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ABSTRACT

Let Ly be the number of digital line segments of length N
that correspond to lines of the form y=ax +8 , 0 < a , 8 < 1.

In a previous paper [4], a closed form expression for the guantity
Ly was obtained. We prove an asymptotic estimate for Ly that

might prove useful for many applications. Namely,

N3
Iy = — + O(N2logN).
- 2

An application to image registration gqguestions is given.
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1. INTRODUCTION.

.

Image processing problems in high accuracy matching, edge
detéction, and measurement‘can be approached using probabilistic
methods in digital geometry. Using this approach we considered
the problem of subpixel accuracy in feature based image regis-
tration and presented our work in a series of NASA sponsored
symposia in 1983-85 [1,2,3]. The mathematical formulation of
these ideas appear in detaill in [4]. Related technigues have been

developed by Dorst and Smeulders [5].

The digital nature of these problems gives rise to the need
to study the properties of digital line segments, i.e. the digiti-
zation of real line segments. The original work characterizing
which collections of pixels are digital lines was done by Rosen-
feld and others ([6],[7]). In [7] it was observed that the
digital line segments of length N through the origip, that is
the digital line segments corresponding to lines of equation
vy=ax , 0 s a < 1, are.in a one-to-one correséondenée with the
Farey se;ies of length N, ¥y (see next section for unexplained
termsf. It follows from well-known results in number theory thatl
if L: denotes the number cof line segments of length N through

the origin then

We also note that Lz can be computed explicitly in terms of
number theoretic functions but the asymptotic estimate given is
more useful in many problems. In many situations we cannot know

that the digital line segment we obtain, e.g. in edge detection,



passes through the origin. 1In [5] a useful method of representing
arbitrary digital line segments of length N was introduced, and
the number Ly of these segments correspénding to lines cf the
form y=ax + 8 , 0sa , 3 <1 4appearéd then as a guantity that
needed to be computed for the applications in [1,2,3]. In [4] we
succeeded in giving an explicit expression for Ly in terms of .
arithmetical functions, again this expression (as Lg) is very
hard to compute and the corresponding asymptotic expansion would

have been useful. In [4] we only succeeded in proving that

| w

< Ly/(N3/m?) <

IH
w0

if we disregard error terms of the order of magnitude
O((log N)/N). These bounds are not trivial because a careless
reading of [5] might have indicated that Ly =~ 2N3/n2. We prove

here in Theorem 4 that

N3
Iy = — + O(N21logN).
w2

A recent note [10]'considers the related problem of bit
reduction for storage of the main code of line drawings, ana an
estimate of the form Ly = O(N®) is rederived. In a very
interesting paper [4], Mcllroy considers the guestion of effi—._
ciently finding the digital line segment associated to a real line
segment, his geometric approch is akin to the method used in [47.
In (4] we considered also a sort of converse problem to McIlroy's,
given a digital line segment finq a real line segment that had the
least offset error. This arose in trying to obtain subpixel
information from satellite data. We also obtained in {4] some

upper and lower bounds for the average offset Ey for a digital



line segment of length N. We give in Theorem 6 an exact asymp-
totic formula for Ex. This guantity Ey represents how much
subpixel accuracy you can expect in estimating line positicn
from binary (black and white) digital datg, it turns out to be

about 0.92/N for segments of length N.

It is our impression that both the results and the techniques
used here will turn out to be useful in what we see as an emerging
new area of research with applications to image processing, digital

integral geometry, the theory from [8] carried in the context of
digital lines, etc.

We would like to thank the referees for their many sugges-
tions that led to improvements upon the first version of this

manuscript, for pointing out references [10] and [11] to us, and

specially for their suggestion that a more representative title

was necessary.

2. BACKGROUND,

This section describes the parametrization [5] of digital
lines mentioned in the introduction. We also recall the results
obtained in [4] describing the set of all digital lines in terms
of these parameters. We will be concerned with lines with slope
in the range [0,1) and cro§sing the y-axis in the interval [0,1).
{The family of all lines can be reduced to this one modulo

translation and relabeling of the axes.)

To each such line we can associate a digital line by the
following procedure. For each nonnegative integer a , if the

line crosses the vertical line x = a at the point (a,b), then



we mark the square pixel whose lower left hand corner is (a,|b]),
where |b] denotes the integral part of b. The set of marked
pixels obtained in this way is called the:digital line associated
to the original line. 1In practice, we afe only interested in line
segments, hence the integer a will be in the interval [O,N]. N
will be called the length of the digitalv}ine segment. For this
digital segment, one can assign a sequence {CJ>T of zeros and
ones as follows. Let by , by,...,by be the ordinates of the

lower left hand corners of the pixels of that segment (Note that

Bo

0). Define

1 otherwise

This sequence has N elements.

The period, g, of this sequence is defined to be the small-
est integer such that there exists an infinite periodic extension

h . . ..
; /' C1,++sCx + CN+1 s CN42.+.., With period gq. It is

of {cy}
clear that 1 < g=< N and the case g = 1 corresponds to a
horizontél digital segment, i.e. ¢y = 0 for all j. Define p
to be the number of ones in a period. If p is different from

zero, then p and g are relatively prime.

The fourth parameter, called the shift s, can be defined by
the property that 0 < s é‘q - 1 and that for every j, 1 s j < N,

one has

(1) cy = (I-s)(p/q@)] - L(3-s-1)(p/q)].

If one reverses the above procedure for any quadruple of nonnega-

tive integers (N,q,p,s) with l‘s g < N, p relatively prime to



g, 0< s =< g-1, the set of pixels whose lower left hand corner
is (j.,bj), 0 s j s N will form a digital line segment of length
N. - Thié guadruple (N,qg,p,s) constitutes the parametrization of
the family of digital line segments of length N proposed by
Dorst and Smeulders [5]. To avoid trivial repetitions we only
allow p =0 when g = 1. This case co;;esponds to the

horizontal digital line segment.

The shift parameter s has the property that digital line
segments through the origin (i.e. those arising from lines through
the origin) are characterized by the value s = 0. In fact, as was
already shown in {7], a digital line segment qf length N through
the origin always ériseé from the digitization of a line of equation
"y =p/g x with p and g relativély prime integers, 1 s g < N,

0O<p<qgi(and 1 = p < g if g = 1). These pafameters p and
g are ekactly the same as those appéaring in (N,q,p,O): Fur-
thermore, the correspondence between different digital iine seg-
ments of length N through the origin and the above pairs P,q
is a bijection. 1In number theory it is customary to call the set
TN' of rational numbefs r, 0= r <1, with denominators less or
equai to N, the Farey sequence of order N '(cf. [9], to be
precise in [9] the number 1 is included in .FN but it is more
convenient for us to modify the definition in this form). Note
that 7y coincides with tge set of {p/q: p and g relatively
prime, 1 s g s N, 0s p < q énd p= 0 1f g= 1}, It is clear
therefore that if we call L: thé number of digital line segments

through the origin of length N, then L: = #FN. . s



Following [9] one can give a close formula for Li .  Namely,

A
=
A
o}
=
’_
o

-
o

let ¢(n) = the number of integers m, 1
m and n are relatively prime), e.g. ¢{1) = 1, ¢(2) =1, ¢(3) = 2,

p(4) = 2, etc. Introduce an auxiliary function ¢ by

(2) g(x): = > e(n).

lsnsx .

Theorem 330 from [9] states that

2
{3) d(x) = 3% + 0(x logx}),
2
where as usual we denote by O0O(f(x)) a quantity bounded in
absolute value by C|f(x)] for some constant C > 0 and all

sufficiently large wvalues %X. With this notation in mind we see

that.Lz has an explicit'formula (Theorem 331, [9]):
)
(4) Ly = 2(n) = o(1)+...+¢(N),

which is not very easy to compute for large values of N. For

many applications the asymptotic expansion (3) suffices

(3) o _ 3N?

. Unfortunately, for arbitrary digital line segments the
Dorst-Smeulders parametrization does not define a one-to-one
correépondence. In [4] we gave a one-to-one correspondence
between the family of all digital line segments and a subset of
the guadruples (N,qg,p,s). This subset is determined by the
single condition given in Proposition 1 below. 1In order to state
this result, we must introduce an auxiliary integral parameter,

£, 0 < £ < g, given by the solution to the congruence equation,



(5) {p = -1{mod q).

Clearly the set of these £ runs over the set of numbers rela-

tively prime toc g when p runs over the same set,

Proposition 1. (see [4]). The family of digital line segments is

in a one-to-one correspondence with the set of guadruples

(N,g,p.,s) such that the gquantity

(6) [(N-s)/q] g + |(s+€)/q] g - ¢

is positive.

For a fixed g, 1 = g < N, we want to compute the number
L{N,g) of digital lines of length N gnd pericd gq. Clearly,
L(N,l) =1, so we can consider gq > 1. Proposition 1 reduced the
problém of countiné the number of lines to the question of finding
out for each € (1 < € < g, € relatively prime to g), the number
of valﬁes of' s for which the expression (6) isApositive. It is
clear that if N - s > g., then (6) is positive. The only éime
we must be careful is when N - s < g. This can only arise if
N<g+s -1=< 2qgq -1, that is, (N+1)/2 s g. Hence, if
g < (N+2)/2, s can take arbitrary values and it follows that for

2 s g { (N+2)/2

(7) L(N,qg) = gv(q)

~

This formula is clearly also valid for g = 1 since ¢(1) = 1.
In the remaining range of g, one has to be more careful but a
relatively simple argument which éan be found in {4] leads to an
explicit formula for the number L(N,g) in terms of arithmetic

functions:



(8) L(qu) = (N—q+2) (P(q) + 2 min(2CI"N-2, CI"{-"l, ‘e"ll N-q)l
£

where the sum fakes place over all values £, 0 < £ < g, with <¢

and g relatively prime.

We summarize the above as:

Proposition 2. (see [4]) Let Ly be nﬁmber of digital lines of

length N with both slope and y-intercept between 0 and 1.

Then

N
(9) Iy = ) L(Na),
a1

where L(N,q) is give by (7) if 0 < g < (N+2)/2 and by (8)

ctherwise.

3. Asymptotic formula for the number of lines.

The exact formula given in Proposition 2 is difficult to
evaluate for large N and so an asymptotic formula becomes
desirable. The derivation of éuch a formula is based on the
heuristi; fact that the numbers relatively prime to a given number
g appear to be uniformly distributed in the ;nterval [1,gq]. 1In

fact this heuristic can be made precise by the following auxiliary

proposition:

Proposition 3. For fixed n, let the function F(x) be defined

as the cardinality of the set of positive integers, p, such that

Ps X and p 1 n. "Then
(10) F(x) = 2#1—2- X + O(loglogn).

The proof of Propesition 3 appears in the Appendix.



As a consequence of the definition of F we have for any

a,b, 0 < a< bz<n,.

(11) jz:l = F(b) - F(a) = (b—a)ﬂi%l + 0(loglogn).

£in
as€shb

Computing sums as Stieltjes integrals we also obtain from

Proposition 3:

pZ-a’ o(n)
(12) jz:e = = 2-5- + (b-a) O(loglogn).
£in
as<L<b
In effect,
b b b
}24 = j %dF (x) = XF(X) ! -j F(x)dx
a a a
£1in
asfsh
b b
= x2 ¢(n) + (b-a) O(loglogn) - g(n) J xdx
n n
a a
1 2 (n) o
=5 X d = + (b-a) O(loglogn)
a
. 2 2 :
- b ~2 2(0) 4 (b-a) 0(loglogn).

n

In the proof of Theorem 4 below we will need another estimate

of the same type, this one follows from (3). Let us define
(13) 6(x): = ) aola)
1sg<x

Then we have

X Cr X X
G(x) = j tdd (t) = t&(t) ! - j & (t)dt
1 1 1
3 X 3 '
= x$(x) - LI O(j t logt dt} = Zﬁy + O(leog>q.
nz 1 w

io0



Since this estimate will be used repeatedly below, we summarize it

here

(14) G(x) = = + 0(x*log x).
w

Finally, let us introduce a function M(g) for (N+2)/2 < g < N,

(15) M(q): = ZE: min(2q-N-2, g-{¢-1, <£-1, N-q).
£1q '
1<€sg-1

Actually the sum only uses 2<£sg-2, since the other two values

of € contribute only zero to it.

These formulas and a modicum of computations.will allow us to

prove the asymptotic formula for Ly conjectured in [4].

Theorem 4. The following asymptotic formula holds

. ! ' N3 Az
(16) Ly = - + O(N"log N).
n

Proof of Theorem 4. It is clear from Proposition 2 that computing

Ly involves three kinds of terms. The first one can be handled

using (13) and (14):

3
N 2
(12) > e = Y wi@ =i s ofiogm).
15q< (N+2) /2 12q< (N+2) /2 4 |
The second kind arises out of the first term in formula (8) (use

first (2) and (13), then (3) and (14)):

~

(18) D wee-ge(q) = (w2 (50 -2 (])]
(N+2)/2<q<N
n 3,2 ,N,2
- (G(N+1)—G((N+2)/2)] = (N+2)[—;[N -(3) ] o+ O(N'logrn]
T
3
- EE{[(N+1)3—(§%3)2]+ O(Nzlogbn] =N 4 o(NlogN).

2n2

11



Finally we are left with the hardest term which requires repeated

use of the estimates (11) and (12). This is the sum :E: M(qg),
. {N+2)/2sg=<N
where we have used the auxiliary function M defined by (15).
Note that if we graph the minimum as a function of <, we
obtain a trapezoid, computing its "area" and correcting the
"Jength of the base" to be ¢{g) was the heuristic reasoning that

led us to the statement of Theorem 4. To make this precise, we

divide the range of g into two parts. Observe that
2N+2

2g-N-2 < N-g when g s 5 If we use first g 1in the range
ng < g < 2N;2 thep
£-1 it 1 < £ < 2g-N-1
(19) minimum = 2g-N-2 if . 2g-N < € 5 N-g .
' ’ g-£-1 if N-1+g < € < g-1

Therefore, for a fixed ¢q, (N+2)/2 = g < (2N+2)/3, M(g) can be

estimatéd using (19), (11) and (12) by

— 2_ .
M(g) = (2q—N21) 1 ‘péq) + (2g-N-2) O(log logq)

(2g-N-2) —(’%}—) + O(log log g)

+ (2q—N—2){(2N—3q) ‘péq) + 0(log log q)]

+

(g-1) [(2q-N—2‘) ‘pé—-—q-)- + 0(log log q)]

2 2
[(q-l) —;N—q+l) ¢éQ) + (2g-N-2) o(loglOgCﬂ]

(29-N) (¥-q) ZL) 4+ (7g-3N) 0(log log q)

(2q-¥) (N-q) ZLL + o(q log loga).

12



Where we have used N < 2q to simplify the last expression.

2N

Similarly, if 5 £ qQ¢ N, . then N-g < 2g-N-2, hence
£-1 ) 1 s £ s N-g+1
(20) minimum = N-g if N-q < € s 2g-N-2
g-€-1 2g-N-1 = € = g-1

The same computation leads to

(21) M(q) = (2q-N)(N-q) "’éq’ + 0(g log log q),

which therefore holds in the whole range (N+2}/2 < g < N.

Hence, the last term we have to estimate to finish the proof

of Theorem 4 is the following.

(22) Z M(q)

(N+2)/2sgsN
= Z (2g-N) (N-q) “’(—g) +0 Z q log log g
(N+2)/2=<qg=<N (N+2)/2=<qgsN

3Ny ela) - 2) ae(a) - ¥y 9 0[ q log logq}

where we have omitted the range of summation for simplicity. The
first two terms can be estimated using (3) and {14). The

remainder term can be estimated by comparision with the integral

-

X 2 X

2 1
[ t loglog t dt = loglogx - J 5

log t

dt = O(leoglog}d

nqx
]

and hence 1t is smaller than O(NzlogNJ. The only term in (22)
we have not yet estimated is the one involving ziél. If we do it
by integration by parts using the function .4 as we have done

13



before, we will end up with the correct leading term but a
slightly bigger error term in Theorem 4, namely O(NzlogzN).
Since we will need a better estimate in Theorem 6, we state the

following lemma which will be proved in the Appendix,.

Z p(q) then
q ' :

Lemma 5. Let H(x)

l<gs<x
(23) H(x) = 2% + 0(log x)
14
Going back to the estimate of (22), we have now (using (3), (14)
and (23)):
(24) > M@ = afrm-sd] - 2(emen-sF]
(N+2)/2sgsN
3
- NZ(H(N)-H(-Izi)} + O(N*log N) = -i- 3‘? + O(N*logN).
: T

Collecting together (17), (18) and (24), we obtain

N3 2
Ly = - + O(N" logN)
g
which was the desired estimate. O

We have computed Ly using the exact formuia (9) for N s 200
. 3
and compared it with the leading term Ly = H? in (16). We found
ki3

that Lx is systematically bigger than L; . The percent error
steadily decreases from 5.5% for N = 100 to 2.7% for N = 200.
In fact, in this range of N we have
Ly = L; + cn‘lg Nzlogrh
i
with ¢y decreasing from 1.2 for N = 100 to 1.08 for N = 206. It

would seem natural to conjecture

14



Ly = + - logN + O(N log N)

¥ ox
2
i ki

where the implied constant is of the order of magnitude of 0.1.

We do not know how to prove such a refinéd estimate.

4. An application to subpixel registration accuracy.

As pointed out in the introduction,¢the origin of our research
in this area was the problem of given a digital line segment, how
to choose a line with that digitization and optimal in some sense.
Let us denote ¢ +the guadruple (N,g,p,s). Denote by A the
affine function, A(x) = ax + 8, 0 s a,8 < 1. We will write A € ©
to indicate the digitization of the line segment of equatiqn
vy = A(X), 0 s x < N, 1is exactly o. We were interested in
[1,2,3] in finding the line A* € o' which minimized the
(vertical) offset ¢€(o) for a given o:

*x
(25) E(g): = yin max max A (x)-x (x)]
A €0 A€o 0s<xsN

%* . * %*
In [4] we show that A (x) = p/q X+ 8, where 8 can be found

explicitly in terms of ¢ and

(26) (o) =-2-%.

The avérage offset Ey over all digital line segments of length

N is then given by "

N
(27) EK:%EE_Q‘%)_/LN
1 T

In [4] we obtained the (asymptotic) estimates

29 1 59 1

30N S BN S BT W

15



up to error terms of order O((logN)/Nz). Using Theorem 4 and
the method of proof that led to it, we can obtain an exact

asymptotic estimate.
Theorem 6. The average offset (27) is given by

(25) Ey = 3(1-log2)% + o[iu].
N

Procf. We have to estimate the numerator in the definition of

Ex, i.e., § (L{(N,g)/g). A&s we know from the proof of Theorem 4,
g=1
the hardest term in this sum has the form M(qg)/q,

(N+2)/2 s g < N. From (21) we have

(26) Eial = -2¢{qg) + 3N£L%l - szi%l + O(loglogq).
' q

o]

We have already worked with every term in (26) except for

w(q)/qz. .Let us handle this one first. We have, using Lemma 5,

{recall H(1/2) = 0):
. x X
R(x] = 2ld) 7 ame) = H(O|T o+ B gt
A 15qex o 1/2 1/2 is2 t
6 6 (* at log X
==t f A 0[ : }
v k4 1/2
=23 + 1+ log2) + ofiod ¥]
= = og X —{ og < J.
¥4
Therefore
(27) Z ""f) = R(N) - R(N/2) = — log 2 + o[l°§ N].
(N+2)/2sqsN 4 " '

The same computations we did in Theorem 4 now lead to

16



N
(28) EE Eigégl = —-f—(l—logz)n2 + O(N log N).
q=1 "

Finally,

N .
Ey =% z [L(N,q)/q]/Ln = ——————3(1'11‘3g 2) . o[-——-—l"izN]. o
1

Remarks. 1. The estimate from [4] was

0.72/N £ Ey £ 1.09/N

while Theorem 6 says that

Ey ~ 0.92/N.

In other words, in a digital line segment of length N, on the
average one cannot do better than about 1/N of a pixel in the
offset. Note that this depends on the data being binary, i.e., we
are painting a pixel black if the line goes through it and leaving

it white otherwise.

2. For the sake of completemess, we give here the formula

*®
from {4] for the choice of a minimizer 2 of (25). As we said

above, we have k*(x) = p/g X + B*. To compute B* in terms of o
let F(s): = s - [s/q]qg, then
*
- 8 : = [F(s) p/q] - (F(s) p/q) + (1/2q).

5. Appendix. .

We prove here the crucial Proposition 3 and also Lemma 5., The
proof we give of Proposition 3 is elementary (l.e. does not use any-
thing that ecannot be found in an elementary textbook like [9]) and

t

introduces some of the things needed in the proof of Lemma 5.

17



The Moebius function ug is defined by

(-1)P where r is the number of distinct primes‘

dividing d if there exists no prime whose

p(dy = sguare divides d

0 otherwise.
Hence Ju(d)] =1 or O according to whether d is sguare-free
or not. =

Lemma 7. The following two estimates hold:

(29) Z_I_II_(_S_)_I_ = 0(loglogn)
“din

(30) z -3:'1- = 0(loglogn)
din

Proof. The first sum is over the divisors of n that are sguare-

free., It coincides with 1T (1 + l) as it can be seen by comput-
pin :

ing this product and using the unique factorization of integgrs
into products of primes. '(The product runs over the prime divi-
sors of n). This is ciearly as large as possible if n it§elf
is the p;oduct of thevfirst r pfimes, n=~>onp...p . We now

r

estimate p. - Theorem 414 from [9] says that for some constant

C>0, Z logp z Cx , if we take x = P in this ineguality we
. psX

ocbtain

For x 2 0 we have log(l + Xx) < x, therefore

log Z\#(g)l = log I (1 + %) < z% = loglogp_ + B + o(1),
din pin psp,_ |

18



for some absolute constant B > 0. The last identity is Theorem

427 in [9]. Using the previous inequality this leads to

0(loglogn),

o o(1 + )
Pin P

which proves the estimate (29).

To prove the second estimate one needs to show that

T /(3

din din
The same reascning that leads to computation of =Z lEL%LL as
din
1 . . 1 1 1
I (1 + =) leads to the inequality Z S =< @I (1 + = + — +...).
p d j 2
pin : din pin p
Therefore
(1+%+l;+...) (1+%+l;+...)
Z i Zlu(d)l < T P < T p
daj; d ) 1+1) i (1+i)
dln dln pin ( 5 P o
(1-3)7% -1 o 2
= I P =1 (1 - E_] = :E: P L
p (143) D p’ nt ®
P n=1

Proof of Propesition 3:

First we note that Theorem 62 of [9] gives

oln) _ N N 1
T Y T S

pin pln pin
aE gln
p=q
where, in these formulas, p,q,r,... represent primes. g

19



Flx) = 21 = =] - Z%J ¥ XL%J szqr '

f.n pln pln
1<8<x gln
p*q
= [ Z-+21—-...]+error=x‘p(n)+error.
q n
pin
qln

The error term arises out of replacing ng by % , and so on.

Using Lemma 7 we can now estimate the error term:

Error sz -i—)-&- Z —;ﬁﬁ- . zw = 0(loglogn)

pin pin dln
gin
pxd

Therefore we obtain the estimate (10)

F(x) = 21%1 X + O(loglogn)'

Proof of Lemma 5. We first use formula 16.3.1 from [9]:

pid)

din

therefore

H(x) = Z <p(rI;)

1<nsx

4,d

lA
lA

where the last sum is over every pair of positive integers d,d
such that dd' < x, as one sees by writing n = dd' in the

intermediate expression. Hence we have

20



d d
H(x) = u(d) }:J_ = u(d) Eﬂ
1<ds<x 1sd’<x/d 1<ds<x
- p{d) _ pu(d) (x
=X e d {E)
1<ds<x 1<dsx

where {a} stands for the decimal part o{ number a. We need one

more transformation of this expression

© ,
= p(d) _ p(d) u(d) x
(31) H(X)—Xz—d—z- {Xz-d—z-*‘z—d—{a}}.
d=1

x<d<m» 1=dsx

Now, one knows that by Theorem 287 from [9]

[s 0] © _1 |
: (d) 1 6

(32) > ERX 5] -5
g=1 d n=1 & T

It ié also clear that

15w 1.1, 1
(33) ,z—dz— -ZE{-§+—?.

x<d x<d ®

We need only to estimate the last term of (31)

| 2 48 @] X e,
1<ds

|
lsdsx X

Recall that we pointed out above that ly(d)(‘= 1 oro accordihg
to whether d 1is sguare free or not. Let Q{y) = number of

integers less or equal to -y which are sguare free, that is,
aly) = ) lu(a)]
icdsy
Theorem 333 from [9] gives us an estimate of Q. namely
6 :
Q(y) ==X + o(y'"%).

4
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We can now proceed as we have done several times before, writing

sums as Stieltjes integrals

S el j L aq(y) =lowm| +[ Wy -
1edex 1 1 v
. X
=6_.+.6_J.(.i_¥+o(_1/2)
x? w1 Y

=172

E{ (1 + logx) + O(x JIR
4

(34) | t > e & }] = 0(log x) .
1<dsx

The three estimates (32), (83), (34) when used in (31) vield
5 .
H(x) = = x + 0(log x)
k14

which is what we needed to prove. o

6. Conclusion:
We have shown that the number of digital line segments of

length N that lie in the first octant can be estimated to be

N3

- - An application to subpixel accuracy was also given. We
4

expect these theorems and methods will prove to be useful in other

problems of digital integral geometry.
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