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Abstract

In this paper we introduce a formalism for solving Hierarchical Task Network (HTN)
Planning using Answer Set Programming (ASP). The ASP paradigm evolved out of the
stable semantics for logic programs in recent years and is strongly related to nonmonotonic
logics. We consider the formulation of HTN planning as described in the SHOP planning
system and define a systematic translation method from SHOP’s representation of the
planning problem into logic programs with negation. We show that our translation is sound
and complete: answer sets of the logic program obtained by our translation correspond
exactly to the solutions of the planning problem.

Our approach does not rely on a particular system for computing answer sets. It can
therefore serve as a means to evaluate ASP systems by using well-established benchmarks
from the planning community. We tested our method on various such benchmarks and
used smodels and DLV for computing answer sets.

We compared our method to (1) similar approaches based on non-HTN planning and
(2) SHOP, a dedicated planning system. We show that our approach outperforms non-
HTN methods and that its performance is closer to that of SHOP, when we are using
ASP systems which allow for nonground programs.
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1 Introduction and Related Work

In the past few years, the availability of very fast nonmonotonic systems based on
logic programming (LP) made it possible to attack problems from other, non-LP
areas, by translating these problems into logic programs and running a fast prover
on them. One of the first such system was smodels (Niemeld & Simons, 1996) and
one of the early applications (Dimopoulos et al., 1997) was to transform planning
problems in a suitable way and to run smodels on them (see also (Dix et al., 2001)).

Since then more implemented systems with different properties for dealing with
logic programs have become available: DLV (Eiter et al., 1998), XSB (Chen & War-
ren, 1996; Rao et al., 1997) to cite the most well-known. In addition, the paradigm
of Answer Set Programming (ASP) emerged (Apt et al., 1999): the idea is that
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problems located on the second level of the polynomial hierarchy are well suited to
be tackled with the machinery of answer sets. In particular problems which allow
for many solutions (like in planning where usually many plans for a given problem
exist) fit in this picture.

In this paper, we investigate the ways of formulating and solving HTN plan-
ning problems using nonmonotonic logic programs under the ASP semantics. HTN
planning (Sacerdoti, 1977; Erol et al., 1994; Wilkins, 1988; Nau et al., 1999) is an
Al-planning paradigm in which the goals of the planner are defined in terms of
activities (tasks) and the planning process is accomplished by using the techniques
of task decomposition. There are several well-known HTN planning systems such
as Universal Method Composition Planner (UMCP) (Erol et al., 1994), Simple Hi-
erarchical Ordered Planner (SHOP) (Nau et al., 1999), and SHOP2 (a total-order
planner with partially ordered subtasks) (Nau et al., 2001). In this work, we fo-
cus on the SHOP planning system, which is a domain-independent HTN planning
system that is built around the concept called ordered task decomposition.

We describe a systematic translation method Trans(-) which transforms HTN-
planning problems as formalized in SHOP into logic programs with negation. Our
basic goal is that an appropriate semantics of the logic program should correspond
to the solutions (plans) of the planning problem. We have adapted the syntax of
the smodels software for our transformation, although we are also experimenting
with other systems like DLV and XSB.

1.1 Related Work

There are many efforts in the literature for formulating actions in logic programs
and solving planning problems by using formulations such as (Gelfond & Lifschitz.,
1998; Turner, 1997; Lifschitz, 1999). (Gelfond & Lifschitz., 1998) describes three
different, action description languages that formalize theories of actions. The latest
one of these languages, the language C, provides means to implement that formalism
as logic programs to solve planning problems effectively and efficiently (Lifschitz,
1999; Giunchiglia & Lifschitz, 1998). The C language consists of general template
to define actions that have preconditions and effects. (McCain & Turner, 1997)
presents a language for causal theories. They have also developed a system called
Ccalc, which is a model checker for the language of such causal theories translated
from propositions in the C action language using rewrite rules (?). The idea in all
these works is that representing a given computational problem by a logic program
whose models correspond to the solutions for the original problem. This idea was
the main inspiration for our work presented here.

(Baral & Tuan., 2001) presents a language about actions using causal laws to
reason in probabilistic settings and solves the planning problems in such settings.
The language resembles similarities to those described above, but the action theory
incorporates probabilities and probabilistic reasoning techniques—as described in
(Pearl, 1988)—to0 solve the planning problems with uncertainty.

(Dimopoulos et al., 1997) presents a framework for encoding planning problems
in logic programs with negation-as-failure. In this work, the idea is almost the same
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as ours, that is, the models of the logic program corresponds to the plans. However,
this work considers only action-based planning problems and incorporates ideas
from such planners GRAPHPLAN and SATPLAN. In terms of the underlying
assumptions and methods presented in (Dimopoulos et al., 1997), our approach is
completely different.

(Son et al., 2001) discusses solving planning programs by logic programs. The
difference between this work and the one described above is that (Son et al., 2001)
incorporates domain-dependent control knowledge to improve the performance of
the planning. In this respect, this work is similar to HTN planning algorithms.
However, the encoding provided in this work is conceptually not an HTN-planner;
instead, it uses hierarchical networks to define domain constraints such as the or-
dering relationships between the actions, and use them in pruning the search for
correct sequence of actions to solve the planning problem.

Our experimental results suggest that both (1) encodings using HTN planning
are better than other encodings, because the HTN control knowledge can be used
to prune irrelevant branches of the search space; and (2) running an ASP system
on non-ground programs (obtained from planning problems) results in a drastic
performance relative to smodels, thus bringing our method closer to dedicated
planning systems like SHOP.

1.2 Organization

This paper is organized as follows. We describe in Section 2 the HTN-planning
paradigm as well as the SHOP planning system. In Section 3 we present our causal
theory for HTN-planning and our translation method to transform HTN planning
problems into logic programs with negation. Section 4 contains our results. Our
main theorem is that our translation method is correct and complete with respect
to HTN-planners. We also present our experimental results along with some discus-
sions on the sources of complexity. Finally, we conclude with Section 5 and provide
our future research directions.

2 Hierarchical Task Network (HTN) Planning

SHOP is a domain-independent Hierarchical Task Network (HTN) planning algo-
rithm (Nau et al., 1999; Nau et al., 2000). However, one difference between SHOP
and most other HTN planning algorithms is that SHOP plans for tasks in the same
order that they will later be executed. Planning for tasks in the order that those
tasks will be performed makes it possible to know the current state of the world at
each step in the planning process, which makes it possible for SHOP’s precondition-
evaluation mechanism to incorporate significant inferencing and reasoning power,
including the ability to call external programs to reason about preconditions and
the ability to perform numeric computations.

In order to do planning in a given planning domain, SHOP needs to be given
knowledge about that domain. SHOP’s knowledge base contains operators and
methods. Each operator is a description of what needs to be done to accomplish
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some primitive task, and each method is a prescription for how to decompose some
complex task into a totally ordered sequence of subtasks, along with various restric-
tions that must be satisfied in order for the method to be applicable. More than
one method may be applicable to the same task, in which case there will be more
than one possible way to decompose that task.

Given the next task to accomplish, SHOP chooses an applicable method, instan-
tiates it to decompose the task into subtasks, and then chooses and instantiates
other methods to decompose the subtasks even further. If the constraints on the
subtasks prevent the plan from being feasible, SHOP will backtrack and try other
methods.

As an example, Figure 1 shows two methods for the task of travelling from one
location to another: travelling by air, and travelling by taxi. Travelling by air involves
the subtasks of purchasing a plane ticket, travelling to the local airport, flying to
an airport close to our destination, and travelling from there to our destination.
Travelling by taxi involves the subtasks of calling a taxi, riding in it to the final
destination, and paying the driver.

Note that each method’s preconditions are not used to create subgoals (as would
be done in action-based planning). Rather, they are used to determine whether or
not the method is applicable: thus in Figure 1, the travel by air method is only
applicable for long distances, and the travel by tazi method is only applicable for
short distances.

Now, consider the task of travelling from the University of Maryland to MIT.
Since this is a long distance, the travel by tazi method is not applicable, so we must
choose the travel by air method. As shown in Figure 1, this decomposes the task into
the following subtasks: (1) purchase a ticket from Baltimore-Washington Interna-
tional (BWI) airport to Logan airport, (2) travel from the University of Maryland
to BWI, (3) fly from BWTI airport to Logan airport, and (/) travel from Logan
airport to MIT. For the subtasks of travelling from the University of Maryland to
BWTI and travelling from Logan to MIT, we can use the travel by tazi method to
produce additional subtasks as shown in Figure 1.

Task travel(x,y)
. Methods ----p- @

X
1 l by ai N
,P recon- p < _short travel-distance
K’ ditions

] >

travel(UMD, MIT)
buy ticket(BWI, Logan)
travel(UMD, BWI)

& get taxi

ride taxi(UMD, BWI)
pay driver
fly(BWI, Logan)

- ]
long trave\l -distance > _ | get taxi ”ride taxi (x,) ”pay driver|

travel(Logan, MIT)
get taxi
» ~v ride taxi(Lo;
. e gan, MIT)
buy ticket(a(x), a(y)) ||travel(x, a(x)) | | fly(a(x), a(y)) | |travel(a(y)y)| <4--- ‘Su—b tasks pay driver

Fig. 1. Travel planning example.

Here are some of the complications that can arise during the planning process:

e The planner may need to recognize and resolve interactions among the sub-
tasks. For example, in planning how to travel to the airport, one needs to
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make sure one will arrive at the airport in time to catch the plane. To make
the example in Figure 1 more realistic, such information would need to be
specified as part of SHOP’s methods and operators.

e In the example in Figure 1, it was always obvious which method to use. But
in general, more than one method may be applicable to a task. If it is not
possible to solve the subtasks produced by one method, SHOP will backtrack
and try another method instead.

SHOP uses the usual first-order logic definitions for atoms, terms, variable and
constant symbols, function and predicate symbols, conjuncts, most-general unifiers
and Horn clauses. Its domain description consists of methods, operators and axioms
as described below.

Definition 1 (Method: (Meth h x t) ) A method is an expression of the form
(Meth h x t) where h (the method’s head) is a compound task, x (the method’s
preconditions) is a conjunct and t is a totally ordered list of subtasks, called the
task list.

Definition 2 (Operator: (Op h Xder Xadd) ) An operator is an expression of
the form (Op h Xdel Xadda), where h (the head) is a primitive task and xqo44 and
Xdet are lists of atoms (called the add- and delete-lists). The set of variables in the
atoms in Xqdqd and Xqer 1S a subset of the set of variables in h.

Definition 3 (Axioms: AX) An axiom is an expression of the form
a(—ll,...,ln,

where a is an atom and the l; are literals.

A plan, P, is defined as the sequence of ground operator instances.

Definition 4 (Plans) A plan is a list of heads of ground operator in-
stances. If P = (pip2...pn) is a plan and S is a state (a set of ground
atoms a), then the result of applying P to S is the state result(S,P) =
result(result(. . . (result(S,p1),p2),-.-),pn). A plan P is called a simple plan when
n=1.

Definition 5 (Simple reductions) Lett be a task, S be the initial state, Meth =
(Meth h x t) be a method, and AX be an axiom set. Suppose that u is a unifier
for h and t, and that v is a unifier that unifies x* with respect to S U AX. Then
the method instance (Meth")? is applicable to t in S, and the result of applying it
to t is the task list v = (t¥)V. The task list v is a simple reduction of t by Meth in
S.

Definition 6 (Domains and problems)
A domain representation is a set of axioms, operators and methods. A planning
problem is a triple (S,t,D), where S is a state, t= (t1t2...tx) is a task list, and
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D is a domain representation. Suppose (S,t,D) is a planning problem and P =
(p1p2 .. .pn) is a plan. Then we say that P solves (S,t,D), or equivalently, that
P achieves t from S in D (we will omit the phrase “in D” if the identity of D is
obvious) if any of the following is true:
1. Case 1: t and P are both empty, (i.e., k=0 and n =0);
2. Case 2: t1 is a primitive task, p1 is a simple plan for t1, (p2...pn) achieves
(ta...tr) from result(S,p1);
3. Case 3: t1 is a composite task, and there is a simple reduction (r1...r;) of t1
in S such that P achieves (ry...rjta...t) from S.

The planning problem (S,t,D) is solvable if there is a plan that solves it. We
therefore denote the set of all plans by Sol(S,t, D).

3 Encoding HTN planning in Nonmonotonic Logic Programming

Our approach of encoding HTN-planning problems as logic programs is based on
SHOP’s representation of a planning problem. We first describe SHOP’s formalism
for HTN-planning briefly. Then we present first steps of a causal theory of HTN
planning based on that formalism. This theory serves as a motivation for our trans-
lation methodology which is given in the subsequent subsection. We conclude this
section with the formalization of a particular example.

3.1 Formal Definitions for HTN-planning: Syntax and Semantics

We use the same definitions for variable and constant symbols, predicate symbols,
terms, atoms as SHOP. Our definitions for axioms, operators, methods are adapted
from SHOP. The next paragraph describes these concepts briefly; for a detailed
discussion see (Nau et al., 1999).

A term is either a constant or a variable symbol. A state S is a set of ground
atoms, and an aziom is a Horn clause. A task is an expression of the form
(htits...t,), where h (the task’s name) is a task symbol, and t1,ts,...,¢, (the
task’s arguments) are terms. A task can be either primitive or composite. A task
list is a list of tasks.

An operator specifies a primitive task that can be accomplished by modifying the
current state of the world by removing every atom in its deletions list and adding
every atom in its additions list. As an example, here is a possible implementation
of the get-taxi operator from Figure 1:

(:0p(!get-taxi 7x)
((service-available-to ?x))
((taxi-coming-to 7x)))

Here is a possible implementation of the travel-by-taxi method from the same
figure:

(:Meth (travel 7x 7y)
((smaller-distance 7x 7y))
(('get-taxi ?x) (!ride-taxi ?x ?y) (!pay-driver 7x 7y)))
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3.2 Causal Theory for HTN-planning

In this section we prepare the ground for our translation in the next subsection. We
give some definitions of a causal theory for HTN-planning in a SHOP-like ordered
task decomposition. The reason for presenting this causal theory is not to give a
formal semantics, but to give some motivations for the more technical aspects of
the translation given later on.

In the definitions below, (S, t,D) is a planning problem as introduced in Defini-
tion 6.

Definition 7 (Caused) Let (S,t,D) be a planning problem and let P be a plan.
We define for a ground literal, 1, the property of being caused wrt. S. This prop-
erty is defined through the following recursive definition:

€S ifl=a,
1. I caused wrt. S if “ if “
agS ifl=-a.
2. 1 caused wrt. S: if there is an axiom given in the domain description D of

the form
a(—ll/\lg/\.../\ln,

such that | = a and every l; is caused wrt. S: l; caused wrt. S.

A list of literals, L, is caused wrt. S iff every literal in L is caused wrt. S.

The next definition represents an important persistence property over time.

Definition 8 (Law of Inertia) A ground literal I, which is caused in the current
state S, is also caused in the next state S’ unless the negated literal =l is caused
in S'. Here the symbol — denotes classical negation. The Law of inertia can be
represented by the following rule:

l caused wrt. 8" : ifl caused wrt. S and
not “=l caused wrt. S8'”.

This rule ensures that for each atom a and each state S, either a or —a is caused
wrt. S.

Definition 9 (Caused Tasks) A primitive taskt is caused (to-be-accomplished)
wrt. (S, D) iff there exists an operator for t: (Op t Xdei Xadd) € D-
A composite task t is caused wrt. (S, D) iff

1. there exists a method for t: (Meth t x t) € D,

2. the preconditions-list x, which is a list of literals representing a conjunct, is
caused, and

3. all of the successor subtasks of t are caused. In that case, we say the subtasks
cause t.

Using this causal theory as an intermediate step, we developed a systematic transla-
tion method for mapping planning problems to logic programs with negation which
we illustrate in the next section.
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Theorem 10
Let a planning problem (S,t,D) be given, where S is the initial state, t is the list
of tasks to be achieved and D is the domain description.

If there is a solution to (S,t,D), then each of the tasks in t is caused wrt (S,
D) in the order they are given in t.

Proof

The proof starts by recursively defining the solution of an HTN-planning problem
(S,t,D) and showing the causal relationships based on our causal theory at the
same time.

The solution plan, P((S,t,D)), for the planning problem (S,t,D) is initially
empty. If t is empty, then (S,t,D) contains exactly one plan, namely the empty
plan. This is because of the fact that there will be no tasks to be accomplished—
thus, no task to be caused . If t is not empty, then let i be the first task in t, and
let R be the remainning tasks. There are two cases.

1. If h is primitive and there is no simple plan in D for it, then P((S,t,D)) is
empty: there is no solution.

2. If h is primitive and there is a simple plan p in D for t, then P((S,t,D)) =
append(p, q), where g € Sol(result(S,p), R, D). Then, according to the first
part of Definition 9 of our causal theory, we say that h is caused wrt. D.

3. If h is a composite task, then P((S,t,D)) = P(S, append(r, R), D), where r is
one of the simple reductions of h (see Definition 5), which is a list of subtasks
of h. In order for h to be accomplished—so that (S, t, D) will be solvable—all
of the subtasks in r have to be accomplished. According to the second part
of our Definition 9, this corresponds the fact that in order for A to be caused
wrt. D, all of its subtasks must be caused wrt. D.

Therefore, it follows from the recursive construction above that if task A is ac-
complished according to our causal theory, it must be caused as well. If we have
more than one task in t, then according to Definition 6, we have to accomplish all
of them separately in the order they are given in t, which also means that each of
them must be caused wrt. (S, D) in that particular order. [

3.3 Encoding Planning Problems as Logic Programs

Translating a planning problem (S,t,D) to its logic program counterpart
Trans((S, t, D)) requires encoding the methods, the operators, and the axioms as
logic program segments as well as the underlying ordered task decomposition char-
acteristics of SHOP. For this reason, we present our translation method in several
steps, performing all of which yield a logic program that is capable of solving plan-
ning problems in the way SHOP does.
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Step 1. Encoding the Domain Independent Rules.

The problem independent rules for a logic program are adapted mainly from (Son
et al., 2001; Lifschitz, 1999; Dimopoulos et al., 1997). The main atoms in these
rules are

e state(A,T): A holds in the current state at time T,
o literal(A): A is a literal,
e contrary(A,—A): A and its negation = A are contradictory.

The main rules are given next. In these rules, T" is a variable of the sort time.

literal(A) i — atom(A).
literal(neg(A)) i —  atom(A).
contrary(A,neg(A)) :— atom(A).
contrary(neg(A), A) :— atom(A).
state(A, T + 1) : — literal(A),literal(B), contrary(A, B), state(A,T),

not state(B, T + 1).

Here, the first and the second rules encode the fact that any atom and its negation
is a literal, and the last rule is the Law of Inertia.

Step 2. Encoding the Problem Dependent State Elements.

SHOP allows using variables in the domain descriptions of the planning problems.
Unfortunately most nonmonotonic systems can not handle free variables. For ex-
ample smodels is doing an (intelligent) grounding of the description it is given and
it is requiring that a certain syntactic condition, safeness, is satisfied. DLV allows
variables, but imposes a safeness restriction and does not allow function symbols.
In the current implementation of smodels, there is a further technical condition
(which will be relaxed in the next release) that we have to take into account: For
every variable that we use in our logic program, we have to specify the range of
values that it can be instantiated during model generation process.
Due to this fact, we have to take care of the following;:

1. we have to enumerate all the possible ground atoms that can be used in the
logic program;

2. we have to include rules for type predicates in the logic program, which define
the range of values for a variable of a certain type.

Translation Procedure for the Atoms and Type predicates

1. Specify the atoms that can ever be used by the logic program as atom(-).
2. Define a type of the form [type](-) for each variable that is used in the logic
program, and specify the range of values for each of those types.

To give an example, consider the method for travelling from one place to another.
Suppose that the name of this method is travel(X,Y"). Here, X and Y are variables
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of locations that are going to be used in this method. The logic program that en-
codes this method must have the following type predicates: place(umd), place(mit),
and so on, for all locations that can be used in the model generation process.

Note that if the translation is being done for a system that cannot handle free
variables - like smodels-, we have to specify the type of each variable appearing in
each rule of the translated logic program by adding the necessary type predicates to
the righthand side of those rules. On the other hand, in a system like DLV, which
can handle free variables, we may omit the type predicates in the rules as long as
we do not violate the safeness restrictions.

Step 3. Encoding the Initial State for the Planning Problems.

SHOP’s initial state for the planning problems is defined to be a set of ground
atoms. In this respect, given a planning problem (S, t, D), the following procedure
must be used in order to translate it into its logic program counterpart.

Definition 11 (Trans(S): Translation for Initial State)
Given a planning problem (S,t,D), for all a € S, add the rule

state(a,0) : —

This rules specifies that a is in the state at time 0, which is used to designate the
initial time.

Step 4. Encoding the Goal Task(s).

The goal tasks are the ordered list of tasks that must be accomplished by the
planning system. In our translation, this list is encoded in the following rules. In
these rules, T;’s are variables of time, and h;’s are the names of the tasks that
must be accomplished, and Pre(h;)’s are the labels for the precondition lists of the
methods which were applied to those tasks.

Definition 12 (Zrans({hi,...,h,}): Translation for Goal Tasks)
Given a planning problem (S,t,D), let t = hy,ha ..., hy, be the ordered sequence of
goal tasks. Then,

1. Encode the first goal task hy as the following rule:
currentTask(hy,0) : —

2. For the rest of the goal tasks, add the following n — 1 rules (i = 2,...,n) to
the logic program:

currentTask(h;, T;) : — caused(hi—1,Pre(h;—1),Ti—1,T;).

The predicate currentTask(task-name,T) uniquely specifies the current task
selected at time 7. As described above, we assumed that the planning process
begins at time 0. If there exists only one goal task to be accomplished for the
problem in hand, then only defining the first rule will suffice.
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Definition 12 enforces the fact that a goal task h; is designated as the current
task to be accomplished if the previous goal task h;_; in t is caused. This is a direct
consequence of our Theorem 10. Following this definition and theorem, we add the
following rules in the logic program:

plan_found : — caused(hy,Pre(hy), Tn, Tha1)-

: — notplan_found.

where T}, denotes the time when the particular method for the last goal task, h,,
is decomposed and T),41 is the time at which h,, is caused (accomplished).

These two rules together state that if the last goal task is caused then there is
a plan (solution) for the planning problem (S,t,D) as a result of Definition 12.
Otherwise, there is none.

Step 5. Encoding the Problem Dependent Control Structures.

Given a planning problem (S,t,D), the domain description D contains axioms,
operators and methods as described in the previous section. For each of these con-
structs, we present a translation procedure.

Definition 13 (Characteristic Function for Literals)
Given a literal, |, we define C(1,T), the characteristic function of I at time T, as

state(a,T) ifl = a,
not state(a,T) if | = —a.

Cc(,T):= {
where a is an atom.

Definition 14 (Trans(AX): Translation for Axioms)
Given a planning problem (S,t,D), for all”a < l1,...,l,” € D, add the rule

state(a,T) : — C(I1,T),C(l2,T),...,C(,,T),
where C(l;,T) is defined in Definition 13 above.

Definition 15 (Trans(OP): Translation for Operators)
Given a planning problem (S,t,D), for all Op € OP, add the following rules:

for all a € Del(Op):
state(neg(a),T + 1) : — currentTask(h,T).
and for all a € Add(Op):
state(a, T +1) : — currentTask(h,T).
and finally add the following rules,

action(h,T,T + 1) : — currentTask(h,T).

caused(h,T,T +1) : — currentTask(h,T).
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The first and the second rule encode the delete- and the add-lists of the operator
respectively. The third rule designates the action for to accomplish the primitive
task h. Since, in SHOP, the ground instances of operators represent action, we do
not need such designations there. The last rule encodes the fact that the task is
caused if and only if there exists an operator for it (see Definition 9).

As described in the previous section, given a composite task h, a method m
can be categorized as one of the following two types: either m can be the only
method for the task h or it can be one of the many methods for task h. Although
they possess slight differences, the translation procedures for each of these cases
are mostly similar. In the rest of this section, we will present these translation
procedures.

Definition 16 (Trans(METH): Translation for Methods)
Given a planning problem (S,t, D), we are translating the methods contained in D.

Case 1: Given a composite task h, suppose that there exists only one method m
whose head matches with h. Let Pre(h) be the label for the precondition list of the
method m and let Z be the set of all variables that are used in that precondition
list. Then,

1. Designate the method to be applied to the current composite task:
method(h,Pre(h),T) : — currentTask(h,T).

2. Define the precondition list of the method by inserting the following rule(s) in
the logic program (where ly, ... 1, are all preconditions of the method m): for
1=1,...,n,

(a) If I; is a positive literal and it contains free variables (i.e, it contains
variable symbols that do not appear in the head of the method m). Let
a;(X1,Xs,...,Xy) denote the fact that there are v free variables in l;. Let
sj denote the number of substitutions for the variable X; in the current
state S. For each k; = 1...s;, define Vi, = (X1 k1, X2 kor---> Xnokn )
where m =1,...,51 X 82 X ... X 8y such that Y1 = (X11,X21,...,Xy1)
and Ym = (X1751,X2732, P ,Xmsv).

Then, add the following rule in the logic program,
checked(state(a;(Y1),T),T) :— method(h,Pre(h),T),
state(a;(Y1),T),
NZ1Z0% not checked(state(ai(Yy,), T),T),

m=2

/\;.):1 X]'71! = X]'72! =...l= Xj73]"
(b) Otherwise, add the following rule,
checked(state(l;,T),T) : — C(l;,T), method(h,Pre(h),T).

where C(l;,T) is as defined in Definition 13.
and finally, add the following rule in the logic program,

preCond(Pre(h), Z,T) :— checked(state(l1,T),T),...,checked(state(l,,T),T),
method(h, Pre(h),T).
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3. Assuming the ordered task decomposition for this method is the ordered set
of tasks {t1,t2,,tn}, add the following set of rules to the logic program to
specify the decomposition (note that the time variable Ty in the following rule
definitions in this item denote the same value as the time variable T in the
rule definitions presented in other items does):

currentTask(t;,Ty) :— method(h,Pre(h),T1),preCond(Pre(h), Z,T1).
currentTask(ty,T>) : — method(h,Pre(h),Ty),

preCond(Pre(h), Z,Ty),

caused(ty, Pre(t1), Ty, Tv),

TS g T;.

currentTask(t,, Ty,) :— method(h,Pre(h),T)
preCond(Pre(h), Z,Ty),
/\?;11 caused(t;, Pre(t;), T;, Tix1),
NiZy Tis1 2 T
4. Finally, specify the causal links from the child tasks {t,,t2,,t,} to the parent
task h.

caused(h,Pre(h),T,Tyyr1) :— method(h,Pre(h),T),
preCond(Pre(h), Z,T),
N, caused(t;, Pre(t;), T;, Tit1),
NS T 2 Tim
Case 2: Given a composite task h, suppose that there exist n > 1 many methods

m; such thati =1,...,n, whose heads match with h. Then for each such method

m;, perform the previous procedure given for Case 1 above, with the following

modifications:

1. Replace each Pre(h) term with the term Pre(h);.

2. Use PreCond(m;) for the particular m;.

3. Rewrite the first rule as follows:

method(h,Pre(h);, T) :— currentTask(h,T),
Nk=1,.. npzi 10t method(h, Pre(h)y, T)

The rest of the rules are exactly the same as presented for the Case 1.

3.4 A Translation Example: An Elevator Domain

In this section, we give an example translation for the Miconic-10 Elevator domain,
which was introduced as an official benchmark domain during the ATPS-2000 com-
petition (see (Bacchus, 2001) and http://www.cs.toronto.edu/aips2000). In the
competition, the domain was configured in a number of versions to accommodate the
representational power of different planning systems. Its simplest version (the one
referred to as the “first track” version at http://www.informatik.uni-freiburg.
de/~koehler/elev/elev.html) was one of the test cases in (Son et al., 2001), and
we used the same version here and in our experiments (see Section 4.2). This version
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differs from the more complicated versions in the following respects: The planner
simply has to generate plans to serve a group of passengers of whom the origin
and destination floors are given. There are no constraints such as satisfying space
requirements of passengers or achieving optimal elevator controls.

Although we have the full translation of the domain, for the sake of simplicity, we
give here only a part of our translation along with the corresponding HTN domain
description for comparison.

Suppose that we have only two floors and one person to be delivered. Further-
more, suppose that the elevator starts its operation at the 0** floor (i.e., the ground
floor which is marked as 0) and its initial direction is upwards. Our passenger boards
the elevator at the first floor and wants to go down to the ground floor.

Now, we will describe the basics of the translation process step by step as de-
scribed in the previous section.

Step 1. Encoding the domain independent rules.

For our elevator example, the domain independent rules are as follows:

literal(P) : — atom(P).
literal(neg(P)) — atom(P).
contrary(P,neg(P)) :— atom(P).
contrary(neg(P),P) :— atom(P)
state(P, T + 1) i —  time(T), literal(P),literal(Q), contrary(P, Q),

state(P,T), not state(Q,T + 1).

As it can be seen in these rule definitions, we have to define all possible atoms
that can ever be used during planning.

Step 2. Encoding the Problem Dependent State Elements.

In this step, we have to formulate all of the possible atoms that can ever be used
during the planning process. Due to the fact that the variables in smodels semantics
must have a range of values, we must also define type predicates in our translation
as described in the previous section. In a SHOP domain description, we do not need
to make these definitions about the set of all possible atoms and tasks, nor about
the type predicates.

In our elevator example, we need the following rules for defining the set of all
possible atoms:
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atom(boarded(P)) :—  person(P).
atom(goal(P)) :—  person(P).
atom(served(P)) :— person(P).

atom(li ft(F)) :—  floor(F).
atom(origin(P, F)) : — person(P), floor(F).
atom(destination(P, F)) : — person(P), floor(F).
atom(top(F)) :—  floor(F).
atom(bottom(F)) :—  floor(F).
atom(current_direction(X)) :— direction_type(X).

And also the type predicates such as:

person(0) D —
floor(0...1) D=
direction_type(up)
direction_type(down) : —

Step 3. Encoding the Initial State for the Planning Problems.

We need the following rules to specify the initial state in our encoding of the elevator
example:

state(lift(0),0) D —
state(goal(0), 0) P —
state(origin(0, 1), 0) 1 -
state(destination(0,0),0) T —
state(current_direction(up),0) : —

As it can be seen from these rules, these rules specify certain ground atoms to be
in the state of the planner (Definition 11 in the previous section). The last argument
for each state(P,T) predicate is the time T at which the atom P holds. We define
the initial time for the execution of the planner to be 0.

Step 4. Encoding the Goal Task(s).

We need the following rule to specify the goal tasks in our encoding of the elevator
problem in which we have only one in this case:

currentT ask(serve_all,0).

This rule specifies that our goal task is a task whose head is serve_all and the
initial time is 0.
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Since there is only one goal task in this particular elevator problem, we need
only one rule for specifying it. If we had more than one goal task, then we would
have several rules as given in Definition 11 in the previous section. To give an
example, suppose that we have another goal task initialize_elevator which guar-
antees that the elevator is returned to ground level after serving all the passengers.
In the ordered task list definition of SHOP, these will constitute a goal task list
t = (serve_all,initialize_elevator). In this case, we would have the following rules
according to Definition 11 in our encoding of the problem:

currentT ask(serve_all,0) D —
currentTask(initialize_elev, T) :— caused(serve_all,Pre(serve_all),0,T),
T >0.

Step 5. Encoding the Problem Dependent Control Structures.

In this step, we formulate our axioms, operators, and methods, which are given in
the HTN domain description, D.

For example, in the HTN definition of our particular elevator example, we have
the following operator definition for moving the elevator from one floor to another:

(:operator (!move f1 £2)
(1ift(£1))
(Lift(£2)))

This operator is encoded (see Definition 15.) in the following set of rules:

state(neg(lift(F1)),T + 1) : — time(T), floor(F1), floor(F2),
currentTask(move, F1, F2,T).
state(lift(F2),T + 1) : —  time(T), floor(F1), floor(F2),
currentTask(move, F1, F2,T).
action(move, F1, F2, T, T +1) :— time(T), floor(F1), floor(F2),
currentTask(move, F1, F2,T).
caused(move, F1,F2, T, T+ 1) :— time(T), floor(F1), floor(F2),

currentTask(move, F1, F2,T).

These rules apply only when the current task is the primitive task (movef1f2).

There are two cases in the translation of a method as given in Definition 16. In
the first case, we may have only one HTN method for a particular task. Suppose
that the current task is (op-elevf), where f is a floor, and we have the following
method:

(:method (op_elev f)

(1ift(£)) % the precondition
((check_board f) % subtask 1
(check_dep f) % subtask 2

(move_elev £))) % subtask 3
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According to Case 1 of the Definition 16, we have the following rules:

method(op_-elev, F,Pre(op_elev),T) : —time(T), floor(F),
currentT ask(op-elev, F,T).
checked(state(li ft(F),T),T) : —state(lift(F),T),
method(op-elev, F, Pre(op_elev),T).
preCond(Pre(op-elev), F,T) : —checked(state(lift(F),T),
method(op-elev, F, Pre(op_elev),T).
currentT ask(check _board, F,T) : —time(T), floor(F), preCond(Pre(op-elev), F,T),
method(op_elev, F, Pre(op_elev),T).
currentT ask(check_dep, F, T2) : —time(T), time(T'2), floor(F),

preCond(Pre(op-elev), F,T),
method(op_elev, F, Pre(op_elev),T),
caused(check_board, F, Pre(check _board),T,T?2),
T2>T.

currentTask(move_elev, F,T3) . —time(T), time(T2), time(T3), floor(F),
preCond(Pre(op-elev), F,T),
method(op_elev, F, Pre(op_elev),T),
caused(check_board, F, Pre(check _board),T,T?2),
caused(check_dep, F, Pre(check_dep),T2,T3),
T2>T, T3> T2.

caused(op_-elev, F,Pre(op_elev), T, T4): —time(T), time(T2), time(T'3), time(T4),
floor(F), method(op-elev, F, Pre(op_elev),T),
preCond(Pre(op-elev), F,T),
caused(check_board, F, Pre(check _board),T,T?2),
caused(check_dep, F, Pre(check_dep), T2, T3),
caused(move_elev, F, Pre(move_elev), T3, T4),
T2>T, T3> T2,T4> T3.

In this translation, the first rule designates the application of the method whose
head is op-elev to the current task (op_elevf). The second and the third rules
make sure that all of the preconditions of the method are satisfied in the current
state S. The fourth through the sixth rules define the successor subtasks with the
order they were defined in the corresponding HTN method. Note that, in HTN
formalism, the ordering of the subtasks enforce the fact that a subtask ¢ can be
selected as the current task for decomposition only if all of the subtasks preceding
t are accomplished successfully. This is achieved in our translation by the caused
properties of the tasks (see Definition 9).

As the other case, we may have two different methods for the same composite
task in our HTN domain description. For example, suppose that we also have the
following method for the task (op-elevf) in addition to that given above:

(:method (op_elev f)
(Aift(£)) % the precondition
((move_elev f))) J, the subtask
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In a SHOP-like HTN planning algorithm, having two methods with different
successor subtasks applicable for a particular task creates a branching (backtrack-
ing) point in the search space of the planner. If we require the planner to return
all the solutions (plans) for the planning problem at hand, the planner should try
each branch to find a possibly—but not necessarily—different plan. To be able to
implement this property in our translation, we use the NAF literals to generate
different answer sets corresponding to the application of each method—as given in
Case 2 of Definition 16. According to this definition, we will the following method
designation rules in the translation of each method:

method(op_elev, F,Pre(op_elev);,T) :— time(T), floor(F),
currentT ask(op_elev, F,T),
notmethod(op-elev, F, Pre(op-elev)s, T')
method(op_elev, F,Pre(op_elev)s, T) :— time(T), floor(F),
currentT ask(op_elev, F,T),
notmethod(op-elev, F, Pre(op-elev), T)

The index of the predicate Pre(h), where h is the head of the method - which
is op_elev in this example-, specifies which branch is being taken. The rest of the
translation for each method remains the same as in the example above except all
the instances of Pre(h) should be replaced by Pre(h);, where i is the index of the
method.

4 Results: Theory and Practice

In this section, we present our theoretical results on the correctness of our transla-
tion method and the soundness and the completeness of the resulting logic programs
as planning systems as well as the experiments we have undertaken.

4.1 Soundness and Completeness

Due to space limitations, we will not present the whole proofs here, but we will
discuss the basic ideas behind them.

Our first theorem states that our translation indeed corresponds to HTN plan-
ning as done in SHOP.

Let Trans(-) be the translation method described in the previous section. Given
any HTN-planning problem, we are interested in the relationship between the mod-
els (or answer sets) of Trans(-).

Theorem 17 (Trans(-) and HTN planning) Given a  planning  problem
(S,t,D), where S is the initial state, t is the list of tasks to be achieved and D
is the domain description, let Tvans((S,t,D)) be the corresponding logic program
with negation. Furthermore, let Sol(S,t,D) be the set of solutions returned by
SHOP. Then,

1. If Sol(S,t,D) = 0, then Trvans((S,t,D)) has no answer sets.
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2. If Sol(S,t,D) # 0, then for every plan P € Sol(S,t,D) # 0, there is an
answer set of Tvans((S,t,D)), such that the action(_) predicates correspond
exactly to the steps p; in P.

Proof

Sketch Given an HTN planning problem (S, t, D), the proof starts with defining
the solution depth of a plan P € Sol(S,t, D) to be the number of decompositions
needed to produce P from t plus the length of P. Then, it follows from the causal
theory for HTN-planning described in the previous section (Theorem 10), that
both SHOP and the logic program Trans((S,t,D)) have the same set of plans
initially. Then, by induction on the solution depth of any solution in Sol(S,t, D),
we show that the theorem holds throughout the plan/model generation process.
This is because the logic program Trans((S,t,D)) is produced by our translation
methodology, which is based on our causal theory. [

Soundness and completeness are the two important requirements for any planning
system. Soundness means that all of the plans that are generated by the planner
are actually true solutions to the given planning problem; that is, no plan, which
is not solution to the problem, should be generated. Completeness means that the
planning system must be able to generate all of the possible plans (solutions) for
the given problem.

Corollory 18 (Soundness and Completeness of ASP using Trans(-))
Given a planning problem (S,t,D), where S is the initial state, t is the list of
tasks to be achieved and D is the domain description, let Trans((S,t,D)) be the
corresponding logic program with negation. Furthermore, let Sol(S,t, D) be the set
of solutions returned by SHOP.

Then, the answer sets of Trans((S,t,D)) correspond exactly to the plans in Sol
(S,t,D). There is a bijection between these two sets and each plan in Sol (S,t,D)
can be reconstructed from its corresponding answer set in Trans((S,t,D)) and vice
versa.

The corollary follows easily from the theorem and the fact that SHOP itself has
been shown to be a sound and complete planner.

Definition 19 (Solution Tree for Trans(-))

Given a planning problem (S,t,D), and the corresponding logic program with nega-
tion Trans((S,t,D)), we define the solution tree produced by Trans((S,t,D)). It is
an AND-OR tree, T, in which the AND branches represent the task decompositions
and the OR branches represent different possible methods whose heads match with
a particular task.

We say T represents Sol(S,t, D). Without loss of generality, we assume that the
solution tree of Trans((S,t,D)) is a complete AND-OR tree as shown in Figure 2.
Furthermore, we suppose that t contains only one task to be accomplished and we
have no negated atoms in the preconditions of the methods in D.
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Fig. 2. A complete AND-OR Tree

Theorem 20 (Time Performance using Trans(-) (1))

Given a planning problem (S,t,D), the corresponding logic program with negation
Frans((S,t, D)), and the solution tree T, then, the time required for Trans((S,t, D))
to generate the set of all answer sets that correspond to Sol(S,t, D) monotonically
increases with the number of applicable methods for a particular task (the number
of branches in a particular OR-branch).

Proof

Sketch Given a particular task ¢ in the solution tree 7, let n denote the number of
applicable methods to t. According to our translation methodology, for each such
method, Trans((S,t, D)) will include the rules given in Definition 16. Without loss
of generality, we assume that Trans((S,t,D)) requires a unit amount of time to
make a rule ground and fire it, and all of the possible method applications to ¢ lead
to isomorphic sub-trees. Then, let the time required for Trans((S,t,D)) to solve
a sub-tree of 7 whose root is ¢, be denoted by ¢ # 0. The overall time required
for Trans((S,t,D)) to find all answer sets is nc + a, where a represents the time
required by Trans((S,t,D)) for the rules corresponding to the rest of the parts of
the solution tree T.

The proof starts by showing that when n = 0, the time required for
Trans((S, t,D)) to find all answer sets is equal to a and it monotonically increases
if we increase n by 1 (c¢+a is clearly greater than a). Suppose that for all i < n, the
theorem holds. Then, by induction, if we increase the number of methods applicable
to task t to be n+ 1, the overall time required for Trans((S,t, D)) to find all answer
sets will be (n + 1)c + a such that (n 4+ 1)c+ a > nc+ a.

It follows therefore that the total time required by Trans((S,t,D)) to generate
all answer sets that correspond to Sol(S,t,D) monotonically increases with the
increasing number of applicable methods to a particular task in 7. O

Theorem 21 (Time Performance using Ttans(:) (2))
Given a planning problem (S,t,D), the corresponding logic program with negation
Frans((S, t, D)), and the solution tree T, then, the time required for Trans((S,t, D))
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to generate the set of all answer sets that correspond to Sol(S,t,D) monotonically
increases with the number of subtasks of a particular task (the number of branches
in an AND-branch).

Proof

Given a particular task ¢ and a method m : (Meth h x t), whose head, h, matches
with the task ¢, the subtasks of the task t correspond the simple reduction r of ¢
by in S. Suppose that there are n subtasks in r. Then, according to our translation
methodology, Trans((S, t, D)) will contain n rules as shown in the item 3 of the first
case in Definition 16. Without loss of generality, we assume that Trans((S,t,D))
requires a non-zero unit amount of time, denoted as ¢, to make a rule ground, and
fire it. Let £ # 0 be the number of occurrences of the particular task ¢ in the
solution tree T of (S,t,D). Then, the overall time required for Trans((S,t, D)) will
be knc + a, where a represents the time required by Trans((S,t,D)) for the rules
corresponding to the rest of the parts of the solution tree 7.

The proof starts by showing that when n = 0, the time required for
Trans((S,t,D)) to find all answer sets is equal to a and it monotonically increases
if we increase n by 1 (kc+ a is clearly greater than a. Suppose that for all i < n, the
theorem holds. Then, by induction, if we increase the number of methods applicable
to task t to be n + 1, the overall time required by Trans((S,t,D)) to generate all
answer sets will be k(n + 1)c + a such that k(n + 1)c + a > kne + a.

Then, it follows that the total time required by Trans((S,t,D)) to generate
all answer sets that correspond to Sol(S,t, D) monotonically increases with the
increasing number of subtasks of a particular task in 7. [

Definition 22 (Range of a Variable: ||v]|)
The range of a variable v, denoted by range(v) is defined to be the set of all possible
values defined for v. The cardinality of range(v) is denoted by ||v||.

Definition 23 (The Universal set of atoms)
Given a planning problem (S,t,D), the universal set of atoms, U, is defined as the
set of all possible ground atoms that can ever be used to find aoll of the solutions for
(S,t,D).

We assume that for every atom a in U, the number of variables of a is a fized
number, say k. Furthermore, the range for every variable in a has the same length
r.

Theorem 24 (Time Performance using Ttans(:) (3))
Given a planning problem (S,t,D), the corresponding logic program with negation
Frans((S, t, D)), and the solution tree T, then, the time required for Trans((S,t, D))
to generate the set of all answer sets that correspond to Sol(S,t, D) monotonically
increases as k and/or r increase (see previous definition).

Proof
The proof starts by defining the total number of ground instances, g, of a particular
rule of Trans((S, t,D)). Suppose that k and v, as described above, are fixed non-zero
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numbers initially. Let z be the number of atoms in that particular rule. Then, the
total number of ground instances is g = kvz. Let ¢(k, v) denote the time required by
Trans((S,t,D)) in order to make a rule ground, and fire it. If Trans((S,t,D)) fires
N rules during the process of traversing the corresponding solution tree 7, then the
total time required for Trans((S,t,D)) to generate all the possible answer sets is
given by Ng x ¢(k,v). Then, by induction on k and/or v, we show that the theorem
holds throughout the traversal process of 7 implemented by Trans((S,t,D)) in
order to generate all of the answer sets corresponding to Sol (S,t,D). O

As simple corollaries of the last theorem, we can conclude that the time for gen-
erating the set of all answer sets monotonically increases with (1) the number of
preconditions of the methods, and (2) the number of atoms in the add- and delete-
lists of the operators.

4.2 Experimental Study
In our experiments, we used two different planning domains:

The Travelling Domain: This domain is the one of the domains included in the
distribution of SHOP planning system. The scenario for the domain as described
in (Nau et al., 1999) is that we want to travel from one location to another in
a city. We have three locations: downtown, uptown, and park. There are three
possible means of transportation: taxi, bus and foot. Taxi travel involves hailing
the taxi, riding to the destination and paying the driver $1.50 plus $1.00 for
each mile travelled. Bus travel involves hailing the bus, paying the driver $1.00,
and riding to the destination. Foot travel just involves walking., but the maxi-
mum feasible walking distance depends on the weather. Thus, different plans are
possible depending on the weather conditions, the distance between our current
location and the one we want to go, and how much money we have.

The Miconic-10 elevator Domain: This is the domain as described in Sec-
tion 3.4. It is contained in a series of benchmarks http://www.informatik.
uni-freiburg.de/ koehler/elev/elev.html and it was recently used not only
to measure the performance of various planners but also for other translation
methods from planning problems into ASP (see http://www.FCS.NMSU.Edu/
“tson/asp_planner/.

We describe our experiments in the following three subsections. We used the
software package smodels v2.6—which is available at http://www.tcs.hut.fi/
Software/smodels/—as the testing environment for our logic program encoding.
We ran our experiments on a Solaris 2.6 Sun Ultra 1 machine. . However, we
also tested our logic programs on the DLV system—which is available at http:
//www.dbai.tuwien.ac.at/proj/dlv/.

4.2.1 Comparison with (Son et al., 2001)

The section describes our comparison of the time performance of the logic programs
produced by using our translation methodology with that of the logic-program
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encodings presented in (Son et al., 2001). Note that the encoding methods proposed
in (Son et al., 2001) does not produce actual HTN encodings, rather they make
use of only a few properties of HTN s—as they are introduced in (Erol et al.,
1994)—for implementing control knowledge in logic programs that perform action-
based planning. In their paper, Son et al., showeed that employing that of control
knowledge has increased the time performance of the logic program that encodes
an action-based planner.

The problems that we used in these experiments are from http://www.CS.NMSU.
Edu/~tson/asp_planner. Table 1 shows both our results and the results from (Son
et al., 2001), which were also obtained on the Smodels system. These experiments
were run on an HP OmniBook 6000 Laptop with 128MB RAM and an Intel Pentium
IIT 600 Mhz processor.

| Problem | Trans(-)| (Son et al., 2001) |

| S1-0 |  0.150]| 0.100 |
| S2-0 |  0.880] 1.802 |
| $3-0 |  6.300] 22.682 |
| S4-0 |  8.960] 164.055 |
|S5-0s1 | 2.530] 57.952 |
|S5-0s2 |  3.900] 105.040 |
| S6-0 | 53.340] no solution |

Table 1. Comparison of HTN Encoding with (Son et al., 2001)

The results clearly show that the logic programs produced by our translation
methodology outperform the logic programs produced in (Son et al., 2001). Our
encoding was even able to solve a problem, for a solution could not be found by
(Son et al., 2001).

In this respect, these results confirm the fact that a SHOP-like HTN planning
is an effective way for solving planning problems. They also illustrate that our
translation method provides a way to produce efficient HTN-logic programs with
ASP semantics to solve planning problems compared to other action-based encod-
ing methodologies that use some HTN concepts as domain control knowledge. We
believe that this is due to the fact that HTN-planning is more expressive than
action-based planning (?). Thus, all of the planning problems can be represented
in HTN formalism. For this reason, our translation methodology offers an efficient
way solving planning problems by using logic programs with answer set semantics.
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4.2.2 The Effect of Grounding

We hypothesize that our translation methodology provides more efficient logic pro-
grams with ASP semantics if the system on which those programs are implemented
allows the usage of free variables in the programs. Otherwise, the system tries to
make every rule ground in the input program, which is not an appropriate be-
haviour in planning. Most of the recent planning systems—such as SHOP (Nau
et al., 1999) , TALPlanner (?), etc.—can work on planning-problem descriptions
with free variables and these systems are proven to be faster then those which
reequire grounding.

As we described earlier, the smodels system cannot work on the logic programs
with free variables. To test our hypothesis, we applied our translation methodology
to our elevator and travelling examples to produce logic programs on a different
system called DLV. DLV is a deductive database system, and can be used as a logic
programming system as well. It implements stable model semantics and it supports
the usage of free variables in the input logic programs.

Tables 2 show our results on the travelling problems. As it can be seen, our
programs are much more faster on DLV, then on smodels. This is because of the
fact that, as described in Section 3.4, smodels work on ground logic programs.
Because of that we have to define type predicates for each variable in the problem
domain as well as all possible ground instances of the atoms that can ever be used in
the planning process. The result is that as the number of variables and the number
of their possible instantiations increase, the time performance of the logic program
decreases (see Theorem 24). However, we do not have such constraints on DLV
since it can work on programs with free variables. Thus, the effect of grounding can
be clearly seen in our results on travelling domain.

On the elevator problems, however, the performances of our programs are almost
the same (see Table 3 ). The reason for this is the fact that the elevator domain, by
its definition, enforces the input programs to be more ground than the travelling
domain. Thus, no matter they are implemented on either smodels or DLV, the
programs need to be ground. Therefore, in this domain the effect of grounding
cannot be seen clearly.

4.2.8 Comparison with SHOP

Encouraged by the performances of the logic programs produced by our translation,
we prepared an experiment set in which we compared the time performances of
our logic-program encodings on the travelling examples with those of the SHOP
planning system itself on the same domain.

For this experiment set we designed three independent variables, namely the
destination location, the weather condition and the financial status of the traveller.
We assumed that the traveller always starts travelling from the downtown of the
city. The treatments for these independent variables are: the destination location
can be uptown or park, the weather can be good or bad, and the traveller can be
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|Problem| smodels| DLV|

| P1 | 3.23|  0.2|
| P2 | 2.23| 0.12]
| P3 | 2.19| 0.22|
| P4 | 2.08| 0.10]|
| P5 | 22| 0.19]
| P6 | 2.18| 0.11]|
| P7 | 2.21| 0.19]|
| P8 | 2.15| 0.08|

Table 2. Comparison of smodels and DLV using Tvans(-) (1)

| Problem | smodels| DLV ||

| s1-0 |  0.150| 0.51|
| S2-0 | 0880 130
|| $3-0 |  6.300| 6.61]
| S4-0 |  8.960| 6.66]
[S5-0s1 | 2530 4.06 |
[S5-0s2 |  3.900| 3.76
|| s6-0 | 53.340| 54.54 |

Table 3. Comparison of smodels and DLV using Ttans(-) (2)

either rich (i.e., have sufficient money for travelling with taxi) or broke (i.e, has no
money at all).

As it can be seen from the results of our experiment (see Table 4), the performance
of our logic programs are comparable to that SHOP. Given the fact that SHOP is
proven to be one of the fastest and efficient planners in the ATPS-2000 planning
competition (Bacchus, 2001), these results suggest that our translation methodology



26 Jirgen Diz et al.

| Problem| SHOP | Trans(-) on DLV ||

[ P1 | 0026 | 0.20 [
[ P2 | 0.002 | 0.12 [
[ P3 | o0.003 | 0.22 I
[ P4 | 0.002 | 0.10 [
[ P5 | o0.004 | 0.19 [
[ P6 | 0.009 | 0.11 I
[ P7 | 0.003 | 0.19 [
[ P8 | 0.003 | 0.08 I

Table 4. Comparison of Tvans(-) with SHOP (no Grounding)

introduces a way of providing very efficient solutions to planning problems using
logic programming with ASP semantics and it has the potential to be the most
competitive approach in the logic-programming literature with the actual planning
systems.

In the near future, we will test our system on more planning domains and compare
our approach with other well-known planning systems. We are also planning to
implement our approach on two systems, namely the XSB system ((Rao et al.,
1997)) and the front-end software developed by P. Bonatti for smodels ((Bonatti,
2001b; Bonatti, 2001a)), both of which can handle free variables like the DLV
system.

4.2.4 Ezperimental Verification of Our Theorems

This section describes four sets of experiments with respect to Theorems 20, and 21.
We introduced two independent variables, one for each experiment: the number of
applicable methods for a particular task ||m||;, and the number of subtasks of a
particular task, [|]|¢. In each experiment, we measured the time performance of our
logic program encoding produced by our translation methodology on the travelling
problems.

We designed different number of treatments for each of our independent variable.
For the independent variables about a particular task, we chose the travelling task
(i.e., the task travel XY') in SHOP notation). The treatments for our independent
variables are shown in Table 5.

The results are shown in Table 6 and Table 7. These results corroborate with our
theoretical results in Theorem 20 and 21, respectively. As it can be seen from these
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|| Independent Variable | Treatments ||

|| ||m||f | 17 27 37 4”

Table 5. Treatments of Independent Variables

tables, the time required to generate all the answer sets in Sol (S,t,D) increases
with the number of methods applicable to a particular task and with the number
of subtasks of a particular task.

|| Independent Variable| 1. Treat.l 2. Treat.| 3. Treat.l 4. Treat. ||

| [lml|. | 6.1| 17.68 | 29.59 | 41.77 ||

Table 6. Performance of Trans((S,t,D)) wrt. Number of Methods.

|| Independent Variablel 1. Treat.| 2. Treat.l 3. Treat. ||

| NIt | 13.75 | 17.68 | 39.33 ||

Table 7. Performance of Trans((S,t,D)) wrt. Number of Subtasks.

5 Conclusions and Future Research Directions

In this paper, we described a way to encode HTN-planning problems into logic
programs under the answer set semantics. This transformation is not only sound and
complete, but it also corresponds closely to HTN-planning systems which generate
plans by using ordered task decompositions. Previous encodings (as first introduced
in (Dimopoulos et al., 1997)) do consider action-based planning or they take a
special view of HTN planning (as constraint-based planning, like in (Son et al.,
2001)).

To test our approach, we used it to create both smodels logic programs and DLV
logic programs, for two different AI planning domains: the Travelling Domain, and
the “first track” version of the Miconic 10 Elevator Planning Domain. Here is a
summary of our experimental results and what we believe they signify:

e In our experiments on the Miconic 10 domain, our smodels logic programs
clearly outperformed the corresponding ones described in (Son et al., 2001),
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which are based on answer set semantics. This, we believe, is due largely to
the HTN-style control knowledge that our translation methodology encodes
into the logic programs.

e Although our logic-program encodings on smodels outperformed those of (Son
et al., 2001), they were not competitive with SHOP, which is a state-of-the-
art Al planning system. We believe one of the reasons for this is that smodels
require grounding, which creates combinatorially many ground instances of
the clauses in the logic program. For any given problem instance, most of
these clauses are likely to be irrelevant.

e Our overall translation methodology does not rely on grounding. Grounding
is merely used here because many available systems, notably smodels, require
it. DLV, on the other hand, allows for free variables, but does not allow
function symbols, which come in handy in smodels. We have included in this
paper our first experiments in applying our methodology for programs with
free variables. In our experiments on the Travelling Domain using our method
together with DLV, we got a speed-up of two orders of magnitude compared
to smodels. However, the performance was still about 1.5 orders of magnitude
worse than SHOP, one of the best planning systems on the market.

We emphasize the fact that our method does not use any particular features of
the engine for computing answer sets. Obviously, taking advantage of the particular
search method of smodels, or the bottom-up evaluation of DLV, it would be possible
to write even more efficient translations. But our aim is to develop a translation
that is independent of the underlying nonmonotonic engine.

As a byproduct, we believe our method can be easily used as transferring bench-
marks from the planning community to benchmarks for comparing nonmonotonic
systems based on computing answer sets. This is because our method is very gen-
eral and does not rely on the features of a particular system. Due to lack of time,
we were not yet able to test the benchmarks on the XSB system, a Prolog sys-
tem which not only allows function symbols but also free variables at the same
time. These are features that neither smodels nor DLV provide. We believe that
we can get a competitive planning system once we can apply our translation into a
nonmonotonic system with these two features.

We are also planning to compare our method with smodels equipped with a front-
end to allow for (restricted use of) free variables ((Bonatti, 2001b; Bonatti, 2001a)).
The latter system has been developed by Piero Bonatti and is a front-end system
that can be added to any system computing answer sets and based on grounding.
This would also allow for comparisons of systems with built-in grounding to those
who do not require this (but are, in general, slower). Again, we believe that serious
benchmarks from the planning community can help a lot to evaluate nonmonotonic
systems.

Our overall aim is to investigate to what extent state-of-the-art nonmonotonic
theorem provers can compete with dedicated planners (in particular those based on
HTN) and what lessons we can learn from the different translation methods. We
expect that optimal translations (if they exist) depend on the particular application



HTN Planning in ASP 29

area. Developing a methodology to determine or classify such domains seems to us
to be worthwhile.
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