuss this issue in the next subsection in more detail. The

question is how the H-horizon rollout policy performs relatively to the policy π that it rolls out in

terms of infinite-horizon average reward.
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Theorem 4.1 Assume that Assumption 2.1 holds. Consider the H-horizon rollout policy πro,H

with a base policy π and H < ∞. Then

J
πro,H∞ ≥ Jπ

∞ − ‖R‖
1 − α

· αH−1.

Proof:

J
πro,H∞ =

∑
x

[T (V π
H−1)(x) − V π

H−1(x)]P πro,H (x) from Lemma 3.1

≥ inf
x

(T (V π
H−1)(x) − V π

H−1(x))

≥ inf
x

(V π
H(x) − V π

H−1(x)) by the definition of T -operator

≥ Jπ
∞ − ‖R‖

1 − α
· αH−1 from Corollary 2.1.

The above result immediately allows us to obtain the value of H to have a desired approximate

on-line policy improvement performance. That is, given any ε > 0, if we let αH−1 · ‖R‖
1−α ≤ ε so that

H ≥ 1 + logα
ε(1−α)
‖R‖ , then J

πro,H∞ ≥ Jπ∞ − ε.

Several papers for MDP problems (with their related cost criteria) based on a one-step policy

improvement idea have reported successful results. For example, Bertsekas and Castanon studied

stochastic scheduling problems [4], Secomandi [34] applied the rollout technique combined with

neuro-dynamic programming [5] to a vehicle routing problem, Ott and Krishnan [30] and Kolarov

and Hui [22] studied network routing problems, Bhulai and Koole [7] consider a multi-server queue-

ing problem, and Koole and Nain [24] consider a two-class single-server queueing model under a

preemptive priority rule. In particular, [7] and [24] obtained explicit form expressions for the value

function of a fixed threshold policy, which plays the role of the heuristic base policy, and showed

numerically that the rollout policy generated from the threshold policy behaves almost optimally.

Chang et al. [10] also empirically showed the rollout of a fixed threshold policy (Droptail) per-

forms well for a buffer management problem. Koole [23] also derived the deviation matrix of the

M/M/1/∞ and M/M/1/N queue, which is used for computing the bias vector for a particular

choice of cost function and a certain base policy, from which the rollout policy of the base policy

is generated. Even though the value function of a particular policy can be obtained explicitly for

relatively simple cases from problem structure analysis, calculating the exact value function of a

particular policy is in general very difficult in practice, in which case we apply the receding roll-

out policy via simulation. If we have a good heuristic policy, this approach often provides good

performance, improving the performance of the given heuristic policy (see, e.g., [10] for queueing

problems regarding the performance of the receding horizon rollout policy).
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4.2 Parallel rollout

The rollout approach is promising if we have a good base policy, because the performance of the

rollout policy is no worse than that of the base policy. Note that in practice, what we are really

interested in is the ranking of actions, not the degree of approximation. Therefore, as long as the

rollout policy preserves the true ranking of actions well, the resulting policy will perform fairly well.

However, when we have multiple policies available, because we cannot predict the performance of

each policy in advance, selecting a particular single base policy to be rolled out is not an easy task.

Furthermore, for some cases, each base policy available is good for different system trajectories.

(See, for example, a multiclass scheduling problem with deadlines discussed in [9] where the static

priority policy and the earliest deadline first policy perform optimally for different paths of states.)

When this is the case, we wish to combine these base policies dynamically in an on-line manner

to generate a single policy which adapts automatically to different trajectories of the system, in

addition to alleviating the difficulty of choosing a single base policy to be rolled out.

To this end, we first study a generalization of Howard’s policy improvement scheme for multiple

policies and then consider a finite-horizon approximation of the generalized scheme.

Given a finite set Λ ⊂ Π, suppose that for each π ∈ Λ, we solved the Poisson’s equation with

respect to π given by Eq. (2), obtaining a function hπ and Jπ∞ for π.

Note that the function hπ that satisfies the Poisson’s equation with respect to π is not necessarily

unique [1, 33]. Under Assumption 2.1, the following function known as the “relative value function”

lim
γ→1−

(V π
γ (x) − V π

γ (0)),

where 0 is an arbitrarily fixed state in X and V π
γ (x) is the infinite-horizon discounted reward of

following π, starting with state x, given by

E

[ ∞∑
t=0

γtR(xt, π(xt))
∣∣∣∣x0 = x

]
,

solves the Poisson equation with respect to π [18]. Another important hπ that satisfies the Poisson’s

equation with respect to π is the bias. If there exists a state 0 ∈ X that is reachable from any state

in X in a finite number of time steps by following any fixed stationary policy, then the function

gπ ∈ B(X) defined by

gπ(x) = lim
n→∞(V π

n (x) − nJπ
∞), x ∈ X,

satisfies the Poisson’s equation with respect to π and is called the bias [27]. Therefore, gπ can be

taken as hπ. If X is finite and the given MDP is unichain and if we add the condition of∑
x∈X

P π(x)hπ(x) = 0

to the Poisson’s equation with respect to π, the bias is the unique solution to the Poisson’s equation

with respect to π (see, e.g., [1, 12, 25]). For the relationship between relative value function and bias
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and the computation of a bias-optimal policy, see, e.g., [25] for finite state and action spaces with

a unichain assumption. Our discussion in this section will focus on the bias but can be extended

to the relative value function.

Define a value function Φ ∈ B(X) such that

Φ(x) = max
π∈Λ

hπ(x)

and define a new policy π̂ such that for all x ∈ X,

Tπ̂(Φ)(x) = T (Φ)(x)

and call π̂ a “parallel rollout” policy. That is, for all x ∈ X,

π̂(x) ∈ argmax
a∈A


R(x, a) +

∑
y∈X

p(y|x, a)max
π∈Λ

hπ(y)


 . (6)

Let ∆ = argmaxπ∈Λ Jπ∞. We say that δ is a gain-optimal policy in Λ if δ ∈ ∆, and δ is a

bias-optimal policy in Λ if δ ∈ ∆ and hδ(x) ≥ maxπ∈Λ hπ(x) for all x ∈ X.

Theorem 4.2 Given a finite set Λ ⊂ Π, suppose that for each π ∈ Λ, hπ satisfies the Poisson’s

equation with respect to π given by Eq. (2):

Jπ
∞ + hπ(x) = Tπ(hπ)(x), x ∈ X.

Consider π̂ defined in Eq. (6).

a) If there exists a bias-optimal policy in Λ, then

J π̂
∞ ≥ max

π∈Λ
Jπ
∞.

For any gain-optimal policy δ in Λ,

J π̂
∞ ≥ max

π∈Λ
Jπ
∞ − sup

x∈X

(
max
π∈Λ

(hπ(x)) − hδ(x)
)

.

b)

J π̂
∞ ≥

∑
x∈X

Jargmaxπ∈Λ(hπ(x))P π̂(x).

We provide the proof of this theorem first before we discuss how these bounds can be interpreted.
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Proof: Observe that for any x ∈ X,

T (Φ)(x) = max
a∈A


R(x, a) +

∑
y∈X

p(y|x, a)Φ(y)




≥ R(x, π(x)) +
∑
y∈X

p(y|x, π(x))Φ(y) for any π ∈ Λ

≥ R(x, π(x)) +
∑
y∈X

p(y|x, π(x))hπ(y) from the definition of Φ

= Jπ
∞ + hπ(x).

Because the above inequality holds for any π ∈ Λ, for all x ∈ X,

T (Φ)(x) ≥ max
π∈Λ

(Jπ
∞ + hπ(x)).

Now,

J π̂
∞ =

∑
x∈X

[T (Φ)(x) − Φ(x)]P π̂(x) from Lemma 3.1

≥
∑
x∈X

[max
π∈Λ

(Jπ
∞ + hπ(x)) − max

π∈Λ
hπ(x)]P π̂(x) by the previous observation (7)

For part a), selecting a gain-optimal policy δ ∈ Λ that achieves maxπ∈Λ(Jπ∞) yields

J π̂
∞ ≥

∑
x∈X

[Jδ
∞ + hδ(x) − max

π∈Λ
hπ(x)]P π̂(x)

≥ Jδ
∞ +

∑
x∈X

[hδ(x) − max
π∈Λ

hπ(x)]P π̂(x)

≥ max
π∈Λ

Jπ
∞ − sup

x

(
max
π∈Λ

hπ(x) − hδ(x)
)

.

If δ is a bias-optimal policy in Λ,
∑

x∈X [hδ(x) − maxπ∈Λ hπ(x)]P π̂(x) ≥ 0. Thus for this case,

J π̂
∞ ≥ max

π∈Λ
Jπ
∞.

For part b), at each x, selecting a policy in Λ that achieves maxπ∈Λ(hπ(x)) in Eq. (7) yields the

desired result with simple algebra.

An interpretation of the above theorem is as follows. Part a) of Theorem 4.2 states that the

parallel rollout policy improves the infinite-horizon average reward of a gain-optimal policy in Λ

and the error is bounded by the maximal difference of the biases achieved by the gain-optimal

policy and the policies in Λ, and it is guaranteed that the the parallel rollout policy improves the

gain of any policy in Λ if Λ contains at least one bias-optimal policy. Part b) states that the gain

of the parallel rollout policy is no worse than the average gain of the best policy that achieves the
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maximal bias value at each state, where the average is taken over the stationary distribution of π̂

(it can be thought as an initial distribution over X). That is,

∑
x∈X

(
J π̂
∞ − J

argmaxπ∈Λ hπ(x)
∞

)
P π̂(x) ≥ 0.

We now consider a finite-horizon approximation of the parallel rollout control policy within the

framework of the approximate receding horizon control. The direct generalization of the rollout

policy defined in the previous subsection is to replace maxπ∈Λ hπ(x), x ∈ X by the maximum of

the values of the policies in Λ for a finite horizon at the state x. Formally, we define the H-horizon

parallel rollout policy πpr,H with a finite set Λ ⊂ Π of base policies in Π as

πpr,H(x) ∈ arg max
a∈A


R(x, a) +

∑
y∈X

p(y|x, a)max
π∈Λ

V π
H−1(y)


 , x ∈ X. (8)

We can first easily see that this is based on a more accurate lower bound of the optimal total

reward value than that of the H-horizon rollout policy and if supx∈X |maxπ∈Λ V π
H−1(x)−V ∗

H−1(x)| ≤
ε, by Theorem 3.1, the performance will be close to that of the true receding horizon approach. If

we view hπ as the relative value function or the bias, in the definitions of the rollout and parallel

rollout policies, we don’t directly estimate hπ. One can use a finite-horizon approximation of hπ

directly. For example, we could use V π
H−1(x)−V π

H−1(0) with a fixed state 0 ∈ X instead of V π
H−1(x)

for an approximate value of the relative value function. The result of Theorem 4.1 still holds with

this replacement via Corollary 2.1 with the simple observation that

J
πro,H∞ =

∑
x

[T (V π
H−1)(x) − V π

H−1(0) − V π
H−1(x) + V π

H−1(0)]P
πro,H (x).

The main reasons that we use the total reward value, not the relative total reward value or the

bias, are twofold. First, we want our approximation scheme to be within our framework of the

approximate receding horizon control, which allows us to compare the performance of the (parallel)

rollout policy with the optimal infinite-horizon average reward. Second, we want to keep the spirit

of the (parallel) rollout policy defined for the discounted reward criterion. (For the infinite-horizon

discounted criterion, we simply replace the total reward of following a policy in the definition of

the (parallel) rollout policy by the total discounted reward. See [9, 10].)

We analyze below the performance of the H-horizon parallel rollout policy compared with the

infinite-horizon average rewards obtained by policies in Λ. To this end, for any π ∈ Π, define

Jπ
n (x) = V π

n (x)
n for all x ∈ X and n = 1, 2, .... That is, this is the n-horizon approximation of the

infinite-horizon average reward. With a similar argument as Platzman’s given in Section 3.3 in [32],

we can show that Jπ
n (x) converges, uniformly in x, as O(n−1), to Jπ∞, n = 1, 2, ....

Theorem 4.3 Assume that Assumption 2.1 holds. Consider the H-horizon parallel rollout policy
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πpr,H with a finite set Λ ⊂ Π and H < ∞. Then

J
πpr,H∞ ≥

∑
x∈X

J
arg maxπ∈Λ Jπ

H−1(x)
∞ P πpr,H (x) − ‖R‖

1 − α
· αH−1.

Proof: From Corollary 2.1, for all x ∈ X,

V π
H(x) − V π

H−1(x) ≥ Jπ
∞ − ‖R‖

1 − α
· αH−1.

Define Φ ∈ B(X) such that Φ(x) = maxπ∈Λ V π
H−1(x) for all x ∈ X. Observe that for all x ∈ X,

T (Φ)(x) = max
a∈A


R(x, a) +

∑
y∈X

p(y|x, a)Φ(y)




≥ R(x, π(x)) +
∑
y∈X

p(y|x, π(x))Φ(y) for any π ∈ Λ

≥ R(x, π(x)) +
∑
y∈X

p(y|x, π(x))V π
H−1(y) = V π

H(x).

Therefore, for all x ∈ X,

T (Φ)(x) ≥ max
π∈Λ

V π
H(x). (9)

Now,

J
πpr,H∞ =

∑
x

[T (Φ)(x) − Φ(x)]P πpr,H (x) by Lemma 3.1

≥
∑

x

[max
π∈Λ

V π
H(x) − max

π∈Λ
V π

H−1(x)]P πpr,H (x) by Eq. (9)

≥
∑

x

[V
argmaxπ∈Λ Jπ

H−1(x)

H (x) − V
argmaxπ∈Λ Jπ

H−1(x)

H−1 (x)]P πpr,H (x)

≥
∑

x

J
arg maxπ∈Λ Jπ

H−1(x)
∞ P πpr,H (x) − ‖R‖

1 − α
· αH−1 by Corollary 2.1 .

As we increase H, the term with α will decrease geometrically fast in α and Jπ
H−1(x), x ∈ X

approaches Jπ∞ in O(H−1). An interpretation of this result is as follows. The infinite-horizon

average reward by following the H-horizon parallel rollout policy is no worse than that by following

the best policy in Λ that achieves the maximum H-horizon average reward associated with a

starting state x among the policies in Λ, where the distribution of the starting state is given by the

stationary distribution of following the parallel rollout policy.

We conclude this section with a brief discussion of some intuition behind the parallel rollout

policy. Consider a policy φH that selects the action given by the policy π in Λ that has the highest

Jπ
H(x) estimate at the current state x. That is, at state x, φH takes an action given by

arg max
π∈Λ

(Jπ
H(x)) (x).
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Note that this policy will converge to the policy arg maxπ∈Λ Jπ∞ in O(H−1). However, this receding

horizon policy, φH , selects only the action prescribed by π ∈ Λ. In other words, the policy does

not give enough emphasis and freedom in the evaluation to the initial action (this drawback has

been empirically shown in [10]). Therefore, we conjecture informally that this policy is generally

suboptimal even though we can expect that φH is much more uniformly reasonable (across the state

space) than any single base policy in Λ. On the other hand, the receding horizon rollout policy

evaluates each possible initial action based on one-step lookahead relative to a base policy being

improved. We can view the parallel rollout technique as a method of capturing the spirit of rolling

out φH with a low cost (see, also [10] on the similar discussion for discounted reward criterion).

5 Concluding Remarks

When we simulate a base policy by Monte-Carlo simulation, using different sets of random number

sequences (different sample-paths) across actions increases the variance in the utility (Q-value)

measure. Therefore, we suggest using the same set of random number sequences across actions.

This has the same flavor as the differential training method [3] and common random number

simulation in the discrete event systems literature [19].

There are several papers in the literature regarding the simulation-based policy iteration method

where the policy evaluation step is done via simulation. Rather than estimating a finite-horizon

total-reward value of a policy, those papers consider approximating hπ directly. For example,

Cooper et al. [11] use a sampling method called “coupling-from-the-past” that requires obtaining

a sample from the stationary distribution of the (aperiodic) Markov chain generated by a fixed

policy and He et al. [15] use a temporal-difference learning scheme in order to estimate the bias of

the policy, where both papers are under the finite state and action space constraint and a unichain

assumption. On the other hand, Bertsekas and Tsitsiklis [5] discuss estimating hπ defined as the

relative value function via Monte-Carlo simulation.
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