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tIn this paper we introdu
e a formalism for solving Hierar
hi
al Task Network (HTN)Planning using Answer Set Programming (ASP). The ASP paradigm evolved out of thestable semanti
s for logi
 programs in re
ent years and is strongly related to nonmonotoni
logi
s. We 
onsider the formulation of HTN planning as des
ribed in the SHOP planningsystem and de�ne a systemati
 translation method from SHOP's representation of theplanning problem into logi
 programs with negation. We show that our translation is soundand 
omplete: answer sets of the logi
 program obtained by our translation 
orrespondexa
tly to the solutions of the planning problem.Our approa
h does not rely on a parti
ular system for 
omputing answer sets. It 
antherefore serve as a means to evaluate ASP systems by using well-established ben
hmarksfrom the planning 
ommunity. We tested our method on various su
h ben
hmarks andused smodels and DLV for 
omputing answer sets.We 
ompared our method to (1) similar approa
hes based on non-HTN planning and(2) SHOP, a dedi
ated planning system. We show that our approa
h outperforms non-HTN methods and that its performan
e is 
loser to that of SHOP, when we are usingASP systems whi
h allow for nonground programs.Keywords: HTN-planning, nonmonotoni
 reasoning, ASP systems, ben
hmarks1 Introdu
tion and Related WorkIn the past few years, the availability of very fast nonmonotoni
 systems based onlogi
 programming (LP) made it possible to atta
k problems from other, non-LPareas, by translating these problems into logi
 programs and running a fast proveron them. One of the �rst su
h system was smodels (Niemel�a & Simons, 1996) andone of the early appli
ations (Dimopoulos et al., 1997) was to transform planningproblems in a suitable way and to run smodels on them (see also (Dix et al., 2001)).Sin
e then more implemented systems with di�erent properties for dealing withlogi
 programs have be
ome available: DLV (Eiter et al., 1998), XSB (Chen & War-ren, 1996; Rao et al., 1997) to 
ite the most well-known. In addition, the paradigmof Answer Set Programming (ASP) emerged (Apt et al., 1999): the idea is that



2 J�urgen Dix et al.problems lo
ated on the se
ond level of the polynomial hierar
hy are well suited tobe ta
kled with the ma
hinery of answer sets. In parti
ular problems whi
h allowfor many solutions (like in planning where usually many plans for a given problemexist) �t in this pi
ture.In this paper, we investigate the ways of formulating and solving HTN plan-ning problems using nonmonotoni
 logi
 programs under the ASP semanti
s. HTNplanning (Sa
erdoti, 1977; Erol et al., 1994; Wilkins, 1988; Nau et al., 1999) is anAI-planning paradigm in whi
h the goals of the planner are de�ned in terms ofa
tivities (tasks) and the planning pro
ess is a

omplished by using the te
hniquesof task de
omposition. There are several well-known HTN planning systems su
has Universal Method Composition Planner (UMCP) (Erol et al., 1994), Simple Hi-erar
hi
al Ordered Planner (SHOP) (Nau et al., 1999), and SHOP2 (a total-orderplanner with partially ordered subtasks) (Nau et al., 2001). In this work, we fo-
us on the SHOP planning system, whi
h is a domain-independent HTN planningsystem that is built around the 
on
ept 
alled ordered task de
omposition.We des
ribe a systemati
 translation method Trans(�) whi
h transforms HTN-planning problems as formalized in SHOP into logi
 programs with negation. Ourbasi
 goal is that an appropriate semanti
s of the logi
 program should 
orrespondto the solutions (plans) of the planning problem. We have adapted the syntax ofthe smodels software for our transformation, although we are also experimentingwith other systems like DLV and XSB.1.1 Related WorkThere are many e�orts in the literature for formulating a
tions in logi
 programsand solving planning problems by using formulations su
h as (Gelfond & Lifs
hitz.,1998; Turner, 1997; Lifs
hitz, 1999). (Gelfond & Lifs
hitz., 1998) des
ribes threedi�erent a
tion des
ription languages that formalize theories of a
tions. The latestone of these languages, the language C, provides means to implement that formalismas logi
 programs to solve planning problems e�e
tively and eÆ
iently (Lifs
hitz,1999; Giun
higlia & Lifs
hitz, 1998). The C language 
onsists of general templateto de�ne a
tions that have pre
onditions and e�e
ts. (M
Cain & Turner, 1997)presents a language for 
ausal theories. They have also developed a system 
alledC
al
, whi
h is a model 
he
ker for the language of su
h 
ausal theories translatedfrom propositions in the C a
tion language using rewrite rules (?). The idea in allthese works is that representing a given 
omputational problem by a logi
 programwhose models 
orrespond to the solutions for the original problem. This idea wasthe main inspiration for our work presented here.(Baral & Tuan., 2001) presents a language about a
tions using 
ausal laws toreason in probabilisti
 settings and solves the planning problems in su
h settings.The language resembles similarities to those des
ribed above, but the a
tion theoryin
orporates probabilities and probabilisti
 reasoning te
hniques|as des
ribed in(Pearl, 1988)|to solve the planning problems with un
ertainty.(Dimopoulos et al., 1997) presents a framework for en
oding planning problemsin logi
 programs with negation-as-failure. In this work, the idea is almost the same



HTN Planning in ASP 3as ours, that is, the models of the logi
 program 
orresponds to the plans. However,this work 
onsiders only a
tion-based planning problems and in
orporates ideasfrom su
h planners GRAPHPLAN and SATPLAN . In terms of the underlyingassumptions and methods presented in (Dimopoulos et al., 1997), our approa
h is
ompletely di�erent.(Son et al., 2001) dis
usses solving planning programs by logi
 programs. Thedi�eren
e between this work and the one des
ribed above is that (Son et al., 2001)in
orporates domain-dependent 
ontrol knowledge to improve the performan
e ofthe planning. In this respe
t, this work is similar to HTN planning algorithms.However, the en
oding provided in this work is 
on
eptually not an HTN-planner;instead, it uses hierar
hi
al networks to de�ne domain 
onstraints su
h as the or-dering relationships between the a
tions, and use them in pruning the sear
h for
orre
t sequen
e of a
tions to solve the planning problem.Our experimental results suggest that both (1) en
odings using HTN planningare better than other en
odings, be
ause the HTN 
ontrol knowledge 
an be usedto prune irrelevant bran
hes of the sear
h spa
e; and (2) running an ASP systemon non-ground programs (obtained from planning problems) results in a drasti
performan
e relative to smodels, thus bringing our method 
loser to dedi
atedplanning systems like SHOP. 1.2 OrganizationThis paper is organized as follows. We des
ribe in Se
tion 2 the HTN-planningparadigm as well as the SHOP planning system. In Se
tion 3 we present our 
ausaltheory for HTN-planning and our translation method to transform HTN planningproblems into logi
 programs with negation. Se
tion 4 
ontains our results. Ourmain theorem is that our translation method is 
orre
t and 
omplete with respe
tto HTN-planners. We also present our experimental results along with some dis
us-sions on the sour
es of 
omplexity. Finally, we 
on
lude with Se
tion 5 and provideour future resear
h dire
tions.2 Hierar
hi
al Task Network (HTN) PlanningSHOP is a domain-independent Hierar
hi
al Task Network (HTN) planning algo-rithm (Nau et al., 1999; Nau et al., 2000). However, one di�eren
e between SHOPand most other HTN planning algorithms is that SHOP plans for tasks in the sameorder that they will later be exe
uted. Planning for tasks in the order that thosetasks will be performed makes it possible to know the 
urrent state of the world atea
h step in the planning pro
ess, whi
h makes it possible for SHOP's pre
ondition-evaluation me
hanism to in
orporate signi�
ant inferen
ing and reasoning power,in
luding the ability to 
all external programs to reason about pre
onditions andthe ability to perform numeri
 
omputations.In order to do planning in a given planning domain, SHOP needs to be givenknowledge about that domain. SHOP's knowledge base 
ontains operators andmethods. Ea
h operator is a des
ription of what needs to be done to a

omplish



4 J�urgen Dix et al.some primitive task, and ea
h method is a pres
ription for how to de
ompose some
omplex task into a totally ordered sequen
e of subtasks, along with various restri
-tions that must be satis�ed in order for the method to be appli
able. More thanone method may be appli
able to the same task, in whi
h 
ase there will be morethan one possible way to de
ompose that task.Given the next task to a

omplish, SHOP 
hooses an appli
able method, instan-tiates it to de
ompose the task into subtasks, and then 
hooses and instantiatesother methods to de
ompose the subtasks even further. If the 
onstraints on thesubtasks prevent the plan from being feasible, SHOP will ba
ktra
k and try othermethods.As an example, Figure 1 shows two methods for the task of travelling from onelo
ation to another: travelling by air, and travelling by taxi. Travelling by air involvesthe subtasks of pur
hasing a plane ti
ket, travelling to the lo
al airport, 
ying toan airport 
lose to our destination, and travelling from there to our destination.Travelling by taxi involves the subtasks of 
alling a taxi, riding in it to the �naldestination, and paying the driver.Note that ea
h method's pre
onditions are not used to 
reate subgoals (as wouldbe done in a
tion-based planning). Rather, they are used to determine whether ornot the method is appli
able: thus in Figure 1, the travel by air method is onlyappli
able for long distan
es, and the travel by taxi method is only appli
able forshort distan
es.Now, 
onsider the task of travelling from the University of Maryland to MIT.Sin
e this is a long distan
e, the travel by taxi method is not appli
able, so we must
hoose the travel by air method. As shown in Figure 1, this de
omposes the task intothe following subtasks: (1) pur
hase a ti
ket from Baltimore-Washington Interna-tional (BWI) airport to Logan airport, (2) travel from the University of Marylandto BWI, (3) 
y from BWI airport to Logan airport, and (4) travel from Loganairport to MIT. For the subtasks of travelling from the University of Maryland toBWI and travelling from Logan to MIT, we 
an use the travel by taxi method toprodu
e additional subtasks as shown in Figure 1.
Methods

buy ticket(a(x), a(y)) travel(x, a(x)) fly(a(x), a(y)) travel(a(y),y)

travel by air

get taxi ride taxi (x,y) pay driver

travel by taxi
Task

long travel-distance

short travel-distancePrecon-
ditions

Subtasks

travel(UMD, MIT)
buy ticket(BWI, Logan)
travel(UMD, BWI)

get taxi
ride taxi(UMD, BWI)
pay driver

fly(BWI, Logan)
travel(Logan, MIT)

get taxi
ride taxi(Logan, MIT)
pay driver

travel(x,y)

Fig. 1. Travel planning example.Here are some of the 
ompli
ations that 
an arise during the planning pro
ess:� The planner may need to re
ognize and resolve intera
tions among the sub-tasks. For example, in planning how to travel to the airport, one needs to



HTN Planning in ASP 5make sure one will arrive at the airport in time to 
at
h the plane. To makethe example in Figure 1 more realisti
, su
h information would need to bespe
i�ed as part of SHOP's methods and operators.� In the example in Figure 1, it was always obvious whi
h method to use. Butin general, more than one method may be appli
able to a task. If it is notpossible to solve the subtasks produ
ed by one method, SHOP will ba
ktra
kand try another method instead.SHOP uses the usual �rst-order logi
 de�nitions for atoms, terms, variable and
onstant symbols, fun
tion and predi
ate symbols, 
onjun
ts, most-general uni�ersand Horn 
lauses. Its domain des
ription 
onsists of methods, operators and axiomsas des
ribed below.De�nition 1 (Method: (Meth h � t) ) A method is an expression of the form(Meth h � t) where h (the method's head) is a 
ompound task, � (the method'spre
onditions) is a 
onjun
t and t is a totally ordered list of subtasks, 
alled thetask list.De�nition 2 (Operator: (Op h �del �add) ) An operator is an expression ofthe form (Op h �del �add), where h (the head) is a primitive task and �add and�del are lists of atoms (
alled the add- and delete-lists). The set of variables in theatoms in �add and �del is a subset of the set of variables in h.De�nition 3 (Axioms: AX ) An axiom is an expression of the forma l1; : : : ; ln;where a is an atom and the li are literals.A plan, P , is de�ned as the sequen
e of ground operator instan
es.De�nition 4 (Plans) A plan is a list of heads of ground operator in-stan
es. If P = (p1p2 : : : pn) is a plan and S is a state (a set of groundatoms a), then the result of applying P to S is the state result(S; P ) =result(result(. . . (result(S; p1); p2); : : :); pn). A plan P is 
alled a simple plan whenn = 1.De�nition 5 (Simple redu
tions) Let t be a task, S be the initial state, Meth =(Meth h � t) be a method, and AX be an axiom set. Suppose that u is a uni�erfor h and t, and that v is a uni�er that uni�es �u with respe
t to S [ AX . Thenthe method instan
e (Methu)v is appli
able to t in S, and the result of applying itto t is the task list r = (tu)v. The task list r is a simple redu
tion of t by Meth inS.De�nition 6 (Domains and problems)A domain representation is a set of axioms, operators and methods. A planningproblem is a triple (S; t;D), where S is a state, t= (t1t2 : : : tk) is a task list, and



6 J�urgen Dix et al.D is a domain representation. Suppose (S; t;D) is a planning problem and P =(p1p2 : : : pn) is a plan. Then we say that P solves (S; t;D); or equivalently, thatP a
hieves t from S in D (we will omit the phrase \in D" if the identity of D isobvious) if any of the following is true:1. Case 1: t and P are both empty, (i.e., k = 0 and n = 0);2. Case 2: t1 is a primitive task, p1 is a simple plan for t1, (p2 : : : pn) a
hieves(t2 : : : tk) from result(S; p1);3. Case 3: t1 is a 
omposite task, and there is a simple redu
tion (r1 : : : rj) of t1in S su
h that P a
hieves (r1 : : : rjt2 : : : tk) from S.The planning problem (S; t;D) is solvable if there is a plan that solves it. Wetherefore denote the set of all plans by Sol(S; t;D).3 En
oding HTN planning in Nonmonotoni
 Logi
 ProgrammingOur approa
h of en
oding HTN-planning problems as logi
 programs is based onSHOP's representation of a planning problem. We �rst des
ribe SHOP's formalismfor HTN-planning brie
y. Then we present �rst steps of a 
ausal theory of HTNplanning based on that formalism. This theory serves as a motivation for our trans-lation methodology whi
h is given in the subsequent subse
tion. We 
on
lude thisse
tion with the formalization of a parti
ular example.3.1 Formal De�nitions for HTN-planning: Syntax and Semanti
sWe use the same de�nitions for variable and 
onstant symbols, predi
ate symbols,terms, atoms as SHOP. Our de�nitions for axioms, operators, methods are adaptedfrom SHOP. The next paragraph des
ribes these 
on
epts brie
y; for a detaileddis
ussion see (Nau et al., 1999).A term is either a 
onstant or a variable symbol. A state S is a set of groundatoms, and an axiom is a Horn 
lause. A task is an expression of the form(ht1t2 : : : tn), where h (the task's name) is a task symbol, and t1; t2; : : : ; tn (thetask's arguments) are terms. A task 
an be either primitive or 
omposite. A tasklist is a list of tasks.An operator spe
i�es a primitive task that 
an be a

omplished by modifying the
urrent state of the world by removing every atom in its deletions list and addingevery atom in its additions list. As an example, here is a possible implementationof the get-taxi operator from Figure 1:(:Op(!get-taxi ?x)((servi
e-available-to ?x))((taxi-
oming-to ?x)))Here is a possible implementation of the travel-by-taxi method from the same�gure:(:Meth (travel ?x ?y)((smaller-distan
e ?x ?y))((!get-taxi ?x) (!ride-taxi ?x ?y) (!pay-driver ?x ?y)))



HTN Planning in ASP 73.2 Causal Theory for HTN-planningIn this se
tion we prepare the ground for our translation in the next subse
tion. Wegive some de�nitions of a 
ausal theory for HTN-planning in a SHOP-like orderedtask de
omposition. The reason for presenting this 
ausal theory is not to give aformal semanti
s, but to give some motivations for the more te
hni
al aspe
ts ofthe translation given later on.In the de�nitions below, (S; t;D) is a planning problem as introdu
ed in De�ni-tion 6.De�nition 7 (Caused) Let (S; t;D) be a planning problem and let P be a plan.We de�ne for a ground literal, l, the property of being 
aused wrt. S. This prop-erty is de�ned through the following re
ursive de�nition:1. l 
aused wrt. S if (a 2 S if l = a;a 62 S if l = :a:2. l 
aused wrt. S: if there is an axiom given in the domain des
ription D ofthe form a l1 ^ l2 ^ : : : ^ ln;su
h that l = a and every li is 
aused wrt. S: li 
aused wrt. S.A list of literals, L, is 
aused wrt. S i� every literal in L is 
aused wrt. S.The next de�nition represents an important persisten
e property over time.De�nition 8 (Law of Inertia) A ground literal l, whi
h is 
aused in the 
urrentstate S, is also 
aused in the next state S 0 unless the negated literal :l is 
ausedin S 0. Here the symbol : denotes 
lassi
al negation. The Law of inertia 
an berepresented by the following rule:l 
aused wrt. S 0 : if l 
aused wrt. S andnot \:l 
aused wrt. S 0".This rule ensures that for ea
h atom a and ea
h state S, either a or :a is 
ausedwrt. S.De�nition 9 (Caused Tasks) A primitive task t is 
aused (to-be-a

omplished)wrt. (S, D) i� there exists an operator for t: (Op t �del �add) 2 D.A 
omposite task t is 
aused wrt. (S, D) i�1. there exists a method for t: (Meth t � t) 2 D,2. the pre
onditions-list �, whi
h is a list of literals representing a 
onjun
t, is
aused, and3. all of the su

essor subtasks of t are 
aused. In that 
ase, we say the subtasks
ause t.Using this 
ausal theory as an intermediate step, we developed a systemati
 transla-tion method for mapping planning problems to logi
 programs with negation whi
hwe illustrate in the next se
tion.



8 J�urgen Dix et al.Theorem 10Let a planning problem (S; t;D) be given, where S is the initial state, t is the listof tasks to be a
hieved and D is the domain des
ription.If there is a solution to (S; t;D), then ea
h of the tasks in t is 
aused wrt (S,D) in the order they are given in t.ProofThe proof starts by re
ursively de�ning the solution of an HTN-planning problem(S; t;D) and showing the 
ausal relationships based on our 
ausal theory at thesame time.The solution plan, P ((S; t;D)), for the planning problem (S; t;D) is initiallyempty. If t is empty, then (S; t;D) 
ontains exa
tly one plan, namely the emptyplan. This is be
ause of the fa
t that there will be no tasks to be a

omplished|thus, no task to be 
aused . If t is not empty, then let h be the �rst task in t, andlet R be the remainning tasks. There are two 
ases.1. If h is primitive and there is no simple plan in D for it, then P ((S; t;D)) isempty: there is no solution.2. If h is primitive and there is a simple plan p in D for t, then P ((S; t;D)) =append(p; q), where q 2 Sol(result(S; p);R;D). Then, a

ording to the �rstpart of De�nition 9 of our 
ausal theory, we say that h is 
aused wrt. D.3. If h is a 
omposite task, then P ((S; t;D)) = P (S; append(r; R); D), where r isone of the simple redu
tions of h (see De�nition 5), whi
h is a list of subtasksof h. In order for h to be a

omplished|so that (S; t;D) will be solvable|allof the subtasks in r have to be a

omplished. A

ording to the se
ond partof our De�nition 9, this 
orresponds the fa
t that in order for h to be 
ausedwrt. D, all of its subtasks must be 
aused wrt. D.Therefore, it follows from the re
ursive 
onstru
tion above that if task h is a
-
omplished a

ording to our 
ausal theory, it must be 
aused as well. If we havemore than one task in t, then a

ording to De�nition 6, we have to a

omplish allof them separately in the order they are given in t, whi
h also means that ea
h ofthem must be 
aused wrt. (S, D) in that parti
ular order.3.3 En
oding Planning Problems as Logi
 ProgramsTranslating a planning problem (S; t;D) to its logi
 program 
ounterpartTrans((S; t;D)) requires en
oding the methods, the operators, and the axioms aslogi
 program segments as well as the underlying ordered task de
omposition 
har-a
teristi
s of SHOP. For this reason, we present our translation method in severalsteps, performing all of whi
h yield a logi
 program that is 
apable of solving plan-ning problems in the way SHOP does.



HTN Planning in ASP 9Step 1. En
oding the Domain Independent Rules.The problem independent rules for a logi
 program are adapted mainly from (Sonet al., 2001; Lifs
hitz, 1999; Dimopoulos et al., 1997). The main atoms in theserules are� state(A; T ): A holds in the 
urrent state at time T ,� literal(A): A is a literal,� 
ontrary(A;:A): A and its negation :A are 
ontradi
tory.The main rules are given next. In these rules, T is a variable of the sort time.literal(A) : � atom(A):literal(neg(A)) : � atom(A):
ontrary(A; neg(A)) : � atom(A):
ontrary(neg(A); A) : � atom(A):state(A; T + 1) : � literal(A); literal(B); 
ontrary(A;B); state(A; T );not state(B; T + 1):Here, the �rst and the se
ond rules en
ode the fa
t that any atom and its negationis a literal, and the last rule is the Law of Inertia.Step 2. En
oding the Problem Dependent State Elements.SHOP allows using variables in the domain des
riptions of the planning problems.Unfortunately most nonmonotoni
 systems 
an not handle free variables. For ex-ample smodels is doing an (intelligent) grounding of the des
ription it is given andit is requiring that a 
ertain synta
ti
 
ondition, safeness, is satis�ed. DLV allowsvariables, but imposes a safeness restri
tion and does not allow fun
tion symbols.In the 
urrent implementation of smodels, there is a further te
hni
al 
ondition(whi
h will be relaxed in the next release) that we have to take into a

ount: Forevery variable that we use in our logi
 program, we have to spe
ify the range ofvalues that it 
an be instantiated during model generation pro
ess.Due to this fa
t, we have to take 
are of the following:1. we have to enumerate all the possible ground atoms that 
an be used in thelogi
 program;2. we have to in
lude rules for type predi
ates in the logi
 program, whi
h de�nethe range of values for a variable of a 
ertain type.Translation Pro
edure for the Atoms and Type predi
ates1. Spe
ify the atoms that 
an ever be used by the logi
 program as atom( ).2. De�ne a type of the form [type℄( ) for ea
h variable that is used in the logi
program, and spe
ify the range of values for ea
h of those types.To give an example, 
onsider the method for travelling from one pla
e to another.Suppose that the name of this method is travel(X;Y ). Here, X and Y are variables



10 J�urgen Dix et al.of lo
ations that are going to be used in this method. The logi
 program that en-
odes this method must have the following type predi
ates: pla
e(umd), pla
e(mit),and so on, for all lo
ations that 
an be used in the model generation pro
ess.Note that if the translation is being done for a system that 
annot handle freevariables - like smodels-, we have to spe
ify the type of ea
h variable appearing inea
h rule of the translated logi
 program by adding the ne
essary type predi
ates tothe righthand side of those rules. On the other hand, in a system like DLV , whi
h
an handle free variables, we may omit the type predi
ates in the rules as long aswe do not violate the safeness restri
tions.Step 3. En
oding the Initial State for the Planning Problems.SHOP's initial state for the planning problems is de�ned to be a set of groundatoms. In this respe
t, given a planning problem (S; t;D), the following pro
eduremust be used in order to translate it into its logi
 program 
ounterpart.De�nition 11 (Trans(S): Translation for Initial State)Given a planning problem (S; t;D), for all a 2 S, add the rulestate(a; 0) : �This rules spe
i�es that a is in the state at time 0, whi
h is used to designate theinitial time. Step 4. En
oding the Goal Task(s).The goal tasks are the ordered list of tasks that must be a

omplished by theplanning system. In our translation, this list is en
oded in the following rules. Inthese rules, Ti's are variables of time, and hi's are the names of the tasks thatmust be a

omplished, and Pre(hi)'s are the labels for the pre
ondition lists of themethods whi
h were applied to those tasks.De�nition 12 (Trans(fh1; : : : ; hng): Translation for Goal Tasks)Given a planning problem (S; t;D), let t = h1; h2 : : : ; hn be the ordered sequen
e ofgoal tasks. Then,1. En
ode the �rst goal task h1 as the following rule:
urrentTask(h1; 0) : �2. For the rest of the goal tasks, add the following n � 1 rules (i = 2; : : : ; n) tothe logi
 program:
urrentTask(hi; Ti) : � 
aused(hi�1;Pre(hi�1); Ti�1; Ti):The predi
ate 
urrentTask(task name; T ) uniquely spe
i�es the 
urrent tasksele
ted at time T . As des
ribed above, we assumed that the planning pro
essbegins at time 0. If there exists only one goal task to be a

omplished for theproblem in hand, then only de�ning the �rst rule will suÆ
e.



HTN Planning in ASP 11De�nition 12 enfor
es the fa
t that a goal task hi is designated as the 
urrenttask to be a

omplished if the previous goal task hi�1 in t is 
aused. This is a dire
t
onsequen
e of our Theorem 10. Following this de�nition and theorem, we add thefollowing rules in the logi
 program:plan found : � 
aused(hn;Pre(hn); Tn; Tn+1):: � not plan found:where Tn denotes the time when the parti
ular method for the last goal task, hn,is de
omposed and Tn+1 is the time at whi
h hn is 
aused (a

omplished).These two rules together state that if the last goal task is 
aused then there isa plan (solution) for the planning problem (S; t;D) as a result of De�nition 12.Otherwise, there is none.Step 5. En
oding the Problem Dependent Control Stru
tures.Given a planning problem (S; t;D), the domain des
ription D 
ontains axioms,operators and methods as des
ribed in the previous se
tion. For ea
h of these 
on-stru
ts, we present a translation pro
edure.De�nition 13 (Chara
teristi
 Fun
tion for Literals)Given a literal, l, we de�ne C(l; T ), the 
hara
teristi
 fun
tion of l at time T , asC(l; T ) := � state(a; T ) if l = a;not state(a; T ) if l = :a:where a is an atom.De�nition 14 (Trans(AX ): Translation for Axioms)Given a planning problem (S; t;D), for all "a l1; : : : ; ln" 2 D, add the rulestate(a; T ) : � C(l1; T ); C(l2; T ); : : : ; C(ln; T );where C(li; T ) is de�ned in De�nition 13 above.De�nition 15 (Trans(OP): Translation for Operators)Given a planning problem (S; t;D), for all Op 2 OP, add the following rules:for all a 2 Del(Op): state(neg(a); T + 1) : � 
urrentTask(h; T ):and for all a 2 Add(Op):state(a;T + 1) : � 
urrentTask(h; T ):and �nally add the following rules,a
tion(h; T; T + 1) : � 
urrentTask(h; T ):
aused(h; T; T + 1) : � 
urrentTask(h; T ):



12 J�urgen Dix et al.The �rst and the se
ond rule en
ode the delete- and the add-lists of the operatorrespe
tively. The third rule designates the a
tion for to a

omplish the primitivetask h. Sin
e, in SHOP, the ground instan
es of operators represent a
tion, we donot need su
h designations there. The last rule en
odes the fa
t that the task is
aused if and only if there exists an operator for it (see De�nition 9).As des
ribed in the previous se
tion, given a 
omposite task h, a method m
an be 
ategorized as one of the following two types: either m 
an be the onlymethod for the task h or it 
an be one of the many methods for task h. Althoughthey possess slight di�eren
es, the translation pro
edures for ea
h of these 
asesare mostly similar. In the rest of this se
tion, we will present these translationpro
edures.De�nition 16 (Trans(MET H): Translation for Methods)Given a planning problem (S; t;D), we are translating the methods 
ontained in D.Case 1: Given a 
omposite task h, suppose that there exists only one method mwhose head mat
hes with h. Let Pre(h) be the label for the pre
ondition list of themethod m and let Z be the set of all variables that are used in that pre
onditionlist. Then,1. Designate the method to be applied to the 
urrent 
omposite task:method(h;Pre(h); T ) : � 
urrentTask(h; T ):2. De�ne the pre
ondition list of the method by inserting the following rule(s) inthe logi
 program (where l1; : : : ; ln are all pre
onditions of the method m): fori = 1; : : : ; n,(a) If li is a positive literal and it 
ontains free variables (i.e, it 
ontainsvariable symbols that do not appear in the head of the method m). Letai(X1; X2; : : : ; Xv) denote the fa
t that there are v free variables in li. Letsj denote the number of substitutions for the variable Xj in the 
urrentstate S. For ea
h kj = 1 : : : sj , de�ne Ym = (X1;k1 ; X2;k2 ; : : : ; Xn;kn),where m = 1; : : : ; s1 � s2 � : : : � sv su
h that Y1 = (X1;1; X2;1; : : : ; Xv;1)and Ym = (X1;s1 ; X2;s2 ; : : : ; Xn;sv ).Then, add the following rule in the logi
 program,
he
ked(state(ai(Y1); T ); T ) : � method(h;Pre(h); T );state(ai(Y1); T );Vs1�����svm=2 not 
he
ked(state(ai(Ym); T ); T );Vvj=1Xj;1! = Xj;2! = : : :! = Xj;sj :(b) Otherwise, add the following rule,
he
ked(state(li; T ); T ) : � C(li; T );method(h;Pre(h); T ):where C(li; T ) is as de�ned in De�nition 13.and �nally, add the following rule in the logi
 program,preCond(Pre(h); Z; T ) : � 
he
ked(state(l1; T ); T ); : : : ; 
he
ked(state(ln; T ); T );method(h;Pre(h); T ):



HTN Planning in ASP 133. Assuming the ordered task de
omposition for this method is the ordered setof tasks ft1; t2; ; tng, add the following set of rules to the logi
 program tospe
ify the de
omposition (note that the time variable T1 in the following rulede�nitions in this item denote the same value as the time variable T in therule de�nitions presented in other items does):
urrentTask(t1; T1) : � method(h;Pre(h); T1); preCond(Pre(h); Z; T1):
urrentTask(t2; T2) : � method(h;Pre(h); T1);preCond(Pre(h); Z; T1);
aused(t1;Pre(t1); T1; T2);T2 = T1:... ... ...
urrentTask(tn; Tn) : � method(h;Pre(h); T1)preCond(Pre(h); Z; T1);Vn�1i=1 
aused(ti;Pre(ti); Ti; Ti+1);Vn�1i=2 Ti+1 = Ti:4. Finally, spe
ify the 
ausal links from the 
hild tasks ft1; t2; ; tng to the parenttask h.
aused(h;Pre(h); T; Tn+1) : � method(h;Pre(h); T );preCond(Pre(h); Z; T );Vni=1 
aused(ti;Pre(ti); Ti; Ti+1);Vn+1i=2 Ti = Ti�1:Case 2: Given a 
omposite task h, suppose that there exist n > 1 many methodsmi su
h that i = 1; : : : ; n, whose heads mat
h with h. Then for ea
h su
h methodmi, perform the previous pro
edure given for Case 1 above, with the followingmodi�
ations:1. Repla
e ea
h Pre(h) term with the term Pre(h)i.2. Use PreCond(mi) for the parti
ular mi.3. Rewrite the �rst rule as follows:method(h;Pre(h)i; T ) : � 
urrentTask(h; T );Vk=1;:::;n;k 6=i not method(h;Pre(h)k ; T )The rest of the rules are exa
tly the same as presented for the Case 1.3.4 A Translation Example: An Elevator DomainIn this se
tion, we give an example translation for the Mi
oni
-10 Elevator domain,whi
h was introdu
ed as an oÆ
ial ben
hmark domain during the AIPS-2000 
om-petition (see (Ba

hus, 2001) and http://www.
s.toronto.edu/aips2000). In the
ompetition, the domain was 
on�gured in a number of versions to a

ommodate therepresentational power of di�erent planning systems. Its simplest version (the onereferred to as the \�rst tra
k" version at http://www.informatik.uni-freiburg.de/~koehler/elev/elev.html) was one of the test 
ases in (Son et al., 2001), andwe used the same version here and in our experiments (see Se
tion 4.2). This version



14 J�urgen Dix et al.di�ers from the more 
ompli
ated versions in the following respe
ts: The plannersimply has to generate plans to serve a group of passengers of whom the originand destination 
oors are given. There are no 
onstraints su
h as satisfying spa
erequirements of passengers or a
hieving optimal elevator 
ontrols.Although we have the full translation of the domain, for the sake of simpli
ity, wegive here only a part of our translation along with the 
orresponding HTN domaindes
ription for 
omparison.Suppose that we have only two 
oors and one person to be delivered. Further-more, suppose that the elevator starts its operation at the 0th 
oor (i.e., the ground
oor whi
h is marked as 0) and its initial dire
tion is upwards. Our passenger boardsthe elevator at the �rst 
oor and wants to go down to the ground 
oor.Now, we will des
ribe the basi
s of the translation pro
ess step by step as de-s
ribed in the previous se
tion.
Step 1. En
oding the domain independent rules.For our elevator example, the domain independent rules are as follows:literal(P ) : � atom(P ):literal(neg(P )) : � atom(P ):
ontrary(P; neg(P )) : � atom(P ):
ontrary(neg(P ); P ) : � atom(P ):state(P; T + 1) : � time(T ); literal(P ); literal(Q); 
ontrary(P;Q);state(P; T ); not state(Q;T + 1):As it 
an be seen in these rule de�nitions, we have to de�ne all possible atomsthat 
an ever be used during planning.

Step 2. En
oding the Problem Dependent State Elements.In this step, we have to formulate all of the possible atoms that 
an ever be usedduring the planning pro
ess. Due to the fa
t that the variables in smodels semanti
smust have a range of values, we must also de�ne type predi
ates in our translationas des
ribed in the previous se
tion. In a SHOP domain des
ription, we do not needto make these de�nitions about the set of all possible atoms and tasks, nor aboutthe type predi
ates.In our elevator example, we need the following rules for de�ning the set of allpossible atoms:



HTN Planning in ASP 15atom(boarded(P )) : � person(P ):atom(goal(P )) : � person(P ):atom(served(P )) : � person(P ):atom(lift(F )) : � floor(F ):atom(origin(P; F )) : � person(P ); f loor(F ):atom(destination(P; F )) : � person(P ); f loor(F ):atom(top(F )) : � floor(F ):atom(bottom(F )) : � floor(F ):atom(
urrent dire
tion(X)) : � dire
tion type(X):...And also the type predi
ates su
h as:person(0) : �floor(0 : : : 1) : �dire
tion type(up) : �dire
tion type(down) : �...Step 3. En
oding the Initial State for the Planning Problems.We need the following rules to spe
ify the initial state in our en
oding of the elevatorexample: state(lift(0); 0) : �state(goal(0); 0) : �state(origin(0; 1); 0) : �state(destination(0; 0); 0) : �state(
urrent dire
tion(up); 0) : �...As it 
an be seen from these rules, these rules spe
ify 
ertain ground atoms to bein the state of the planner (De�nition 11 in the previous se
tion). The last argumentfor ea
h state(P; T ) predi
ate is the time T at whi
h the atom P holds. We de�nethe initial time for the exe
ution of the planner to be 0.Step 4. En
oding the Goal Task(s).We need the following rule to spe
ify the goal tasks in our en
oding of the elevatorproblem in whi
h we have only one in this 
ase:
urrentTask(serve all; 0):This rule spe
i�es that our goal task is a task whose head is serve all and theinitial time is 0.



16 J�urgen Dix et al.Sin
e there is only one goal task in this parti
ular elevator problem, we needonly one rule for spe
ifying it. If we had more than one goal task, then we wouldhave several rules as given in De�nition 11 in the previous se
tion. To give anexample, suppose that we have another goal task initialize elevator whi
h guar-antees that the elevator is returned to ground level after serving all the passengers.In the ordered task list de�nition of SHOP, these will 
onstitute a goal task listt = (serve all; initialize elevator). In this 
ase, we would have the following rulesa

ording to De�nition 11 in our en
oding of the problem:
urrentTask(serve all; 0) : �
urrentTask(initialize elev; T ) : � 
aused(serve all;Pre(serve all); 0; T );T > 0:Step 5. En
oding the Problem Dependent Control Stru
tures.In this step, we formulate our axioms, operators, and methods, whi
h are given inthe HTN domain des
ription, D.For example, in the HTN de�nition of our parti
ular elevator example, we havethe following operator de�nition for moving the elevator from one 
oor to another:(:operator (!move f1 f2)(lift(f1))(lift(f2)))This operator is en
oded (see De�nition 15.) in the following set of rules:state(neg(lift(F1)); T + 1) : � time(T ); f loor(F1); f loor(F2);
urrentTask(move; F1; F2; T ):state(lift(F2); T + 1) : � time(T ); f loor(F1); f loor(F2);
urrentTask(move; F1; F2; T ):a
tion(move; F1; F2; T; T + 1) : � time(T ); f loor(F1); f loor(F2);
urrentTask(move; F1; F2; T ):
aused(move; F1; F2; T; T + 1) : � time(T ); f loor(F1); f loor(F2);
urrentTask(move; F1; F2; T ):These rules apply only when the 
urrent task is the primitive task (movef1f2).There are two 
ases in the translation of a method as given in De�nition 16. Inthe �rst 
ase, we may have only one HTN method for a parti
ular task. Supposethat the 
urrent task is (op elevf), where f is a 
oor, and we have the followingmethod:(:method (op_elev f)(lift(f)) % the pre
ondition((
he
k_board f) % subtask 1(
he
k_dep f) % subtask 2(move_elev f))) % subtask 3
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ording to Case 1 of the De�nition 16, we have the following rules:method(op elev; F;Pre(op elev); T ) : �time(T ); f loor(F );
urrentTask(op elev; F; T ):
he
ked(state(lift(F ); T ); T ) : �state(lift(F ); T );method(op elev; F;Pre(op elev); T ):preCond(Pre(op elev); F; T ) : �
he
ked(state(lift(F ); T );method(op elev; F;Pre(op elev); T ):
urrentTask(
he
k board; F; T ) : �time(T ); f loor(F ); preCond(Pre(op elev); F; T );method(op elev; F;Pre(op elev); T ):
urrentTask(
he
k dep; F; T2) : �time(T ); time(T2); f loor(F );preCond(Pre(op elev); F; T );method(op elev; F;Pre(op elev); T );
aused(
he
k board; F;Pre(
he
k board); T; T2);T2 � T:
urrentTask(move elev; F; T3) : �time(T ); time(T2); time(T3); f loor(F );preCond(Pre(op elev); F; T );method(op elev; F;Pre(op elev); T );
aused(
he
k board; F;Pre(
he
k board); T; T2);
aused(
he
k dep; F;Pre(
he
k dep); T2; T3);T2 � T; T3 � T2:
aused(op elev; F;Pre(op elev); T; T4): �time(T ); time(T2); time(T3); time(T4);f loor(F );method(op elev; F;Pre(op elev); T );preCond(Pre(op elev); F; T );
aused(
he
k board; F;Pre(
he
k board); T; T2);
aused(
he
k dep; F;Pre(
he
k dep); T2; T3);
aused(move elev; F;Pre(move elev); T3; T4);T2 � T; T3 � T2; T4 � T3:In this translation, the �rst rule designates the appli
ation of the method whosehead is op elev to the 
urrent task (op elevf). The se
ond and the third rulesmake sure that all of the pre
onditions of the method are satis�ed in the 
urrentstate S. The fourth through the sixth rules de�ne the su

essor subtasks with theorder they were de�ned in the 
orresponding HTN method. Note that, in HTNformalism, the ordering of the subtasks enfor
e the fa
t that a subtask t 
an besele
ted as the 
urrent task for de
omposition only if all of the subtasks pre
edingt are a

omplished su

essfully. This is a
hieved in our translation by the 
ausedproperties of the tasks (see De�nition 9).As the other 
ase, we may have two di�erent methods for the same 
ompositetask in our HTN domain des
ription. For example, suppose that we also have thefollowing method for the task (op elevf) in addition to that given above:(:method (op_elev f)(lift(f)) % the pre
ondition((move_elev f))) % the subtask



18 J�urgen Dix et al.In a SHOP-like HTN planning algorithm, having two methods with di�erentsu

essor subtasks appli
able for a parti
ular task 
reates a bran
hing (ba
ktra
k-ing) point in the sear
h spa
e of the planner. If we require the planner to returnall the solutions (plans) for the planning problem at hand, the planner should tryea
h bran
h to �nd a possibly|but not ne
essarily|di�erent plan. To be able toimplement this property in our translation, we use the NAF literals to generatedi�erent answer sets 
orresponding to the appli
ation of ea
h method|as given inCase 2 of De�nition 16. A

ording to this de�nition, we will the following methoddesignation rules in the translation of ea
h method:method(op elev; F;Pre(op elev)1; T ) : � time(T ); f loor(F );
urrentTask(op elev; F; T );notmethod(op elev; F;Pre(op elev)2; T )method(op elev; F;Pre(op elev)2; T ) : � time(T ); f loor(F );
urrentTask(op elev; F; T );notmethod(op elev; F;Pre(op elev)1; T )The index of the predi
ate Pre(h), where h is the head of the method - whi
his op elev in this example-, spe
i�es whi
h bran
h is being taken. The rest of thetranslation for ea
h method remains the same as in the example above ex
ept allthe instan
es of Pre(h) should be repla
ed by Pre(h)i, where i is the index of themethod. 4 Results: Theory and Pra
ti
eIn this se
tion, we present our theoreti
al results on the 
orre
tness of our transla-tion method and the soundness and the 
ompleteness of the resulting logi
 programsas planning systems as well as the experiments we have undertaken.4.1 Soundness and CompletenessDue to spa
e limitations, we will not present the whole proofs here, but we willdis
uss the basi
 ideas behind them.Our �rst theorem states that our translation indeed 
orresponds to HTN plan-ning as done in SHOP.Let Trans(�) be the translation method des
ribed in the previous se
tion. Givenany HTN-planning problem, we are interested in the relationship between the mod-els (or answer sets) of Trans(�).Theorem 17 (Trans(�) and HTN planning) Given a planning problem(S; t;D), where S is the initial state, t is the list of tasks to be a
hieved and Dis the domain des
ription, let Trans((S; t;D)) be the 
orresponding logi
 programwith negation. Furthermore, let Sol(S; t;D) be the set of solutions returned bySHOP. Then,1. If Sol(S; t;D) = ;, then Trans((S; t;D)) has no answer sets.



HTN Planning in ASP 192. If Sol(S; t;D) 6= ;, then for every plan P 2 Sol(S; t;D) 6= ;, there is ananswer set of Trans((S; t;D)), su
h that the a
tion( ) predi
ates 
orrespondexa
tly to the steps pi in P .ProofSket
h Given an HTN planning problem (S; t;D), the proof starts with de�ningthe solution depth of a plan P 2 Sol(S; t;D) to be the number of de
ompositionsneeded to produ
e P from t plus the length of P . Then, it follows from the 
ausaltheory for HTN-planning des
ribed in the previous se
tion (Theorem 10), thatboth SHOP and the logi
 program Trans((S; t;D)) have the same set of plansinitially. Then, by indu
tion on the solution depth of any solution in Sol(S; t;D),we show that the theorem holds throughout the plan/model generation pro
ess.This is be
ause the logi
 program Trans((S; t;D)) is produ
ed by our translationmethodology, whi
h is based on our 
ausal theory.Soundness and 
ompleteness are the two important requirements for any planningsystem. Soundness means that all of the plans that are generated by the plannerare a
tually true solutions to the given planning problem; that is, no plan, whi
his not solution to the problem, should be generated. Completeness means that theplanning system must be able to generate all of the possible plans (solutions) forthe given problem.Corollory 18 (Soundness and Completeness of ASP using Trans(�))Given a planning problem (S; t;D), where S is the initial state, t is the list oftasks to be a
hieved and D is the domain des
ription, let Trans((S; t;D)) be the
orresponding logi
 program with negation. Furthermore, let Sol(S; t;D) be the setof solutions returned by SHOP.Then, the answer sets of Trans((S; t;D)) 
orrespond exa
tly to the plans in Sol(S,t,D). There is a bije
tion between these two sets and ea
h plan in Sol (S,t,D)
an be re
onstru
ted from its 
orresponding answer set in Trans((S; t;D)) and vi
eversa.The 
orollary follows easily from the theorem and the fa
t that SHOP itself hasbeen shown to be a sound and 
omplete planner.De�nition 19 (Solution Tree for Trans(�))Given a planning problem (S; t;D), and the 
orresponding logi
 program with nega-tion Trans((S; t;D)), we de�ne the solution tree produ
ed by Trans((S; t;D)). It isan AND-OR tree, T , in whi
h the AND bran
hes represent the task de
ompositionsand the OR bran
hes represent di�erent possible methods whose heads mat
h witha parti
ular task.We say T represents Sol(S; t;D). Without loss of generality, we assume that thesolution tree of Trans((S; t;D)) is a 
omplete AND-OR tree as shown in Figure 2.Furthermore, we suppose that t 
ontains only one task to be a

omplished and wehave no negated atoms in the pre
onditions of the methods in D.
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. . .Fig. 2. A 
omplete AND-OR TreeTheorem 20 (Time Performan
e using Trans(�) (1))Given a planning problem (S; t;D), the 
orresponding logi
 program with negationTrans((S; t;D)), and the solution tree T , then, the time required for Trans((S; t;D))to generate the set of all answer sets that 
orrespond to Sol(S; t;D) monotoni
allyin
reases with the number of appli
able methods for a parti
ular task (the numberof bran
hes in a parti
ular OR-bran
h).ProofSket
h Given a parti
ular task t in the solution tree T , let n denote the number ofappli
able methods to t. A

ording to our translation methodology, for ea
h su
hmethod, Trans((S; t;D)) will in
lude the rules given in De�nition 16. Without lossof generality, we assume that Trans((S; t;D)) requires a unit amount of time tomake a rule ground and �re it, and all of the possible method appli
ations to t leadto isomorphi
 sub-trees. Then, let the time required for Trans((S; t;D)) to solvea sub-tree of T whose root is t, be denoted by 
 6= 0. The overall time requiredfor Trans((S; t;D)) to �nd all answer sets is n
 + a, where a represents the timerequired by Trans((S; t;D)) for the rules 
orresponding to the rest of the parts ofthe solution tree T .The proof starts by showing that when n = 0, the time required forTrans((S; t;D)) to �nd all answer sets is equal to a and it monotoni
ally in
reasesif we in
rease n by 1 (
+a is 
learly greater than a). Suppose that for all i < n, thetheorem holds. Then, by indu
tion, if we in
rease the number of methods appli
ableto task t to be n+1, the overall time required for Trans((S; t;D)) to �nd all answersets will be (n+ 1)
+ a su
h that (n+ 1)
+ a > n
+ a.It follows therefore that the total time required by Trans((S; t;D)) to generateall answer sets that 
orrespond to Sol(S; t;D) monotoni
ally in
reases with thein
reasing number of appli
able methods to a parti
ular task in T .Theorem 21 (Time Performan
e using Trans(�) (2))Given a planning problem (S; t;D), the 
orresponding logi
 program with negationTrans((S; t;D)), and the solution tree T , then, the time required for Trans((S; t;D))



HTN Planning in ASP 21to generate the set of all answer sets that 
orrespond to Sol(S; t;D) monotoni
allyin
reases with the number of subtasks of a parti
ular task (the number of bran
hesin an AND-bran
h).ProofGiven a parti
ular task t and a method m : (Meth h � t), whose head, h, mat
heswith the task t, the subtasks of the task t 
orrespond the simple redu
tion r of tby in S. Suppose that there are n subtasks in r. Then, a

ording to our translationmethodology, Trans((S; t;D)) will 
ontain n rules as shown in the item 3 of the �rst
ase in De�nition 16. Without loss of generality, we assume that Trans((S; t;D))requires a non-zero unit amount of time, denoted as 
, to make a rule ground, and�re it. Let k 6= 0 be the number of o

urren
es of the parti
ular task t in thesolution tree T of (S; t;D). Then, the overall time required for Trans((S; t;D)) willbe kn
+ a, where a represents the time required by Trans((S; t;D)) for the rules
orresponding to the rest of the parts of the solution tree T .The proof starts by showing that when n = 0, the time required forTrans((S; t;D)) to �nd all answer sets is equal to a and it monotoni
ally in
reasesif we in
rease n by 1 (k
+a is 
learly greater than a. Suppose that for all i < n, thetheorem holds. Then, by indu
tion, if we in
rease the number of methods appli
ableto task t to be n + 1, the overall time required by Trans((S; t;D)) to generate allanswer sets will be k(n+ 1)
+ a su
h that k(n+ 1)
+ a > kn
+ a.Then, it follows that the total time required by Trans((S; t;D)) to generateall answer sets that 
orrespond to Sol(S; t;D) monotoni
ally in
reases with thein
reasing number of subtasks of a parti
ular task in T .De�nition 22 (Range of a Variable: kvk)The range of a variable v, denoted by range(v) is de�ned to be the set of all possiblevalues de�ned for v. The 
ardinality of range(v) is denoted by kvk.De�nition 23 (The Universal set of atoms)Given a planning problem (S; t;D), the universal set of atoms, U , is de�ned as theset of all possible ground atoms that 
an ever be used to �nd all of the solutions for(S; t;D).We assume that for every atom a in U , the number of variables of a is a �xednumber, say k. Furthermore, the range for every variable in a has the same lengthr.Theorem 24 (Time Performan
e using Trans(�) (3))Given a planning problem (S; t;D), the 
orresponding logi
 program with negationTrans((S; t;D)), and the solution tree T , then, the time required for Trans((S; t;D))to generate the set of all answer sets that 
orrespond to Sol(S; t;D) monotoni
allyin
reases as k and/or r in
rease (see previous de�nition).ProofThe proof starts by de�ning the total number of ground instan
es, g, of a parti
ularrule of Trans((S; t;D)). Suppose that k and v, as des
ribed above, are �xed non-zero
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ular rule. Then, thetotal number of ground instan
es is g = kvx. Let 
(k; v) denote the time required byTrans((S; t;D)) in order to make a rule ground, and �re it. If Trans((S; t;D)) �resN rules during the pro
ess of traversing the 
orresponding solution tree T , then thetotal time required for Trans((S; t;D)) to generate all the possible answer sets isgiven by Ng� 
(k; v). Then, by indu
tion on k and/or v, we show that the theoremholds throughout the traversal pro
ess of T implemented by Trans((S; t;D)) inorder to generate all of the answer sets 
orresponding to Sol (S,t,D).As simple 
orollaries of the last theorem, we 
an 
on
lude that the time for gen-erating the set of all answer sets monotoni
ally in
reases with (1) the number ofpre
onditions of the methods, and (2) the number of atoms in the add- and delete-lists of the operators. 4.2 Experimental StudyIn our experiments, we used two di�erent planning domains:The Travelling Domain: This domain is the one of the domains in
luded in thedistribution of SHOP planning system. The s
enario for the domain as des
ribedin (Nau et al., 1999) is that we want to travel from one lo
ation to another ina 
ity. We have three lo
ations: downtown, uptown, and park. There are threepossible means of transportation: taxi, bus and foot. Taxi travel involves hailingthe taxi, riding to the destination and paying the driver $1.50 plus $1.00 forea
h mile travelled. Bus travel involves hailing the bus, paying the driver $1.00,and riding to the destination. Foot travel just involves walking., but the maxi-mum feasible walking distan
e depends on the weather. Thus, di�erent plans arepossible depending on the weather 
onditions, the distan
e between our 
urrentlo
ation and the one we want to go, and how mu
h money we have.The Mi
oni
-10 elevator Domain: This is the domain as des
ribed in Se
-tion 3.4. It is 
ontained in a series of ben
hmarks http://www.informatik.uni-freiburg.de/~koehler/elev/elev.html and it was re
ently used not onlyto measure the performan
e of various planners but also for other translationmethods from planning problems into ASP (see http://www.FCS.NMSU.Edu/~tson/asp_planner/.We des
ribe our experiments in the following three subse
tions. We used thesoftware pa
kage smodels v2.6|whi
h is available at http://www.t
s.hut.fi/Software/smodels/|as the testing environment for our logi
 program en
oding.We ran our experiments on a Solaris 2.6 Sun Ultra 1 ma
hine. . However, wealso tested our logi
 programs on the DLV system|whi
h is available at http://www.dbai.tuwien.a
.at/proj/dlv/.4.2.1 Comparison with (Son et al., 2001)The se
tion des
ribes our 
omparison of the time performan
e of the logi
 programsprodu
ed by using our translation methodology with that of the logi
-program
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odings presented in (Son et al., 2001). Note that the en
oding methods proposedin (Son et al., 2001) does not produ
e a
tual HTN en
odings, rather they makeuse of only a few properties of HTN s|as they are introdu
ed in (Erol et al.,1994)|for implementing 
ontrol knowledge in logi
 programs that perform a
tion-based planning. In their paper, Son et al., showeed that employing that of 
ontrolknowledge has in
reased the time performan
e of the logi
 program that en
odesan a
tion-based planner.The problems that we used in these experiments are from http://www.CS.NMSU.Edu/~tson/asp_planner. Table 1 shows both our results and the results from (Sonet al., 2001), whi
h were also obtained on the Smodels system. These experimentswere run on an HP OmniBook 6000 Laptop with 128MB RAM and an Intel PentiumIII 600 Mhz pro
essor.Problem Trans(�) (Son et al., 2001)S1-0 0.150 0.100S2-0 0.880 1.802S3-0 6.300 22.682S4-0 8.960 164.055S5-0s1 2.530 57.952S5-0s2 3.900 105.040S6-0 53.340 no solutionTable 1. Comparison of HTN En
oding with (Son et al., 2001)The results 
learly show that the logi
 programs produ
ed by our translationmethodology outperform the logi
 programs produ
ed in (Son et al., 2001). Ouren
oding was even able to solve a problem, for a solution 
ould not be found by(Son et al., 2001).In this respe
t, these results 
on�rm the fa
t that a SHOP-like HTN planningis an e�e
tive way for solving planning problems. They also illustrate that ourtranslation method provides a way to produ
e eÆ
ient HTN-logi
 programs withASP semanti
s to solve planning problems 
ompared to other a
tion-based en
od-ing methodologies that use some HTN 
on
epts as domain 
ontrol knowledge. Webelieve that this is due to the fa
t that HTN-planning is more expressive thana
tion-based planning (?). Thus, all of the planning problems 
an be representedin HTN formalism. For this reason, our translation methodology o�ers an eÆ
ientway solving planning problems by using logi
 programs with answer set semanti
s.
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t of GroundingWe hypothesize that our translation methodology provides more eÆ
ient logi
 pro-grams with ASP semanti
s if the system on whi
h those programs are implementedallows the usage of free variables in the programs. Otherwise, the system tries tomake every rule ground in the input program, whi
h is not an appropriate be-haviour in planning. Most of the re
ent planning systems|su
h as SHOP (Nauet al., 1999) , TALPlanner (?), et
.|
an work on planning-problem des
riptionswith free variables and these systems are proven to be faster then those whi
hreequire grounding.As we des
ribed earlier, the smodels system 
annot work on the logi
 programswith free variables. To test our hypothesis, we applied our translation methodologyto our elevator and travelling examples to produ
e logi
 programs on a di�erentsystem 
alled DLV . DLV is a dedu
tive database system, and 
an be used as a logi
programming system as well. It implements stable model semanti
s and it supportsthe usage of free variables in the input logi
 programs.Tables 2 show our results on the travelling problems. As it 
an be seen, ourprograms are mu
h more faster on DLV , then on smodels. This is be
ause of thefa
t that, as des
ribed in Se
tion 3.4, smodels work on ground logi
 programs.Be
ause of that we have to de�ne type predi
ates for ea
h variable in the problemdomain as well as all possible ground instan
es of the atoms that 
an ever be used inthe planning pro
ess. The result is that as the number of variables and the numberof their possible instantiations in
rease, the time performan
e of the logi
 programde
reases (see Theorem 24). However, we do not have su
h 
onstraints on DLVsin
e it 
an work on programs with free variables. Thus, the e�e
t of grounding 
anbe 
learly seen in our results on travelling domain.On the elevator problems, however, the performan
es of our programs are almostthe same (see Table 3 ). The reason for this is the fa
t that the elevator domain, byits de�nition, enfor
es the input programs to be more ground than the travellingdomain. Thus, no matter they are implemented on either smodels or DLV , theprograms need to be ground. Therefore, in this domain the e�e
t of grounding
annot be seen 
learly. 4.2.3 Comparison with SHOPEn
ouraged by the performan
es of the logi
 programs produ
ed by our translation,we prepared an experiment set in whi
h we 
ompared the time performan
es ofour logi
-program en
odings on the travelling examples with those of the SHOPplanning system itself on the same domain.For this experiment set we designed three independent variables, namely thedestination lo
ation, the weather 
ondition and the �nan
ial status of the traveller.We assumed that the traveller always starts travelling from the downtown of the
ity. The treatments for these independent variables are: the destination lo
ation
an be uptown or park, the weather 
an be good or bad, and the traveller 
an be



HTN Planning in ASP 25Problem smodels DLVP1 3.23 0.2P2 2.23 0.12P3 2.19 0.22P4 2.08 0.10P5 2.2 0.19P6 2.18 0.11P7 2.21 0.19P8 2.15 0.08Table 2. Comparison of smodels and DLV using Trans(�) (1)Problem smodels DLVS1-0 0.150 0.51S2-0 0.880 1.30S3-0 6.300 6.61S4-0 8.960 6.66S5-0s1 2.530 4.06S5-0s2 3.900 3.76S6-0 53.340 54.54Table 3. Comparison of smodels and DLV using Trans(�) (2)either ri
h (i.e., have suÆ
ient money for travelling with taxi) or broke (i.e, has nomoney at all).As it 
an be seen from the results of our experiment (see Table 4), the performan
eof our logi
 programs are 
omparable to that SHOP. Given the fa
t that SHOP isproven to be one of the fastest and eÆ
ient planners in the AIPS-2000 planning
ompetition (Ba

hus, 2001), these results suggest that our translation methodology



26 J�urgen Dix et al.Problem SHOP Trans(�) on DLVP1 0.026 0.20P2 0.002 0.12P3 0.003 0.22P4 0.002 0.10P5 0.004 0.19P6 0.009 0.11P7 0.003 0.19P8 0.003 0.08Table 4. Comparison of Trans(�) with SHOP (no Grounding)introdu
es a way of providing very eÆ
ient solutions to planning problems usinglogi
 programming with ASP semanti
s and it has the potential to be the most
ompetitive approa
h in the logi
-programming literature with the a
tual planningsystems.In the near future, we will test our system on more planning domains and 
ompareour approa
h with other well-known planning systems. We are also planning toimplement our approa
h on two systems, namely the XSB system ((Rao et al.,1997)) and the front-end software developed by P. Bonatti for smodels ((Bonatti,2001b; Bonatti, 2001a)), both of whi
h 
an handle free variables like the DLVsystem. 4.2.4 Experimental Veri�
ation of Our TheoremsThis se
tion des
ribes four sets of experiments with respe
t to Theorems 20, and 21.We introdu
ed two independent variables, one for ea
h experiment: the number ofappli
able methods for a parti
ular task kmkt, and the number of subtasks of aparti
ular task, ktkt. In ea
h experiment, we measured the time performan
e of ourlogi
 program en
oding produ
ed by our translation methodology on the travellingproblems.We designed di�erent number of treatments for ea
h of our independent variable.For the independent variables about a parti
ular task, we 
hose the travelling task(i.e., the task travelXY ) in SHOP notation). The treatments for our independentvariables are shown in Table 5.The results are shown in Table 6 and Table 7. These results 
orroborate with ourtheoreti
al results in Theorem 20 and 21, respe
tively. As it 
an be seen from these



HTN Planning in ASP 27Independent Variable Treatmentskmkt 1, 2, 3, 4ktkt 2, 3, 4Table 5. Treatments of Independent Variablestables, the time required to generate all the answer sets in Sol (S,t,D) in
reaseswith the number of methods appli
able to a parti
ular task and with the numberof subtasks of a parti
ular task.Independent Variable 1. Treat. 2. Treat. 3. Treat. 4. Treat.kmkt 6.1 17.68 29.59 41.77Table 6. Performan
e of Trans((S; t;D)) wrt. Number of Methods.Independent Variable 1. Treat. 2. Treat. 3. Treat.ktkt 13.75 17.68 39.33Table 7. Performan
e of Trans((S; t;D)) wrt. Number of Subtasks.5 Con
lusions and Future Resear
h Dire
tionsIn this paper, we des
ribed a way to en
ode HTN-planning problems into logi
programs under the answer set semanti
s. This transformation is not only sound and
omplete, but it also 
orresponds 
losely to HTN-planning systems whi
h generateplans by using ordered task de
ompositions. Previous en
odings (as �rst introdu
edin (Dimopoulos et al., 1997)) do 
onsider a
tion-based planning or they take aspe
ial view of HTN planning (as 
onstraint-based planning, like in (Son et al.,2001)).To test our approa
h, we used it to 
reate both smodels logi
 programs and DLVlogi
 programs, for two di�erent AI planning domains: the Travelling Domain, andthe \�rst tra
k" version of the Mi
oni
 10 Elevator Planning Domain. Here is asummary of our experimental results and what we believe they signify:� In our experiments on the Mi
oni
 10 domain, our smodels logi
 programs
learly outperformed the 
orresponding ones des
ribed in (Son et al., 2001),
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h are based on answer set semanti
s. This, we believe, is due largely tothe HTN-style 
ontrol knowledge that our translation methodology en
odesinto the logi
 programs.� Although our logi
-program en
odings on smodels outperformed those of (Sonet al., 2001), they were not 
ompetitive with SHOP, whi
h is a state-of-the-art AI planning system. We believe one of the reasons for this is that smodelsrequire grounding, whi
h 
reates 
ombinatorially many ground instan
es ofthe 
lauses in the logi
 program. For any given problem instan
e, most ofthese 
lauses are likely to be irrelevant.� Our overall translation methodology does not rely on grounding. Groundingis merely used here be
ause many available systems, notably smodels, requireit. DLV , on the other hand, allows for free variables, but does not allowfun
tion symbols, whi
h 
ome in handy in smodels. We have in
luded in thispaper our �rst experiments in applying our methodology for programs withfree variables. In our experiments on the Travelling Domain using our methodtogether with DLV , we got a speed-up of two orders of magnitude 
omparedto smodels. However, the performan
e was still about 1.5 orders of magnitudeworse than SHOP, one of the best planning systems on the market.We emphasize the fa
t that our method does not use any parti
ular features ofthe engine for 
omputing answer sets. Obviously, taking advantage of the parti
ularsear
h method of smodels, or the bottom-up evaluation of DLV , it would be possibleto write even more eÆ
ient translations. But our aim is to develop a translationthat is independent of the underlying nonmonotoni
 engine.As a byprodu
t, we believe our method 
an be easily used as transferring ben
h-marks from the planning 
ommunity to ben
hmarks for 
omparing nonmonotoni
systems based on 
omputing answer sets. This is be
ause our method is very gen-eral and does not rely on the features of a parti
ular system. Due to la
k of time,we were not yet able to test the ben
hmarks on the XSB system, a Prolog sys-tem whi
h not only allows fun
tion symbols but also free variables at the sametime. These are features that neither smodels nor DLV provide. We believe thatwe 
an get a 
ompetitive planning system on
e we 
an apply our translation into anonmonotoni
 system with these two features.We are also planning to 
ompare our method with smodels equipped with a front-end to allow for (restri
ted use of) free variables ((Bonatti, 2001b; Bonatti, 2001a)).The latter system has been developed by Piero Bonatti and is a front-end systemthat 
an be added to any system 
omputing answer sets and based on grounding.This would also allow for 
omparisons of systems with built-in grounding to thosewho do not require this (but are, in general, slower). Again, we believe that seriousben
hmarks from the planning 
ommunity 
an help a lot to evaluate nonmonotoni
systems.Our overall aim is to investigate to what extent state-of-the-art nonmonotoni
theorem provers 
an 
ompete with dedi
ated planners (in parti
ular those based onHTN) and what lessons we 
an learn from the di�erent translation methods. Weexpe
t that optimal translations (if they exist) depend on the parti
ular appli
ation



HTN Planning in ASP 29area. Developing a methodology to determine or 
lassify su
h domains seems to usto be worthwhile. A
knowledgmentsThis work was supported in part by the following grants, 
ontra
ts, and awards: AirFor
e Resear
h Laboratory F306029910013 and F30602-00-2-0505, Army Resear
hLaboratory DAAL0197K0135, and the University of Maryland General Resear
hBoard. Opinions expressed in this paper are those of authors and do not ne
essarilyre
e
t opinion of the funders. Referen
esApt, K. R., Marek, V., Trusz
zynski, M., & Warren, D. S. (eds). (1999). The Logi
Programming Paradigm: Current Trends and Future Dire
tions. Berlin: Springer.Ba

hus, F. (2001). Aips'00 planning 
ompetition. Ai magazine, 22(3).Baral, C., & Tuan., L. (2001). Reasoning about a
tions in a probabilisti
 setting. In
ommon sense.Bonatti, P.A. (2001a). Prototypes for reasoning with in�nite stable models and fun
tionsymbols. Pages 416{419 of: Eiter, Th., Trusz
zy�nski, M., & Faber, W. (eds), Logi
programming and non-monotoni
 reasoning, pro
eedings of the sixth international 
on-feren
e. LNCS 2173. Berlin: Springer.Bonatti, P.A. (2001b). Reasoning with in�nite stable models. Pages 603{608 of: Pro
eed-ings of ij
ai-01.Chen, Weidong, & Warren, David S. (1996). Tabled Evaluation with Delaying for GeneralLogi
 Programs. Journal of the a
m, 43(1), 20{74.Dimopoulos, Yannis, Nebel, Bernhard, & Koehler, Jana. (1997). En
oding planning prob-lems in nonmonotoni
 logi
 programs. Pages 169{181 of: Pro
eedings of the FourthEuropean Conferen
e on Planning, ECP.Dix, J�urgen, Furba
h, Ulri
h, & Niemel�a, Ilkka. (2001). Nonmonotoni
 Reasoning: To-wards EÆ
ient Cal
uli and Implementations. Pages 1121{1234 of: Voronkov, Andrei,& Robinson, Alan (eds), Handbook of automated reasoning. Elsevier-S
ien
e-Press.Eiter, Thomas, Leone, Ni
ola, Mateis, Cristinel, Pfeifer, Gerald, & S
ar
ello, Fran
es
o.(1998). The KR System dlv: Progress Report, Comparisons and Ben
hmarks. Pages406{417 of: Pro
eedings sixth international 
onferen
e on prin
iples of knowledge rep-resentation and reasoning (kr'98).Erol, K., Hendler, J., & Nau, D.S. (1994). Um
p: A sound and 
omplete pro
edure forhierar
hi
al task-network planning. Pro
eedings of aips-94.Gelfond, M., & Lifs
hitz., V. (1998). A
tion languages. Ele
troni
 transa
tions on ai,3(16).Giun
higlia, E., & Lifs
hitz, V. (1998). An a
tion language based on 
ausal explanation:preliminary report. Pages 623{630 of: Pro
. aaai-98.Lifs
hitz, V. (1999). A
tion languages, answer sets and planning. Pages 357{373 of: Thelogi
 programming paradigm: a 25-year perspe
tive, springer-verlag.M
Cain, N., & Turner, H. (1997). Causal theories of a
tion and 
hange. Pages 460{465 of:Pro
eedings of the 14th national 
onferen
e on arti�
ial intelligen
e (aaai-97). MenloPark, CA: AAAI Press.Nau, D.S., Cao, Y., Lotem, A., & Mu~noz-Avila, H. (1999). Shop: Simple hierar
hi
alordered planner. Pro
eedings of ij
ai-99.



30 J�urgen Dix et al.Nau, D.S., Cao, Y., Lotem, A., & Mu~noz-Avila, H. (2000). SHOP and M-SHOP: Planningwith Ordered Task De
omposition. Te
h. rept. CS TR 4157. University of Maryland.Submitted for publi
ation.Nau, D.S., Cao, Y., Lotem, A., Mu~noz-Avila, H., & Mit
hell, S. (2001). Total-orderplanning with partially ordered subtasks. Pro
eedings of ij
ai-01.Niemel�a, Ilkka, & Simons, Patrik. (1996). EÆ
ient Implementation of the Well-foundedand Stable Model Semanti
s. Pages 289{303 of: Maher, M. (ed), Pro
eedings of thejoint international 
onferen
e and symposium on logi
 programming. Bonn, Germany:The MIT Press.Pearl, Judea. (1988). Probabilisti
 reasoning in intelligent systems. San Mateo: MorganKaufmann.Rao, Prasad, Sagonas, K., Swift, T., Warren, D. S., & Freire, J. (1997). XSB: A System forEÆ
iently Computing Well-Founded Semanti
s. Pages 430{440 of: Dix, J., Furba
h,U., & Nerode, A. (eds), Logi
 programming and non-monotoni
 reasoning, pro
eedingsof the fourth international 
onferen
e. LNAI 1265. Berlin: Springer.Sa
erdoti, E. (1977). A stru
ture for plans and behavior. Ameri
an Elsevier Publishing.Son, T.C., Baral, C., & M
Ilraith., S. (2001). Planning with domain-dependent knowledgeof di�erent kinds { an answer set programming approa
h. Eiter, Th., Trusz
zy�nski, M.,& Faber, W. (eds), Logi
 programming and non-monotoni
 reasoning, pro
eedings of thesixth international 
onferen
e. LNCS 2173. Berlin: Springer.Turner, H. (1997). Representing A
tions in Logi
 Programs and Default Theories: ASituation Cal
ulus Approa
h. The journal of logi
 programming, 31(1-3), 245{298.Wilkins, D.E. (1988). Pra
ti
al planning - extending the 
lassi
al ai planning paradigm.Morgan Kaufmann.


