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Previous studies have mainly focused on investigating one source of local 

item dependence (LID). However, in some cases, such as scenario-based science 

assessments, LID might be caused by two possible sources simultaneously. In this 

study, such kind of LID that is caused by two factors simultaneously is named as dual 

local item dependence (DLID).  

This study proposed a cross-classified model to account for DLID. Two 

simulation studies were conducted with the primary purpose of evaluating the 

performance of the proposed cross-classified model. Data sets with DLID were 

simulated with both testlet effects and content clustering effects. The second purpose 

of this study was to investigate the potential factors affecting the need to use the more 

complex cross-classified modeling of DLID over the simplified multilevel modeling 

of LID by ignoring cross-classification structure. For both simulation studies, five 



  

factors were manipulated, including sample size, number of testlets, testlet length, 

magnitude of the testlet effects represented by standard deviations (SDs), and 

magnitude of the content clustering effects represented by SDs. The difference 

between the two simulation studies was that, simulation study 1 constrained the SDs 

of the testlet effects and content clustering effects as the same across testlets and 

content areas, respectively; simulation study 2 released this constraint by having 

mixed SDs of the testlet effects and mixed SDs of the content clustering effects.  

Results of both simulation studies indicated that the proposed cross-classified 

model yielded more accurate parameter recovery, including item difficulty, persons’ 

ability, and random effects’ SD parameters with smaller estimation errors than the 

two multilevel models and the Rasch model which ignored one or both item 

clustering effects.  The two manipulated variables, the magnitude of the testlet effects 

and the magnitude of the content clustering effects, determined the necessity of using 

the more complex cross-classified model over the simplified multilevel models and 

the Rasch model: the larger the magnitude of the testlet effects and the content 

clustering effects, the more necessary to use the proposed cross-classified model. 

Limitations are discussed and suggestions for future research are presented at the end.  
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Chapter 1: Introduction 

This chapter introduces some background information about the formulation 

and development of the proposed model in this study. It describes the research 

purpose and research questions, and addresses the significance of the proposed study.  

Background 

Item response theory (IRT) models are broadly used in social sciences, 

especially the field of education, to measure persons’ latent trait or ability based on 

item responses. The probability of answering an item correctly is modeled as a 

mathematical function of the person’s ability and the item parameters. The main 

advantage of using IRT models over classical test theories (CTT) is the invariance 

property of IRT item/person parameters (Hambleton & Swaminathan, 1985; 

Embretson & Reise, 2000).  

However, IRT requires stronger assumptions than CTT. One of the underlying 

fundamental assumptions is local item independence, which means that the 

probability of responding to one item correctly does not influence the probability of 

answering other items correctly controlling for ability (Hambleton & Swaminathan, 

1985; Embretson & Reise, 2000). Previous studies indicated that ignoring the 

violation of local item independence assumption might have negative impacts, e.g. 

inaccurate estimation of both item and person parameters, over-estimation of test 

reliability, and equating errors (e.g., Ackerman, 1987; Chen & Thissen, 1997; Sireci, 

Thissen, & Wainer, 1991; Wainer, 1995; Wainer & Thissen, 1996; Tuerlinckx & De 

Boeck, 2001; Yen, 1984).  
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The violation of local item independence assumption, also called local item 

dependence (LID) problem, can be caused by a variety of factors. Thissen, Bender, 

Chen, Hayashi, and Wiesen (1992) classified LID into two categories based on the 

causes of LID: one is underlying local dependence (ULD) and the other is surface 

local dependence (SLD). The former category, ULD, mainly refers to LID where 

items share the same stimulus; for example, in reading tests, some items share the 

same reading passage. The second category, SLD, mainly refers to the similarity in 

item responses caused by speededness or content similarity; for example, examinees 

might omit some items at the end of a long test, then examinees’ responses to these 

omitted items are similar.  

Many current standardized educational tests contain items based on a common 

stimulus. Such a cluster of items that share a common stimulus is often referred to as 

a testlet (e.g., Thissen, Steinberg, & Mooney, 1989; Wainer & Kiely, 1987). Several 

response models have been proposed to account for LID within a testlet. Lu (2010) 

divided these models into two categories: one category is modeling the testlet effect 

as a second dimension (e.g., Reckase, 1997), and the other category is adding a 

random variable into a standard IRT model to account for the testlet effect, like the 

Rasch testlet model (Wang & Wilson, 2005), the two-parameter logistic testlet model 

(Bradlow, Wainer, & Wang, 1999), and the three-parameter logistic testlet model 

(Wainer, Bradlow, & Du, 2000).  

Over the past two decades or so there has been an increasing interest in fitting 

multilevel/hierarchical models to large datasets in various fields, including education, 

social and behavioral sciences, psychology, and medical studies (Raudenbush & 
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Bryk, 2002). The multilevel modeling technique has attracted the interest of many 

educational and social researchers for handling clustered/nested data structures. 

Specifically, studies (e.g. Adams, Wilson, & Wu, 1997; Beretvas & Williams, 2004; 

Fox & Glas, 2001; Kamata, 1998, 2001) have shown that regular IRT models could 

be formulated as hierarchical generalized linear models (HGLM), in which item are 

treated as nested within people. Those reparameterized IRT models in HGLM 

framework are referred to as multilevel measurement models (MMMs) (Beretvas & 

Kamata, 2005). 

From the multilevel modeling perspective, studies (Jiao, Wang, & Kamata, 

2005; Beretvas & Walker, 2012) have extended the MMMs to handle testlet-based 

LID (hereafter termed as MMMT). The hierarchy of the MMMT model proposed by 

Jiao et al. (2005) is that items (Level 1) are nested within testlets (Level 2), which are 

then nested within persons (Level 3). Different from Jiao et al.’s three-level MMMT 

model, Beretvas and Walker (2012) suggested instead a two-level MMMT model, in 

which item are nested within persons, the scores are modeled as a function of both 

item and testlet difficulties, and the testlet-specific dependencies are modeled using 

dummy-coded testlet indicator variables at Level-1.  

The advantages of using a multilevel parameterization of testlets are similar 

with the advantages of using multilevel models in statistics. The primary benefit is the 

capability to account for the dependences from higher levels of clustering. For 

example, Jiao, Kamata, Wang, and Jin (2012) proposed a four-level IRT model in 

which person clustering is also accounted for in addition to modeling the testlet-

specific LID. The second benefit is that variables could be added to the appropriate 
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levels to model impact, differential item functioning (DIF), and differential testlet 

functioning (DTF) (Beretvas & Walker, 2012).  

However, researchers have found that many data sets have more complex non-

hierarchical structures. One such complexity involves cross-classified data structures 

that cannot be handled by the hierarchical linear modeling techniques. In cross-

sectional studies, one illuminating example of cross-classified data structure is given 

by Goldstein (2003), i.e. students are cross-classified by the schools they attend and 

the neighborhoods they live in. In longitudinal studies, non-hierarchical structure 

occurs when, for example, students change schools overtime. In this case, occasions 

are cross-classified by students and schools. To model data with a cross-classified 

structure, cross-classified random effects modeling (CCREM) techniques have been 

developed to accommodate non-nested factors (Goldstein, 1986, 2003; Raudenbush, 

1993; Rasbash & Goldstein, 1994). 

Such non-strict hierarchical data structures could also exist in assessments. 

For example, in scenario-based science assessments, the test usually covers multiple 

subject areas, like physical science, life science, earth and space science, science and 

technology, science in personal and social perspectives, history and nature of science. 

In this case, LID could be caused by two sources simultaneously: one is the testlet 

effect from scenarios and the other is the content clustering effect due to coverage of 

multiple content areas. Appendix A shows an example of scenario-based science test 

with coverage of multiple content areas. In this study, such LID from two sources is 

referred to as dual local item dependence (DLID). 
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Since testlets (or scenarios) are not nested within content areas nor vice-versa, 

the two are said to be cross-classified. This study proposed a cross-classified 

measurement model to account for such DLID as existing in scenario-based science 

assessments. The structure of this proposed model is that items (Level 1) are cross-

classified by testlets and content areas (Level 2), and both testlets and content areas 

are nested within persons (Level 3).  

In addition to the scenario-based science assessment described above, another 

example of DLID is that LID might come from testlet and subskills, sub-content 

domains, content strands or clusters simultaneously. Take TOEFL Reading as an 

example, there are 3 to 5 passages (testlets) in the reading test, and each passage 

contains 12 to 14 multiple-choice questions, which generally belong to one of the 

following subskills: detail/fact, vocabulary, reference questions, and summary. 

Appendix B shows an example of a TOEFL Reading passage followed by several 

items assessing different skills. In this case, the structure of the item responses is that 

each item is cross-classified by testlets (passages) and skills, which are nested within 

persons. In short, it is common that LID might be caused by more than one single 

factor.  

Research Purpose 

The main objective of this study was to formulate a cross-classified model to 

deal with the DLID issue. It demonstrated that the proposed cross-classified modeling 

of DLID is algebraically equivalent with a constrained version of the testlet model 

accounting for two types of LID proposed by Jiao and her colleagues (Jiao, Wang, 

Wan, & Lu, 2009). Two simulation studies were conducted with the primary purpose 
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of evaluating the performance of the proposed cross-classified modeling of DLID. 

Data sets with DLID were simulated with both testlet effects and content clustering 

effects.  

Previous research in the field of statistics (Luo, 2007; Meyers, 2004; Meyers 

& Beretvas, 2006; Ren, 2011) carried out simulation studies to investigate the impact 

of ignoring cross-classification on model fit and parameter estimates, including fixed 

and random. Thus, a secondary purpose of this study was to extend previous research 

to the field of measurement by investigating the potential factors affecting the need to 

use the more complex cross-classified modeling of DLID over the simplified 

multilevel modeling of LID by ignoring cross-classification structure.  

Research Questions 

This study was designed to address the following research questions: 

1. How are the item and person parameter estimates affected when ignoring the 

effects of testlets and/or content areas versus correctly modeling the two 

effects via the proposed cross-classified models? 

2. Which manipulated factors, including sample size, number of testlets, testlet 

length, magnitude of the testlet effects, and magnitude of the content 

clustering effects, influence the estimates of the model parameters? How is the 

significant effect represented? 

3. Which model fit index performs well in correctly identifying the proposed 

cross-classified model as the best fitting model under different simulation 

conditions? 
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To answer these research questions, two simulation studies were conducted. 

For both simulation studies, five factors were manipulated, including sample size, 

number of testlets, testlet length, magnitude of the testlet effects, and magnitude of 

the content clustering effects. The difference between the two simulation studies was 

that, simulation study 1 constrained the testlet effects’ SDs as well as the content 

clustering effects’ SDs as the same across the testlets and content areas, respectively; 

simulation study 2 released this constraint by having mixed SDs of the testlet effects 

and mixed SDs of the content clustering effects.  

Significance of the Study 

The problem of DLID could exist in many contexts, like the scenario-based 

science assessment and the TOEFL Reading assessment. However, little research has 

been conducted to explore how to deal with the issue of DLID and investigate the 

impact of ignoring one source of LID. The only introductory investigation was 

conducted by Jiao et al. (2009). Therefore, this study contributed to the literature on 

LID and provided empirical evidence about the impact of DLID.  

In addition, this methodological study tried to deal with the issue of DLID 

from the cross-classified modeling perspective, which was an extension based on the 

multilevel measurement models and multilevel testlet models. Raudenbush (1993) 

claimed that, in practice, there are almost no purely nested data structures. Therefore, 

in reality, the cross-classified modeling should be better reflective of the real data 

structure than the multilevel modeling. Thus, the proposed model is more generalized 

and flexible in dealing with complex LID issues than the current multilevel models.  
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Chapter 2: Literature Review 

The first three sections in this chapter capture the formulation process of the 

proposed model in this study. Specifically, this chapter demonstrates how the 

proposed model is evolved from IRT to testlet response theory (TRT) models, then to 

multilevel measurement models for testlets (MMMT), and finally to the proposed 

cross-classified modeling of DLID. Section 1 presents a brief review of the three 

commonly used dichotomous IRT models and model assumptions, especially the 

assumption of local item independence; then it presents how the TRT models are 

formulated based on the three dichotomous IRT models. The second section 

demonstrates how IRT models and TRT models described in Section 1 are 

parameterized from a multilevel modeling perspective. The third section first 

provides the cross-classified parameterization of IRT models and then proposes the 

cross-classified modeling of DLID.  

Item Response Theory and Testlet Response Theory Models 

Item Response Theory Models and Assumptions 

Models 

Based on IRT models, the probability of answering an item correctly is 

modeled as a mathematical function of the person’s ability and the item parameters. 

According to how the items are scored, IRT models are divided into two categories: 

dichotomous IRT models with two response categories, and polytomous IRT models 

with multiple score categories. In this study, since only dichotomous models are used 

as base models to formulate testlet response theory (TRT) models as well as the 
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corresponding multilevel and/or cross-classified parameterizations, a brief 

introduction to the three commonly used dichotomous IRT models, including the 

Rasch (Rasch; 1960), the two-parameter logistic (2PL; Birnbaum, 1968), and the 

three-parameter logistic (3PL; Birnbaum, 1968) models, are provided here. 

The Rasch, 2PL and 3PL models employ 1, 2 and 3 item parameters 

respectively to characterize the item response functions. Among them, the most 

generalized 3PL model is represented as follows: 

 
1

( 1| , , , )
1 exp[ ( )]

i
ij ij j i i i i

i j i

c
p X a b c c

a b





  

  
, (1) 

where 
ijp is the probability for person j answering item i correctly. 

j  represents 

person j’s ability. ib represents item i’s difficulty, which corresponds to the point on 

the ability continuum at which a person has a
2

1 ic
 probability of getting a correct 

response. ia designates the item discrimination, where the larger the value of ia , the 

more discriminating of the item in separating examinees at the difficulty level, ib , of 

the item (Hambleton, Swaminathan & Rogers, 1991). ci indicates guessing 

parameters, which corresponds to the lower asymptote of the item characteristic 

curves (ICCs) (Embretson & Reise, 2000).  

The 2PL model is a constrained version of the 3PL model by setting the lower 

asymptote as 0:  

 
1

( 1| , , )
1 exp[ ( )]

ij ij j i i

i j i

p X a b
a b




 
  

, (2) 

where the difficulty parameter ib here corresponds to the point on the ability 

continuum where the probability of getting a correct response is 0.5.  
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The Rasch model assumes that all items share a common discrimination 

parameter 1 in addition to the assumption of zero probability of guessing: 

 
1

( 1| , )
1 exp[ ( )]

ij ij j i

j i

p X b
b




 
  

, (3) 

where the only item parameter in the Rasch model is the item difficulty parameter ib , 

which has the same interpretation as in the 2PL model. 

Assumptions 

There are three key assumptions underlying an IRT model, including 

dimensionality, monotonicity, and local independence (Hambleton, 1989). 

Dimensionality designates the number of latent trait that the test items intend to 

measure. Even though multidimensional IRT models have been developed and 

discussed (e.g., Reckase, 1997, 2009), unidimensional IRT models have generally 

been used by many testing programs (Kolen & Brennan, 2004). Also, since the focus 

of this study is unidimensional IRT models, unidimensionality should be assumed 

here, which means that a single latent trait is assumed to underlie item performance 

(Hambleton et al., 1991).  

The second assumption, monotonicity, relates to that the mathematical 

function that describes the relationship between the probability of correctly 

responding to an item and the latent trait is monotonically increasing, that is, as the 

latent trait becomes higher, the probability of getting a correct response becomes 

higher.  

The implication of the local independence assumption constitutes two parts: 

local item independence and local person independence. Local independence is 

obtained when the relationship among items (or persons) is fully characterized by the 
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IRT model (Embretson & Reise, 2000). Specifically, local item independence (Lord 

& Novick, 1968) means that a person’s response to one item does not influence 

his/her responses to other items; mathematically, it can be represented as (Lord, 

1980): 

 1 2

1

( | ) ( | ) ( | ) ( | ) ( | )
I

i I

i

p U u p u p u p u p u    


   . (4) 

It indicates that the probability of a response pattern, u, for a person with latent trait 

of  , )|( uUp  , is the product of the probabilities of the individual responses, iu , 

to the ith item on a test, )|( iup .  

The local item independence assumption is related to the dimensionality 

assumption: local item independence can be achieved for both unidimensional data 

and multidimensional data as long as the IRT model contains person parameters for 

each dimension of latent traits underlying item performance (Embretson & Reise, 

2000). In addition, if the IRT model contains person parameters on only one 

dimension, the unidimensionality assumption holds when the local item independence 

assumption is achieved.   

Local person independence can be mathematically represented by:  

 
1 1 2 2

1

( | ) ( | ) ( | ) ( | ) ( | )
n

i i ij j i i in n

j

p U u p u p u p u p u   


  θ . (5) 

It indicates that the probability of the response to a single item, i, by n persons with 

abilities 
j  in the vector θ , is the product of the probabilities of each person j’s (j =1, 

2,…, n) response to the ith item, ( | )ij jp u  . When local person independence holds, 
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one person’s response to the item will not be associated with another person’s 

response to the same item.  

The violation of local item independence assumption is referred to as local 

item dependence (LID), which is the focus of the current study. Therefore, the 

following section presents a more detailed description of LID, including the causes 

and impacts. 

Local Item Dependence  

Previous studies indicated that ignoring the violation of local item 

independence assumption might have negative impacts such as, inaccurate estimation 

of both item and person parameters, over-estimation of test reliability, and equating 

errors (e.g., Ackerman, 1987; Chen & Thissen, 1997; Sireci et al., 1991; Wainer, 

1995; Wainer & Thissen, 1996; Tuerlinckx & De Boeck, 2001; Yen, 1984). 

Ackerman (1987) found that when LID exists, item discrimination parameters tend to 

be overestimated, item difficulty parameter tend to become homogenous, and ability 

estimates are affected as the degree of dependency increased. Sireci et al. (1991) 

showed that the estimates of reliabilities are substantially overestimated when not 

accounting for the testlet structure on two reading comprehension tests. Further, Yen 

(1984) demonstrated substantial unsystematic errors of equating tests with LID. 

Yen (1993) stated that “the basic principle involved in producing LID is that 

there is an additional factor that consistently affects the performance of some students 

on some items to a greater extent than others” (p. 188). She listed and described 10 

possible causes of LID, including external assistance or interference, speededness, 

fatigue, practice, item or response format, passage dependence, item chaining, 
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explanation of previous answer, scoring rubrics or raters, and content knowledge or 

abilities.  

Some researchers have classified LID based on the types of causes. Hoskens 

and De Boeck (1997) divided LID into two categories: order dependency and 

combination dependency. Order dependency means the response to early items 

affects the responses to subsequent items; thus, some of the causes in Yen’s list, like 

item chaining and explanation of previous answer, are consistent with this category. 

Combination dependence refers to items that share the same stimulus content, and in 

Yen’s list, passage dependence is a good example of this. 

Thissen et al. (1992) classified LID into underlying local dependence and 

surface local dependence. The former category assumes that each set of locally 

dependent items share a common trait that is not shared by the rest of the items; this 

is similar with passage dependence listed by Yen. The latter category means that 

examinees tend to give identical answers to similar items like in speeded tests.  

Among the causes listed above, passage dependence, or a cluster of items by 

common stimuli, is a common source of LID and have been explored broadly (e.g., 

Ferrara, Huynh, & Baghi, 1997; Ferrara, Huynh, & Michaels, 1999; Lee, 2004; Sireci 

et al., 1991; Thissen et al., 1989). Such a cluster of items that share a common 

stimulus is often referred to as a testlet (e.g., Thissen et al., 1989; Wainer & Kiely, 

1987). To account for LID within a testlet, various models have been proposed, which 

will be reviewed in details in the following section.  
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Testlet Response Theory Models 

Testlets are broadly used in educational tests. For example, in reading tests, 

examinees might be presented a passage and a bundle of items related to that passage; 

in math tests, several items may depend on the same data table; and science tests 

commonly use a graph as the central stimulus for a set of items. The section above 

illustrates that, since testlet is one source of LID, fitting standard IRT models to 

testlet responses will result in negative impacts. Therefore, more complex models 

have been formulated to account for the effect of testlets based on the standard IRT 

models. In literature, these models have been generally referred to as testlet response 

theory (TRT) models.  

2PL-TRT Model 

Bradlow et al. (1999) formulated the two-parameter testlet response theory 

(2PL-TRT) model by adding a random effect to the standard 2PL IRT model 

(Equation 2): 

 
( )

( )

1
( 1| , , , )

1 exp[ ( )]
ij ij j i i jd i

i j i jd i

p X a b
a b

 
 

 
   

, (6) 

where 
ijp is the probability of correctly responding to item i nested within testlet d for 

person j with ability 
j . The parameter 

)(ijd is interpreted as a person-specific testlet 

effect, which is the same for all items within a testlet for a particular examinee j and 

is modeled as independent of ability and item parameters. The variance of the testlet 

effect is constrained to be the same across all testlets within a test, that is, 

2

( ) ~ (0, )jd i N  . All the other parameters have the same interpretations as in 

Equation 2.  
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3PL-TRT Model 

Wainer et al. (2000) further extended the 2PL-TRT model into the 3PL-TRT 

model by including a pseudo-guessing parameter ic : 

 
( )

( )

1
( 1| , , , , )

1 exp[ ( )]

i
ij ij j i i i jd i i

i j i jd i

c
p X a b c c

a b
 

 


  

   
. (7) 

By including an additional guessing parameter ic , the other difference between the 

3PL-TRT and the 2PL-TRT model is that, the 3PL-TRT model allows variation in the 

random effects across testlets, that is, ),0(~ 2

)( dijd N  .  

Rasch-TRT Model 

The Rasch testlet (Rasch-TRT) model proposed by Wang and Wilson (2005) 

is a special case of the 3PL-TRT model by having 1ia and 0ic : 

 
( )

( )

1
( 1| , , )

1 exp[ ( )]
ij ij j i jd i

j i jd i

p X b
b

 
 

 
   

, (8) 

which is the same as in the 3PL-TRT model, the variances of the testlet effects 
)(ijd  

are also allowed to vary across testlets with ),0(~ 2

)( dijd N  , where 2

d is the 

variance of the testlet d. 

Alternative Models for Testlets 

In addition to the above three TRT models that are extended from standard 

unidimensional IRT models by including a random testlet effect, alternative models 

that account for LID within testlets have also been proposed. Li, Bolt, and Fu (2006) 

interpreted testlet effect from a confirmatory multidimensional modeling perspective, 

and treated 
)(ijd as another ability dimension in a multidimensional IRT model. 

Under the multidimensional framework, Li et al. first proposed a general model:  
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1 2 ( )

1 2 ( )

1
( 1| , , , , )

1 exp[ ( )]
ij ij j i i i jd i

i j i i jd i

p X a a b
a b a

 
 

 
   

, (9) 

where the distributions for both 
j  and 

)(ijd are fixed as N(0,1) for model 

identification. Like in the 2PL-TRT model, 
j  and 

)(ijd are assumed to be 

independent. 1ia  and 2ia  are item discrimination parameters for general ability 
j and 

second ability dimension 
)(ijd respectively. Relative to the 2PL-TRT model, this 

model provides more information about each item within testlets and is helpful in 

identifying which items within a testlet are most influenced by d . Li et al. have also 

shown that the 2PL-TRT model is a special case of this multidimensional model.  

Li et al. (2006) assumed that, “if an item has high discriminating power on  , 

the ability intended to be measured, this item’s discriminating power on the 

secondary dimensional might be expected to be low” (p. 5). Therefore, they imposed 

constrains on slope parameters and proposed a second model: 

 1 ( ) 2 2

1 1 ( )

1
( 1| , , , )

1 exp[ ( )]
ij ij j i i jd i

i j i i jd i

p X a b
a b MDISC a

 
 

 
    

, (10) 

where MDISC is a multidimensional discrimination parameter that is constant across 

items. The discrimination parameter for the secondary dimension,
2

1

2

iaMDISC  , 

implies that the two discrimination parameters are inversely related.  

The third model that Li et al. (2006) proposed assumes a constant item 

discrimination parameter with respect to d : 

 
1 ( )

1 ( )

1
( 1| , , , )

1 exp[ ( )]
ij ij j i i jd i

i j i jd i

p X a b
a b

 
 

 
   

. (11) 

Thus, all the items have the same discriminating power for the random dimension d . 
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This section first reviews the three commonly used unidimensional 

dichotomous IRT models as well as the associated assumptions, and then summarizes 

the TRT models that have been formulated to account for LID. The next section will 

review how both the IRT models and the TRT models can be parameterized from the 

multilevel modeling perspective, and the advantages of using multilevel 

parameterizations.  

Multilevel IRT Models and Multilevel Testlet Models  

Over the past two decades or so there has been an increasing interest in fitting 

multilevel/hierarchical models to large datasets in various fields, including education, 

social and behavioral sciences, psychology, and medical studies (Raudenbush & 

Bryk, 2002). The multilevel modeling technique has attracted the interest of many 

educational and social researchers for handling clustered/nested data structures. Such 

data sets are either cross-sectional (e.g., students nested within schools) or 

longitudinal (e.g., occasions nested within individuals). A typical example of a 

multilevel data structure in educational research is that, students are nested within 

classrooms and schools, where students (Level 1), classrooms (Level 2), and schools 

(Level 3) form a three-level hierarchical structure (Raudenbush & Bryk, 2002).  

The primary reason for the multilevel modeling technique applied in situations 

with nested data is its capability of dealing with the issue of within-cluster 

dependencies. In nested data, for example, students within classrooms, the 

assumption of independence might be violated, because units (e.g. students) within 

the same cluster (e.g., classrooms) might share some inherent similarities. In this 

case, the multilevel modeling technique could appropriately deal with the issue of 
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dependencies by allowing the intercept and the effect of explanatory variables to vary 

across higher-level units (Snijders & Bosker, 1999).  

This main objective of this section is to review how the standard 

unidimensional dichotomous IRT models and the TRT models have been 

parameterized from a multilevel modeling perspective. Then, the advantages of using 

multilevel parameterization will be summarized. Moreover, to illustrate the 

applicability of such parameterization, some published applications that are drawn 

directly from the field of measurement will be presented.   

Multilevel Measurement Models 

Earlier studies (e.g. Adams et al., 1997; Beretvas & Williams, 2004; Fox & 

Glas, 1998; Kamata, 1998, 2001) have shown that regular IRT models could be 

formulated as hierarchical generalized linear models (HGLM), in which items are 

treated as nested within people. Those reparameterized IRT models from the HGLM 

framework are referred to as multilevel measurement models (MMMs) (Beretvas & 

Kamata, 2005). Figure 1 depicts a graphical representation of how items are clustered 

within persons.  

 

 

 

 

             

 

Figure 1: Graphical Representation of the Clustering of Responses within Persons 
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Take the Rasch model as an example, the corresponding multilevel 

parameterization (Kamata, 2001) is represented as follows: 
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 , (12) 

where 
ijp is the probability that person j responds to item i correctly; 

qijX represents 

the qth dummy coded variable for person j, with values 1 when iq   and 0 when 

iq  for item i. Coding with a value of negative one instead of positive one results in 

a more straightforward correspondence between the standard Rasch model and the 

corresponding multilevel parameterization (Chen, 2010), which will be illustrated 

later. It should be noted that the dummy variable for the last item is dropped in order 

to achieve full rank for the design matrix of the model.
j0 is the intercept term at 

Level 1, which is modeled to vary across persons at Level 2 with ),0(~ 000 Nu j
. 

qj is the coefficient associated with 
qijX ( 1,..., 1q k  ), and represents the fixed 

item effect. Since the item effects are modeled as fixed across persons, no error term 

is associated with the Level-2 equations for each item parameter.  

The log-odds of the probability of a correct response to item i for person j is 

obtained by combining the above Level 1 and Level 2 equations as: 
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 0 0log
1

ij

ij j i

ij

p
u

p
 

 
     

, (13) 

thus, the probability of a correct response can be expressed as 

 
0 0

1

1 exp[ ( )]
ij

j i

p
u 


  

. (14) 

Comparing between Equation 14 and Equation 3 (the standard Rasch model 

equation), it can be concluded that the multilevel formulation is algebraically 

equivalent to the Rasch model by having the ability parameter
j in the Rasch model 

corresponding to the error term 
ju0
 in the multilevel formulation and the item 

difficulty parameter ib corresponding directly with the fixed item effect 0i  in the 

multilevel formulation. However, if coding item indicators with positive ones rather 

than negative ones, the item difficulty parameter ib would correspond with 0i . 

Therefore, negative coding for item indicators were used in this study in order to have 

more straightforward correspondence.  

By relaxing the equal discrimination assumption in the multilevel Rasch 

model above, the multilevel parameterization of the 2PL model has been formulated 

and studied (Fox, 2003; Fox & Glas, 2001; Skrondal & Rabe-Hesketh, 2004). In 

addition, Skrondal and Rabe-Hesketh (2004) provided the multilevel parameterization 

of the 3PL model by allowing the persons to respond to items with guessing. 

Why do the researchers develop the multilevel parameterizations of IRT 

models? Consider a research scenario of investigating the effects of student 

characteristics on student abilities. In the traditional two-step analysis, a standard IRT 

model would be used first to estimate student abilities, which are then used as an 
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outcome variable in a linear model with student characteristics as predictors. 

However, such two-step analysis may not provide accurate results because of biased 

parameter estimates and measurement errors associated with the ability estimates. 

According to Kamata (2001), a one-step analysis could be performed instead by 

including student characteristics into the multilevel IRT model, which would 

facilitate the modeling of measurement error. Similarly, from the multilevel modeling 

framework, group characteristics can also be evaluated by considering a three-level 

model with persons (Level 2) nested within groups (Level 3), and thereby avoid the 

need to perform separate analysis (Adams et al., 1997; Kamata, 1998, 2001). 

Therefore, a primary benefit of supporting the use of multilevel IRT models is its 

capability in including person-level or group-level predictors and modeling the 

clustering effects commonly found in data.  

 Built upon the theoretical development, application studies of multilevel IRT 

models are also flourishing in educational measurement literature, such as detection 

of differential item functioning (DIF) (e.g., Cheong, 2001; Kamata, 1998, 2001; 

Luppescu, 2002), test equating (e.g., Chu & Kamata, 2005), and dimensionality 

assessment (e.g., Beretvas & Williams, 2004). Take Chu and Kamata’s (2005) study 

as example, the authors used the multilevel Rasch model in test equating by 

controlling for differential item functioning (DIF) effects, and their results 

demonstrated that the multilevel IRT model performed better than the multiple-group 

concurrent equating designs in terms of the accuracy and stability of item and ability 

parameter estimates.  
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Multilevel Testlet Models 

The last section illustrates the multilevel parameterizations of the standard 

IRT models, including the model representations, advantages, and some examples of 

applications. This section focuses on how this multilevel parameterization could 

incorporate the clustering of items, e.g. testlets. Based on the multilevel 

parameterization of the Rasch model, Jiao et al. (2005) proposed a multilevel 

modeling of local item dependence due to testlet effects. The hierarchy (Figure 2, Jiao 

et al., 2005, p. 5) of their proposed model is that items (Level 1) are nested within 

testlets (Level 2) which are modeled as nested within persons (Level 3). 

Mathematically, this three-level model is represented as 
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, (15) 

where 
itjp is the probability that person j responds to item i in testlet t 

correctly.
qitjX represents the qth dummy coded variable for person j, with values -1 

when iq   and 0 when iq  for item i in testlet t. Same as the multilevel 

parameterization of the Rasch model, the dummy variable for the last item is dropped 
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to achieve full rank for the design matrix of the model.
tj0 is the intercept term at 

Level 1, which is modeled to vary across persons and testlets at Level 2. 
qtj is the 

coefficient associated with 
qitjX ( 1,..., 1q k  ), and represents the item effect. Since 

the item effects are modeled as fixed across persons, no error term is associated with 

the Level-3 equations for each item parameter. The random effect 
tjw0

at Level 2 is 

interpreted as an interaction effect between testlets and persons and is assumed 

that ),0(~0 ttj Nw  . 
ju00
 at Level-3 is the person specific random effect and is 

assumed that ),0(~00 Nu j
. Two assumptions were made when the authors proposed 

this model: first, no interdependence occurs between testlets; second, independence is 

present between any two items that come from different testlets.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Hierarchy of Multilevel Modeling of LID Caused by Testlet Effects 

(Adapted from Jiao et al., 2005, p.5) 
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The probability of a correct response to item i in testlet t for person j is 

obtained by combining the three levels from Equation 15: 

 
00 00 0

1

1 exp[ ( )]
itj

j i tj

p
u w


   

. (16) 

Comparing Equations 16 and 8 (the Rasch-TRT model equation), it can be 

seen that this three-level testlet model formulated by Jiao et al. (2005) is algebraically 

equivalent with the Rasch-TRT model (Wang & Wilson, 2005) by having the ability 

parameter
j in the Rasch-TRT model corresponding with the error term 

00 ju , the item 

difficulty parameter ib corresponding directly with the fixed item effect 00i , and the 

person specific testlet effect 
( )jd i corresponding with the Level-2 random effect 

tjw0
in the multilevel formulation (Jiao, Wang, & He, 2013).  

Since the multilevel testlet model proposed by Jiao et al. (2005) consists of 

three levels, it has been referred to as MMMT-3 (Chen, 2010; Beretvas & Walker, 

2012). An alternative parameterization of the multilevel measurement model for 

testlets, which consists of two levels (hence referred to as MMMT-2), is proposed by 

Beretvas and Walker (2012). Considering a test consisting of mq items with m testlets 

each consisting of q items, this two level model is represented as: 
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where 
ijX and 

ijT are dummy-coded item indicator and testlet indicator, and both are 

coded with “-1” for the relevant item and testlet, respectively. For each testlet of q 

items, there are (q-1) dummy-coded item indicators; and for the m testlets, there are m 

testlet indicators. The level 2 random residuals 
ju0
and )1( mduTdj  correspond to 

the person abilities and the testlet abilities, respectively. Same as the conventional 

TRT models (e.g., Wainer et al., 2000; Wang & Wilson, 2005), the residuals for this 

model are assumed independently normally distributed with means of zero and the 

following covariance structure: 
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By constraining off diagonals as zero in the covariance structure, Beretvas and 

Walker (2012) assumed that the general ability and testlet ability factors are 

uncorrelated, which is consistent with the same assumption made by the conventional 

TRT models. However, Beretvas and Walker also indicated that it is possible to 

model nonzero covariances among any of these effects as extensions.  

Combining Level 1 and Level 2 equations, the probability of a correct 

response to non-reference indicator item i in testlet d for person j is: 

 
0 0 0

1

1 exp[ (( ) ( ))]
ij

j Tdj j Td

p
u u  


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, (18) 

where 
j0 corresponds with the item specific difficulty and 0Td represents with 

testlet specific difficulty. Different from conventional TRT models and the multilevel 

testlet model formulated by Jiao et al. (2005), Beretvas and Walker (2012) 

decomposed the testlet effect for examinee j on testlet d into the person-specific 

random effect, 
Tdju , and the fixed (across examinees) testlet effect, 0Td . When there 

is no person-specific random effect,
 Tdju , but only fixed testlet effect,

 0Td , the model 

is referred to as MMMT-2f; and when both fixed and random effects are included, the 

model is referred to as MMMT-2r. 

Chen (2010) did a simulation study to compare the performance of the three 

multilevel testlet models, MMMT-3, MMMT-2r, and MMMT-2f. She found that, no 

matter whether the MMMT-2r model was the generating model or not, the MMMT-2r 

model yielded the best parameter bias in estimation on fixed item effects, fixed testlet 

effects, and random testlet effects under conditions with nonzero equal pattern of 

random testlet effects’ variance. She concluded that model differences were of little 
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practical significance, and MMMT-2r had the greatest flexibility from a modeling 

perspective.  

The benefits of using the multilevel measurement model for testlets are 

similar with that of using multilevel IRT models. First, higher levels of clustering 

could be modeled. As an extension of the MMMT-3 model, Jiao et al. (2012) 

proposed a four-level IRT model to simultaneously account for local item dependence 

due to item clustering and local person dependence due to person clustering. The 

authors fitted their proposed model to real data from a reading comprehension test, 

and concluded that the proposed four-level IRT model was the best fitting one 

compared with the three-level Rasch model for person clustering, the Rasch-TRT 

model, and the Rasch model in terms of the Deviance Information Criterion (DIC).  

The second benefit is that, person-level predictors could be added to model 

DIF as well as differential testlet functioning (DTF) with the presence of testlet 

effects.  Beretvas and Walker (2012) applied their proposed MMMT-2 model to 

measure impact, DIF, and DTF for tests that include testlet-based dichotomous items, 

and found that the MMMT-2 parameterization of DTF was not affected by 

differential functioning cancellation nor amplification that occur in differential bundle 

functioning (DBF).   

This section reviews how both the IRT models and the TRT models can be 

parameterized from the multilevel modeling perspective, the advantages, and some 

applications of using multilevel parameterizations. However, researchers have found 

that many data sets are not strictly hierarchical but cross-classified. Thus, the next 

section will first review how the standard IRT models can be parameterized from the 
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cross-classified modeling perspective, and then the proposed cross-classified 

modeling for dual local item dependence (DLID) will be presented.  

Cross-Classified IRT Models and Cross-Classified Modeling of DLID 

Researchers have found that many data sets have more complex non-

hierarchical structures. One such complexity involves cross-classified data structures 

that cannot be handled by the multilevel modeling techniques. In cross-sectional 

studies, one illuminating example of cross-classified data structure is given by 

Goldstein (2003), i.e. students are cross-classified by the schools they attend and the 

neighborhoods they live in. In longitudinal studies, non-hierarchical structure occurs 

when, for example, students change schools overtime. In this case, occasions are 

cross-classified by students and schools. To model data with a cross-classified 

structure, cross-classified random effects modeling (CCREM) techniques have been 

developed to accommodate non-nested factors (Goldstein, 1986, 2003; Rasbash & 

Goldstein, 1994; Raudenbush, 1993). 

Raudenbush (1993) claimed that, in practice, there are almost no pure nested 

data structures. Therefore, in reality the CCREMs is expected to be more reflective of 

the real data structure than the multilevel hierarchical models. However, because of 

the complexity of this technique, many researchers are still inclined to use multilevel 

models to fit the data. For example, in the case of cross-sectional studies, they choose 

to ignore the cross-classified structure of their data sets by treating one of the cross-

classified factors hierarchically and disregarding information on the second cross-

classified factor (e.g., Ainsworth, 2002; Ma & Wilkins, 2002). On the other hand, in 

longitudinal studies, if students change schools, researchers have chosen to delete 
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data for mobile students or using only information from one of the schools that those 

mobile students have attended (e.g., Lee, 2000; McCoach, O’Connell, Reis, & Levitt, 

2006; Noble & Schnelker, 2007). 

In order to illuminate the consequences of misspecifying CCREMs, 

simulation studies have been conducted to enhance our understanding of the 

functioning of this class of models (Meyers, 2004; Meyers & Beretvas, 2006; Luo, 

2007; Ren, 2011). Those simulation studies demonstrate that, inappropriate modeling 

of cross-classified data structures would cause inaccurate estimates of parameters and 

their associated standard errors.   

Recently some researchers start to put CCREMs into real applications because 

they have realized the inappropriateness of using multilevel models to analyze cross-

classified data. Further, the availability of computer programs such as HLM 7.0, 

MLwiN 2.0, SAS PROC MIXED, R package lme and lme4 to estimate CCREMs 

have increased the likelihood of applying these models in real applications. For 

example, Fielding and Goldstein (2006) found in their review of real applications that 

CCREMs have been applied in such areas like health, survey, social networks, 

veterinary epidemiology, missing identification of units, generalizability theory, 

psychometrics, and education. 

Multiple authors (e.g., Beretvas, 2010; Browne, Goldstein, & Rasbash, 2001; 

Fielding & Goldstein, 2006) have formulated cross-classified models. Graphically, 

researchers have either used diagrams or tables to explain cross-classified data 

structures. Figure 3 presents both a traditional two-level hierarchical model (left 
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diagram) and a two-level cross-classified model (right diagram). The classifications 

are represented by arrows from the lowest level units to the classification unit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  (I)                                                       (II) 

Figure 3: (I) Two-level Hierarchical Linear Model (II) Two-level Cross-Classified 

Model 

Tables are also used to describe cross-classified data structures. Table 1 

depicts purely nested data in which individuals are nested within Factor 1 (e.g., 

schools) and Factor 1 is nested within Factor 2 (e.g., neighborhoods), while Table 2 

depicts a cross-classification structure where students are cross-classified by Factor 1 

(e.g., middle school attended) and Factor 2 (e.g., high school attended).   
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Table 1 

Individuals (X) nested within Factor 1 nested within Factor 2 

  Factor 2 

Factor 1 A B C 

1 XXX 

  2 XXX 

  3 

 

XXX 

 4 

 

XXX 

 5 

  

XXXX 

6     XXXX 

 

Table 2 

Individuals (X) cross-classified by Factor 1 and Factor 2 

  Factor 2 

Factor 1 A B C 

1 XXX 

 

XXX 

2 XXX 

  3 

 

XXX 

 4 

 

XX 

 5 XXX 

 

XXXX 

6 XX   XXXX 

Note: Table 1 and Table 2 are adapted from Meyers & Beretvas (2006, p. 474, p. 475) 

Mathematically, an unconditional two-level cross-classified random effect 

model with two cross-classified factors can be expressed as: 

 
1 2 1 2 1 2

1 2 1 2

( , ) 0( , ) ( , )

0( , ) 000 00 00

Level 1: 

Level 2: 

i j j j j i j j

j j j j

Y e

u u



 

 

  
, (19) 

where 
),( 21 jjiY is the outcome for individual i belonging to Factor 1, 1j , and Factor 2, 

2j ; 000 is the grand mean outcome on Y across individuals, Factor 1, and Factor 2; 

),( 21 jjie is the Level 1 residual term; 
100 ju is the Level 2 residual for Factor 1, 1j ; and 

200 ju is the Level 2 residual for Factor 2, 2j . In terms of the residuals’ distributions, 
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the following is assumed: ),0(~ 2

),( 21
Ne jji , ),0(~ 0000 11 ujj Nu  , and 

),0(~ 0000 22 ujj Nu  . The Level 1 and Level 2 equations can be combined into a single 

equation as: 

 
1 2 1 2 1 2( , ) 000 00 00 ( , )i j j j j i j jY u u e    . (20) 

As with the conventional multilevel models, explanatory variables can be 

added to unconditional cross-classified models at Level 1 and Level 2 to explain 

variability in the outcome at those levels.  

Cross-Classified IRT Model 

The conventional multilevel formulation of IRT models treats items as fixed 

effects and persons as random effects. This way of parameterization generally regards 

persons as a random sample from a population and the purpose of the analysis is to 

evaluate the difficulties of some specific items. However, if the purpose of the 

analysis is to evaluate the abilities of some specific persons, rather than to evaluate 

the difficulties of some specific items, it is more reasonable to consider items as 

random and persons as fixed (Van den Noortgate, De Boeck, & Meulders, 2003). In 

psychometrics, it is uncommon to treat items as random. In order to demonstrate that 

random items are reasonable, De Boeck (2008) illustrated this concept from both 

theoretical and practical perspectives.  

De Boeck (2008) summarized three theoretical reasons for being interested in 

random item models by reviewing the literature. The first is “the clearly random 

nature of the items, such as randomly drawn words from a vocabulary” (p. 534). The 

second is “the study of ability change in a longitudinal design with randomly drawn 
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item samples” (p. 534). The third is “modeling item families”, which are defined as 

“sets of items with sufficient communalities within the set and sufficient 

differentiation from other sets”; in this case, the research focus is on the family 

parameters, like mean and variance, instead of item-specific parameters (p. 534). 

Based on his review of literature, De Boeck provides two more reasons for 

considering items as random. The first is that, items can be treated as drawn from a 

population, e.g., an item bank in computer adaptive testing can be considered as an 

item population; and in the context of criterion-referenced measurement, the concept 

of “universe” and “domain” has been used in the process of item generation (Hively, 

Patterson, & Page, 1968; Popham, 1978). The second is the uncertainty about the 

parameters, and therefore prior distribution is used as in the fully Bayesian approach. 

De Boeck argued that the uncertainty embedded in the prior distribution is equivalent 

with a population distribution where the elements are random.  

De Boeck also demonstrated that the random item approach is promising to 

handle several issues from a practical point of view. The first issue he mentioned is 

the measurement of people’s ability, where the generalization over items is wanted; 

and therefore, a model with fixed person effects and random item effects is ideal. The 

second issue is the explanation of item difficulties. De Boeck argued that it is 

unrealistic to use the linear logistic test model (LLTM; Ficher, 1973) in which the 

item difficulty is perfectly explained by several item properties; instead, treating the 

items as random by adding an error term to the LLTM model is more realistic. The 

third issue is related to DIF. He pointed out that both of the two global strategies for 

investigating the presence of DIF, anchoring strategy and free parameter strategy, 
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have drawbacks, which could be effectively handled through the use of random item 

models. 

Therefore, both item and person effects can be simultaneously treated as 

random. Under this line of research, researchers have proposed an alternative 

parameterization of the IRT models, namely, the cross-classified IRT model, where 

item responses are considered cross-classified with items and persons (Meulders & 

Xie, 2004; Van den Noortgate et al., 2003). Figure 4 presents a graphical 

representation of how responses maybe cross-classified with persons and items, 

where the four responses, R11, R12, R21, and R22, are cross-classified by two persons, 

person 1 and person 2, and two items, item 1 and item 2. 

 

 

 

 

 

 

 

Figure 4: Graphical Representation of Reponses Cross-Classified by Items and 

Persons 

The fully unconditional cross-classified IRT model is represented as:  

 

1 2
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where 1j  and 2j  represents persons and items respectively; 
00 1j

u  and 
200 ju represent 

the person and items residuals respectively. 
00 1j

u  and 
200 ju are assumed independent 

with means of zero and constant variances of 1  and 2 , respectively. Combining 

Level 1 and Level 2 equations, we can specify the probability of a correct response to 

item q  for person j  as: 

 
( , )

0 0 00

1

1 exp[ ( )]
i j q

j q

p
u u


  

. (22) 

 By comparing Equations 22 and 3 (the standard Rasch model equation), it can 

be noted that the cross-classified parameterization is algebraically equivalent to the 

Rasch model where the ability parameter
j in the Rasch model corresponds to the 

person residual 
0 0ju  in the cross-classified model and the item difficulty parameter 

qb corresponds directly to the item residual 
00qu  in the cross-classified model.  

Studies have been conducted to explain and compare the similarities and 

differences between the two parameterizations of IRT models, multilevel model and 

cross-classified model (Beretvas, Cawthon, Lockhart, & Kaye, 2012; Van den 

Noortgate & De Boeck, 2005). Beretvas et al. (2012) concluded that both 

parameterizations could estimate person abilities and item difficulties. The difference 

between these two parameterizations is that, while the multilevel parameterization 

may be used to estimate DIF, the cross-classified parameterization allows for the 

estimation of differential facet functioning (DFF) as well as the interaction between 

item and person descriptors.  
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Proposed Cross-Classified Modeling of DLID 

Previous sections demonstrated how to model testlet effects from a multilevel 

modeling perspective. However, both the TRT models and the corresponding 

multilevel parameterizations are formulated to deal with the issue of LID that is 

caused by a single factor. In practice, LID could be caused by two or more factors 

simultaneously, which is referred to in this study as dual local item dependence 

(DLID). 

One typical example of assessments where the issue of DLID may arise is 

scenario-based science assessment. Such science tests have at least two sources of 

LID, one resulting from item clustering, which is caused by scenarios; the other 

resulting from the coverage of multiple content areas. Appendix A provides an 

example of scenario-based science test with coverage of multiple content areas. 

Several other scenarios, like the one in Appendix A, could be included in one test. 

Each scenario is followed by several items that are created to test students’ capability 

in different content areas. In Appendix A, there are three items following the same 

scenario; the three items are created to assess students’ capability in population 

dynamics, population dynamics, and classified organisms, respectively. Therefore, 

two content areas, population dynamics and classified organisms, are assessed in one 

scenario. In addition, scenarios are not nested within content areas nor vice-versa, 

therefore, the two are said to be cross-classified.  

Another example of assessments that have the issue of DLID is TOEFL 

Reading. In each TOEFL Reading section, there are 3 to 5 passages and each passage 

contains 12 to 14 multiple-choice questions, which generally belong to one of the 
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following subskills: detail/fact, vocabulary, reference questions, and summary. 

Appendix B provides an example of a TOEFL Reading passage followed by several 

subskills. In this case, LID is caused by testlet effects (passage) and subskills 

simultaneously and the structure of the item responses is that each item is cross-

classified by testlets (passages) and subskills, which are nested within persons. 

To account for such DLID in scenario-based science assessments or TOEFL 

Reading, this study proposed a cross-classified model. Take the scenario-based 

science assessment as an example, the structure of this proposed model is that items 

(Level 1) are cross-classified with testlets (scenarios) and content areas (Level 2), and 

both testlets and content areas are nested within persons (Level 3) (see Figure 5). 

Mathematically, it may be represented as follows:  
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, (23) 

where 
jctip ),(
is the probability that person j responds to item i in testlet t and content 

area c correctly.
jctqiX ),(
represents the qth dummy coded variable for person j, with 
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values -1 when iq   and 0 when iq  for item i in testlet t and content area c. 

jct ),(0 is the intercept term at Level 1, which is modeled to vary across persons, 

testlets, and content areas at Level 2. 
jctq ),( is the coefficient associated with 

jctqiX ),(
( kq ,...,1 ), and represents the item effect. Since the item effects are 

modeled as fixed across persons, no error term is associated with the Level-3 

equations for each item parameter. The random effect 
tjw0

at Level 2 is interpreted as 

an interaction effect between testlets and persons and is assumed that ),0(~0 ttj Nw  . 

The random effect 
cjw0

at Level 2 is interpreted as an interaction effect between 

content areas and persons and is assumed as ),0(~0 ccj Nw  . The random effect 
ju00
 

at Level-3 is the person specific random effect and is assumed as ),0(~00 Nu j
. It 

should be noted that no fixed effect is included in the level-3 equation for the 

intercept term, and thus no reference indicator is required (Beretvas et al., 2012; 

Chen, 2010). 
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Figure 5: Graphical Representation of Cross-Classified Modeling of DLID 

Combining Level 1, Level 2, and Level 3 equations above, the probability of a 

correct response to item i in testlet t and content area c for person j is: 
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. (24) 

This is a constrained form of the 3PL testlet model accounting for two types of LID 

proposed by Jiao et al. (2009) by assuming a zero pseudo-guessing parameter 

( 0ic ) and a constant discrimination parameter ( 1ia ) across items: 
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where 
)(1 idj is interpreted by Jiao et al. (2009) as the random-effects testlet-effect 

parameter for scenario-type of LID (Type 1 LID), which is equivalent to the residual, 

tjw0
,  in the newly proposed cross-classified modeling of DLID, where 

)(2 idj is 
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interpreted as the random-effects testlet-effect parameter for content clustering-type 

of LID (Type 2 LID), and it is equivalent to the residual, 
cjw0

,  in the newly proposed 

cross-classified modeling of DLID. In addition, the ability parameter
j corresponds to 

the person residual 
ju00
 in the cross-classified formulation. The item difficulty 

parameter ib corresponds to the fixed effect 00i  in the cross-classified formulation.  

Summary of the Theoretical Framework 

This chapter described the formulation process of the proposed cross-

classified modeling of DLID. One of the standard IRT models, the Rasch model, was 

utilized as the base model. Extending from the standard Rasch model, the Rasch 

testlet model was formulated by accounting for LID caused by testlet effects. Both the 

Rasch model and the Rasch testlet model were reparameterized from a multilevel 

modeling perspective. The primary benefit of this reparameterization is the capability 

of dealing with the issue of within-cluster dependence. Based on the multilevel 

parameterization of the Rasch model, Jiao et al. (2005) proposed a multilevel 

modeling of LID due to testlet effects. The hierarchy of their proposed model is that 

items (Level-1) are nested within testlets (Level 2) which are modeled as nested 

within persons (Level 3). However, both the Rasch testlet model and the 

corresponding multilevel parameterization are formulated to deal with the issue of 

LID that is caused by a single factor. In practice, LID could be caused by two or more 

factors simultaneously, which is referred to in this study as DLID. Therefore, a cross-

classified model was proposed to account for DLID. The structure of this proposed 

model is that items (Level 1) are cross-classified with testlets (scenarios) and content 
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areas (Level 2), and both testlets and content areas are nested within persons (Level 

3). It demonstrated that the proposed cross-classified model is algebraically 

equivalent with a constrained version of the testlet model accounting for two types of 

LID (Jiao et al., 2009).  

In the next chapter (Chapter 3), two simulation studies were designed with the 

primary purpose of evaluating the performance of the proposed cross-classified 

model. Data sets with DLID were simulated with both testlet effects and content 

clustering effects. The second purpose was to investigate the potential factors 

affecting the need to use the more complex cross-classified modeling of DLID over 

the simplified multilevel modeling of LID by ignoring cross-classification structure.  
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Chapter 3: Methodology 

This study conducted two simulation studies to investigate the performance of 

the proposed cross-classified model for DLID and the impact of ignoring the cross-

classified structure under a variety of simulated study conditions.  

Simulated Conditions 

Manipulated Factors 

The manipulated factors in the two simulation studies included sample size 

(500, 1000, 2000), number of testlets (3, 6), number of items per testlet (5, 10), 

magnitude of the testlet effects represented by standard deviations (SDs) (0, 0.5, 1, 

1.5), and magnitude of the content clustering effects represented by SDs (0, 0.5, 1, 

1.5). The difference between the two simulation studies was in the SD pattern. That 

is, for simulation study 1, equal SDs for both the testlet effects and the content 

clustering effects were assumed; while for simulation study 2, mixed SDs were used 

to generate the data. For easy of reporting, two simulation studies were conducted 

separately to differentiate equal SDs from mixed SDs. Table 3 details the levels for 

the manipulated factors. 
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Table 3 

Simulation Design for Manipulated Factors 

  Levels 

Manipulated Factors 1 2 3 4 

Sample Size 500 1000 2000 
 

Number of Testlets 3 6 
  

Number of Items per Testlet 5 10 
  

Magnitude of Testlet Effect 0 0.5 1 1.5 

Magnitude of Content Clustering Effect 0 0.5 1 1.5 

 

Sample Size. Three levels of sample size (500, 1000, and 2000) were 

simulated to represent a small, medium, and large sample size. In exploring the 

multilevel modeling of LID caused by testlets, Jiao and her colleagues (2005, 2013) 

fixed the sample size at 1000; Chen (2010) used 500 and 1000 to represent smaller 

and larger sample sizes, and found significant impact on parameter bias. Beretvas and 

Walker (2012) fixed the sample size at 2000 when using their proposed two-level 

testlet response model to assess differential testlet functioning. Wang and Wilson 

(2005) used 200 and 500 to explore the Rasch testlet model. Bradlow et al. (1999) 

fixed the sample size at 1000 to assess their proposed 2PL-TRT model. Specifically, 

Jiao et al. (2009) simulated 2000 examinees to evaluate the performance of the 

proposed 3PL testlet model in dealing with LID caused by testlets and contents. 

Therefore, 500, 1000, and 2000 were selected to evaluate the parameter estimation at 

different levels of sample sizes.  

Number of Testlets. Previous studies have either manipulated the number of 

testlets directly or indirectly, or fixed the number of testlets. For direct manipulation, 

studies treated the number of testlets as a manipulated factor. For example, Wang and 

Wilson (2005) used 4 and 8 testlets. For indirect manipulation, studies fixed the total 

number of items and manipulated the number of items per testlet, which will also 
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result in varied numbers of testlets. For example, Bradlow et al. (1999) fixed the total 

number of testlet items at 30 and chose two values, 5 and 10, as the number of items 

per testlet, which yielded 6 and 3 testlets, respectively; Chen (2010) set the total 

number of items at 50 and used two levels of testlet length, 5 and 10, and thus, the 

number of testlets were 10 and 5. Some other previous studies fixed the number of 

testlets, e.g. Jiao et al. (2005) used 6 testlets and Li et al. (2006) simulated 4 testlets. 

In the present study, 3 and 6 were selected to represent small and large number of 

testlets respectively.  

Number of Items per Testlet. The number of items per testlet, or testlet length, 

also varied across previous simulation studies. Both Jiao (2005) and Li et al. (2006) 

fixed the testlet length at 5; Bradlow et al. (1999), Wang and Wilson (2005), and 

Chen (2005) all considered the testlet length at two levels, 5 and 10. Therefore, 5 and 

10 were selected in the present study to represent smaller and larger testlet length 

respectively. 

Since the two variables, number of testlets and number of items per testlet, 

have been manipulated independently, the total number of items cannot be 

manipulated. Fully crossing the selected two values for the number of testlets (3 and 

6) and the two values for the testlet length (5 and 10) yields three different total of 

number of items, 15 ( 53 ), 30 ( 103 and 56 ), and 60 ( 106 ), which represents 

short, medium, and long test.  

Magnitude of the Testlet Effects. The SD of the random testlet effects 

represents the magnitude of the testlet effects. This variable has always been 

manipulated in previous simulation studies. In Wang and Wilson’s (2005) study, the 
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variances they used were 0.25, 0.5, 0.75, and 1. Jiao et al. (2005) specified the SD at 

four levels: 0, 0.5, 1 and 1.5. Jiao, Wang, and He (2013) used SDs of 0, 0.5, 0.75, and 

1 to represent no, small, moderate, and large testlet effects. In Chen’s (2010) study, 

the variances of random testlet effects were simulated as being equal across testlets 

for some conditions and unequal for others. For the equal variances conditions, she 

used variances of 0, 0.25, and 0.5 for every testlet; and for the unequal variances 

conditions, she set the average of the variances of the random testlet effects across 

testlets as 0.25 and 0.5. Chen (2010) found that the variance of random testlet effects 

was an influential factor in parameter estimates.  

In the present study, two simulation studies were conducted with simulation 

study 1 generating equal SDs across testlets and simulation study 2 generating mixed 

SDs across testlets. Table 4 delineates the specification of SDs for the two simulation 

studies. 

Table 4 

SD of the Random Testlet Effects  

  Simulation Study 1 Simulation Study 2 

 
3 Testlets 6 Testlets 3 Testlets 6 Testlets 

1 0-0-0 0-0-0-0-0-0 0-0-0 0-0-0-0-0-0 

2 0.5-0.5-0.5 0.5-0.5-0.5-0.5-0.5-0.5 0-0.5-1 0-0-0.5-0.5-1-1 

3 1-1-1 1-1-1-1-1-1 0.5-1-1.5 0.5-0.5-1-1-1.5-1.5 

4 1.5-1.5-1.5 1.5-1.5-1.5-1.5-1.5-1.5 1-1.5-2 1-1-1.5-1.5-2-2 

 

From the empirical examples used in the literature (e.g., Wainer & Wang, 

2000; Wang & Wilson, 2005), the SDs of the testlet effects in real tests may range 

from as small as zero to as large as the SD of persons’ ability. For both simulation 

studies, the SD of persons’ ability was fixed at 1 across conditions. Therefore, in this 

study, the SDs, 0, 0.5, 1, and 1.5, were selected to represent small to large testlet 
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effects, where 0 represents no testlet effect, 0.5 represents small testlet effect, 1 and 

1.5 represents large testlet effect. Even though in the empirical examples, the SD of 

the testlet effects may not reach 1.5, 1.5 was used in the current simulation studies for 

theoretical illustration.  

In simulation study 1, the SDs were set equal across each testlet with values of 

0, 0.5, 1, and 1.5 for the four levels respectively. When the SDs of the random testlet 

effects were simulated to be 0, it means there is no LID caused by testlet effects. 

Similar to simulation study 1, simulation study 2 also simulated four levels of SD for 

the random testlet effects. Even though under each level, the SDs of the testlet effects 

were not necessarily the same, the average SDs of the random testlet effects across 

testlets ranged from 0, 0.5, 1, to 1.5, which were the same values as those used in 

simulations study 1.  

Magnitude of the Content Clustering Effects. Almost no previous simulation 

studies have explored LID caused by content clustering effects, except the study by 

Jiao et al. (2009). Jiao simulated four content areas, and used three levels of SD, 0.5, 

0.75, and 1, to represent small, moderate, and large LID caused by the content 

clustering effect. In addition, she also constrained the content clustering effects’ SD 

as the same across the four content areas.  

In the present study, two content areas were simulated. Even though content 

clustering effect represents a different type of item clusters from the testlet effect, the 

two effects, testlet effect and content clustering effect, are essentially the same from 

the statistical perspective. Therefore, the same four values as the SDs of the testlet 

effects, 0, 0.5, 1, and 1.5, were used to represent the magnitude of the content 
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clustering effect. Table 5 delineates the specification of SDs for the content clustering 

effects for the two simulation studies. Like the testlet effects in simulation study 1, 

the SDs were equal across each content area with values of 0, 0.5, 1, and 1.5 for the 

four levels respectively; and in simulation study 2, the average SD of the random 

content clustering effects for the two content areas ranged from 0, 0.5, 1, to 1.5. 

Table 5 

SD of the Random Content Clustering Effects 

  Simulation Study 1 Simulation Study 2 

1 0-0 0-0 

2 0.5-0.5 0.25-0.75 

3 1-1 0.75-1.25 

4 1.5-1.5 1.25-1.75 

Fixed Factors 

For each of the 384 conditions (192= 3 2 2 4 4     in each simulation study) 

above, some common factors were set fixed across simulated study conditions. Under 

each condition, the true values of persons’ ability parameter were randomly generated 

from a standard normal distribution, )1,0(N . As described above, the testlet length 

could be 5 or 10. When the testlet length was 5, the item difficulty parameters for the 

five items in each testlet were fixed at -2, -1, 0, 1, and 2; when the testlet length was 

10, the item difficulty parameters for the ten items in each testlet were fixed at -2, -

1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, and 2.5. These values were selected in order to generate 

tests that cover items with a broad range of difficulties, including easy, medium, and 

hard.  
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Data Generation  

Within each condition, 50 replications were implemented. Harwell, Stone, 

Hsu, and Kirisci (1996) recommended a minimum of 25 replications in IRT-based 

research. In addition, the condition with the fewest items (15) and smallest sample 

size (500) was selected to justify that 50 replications were sufficient. A post hoc 

check of the standard errors for five item difficulty parameters under this condition 

indicates that the magnitude of standard errors flattened out when the number of 

replications was greater than 30 (see Figure 6). Therefore, 50 replications in this 

study were sufficient.   

 

Figure 6: Standard Errors for Item Difficulty Parameters with Different Number of 

Replications 

The free software package, R was used to generate the data for each of the 50 

replications per condition (See Appendix C for the R code for data generation). As 

noted above, the generating model was the proposed cross-classified modeling of 
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DLID, which has the following probability function after combining equations from 

the three levels (Equation 24): 

)](exp[1

1

000000

),(

icjtjj

jcti
wwu

p


 . 

The residual term, 
ju00
, which represents persons’ ability, was randomly sampled 

from a normal distribution with a mean of zero and standard deviation of one. The 

other two residual terms, 
tjw0

 and 
cjw0

, which represents person-specific testlet effect 

and person-specific content effect respectively, were both sampled from a normal 

distribution with a mean of zero, and the their corresponding SDs depending on the 

specific design condition described in the section of manipulated factors. The values 

of the fixed effect, 00i , which designates the item difficulty parameter, have been 

specified in the section of fixed factors.  

Thus, the probability that person j responds to item i in testlet t and content 

area c correctly could be obtained by substituting the three residual terms, ,, 000 tjj wu  

and 
cjw0

, and the fixed term, 00i ,  into the equation above. This probability was 

compared to a random number sampled from the uniform [0, 1] distribution. A 

simulated item response of 1 was assigned if the random number was less than or 

equal to the associated probability; otherwise, 0 was assigned.  

Models  

For each of the 384 conditions, four models were estimated. Model 1 was the 

proposed cross-classified model, which was also the data generating model: 

 ( , )

00 0 0 00

1
.

1 exp[ ( )]
i t c j

j tj cj i

p
u w w 


    

 (26) 
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Model 2 was a multilevel model in which items (Level-1) were nested within 

testlets (Level 2) which were modeled as nested within persons (Level 3). In this case, 

the cross-classified data structure was ignored by omitting the content clustering 

effect on LID. Thus, the following model was used to model the data: 

 
00 0 00

1
.

1 exp[ ( )]
itj

j tj i

p
u w 


   

 (27) 

Model 3 was also a multilevel model in which items (Level-1) were nested 

within content areas (Level 2) which were modeled as nested within persons (Level 

3). The difference between Model 2 and Model 3 is that, Model 3 ignored the cross-

classified structure by omitting the testlet effect on LID. The resulting model is 

defined as: 

 
00 0 00

1
.

1 exp[ ( )]
icj

j cj i

p
u w 


   

 (28) 

Finally, the data sets were analyzed using the Rasch-equivalent two-level 

model (Model 4), in which neither testlet effects nor content clustering effects were 

included in the model, which is defined as: 

 
0 0

1
.

1 exp[ ( )]
ij

j i

p
u 


  

 (29) 

Model Identification  

For the four estimating models described in the section above, a constant can 

be added to the difficulty parameters but subtracted from the ability parameters to 

keep the probability of a correct response the same. Therefore, the four models cannot 

be identified without imposition of constraints. The common approach to identifying 
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IRT models is to constrain the mean ability or the mean of the item difficulty 

parameters to be 0. 

In this study, the mean of each of the random effects was constrained to be 0 

for each of the four estimating models without other adjustments. This approach for 

scale identification is the default approach unitized in the PROC GLIMMIX macro 

package in SAS 9.2 software (SAS Institute Inc., 2008), which is going to be 

discussed in the next section.    

Model Parameter Estimation 

All the four models were estimated in SAS 9.2 software (SAS Institute Inc., 

2008) using the PROC GLIMMIX macro package (see Appendix D for the SAS 

Code). The GLIMMIX procedure fits statistical models that are known as generalized 

linear mixed models (GLMM). Since all the four models belong to the family of 

GLMM, the GLIMMIX procedure is an appropriate estimation option for use in this 

study. Six estimation methods are available in the PROC GLIMMIX procedure, 

including four pseudo-likelihood methods (RSPL, MSPL, RMPL, and MMPL), 

maximum likelihood with Laplace approximation (LAPLACE), and maximum 

likelihood with adaptive quadrature (QUAD).  

For the four pseudo-likelihood methods, RSPL, MSPL, RMPL, and MMPL, 

the first letter determines whether estimation is based on a residual likelihood (“R”) 

or a maximum likelihood (“M”); the second letter identifies the expansion locus for 

the underlying approximation, either the vector of random effects solutions (“S”) or 

the mean of the random effects (“M”); the last two letters “PL” represent pseudo-

likelihood. LAPLACE estimation approximates the marginal likelihood by using 
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Laplace’s method, in which parameter estimates are determined by minimizing twice 

the negative of the resulting log-likelihood approximation. If QUAD method was 

chosen, the GLIMMIX procedure approximates the marginal log likelihood with an 

adaptive Gauss-Hermite quadrature.  

Chen (2010) used the residual pseudo-likelihood method (RSPL) to estimate 

the three multilevel models (MMMT-2f, MMMT-2r, and MMMT-3) in her study. 

Beretvas and Walker (2012) also used RSPL when estimating the MMMT-2r model. 

Jiao et al. (2013) compared three methods in estimating the MMMT-3 model, 

including the Markov chain Monte Carlo (MCMC) method, marginal maximum 

likelihood estimation (MMLE) with the expectation-maximization (EM) algorithm in 

ConQuest and the six-order Laplace approximation estimation in HLM6. Even 

though Jiao et al. (2013) found that estimation methods could have significant effects 

on parameter estimations, it was difficult to ascertain which estimation algorithm is 

preferable to use, because each method has its advantages and disadvantages, e.g., the 

Laplace method resulted in the best ability parameter estimation while the MCMC 

method produced the best item parameter estimates. Therefore, there is still no 

consensus about the best estimation method based on the literature. Since the purpose 

of this study was not to compare the estimation methods, only one method, 

LAPLACE, in the PROC GLIMMIX procedure was applied. LAPLACE method was 

chosen because the GLIMMIX Produce indicates that LAPLACE estimates typically 

exhibit better asymptotic behavior and less small-sample bias than pseudo-likelihood 

estimators. The parameters to be estimated depend on the models. For the proposed 

cross-classified model (Model 1), the parameters to be estimated include a difficulty 
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parameter ( 00i ) for each item, ability parameter for each person ( 00 ju ), SD of testlet 

effects for each testlet ( t ), SD of content clustering effects for each content area 

( c ), and SD of persons’ ability (  ). For Model 2, the same parameters were 

estimated as for Model 1 except the SD of content clustering effects. In addition, for 

Model 3, the same parameters were estimated as for Model 1 except the SD of testlet 

effects. For the Rasch model (Model 4), only the item difficulty parameters ( 0i ), 

ability parameter for each person ( 0 ju ), and SD of persons’ ability (  ) need to be 

estimated. Table 6 details the parameters and number of parameters that were 

estimated under each model. 
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Table 6 

Parameters and Number of Parameters to be Estimated 

  Models 

 
Model 1 Model 2 Model 3 Model 4 

Parameters     

Fixed Effects 
    Item difficulty 00i  00i  00i  0i  

Random Effects 
    

Persons’ ability 00 ju  00 ju  00 ju  0 ju  

SD of persons’ ability         

SD of testlet effects t  t  

  
SD of content clustering effects c  

 

c  

 Number of Parameters 
    Fixed Effects 
    Item difficulty mk mk mk mk 

Random Effects 
    Persons’ ability s s s s 

SD of persons’ ability 1 1 1 1 

SD of testlet effects m m 
  SD of content clustering effects 2 

 
2 

 Note: m represents the number of testlets; k represents the number of items per testlet; 

s represents sample size 

 

In this study, the likelihood of the observed response patterns is: 

 
(1 )

00 0 0 00

1

({ } |{ , , , }) (1 ) ,ij ij

l
r r

j tj cj i i i

i

L P R r u w w P P




     (30) 

where P is the probability function (Equation 26, 27, 28, 29) corresponding each 

estimating model. l represents the number of items in the test. R is the response 

pattern for person j, and rij represents person j’s response to item i. In the process of 

LAPLACE estimation, for each model, parameter estimates are determined by 

minimizing twice the negative of the resulting log-likelihood approximation: 
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Analyses 

Parameter Estimates  

The estimation results were summarized separately for the two simulation 

studies. For each study, parameter estimates were examined by comparing them with 

the true values used for data generation. The four models were compared in terms of 

bias, relative bias, root mean square error (RMSE), and standard error (SE) in 

corresponding fixed and random effect estimates. The four error indexes were 

selected to represent different types of errors in estimation. These indexes were 

examined both descriptively and using analysis of variance (ANOVA).  

Bias. The error index, bias, represents the systematic error in estimation. To 

determine whether estimates were consistently too high or too low, the bias of the 

parameter estimate was calculated for each estimated parameter. It is defined as: 

 
 

1( )

R

r

rBias
R

 

 






, (32)  

where represents the true value for the parameter  , 
r is the estimated value for 

the r
th

 replication, and R is the number of replications (in this study, R=50).  

Relative Bias. The relative bias provides a measure of the magnitude of the 

bias. The relative bias of parameter estimates has been broadly used to estimate the 

difference between the average of estimated values across replications and the true 



 

 56 

 

value over the true parameter value (e.g., Chen, 2010; Luo, 2007; Meyer & Beretvas, 

2006; Ren, 2011). It is defined as: 

 ( )B
 





 , (33) 

where   is the mean of the parameter estimation across the 50 replications. In the 

general statistical world, relative bias with an absolute value less than 0.05 is 

considered acceptable (Hoogland & Boomsma, 1998); however, this criterion may 

not apply to IRT models. It should be noted that, in this study, some true values were 

generated to be zero; under those conditions, the relative bias was not applied.  

Root Mean Square Error (RMSE). RMSE represents the total error in 

estimation. It is used as a measure of the precision of the parameter estimates, and it 

is defined as: 

  
2

1

1
( )

R

r

r

RMSE
R
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

  . (34) 

Since the calculation of the mean square error involves the sum of the squared 

bias and its variance, the RMSE captures bias and variability of estimation 

simultaneously (Enders, 2001).  

Standard Error (SE). SE represents the random error in estimation. It provides 

an estimate of the standard deviation of the parameter estimates, and therefore, SE 

could be used to evaluate the consistency of the estimates across replications. It is 

defined as: 
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Analysis of Variance (ANOVA). To determine the impacts of the manipulated 

factors, i.e. sample size, number of testlets, testlet size, magnitude of the testlet 

effects, and magnitude of the content clustering effects, ANOVAs were conducted 

with the four criteria above as dependent variables respectively and each manipulated 

variable and model as factors. Therefore, the ANOVAs included five between-subject 

factors (manipulated variables) and one within-subject factor (models). Following 

previous research, the 0.05 alpha-level was used to determine statistical significance 

(e.g., Meyers & Beretvas, 2006; Ren, 2011). In addition, for effects that resulted in 

statistical significance, eta-squared ( 2 ) effect sizes were computed as a measure of 

practical significance. 2  was calculated by dividing the sum of squares for the effect 

by the total sum of squares. 2  values of 0.01, 0.06, and 0.14 represent small, 

moderate, and large effect sizes, respectively (Cohen, 1988). 

Model Selection  

PROC GLIMMIX reports five information criteria, all of which were used to 

provide information about overall model fit and identify the best fitting model. The 

five fit indices include Akaike information criterion (AIC; Akaike, 1973), an adjusted 

AIC for small sample sizes (AICC; Sugiura, 1978), bayesian information criterion 

(BIC; Schwartz, 1978), consistent Akaike information criterion (CAIC; Bozdogan, 

1987), and Hannan-Quinn information criterion (HQIC; Hannan and Quinn, 1979).  

Specifically, AIC is defined as: 
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 2ln 2k k kAIC L q   .  (36) 

where kq is the number of parameters and ln kL is the log-likelihood attained by model 

k. The AICC, a version of the AIC index that is corrected for small sample sizes, is 

defined as: 

 
2 ( 1)
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k k
k k
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q q
AICC AIC

N q


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 
, (37) 

where the correction term strengthens the penalty for smaller sample size and 

approaches zero for large sample size. The BIC criterion penalizes models with 

additional parameters more severely than does AIC; it adjusts for the number of 

observations (N), and is defined as: 

 2ln ln( )k k kBIC L q N   . (38) 

Similar to BIC, the CAIC criterion also tends to penalize complex model by adjusting 

for number of observations, and is defined as: 

 2ln ln( 1)k k kCAIC L q N    . (39) 

Finally, the HQIC criterion is defined as: 

 2ln 2 ln(ln( ))k k kHQIC L q N   , (40) 

The 2ln kL term appearing in each formula is an estimate of the deviance of 

the model fit. The coefficients for kq in the second part of each formula show the 

degree to which the number of model parameters is being penalized. Taking the 

sample size ( 500N  ) in this study into consideration, the AIC and AICC are 

expected to have close values and have the least penalty; BIC and CAIC are close and 

have the largest penalty; HQIC holds the middle ground. Smaller values for these fit 
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indices indicate better fit. Under each condition, the proportion of replications that 

lead to correct model identifications is tallied.  
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Chapter 4: Result 

In the present study, two simulation studies were conducted, with simulation 

study 1 generating equal SDs across testlets as well as equal SDs across content areas 

while simulation study 2 generating mixed SDs across testlets and mixed SDs across 

content areas. For both simulation studies, none of the 50 replications under each 

condition encountered convergence problems for each estimating model. In addition, 

no inadmissible estimates, such as negative variance estimates, were detected. 

For both simulation studies, estimates of item difficulty, persons’ ability, SD 

of persons’ ability were obtained using four models, including the proposed cross-

classified model, the multilevel model with testlet effects, the multilevel model with 

content clustering effects, and the Rasch model. Testlet effects’ SD was obtained 

using the proposed model and the multilevel model with testlet effects. Content 

effects’ SD was obtained using the proposed model and the multilevel model with 

content clustering effects. Bias, relative bias, RMSE, and SE for model parameter 

estimates were obtained based on 50 replications under each condition for both 

simulation studies. Analysis of variance (ANOVA) was conducted first by specifying 

each of the four error indexes as the dependent variable and the five manipulated 

simulation variables and model as six factors. Based on the results of ANOVAs, main 

and interaction effects that were identified to have significant impacts on bias, 

relative bias, RMSE and SE were identified, respectively. An alpha-level of 0.05 

paired with a minimum value of 0.01 for eta-squared was used as cutoff for practical 

significance. Significant main effects, two-way interaction between the magnitude of 

the testlet effects and model, and two-way interaction between the magnitude of the 
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content clustering effects and model, were given further interpretations. Other 

identified significant two-way interactions or more complex multi-way interactions, 

even though reported in the significance table, were not given further interpretations 

by considering the research interest for this study.   

For each condition, two manipulated variables, magnitude of the testlet effects 

(hereafter simplified as testlet effect) and magnitude of the content clustering effects 

(hereafter simplified as content effect), determined which model was the true model, 

the under-parameterized model, the over-parameterized model, and the mis-specified 

model among the four models (see Table 7). Mis-specified model here occurred in 

two situations: when the true model was the multilevel model with testlet effects, the 

multilevel model with content clustering effects was the mis-specified model; or 

when the true model was the multilevel model with content clustering effects, the 

multilevel model with testlet effects was the mis-specified model (see Table 7). It is 

expected that the rankings of the four models’ performance, to a great extent, are 

determined by the two manipulated variables, testlet effect and content effect. 

Therefore, averages for the four error indexes, bias, relative bias, RMSE, and SE, 

were provided for each model under the aggregated sixteen conditions formed by the 

four levels of testlet effect and the four levels of content effect across the other three 

manipulated variables, sample size, number of testlets, and number of items per 

testlet. 

This chapter is composed of four sections. Analysis of item difficulty is 

presented first. Then, estimates of persons’ ability are compared and discussed. The 

recovery of three SDs, including SD of persons’ ability, SD of testlet effects, and SD 
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of content effects, are analyzed in the third section. Finally, fit index results are 

presented.  

Table 7 

Determine the True, Over-Parameterized, Under-Parameterized, and Mis-specified 

Model by Testlet Effects’ SD and Content Effects’ SD 

    Estimating Model 

Testlet effects’ 

SD 

Content Effects’ 

SD 

Cross-

Classified 

Multilevel with 

Testlet Effects 

Multilevel 

with Content 

Effects 

Rasch 

0 

0 Over Over Over True 

0.5 Over Mis True Under 

1 Over Mis True Under 

1.5 Over Mis True Under 

0.5 

0 Over True Mis Under 

0.5 True Under Under Under 

1 True Under Under Under 

1.5 True Under Under Under 

1 

0 Over True Mis Under 

0.5 True Under Under Under 

1 True Under Under Under 

1.5 True Under Under Under 

1.5 

0 Over True Mis Under 

0.5 True Under Under Under 

1 True Under Under Under 

1.5 True Under Under Under 

Note: “True” means this model is the true model; “Over” means this model is over-

parameterized; “Under” means this model is under-parameterized; and “Mis” means 

this model is mis-specified.  
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Estimation of Item Difficulty  

Bias. Based on the full factorial six-way ANOVA results, for both simulation 

studies, none of the main effects and none of the interaction effects significantly 

impacted bias with a value of 2 larger than 0.01. However, even though the impact 

of the calibration model on bias in item difficulty estimation was not significant, 

consistent patterns were observed when the magnitude of testlet effects and the 

magnitude of content clustering effects changed (see Table 8). Generally, the over-

parameterized model and the true model had average biases that were close to zero 

across the sixteen aggregated conditions, while the under-parameterized model or the 

mis-specified model had relatively larger average biases. Since the proposed cross-

classified model was the true model or an over-parameterized model across all of the 

sixteen aggregated conditions, it always had less average biases than the other three 

models. This was consistent with the expectations that the proposed model, which 

properly accounted for both the testlet effects and the content clustering effects, 

should have less systematic estimation error.  
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Table 8 

Average Biases in Item Difficulty Estimation by Testlet Effect and Content Effect 

across the Other Manipulated Variables 
     Estimating Model 

 
Testlet 

Effects’ SD 

Content 

Effects’ SD 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

Multilevel 

with Content 

Effects 

Rasch 

 

 

 

 

 

 

 

 

 

 

Simulation 1 

0 

0 0.0008 0.0008 0.0006 0.0005 

0.5 0.0000 -0.0035 -0.0003 -0.0039 

1 0.0007 -0.0122 0.0005 -0.0126 

1.5 -0.0022 -0.0278 -0.0023 -0.0290 

0.5 

0 -0.0015 -0.0015 -0.0069 -0.0070 

0.5 -0.0008 -0.0044 -0.0060 -0.0097 

1 0.0000 -0.0134 -0.0052 -0.0177 

1.5 -0.0008 -0.0264 -0.0059 -0.0299 

1 

0 0.0006 0.0005 -0.0193 -0.0194 

0.5 0.0031 -0.0001 -0.0170 -0.0191 

1 -0.0001 -0.0118 -0.0193 -0.0286 

1.5 -0.0022 -0.0287 -0.0211 -0.0407 

1.5 

0 -0.0030 -0.0030 -0.0403 -0.0403 

0.5 0.0000 -0.0041 -0.0379 -0.0395 

1 0.0022 -0.0106 -0.0344 -0.0414 

1.5 0.0008 -0.0227 -0.0349 -0.0496 

 

 

 

 

 

 

 

 

 

 

Simulation 2 

0 

0 -0.0001 -0.0002 -0.0004 -0.0005 

0.5 -0.0016 -0.0009 -0.0019 -0.0012 

1 0.0009 -0.0188 0.0006 -0.0192 

1.5 -0.0024 -0.0344 -0.0025 -0.0360 

0.5 

0 0.0003 0.0002 -0.0081 -0.0083 

0.5 0.0003 -0.0031 -0.0084 -0.0112 

1 -0.0006 -0.0139 -0.0092 -0.0208 

1.5 -0.0030 -0.0266 -0.0110 -0.0330 

1 

0 -0.0019 -0.0019 -0.0223 -0.0224 

0.5 -0.0008 -0.0083 -0.0208 -0.0281 

1 0.0001 -0.0129 -0.0212 -0.0297 

1.5 0.0017 -0.0237 -0.0189 -0.0388 

1.5 

0 -0.0018 -0.0018 -0.0377 -0.0380 

0.5 0.0006 -0.0054 -0.0358 -0.0394 

1 -0.0016 -0.0185 -0.0362 -0.0485 

1.5 -0.0036 -0.0272 -0.0394 -0.0518 
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Relative Bias. For simulation study 1, the six-way ANOVA results (see Table 

40 in Appendix E) indicated that three significant main effects, testlet effect (F (3, 

21696) = 29124.3, p < 0.001), content effect (F (3, 21696) = 12110.2, p < 0.001), and 

model (F (3, 21696) = 48980.8, p < 0.001) were found to have a large ( 2 = 0.153), 

moderate ( 2 = 0.064), and large ( 2 = 0.257) impact on relative bias, respectively. 

The two-way interactions, including interaction between testlet effect and model (F 

(9, 21696) = 9458.4, p < 0.001) and interaction between content effect and model (F 

(9, 21696) = 4244.6, p < 0.001), were identified to have a large ( 2 = 0.149) and 

moderate ( 2 = 0.067) impact on relative bias, respectively.  

The same main effects and two-way interactions were identified to be 

significant in simulation study 2, even though with different effect sizes from 

simulation study 1. Testlet effect (F (3, 21696) = 4113.1, p < 0.001), content effect (F 

(3, 21696) = 1929.3, p < 0.001), and model (F (3, 21696) = 8105.4, p < 0.001) each 

had a moderate ( 2 = 0.118), small ( 2 = 0.056), and large ( 2 = 0.232) impact on 

relative bias, respectively. The two-way interaction between testlet effect and model 

(F (9, 21696) = 1286.4, p < 0.001) and the two-way interaction between content and 

model (F (9, 21696) = 647.9, p < 0.001) each had a moderate ( 2 = 0.110) and a small 

( 2 = 0.056) impact on relative bias. 

No absolute value of the average relative bias was larger than 0.006 when the 

proposed cross-classified model was the estimating model across all of the sixteen 

aggregated conditions for both simulation studies (see Table 9). The multilevel model 

with testlet effects was found to have average relative biases ranging from -0.162 to -
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0.075 when the data were generated with content clustering effects’ SD as 1 and 1.5. 

The multilevel model with content clustering effects was identified to have average 

relative biases ranging from -0.236 to -0.118 when the data were generated with large 

testlet effects’ SD as 1 and 1.5. The absolute values of average relative biases for the 

Rasch model were all larger than 0.05 except when both the testlet effects’ SD and 

the content clustering effects’ SD were 0 or 0.5. In addition, it appears that no matter 

whether the testlet effects’ SDs and the content clustering effects’ SDs were 

generated as being equal across testlets and across content areas (simulations study 1) 

or not (simulation study 2), for the multilevel model with testlet effects and the Rasch 

model, the larger the average of the content clustering effects’ SD, the larger the 

magnitude of the relative bias; for the multilevel model with content clustering effects 

and the Rasch model, the larger the average of the testlet effects’ SD, the larger the 

magnitude of the relative bias.  

In summary, the proposed cross-classified model had relatively smaller 

average relative biases than the other three models. In addition, the higher the 

magnitude of the testlet effects and the magnitude of the content clustering effects, 

the larger the average relative biases for the two multilevel models and the Rasch 

model. This was consistent with the expectations that increasing the magnitude of the 

testlet effects and the content clustering effects would lead the two multilevel models 

and the Rasch model, which inappropriately ignored the testlet effects and/or the 

content clustering effects, to perform even worse by having more systematic errors.  
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Table 9 

Average Relative Biases in Item Difficulty Estimation by Testlet Effect and Content 

Effect across the Other Manipulated Variables 
     Estimating Model 

 

Testlet 

Effects’ SD 

Content Effects’ 

SD 

Cross-

Classified 

Multilevel 

with 

Testlet 

Effects 

Multilevel 

with 

Content 

Effects 

Rasch 

 

 

 

 

 

 

 

 

 

 

Simulation 1 

0 

0 0.0057 0.0052 0.0037 0.0031 

0.5 0.0041 -0.0186 0.0024 -0.0213 

1 0.0039 -0.0790 0.0024 -0.0831 

1.5 0.0027 -0.1516 0.0013 -0.1624 

0.5 

0 0.0001 -0.0004 -0.0352 -0.0359 

0.5 -0.0017 -0.0236 -0.0357 -0.0572 

1 -0.0018 -0.0851 -0.0341 -0.1128 

1.5 -0.0033 -0.1529 -0.0330 -0.1800 

1 

0 0.0005 0.0001 -0.1275 -0.1281 

0.5 0.0006 -0.0213 -0.1246 -0.1421 

1 -0.0006 -0.0781 -0.1212 -0.1829 

1.5 -0.0001 -0.1574 -0.1182 -0.2357 

1.5 

0 0.0024 0.0021 -0.2308 -0.2327 

0.5 -0.0010 -0.0230 -0.2355 -0.2450 

1 -0.0005 -0.0749 -0.2264 -0.2694 

1.5 -0.0005 -0.1472 -0.2215 -0.3085 

 

 

 

 

 

 

 

 

 

 

Simulation 2 

0 

0 0.0047 0.0041 0.0026 0.0019 

0.5 0.0027 -0.0246 0.0008 -0.0272 

1 0.0021 -0.0822 0.0006 -0.0875 

1.5 0.0036 -0.1526 0.0021 -0.1608 

0.5 

0 0.0012 0.0007 -0.0542 -0.0548 

0.5 -0.0006 -0.0281 -0.0562 -0.0793 

1 -0.0003 -0.0845 -0.0534 -0.1267 

1.5 -0.0028 -0.1569 -0.0530 -0.1964 

1 

0 0.0012 0.0008 -0.1308 -0.1322 

0.5 -0.0002 -0.0258 -0.1306 -0.1524 

1 -0.0009 -0.0865 -0.1342 -0.1919 

1.5 -0.0016 -0.1525 -0.1262 -0.2449 

1.5 

0 0.0015 0.0012 -0.2281 -0.2294 

0.5 -0.0001 -0.0254 -0.2275 -0.2415 

1 -0.0010 -0.0811 -0.2251 -0.2715 

1.5 -0.0033 -0.1618 -0.2247 -0.3147 
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RMSE. A six-way ANOVA was also conducted by specifying the RMSE in 

item difficulty estimation as the dependent variable. For simulation study 1, based on 

the ANOVA results (see Table 41 in Appendix E), the RMSE was significantly 

affected by sample size (F (2, 25152) = 521.9, p < 0.001), testlet effect (F (3, 25152) 

= 1763.0, p < 0.001), content effect (F (3, 25152) = 644.7, p < 0.001), and model (F 

(3, 25152) = 1988.8, p < 0.001), each with a small ( 2 = 0.020), moderate ( 2 = 

0.099), small ( 2 = 0.036), and moderate ( 2 = 0.112) effect size, respectively; the 

two-way interaction between testlet effect and model (F (9, 25152) = 519.9, p < 

0.001) was significant with a moderate effect size ( 2 = 0.088), and the two-way 

interaction between content effect and model (F (9, 25152) = 197.5, p < 0.001) was 

significant with a small effect size ( 2 = 0.033).  

For simulation study 2, the identified significant main effects and interaction 

effects were the same as simulation study 1, even though with different effect sizes: 

sample size (F (2, 25152) = 322.7, p < 0.001, 2 = 0.015), testlet effect: (F (2, 25152) 

= 1039.1, p < 0.001, 2 = 0.071), content effect: (F (2, 25152) = 440.6, p < 0.001, 

2 = 0.030), model: (F (2, 25152) = 1519.6, p < 0.001, 2 = 0.104), interaction 

between testlet effect and model: (F (2, 25152) = 306.6, p < 0.001, 2 = 0.063), and 

interaction between content effect and model: (F (2, 25152) = 133.4, p < 0.001, 2 = 

0.028).  

For both simulation studies, as sample size increased, the average RMSEs 

became smaller for each model (see Table 10). This indicates that larger sample size 
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resulted in more accurate item parameter estimation, which is consistent with the 

expectations. 

The proposed cross-classified model had the lowest average RMSEs when 

both the testlet effects’ SD and the content clustering effects’ SD was nonzero (see 

Table 11). In addition, when the testlet effects’ SD and/or the content effects’ SD 

were zero, the average RMSEs for the proposed cross-classified model were close to 

the true model, but smaller than the mis-specified and/or the under-parameterized 

model. Moreover, the differences in the average RMSEs among the four models were 

smaller for small magnitude of the testlet effects and the content clustering effects 

(SD = 0.5) than those for large magnitude of the testlet effects and the content 

clustering effects (SD = 1 or 1.5). This was consistent with the results from the six-

way ANOVA, where the interactions between model and testlet/content effect were 

significant.  

The lower average RMSEs in the proposed cross-classified model was 

consistent with the expectations that the proposed model should have less total 

estimation error. In addition, as the magnitude of the testlet effects and the magnitude 

of the content clustering effects became larger, the two multilevel models and the 

Rasch model should have more total estimation errors by inappropriately ignoring the 

testlet effects and/or content clustering effects, which was also consistent with the 

expectations. 
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Table 10 

Average RMSEs in Item Difficulty Estimation by Sample Size across the Other 

Manipulated Variables 

    Estimating Model 

  Sample Size 
Cross-

Classified 

Multilevel with 

Testlet Effects 

Multilevel with 

Content Effects 
Rasch 

Simulation 1 

500 0.1239 0.1577 0.1863 0.2300 

1000 0.0876 0.1287 0.1626 0.2122 

2000 0.0616 0.1115 0.1476 0.2020 

Simulation 2 

500 0.1242 0.1629 0.1936 0.2410 

1000 0.0874 0.1342 0.1708 0.2229 

2000 0.0621 0.1173 0.1558 0.2119 
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Table 11 

Average RMSEs in Item Difficulty Estimation by Testlet Effect and Content Effect 

across the Other Manipulated Variables 

     Estimating Model 

 
Testlet 

Effects’ SD 

Content 

Effects’ SD 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

Multilevel 

with Content 

Effects 

Rasch 

 

 

 

 

 

 

 

 

 

 

Simulation 1 

0 

0 0.0865 0.0864 0.0860 0.0859 

0.5 0.0863 0.0884 0.0859 0.0890 

1 0.0881 0.1319 0.0878 0.1359 

1.5 0.0912 0.2086 0.0909 0.2205 

0.5 

0 0.0865 0.0864 0.0953 0.0956 

0.5 0.0875 0.0916 0.0969 0.1118 

1 0.0891 0.1392 0.0973 0.1656 

1.5 0.0935 0.2129 0.1018 0.2425 

1 

0 0.0892 0.0891 0.1804 0.1811 

0.5 0.0905 0.0938 0.1793 0.1975 

1 0.0919 0.1371 0.1772 0.2448 

1.5 0.0946 0.2198 0.1767 0.3072 

1.5 

0 0.0929 0.0929 0.3002 0.3026 

0.5 0.0938 0.0971 0.3049 0.3159 

1 0.0963 0.1351 0.2958 0.3461 

1.5 0.0984 0.2117 0.2920 0.3937 

 

 

 

 

 

 

 

 

 

 

Simulation 2 

0 

0 0.0851 0.0849 0.0845 0.0844 

0.5 0.0868 0.0980 0.0863 0.0984 

1 0.0887 0.1452 0.0884 0.1488 

1.5 0.0921 0.2153 0.0918 0.2238 

0.5 

0 0.0875 0.0874 0.1192 0.1194 

0.5 0.0879 0.1002 0.1187 0.1384 

1 0.0896 0.1455 0.1179 0.1866 

1.5 0.0937 0.2188 0.1185 0.2616 

1 

0 0.0886 0.0885 0.1907 0.1921 

0.5 0.0906 0.1002 0.1906 0.2129 

1 0.0915 0.1469 0.1926 0.2567 

1.5 0.0955 0.2166 0.1871 0.3189 

1.5 

0 0.0935 0.0934 0.2987 0.3002 

0.5 0.0943 0.1011 0.2976 0.3134 

1 0.0960 0.1422 0.2962 0.3487 

1.5 0.0984 0.2261 0.2956 0.4005 
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SE. Item difficulty recovery was also evaluated and compared in terms of SE. 

For simulation study 1, three effects were found to have significant impacts on SE 

(see Table 42 in Appendix E). Two main effects, sample size (F (2, 25152) = 

31960.5, p<0.001) and model (F (3, 25152) = 1137.6, p<0.001), were significant 

factors, each with a large ( 2 = 0.558) and a small ( 2 = 0.030) effect size. Two-way 

interaction between testlet effect and model had a small impact on SE (F (9, 25152) = 

215.4, p<0.001, 2 = 0.017). 

The same patterns were detected for simulation study 2. ANOVA results (see 

Table 42 in Appendix E) indicated that SE was significantly affected by sample size 

(F (2, 25152) = 30280.5, p<0.001) and model (F (3, 25152) = 1207.2, p<0.001), each 

with a large ( 2 = 0.546) and a small effect size ( 2 = 0.033), respectively. The 

interaction between testlet effect and model (F (9, 25152) = 189.9, p<0.001) was 

significant with a small effect size ( 2 = 0.015).  

Matching the ANOVA results which indicated that sample size had a large 

impact on SE, Table 12 shows that, for both simulation studies, the larger the sample 

size, the smaller the average SEs for each of the four models. This indicates that 

increasing sample size produced more stable item parameter estimates and less 

random estimation errors.  

Generally, the proposed cross-classified model had the largest average SEs 

among the four models across the sixteen aggregated conditions, and the Rasch model 

had the smallest average SEs (Table 13). No consistent patterns were found when 

comparing the two multilevel models. The higher average SEs in the proposed cross-
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classified model might have been due to the increased number of parameters 

estimated.  

Table 12 

Average SEs in Item Difficulty Estimation by Sample Size across the Other 

Manipulated Variables 

    Estimating Model 

  Sample Size 
Cross-

Classified 

Multilevel with 

Testlet Effects 

Multilevel with 

Content Effects 
Rasch 

Simulation 1 

500 0.1219 0.1136 0.1088 0.1020 

1000 0.0862 0.0805 0.0770 0.0721 

2000 0.0605 0.0565 0.0540 0.0506 

Simulation 2 

500 0.1222 0.1134 0.1083 0.1012 

1000 0.0859 0.0800 0.0761 0.0712 

2000 0.0609 0.0565 0.0540 0.0505 
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Table 13 

Average SEs in Item Difficulty Estimation by Testlet Effect and Content Effect across 

the Other Manipulated Variables 

     Estimating Model 

 
Testlet 

Effects’ SD 

Content 

Effects’ SD 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

Multilevel 

with Content 

Effects 

Rasch 

 

 

 

 

 

 

 

 

 

 

Simulation 1 

0 

0 0.0854 0.0853 0.0850 0.0850 

0.5 0.0851 0.0830 0.0849 0.0826 

1 0.0871 0.0798 0.0868 0.0793 

1.5 0.0898 0.0758 0.0896 0.0746 

0.5 

0 0.0854 0.0853 0.0817 0.0816 

0.5 0.0864 0.0842 0.0828 0.0808 

1 0.0879 0.0803 0.0842 0.0773 

1.5 0.0919 0.0776 0.0889 0.0749 

1 

0 0.0880 0.0879 0.0759 0.0758 

0.5 0.0891 0.0869 0.0771 0.0753 

1 0.0902 0.0829 0.0782 0.0726 

1.5 0.0926 0.0775 0.0808 0.0696 

1.5 

0 0.0913 0.0913 0.0689 0.0687 

0.5 0.0920 0.0899 0.0686 0.0677 

1 0.0944 0.0869 0.0717 0.0674 

1.5 0.0960 0.0816 0.0736 0.0652 

 

 

 

 

 

 

 

 

 

 

Simulation 2 

0 

0 0.0840 0.0839 0.0836 0.0835 

0.5 0.0858 0.0833 0.0855 0.0828 

1 0.0877 0.0802 0.0875 0.0795 

1.5 0.0906 0.0758 0.0904 0.0751 

0.5 

0 0.0864 0.0863 0.0810 0.0809 

0.5 0.0868 0.0841 0.0812 0.0790 

1 0.0880 0.0803 0.0829 0.0761 

1.5 0.0920 0.0775 0.0868 0.0733 

1 

0 0.0873 0.0873 0.0747 0.0745 

0.5 0.0889 0.0865 0.0762 0.0741 

1 0.0900 0.0820 0.0771 0.0716 

1.5 0.0933 0.0785 0.0806 0.0692 

1.5 

0 0.0918 0.0918 0.0693 0.0691 

0.5 0.0925 0.0898 0.0701 0.0685 

1 0.0937 0.0859 0.0712 0.0669 

1.5 0.0956 0.0799 0.0731 0.0645 
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Estimation of Persons’ Ability  

The recovery of persons’ ability was evaluated and compared in terms of bias, 

RMSE, and SE. Since the true values of persons’ ability parameter were randomly 

generated from a standard normal distribution, (0,  1)N , plenty of the generated true 

values would be very close to 0, and then the calculated relative bias would become 

extremely large. Therefore, the relative bias index is not appropriate to be used in 

assessing persons’ ability recovery.  

For both simulation studies, a six-way ANOVA was conducted by specifying 

each of the three error indexes, bias, RMSE, and SE, as the dependent variable and 

the five manipulated variables and model as factors.  

Bias. For both simulation studies, the six-way ANOVA results indicated that 

none of the main effects and none of the interactions had a significant impact on bias 

in the ability parameter estimation. In addition, all of the average biases in Table 14 

were close to zero. A possible explanation for this result was that all of the four 

models were identified by constraining the mean ability to zero.  



 

 76 

 

Table 14 

Average Biases in Persons’ Ability Estimation by Testlet Effect and Content Effect 

across the Other Manipulated Variables 

     Estimating Model 

 

Testlet 

effects’ SD 

Content 

Effects’ SD 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

Multilevel 

with 

Content 

Effects 

Rasch 

 

 

 

 

 

 

 

 

 

 

Simulation 1 

0 

0 -0.0013 -0.0014 -0.0013 -0.0013 

0.5 -0.0015 -0.0015 -0.0014 -0.0014 

1 -0.0014 -0.0017 -0.0014 -0.0016 

1.5 -0.0056 -0.0023 -0.0055 -0.0020 

0.5 

0 -0.0024 -0.0024 -0.0014 -0.0013 

0.5 -0.0024 -0.0025 -0.0016 -0.0014 

1 -0.0021 -0.0025 -0.0017 -0.0016 

1.5 -0.0024 -0.0027 -0.0019 -0.0019 

1 

0 -0.0037 -0.0037 -0.0014 -0.0014 

0.5 -0.0041 -0.0039 -0.0019 -0.0015 

1 -0.0032 -0.0040 -0.0016 -0.0015 

1.5 -0.0031 -0.0042 -0.0020 -0.0018 

1.5 

0 -0.0045 -0.0045 -0.0014 -0.0013 

0.5 -0.0040 -0.0047 -0.0010 -0.0014 

1 -0.0060 -0.0052 -0.0034 -0.0016 

1.5 -0.0027 -0.0053 -0.0008 -0.0016 

 

 

 

 

 

 

 

 

 

 

Simulation 2 

0 

0 -0.0014 -0.0014 -0.0013 -0.0013 

0.5 -0.0034 -0.0015 -0.0033 -0.0014 

1 -0.0008 -0.0016 -0.0008 -0.0015 

1.5 -0.0053 -0.0022 -0.0054 -0.0019 

0.5 

0 -0.0024 -0.0024 -0.0014 -0.0014 

0.5 -0.0036 -0.0025 -0.0022 -0.0015 

1 -0.0041 -0.0027 -0.0025 -0.0016 

1.5 -0.0029 -0.0027 -0.0025 -0.0017 

1 

0 -0.0033 -0.0033 -0.0014 -0.0013 

0.5 -0.0014 -0.0034 -0.0010 -0.0014 

1 -0.0048 -0.0039 -0.0027 -0.0016 

1.5 -0.0021 -0.0039 -0.0015 -0.0017 

1.5 

0 -0.0043 -0.0043 -0.0014 -0.0014 

0.5 -0.0033 -0.0044 -0.0013 -0.0014 

1 -0.0013 -0.0047 -0.0018 -0.0015 

1.5 -0.0038 -0.0049 -0.0019 -0.0016 
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RMSE. ANOVA results (see Table 43 in Appendix E) from both simulation 

studies indicated that two factors, number of testlets and content effect, significantly 

impacted RMSE in the ability parameter estimation; all the other effects were 

negligible. For simulation study 1, both number of testlets (F (1, 895,232) = 10494.3) 

and content effect (F (3, 895,232) = 16982.9) had small effects ( 2 = 0.010 and 2 = 

0.050, respectively) on RMSE. For simulation study 2, the impacts of number of 

testlets (F (1, 895,232) = 11919.1) and content effect (F (3, 895,232) = 16271.4) were 

also small ( 2 = 0.012 and 2 = 0.048, respectively).  

In both stimulation studies, for each of the four models, when data were 

generated with number of testlets as 3, the average RMSE in persons’ ability 

parameter estimation was slightly higher than that generated with number of testlets 

as 6 (see Table 15). This indicates that the number of testlets influenced the accuracy 

of persons’ ability estimation: the larger the number of testlets, the more accurate the 

ability parameter estimation.  

Matching the ANOVA results, content effect’s impact on the RMSE was 

reflected in Table 16. In both simulation studies, as the magnitude of the content 

effects increased, the average RMSEs increased for both the multilevel model with 

testlet effects and the Rasch model. This is due to the fact that as the magnitude of the 

content clustering effects becomes larger, the total estimation error for the multilevel 

model with testlet effects and the Rasch model is expected to become larger.  

Generally, the proposed cross-classified model had the smallest average 

RMSEs when both the testlet effects’ SD and the content clustering effects’ SD were 

nonzero (see Table 17). This can be explained by the proper modeling of the persons’ 
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ability, testlet effect, and content effect separately in the proposed cross-classified 

model. When the proposed cross-classified model was not the true model but an over-

parameterized model, the average RMSEs associated with the proposed model were 

close to the average RMSEs associated with the true model, which were smaller than 

the average RMSEs associated with the other two models. This indicates that over-

parameterization would not result in larger RMSE than the true model.  

Table 15 

Average RMSEs in Persons’ Ability Estimation by Number of Testlets across the 

Other Manipulated Variables 

    Estimating Model 

  
Number of 

Testlets 

Cross-

Classified 

Multilevel with 

Testlet Effects 

Multilevel with 

Content Effects 
Rasch 

Simulation 1 
3 0.6111 0.6610 0.6228 0.6814 

6 0.5377 0.5872 0.5380 0.5863 

Simulation 2 
3 0.6116 0.6633 0.6283 0.6880 

6 0.5336 0.5891 0.5382 0.5912 

 

Table 16 

Average RMSEs in Persons’ Ability Estimation by Content Effect across the Other 

Manipulated Variables 

    Estimating Model 

  
Content Effects’ 

SD 

Cross-

Classified 

Multilevel with 

Testlet Effects 

Multilevel with 

Content Effects 
Rasch 

Simulation 1 

0 0.4936 0.4936 0.5015 0.5019 

0.5 0.5355 0.5433 0.5428 0.5539 

1 0.6079 0.6630 0.6134 0.6753 

1.5 0.6607 0.7964 0.6640 0.8042 

Simulation 2 

0 0.4907 0.4908 0.5077 0.5083 

0.5 0.5349 0.5522 0.5474 0.5698 

1 0.6045 0.6711 0.6141 0.6830 

1.5 0.6601 0.7906 0.6639 0.7973 
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Table 17 

Average RMSEs in Persons’ Ability Estimation by Testlet Effect and Content Effect 

across the Other Manipulated Variables 

 

 
  Estimating Model 

 

Testlet 

Effects’ SD 

Content Effects’ 

SD 

Cross-

Classified 

Multilevel 

with 

Testlet 

Effects 

Multilevel 

with 

Content 

Effects 

Rasch 

 

 

 

 

 

 

 

 

 

 

Simulation 1 

0 

0 0.4163 0.4163 0.4494 0.4162 

0.5 0.4840 0.4950 0.4840 0.4951 

1 0.5791 0.6463 0.5792 0.6463 

1.5 0.6450 0.7999 0.6450 0.7984 

0.5 

0 0.4527 0.4527 0.4541 0.4542 

0.5 0.5074 0.5173 0.5089 0.5201 

1 0.5904 0.6512 0.5915 0.6541 

1.5 0.6530 0.8063 0.6539 0.8003 

1 

0 0.5209 0.5210 0.5305 0.5306 

0.5 0.5515 0.5582 0.5602 0.5713 

1 0.6164 0.6681 0.6230 0.6836 

1.5 0.6635 0.7947 0.6670 0.8079 

1.5 

0 0.5844 0.5844 0.6052 0.6067 

0.5 0.5992 0.6025 0.6183 0.6289 

1 0.6456 0.6865 0.6601 0.7173 

1.5 0.6812 0.7848 0.6902 0.8103 

 

 

 

 

 

 

 

 

 

 

Simulation 2 

0 

0 0.4152 0.4153 0.4152 0.4152 

0.5 0.4816 0.5076 0.4816 0.5078 

1 0.5723 0.6461 0.5723 0.6450 

1.5 0.6488 0.8119 0.6488 0.8103 

0.5 

0 0.4604 0.4604 0.4729 0.4731 

0.5 0.5081 0.5288 0.5150 0.5402 

1 0.5899 0.6719 0.5947 0.6783 

1.5 0.6555 0.7904 0.6570 0.7910 

1 

0 0.5141 0.5141 0.5364 0.5371 

0.5 0.5481 0.5606 0.5629 0.5819 

1 0.6146 0.6848 0.6273 0.6954 

1.5 0.6617 0.7867 0.6644 0.7941 

1.5 

0 0.5732 0.5732 0.6061 0.6079 

0.5 0.6019 0.6119 0.6302 0.6495 

1 0.6413 0.6817 0.6618 0.7134 

1.5 0.6743 0.7736 0.6855 0.7939 

 



 

 80 

 

SE. Regarding the SE of persons’ ability parameters, all of the main effects 

except sample size were significant; the two-way interaction between content effect 

and model was also significant; all the other effects were negligible (see Table 44 in 

Appendix E). For simulation study 1, all of the identified significant effects had a 

moderate effect size: number of testlets (F (1, 895,232) =571286 , p<0.001, 2 = 

0.117); number of items per testlet (F (1, 895,232) = 582776, p<0.001, 2 = 0.119); 

testlet effect (F (3, 895,232) =108957 , p<0.001, 2 = 0.067); content effect (F (3, 

895,232) = 115775, p<0.001, 2 = 0.071); model (F (3, 895,232) = 182622, p<0.001, 

2 = 0.112); two-way interaction between content effect and model (F (9, 895,232) = 

43113, p<0.001, 2 = 0.079). For simulation study 2, all of the identified significant 

effects were moderate except that the testlet effect was small: number of testlets (F 

(1, 895,232) =529745 , p<0.001, 2 = 0.128); number of items per testlet (F (1, 

895,232) = 476949, p<0.001, 2 = 0.116); testlet effect (F (3, 895,232) =67336 , 

p<0.001, 2 = 0.049); content effect (F (3, 895,232) = 118717, p<0.001, 2 = 0.087); 

model (F (3, 895,232) = 111089, p<0.001, 2 = 0.087); two-way interaction between 

content effect and model (F (9, 895,232) = 36836, p<0.001, 2 = 0.081). 

For both simulation studies, the average SE was largest when the generated 

number of testlets was 3 and the testlet size was 5 (number of items per test was 15), 

and the average SE was smallest when the generated number of testlets was 6 and the 

testlet size was 10 (number of items per test was 60) (see Table 18). The other two 

conditions, where the number of items per test was 30 for both, had very close 
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average SEs. Given this pattern, it appears that, the more items in a test, the smaller 

the magnitude of the SE. 

Generally, the proposed cross-classified model had smaller average SEs than 

the other three models across the aggregated sixteen conditions, no matter whether 

the proposed model was the true model or not (see Table 19). However, lower SE in 

the proposed model is inconsistent with the other findings: generally, the proposed 

model, which has more parameters to estimate, should have relatively larger SE than 

the other three simpler models. Further research should investigate whether this result 

generalizes to other study conditions.  

 

Table 18 

Average SEs in Persons’ Ability Estimation by Number of Testlets and Testlet Length 

across the Other Manipulated Variables 

      Estimating Model 

  
Number of 

Testlets 
Testlet Size 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

Multilevel 

with Content 

Effects 

Rasch 

Simulation 1 

3 
5 0.3137 0.3907 0.3437 0.4181 

10 0.2534 0.3168 0.2872 0.3464 

6 
5 0.2676 0.3334 0.2700 0.3333 

10 0.2081 0.2594 0.2124 0.2606 

Simulation 2 

3 
5 0.3341 0.4035 0.3517 0.4150 

10 0.2828 0.3356 0.2961 0.3445 

6 
5 0.2888 0.3429 0.2797 0.3304 

10 0.2339 0.2748 0.2239 0.2587 
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Table 19 

Average SEs in Persons’ Ability Estimation by Testlet Effect and Content Effect 

across the other Manipulated Variables 

 

 
  Estimating Model 

 

Testlet 

Effects’ SD 

Content Effects’ 

SD 

Cross-

Classified 

Multilevel 

with 

Testlet 

Effects 

Multilevel 

with 

Content 

Effects 

Rasch 

 

 

 

 

 

 

 

 

 

 

Simulation 1 

0 

0 0.3659 0.3667 0.3662 0.3670 

0.5 0.3347 0.3653 0.3349 0.3656 

1 0.2650 0.3630 0.2652 0.3626 

1.5 0.2000 0.3570 0.2001 0.3547 

0.5 

0 0.3489 0.3496 0.3566 0.3575 

0.5 0.3248 0.3516 0.3309 0.3577 

1 0.2609 0.3509 0.2656 0.3536 

1.5 0.1995 0.3531 0.2028 0.3481 

1 

0 0.3060 0.3065 0.3344 0.3352 

0.5 0.2855 0.3100 0.3108 0.3345 

1 0.2358 0.3201 0.2563 0.3350 

1.5 0.1838 0.3272 0.2001 0.3323 

1.5 

0 0.2509 0.2511 0.2988 0.3054 

0.5 0.2386 0.2579 0.2886 0.3060 

1 0.2088 0.2797 0.2453 0.3101 

1.5 0.1624 0.2912 0.1969 0.3081 

 

 

 

 

 

 

 

 

 

 

Simulation 2 

0 

0 0.3648 0.3657 0.3651 0.3661 

0.5 0.3550 0.3647 0.3552 0.3651 

1 0.2867 0.3617 0.2868 0.3617 

1.5 0.2028 0.3555 0.2029 0.3542 

0.5 

0 0.3574 0.3581 0.3508 0.3517 

0.5 0.3523 0.3598 0.3465 0.3519 

1 0.2890 0.3588 0.2887 0.3521 

1.5 0.2153 0.3519 0.2142 0.3417 

1 

0 0.3370 0.3375 0.3305 0.3318 

0.5 0.3284 0.3402 0.3179 0.3311 

1 0.2751 0.3506 0.2766 0.3340 

1.5 0.2048 0.3408 0.2021 0.3254 

1.5 

0 0.2821 0.2824 0.3057 0.3075 

0.5 0.2799 0.2911 0.3003 0.3088 

1 0.2443 0.3004 0.2576 0.3080 

1.5 0.1837 0.3081 0.2047 0.3034 
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Estimation of Radom Effects’ SD 

This section presents the estimation of random effects’ SD. Analysis of 

ability’s SD is presented first, followed by an analysis of testlet effects’ SD. Finally, 

recovery of content clustering effects’ SD is presented.  

Estimation of Ability’s SD  

The true SD of persons’ ability was 1 across all conditions. The bias, RMSE, 

and SE in ability’s SD were computed for each condition first, and then a five-way 

ANOVA was conducted by specifying each of the three error indexes as the 

dependent variable and the five manipulated variables and model as the factors. The 

relative bias error index was not used here, since relative bias is the same as bias 

when the parameter’s true value is 1.  

Bias. The identified effects with both statistical and practical significance are 

provided in Table 45 Appendix E. For both simulation studies, content effect, model, 

and the interaction between the two factors, were found to have large effect sizes.  

Table 20 shows that the proposed cross-classified model had smaller average 

biases than the other three models across the sixteen aggregated conditions. This can 

be explained by the proper modeling of the persons’ ability, testlet effects, and 

content effects in the proposed model. In addition, as the magnitude of the content 

effects became larger, the average biases for the multilevel model with testlet effects 

and the Rasch model became increasingly higher. This might be due to the fact that 

larger magnitude of the content effects led the multilevel model with testlet effects 

and the Rasch model to fit the data even worse by ignoring the content effects. 

However, the magnitude of the testlet effects was not a significant factor. It is 
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expected that as the magnitude of the testlet effects becomes larger, the average 

biases for the multilevel model with content effects and the Rasch model, both of 

which do not account for the testlet effects, become increasingly higher. However, 

such expected pattern was not observed. Further research need to be conducted to 

explore the reasons for this unexpected result.  
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Table 20 

Average Biases in Ability’s SD Estimation by Testlet Effect and Content Effect across 

the Other Manipulated Variables 

 

 
  Estimating Model 

 

Testlet 

effects’ SD 

Content 

Effects’ SD 

Cross-

Classified 

Multilevel 

with 

Testlet 

Effects 

Multilevel 

with 

Content 

Effects 

Rasch 

 

 

 

 

 

 

 

 

 

 

Simulation 1 

0 

0 -0.0031 -0.0020 -0.0036 -0.0025 

0.5 0.0004 0.0374 -0.0001 0.0364 

1 -0.0092 0.1224 -0.0096 0.1201 

1.5 -0.0018 0.2456 -0.0021 0.2346 

0.5 

0 -0.0032 -0.0020 -0.0108 -0.0094 

0.5 0.0044 0.0363 -0.0038 0.0268 

1 -0.0094 0.1105 -0.0163 0.0984 

1.5 0.0022 0.2518 -0.0049 0.2304 

1 

0 -0.0071 -0.0061 -0.0334 -0.0320 

0.5 -0.0059 0.0306 -0.0330 -0.0017 

1 -0.0232 0.1076 -0.0489 0.0664 

1.5 -0.0363 0.2273 -0.0542 0.1801 

1.5 

0 -0.0191 -0.0184 -0.0631 -0.0576 

0.5 -0.0169 0.0152 -0.0543 -0.0332 

1 0.0006 0.1340 -0.0463 0.0525 

1.5 -0.0314 0.2212 -0.0626 0.1296 

 

 

 

 

 

 

 

 

 

 

Simulation 2 

0 

0 -0.0026 -0.0012 -0.0031 -0.0016 

0.5 -0.0092 0.0315 -0.0097 0.0309 

1 0.0004 0.1280 -0.0001 0.1229 

1.5 -0.0529 0.2151 -0.0532 0.2102 

0.5 

0 -0.0085 -0.0074 -0.0208 -0.0190 

0.5 0.0011 0.0444 -0.0132 0.0291 

1 -0.0035 0.1404 -0.0124 0.1236 

1.5 -0.0034 0.2153 -0.0136 0.1914 

1 

0 -0.0063 -0.0050 -0.0349 -0.0320 

0.5 -0.0067 0.0256 -0.0404 -0.0081 

1 -0.0173 0.1302 -0.0389 0.0808 

1.5 -0.0335 0.2105 -0.0622 0.1543 

1.5 

0 -0.0106 -0.0098 -0.0572 -0.0538 

0.5 -0.0143 0.0303 -0.0583 -0.0216 

1 -0.0035 0.1249 -0.0504 0.0463 

1.5 -0.0175 0.1996 -0.0514 0.1144 
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RMSE. The effects that were identified to have both statistical and practical 

significant impacts on the RMSE of ability’s SD are presented in Table 46 Appendix 

E. Same as bias, three effects, including content effect, model, and interaction 

between content effect and model, had large effect sizes; all the other effects were 

small or negligible.  

The proposed cross-classified model had smaller average RMSEs than the 

other three models across the sixteen aggregated conditions (see Table 21). This is 

consistent with the ANOVA results which indicated that model was a significant 

factor with a large effect size.  The smaller average RMSEs in the proposed cross-

classified model was consistent with the expectations that a better fitting model 

usually has less total estimation error. In addition, Table 23 shows that as the 

magnitude of the content effects became larger, the average RMSEs for the multilevel 

model with testlet effects and the Rasch model became increasingly higher. A 

possible explanation is that larger magnitude of the content effects led the multilevel 

model with testlet effects and the Rasch model to fit the data even worse by ignoring 

the content effects. Similar to the results in bias, the testlet effect was not a significant 

factor on RMSE as the content effect. Further research need to be conducted to 

explain whether this result was a function of the estimation procedure.  
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Table 21 

Average RMSEs in Ability’s SD Estimation across the Other Manipulated Variables 

 

 
  Estimating Model 

 

Testlet 

effects’ SD 

Content 

Effects’ SD 

Cross-

Classified 

Multilevel 

with 

Testlet 

Effects 

Multilevel 

with 

Content 

Effects 

Rasch 

 

 

 

 

 

 

 

 

 

 

Simulation 1 

0 

0 0.0211 0.0207 0.0210 0.0205 

0.5 0.0267 0.0437 0.0265 0.0428 

1 0.0337 0.1242 0.0338 0.1219 

1.5 0.0521 0.2465 0.0518 0.2355 

0.5 

0 0.0231 0.0228 0.0268 0.0262 

0.5 0.0277 0.0433 0.0295 0.0355 

1 0.0417 0.1136 0.0432 0.1015 

1.5 0.0712 0.2527 0.0710 0.2312 

1 

0 0.0296 0.0294 0.0538 0.0533 

0.5 0.0341 0.0395 0.0570 0.0448 

1 0.0506 0.1105 0.0679 0.0756 

1.5 0.0702 0.2286 0.0782 0.1812 

1.5 

0 0.0455 0.0452 0.0852 0.0803 

0.5 0.0408 0.0381 0.0758 0.0663 

1 0.0560 0.1366 0.0907 0.0788 

1.5 0.0829 0.2231 0.0863 0.1326 

 

 

 

 

 

 

 

 

 

 

Simulation 2 

0 

0 0.0208 0.0204 0.0206 0.0202 

0.5 0.0284 0.0439 0.0282 0.0430 

1 0.0481 0.1300 0.0479 0.1249 

1.5 0.0897 0.2161 0.0897 0.2112 

0.5 

0 0.0255 0.0250 0.0314 0.0300 

0.5 0.0279 0.0532 0.0300 0.0427 

1 0.0341 0.1421 0.0406 0.1253 

1.5 0.0539 0.2164 0.0571 0.1925 

1 

0 0.0271 0.0268 0.0552 0.0535 

0.5 0.0366 0.0437 0.0618 0.0518 

1 0.0454 0.1325 0.0655 0.0861 

1.5 0.0719 0.2118 0.0898 0.1555 

1.5 

0 0.0327 0.0324 0.0786 0.0768 

0.5 0.0511 0.0516 0.0879 0.0818 

1 0.0523 0.1278 0.0823 0.0789 

1.5 0.0746 0.2013 0.0856 0.1161 
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SE. The effects that were identified to have both statistical and practical 

significant impacts on the SE of ability’s SD are presented in Table 47 Appendix E. 

For both simulation studies, four main effects, including sample size, number of 

testlets, number of items, and model, had a moderate or large impact on the SE.  

To better understand the identified significant effects, average SEs under each 

level of sample size for the four models (Table 22), average SEs under each level of 

testlet number and testlet size for the four models (Table 23), and average SEs under 

each level of content effect and testlet effect for the four models (Table 24), are 

calculated and provided.  

For each model, as the sample size increased, a smaller magnitude of SE was 

found (Table 22). As expected, larger sample size would increase the stability in 

ability’s SD estimation.  

For each model, the average SE was largest when the generated number of 

testlets was 3 and the testlet size was 5 (number of items per test was 15), and the 

average SE was smallest when the generated number of testlets was 6 and the testlet 

size was 10 (number of items per test was 60) (see Table 23). The other two 

conditions, where the number of items per test was 30 for both, had close average 

SEs. Given this pattern, it appears that, the more items in a test, the smaller the 

magnitude of the SE in ability’s SD estimate.  

Among the sixteen aggregated conditions, the proposed cross-classified model 

had the largest average SEs, and the Rasch model had the smallest average SEs (see 

Table 24). No consistent patterns were found when comparing between the multilevel 

model with testlet effects and the multilevel model with content effects. Again, the 
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higher average SEs in the proposed model might have been due to the increased 

number of parameters estimated.  

Table 22 

Average SEs in Ability’s SD Estimation by Sample Size across the Other Manipulated 

Variables 

    Estimating Model 

  Sample Size 
Cross-

Classified 

Multilevel with 

Testlet Effects 

Multilevel with 

Content Effects 
Rasch 

Simulation 1 

500 0.0403 0.0299 0.0336 0.0253 

1000 0.0270 0.0206 0.0228 0.0175 

2000 0.0193 0.0147 0.0162 0.0125 

Simulation 2 

500 0.0402 0.0298 0.0326 0.0246 

1000 0.0271 0.0205 0.0224 0.0171 

2000 0.0195 0.0150 0.0161 0.0125 

 

Table 23 

Average SEs in Ability’s SD Estimation by Number of Testlets and Testlet Size across 

the Other Manipulated Variables 

      Estimating Model 

  
Number of 

Testlets 
Testlet Size 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

Multilevel 

with Content 

Effects 

Rasch 

Simulation 1 

3 
5 0.0427 0.0321 0.0360 0.0272 

10 0.0276 0.0209 0.0225 0.0175 

6 
5 0.0265 0.0200 0.0225 0.0171 

10 0.0187 0.0140 0.0158 0.0120 

Simulation 2 

3 
5 0.0421 0.0320 0.0345 0.0266 

10 0.0280 0.0211 0.0224 0.0173 

6 
5 0.0267 0.0200 0.0226 0.0169 

10 0.0189 0.0140 0.0153 0.0116 
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Table 24 

Average SEs in Ability’s SD Estimation by Testlet Effect and Content Effect across 

the Other Manipulated Variables 

 

 
  Estimating Model 

 

Testlet 

effects’ SD 

Content Effects’ 

SD 

Cross-

Classified 

Multilevel 

with 

Testlet 

Effects 

Multilevel 

with 

Content 

Effects 

Rasch 

 

 

 

 

 

 

 

 

 

 

Simulation 1 

0 

0 0.0203 0.0200 0.0201 0.0199 

0.5 0.0224 0.0194 0.0223 0.0194 

1 0.0269 0.0192 0.0268 0.0191 

1.5 0.0344 0.0195 0.0343 0.0189 

0.5 

0 0.0207 0.0206 0.0195 0.0194 

0.5 0.0235 0.0213 0.0223 0.0203 

1 0.0277 0.0200 0.0262 0.0191 

1.5 0.0343 0.0191 0.0328 0.0180 

1 

0 0.0224 0.0224 0.0180 0.0180 

0.5 0.0253 0.0219 0.0209 0.0176 

1 0.0291 0.0205 0.0237 0.0170 

1.5 0.0413 0.0218 0.0334 0.0187 

1.5 

0 0.0285 0.0283 0.0185 0.0181 

0.5 0.0294 0.0264 0.0187 0.0172 

1 0.0332 0.0243 0.0219 0.0170 

1.5 0.0425 0.0232 0.0278 0.0172 

 

 

 

 

 

 

 

 

 

 

Simulation 2 

0 

0 0.0195 0.0192 0.0193 0.0190 

0.5 0.0221 0.0200 0.0219 0.0198 

1 0.0285 0.0209 0.0285 0.0201 

1.5 0.0360 0.0188 0.0358 0.0186 

0.5 

0 0.0220 0.0218 0.0198 0.0191 

0.5 0.0238 0.0211 0.0214 0.0189 

1 0.0283 0.0200 0.0254 0.0183 

1.5 0.0354 0.0204 0.0321 0.0186 

1 

0 0.0238 0.0235 0.0183 0.0176 

0.5 0.0251 0.0224 0.0194 0.0174 

1 0.0312 0.0212 0.0244 0.0176 

1.5 0.0378 0.0205 0.0295 0.0170 

1.5 

0 0.0251 0.0249 0.0163 0.0159 

0.5 0.0290 0.0255 0.0189 0.0167 

1 0.0352 0.0254 0.0225 0.0177 

1.5 0.0403 0.0228 0.0257 0.0169 
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Estimation of Testlet Effects’ SD 

Since testlet effects were modeled under the proposed cross-classified model 

and the multilevel model with testlet effects, the discussion of testlet effects’ SD 

would refer only to the two models. A five-way ANOVA was conducted on each of 

the four error indexes, bias, relative bias, RMSE, and SE by including the five 

manipulated variables and model as the factors.  

Bias. For both simulation studies, only testlet effect had a large impact on the 

bias in testlet effects’ SD estimation, all the other effects were small or negligible (see 

Table 48 in Appendix E).  

Table 25 provides the average biases in the testlet effects’ SD estimation for 

the proposed cross-classified model and the multilevel model with testlet effects 

under the sixteen aggregated conditions formed by the four levels of testlet effect and 

the four levels of content effect. Under the conditions with no testlet effect, both 

models had positive average biases; while, under the conditions with non-zero testlet 

effects, both models had negative average biases. Table 25 shows that, the cross-

classified model had relatively smaller average biases than the multilevel model with 

testlet effects, which can be explained by the proper modeling of the content effects 

in the proposed cross-classified model.  



 

 92 

 

Table 25 

Average Biases in Testlet Effect’s SD Estimation by Testlet Effect and Content Effect 

across the Other Manipulated Variables 

 
  Simulation 1 Simulation 2 

Testlet effects’ 

SD 
Content Effects’ SD 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

0 

0 0.0591 0.0597 0.0624 0.0634 

0.5 0.0509 0.0701 0.0537 0.0683 

1 0.0428 0.0839 0.0436 0.0971 

1.5 0.0373 0.1466 0.0411 0.0917 

0.5 

0 -0.0428 -0.0428 -0.0052 -0.0054 

0.5 -0.0549 -0.0565 -0.0092 -0.0193 

1 -0.0689 -0.1094 -0.0325 -0.0680 

1.5 -0.0907 -0.1457 -0.0419 -0.0864 

1 

0 -0.0347 -0.0351 -0.0428 -0.0431 

0.5 -0.0417 -0.0556 -0.0505 -0.0692 

1 -0.0549 -0.1129 -0.0581 -0.1532 

1.5 -0.0621 -0.2134 -0.0820 -0.2212 

1.5 

0 -0.0454 -0.0457 -0.0544 -0.0548 

0.5 -0.0488 -0.0792 -0.0680 -0.0972 

1 -0.0616 -0.1513 -0.0724 -0.1766 

1.5 -0.0723 -0.2637 -0.0802 -0.2997 
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RMSE. The effects that were identified to have both statistical and practical 

significant impacts on the RMSE of testlet effects’ SD are presented in Table 49 

Appendix E. For both simulation studies, the number of items per testlet, content 

effect, and model each had a moderate impact on RMSE. The impact of the 

interaction between content effect and model was moderate in simulation study 1 and 

small in simulation study 2.  

For both simulation studies, when the number of items per testlet was 

generated to be five, the average RMSE was larger as compared with that with ten 

items per testlet for both the proposed cross-classified model and the multilevel 

model with testlet effects (see Table 26). A possible explanation is that longer testlet 

provides more information in testlet effects’ SD estimation, which then reduces the 

total estimation error.  

Table 27 shows that the proposed cross-classified model had relatively smaller 

average RMSEs than the multilevel model with testlet effects across simulation 

conditions. This is consistent with the expectations that the proposed model, which 

appropriately accounted for the content effects, is expected to have less total 

estimation error than the multilevel model with testlet effects, which inappropriately 

ignored the content effects.  

In addition, Table 27 demonstrates that as the magnitude of the content effects 

became larger, the average RMSEs for the multilevel model with testlet effects 

became larger. Again, this might due to the increasingly worse fit of the multilevel 

model with testlet effects by ignoring the content effects.  
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Table 26 

Average RMSEs in Testlet Effects’ SD Estimation by Testlet Size across the Other 

Manipulated Variables 

  Simulation 1 Simulation 2 

Testlet Size 
Cross-

Classified 

Multilevel with 

Testlet Effects 
Cross-Classified 

Multilevel with 

Testlet Effects 

5 0.1279 0.1894 0.1288 0.1861 

10 0.0701 0.1191 0.0757 0.1242 

 

Table 27 

Average RMSEs in Testlet Effects’ SD Estimation by Testlet Effect and Content Effect 

across the Other Manipulated Variables 

 
  Simulation 1 Simulation 2 

Testlet effects’ 

SD 
Content Effects’ SD 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

0 

0 0.1116 0.1123 0.1144 0.1153 

0.5 0.1018 0.1161 0.1051 0.1137 

1 0.0922 0.1140 0.0934 0.1193 

1.5 0.0857 0.1553 0.0902 0.1021 

0.5 

0 0.0990 0.0989 0.1015 0.1015 

0.5 0.1097 0.1169 0.0978 0.1148 

1 0.1228 0.1879 0.1061 0.1829 

1.5 0.1450 0.3057 0.1145 0.2302 

1 

0 0.0750 0.0751 0.0861 0.0860 

0.5 0.0796 0.0883 0.0941 0.1115 

1 0.0906 0.1639 0.1022 0.1810 

1.5 0.0971 0.2633 0.1222 0.2941 

1.5 

0 0.0842 0.0843 0.0925 0.0926 

0.5 0.0898 0.1068 0.0993 0.1212 

1 0.0969 0.1750 0.1047 0.1985 

1.5 0.1036 0.3038 0.1117 0.3179 
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Relative Bias. The same significant main effects were identified for both 

simulation studies, even though with different magnitudes of effect sizes (see Table 

50 in Appendix E). For simulations study 1, the magnitude for the four main effects, 

testlet size, testlet effect, content effect, and model, were small, moderate, moderate, 

and small, respectively; however, for simulation study 2, the magnitude were 

moderate, small, moderate, and small, respectively.   

Table 28 

Average Relative Biases in Testlet Effects’ SD Estimation by Testlet Size across the 

Other Manipulated Variables 

  Simulation 1 Simulation 2 

Testlet Size 
Cross-

Classified 

Multilevel with 

Testlet Effects 
Cross-Classified 

Multilevel with 

Testlet Effects 

5 -0.1110 -0.1542 -0.1088 -0.1912 

10 -0.0324 -0.0935 -0.0331 -0.0970 

 

For both simulation studies, when the number of items per testlet was 

generated to be five, the average relative bias was larger when compared to that with 

ten items per testlet for both the proposed cross-classified model and the multilevel 

model with testlet effects (Table 28). This might be explained by the larger 

information provided by longer testlet.  

Table 29 shows that the proposed cross-classified model had relatively smaller 

average relative biases than the multilevel model with testlet effects across simulation 

conditions. This is consistent with the expectations that the proposed model has less 

systematic estimation error than the multilevel model with testlet effects, which 

ignored the content effects. In addition, Table 29 demonstrates that as the magnitude 

of the content effects became larger, the average relative biases for the multilevel 



 

 96 

 

model with testlet effects became larger. This might due to the increasingly worse fit 

of the multilevel model with testlet effects by ignoring the content effects.  

Table 29 

Average Relative Biases in Testlet Effects’ SD Estimation by Testlet Effect and 

Content Effect across the Other Manipulated Variables 

 
  Simulation 1 Simulation 2 

Testlet effects’ 

SD 

Content Effects’ 

SD 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

0 

0 NA NA NA NA 

0.5 NA NA NA NA 

1 NA NA NA NA 

1.5 NA NA NA NA 

0.5 

0 -0.0856 -0.0857 -0.0708 -0.0713 

0.5 -0.1099 -0.1131 -0.0708 -0.1092 

1 -0.1379 -0.2189 -0.1167 -0.2698 

1.5 -0.1815 -0.2914 -0.1400 -0.3181 

1 

0 -0.0347 -0.0351 -0.0528 -0.0530 

0.5 -0.0417 -0.0556 -0.0646 -0.0850 

1 -0.0549 -0.1129 -0.0754 -0.1847 

1.5 -0.0621 -0.2134 -0.1109 -0.2771 

1.5 

0 -0.0303 -0.0305 -0.0353 -0.0356 

0.5 -0.0325 -0.0528 -0.0460 -0.0645 

1 -0.0411 -0.1009 -0.0502 -0.1208 

1.5 -0.0482 -0.1758 -0.0562 -0.2041 
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SE. Table 51 in Appendix E provides the identified effects that were both 

statistical and practical significant. For both simulation studies, sample size and 

testlet size were found to have large impacts on the SE of testlet effects’ SD. Testlet 

effect had a moderate effect size in simulation study 1, but a small effect size in 

simulation study 2.  

For both the proposed cross-classified model and the multilevel model with 

testlet effects, as sample size increased, the magnitude of SE decreased (see Table 

30). In addition, as the number of items per testlet increased, the magnitude of SE 

also decreased (see Table 31). Generally, the proposed cross-classified model had 

relatively larger average SEs than the multilevel model with testlet effects (see Table 

30, 31, 32), which can be explained by the increased number of parameter estimated 

for the proposed model. 

Table 30 

Average SEs in Testlet Effects’ SD Estimation by Sample Size across the Other 

Manipulated Variables 

  Simulation 1 Simulation 2 

Sample Size 
Cross-

Classified 

Multilevel with 

Testlet Effects 
Cross-Classified 

Multilevel with 

Testlet Effects 

500 0.1049 0.0959 0.1054 0.0919 

1000 0.0767 0.0681 0.0767 0.0642 

2000 0.0526 0.0457 0.0539 0.0456 
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Table 31 

Average SEs in Testlet Effects’ SD Estimation by Testlet Size across the Other 

Manipulated Variables   

  Simulation 1 Simulation 2 

Testlet Size 
Cross-

Classified 

Multilevel with 

Testlet Effects 
Cross-Classified 

Multilevel with 

Testlet Effects 

5 0.0967 0.0867 0.0949 0.0810 

10 0.0594 0.0530 0.0624 0.0535 

 

Table 32 

Average SEs in Testlet Effects’ SD Estimation by Testlet Effect and Content Effect 

across the Other Manipulated Variables 

 
  Simulation 1 Simulation 2 

Testlet effects’ 

SD 

Content Effects’ 

SD 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

Cross-

Classified 

Multilevel 

with Testlet 

Effects 

0 

0 0.0943 0.0947 0.0954 0.0958 

0.5 0.0877 0.0889 0.0898 0.0854 

1 0.0812 0.0608 0.0821 0.0484 

1.5 0.0765 0.0308 0.0797 0.0265 

0.5 

0 0.0873 0.0872 0.0843 0.0843 

0.5 0.0929 0.0900 0.0811 0.0801 

1 0.0991 0.0908 0.0832 0.0676 

1.5 0.1097 0.0814 0.0853 0.0548 

1 

0 0.0619 0.0619 0.0709 0.0707 

0.5 0.0626 0.0611 0.0740 0.0728 

1 0.0672 0.0620 0.0793 0.0752 

1.5 0.0692 0.0639 0.0856 0.0616 

1.5 

0 0.0624 0.0624 0.0659 0.0659 

0.5 0.0647 0.0633 0.0654 0.0631 

1 0.0657 0.0612 0.0676 0.0631 

1.5 0.0664 0.0578 0.0688 0.0604 
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Estimation of Content Effects’ SD 

The analysis of the content effects’ SD recovery is discussed in this section. 

Models mentioned in this section refer to the proposed cross-classified model and the 

multilevel model with content effects, which are the only two models that have 

random content effects. Again, five-way ANOVA was conducted first, followed by 

some descriptive statistics.  

Bias. Table 52 in Appendix E contains the effects that were identified to have 

both statistical and practical significant impacts on bias of content effects’ SD 

recovery. For both simulation studies, content effect was significant with a large 

effect size; testlet effect, model, and interactions among testlet effect, content effect, 

and model were significant with moderate effect sizes.  

The proposed cross-classified model in general had relatively smaller average 

biases compared with the multilevel model with content effects (see Table 33). This is 

consistent with the expectations that the appropriate modeling of the testlet effects in 

the proposed model is expected to produce smaller systematic estimation error than 

the multilevel model with content effects, which inappropriately ignored the testlet 

effects.  

In addition, as the magnitude of the testlet effects became larger, the 

multilevel model with content effects had increasingly higher average biases in 

content effects’ SD estimation (see Table 33). This might be due to the increasingly 

worse fit of the multilevel model with content effects when fitting data with 

increasingly larger testlet effects.  
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Table 33 

Average Biases in Content Effects’ SD Estimation by Testlet Effect and Content Effect 

across the Other Manipulated Variables 

 
  Simulation 1 Simulation 2 

Testlet effects’ SD 
Content Effects’ 

SD 

Cross-

Classified 

Multilevel 

with Content 

Effects 

Cross-

Classified 

Multilevel 

with Content 

Effects 

0 

0 0.0374 0.0386 0.0402 0.0415 

0.5 -0.0142 -0.0142 -0.0316 -0.0317 

1 -0.0090 -0.0102 -0.0227 -0.0228 

1.5 -0.0160 -0.0177 -0.0145 -0.0165 

0.5 

0 0.0353 0.0422 0.0342 0.0402 

0.5 -0.0348 -0.0446 -0.0497 -0.0705 

1 -0.0252 -0.0509 -0.0313 -0.0826 

1.5 -0.0321 -0.0685 -0.0375 -0.1005 

1 

0 0.0254 0.0351 0.0275 0.0721 

0.5 -0.0489 -0.0562 -0.0538 -0.0671 

1 -0.0440 -0.1351 -0.0321 -0.1681 

1.5 -0.0335 -0.1881 -0.0302 -0.1818 

1.5 

0 0.0176 0.1009 0.0184 0.0704 

0.5 -0.0739 -0.1855 -0.0633 -0.1489 

1 -0.0464 -0.2260 -0.0604 -0.2618 

1.5 -0.0430 -0.3293 -0.0377 -0.3379 
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Relative Bias. Table 53 in Appendix E provides the effects that were 

identified to have both statistical and practical significant impacts on relative bias of 

content effects’ SD recovery. For simulation study 1, testlet effect was found to have 

a large impact on the relative bias, model had a moderate impact, and the interaction 

between testlet and model was also moderate; all the other effects were small or 

negligible. However, no moderate or large effect was identified in simulation study 2. 

Similar to the results in bias, the proposed cross-classified model in general 

had relatively smaller average relative biases compared with the multilevel model 

with content effects (see Table 34). As the magnitude of the testlet effects became 

larger, the multilevel model with content effects had increasingly higher average 

relative biases in content effects’ SD estimation (see Table 34). This can be explained 

by the appropriate modeling and inappropriate modeling of the testlet effects in the 

proposed model and the multilevel model with content effects, respectively.  
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Table 34 

Average Relative Biases in Content Effects’ SD Estimation by Testlet Effect and 

Content Effect across the Other Manipulated Variables 

 
  Simulation 1 Simulation 2 

Testlet effects’ SD 
SD of Content 

Effects 

Cross-

Classified 

Multilevel 

with Content 

Effects 

Cross-

Classified 

Multilevel 

with Content 

Effects 

0 

0 NA NA NA NA 

0.5 -0.0284 -0.0284 -0.0938 -0.0936 

1 -0.0090 -0.0102 -0.0271 -0.0269 

1.5 -0.0107 -0.0118 -0.0080 -0.0094 

0.5 

0 NA NA NA NA 

0.5 -0.0697 -0.0891 -0.1628 -0.1995 

1 -0.0252 -0.0509 -0.0354 -0.0893 

1.5 -0.0214 -0.0457 -0.0252 -0.0666 

1 

0 NA NA NA NA 

0.5 -0.0978 -0.1123 -0.1452 -0.1112 

1 -0.0440 -0.1351 -0.0398 -0.1805 

1.5 -0.0224 -0.1254 -0.0188 -0.1193 

1.5 

0 NA NA NA NA 

0.5 -0.1478 -0.3711 -0.1615 -0.2506 

1 -0.0464 -0.2260 -0.0682 -0.2688 

1.5 -0.0287 -0.2196 -0.0244 -0.2254 
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RMSE. Effects that were both statistically and practically significant on 

RMSE are presented in Table 54 Appendix E. Testlet effect had a large and a 

moderate impact in simulation study 1 and simulation study 2, respectively. Model 

and the interaction between model and testlet effect were both of moderate effects.  

Generally, the multilevel model with content effects had relatively larger 

average RMSEs compared with the proposed cross-classified model across the 

sixteen aggregated conditions (see Table 35). In addition, as the magnitude of the 

testlet effects became larger, the average RMSEs associated with the multilevel 

model with content effects became larger. This is consistent with the expectations that 

the proposed model is expected to have less total estimation error than the multilevel 

model with content effects. It is also expected that the multilevel model with content 

effects becomes increasingly worse fit as the magnitude of testlet effects becomes 

larger, which results in larger RMSEs. 
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Table 35 

Average RMSES in Content Effects’ SD Estimation by Testlet Effect and Content 

Effect across the Other Manipulated Variables 

 
  Simulation 1 Simulation 2 

Testlet effects’ SD 
Content Effects’ 

SD 

Cross-

Classified 

Multilevel 

with Content 

Effects 

Cross-

Classified 

Multilevel 

with Content 

Effects 

0 

0 0.0780 0.0793 0.0837 0.0849 

0.5 0.0741 0.0737 0.1000 0.0997 

1 0.0535 0.0534 0.0625 0.0615 

1.5 0.0610 0.0611 0.0716 0.0714 

0.5 

0 0.0744 0.0816 0.0757 0.0758 

0.5 0.0806 0.0825 0.1047 0.1177 

1 0.0582 0.0702 0.0674 0.0990 

1.5 0.0684 0.0885 0.0697 0.1125 

1 

0 0.0640 0.0669 0.0663 0.0934 

0.5 0.1014 0.1183 0.1113 0.1369 

1 0.0804 0.1483 0.0713 0.1777 

1.5 0.0707 0.1947 0.0716 0.1884 

1.5 

0 0.0521 0.1237 0.0532 0.0833 

0.5 0.1254 0.2056 0.1267 0.2200 

1 0.0882 0.2328 0.0969 0.2711 

1.5 0.0786 0.3328 0.0753 0.3409 
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SE. For both simulation studies, sample size, number of testlets, number of 

items per testlet, and content effect, were all found to have a moderate or a large 

impact on the SE in content effects’ SD estimation (see Table 55 in Appendix E). 

Model did not have a significant impact on SE in simulation study 1, but a small 

impact in simulation study 2.  

For both the cross-classified model and the multilevel model with content 

effects, as sample size increased, the magnitude of SE became smaller (Table 36). 

This indicates that increasing the sample size might improve the stability in content 

effects’ SD estimation.  

For both models, the average SE was largest when the generated number of 

testlets was 3 and the testlet size was 5 (number of items per test was 15), and the 

average SE was smallest when the generated number of testlets was 6 and the testlet 

size was 10 (number of items per test was 60) (see Table 37). The other two 

conditions, where the number of items per test was 30 for both, had very close 

average SEs. Given this pattern, it appears that, the more items in a test, the smaller 

the magnitude of the SE in content effects’ SD estimation. A possible explanation is 

that longer test improves the stability in content effects’ SD estimation. 

For both simulation studies, the proposed cross-classified model had relatively 

larger average SEs compared with the multilevel model with content effects across 

simulation conditions (see Table 38). This might have been due to the increased 

number of parameters estimated for the proposed model.  
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Table 36 

Average SEs in Content Effects’ SD Estimation by Sample Size across the Other 

Manipulated Variables 

  Simulation 1 Simulation 2 

Sample Size 
Cross-

Classified 

Multilevel with 

Content Effects 

Cross-

Classified 

Multilevel with 

Content Effects 

500 0.0790 0.0723 0.0855 0.0738 

1000 0.0569 0.0525 0.0602 0.0532 

2000 0.0390 0.0377 0.0428 0.0375 

 

Table 37 

Average SEs in Content Effects’ SD Estimation by Number of Testlets and Testlet Size 

across the Other Manipulated Variables 

 
  Simulation 1 Simulation 2 

Number of Testlets Testlet Size 
Cross-

Classified 

Multilevel 

with Content 

Effects 

Cross-

Classified 

Multilevel 

with Content 

Effects 

3 
5 0.0874 0.0810 0.0916 0.0795 

10 0.0548 0.0485 0.0611 0.0496 

6 
5 0.0548 0.0535 0.0584 0.0555 

10 0.0362 0.0335 0.0402 0.0347 
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Table 38 

Average SEs in Content Effects’ SD Estimation by Testlet Effect and Content Effect 

across the Other Manipulated Variables 

 
  Simulation 1 Simulation 2 

Testlet effects’ SD 
Content Effects’ 

SD 

Cross-

Classified 

Multilevel 

with Content 

Effects 

Cross-

Classified 

Multilevel 

with Content 

Effects 

0 

0 0.0682 0.0691 0.0731 0.0737 

0.5 0.0653 0.0650 0.0777 0.0775 

1 0.0447 0.0446 0.0520 0.0511 

1.5 0.0467 0.0466 0.0480 0.0478 

0.5 

0 0.0650 0.0692 0.0670 0.0623 

0.5 0.0670 0.0645 0.0848 0.0789 

1 0.0453 0.0435 0.0515 0.0500 

1.5 0.0462 0.0449 0.0469 0.0444 

1 

0 0.0584 0.0537 0.0600 0.0514 

0.5 0.0761 0.0639 0.0829 0.0610 

1 0.0520 0.0449 0.0551 0.0517 

1.5 0.0511 0.0447 0.0480 0.0404 

1.5 

0 0.0488 0.0551 0.0495 0.0361 

0.5 0.0867 0.0691 0.0957 0.0703 

1 0.0606 0.0486 0.0626 0.0416 

1.5 0.0507 0.0388 0.0506 0.0391 
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Model Fit Indices  

Five indices, AIC, AICC, BIC, CAIC, and HQIC, produced by SAS PROC 

GLIMMIX were used to assess model fit. Appendix F shows the percentages of 

replications in which the correct model was identified by using each of the five 

indices for each condition.  

Generally, the five indices performed equally well in correctly identifying the 

proposed cross-classified model as the best fitting model when both the magnitude of 

the testlet effects and the magnitude of the content clustering effects were large (SD = 

1 or 1.5) (see Appendix F). A possible explanation is that, the proposed cross-

classified model performed much better than the three under-parameterized models 

when the magnitude of the two random effects were large, which makes the five 

indices easy to identify the proposed model as the best fitting model.  

The five fit indices, especially BIC and CAIC, did not perform well in 

correctly identifying the proposed cross-classified model as the best fitting model 

when equal testlet effects’ SDs and/or equal content effects’ SDs were generated with 

small magnitudes (SD = 0.5) (see Appendix F). Table 39 contains the conditions that 

have small percentages of replications in which the proposed cross-classified model 

was correctly identified as the best fitting model using each of the five indices. Under 

those conditions, the percentages of replications were small for both BIC and CAIC, 

while AIC, AICC, and HQIC performed better than BIC and CAIC by having 

relatively larger percentages. An identified common characteristic of those conditions 

with small percentages was that either the magnitude of the testlet effects was small 

(SD = 0.5) or the magnitude of the content clustering effects was small (SD = 0.5). A 
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possible explanation is that, when the magnitude of the testlet effects and/or the 

content clustering effects was small, the proposed model did not perform significantly 

better than the under-parameterized models, which made the fit indices hard to 

identify the proposed model as the best fitting model. 

However, if the testlet effects’ SDs and the content effects’ SDs were 

generated to be unequal across testlets and content areas, even though the average 

SDs were small (average SD = 0.5), the five fit indices still performed well in 

identifying the proposed model as the best fitting model under most conditions (see 

Table 39). A possible explanation is that, when the testlet effects’ SDs and the content 

effects’ SDs were generated to be unequal, even though the average SD was small, 

one or more testlet effects’ SD and content clustering effects’ SD was large, which 

made the proposed model fit the generated data much better than the three under-

parameterized models.   
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Table 39 

Conditions with Low Percentages of replications in which the proposed cross-

classified model was correctly identified as the best fitting model using each of the 

five indices  

    Simulation Study 1 Simulation Study 2 

Condition AIC% AICC% BIC% CAIC% HQIC% AIC% AICC% BIC% CAIC% HQIC% 

6 1-1-1-2-2 72 72 2 0 34 100 100 86 72 100 

7 1-1-1-2-3 64 64 10 2 28 100 100 84 80 92 

8 1-1-1-2-4 38 38 8 4 24 100 100 96 90 100 

10 1-1-1-3-2 78 78 26 22 60 92 92 66 54 84 

14 1-1-1-4-2 74 74 28 26 48 96 96 52 38 76 

24 1-1-2-2-4 98 98 84 80 98 100 100 100 100 100 

38 1-2-1-2-2 98 98 22 8 66 100 100 100 100 100 

39 1-2-1-2-3 94 94 8 0 62 100 100 100 100 100 

40 1-2-1-2-4 80 80 0 0 32 100 100 100 100 100 

70 2-1-1-2-2 96 96 26 20 74 100 100 94 86 98 

71 2-1-1-2-3 92 92 20 12 64 100 100 100 100 100 

72 2-1-1-2-4 80 80 12 6 46 100 100 100 98 100 

74 2-1-1-3-2 98 98 70 56 92 100 100 92 88 98 

78 2-1-1-4-2 96 96 42 32 78 100 100 88 78 98 

102 2-2-1-2-2 100 100 78 50 100 100 100 100 100 100 

103 2-2-1-2-3 98 98 46 32 88 100 100 100 100 100 

104 2-2-1-2-4 100 100 6 4 68 100 100 100 100 100 

134 3-1-1-2-2 100 100 82 66 100 100 100 100 100 100 

135 3-1-1-2-3 98 98 48 32 92 100 100 100 100 100 

136 3-1-1-2-4 96 96 18 14 76 100 100 100 100 100 

142 3-1-1-4-2 96 96 58 48 90 96 96 68 60 86 

167 3-2-1-2-3 100 100 94 86 100 100 100 100 100 100 

168 3-2-1-2-4 100 100 64 50 96 100 100 100 100 100 

Note: Condition a-b-c-d-e, where a = sample size, b = number of testlets, c = number 

of items per testlet, d = magnitude of the testlet effect, e = magnitude of the content 

effects. Refer Table 3 to get the corresponding levels for each manipulated variable.  
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Chapter 5:  Summary and Discussions 

This chapter includes three sections. The first section summarizes the results 

for both simulation studies. The second section presents the contributions. The third 

section discusses limitations of this study and recommendations for future research.  

Summary of Results 

The present study proposed a cross-classified model to account for local item 

dependence (LID) that is caused by two factors simultaneously, which is named as 

dual local item dependence (DLID) in this study. It demonstrated that the proposed 

cross-classified model accounting for DLID is algebraically equivalent with a 

constrained version of the testlet model accounting for two types of LID (Jiao et al., 

2009).  

Two simulation studies were designed and conducted with the primary 

purpose of evaluating the performance of the proposed cross-classified model. Data 

sets with DLID were simulated with both testlet effects and content clustering effects. 

The second purpose of this study was to investigate the potential factors affecting the 

need to use the more complex cross-classified model over the simplified multilevel 

modeling of LID by ignoring cross-classification structure.  

For both simulation studies, five factors were manipulated, including sample 

size (500, 1000, and 2000), number of testlets (3 and 6), number of items per testlet (5 

and 10), magnitude of testlet effects represented by standard deviation (SD) (0, 0.5, 1, 

and 1.5), and magnitude of content clustering effects represented by SD (0, 0.5, 1, and 
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1.5). The difference between the two simulation studies was that, simulation study 1 

constrained the testlet effects’ SDs as well as the content clustering effects’ SDs as 

the same across the testlets and content areas, respectively; simulation study 2 

released this constraint by having mixed testlet effects’ SDs and mixed content 

clustering effects’ SDs.  

Bias, relative bias, root mean square error (RMSE), and standard error (SE) 

for parameter estimates were investigated by conducting analysis of variance 

(ANOVA) and providing descriptive statistics. The 0.05 alpha-level was used to 

determine statistical significance first, and then a minimum cutoff for practical 

significance of 2 = 0.01 was used, which resulted in the detection of effect with at 

least small practical significance.  

Estimation of Item Difficulty 

Sample size significantly impacted the RMSE and the SE in item difficulty 

estimation. As sample size increased, both RMSE and SE became smaller. This 

indicates that, larger samples yielded more accurate parameter estimations by having 

less total estimation errors and more stable estimations across replications.  

Both of the two manipulated variables, number of testlets and number of items 

per testlet, had no significant impact on any of the four error indexes, bias, relative 

bias, RMSE, and SE, in item difficulty estimation.  

For both simulation studies, magnitude of the testlet effects, magnitude of the 

content clustering effects, and model, were all found to have significant impacts on 

relative bias, RMSE, and SE. In addition, the interaction between model and testlet 
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effect and the interaction between model and content effect also had significant 

impacts on relative bias, RMSE, and SE.  

Generally, the proposed cross-classified model had smaller bias, smaller 

relative bias, smaller RMSE, and larger SE than the other three estimating models 

across simulated conditions. This result is consistent with what was found by Jiao et 

al. (2012). Lower bias, relative bias, and RMSE were found in the proposed model, 

which appropriately accounted for both the testlet effects and the content clustering 

effects. However, the proposed cross-classified model had slightly higher SE due to 

the increased number of parameters estimated.  

Estimation of Persons’ Ability 

Persons’ ability was evaluated and compared in terms of three error indexes, 

bias, RMSE, and SE. Relative bias was not appropriately used in analyzing ability, 

because when ability was randomly generated from N(0, 1), plenty of values would 

be very close to 0, which made the relative bias became extremely large.  

Sample size had no significant impact on any of the three error indexes. This 

is consistent with the expectations that the precision of person parameters should not 

be affected by the number of persons, which was also found by previous research 

(e.g. Kamata, 2001). 

Number of testlets had a significant impact on RMSE: the larger the number 

of testlets, the smaller the RMSE in persons’ ability estimation. Both number of 

testlets and number of items per testlet significantly impacted the SE in the ability 

estimation: the more items in a test, the smaller the SE in persons’ ability estimation.  
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The proposed cross-classified model had relatively smaller RMSE and SE 

than the other three models. The lower RMSE in the proposed model can be 

explained by the proper modeling of persons’ ability, testlet effects, and content 

clustering effects separately. However, lower SE in the proposed model is 

inconsistent with the expectations: the proposed model, which has more parameters to 

estimate, is expected to have relatively larger SE than the other three simpler models. 

Further research should investigate whether this result generalizes across other 

conditions.  

Estimation of Ability’s SD 

Sample size had a large impact on the SE in ability’s SD estimation. Larger 

sample size resulted in smaller SE in ability’s SD estimation. Both factors, the 

number of testlets and the number of items per testlet, had large impacts on the SE of 

ability’s SD: the more items in a test, the smaller the SE in ability’s SD recovery. 

The model factor significantly impacted bias, RMSE, and SE. Generally, the 

proposed cross-classified model had smaller bias and RMSE in ability’s SD 

estimation than the other three models. Therefore, the proposed model was more 

effective in recovering ability’s SD. However, the proposed model had larger SE than 

the other three estimating models. Again, this can be explained by the increased 

difficulty in separating the ability, testlet effects, and content clustering effects when 

estimating the proposed model.  

As the magnitude of the content clustering effects became larger, the bias and 

RMSE for the multilevel model with testlet effects and the Rasch model became 

increasingly higher. A possible explanation is that larger magnitude of the content 
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clustering effects led the multilevel model with testlet effects and the Rasch model to 

perform even worse by inappropriately ignoring the content clustering effects. 

However, the magnitude of the testlet effects was not a significant factor. It is 

expected that as the magnitude of the testlet effects becomes larger, the bias and 

RMSE for the multilevel model with content effects and the Rasch model, both of 

which do not account for the testlet effects, become increasingly higher. Further 

research should explain whether this result was a function of the estimation 

procedure.  

Estimation of Testlet Effects’ SD and Content Effects’ SD 

The recovery of testlet effects’ SD was evaluated and compared between the 

proposed cross-classified model and the multilevel model with testlet effects. 

Similarly, the recovery of content effects’ SD was evaluated and compared between 

the proposed cross-classified model and the multilevel model with content effects. 

Sample size was found to have a large impact on both the SE of testlet effects’ 

SD and the SE of content effects’ SD. As sample size increased, the SEs of the two 

random effects’ SDs became smaller. Testlet length had significant impacts on all of 

the four error indexes. As testlet length increased, the magnitude of each of the four 

error indexes became smaller. For the multilevel model with testlet effects, the 

magnitude of the content clustering effects had a large impact on the recovery of 

testlet effects’ SD: as the magnitude of the content clustering effects increased, the 

bias, RMSE and relative bias became larger for the multilevel model with testlet 

effects. Similarly, for the multilevel model with content effects, the magnitude of the 

testlet effects had a large impact on the recovery of content effects’ SD; as the 
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magnitude of the testlet effects increased, the bias, RMSE and relative bias became 

larger for the multilevel model with content effects. 

Generally, the proposed cross-classified model had smaller bias, relative bias, 

and RMSE than the two multilevel models when recovering the two random effects’ 

SD. However, the proposed model had larger SE than the two multilevel models. This 

can be explained by the increased difficulty in separating the general ability, testlet 

effect, and content effect when estimating the proposed model.  

Model Fit Indices 

In this study, five indices, AIC, AICC, BIC, CAIC, and HQIC, produced by 

SAS PROC GLIMMIX were used to assess model fit. Percentages of replications in 

which the correct model was identified by using each of the five indices for each 

condition were tallied.  

Generally, the five indices performed equally well in identifying the proposed 

cross-classified model as the best fitting model when the magnitude of the testlet 

effects and the content clustering effects was large (SD = 1 or 1.5). The five fit 

indices, especially BIC and CAIC, did not perform well in identifying the proposed 

model as the best fitting model when equal testlet effects’ SDs and equal content 

effects’ SDs were generated with small magnitude (SD = 0.5). However, if the testlet 

effects’ SDs and the content effects’ SDs were generated to be unequal across testlets 

and content areas, even though the average SDs were small (average SD = 0.5), the 

five fit indices still performed well.  

Since BIC and CAIC penalize for additional model parameters more severely 

than the other three, it is expected that both BIC and CAIC performed not well in 
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identifying the proposed model as the best fitting model when the magnitude of the 

testlet effect and/or the content effect was small. Therefore, generally, the 

performance of the five information criteria was consistent with the expectations.  

Conclusion 

In summary, when the data sets were generated with large magnitude of testlet 

effects and content clustering effects, the proposed cross-classified model yielded 

more accurate parameter estimation, including item difficulty, persons’ ability, and 

random effects’ SD, with smaller bias, relative bias, and RMSE than the two 

multilevel models and the Rasch model. When the data sets were generated with 

small magnitude of testlet effects and/or small magnitude of content clustering 

effects, the proposed cross-classified model still produced smaller bias, relative bias, 

and RMSE than the other three under-parameterized models, even though the 

differences were not substantial. When the data sets were generated with no testlet 

effect and/or no content clustering effect, even though the cross-classified model was 

an over-parameterized model, the bias, relative bias, and RMSE were about the same 

for the cross-classified model and the true model. The lower bias, relative bias, and 

RMSE in the cross-classified model was consistent with the expectations that the 

proposed model should have smaller systematic and total estimation errors in 

parameter estimation by appropriately accounting for both the testlet effects and the 

content clustering effects. However, it should be noted that even though, in this study, 

the proposed cross-classified model worked well even when it was an over-

parameterized model, practitioners should ensure the sample size is large enough 

when putting this model into real application.  
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Generally, the cross-classified model had slightly higher SE in parameter 

estimation, including item difficulty estimation and random effects’ SD estimation, 

compared with the other three models. A possible explanation is that the proposed 

cross-classified model has more parameters to estimate. One exception is persons’ 

ability recovery, for which, the cross-classified model had slightly smaller SE than 

the other three models. Future research should investigate the reason for this result.  

Among the five manipulated factors, sample size was a significant factor in 

item difficulty estimation and random effects’ SD estimation. Generally, in this study, 

increasing sample size resulted in more accurate item difficulty estimates, and more 

stable item difficulty estimates and random effects’ SD estimates. Larger number of 

testlets gave more accurate estimation for persons’ ability. In addition, testlet length 

played a role in testlet effects’ SD recovery; it appears that, increasing the testlet 

length would reduce the error in testlet effects’ SD estimation. Moreover, test length 

impacted persons’ ability estimation and random effects’ SD estimation; longer tests 

produced more stable estimates for persons’ ability and random effects’ SD. The 

magnitude of the two variables, testlet effect and content effect, determined the 

necessity of using the more complex cross-classified model over the simplified 

multilevel models and the Rasch model. In summary, the larger the magnitude of the 

testlet effects and the content clustering effects, the better the proposed cross-

classified model than the other three models in parameter estimation.  
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Contributions 

Local item independence is one of the important assumptions underlying the 

IRT models. Violation of this assumption might be caused by various factors, like the 

testlet effect and the content effect described in this study. Ignoring the violation of 

this assumption might have negative impacts, e.g. inaccurate estimation of both item 

and person parameters, over-estimation of test reliability, and equating errors. 

Previous studies have mainly focused on investigating one source of local item 

dependence (LID). However, in some cases, such as scenario-based science 

assessments, LID might be caused by two possible sources simultaneously, one is 

testlet effect and the other is content clustering effect. Such kind of LID that is caused 

by two factors simultaneously is named as dual local item dependence (DLID).  

Researchers have used multilevel parameterization of IRT models to 

incorporate the clustering of items, such as testlets (Jiao et al., 2005). However, such 

multilevel models with testlet effects fail to model item response data structures that 

have DLID. The primary contribution of this study is that a cross-classified model is 

proposed to deal with the issue of DLID by accounting for two types of LID 

simultaneously.  

When the item response data structures were generated to have two sources of 

LID, the simulation studies demonstrated that the proposed cross-classified model 

produced more accurate estimation of both item and person parameters than the 

multilevel models and the Rasch model. In other words, the proposed cross-classified 

model is more appropriate to be used when the true nature of the data structure has 

DLID. Given that many assessments have the issue of DLID, like the scenario-based 
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science assessment, this cross-classified modeling approach will improve the 

accuracy of both item and person analysis. 
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Limitations and Directions for Future Research 

This study proposed a new model to account for local item dependence caused 

by two factors simultaneously from a cross-classified multilevel modeling 

framework. It was a preliminary investigation designed to evaluate the performance 

of the proposed cross-classified model and explore the potential factors affecting use 

of the more complex cross-classified model over other simpler multilevel models. 

Given that it is a preliminary study, this study has several limitations.  

In terms of the model assumptions, one of the primary limitations is that both 

the testlet effects and the content clustering effects were assumed to be random in this 

study. Future research might consider relaxing this restriction. Instead of modeling 

both testlet effect and content effect as person-specific, some of the testlet effects 

and/or content effects could be modeled as fixed.  

In addition, the proposed cross-classified model was extended from the Rasch 

model, which is the simplest model in the IRT field. Theoretically, this proposed 

model can be extended to two parameter and three parameter IRT models, as well as 

polytomous IRT models; however, studies should be conducted to evaluate the 

performance of those more complicated models.  

The third limitation of the proposed cross-classified model is that it assumes 

independence among persons’ ability, person-specific testlet effect, and person-

specific content effect. Future research need to be conducted to explore the impact of 

the violation of this assumption.  

With regards to the process of data generation, one of the primary limitations 

of the two simulations studies is that each simulated data set was generated with two 
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content areas. However, in real world testing scenarios, more than two content areas 

could be covered, such as the science assessment. Future research should be 

conducted to manipulate the number of content areas instead of fixing it as two. 

In addition, in this study, when data sets were generated, each of the two 

content areas was assumed to be assessed by about 50% of the items. However, in 

real world tests, one content area could be assessed by more items than others, which 

forms a complex cross-classified matrix between the testlet factor and the content 

factor. Future research should consider the complexity imbedded in the cross-

classifications of the two factors.  

Moreover, equal numbers of items (either 5 or 10) per testlet were generated. 

Future research should consider investigating a more realistic design with different 

numbers of items for different testlets. Furthermore, in this study, all items were 

generated to be part of a testlet, which might be also unrealistics in real world testing 

scenarios. Therefore, tests that contain both single items and testlets should be 

investigated in the future.  

As to the model estimation approach used in this study, the Laplace method in 

the PROC GLIMMIX procedure was used in model estimation. However, it was 

found that estimation methods could have significant impacts on parameter 

estimations when estimating models like the multilevel model with testlet effects 

(Jiao et al., 2013). Therefore, future research should consider other estimation 

procedures and investigate whether consistent results could be produced by using a 

different estimation method.  
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Some limitations also existed in the result. First, when analyzing the recovery 

of random effects’ SD, since many high-way interaction effects were identified to 

have both statistical and practical significance, to simplify the complexity of 

interpreting the ANOVA results, only effects associated with a moderate or a large 

effect size were given further interpretations. However, in this way, some important 

findings might be missed. Even though a factor might be found to have a small effect 

size, some interesting patterns could be observed when examining the averages across 

the levels of this factor.  

Generally, the results showed that the proposed cross-classified model had 

slightly larger SEs compared with the other three models when estimating item 

difficulty and three random effects’ SDs. A possible explanation is that the cross-

classified model has more parameters to estimate. However, it was surprising to see 

that the cross-classified model yielded smaller SEs than did the other three models 

when estimating the persons’ ability. It is unclear why this happened, and future 

research should explore whether the results generalize to additional design conditions.  

Another unexpected result occurred in the analysis of ability’s SD estimation. 

The magnitude of the content clustering effects was found to have large impacts on 

both the bias and RMSE in ability’s SD estimation. However, the magnitude of the 

testlet effects was not a significant factor. Further research need to be conducted to 

explain whether this result was a function of the estimation procedure.  

Finally, one major limitation of this study relates to the model fit indices. The 

five fit indices performed well in identifying the proposed model as the best fitting 

model when the magnitude of both the testlet effects and the content clustering effects 
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was large. However, the five fit indices, especially BIC and CAIC, performed not 

well when equal testlet effects’ SDs and/or equal content effects’ SDs were generated 

with small magnitude. Future research should explore other fit indices that have the 

potential to identify the proposed model as the best fitting model under such 

conditions that have small magnitude of random effects.  
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Appendix A: Example of Science Assessment 

Use the information below to answer questions 17 through 20. 

 

Zebra mussels arrived in Lake St. Clair, near Detroit, by accident. Mussels are 

in the same family as oysters, and they form hard, protective outer shells. Scientists 

believe zebra mussels were transported by large ships from Europe and spread rapidly 

throughout the Great Lakes. They consume large quantities of tiny parts and animals 

and have a high reproductive rate. 

 

17. Within the Great Lakes ecosystem, scientists refer to the zebra mussel as a  

 

A) parasite. 

B) producer. 

C) non-native species. 

D) single-celled organism. 

 

This is a question assessing related to population dynamics. 

 

18. Zebra mussels reproduce and spread quickly, reducing food resources and 

crowding native species. This result in 

 

A) an increase in native producer populations 

B) a decrease in native consumer populations 

C) higher reproductive rates for native species 

D) mutually beneficial relationships with native species 

 

This is a question assessing related to population dynamics. 

 

19. The zebra mussel would best be classified as a(n) 

 

A) mammal. 

B) producer. 

C) amphibian. 

D) invertebrate. 

 

This is a question assessing related to classify organisms. 
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Appendix B: Example of Reading Assessment in TOEFL 

Read the following passage. Then answer the questions and check your answers.  

Most people can remember a phone number for up to thirty seconds. When this short 

amount of time elapses, however, the numbers are erased from the memory. How did 

the information get there in the first place? Information that makes its way to the 

short term memory (STM) does so via the sensory storage area. The brain has a filter 

which only allows stimuli that is of immediate interest to pass on to the STM, also 

known as the working memory…… 

 

Reading Comprehension questions: 

1. According to the passage, how do memories get transferred to the STM? 

 

A) They revert from the long term memory. 

B) They are filtered from the sensory storage area. 

C) They get chunked when they enter the brain. 

D) They enter via the nervous system. 

This is a factual question. 

2. The word elapses in paragraph 1 is closest in meaning to: 

 

A) passes 

B) adds up 

C) appears 

D) continues 

This is a vocabulary question. 

3. All of the following are mentioned as places in which memories are stored 

EXCEPT the: 

 

A) STM 

B) long term memory 

C) sensory storage area 

D) maintenance area 

This is a negative factual question. 

4. How do theorists believe a person can remember more information in a short time? 
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A) By organizing it 

B) By repeating it 

C) By giving it a name 

D) By drawing it 

This is a factual question. 

5. The author believes that rote rotation is: 

 

A) the best way to remember something 

B) more efficient than chunking 

C) ineffective in the long run 

D) an unnecessary interruption 

This is a factual question. 

6. The word it in the last paragraph refers to: 

 

A) encoding 

B) STM 

C) semantics 

D) information 

This is a reference question. 
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Appendix C: R Code for Data Generation 

# This code is generating cross-classified data with mixed variance patterns 

# The number of content areas is fixed at 2  

C=2 

 

N=c(500,1000,2000)        # number of examinees: n   

T=c(3,6)                           # number of testlets: t 

I=c(5,10)                          # number of items per testlet: i 

b1=c(-2,-1,0,1,2)              # the item difficulty value when the number of items per testlet is 5 

b2=seq(-2,2.5,length=10) # the item difficulty value when the number of items per testlet is 

10   

 

SD_T3=matrix(c( 

0,0,0, 

0,0.5,1, 

0.5,1,1.5, 

1,1.5,2 

),4,3,byrow=T)     # pattern of variance for testlets: sd_t3,the number of testlets is 3 

 

SD_T6=matrix(c( 

0,0,0,0,0,0, 

0,0,0.5,0.5,1,1, 

0.5,0.5,1,1,1.5,1.5, 

1,1,1.5,1.5,2,2 

),4,6,byrow=T)     # pattern of variance for testlets: sd_t6,the number of testlets is 6 

 

SD_C=matrix(c( 

0,0, 

0.25,0.75, 

0.75,1.25, 

1.25,1.75 

),4,2,byrow=T)     # pattern of variance for contents: sd_c 

 

for (n in 3:3){ 

for (t in 1:2){ 

for (i in 1:2){ 

for (sd_t in 1:4){ 

for (sd_c in 1:4){ 

 

# create folders for data generation and change working directory 

dir_name=paste("K:\\Study\\Dissertation\\Simulation Study 2\\",n,"-",t,"-",i,"-",sd_t,"-

",sd_c,sep="") 

dir.create(dir_name) 

setwd(dir_name) 

 

# create item difficulty correspond with the number of items per testlet 
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if (i==1){ 

b=rep(b1,T[t]) 

write.table(b,"b.dat",quote = FALSE, sep = "",row.names = FALSE,col.names = FALSE) 

} 

else{ 

b=rep(b2,T[t]) 

write.table(b,"b.dat",quote = FALSE, sep = "",row.names = FALSE,col.names = FALSE) 

} 

 

# The total number of items 

TI=T[t]*I[i] 

 

# Assign testlet number for each item 

testlet=matrix(NA,TI,1) 

for (ti in 1:TI){ 

               testlet[ti]=ceiling(ti/I[i])         

} 

write.table(testlet,"testlet.txt",quote = FALSE, sep = "",row.names = FALSE,col.names = 

FALSE) 

 

# Assign content number for each item 

content=sample(c(1,2),TI,replace=TRUE,prob=c(0.5,0.5)) 

write.table(content,"content.txt",quote = FALSE, sep = "",row.names = FALSE,col.names = 

FALSE) 

 

item=cbind(b,testlet,content) 

 

# generate person ability 

theta <- rnorm(N[n],0,1) 

theta=(theta-mean(theta))/sd(theta) 

write.table(theta,"theta.dat",quote = FALSE, sep = "",row.names = FALSE,col.names = 

FALSE) 

 

# generate person specific testlet effect 

if (t==1){ 

th1=matrix(NA,N[n],T[t]) 

for (d in 1:T[t]){ 

th1[,d]=rnorm(N[n],0,SD_T3[sd_t,d]) 

if (SD_T3[sd_t,d]!=0){th1[,d]=(th1[,d]-mean(th1[,d]))/sd(th1[,d])*SD_T3[sd_t,d]} 

} 

write.table(th1,"th1.dat",quote = FALSE, sep = " ",row.names = FALSE,col.names = 

FALSE)} 

else{ 

th1=matrix(NA,N[n],T[t]) 

for (d in 1:T[t]){ 

th1[,d]=rnorm(N[n],0,SD_T6[sd_t,d]) 

if (SD_T6[sd_t,d]!=0){th1[,d]=(th1[,d]-mean(th1[,d]))/sd(th1[,d])*SD_T6[sd_t,d]} 

} 

write.table(th1,"th1.dat",quote = FALSE, sep = " ",row.names = FALSE,col.names = 

FALSE) 

} 
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# generate person specific content effect 

th2=matrix(NA,N[n],C) 

for (d in 1:C){ 

th2[,d]=rnorm(N[n],0,SD_C[sd_c,d]) 

if (SD_C[sd_c,d]!=0){th2[,d]=(th2[,d]-mean(th2[,d]))/sd(th2[,d])*SD_C[sd_c,d]} 

} 

write.table(th2,"th2.dat",quote = FALSE, sep = " ",row.names = FALSE,col.names = 

FALSE) 

 

# generate item response 

replication<-100 

totmatrix<-N[n]*TI 

 for (r in 1:replication){  

  res <- matrix(rep(NA, totmatrix), N[n], TI) 

           for(j in 1:N[n]){ 

        for (ti in 1:TI){ 

    prob<-1/(1 + exp(-

(theta[j]+th1[j,item[ti,2]]+th2[j,item[ti,3]]- b[ti])))  

    rini<-runif(1) 

                   if(rini>prob){res[j,ti]<-0} 

    if(rini<prob){res[j,ti]<-1}  

        } 

    } 

                        filename <- paste("1p",r,".txt",sep="") 

  write.table(res,filename,sep=" ",row.names=F,col.names=F,na=" ",quote=F) 

  } 

 

# create folders for result in each condition 

result_name=paste("K:\\Study\\Dissertation\\Simulation Study 2\\",n,"-",t,"-",i,"-",sd_t,"-

",sd_c,"\\result",sep="") 

dir.create(result_name) 

} 

} 

} 

} 

} 
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Appendix D: SAS Code for Parameter Estimation 

 

OPTIONS nonumber nodate nocenter pagesize=MAX linesize=120 

formdlim='-'; 

TITLE; 

%GLOBAL filesave;  

%let n=60; /*number of items*/ 

 

%macro condi (ss,nt,ni,tsd,csd); 

 

%do ss=1 %to 3; 

%do nt=2 %to 2; *this is fixed; 

%do ni=1 %to 2; 

%do tsd=1 %to 4; 

%do csd=1 %to 4; 

 

%LET filesave=K:\Study\Dissertation\Simulation Study 1\&ss-&nt-&ni-

&tsd-&csd; 

LIBNAME result "&filesave\result"; 

 

%macro analysis(); 

%do r=1 %to 50; * iterations 250; 

data resp; 

infile "&filesave\1p&r..txt"; 

input item1-item&n; 

person=_N_; 

run; 

 

DATA vresp; SET resp; 

ARRAY aitem(&n) item1-item&n; 

DO i=1 TO &n; 

item=i; response=aitem(i); OUTPUT; 

END; 

RUN; 

 

 

DATA vresp; SET vresp; 

ARRAY dummy (&n) i1-i&n; 

DO d=1 TO &n; 

IF item=d THEN dummy(d)=1; ELSE dummy(d)=0; 

END; 

DROP i d item1-item&n i1-i&n; 

RUN; 

 

data testlet; 

infile "&filesave\testlet.txt"; 

input testl; 

id=_N_; 

run; 

 

data content; 

infile "&filesave\content.txt"; 
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input con; 

id=_N_; 

run; 

 

 

proc sql; 

create table vresp2 as 

select person, response, item, testl 

from vresp , testlet 

where vresp.item=testlet.id; 

quit; 

 

 

data vresp2; 

set vresp2; 

if testl=1 then testl1=1; 

else testl1=0; 

if testl=2 then testl2=1; 

else testl2=0; 

if testl=3 then testl3=1; 

else testl3=0; 

if testl=4 then testl4=1; 

else testl4=0; 

if testl=5 then testl5=1; 

else testl5=0; 

if testl=6 then testl6=1; 

else testl6=0; 

run; 

 

proc sql; 

create table vresp3 as 

select person, response, item, testl,testl1, testl2, testl3,testl4, 

testl5, testl6,con 

from vresp2 , content 

where vresp2.item=content.id; 

quit; 

 

data vresp3; 

set vresp3; 

if con=1 then con1=1; 

else con1=0; 

if con=2 then con2=1; 

else con2=0; 

run; 

 

/* testlet and content */ 

ods listing close; 

ods output FitStatistics =result.tc_fit_&r CovParms=result.tc_cov_&r 

ParameterEstimates = result.tc_fixed_&r SolutionR = 

result.tc_rand_&r; 

proc glimmix data= vresp3 method=laplace ic=pq noclprint noitprint ; 

class item person ; 

model response  = item 

/cl dist = binary link=logit covb noint solution ddfm=bw; 

random intercept testl1 testl2 testl3 testl4 testl5 testl6 con1 

con2/ subject=person type=simple solution; 

run; 
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ods listing; 

 

/* testlet only */ 

ods listing close; 

ods output FitStatistics =result.t_fit_&r CovParms=result.t_cov_&r 

ParameterEstimates = result.t_fixed_&r SolutionR = result.t_rand_&r; 

proc glimmix data= vresp3 method=laplace ic=pq noclprint noitprint ; 

class item person ; 

model response  = item 

/cl dist = binary link=logit covb noint solution ddfm=bw; 

random intercept testl1 testl2 testl3 testl4 testl5 testl6 / 

subject=person type=simple solution; 

run; 

ods listing; 

 

/* content only */ 

ods listing close; 

ods output FitStatistics =result.c_fit_&r CovParms=result.c_cov_&r 

ParameterEstimates = result.c_fixed_&r SolutionR = result.c_rand_&r; 

proc glimmix data= vresp3 method=laplace ic=pq noclprint noitprint ; 

class item person ; 

model response  = item 

/cl dist = binary link=logit covb noint solution ddfm=bw; 

random intercept con1 con2/ subject=person type=simple solution; 

run; 

ods listing; 

 

/* without testlet */ 

ods listing close; 

ods output FitStatistics =result.fit_&r CovParms=result.cov_&r 

ParameterEstimates = result.fixed_&r SolutionR = result.rand_&r; 

proc glimmix data= vresp3 method=laplace ic=pq noclprint noitprint ; 

class item person ; 

model response  = item 

/cl dist = binary link=logit covb noint solution ddfm=bw; 

random intercept / subject=person type=simple solution; 

run; 

ods listing; 

 

 

%end; 

%mend analysis; 

 

%analysis; 

 

%end; 

%end; 

%end; 

%end; 

%end; 

 

%mend; 

%condi; 
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Appendix E: Identified Significant Effects on Error Indexes  

Table 40  

Identified Significant Impacts on Relative Bias in Item Difficulty Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

vt 3 28.5309 9.5103 29124.30 <.0001 0.1529 

vc 3 11.8635 3.9545 12110.20 <.0001 0.0636 

model 3 47.9828 15.9943 48980.80 <.0001 0.2572 

vt*model 9 27.7970 3.0886 9458.40 <.0001 0.1490 

vc*model 9 12.4743 1.3860 4244.59 <.0001 0.0669 

Error 21696 7.0846 0.0003 

   Corrected Total 22463 186.5476 

    

Simulation 2 

vt 3 26.8697 8.9566 4113.13 <.0001 0.1176 

vc 3 12.6033 4.2011 1929.28 <.0001 0.0552 

model 3 52.9495 17.6498 8105.35 <.0001 0.2318 

vt*model 9 25.2115 2.8013 1286.43 <.0001 0.1104 

vc*model 9 12.6974 1.4108 647.89 <.0001 0.0556 

Error 21696 47.2442 0.0022 

   Corrected Total 22463 228.4166         

Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 41 

Identified Significant Impacts on RMSE in Item Difficulty Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

ss 2 6.8826 3.4413 521.86 <.0001 0.0195 

vt 3 34.8768 11.6256 1763.00 <.0001 0.0991 

vc 3 12.7540 4.2513 644.71 <.0001 0.0362 

model 3 39.3442 13.1147 1988.82 <.0001 0.1118 

vt*model 9 30.8522 3.4280 519.85 <.0001 0.0876 

vc*model 9 11.7211 1.3023 197.50 <.0001 0.0333 

Error 25152 165.8580 0.0066 

   Corrected Total 25919 352.0645 

    

Simulation 2 

ss 2 6.5486 3.2743 322.70 <.0001 0.0148 

vt 3 31.6313 10.5438 1039.14 <.0001 0.0714 

vc 3 13.4113 4.4704 440.58 <.0001 0.0303 

model 3 46.2574 15.4191 1519.63 <.0001 0.1044 

vt*model 9 28.0032 3.1115 306.65 <.0001 0.0632 

vc*model 9 12.1782 1.3531 133.36 <.0001 0.0275 

Error 25152 255.2083 0.0101 

   Corrected Total 25919 442.9457         

Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 

 

Table 42 

Identified Significant Impacts on SE in Item Difficulty Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

ss 2 10.9833 5.4917 31906.50 <.0001 0.5578 

model 3 0.5874 0.1958 1137.64 <.0001 0.0298 

vt*model 9 0.3337 0.0371 215.44 <.0001 0.0169 

Error 25152 4.3291 0.0002 

   Corrected Total 25919 19.6905 

    

Simulation 2 

ss 2 10.7750 5.3875 30280.50 <.0001 0.5463 

model 3 0.6444 0.2148 1207.19 <.0001 0.0327 

vt*model 9 0.3041 0.0338 189.89 <.0001 0.0154 

Error 25152 4.4751 0.0002 

   Corrected Total 25919 19.7241         

Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 43 

Identified Significant Impacts on RMSE in Persons’ Ability Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

nt 1 1104.0631 1104.0631 10494.30 <.0001 0.0103 

vc 3 5360.1385 1786.7128 16982.90 <.0001 0.0501 

Error 895232 94184.0618 0.1052 

   Corrected Total 895999 107022.5268 

    

Simulation 2 

nt 1 1203.5005 1203.5005 11919.10 <.0001 0.0117 

vc 3 4928.9147 1642.9716 16271.40 <.0001 0.0478 

Error 895232 90394.0921 0.1010 

   Corrected Total 895999 103030.4946         

Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 

 

Table 44 

Identified Significant Impacts on SE in Persons’ Ability Estimation  

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

nt 1 717.7431 717.7431 571286.00 <.0001 0.1167 

ni 1 732.1786 732.1786 582776.00 <.0001 0.119 

vt 3 410.6700 136.8900 108957.00 <.0001 0.0668 

vc 3 436.3651 145.4550 115775.00 <.0001 0.0709 

model 3 688.3194 229.4398 182622.00 <.0001 0.1119 

vc*model 9 487.4920 54.1658 43113.10 <.0001 0.0792 

Error 895232 1124.7378 0.0013 

   Corrected Total 895999 6152.3219 

    

Simulation 2 

nt 1 719.4614 719.4614 529745.00 <.0001 0.1287 

ni 1 647.7576 647.7576 476949.00 <.0001 0.1159 

vt 3 274.3532 91.4511 67336.10 <.0001 0.0491 

vc 3 483.6975 161.2325 118717.00 <.0001 0.0865 

model 3 452.6183 150.8728 111089.00 <.0001 0.081 

vc*model 9 450.2598 50.0289 36836.60 <.0001 0.0805 

Error 895232 1215.8405 0.0014 

   Corrected Total 895999 5590.3531         

Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 45 

Identified Significant Impacts on Bias in Ability’s SD Estimation 

 
Significant Effects df SS MS F p Eta-squared 

Simulation 1 

nt 1 0.1514 0.1514 628.49 <.0001 0.0221 

vt 3 0.1949 0.0650 269.62 <.0001 0.0284 

vc 3 1.4197 0.4732 1964.26 <.0001 0.2072 

model 3 1.9827 0.6609 2743.12 <.0001 0.2894 

nt*vt 3 0.1289 0.0430 178.32 <.0001 0.0188 

nt*model 3 0.1643 0.0548 227.37 <.0001 0.0240 

vt*model 9 0.0805 0.0089 37.13 <.0001 0.0118 

vc*model 9 1.6432 0.1826 757.83 <.0001 0.2399 

ss*vt*vc 18 0.0837 0.0046 19.30 <.0001 0.0122 

nt*vt*model 9 0.1422 0.0158 65.58 <.0001 0.0208 

ss*ni*vt*vc 18 0.0830 0.0046 19.15 <.0001 0.0121 

Error 54 0.0130 0.0002 

   Corrected Total 767 6.8509         

Simulation 2 

nt 1 0.2089 0.2089 467.28 <.0001 0.0325 

vt 3 0.1188 0.0396 88.56 <.0001 0.0185 

vc 3 1.0617 0.3539 791.70 <.0001 0.1652 

model 3 1.9948 0.6649 1487.50 <.0001 0.3104 

nt*vt 3 0.1594 0.0531 118.87 <.0001 0.0248 

nt*model 3 0.1735 0.0578 129.37 <.0001 0.0270 

vt*model 9 0.0906 0.0101 22.51 <.0001 0.0141 

vc*model 9 1.4331 0.1592 356.20 <.0001 0.2230 

ss*vt*vc 18 0.0864 0.0048 10.74 <.0001 0.0134 

nt*vt*model 9 0.1105 0.0123 27.46 <.0001 0.0172 

ss*nt*vt*vc 18 0.0883 0.0049 10.98 <.0001 0.0137 

ss*ni*vt*vc 18 0.1116 0.0062 13.87 <.0001 0.0174 

ss*nt*ni*vt*vc 18 0.1455 0.0081 18.08 <.0001 0.0226 

Error 54 0.0241 0.0004 

   Corrected Total 767 6.4270         
Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 46 

Identified Significant Impacts on RMSE in Ability’s SD Estimation 

 
Significant Effects df SS MS F p Eta-squared 

Simulation 1 

vc 3 1.3787 0.4596 1101.80 <.0001 0.3747 

model 3 0.5322 0.1774 425.32 <.0001 0.1446 

ss*model 6 0.0403 0.0067 16.09 <.0001 0.0109 

nt*model 3 0.0547 0.0182 43.71 <.0001 0.0149 

vt*vc 9 0.0683 0.0076 18.21 <.0001 0.0186 

vt*model 9 0.0745 0.0083 19.85 <.0001 0.0203 

vc*model 9 0.7237 0.0804 192.78 <.0001 0.1967 

ss*vc*model 18 0.0449 0.0025 5.98 <.0001 0.0122 

nt*vt*model 9 0.0676 0.0075 18.01 <.0001 0.0184 

nt*vc*model 9 0.0471 0.0052 12.54 <.0001 0.0128 

vt*vc*model 27 0.0812 0.0030 7.21 <.0001 0.0221 

nt*vt*vc*model 27 0.0530 0.0020 4.70 <.0001 0.0144 

Error 54 0.0225 0.0004 

   Corrected Total 767 3.6797         

Simulation 2 

vc 3 1.1071 0.3690 357.23 <.0001 0.3543 

model 3 0.4510 0.1503 145.51 <.0001 0.1443 

nt*model 3 0.0717 0.0239 23.14 <.0001 0.0229 

vt*vc 9 0.0774 0.0086 8.33 <.0001 0.0248 

vt*model 9 0.0595 0.0066 6.40 <.0001 0.0190 

vc*model 9 0.4786 0.0532 51.48 <.0001 0.1532 

nt*vt*model 9 0.0577 0.0064 6.20 <.0001 0.0185 

nt*vc*model 9 0.0503 0.0056 5.41 <.0001 0.0161 

vt*vc*model 27 0.0657 0.0024 2.36 0.0037 0.0210 

ss*nt*vt*vc 18 0.0351 0.0020 1.89 0.0373 0.0112 

Error 54 0.0558 0.0010 

   Corrected Total 767 3.1244         
Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 47 

Identified Significant Impacts on SE in Ability’s SD Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

ss 2 0.0360 0.0180 10168.80 <.0001 0.3100 

nt 1 0.0191 0.0191 10780.40 <.0001 0.1643 

ni 1 0.0170 0.0170 9639.24 <.0001 0.1469 

vc 3 0.0046 0.0015 874.76 <.0001 0.0400 

model 3 0.0111 0.0037 2095.57 <.0001 0.0958 

ss*nt 2 0.0024 0.0012 665.57 <.0001 0.0203 

ss*ni 2 0.0023 0.0012 655.95 <.0001 0.0200 

ss*model 6 0.0012 0.0002 114.53 <.0001 0.0105 

nt*ni 1 0.0017 0.0017 968.17 <.0001 0.0148 

vt*model 9 0.0029 0.0003 183.37 <.0001 0.0252 

vc*model 9 0.0067 0.0007 419.52 <.0001 0.0575 

Error 54 0.0001 0.0000 

   Corrected Total 767 0.1160 

    

Simulation 2 

ss 2 0.0336 0.0168 4734.38 <.0001 0.3037 

nt 1 0.0183 0.0183 5149.55 <.0001 0.1651 

ni 1 0.0160 0.0160 4504.82 <.0001 0.1445 

vc 3 0.0046 0.0015 431.70 <.0001 0.0415 

model 3 0.0118 0.0039 1106.39 <.0001 0.1064 

ss*nt 2 0.0027 0.0013 376.99 <.0001 0.0242 

ss*ni 2 0.0018 0.0009 255.20 <.0001 0.0164 

ss*model 6 0.0013 0.0002 60.62 <.0001 0.0117 

nt*ni 1 0.0012 0.0012 337.16 <.0001 0.0108 

vt*model 9 0.0026 0.0003 81.00 <.0001 0.0234 

vc*model 9 0.0062 0.0007 193.12 <.0001 0.0557 

Error 54 0.0002 0.0000 

   Corrected Total 767 0.1106         

Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 48 

Identified Significant Impacts on Bias in Testlet Effects’ SD Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

ni 1 0.6347 0.6347 66.67 <.0001 0.0215 

vt 3 6.5922 2.1974 230.83 <.0001 0.2238 

vc 3 1.1007 0.3669 38.54 <.0001 0.0374 

model 1 0.3243 0.3243 34.06 <.0001 0.0110 

ni*vt 3 0.3953 0.1318 13.84 <.0001 0.0134 

vt*vc 9 0.8038 0.0893 9.38 <.0001 0.0273 

vt*model 3 0.7234 0.2411 25.33 <.0001 0.0246 

vc*model 3 0.3127 0.1042 10.95 <.0001 0.0106 

vt*vc*model 9 0.7016 0.0780 8.19 <.0001 0.0238 

Error 1362 12.9658 0.0095 

   Corrected Total 1727 29.4617 

    

Simulation 2 

ni 1 0.7125 0.7125 67.58 <.0001 0.0225 

vt 3 7.1336 2.3779 225.54 <.0001 0.2256 

vc 3 1.4278 0.4759 45.14 <.0001 0.0452 

model 1 0.4950 0.4950 46.95 <.0001 0.0157 

ni*vt 3 0.4653 0.1551 14.71 <.0001 0.0147 

vt*vc 9 0.5911 0.0657 6.23 <.0001 0.0187 

vt*model 3 0.7243 0.2414 22.90 <.0001 0.0229 

vc*model 3 0.4970 0.1657 15.71 <.0001 0.0157 

vt*vc*model 9 0.5605 0.0623 5.91 <.0001 0.0177 

Error 1362 14.3594 0.0105 

   Corrected Total 1727 31.6222         
Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 49 

Identified Significant Impacts on RMSE in Testlet Effects’ SD Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

ss 2 0.4636 0.2318 51.10 <.0001 0.0269 

ni 1 1.6104 1.6104 355.04 <.0001 0.0936 

vt 3 0.4374 0.1458 32.14 <.0001 0.0254 

vc 3 2.0073 0.6691 147.51 <.0001 0.1166 

model 1 1.1474 1.1474 252.95 <.0001 0.0667 

ni*vt 3 0.3411 0.1137 25.06 <.0001 0.0198 

vt*vc 9 0.6036 0.0671 14.79 <.0001 0.0351 

vc*model 3 1.3411 0.4470 98.56 <.0001 0.0779 

ss*ni*vt*vc 18 0.2508 0.0139 3.07 <.0001 0.0146 

Error 1362 6.1779 0.0045 

   Corrected Total 1727 17.2103 

    

Simulation 2 

ss 2 0.5752 0.2876 49.74 <.0001 0.0323 

ni 1 1.3851 1.3851 239.53 <.0001 0.0778 

vt 3 0.3651 0.1217 21.04 <.0001 0.0205 

vc 3 1.2251 0.4084 70.62 <.0001 0.0688 

model 1 1.0672 1.0672 184.55 <.0001 0.0599 

ni*vt 3 0.1908 0.0636 11.00 <.0001 0.0107 

vt*vc 9 0.8682 0.0965 16.68 <.0001 0.0487 

vt*model 3 0.2480 0.0827 14.30 <.0001 0.0139 

vc*model 3 0.8650 0.2883 49.86 <.0001 0.0486 

vt*vc*model 9 0.3870 0.0430 7.44 <.0001 0.0217 

Error 1362 7.8756 0.0058 

   Corrected Total 1727 17.8095         
Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 50 

Identified Significant Impacts on Relative Bias in Testlet Effects’ SD Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

ni 1 1.5648 1.5648 65.85 <.0001 0.0412 

vt 2 2.2853 1.1426 48.08 <.0001 0.0602 

vc 3 2.3563 0.7854 33.05 <.0001 0.0620 

model 1 0.8076 0.8076 33.99 <.0001 0.0213 

ni*vt 2 0.4788 0.2394 10.07 <.0001 0.0126 

vc*model 3 0.7904 0.2635 11.09 <.0001 0.0208 

Error 1020 24.2390 0.0238 

   Corrected Total 1295 37.9836         

Simulation 2 

ni 1 2.1009 2.1009 110.15 <.0001 0.0722 

vt 2 1.0014 0.5007 26.25 <.0001 0.0344 

vc 3 2.9270 0.9757 51.15 <.0001 0.1006 

model 1 1.4572 1.4572 76.40 <.0001 0.0501 

ni*vc 3 0.3125 0.1042 5.46 0.0010 0.0107 

vc*model 3 1.1023 0.3674 19.26 <.0001 0.0379 

Error 876 16.7087 0.0191 

   Corrected Total 1151 29.1084         

Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 51 

Identified Significant Impacts on SE in Testlet Effects’ SD Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

ss 2 0.6897 0.3449 1302.57 <.0001 0.2757 

ni 1 0.4880 0.4880 1843.22 <.0001 0.1950 

vt 3 0.2441 0.0814 307.37 <.0001 0.0976 

model 1 0.0273 0.0273 102.98 <.0001 0.0109 

ss*ni 2 0.0475 0.0238 89.72 <.0001 0.0190 

nt*vt 3 0.0278 0.0093 35.00 <.0001 0.0111 

ni*vt 3 0.1100 0.0367 138.43 <.0001 0.0439 

vt*vc 9 0.0974 0.0108 40.86 <.0001 0.0389 

vc*model 3 0.0320 0.0107 40.28 <.0001 0.0128 

Error 1362 0.3606 0.0003 

   Corrected Total 1727 2.5022 

    

Simulation 2 

ss 2 0.6576 0.3288 569.44 <.0001 0.2688 

nt 1 0.0246 0.0246 42.55 <.0001 0.0100 

ni 1 0.3520 0.3520 609.63 <.0001 0.1439 

vt 3 0.0369 0.0123 21.32 <.0001 0.0151 

vc 3 0.0480 0.0160 27.69 <.0001 0.0196 

model 1 0.0498 0.0498 86.23 <.0001 0.0203 

ss*ni 2 0.0311 0.0155 26.89 <.0001 0.0127 

ni*vt 3 0.0264 0.0088 15.22 <.0001 0.0108 

vt*vc 9 0.0851 0.0095 16.38 <.0001 0.0348 

vc*model 3 0.0543 0.0181 31.34 <.0001 0.0222 

Error 1362 0.7865 0.0006 

   Corrected Total 1727 2.4470         

Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 52 

Identified Significant Impacts on Bias in Content Effects’ SD Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

vt 3 1.0414 0.3471 114.74 <.0001 0.1229 

vc 3 1.9875 0.6625 218.98 <.0001 0.2346 

model 1 0.4849 0.4849 160.29 <.0001 0.0572 

ni*vc 3 0.1257 0.0419 13.85 <.0001 0.0148 

vt*vc 9 0.5864 0.0652 21.54 <.0001 0.0692 

vt*model 3 0.4378 0.1459 48.24 <.0001 0.0517 

vc*model 3 0.5493 0.1831 60.52 <.0001 0.0648 

ni*vt*vc 9 0.0891 0.0099 3.27 0.0007 0.0105 

vt*vc*model 9 0.5448 0.0605 20.01 <.0001 0.0643 

ss*ni*vt*vc 18 0.1110 0.0062 2.04 0.0075 0.0131 

ss*vt*vc*model 18 0.0925 0.0051 1.70 0.0369 0.0109 

ss*nt*ni*vt*vc 18 0.0959 0.0053 1.76 0.0279 0.0113 

Error 402 1.2162 0.0030 

   Corrected Total 767 8.4729 

    

Simulation 2 

ni 1 0.1676 0.1676 32.75 <.0001 0.0158 

vt 3 0.9174 0.3058 59.75 <.0001 0.0864 

vc 3 2.3227 0.7742 151.27 <.0001 0.2187 

model 1 0.6368 0.6368 124.42 <.0001 0.0599 

ni*vc 3 0.1907 0.0636 12.42 <.0001 0.0180 

vt*vc 9 0.4904 0.0545 10.65 <.0001 0.0462 

vt*model 3 0.4694 0.1565 30.57 <.0001 0.0442 

vc*model 3 0.6931 0.2310 45.14 <.0001 0.0653 

ni*vt*vc 9 0.1074 0.0119 2.33 0.0144 0.0101 

vt*vc*model 9 0.4973 0.0553 10.80 <.0001 0.0468 

ss*nt*ni*vt 6 0.1236 0.0206 4.02 0.0006 0.0116 

ss*nt*vt*vc 18 0.1533 0.0085 1.66 0.043 0.0144 

Error 402 2.0575 0.0051 

   Corrected Total 767 10.6227         
Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 53 

Identified Significant Impacts on Relative Bias in Content Effects’ SD Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

ni 1 0.2225 0.2225 25.54 <.0001 0.0227 

vt 3 1.9710 0.6570 75.40 <.0001 0.2009 

vc 2 0.3727 0.1863 21.38 <.0001 0.0380 

model 1 0.7641 0.7641 87.69 <.0001 0.0779 

vt*vc 6 0.2607 0.0435 4.99 <.0001 0.0266 

vt*model 3 0.8391 0.2797 32.10 <.0001 0.0855 

ss*vt*vc*model 12 0.2103 0.0175 2.01 0.0231 0.0214 

Error 300 2.6141 0.0087 

   Corrected Total 575 9.8103 

  

  

 

Simulation 2 

ni 1 0.3878 0.3878 11.54 0.0008 0.0165 

ss*vc 4 0.5155 0.1289 3.84 0.0047 0.0219 

ni*vt 3 0.3819 0.1273 3.79 0.0108 0.0162 

vt*model 3 0.5139 0.1713 5.10 0.0019 0.0218 

ss*nt*vc 4 0.6212 0.1553 4.62 0.0012 0.0264 

ss*ni*vc 4 0.4741 0.1185 3.53 0.0078 0.0201 

ni*vt*vc 6 0.6774 0.1129 3.36 0.0032 0.0288 

ss*nt*vt*vc 12 0.8049 0.0671 2.00 0.0243 0.0342 

Error 300 10.0810 0.0336 

   Corrected Total 575 23.5522         
Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 54 

Identified Significant Impacts on RMSE in Content Effects’ SD Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

ss 2 0.1360 0.0680 33.32 <.0001 0.0253 

nt 1 0.0922 0.0922 45.19 <.0001 0.0171 

ni 1 0.3041 0.3041 148.97 <.0001 0.0565 

vt 3 0.9109 0.3036 148.76 <.0001 0.1692 

vc 3 0.1818 0.0606 29.69 <.0001 0.0338 

model 1 0.4855 0.4855 237.88 <.0001 0.0902 

vt*vc 9 0.3097 0.0344 16.86 <.0001 0.0575 

vt*model 3 0.5638 0.1879 92.07 <.0001 0.1047 

vc*model 3 0.1916 0.0639 31.29 <.0001 0.0356 

ss*vt*vc 18 0.1239 0.0069 3.37 <.0001 0.0230 

vt*vc*model 9 0.1748 0.0194 9.52 <.0001 0.0325 

ss*nt*vt*vc 18 0.0825 0.0046 2.25 0.0026 0.0153 

ss*ni*vt*vc 18 0.0896 0.0050 2.44 0.0009 0.0166 

ss*vt*vc*model 18 0.0820 0.0046 2.23 0.0028 0.0152 

ni*vt*vc*model 9 0.0573 0.0064 3.12 0.0012 0.0106 

ss*nt*ni*vt*vc 18 0.0805 0.0045 2.19 0.0034 0.0150 

Error 402 0.8205 0.0020 

   Corrected Total 767 5.3851 

    

Simulation 2 

ss 2 0.2305 0.1153 29.80 <.0001 0.0333 

nt 1 0.2139 0.2139 55.30 <.0001 0.0309 

ni 1 0.4029 0.4029 104.16 <.0001 0.0581 

vt 3 0.7075 0.2358 60.98 <.0001 0.1021 

vc 3 0.3113 0.1038 26.83 <.0001 0.0449 

model 1 0.6434 0.6434 166.35 <.0001 0.0928 

ni*vt 3 0.0709 0.0236 6.11 0.0004 0.0102 

vt*vc 9 0.3907 0.0434 11.22 <.0001 0.0564 

vt*model 3 0.5594 0.1865 48.21 <.0001 0.0807 

vc*model 3 0.2511 0.0837 21.64 <.0001 0.0362 

vt*vc*model 9 0.2241 0.0249 6.44 <.0001 0.0323 

ss*nt*ni*vt*vc 18 0.1750 0.0097 2.51 0.0006 0.0252 

Error 402 1.5548 0.0039 

 

  

 Corrected Total 767 6.9307         
Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Table 55 

Identified Significant Impacts on SE in Content Effects’ SD Estimation 

  Significant Effects df SS MS F p Eta-squared 

Simulation 1 

ss 2 0.1792 0.0896 416.72 <.0001 0.2321 

nt 1 0.1054 0.1054 489.98 <.0001 0.1364 

ni 1 0.1289 0.1289 599.32 <.0001 0.1669 

vc 3 0.0714 0.0238 110.63 <.0001 0.0924 

ss*ni 2 0.0185 0.0093 43.03 <.0001 0.0240 

nt*ni 1 0.0084 0.0084 39.19 <.0001 0.0109 

nt*vc 3 0.0163 0.0054 25.23 <.0001 0.0211 

ni*vc 3 0.0091 0.0030 14.03 <.0001 0.0117 

vt*vc 9 0.0179 0.0020 9.25 <.0001 0.0232 

ss*vt*vc 18 0.0132 0.0007 3.40 <.0001 0.0171 

ss*nt*vt*vc 18 0.0100 0.0006 2.58 0.0004 0.0129 

ss*ni*vt*vc 18 0.0099 0.0006 2.57 0.0005 0.0129 

ss*nt*ni*vt*vc 18 0.0086 0.0005 2.23 0.0028 0.0112 

Error 402 0.0864 0.0002 

   Corrected Total 767 0.7723 

    

Simulation 2 

ss 2 0.2009 0.1004 126.53 <.0001 0.1803 

nt 1 0.1033 0.1033 130.19 <.0001 0.0927 

ni 1 0.1188 0.1188 149.63 <.0001 0.1066 

vc 3 0.1175 0.0392 49.34 <.0001 0.1054 

model 1 0.0123 0.0123 15.47 <.0001 0.0110 

ss*nt 2 0.0132 0.0066 8.31 0.0003 0.0118 

ss*ni 2 0.0220 0.0110 13.86 <.0001 0.0198 

nt*vc 3 0.0127 0.0042 5.34 0.0013 0.0114 

vt*vc 9 0.0222 0.0025 3.11 0.0012 0.0200 

Error 402 0.3191 0.0008 

   Corrected Total 767 1.1142         

Note: nt = number of testlets; vt = testlet effect; vc = content effect; ni = number of items per testlet; ss 

= sample size. 
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Appendix F: The Percentage of Replications of Identifying 

Correct Models 

    Simulation Study 1 Simulation Study 2 

Condition AIC% AICC% BIC% CAIC% HQIC% AIC% AICC% BIC% CAIC% HQIC% 

1 1-1-1-1-1 96 96 100 100 100 86 86 100 100 96 

2 1-1-1-1-2 94 94 66 56 88 88 88 74 70 86 

3 1-1-1-1-3 96 96 100 100 100 92 92 98 98 96 

4 1-1-1-1-4 98 98 100 100 100 98 98 100 100 100 

5 1-1-1-2-1 82 82 20 14 56 80 80 90 90 90 

6 1-1-1-2-2 72 72 2 0 34 100 100 86 72 100 

7 1-1-1-2-3 64 64 10 2 28 100 100 84 80 92 

8 1-1-1-2-4 38 38 8 4 24 100 100 96 90 100 

9 1-1-1-3-1 98 98 100 100 98 94 94 98 98 96 

10 1-1-1-3-2 78 78 26 22 60 92 92 66 54 84 

11 1-1-1-3-3 100 100 100 100 100 100 100 100 100 100 

12 1-1-1-3-4 100 100 100 100 100 100 100 100 100 100 

13 1-1-1-4-1 98 98 100 100 98 94 94 100 100 98 

14 1-1-1-4-2 74 74 28 26 48 96 96 52 38 76 

15 1-1-1-4-3 100 100 100 100 100 100 100 100 100 100 

16 1-1-1-4-4 100 100 100 100 100 100 100 100 100 100 

17 1-1-2-1-1 92 92 100 100 98 86 86 100 100 98 

18 1-1-2-1-2 88 88 100 100 98 92 92 98 98 98 

19 1-1-2-1-3 94 94 100 100 98 92 92 100 100 98 

20 1-1-2-1-4 92 92 100 100 98 96 96 100 100 100 

21 1-1-2-2-1 96 96 100 98 100 80 80 86 86 84 

22 1-1-2-2-2 100 100 98 96 100 100 100 100 100 100 

23 1-1-2-2-3 100 100 98 98 100 100 100 100 100 100 

24 1-1-2-2-4 98 98 84 80 98 100 100 100 100 100 

25 1-1-2-3-1 96 96 100 100 96 96 96 100 100 100 

26 1-1-2-3-2 100 100 100 100 100 100 100 100 100 100 

27 1-1-2-3-3 100 100 100 100 100 100 100 100 100 100 

28 1-1-2-3-4 100 100 100 100 100 100 100 100 100 100 

29 1-1-2-4-1 98 98 100 100 98 98 98 100 100 98 

30 1-1-2-4-2 100 100 100 100 100 100 100 100 100 100 

31 1-1-2-4-3 100 100 100 100 100 100 100 100 100 100 

32 1-1-2-4-4 100 100 100 100 100 100 100 100 100 100 

33 1-2-1-1-1 92 92 100 100 96 86 86 100 100 100 

34 1-2-1-1-2 90 90 96 96 94 94 94 100 100 98 

35 1-2-1-1-3 88 88 100 100 98 96 96 100 100 100 
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36 1-2-1-1-4 94 94 100 100 98 80 80 98 98 96 

37 1-2-1-2-1 90 90 22 10 76 76 76 80 80 76 

38 1-2-1-2-2 98 98 22 8 66 100 100 100 100 100 

39 1-2-1-2-3 94 94 8 0 62 100 100 100 100 100 

40 1-2-1-2-4 80 80 0 0 32 100 100 100 100 100 

41 1-2-1-3-1 96 96 98 100 96 92 92 96 96 94 

42 1-2-1-3-2 100 100 100 100 100 100 100 100 100 100 

43 1-2-1-3-3 100 100 100 100 100 100 100 100 100 100 

44 1-2-1-3-4 100 100 100 100 100 100 100 100 100 100 

45 1-2-1-4-1 100 100 100 100 100 98 98 100 100 100 

46 1-2-1-4-2 100 100 96 90 98 100 100 100 100 100 

47 1-2-1-4-3 100 100 100 100 100 100 100 100 100 100 

48 1-2-1-4-4 100 100 100 100 100 100 100 100 100 100 

49 1-2-2-1-1 92 92 100 100 98 86 86 98 98 96 

50 1-2-2-1-2 96 96 100 100 100 88 88 100 100 100 

51 1-2-2-1-3 88 88 100 100 100 94 94 100 100 100 

52 1-2-2-1-4 96 96 100 100 98 98 98 100 100 100 

53 1-2-2-2-1 98 98 100 100 98 84 84 86 86 84 

54 1-2-2-2-2 100 100 100 100 100 100 100 100 100 100 

55 1-2-2-2-3 100 100 100 100 100 100 100 100 100 100 

56 1-2-2-2-4 100 100 100 100 100 100 100 100 100 100 

57 1-2-2-3-1 94 94 100 100 98 98 98 100 100 100 

58 1-2-2-3-2 100 100 100 100 100 100 100 100 100 100 

59 1-2-2-3-3 100 100 100 100 100 100 100 100 100 100 

60 1-2-2-3-4 100 100 100 100 100 100 100 100 100 100 

61 1-2-2-4-1 96 96 100 100 98 98 98 100 100 100 

62 1-2-2-4-2 100 100 100 100 100 100 100 100 100 100 

63 1-2-2-4-3 100 100 100 100 100 100 100 100 100 100 

64 1-2-2-4-4 100 100 100 100 100 100 100 100 100 100 

65 2-1-1-1-1 94 94 100 100 100 88 88 100 100 100 

66 2-1-1-1-2 96 96 90 86 100 86 86 88 86 90 

67 2-1-1-1-3 96 96 100 100 100 96 96 100 100 100 

68 2-1-1-1-4 98 98 100 100 100 100 100 100 100 100 

69 2-1-1-2-1 100 100 58 42 92 78 78 78 78 78 

70 2-1-1-2-2 96 96 26 20 74 100 100 94 86 98 

71 2-1-1-2-3 92 92 20 12 64 100 100 100 100 100 

72 2-1-1-2-4 80 80 12 6 46 100 100 100 98 100 

73 2-1-1-3-1 98 98 100 100 100 98 98 100 100 100 

74 2-1-1-3-2 98 98 70 56 92 100 100 92 88 98 

75 2-1-1-3-3 100 100 100 100 100 100 100 100 100 100 

76 2-1-1-3-4 100 100 100 100 100 100 100 100 100 100 

77 2-1-1-4-1 100 100 100 100 100 98 98 100 100 98 

78 2-1-1-4-2 96 96 42 32 78 100 100 88 78 98 

79 2-1-1-4-3 100 100 100 100 100 100 100 100 100 100 

80 2-1-1-4-4 100 100 100 100 100 100 100 100 100 100 
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81 2-1-2-1-1 90 90 98 100 96 82 82 100 100 98 

82 2-1-2-1-2 96 96 100 100 100 100 100 100 100 100 

83 2-1-2-1-3 96 96 100 100 100 96 96 100 100 96 

84 2-1-2-1-4 98 98 100 100 100 98 98 100 100 98 

85 2-1-2-2-1 98 98 98 100 98 80 80 84 84 84 

86 2-1-2-2-2 100 100 100 100 100 100 100 100 100 100 

87 2-1-2-2-3 100 100 100 100 100 100 100 100 100 100 

88 2-1-2-2-4 100 100 100 100 100 100 100 100 100 100 

89 2-1-2-3-1 100 100 100 100 100 100 100 100 100 100 

90 2-1-2-3-2 100 100 100 100 100 100 100 100 100 100 

91 2-1-2-3-3 100 100 100 100 100 100 100 100 100 100 

92 2-1-2-3-4 100 100 100 100 100 100 100 100 100 100 

93 2-1-2-4-1 100 100 100 100 100 96 96 100 100 100 

94 2-1-2-4-2 100 100 100 100 100 100 100 100 100 100 

95 2-1-2-4-3 100 100 100 100 100 100 100 100 100 100 

96 2-1-2-4-4 100 100 100 100 100 100 100 100 100 100 

97 2-2-1-1-1 90 90 100 100 96 88 88 98 98 94 

98 2-2-1-1-2 96 96 100 100 98 92 92 96 96 94 

99 2-2-1-1-3 98 98 100 100 100 96 96 100 100 98 

100 2-2-1-1-4 94 94 100 100 100 96 96 100 100 100 

101 2-2-1-2-1 90 90 78 74 92 72 72 74 74 74 

102 2-2-1-2-2 100 100 78 50 100 100 100 100 100 100 

103 2-2-1-2-3 98 98 46 32 88 100 100 100 100 100 

104 2-2-1-2-4 100 100 6 4 68 100 100 100 100 100 

105 2-2-1-3-1 100 100 100 100 100 100 100 100 100 100 

106 2-2-1-3-2 100 100 100 100 100 100 100 100 100 100 

107 2-2-1-3-3 100 100 100 100 100 100 100 100 100 100 

108 2-2-1-3-4 100 100 100 100 100 100 100 100 100 100 

109 2-2-1-4-1 100 100 100 100 100 100 100 100 100 100 

110 2-2-1-4-2 100 100 100 100 100 100 100 100 100 100 

111 2-2-1-4-3 100 100 100 100 100 100 100 100 100 100 

112 2-2-1-4-4 100 100 100 100 100 100 100 100 100 100 

113 2-2-2-1-1 86 86 100 100 98 86 86 100 100 100 

114 2-2-2-1-2 92 92 100 100 100 96 96 100 100 100 

115 2-2-2-1-3 98 98 100 100 100 92 92 100 100 98 

116 2-2-2-1-4 94 94 98 100 98 94 94 100 100 98 

117 2-2-2-2-1 90 90 100 100 98 90 90 90 90 90 

118 2-2-2-2-2 100 100 100 100 100 100 100 100 100 100 

119 2-2-2-2-3 100 100 100 100 100 100 100 100 100 100 

120 2-2-2-2-4 100 100 100 100 100 100 100 100 100 100 

121 2-2-2-3-1 96 96 100 100 98 98 98 100 100 98 

122 2-2-2-3-2 100 100 100 100 100 100 100 100 100 100 

123 2-2-2-3-3 100 100 100 100 100 100 100 100 100 100 

124 2-2-2-3-4 100 100 100 100 100 100 100 100 100 100 

125 2-2-2-4-1 100 100 100 100 100 100 100 100 100 100 
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126 2-2-2-4-2 100 100 100 100 100 100 100 100 100 100 

127 2-2-2-4-3 100 100 100 100 100 100 100 100 100 100 

128 2-2-2-4-4 100 100 100 100 100 100 100 100 100 100 

129 3-1-1-1-1 86 86 100 100 96 98 98 100 100 98 

130 3-1-1-1-2 98 98 100 100 100 78 78 82 82 82 

131 3-1-1-1-3 100 100 100 100 100 100 100 100 100 100 

132 3-1-1-1-4 100 100 100 100 100 100 100 100 100 100 

133 3-1-1-2-1 100 100 94 86 100 94 94 94 94 94 

134 3-1-1-2-2 100 100 82 66 100 100 100 100 100 100 

135 3-1-1-2-3 98 98 48 32 92 100 100 100 100 100 

136 3-1-1-2-4 96 96 18 14 76 100 100 100 100 100 

137 3-1-1-3-1 100 100 100 100 100 100 100 100 100 100 

138 3-1-1-3-2 100 100 90 84 100 100 100 100 100 100 

139 3-1-1-3-3 100 100 100 100 100 100 100 100 100 100 

140 3-1-1-3-4 100 100 100 100 100 100 100 100 100 100 

141 3-1-1-4-1 100 100 100 100 100 100 100 100 100 100 

142 3-1-1-4-2 96 96 58 48 90 96 96 68 60 86 

143 3-1-1-4-3 100 100 100 100 100 100 100 100 100 100 

144 3-1-1-4-4 100 100 100 100 100 100 100 100 100 100 

145 3-1-2-1-1 92 92 100 100 100 96 96 100 100 98 

146 3-1-2-1-2 96 96 100 100 100 86 86 90 90 90 

147 3-1-2-1-3 98 98 100 100 100 100 100 100 100 100 

148 3-1-2-1-4 100 100 100 100 100 98 98 100 100 100 

149 3-1-2-2-1 98 98 100 100 100 86 86 86 86 86 

150 3-1-2-2-2 100 100 100 100 100 100 100 100 100 100 

151 3-1-2-2-3 100 100 100 100 100 100 100 100 100 100 

152 3-1-2-2-4 100 100 100 100 100 100 100 100 100 100 

153 3-1-2-3-1 100 100 100 100 100 98 98 100 100 100 

154 3-1-2-3-2 100 100 100 100 100 100 100 100 100 100 

155 3-1-2-3-3 100 100 100 100 100 100 100 100 100 100 

156 3-1-2-3-4 100 100 100 100 100 100 100 100 100 100 

157 3-1-2-4-1 100 100 100 100 100 98 98 100 100 100 

158 3-1-2-4-2 100 100 100 100 100 100 100 100 100 100 

159 3-1-2-4-3 100 100 100 100 100 100 100 100 100 100 

160 3-1-2-4-4 100 100 100 100 100 100 100 100 100 100 

161 3-2-1-1-1 86 86 96 96 94 82 82 98 98 96 

162 3-2-1-1-2 100 100 100 100 100 96 96 98 98 98 

163 3-2-1-1-3 98 98 100 100 100 100 100 100 100 100 

164 3-2-1-1-4 98 98 100 100 100 100 100 100 100 100 

165 3-2-1-2-1 100 100 100 100 100 76 76 76 76 76 

166 3-2-1-2-2 100 100 100 100 100 100 100 100 100 100 

167 3-2-1-2-3 100 100 94 86 100 100 100 100 100 100 

168 3-2-1-2-4 100 100 64 50 96 100 100 100 100 100 

169 3-2-1-3-1 100 100 100 100 100 100 100 100 100 100 

170 3-2-1-3-2 100 100 100 100 100 100 100 100 100 100 
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171 3-2-1-3-3 100 100 100 100 100 100 100 100 100 100 

172 3-2-1-3-4 100 100 100 100 100 100 100 100 100 100 

173 3-2-1-4-1 96 96 100 100 98 100 100 100 100 100 

174 3-2-1-4-2 100 100 100 100 100 100 100 100 100 100 

175 3-2-1-4-3 100 100 100 100 100 100 100 100 100 100 

176 3-2-1-4-4 100 100 100 100 100 100 100 100 100 100 

177 3-2-2-1-1 82 82 98 98 94 90 90 100 100 100 

178 3-2-2-1-2 90 90 98 98 96 98 98 100 100 100 

179 3-2-2-1-3 98 98 100 100 100 92 92 100 100 100 

180 3-2-2-1-4 96 96 100 100 100 98 98 100 100 100 

181 3-2-2-2-1 98 98 100 100 98 96 96 98 98 98 

182 3-2-2-2-2 100 100 100 100 100 100 100 100 100 100 

183 3-2-2-2-3 100 100 100 100 100 100 100 100 100 100 

184 3-2-2-2-4 100 100 100 100 100 100 100 100 100 100 

185 3-2-2-3-1 100 100 100 100 100 100 100 100 100 100 

186 3-2-2-3-2 100 100 100 100 100 100 100 100 100 100 

187 3-2-2-3-3 100 100 100 100 100 100 100 100 100 100 

188 3-2-2-3-4 100 100 100 100 100 100 100 100 100 100 

189 3-2-2-4-1 100 100 100 100 100 100 100 100 100 100 

190 3-2-2-4-2 100 100 100 100 100 100 100 100 100 100 

191 3-2-2-4-3 100 100 100 100 100 100 100 100 100 100 

192 3-2-2-4-4 100 100 100 100 100 100 100 100 100 100 

Note: Condition a-b-c-d-e, where a = sample size, b = number of testlets, c = number 

of items per testlet, d = magnitude of the testlet effect, e = magnitude of the content 

effects. Refer Table 3 to get the corresponding levels for each manipulated variable.  
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