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Adaptive proportional-integral-derivative (PID) controllers are used to control

model-following nonlinear systems with second order dominant dynamics.

An Adaptive PID-based controller is designed which drives the difference
(error) between a process response and a desired model output to zero. The
design approach is based on the model reference adaptive control technique.
Lyapunov stability theory is used to analyze asymptotic stability of the error

system and to obtain controller tuning rules. The proposed design scheme and



the resulting tuning rules are computed and justified for nonlinear time-varying
and/or uncertain plants where the dominant dynamics are of second order. The
uncertain nonlinearities are assumed to be bounded by a known constant or a
function of the plant output and its derivative. The disturbances in the system
are dealt with in the design scheme and they are assumed to be bounded by a
known parameter. It is shown that the error approaches zero asymptotically at
a rate constrained by the desired model’s characteristics. Simulation results for
various nonlinearities show that the proposed tuning technique performs very

well.
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Chapter 1

Introduction

The objective of this thesis is to present an adaptive Proportional-Integral-

Derivative (PID) controller tuning technique for nonlinear dynamical systems.

1.1 Background and Motivation

PID-based controller design is the predominant design method in the automatic
control industry. PID controllers are used extensively in the chemical process
industry, electronic and electrical systems, autopilots for aircrafts, missiles, and
ships, industrial robots, etc. [Smi72,RR82,WR88,Bes89,CPP84]. Their popu-
larity is due to their robustness in a wide range of operating conditions, the
simplicity of their structure, as well as the familiarity of designers and operators
with the PID algorithms. They are inexpensive to implement and reasonably

sufficient for many industrial control systems needs.



Despite their popularity, PID controllers are usually poorly tuned in practice,
with most of the tuning done manually through a lengthy trial and error pro-
cedure. This makes the tuning process difficult and time consuming for process
engineers. In many situations the PID controller is replaced by a PI controller
by switching off the derivative action [Tin89a,Tin89b,AH88]. This sacrifices per-
formance and operating efficiency for an easier and faster tuning procedure since

it is particularly difficult to tune the derivative action.

To address this problem, several techniques have been introduced to tune
PID controllers [ZN42,ZN43,HW50], some of which will be reviewed in Chap-
ter 2. If the performance requirements are not high, these classical PID tuning
methods are sufficient for many control systems. As the demand on control
performance and process economy increased, and systems with more complex
structure must be controlled, efficient tuning methods are needed. Advances
in industrial electronics and microprocessor technology have made possible the
development of a wide range of PID “autotuning” methods [AH88,Fie62,N*84,

AHB84] and instruments. These systems have appeared in the market place

[Har90,Mor87,Kom89].

These autotuners adjust the PID controller (i.e. generate PID parame-
ters) automatically on demand from a process operator. They do not provide
continuous on-line tuning, but they can be effectively used for initial tuning

called “pretuning” and manual on line “retuning” in case it is needed. Although

[ O]



PID controllers with autotuning capability can save time for process engineers
and ensure a better control than ill-tuned standard PID controllers, they can
not cope with changes in the dynamic characteristics of the process under con-
trol, structural perturbations, and environmental variations. Moreover, many
control engineering problems require control in the presence of uncertainties, dis-
turbances, and unforeseen changes in the process parameters and input signals.
Since the PID parameters are fixed once they have been defined in the auto-
tuning phase until the next retuning of the controller, changes and disturbances
degrade the performance of the controlled process. In some cases it eventually

destabilizes the plant.

Another important point to consider is that autotuners adjust the PID pa-
rameters only at one nominal operating condition (set point). As the process
changes its operating conditions from the nominal one, any process nonlinearity
eventually leads to degradation of the control performance. To overcome these
problems, it is necessary to adjust the PID parameters continuously and auto-
matically while the controller is running. This is called “adaptive” tuning of

PID controller or “adaptive PID controller”.

There has been considerable interest recently in automating the tuning of
the PID controller with adaptive techniques [Gaw87,AW89]. Adaptive PID con-

trollers have the following advantages:

1. Adaptive PID tuning is faster than manual tuning.



2. The controller can be tuned more accurately, and hence, process economy

1s improved.
3. The tuning is automatic and is made systematically when needed.

4. The controller can be applied to systems with time-varying parameters,
systems where the parameters change significantly over the range of oper-
ating conditions, or to cases where the system is partially known for which

a model can not be measured with sufficient accuracy.

5. The controller can cope with disturbances in the system.

Several continuous-time and discrete-time self-tuning PID algorithms for lin-
ear systems have been successfully introduced in recent years [Mor87,And81,
KS85,G068,Haw83,P*83,Gaw82,Gaw86]. However, due to their linear struc-
ture, they operate successfully only within the limited region of control that
the process nonlinearities can be effectively ignored. Since nonlinearities are
an intrinsic part of every real world process, there is a need for adaptive PID
algorithms that can handle systems with completely or partially known non-
linearities without losing their simple control structure. This is the motivation
behind the work presented in this thesis on adaptive PID control for nonlinear

systems.



1.2 Preview

This thesis is divided into five chapters. In Chapter 2, we review the basics of
PID controllers. Several tuning methods such as Ziegler-Nichols open loop and
closed loop techniques are briefly described. “Autotuning” and “self-tuning”
techniques with their applications to design of PID controllers are explored.
In section 2.7.2, it will be shown analytically that PID control is sufficient for
systems with second order dominant dynamics. Some PID tuning techniques can
be applied to higher order processes by approximating the process dynamics
with a second order model over a given operating region either through on-
line identification and estimation or off-line modeling techniques. The main
drawback of these tuning methods is that they are developed for controller

design of linear systems.

Our main results on PID controller design for nonlinear processes are intro-
duced in Chapter 3. The design approach is based on a model reference adap-
tive control (MRAC) technique. The process model is assumed to be partially
known. In the SISO case, systems with dominant dynamics of second order
are considered. The disturbances in the system are assumed to be bounded by
a known parameter. The uncertain nonlinearities in the system are assumed
to be bounded by a known measurable function of the system output and its

derivative. The MIMO case is simply a generalization of the SISO case where

the system is composed of several interactive subprocesses each of which being



controlled by a PID controller.

A major weakness of traditional PID controllers is that they only employ the
error signal e = r — y within a scheme generally known as “system with error
feedback.” An adaptive PID controller, in contrast, employs several signal paths
that are naturally available in an adaptive loop. The extra degrees of freedom
can substantially increase the control capability of a PID controller whose P,
I, and D terms function independently on various signal paths in the adaptive
control loop. The design of such an adaptive PID controller requires the decision
on the architecture of the controller (which term acts on what signal) and the

tuning of each term. Both of these issues are considered in section 3.5.

Chapter 4 is devoted to the performance evaluation of the adaptive PID

controller through simulation of several systems with nonlinear terms.

-In Chapter 5, some directions for future work are suggested. Since PID con-
trollers are very common in the control industry and very familiar to designers,

this thesis aims to reduce the current gap between adaptive control theory and

industrial control practice.



Chapter 2

Design of PID Controllers

2.1 Introduction

This chapter gives an introduction to PID control and reviews several conven-
tional techniques for PID tuning. In section 2.2 we present the basics of stan-
dard PID algorithms. Implementation issues such as anti-windup, limitation of
derivative gain and etc. are discussed in section 2.3. Section 2.4 describes dif-
ferent methods to determine a simple process model. These methods are based
on either transient response of the process (i.e. the response of the system to
pulses, steps or other test input signals) or frequency response function (i.e. the
steady state response of the system to a sinusoidal input signal with changing

frequency w.)

Once a model has been obtained for the process dynamics, the PID parame-

ters may be computed using some tuning methods. Several common PID tuning



techniques are reviewed in section 2.5. “Autotuning” is briefly discussed in sec-
tion 2.6. In section 2.7, we give a short introduction to “self-tuning” regulators
(STR) and review their application to PID controller design. Finally, some

general notes concerning PID controllers are summarized in section 2.8.

2.2 PID Control: Preliminaries

The PID controller is the most common control algorithm in use today. Accord-
ing to Cegelec, a French control systems manufacturer, PID algorithms are ap-
plied to more than 90% of applications [Bou89]. Despite their wide applications,
there are no industry-wide standard definitions for PID algorithms. According
to Astrom [AHS88], the “text book” version of the PID control algorithm has the

form:

de(t)
dt )

u(t) = I\’[e(t)—l—l/ﬂ/ote(r)dr—}-Td (2.1)

e(t) = r(t) — y(t)

where u is the control variable, e is the set point, and y is the measured value
of the process output. The proportional gain K, integral time constant T,
and derivative time constant 7y are the controller parameters. This version of

PID algorithm is also called the “ideal noninteracting PID controller” or “ISA

algorithm” [Ger87].

Other forms of PID algorithms used by manufacturers are [Ger87]:



e Interacting PID Controller:

A ¢t ,de(t)
u(t) = K'[e(t) + 1T, /0 e(r)dr] [+ ;=) (2.2)
o Ideal Parallel PID controller:
o s . de(t)
u(t) = I\pe(t)+lx1/0 e(t)dr + Ky = (2.3)

For example, Foxboro and Fisher PID controllers use the noninteracting versions

while Honeywell and Texas Instruments use the interacting algorithm [Ger87].

Different algorithms can be manually tuned more easily for different pro-
cesses and work better in different situations. With manual tuning, choosing the
best version for a process at hand depends on the specific control demands and
objectives. Analytically, by redefining the PID coeflicients, (2.1) is equivalent
to (2.3). Also (2.2) can always be replaced by (2.1), but (2.2) is corresponding
to (2.1) only if Ty < 1/4 T;. Alternative conventional PID algorithms and their

relationship are discussed in detail in [Ger87,AHSS].

As we see from the above equations, the majority of controllers operate on an
error signal which is generated on-line by subtracting the process output y from
the set point r. The resulting control system is shown in Figure (2.1) where [
and n denote load disturbances and measurement noise respectively. The control
system in this setting is called “system with error feedback” [AH88] and might

be expected to meet several general requirements such as: closed loop stability,



Set point r

- Output

_— Controller Process < Ve

Figure 2.1: Control System with Error Feedback

good transient response to set point changes, load disturbance rejection, and

noise rejection.

One discrete equivalent of (2.1) is derived by simply replacing the integral

by a sum and the derivative by a finite difference such as:

| =

u(n) = K -le(n)+

~

, ‘; e(s) + %(e(n) —e(n—1))] (2.4)

v
where h is the sampling period which is assumed to be small, and n is the current

time index. Assuming e(j) =0 Vj < 0 and using the relationship:

1

=l ¢+ g+

where ¢™! is the backward shift operator defined by:

g e(k) = elk—1)

We can rewrite (2.4) as:

um) = K + =g ) (25)

10



Important considerations in computing the discrete equivalents of PID algorithm
are choosing the numerical integration technique and the derivative estimation
method. These considerations together with some modifications of (2.1) will be

briefly discussed in section (2.3).

To simplify the writing, we use the following notation for PID algorithms:
u(t) = P(t) + I(t) + D(t) (2.6)

where;

P : Proportional term
I : Integral term

D : Derivative term

Also:
t ds(t
P =K,St), I, = K,-S/ S(r)dr , Dy = K, dg ) (2.7)
0
In particular, 2.1 and 2.3 can be rewritten as:
u(t) = P. + I. + D. (2.8)

In the rest of this thesis, by “design” we mean the structure used in P, I, and
D terms and by “tuning” we mean the selection of the numerical values of the

parameters in P, I, and D terms.

A reader unfamiliar with the basics of PID controllers is recommended to

read Chapter 2 in [AHSS].

11



2.3 Implementation issues

To implement a PID control law on a digital computer we need to approximate

the integral and the derivative terms. There are different ways to do this.

2.3.1 Integration routine:

One way to approximate the integral term I is to write it as [AH8S]:

and approximate the derivative by a finite difference:

Lin+1)-L(Mn) ..
h = K, -S(n)

hence, a recursive estimate follows:

I{n+1) = L(n) + K;, - h-S(n) (2.10)

Another way is to use the trapezoid rule for integration: [Ise81,Smi72]

ZS(J)

I(n) = K;, -k i +S(J_1) - Kl._(.h[__(M_

S
I(n+1) = K;, - h- + Is(n) (2.11)

2.3.2 Anti-Windup

A common modification in many PID controllers is the “anti-windup” feature

of the integral term used in the algorithm. The purpose of this modification

12



is to prevent integrating the error when the control variable saturates. This
feature can be thought of as the usual I term followed by a saturation element
inserted into the algorithm [B*84]. It can also be described by (compare to

(2.9)) [AWS9]:

dI, R 1
T = Kavel®) + 70— u(t) (2.12)

where v(t) is the output of the corresponding saturating actuator and 7, is the
“tracking time constant” usually chosen small (a fraction of 7; in (2.1)) so that

the integrator can be reset quickly [AH88,AWS9).

2.3.3 Derivative Approximations and Filtering

In most PID controllers such as those described by (2.1), (2.2), and (2.3), the
derivative action operates only on the measurement signal y and not on the set
point signal r. The purpose of this modification is to prevent drastic changes in

the D term due to abrupt changes in the set point.

A more important modification is to filter the derivative action with a first
order or a second order filter to lower the derivative noise. This feature limits the
high frequency measurement noise amplification in the controller output. The
control signal will be less noisy and the high frequency gain will stay within an
appropriate bound. A derivative term in 2.1 with a first-order filter will then

look like:

dD dy
i = KT, . = 2.13
Td/N 7 + D KTy 7 (2.13)

13



where N is the bound on the derivative gain, and Ty/N is the filter time constant.

A typical value for N is 10 [AWS9].

Respectively, modification to D in (2.7) is:

dD; ds
- K, — 9
T + D, = Ky, 7 (2.14)

To approximate the filtered derivative term in (2.14) one can choose among the

following realizations:

o Forward Difference method:

TDm+2—Dmy+mm:K%

y(n+1) —y(n)
h

Ky,

Llynt 1) —y(m)]  (215)

D(n+1) = (1=~h/7)-D(n) +

o Backward Difference method:

D(n) = _7*—_ hD(n —1) + Ky, - hy(n) — y(n —1)] (2.16)

T

e Tustin’s approximation method:

D) ... K-S
y(s) = Glo) = T-S+1
DE) Gy = are)
y(Z) 5§ = 2_(1-—2"1!
T h(142z71)
G(z) = 2RN(1 —z7h)

2r(1 — z=Y) + (1 + 271)

14



2rD(n) — 2rD(n —1) + hD(n —1) + hD(n) = 2K[y(n) — y(n —1)]

2r—h 2K
Din) = 27-+h,D(n_1) + 2r + h

[y(n) — y(n —1)] (2.17)

The recursions methods in (2.16) and (2.17) are always stable, however, (2.15) is
unstable for small A (sampling time). Equation (2.16) gives sufficient accuracy
if & is very small. Tustin’s approximation gives the best results in general; and

as h gets smaller, higher accuracy can be reached [Tza85].

2.3.4 Proportion Action Modification:

The system with error feedback described in section 2.2 works purely on error
feedback (one degree of freedom), however, by separating the signal path for
the set point and the process output in the proportional term of the control law
(two degrees of freedom), the design flexibility increases which ultimately leads

to a better control performance.

The desired modification is partially achieved if we modify the error e in the

proportional part of equation 2.1 by:

e, = PBr —y (2.18)

where 3 is a constant design parameter. The closed loop transient response can

then be improved by manipulating 3.
More degrees of freedom for the control system means more parameters need

15



to be tuned. In conventional PID controllers, A is usually not subject to the
“tuning” process. If we treat it like the other PID parameters K,, K;, and Ky,

we must tune four parameters instead of three, which may not be easy.

In Chapter 3, we will see that there are more signal paths for an adaptive

controller (higher degree of freedom) and a systematic procedure to tune the

corresponding parameters, including 3, is presented.

2.3.5 Noise Rejection, Sampling, and Prefiltering

As shown in Figure (2.1), in all industrial control systems, the process output z
is always corrupted with noise. To estimate z, it is necessary to utilize a noise-
rejection scheme in the control system. One effective scheme is the two step
analog/digital filtering technique which is common in digital implementation of
PID controllers. The analog filter, called a prefilter or antialiasing filter, is used
before sampling the output z. Its purpose is to eliminate all high frequency
signal components with frequency above half the sampling frequency. This is
necessary because a high frequency disturbance appears, after sampling, as a

low frequency signal (aliasing effect).

The antialiasing filter is usually a first-order lag or second-order Butterworth
filter [AH88,Smi72]. For a first-order prefilter with time constant 7, a common

rule-of-thumb is to choose 7 = h/2 where h is the sampling time [Smi72]. A

16



second order Butterworth prefilter:

w.?

B(s) =
&) =3 + V2wes + w?

(2.19)

can also be used, where w, is the prefilter bandwidth. As an example [AHS88],
choosing:

we = wg/8
where w, = 2n/h is the sampling frequency, results in a prefilter that attenuates

signals by a factor of 16 at half the sampling frequency w,/2.

2.4 Process Modeling

As mentioned in section 2.2, conventional PID controllers are tuned manually.
There are, however, some simple tuning methods in which first, a simple process
model is determined for the process to be controlled, and then the PID param-
eters are chosen. In this section we summarize several short cuts to develop a
stmple parametric process model for linear systems. In such systems, the shape

of the output does not depend on the magnitude of the input.

2.4.1 Transient Response Methods:

Transient response techniques are usually based on open loop response of a given

process to a test signal. The most convenient and commonly used test signal
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is a step function. Many industrial processes have one of the open loop step

responses shown in Figures (2.2), (2.3) , or (2.4).

1.2 Step Response

1 L
0.8 ,/
0.6 /

/
04 P
0.2 //
_/
0 1 2 3 4 5

TIME

Figure 2.2: Step Response of a Self-Regulating Process

Self-regulating systems are those that have a step response shown in Figure
(2.2) [Smi72], where, after a step input, the process reaches a new level. Tem-
perature control processes are examples of this type. A simple model for such a

system can be described by the transfer function (first-order lag plus deadtime):

G(s) = e (2.20)

where K is the process gain, m is the unit reaction rate, 7 is the time constant,
and L is the deadtime (time delay). This model describes the process behavior

at the time scale L, where L approximates high order time constants in the
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process.
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Figure 2.3: Step Response of a Nonself-Regulating Process
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Figure 2.4: Step Response of an Oscillatory Process

19




Determination of three parameters K, 7, and L is based on the graphical

construction shown in Figure (2.5) where a tangent to the step response is

drawn.

Step Response
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Figure 2.5: Determination of K, L, and 7 for Self-Regulating Processes

| Nonself-regulating processes have a step response of the type shown in Fig-
ure (2.3) where a step input to the process causes their outputs to increase or
decrease indefinitely. Level control processes are of this type and they usually
contain an integral term plus several time constants [Smi72]. The dynamics of

these processes can be approximated by the transfer function:
G(s) = —.el° (2.21)
R=K-L
where L, the apparent time delay, approximates the process time constants, R
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is the unit reaction rate, and K is the gain. These two parameters can also
easily be obtained graphically from the step response of the process as shown

in Figure (2.6). There are alternative ways to find these parameters which are

described in [AH88,Smi72].

Step Response
0.3 P P
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0.2

0.15 /
I
0.1 / : i
¢ |
0.05 ! ' i %

T ] 0.2

R

L

0.4 0.6 0.8 1
TIME

Figure 2.6: Determination of K and L for Nonself-Regulating Processes

Oscillatory systems have a step response of the form shown in Figure (2.4),

and their dynamics can be approximated by the transfer function:

K - w?

G(s) = 8% 4+ 2(ws + w?

(2.22)

where the model parameters, natural frequency w, gain K, and relative fre-

quency (, can be approximated graphically from Figure (2.7) and the following
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relationships [AH88]:

¢ = [V1+ (27r/1nd)2J_1 )

w = 2

T o Ti-¢

where d is the damping and 7, is the period of oscillation as shown in Figure

(2.7).
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Figure 2.7: Determination of d and T, for Oscillatory Processes

An alternative form of (2.22) which includes an apparent time delay L is:

I{ * w2 —~sL
- e 3
s2 + 2(ws + w?

G(s) = (2.24)

where L can be determined in the same way it was for the model in (2.20).

22



2.4.2 Frequency Response Methods:

In section 2.4.1 the process dynamics were approximated through a transfer
function G(s), here we use only those parts of the Nyquist curve that give the
essential dynamical characteristics of the process sufficient for tuning the PID
controller. The basic idea in most of these methods is to bring the process into
self-oscillation (a limit cycle) using feedback at some appropriate frequency. The
frequency of this limit cycle is called the “crossover frequency” (w.) and is the
lowest frequency where the Nyquist curve of the open loop system intersects the
negative real axis:

arg G(iw,) = —7 (2.25)

where G(s) is the open loop transfer function of the given process. The pe-
riod T, = 2m/w, is called the “ultimate period”. Another important term
is the “wltimate gain” K, which brings the system to the stability limit under
pure proportional control. The relation between the ultimate period 7¢ and the
ultimate gain K, is given by:

1
o)

As shown in Figure (2.8), the point on the Nyquist curve corresponding to w, 1s

K. = (2.26)

called the critical point.



Nyquist Curve
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Figure 2.8: Nyquist Plot-w, ~ 1.41

There are several ways to determine the critical point and the ultimate period
T,. Two of the most common methods are briefly reviewed below. The reader is
referred to [ZN42,ZN43,HW50,Fie62,N+84, AH84,War88a,5mi72,AH88] for more
details. Ziegler and Nichols [ZN42,ZN43] have suggested an experimental tech-
nique to determine the ultimate gain and period based on the observation that
many systems may be brought to a stability boundary under pure proportional

feedback by choosing sufficiently high gain K, see Figure (2.9).

At this boundary, the process input u and output y are sinusoids with a
phase shift of —180 degrees. The frequency of the oscillation is the crossover

frequency w,, and the gain K that brings the system to the stability boundary
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Figure 2.9: Ziegler and Nichols Stability Experiment

is the ultimate gain K.. Notice that the approach is manual

Hagglund and Astrom [AH84] have provided a method to approximate the
critical point on the Nyquist curve which is based on a relay feedback experiment.
As shown in Figure (2.10), a limit cycle oscillation is forced on the process using

a relay described by:

0 ife>0
u = (2.27)

-6 ife<0

where é is the relay amplitude. The condition for oscillation in Figure (2.10)
is that the linear process G(s) has a Nyquist curve that intersects the negative

real axis.

The ultimate period T, is the same as the period of the limit cycle oscillation,

and the ultimate gain K, is the relay gain given by:

46
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where d is the amplitude of the oscillation in the error signal e.
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Figure 2.10: System with Relay Feedback

2.5 Conventional PID Tuning Techniques:

In this section we describe the well-known Ziegler-Nichols classical tuning meth-
ods for PID controllers presented in 1942. With some modifications, these tech-
niques are still very common in control industry. See [ZN427ZN43,AHS8S8| for
more details. These methods are based on many experiments performed on

typical industrial plants.

In the Ziegler-Nichols step response method, first a simple process model is
determined using the techniques described in the previous section. Then, the

“best” PID parameters are directly computed from the relationships given by

(2.29) and Table (2.1) bellow:

3
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Controller K T; Ty T,
P 0.5K, T.
PI 045K, [ 0.83 T, 14T,
PID 06K. | 05T, |0.125T,{0.85 T,

Table 2.1: Ziegler-Nichols PID Tuning Rules

As we see in this table, PID parameters K, T;, and T, for the algorithm
in (2.1) are given as functions of the ultimate period T, and the ultimate gain
K. which are estimated from the relationships in (2.29). Recall that the two
process model parameters, delay L and unit reaction rate m, were obtained from
a graphical construction of the open-loop process step response. (see section
2.4.1 for details). In the Table (2.1), T, is approximately the period of the

dominant dynamics of the closed-loop system.

In the Ziegler-Nichols frequency response method, the parameters K. and
T, are first determined from the stability ezperiment described in section 2.4.2.
Thén, from Table (2.1), the PID controller parameters i, T;, and T, are com-
puted. Since in many situations it is not practical to perform the Ziegler-Nichols
stability experiment on a process, other experiments such as the relay excitation

technique described in section 2.4.2 may be used.

Note that the Ziegler-Nichols tuning technique results in an amplitude mar-
gin of 1.5 and phase margin of 25 degree which gives quarter amplitude damping
(i.e. d = 0.25 in Figure (2.7)) and relative damping { = 0.22 in equation (2.22).

These characteristics lead to good process responses to load disturbances. Other



objectives can be met by modifying Table (2.1). For example, Table (2.2) gives
the recommended PID parameters to achieve an amplitude margin of at least 2

and phase margin of at least 45 degrees [AHSS].

Controller K T; T,
PID 0.35K, | 0.77 T, |0.19 T,

Table 2.2: Modification to the Ziegler-Nichols PID Tuning Rules

The recommended PID parameters can be derived based on the idea of trans-
ferring one or more points of the Nyquist curve of the open-loop system to a
desired position. In particular, the Ziegler-Nichols tuning method described
above corresponds to moving the critical point of the open-loop Nyquist curve

to the point —0.6—0.28: of the closed-loop Nyquist curve. See [AH88] for details.

2.6 Autotuning

The purpose of a PID auto-tuner is to adjust the controller parameters auto-
matically either on demand from a plant operator or an external signal. Broad
acceptance of microprocess-based controllers has made possible PID controllers
with auto-tuning capabilities. Some approaches to auto-tuning are discussed
in [AH88,N*84 AH84]. A number of commercial auto-tuners are now on the
market [Mor87,Har90,Kom89,Haw83]. They are mainly based on two different

avenues:

(]
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e Process identification combined with computation of PID parameters

through some design methodologies.

e Pattern recognition approach combined with some method to determine

controller parameters values.

In the first method, the process dynamics are identified automatically through
a modeling technique like those discussed in section 2.4. One of the most com-
mon approaches is the one presented by [AH84]. A block diagram of this auto-

tuner is shown in Figure (2.11).

PID

Controller

r c Process

___»@_i Tuning u G(S) y

Relay

Y

A

Figure 2.11: Block Diagram of an Autotuner Based on the Astrom and Hagglund
Relay Experiment

In the tuning phase, the control loop is a relay feedback loop which looks
like the one shown in Figure (2.10). As discussed in section 2.4, a periodic
oscillation will be reached in this phase, where the period of the oscillation 1s

simply the ultimate period T, and the relay gain (at the critical frequency)
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46/md is the ultimate gain (see section 2.4.2 for details). The period T. may
simply be determined automatically by measuring the times between the zero-
crossings, and the amplitude d can be found by measuring the peak-to-peak
values of the process output. After this identification procedure, the next step is
to compute the values of the PID parameters using Table (2.1) or some modified

rules programmed within the auto-tuner.

When the tuning is complete, the process is automatically switched to the
PID controller (position C). The new PID parameters will remain fixed and are

in effect till the next time the operator asks for tuning option.

f

d

A

Y

—w/Z w/e

Figure 2.12: A Relay with Hysteresis

In order to reduce the effects of the measurement noise while estimating K.
and 7T, the relay in Figure (2.11) is often replaced with a relay with hysteresis

shown in Figure (2.12). The width w can automatically be set based on the
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measurement noise level in the system.

Another common approach is to employ a recursive parameter estimator for
process identification and apply a design scheme to the estimated parametric
model in order to determine the PID parameters. If the identification proce-
dure is performed on-line, the auto-tuner can easily be upgraded to an adaptive
tuner where the PID parameters are updated continuously. A self-tuning PID

controller based on this procedure is described in the next section.

The second methodology is based on a heuristic logic developed by engineers
over many years, and it is based on the assumption that the disturbances can
be approximated by steps and short pulses. One scheme, used in the Foxboro
Exact controller, is the result of an expert system based on pattern recognition
approach described by [Bri77]. In this method, a step change is applied to the
system after some initializations. The auto-tuner then monitors the resulting
transient error response and calculates key parameters: damping d, overshoot

n, and the period of oscillation T, defined as in Figure (2.13) where:

Cl — e3—e2
el—e2 (230)
n = |3
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Figure 2.13: Determination of Damping d, Overshoot 7, and Period T

The operator can specify the maximum overshoot 7 and the maximum damp-
ing d typically in the range [0, 1] and {0.1, 1] respectively [AH88]. The key param-
eters are then used in deciding how to adjust PID parameters through empirical
rules developed by Foxboro partially described in [KM84]. For example, from

Table (2.1) the simple Ziegler-Nichols tuning method suggests:

(2.31)

uﬂ;.\] sﬂ-ﬂ
I
T=3

where T} and T} are the respective PID parameters in equation (2.1). In practice,

however, some modifications to the relations in (2.31) may be made, based on
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process time delays, time constants, etc. After the tuning is done, the controller
operates with fixed parameters until a disturbance with sufficient magnitude
occurs. A tolerance is often introduced in the auto-tuner that determines when
to trigger the tuning mode. The tolerance is typically twice the noise band

preset by the operator [War88b).

2.7 Self-tuning PID Controller Design

There are basically two approaches to adaptive control: model reference adaptive
control (MRAC) and self-tuning regulators (STR) [AW89,Ast83,Ast87,5SB89,
Cha87,Nar86]. The idea behind adaptive control is to adjust the controller
parameters automatically and continuously, based on some on-line input/output
measurements of the process under control. MRAC will be reviewed in the next
chapter. In section 2.7.1, we briefly discuss STR. Applications of STR to PID

controller design will be discussed in section 2.7.2.

2.7.1 Self-tuning Regulators (STR):

STR, as originally proposed by Kalman [Kal38] and later developed by As-
trom and Wittenmark in 1973 [Ast80], is an approach to adaptive control in
which it is assumed that there exists a constant but unknown linear paramet-

ric model underlying the process dynamics. It is, however, customary to apply
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Figure 2.14: Self-Tuning Regulators

STR methodology to linear time-varying processes under the important condi-
tion that the changes in the process parameters are slow relative to the process

dynamical response.

As shown in Figure (2.14), process parameters are estimated on-line using
a recursive parameter estimator. The estimated values are used as the process

parameters in a design scheme which computes the controller parameters.

Therefore, the block referred to as “controller design” gives the on-line so-
lution to the design problem for a process with known parameters and is called
underlying design problem [AW89]. The underlying design problem specifies
the characteristics of the closed-loop system under the assumption that all the

process parameters are known.

STR based on least squares estimation and minimum variance regulation
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are investigated in [Ast80]. It should be noted here that for the parameter
estimates to converge to the true values, the input signal to the process should be
sufficiently “rich” and the closed-loop system must be stable [AW89]. Conditions
for convergence in parameter estimation is therefore very important to the design

problem.

Some modifications to STR have been proposed in [CGT75,CGT79,GawT77] and
implementation issues such as microprocessor-based STR have been explored in
[CG81,G068,Gaw82,Nom88,Gaw88,Moh88,War88b]. The following books pro-
vide details in theory, design, stability, algorithms, and implementation issues
for STR: [War88a,Gaw87,HB81,AW89,Cha87,SB89,Nar86,GS84]. In the next

section, we apply the STR formulation of Figure (2.14) to tune PID controllers.

2.7.2 Self-tuning PID Controller

A self-tuning PID controller, like any other STR, has an identification algorithm
such as recursive least square estimator that provides the latest updates of the
process parameters (see Figure (2.14)). Estimation techniques for STR are ex-
plored in detail in {Cla81,AW89,SB89,GS84]. Various identification and estima-
tion schemes are proposed in many books such as: [AM79,Lju87,L.583,Nor86,
Leo87,Ise81]. A well known identification technique used is the least-square
estimator. The details are not considered here and may be found elsewhere

[AW89,Cla81].
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The estimated parameters can then be utilized within the STR underly-
ing design problem, discussed in previous section, subject to the fact that the
controller has a PID structure. A common approach to the design problem is
the pole placement technique [OIX84,Wit79]. The idea is to find the controller

parameters such that the closed loop poles have the desired locations.

Assume that the process in Figure (2.14) is represented by the discrete-time

ARMA model:

A-y(t) = ¢FB-u(t) + v (2.32)
where v is a disturbance, k > 1 is the delay, and:

A = 1+ arg7" + aq™® + o+ apg

B bi + bagt + bsg7? + et bn,gm (Y

and ¢~! is the backward shift operator (delay):

¢ y(t) = y(t—1)

For the controller structure, we rewrite equation (2.5) as:

where:
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r(t) is the set point, e(t) is the error, and:

(

o= K 4B+ KL
k2 = - —QA}I—T‘L (234)

Applying an input of the form (2.33) to the process described by (2.32) gives:
A-R-yit) = ¢*B-R-u(t) + R-v
= ¢*B-S-r(t) — ¢*B-S-yt) + R-v
Hence, the closed loop system is described by:

y(t) = BTS r(t—k) + —;iv (2.35)

where: T = A R + ¢ % B S is the closed loop characteristic polynomial.
Assuming that the desired poles for the closed loop response are selected and
given by T, (desired closed loop characteristic polynomial), we need to find the

S polynomial, i.e. ki,ks, and ks in (2.34), such that the following hold:

AR+ ¢*BS = T, (2.36)

Since there are three unknowns (ki, k2, and k3) and k > 1, T, needs to be
approximated at best by a 3rd order polynomial (assuming the constant terms

have been equated by simple manipulations). Hence, the following must hold:

mazr {1l + n,, k +n +2} <3 (2.37)

where n, and n, are orders of polynomials A and B.
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Since k > 1, for (2.36) to hold, we must have:

ny = 0
E o= 1 (2.38)
ng < 2

Therefore, the proposed self-tuning PID scheme can completely cope with pro-

cesses with the following dynamics:

by
1 + a1g™! + azq7?

y(t) = cu(t—1) (2.39)

with b; # 0. Conditions (2.38) and the form of the equation (2.39) simply state
that processes of 1st and 2nd order with small delay are good candidates for
PID controllers. PID controllers are also good for processes with first or second
order dominant dynamics since their dynamics can be approximated by a second

order model.

With assumption (2.38), equation (2.36) can be solved automatically for
three PID parameters, i.e. K, T;, and Ty in (2.34), on-line, based on recent
estimates of process parameters in (2.39), i.e. b, a1, and a;. Note that in (2.34),
h (sampling time) is known and is usually specified as a design parameter. The
overall estimation and design computation and data-processing for the process

given by (2.39) is fairly simple and can easily be programmed in microprocessors.



2.8 Conclusion

In this chapter we reviewed the basics of the PID control and discussed several
modifications of the standard PID algorithm that are common in practice such
as integral anti-windup, filtering, digital implementation , and proportional and

derivative modifications.

Several conventional PID tuning techniques based on transient response and
frequency response were presented. In tuning methods based on transient re-
sponse, first a simple process model for the plant is obtained from the open
loop step response of the process. Then, the PID parameters are determined
simply from some recommended mostly empirical rules. In techniques based on
frequency response methods, only the essential parts of the Nyquist curve of the
open loop system are used. After identifying these parts, the PID parameters

are computed again using some given recommended rules.

We also reviewed autotuning and stated that its main purpose is to tune the
PID controller automatically on demand from an operator. We noted that au-
totuners do not provide continuous on-line tuning and consequently, the tuning
phase is separated from the control phase. Upon any change in dynamic char-
acteristics of the controlled process, environmental variations, operating point,

or any structural perturbations, the process need to be retuned (i.e. switched
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to the tuning phase). We mentioned that autotuners simply combine the tech-

niques for identifying the process dynamics and the methods for determining

the PID parameters.

Finally, we explored an application of adaptive control theory to the PID
controller design. The idea of self-tuning regulators (STR) was introduced and
from this, an adaptive PID design scheme which is based on pole placement
technique was obtained. The methods described in this chapter are successful
only over the limited operating region of the control where the nonlinearities
in the process are not dominating and can effectively be ignored. Over this
operating region, the process was assumed to be linear and time-invariant. Also,
as it was discussed in section 2.7, PID control is adequate for systems where the
dynamics are approximately of first or second order. If possible, approximations
need to be made for higher order dynamics to incorporate them within a second

order model over a selected operating region.
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Chapter 3

Adaptive PID Design for
Nonlinear Processes

3.1 Introduction:

In this chapter we develop a design scheme that employs simple PID controllers
and adaptive methodologies to control nonlinear processes. The approach is
based on a model reference adaptive control (MRAC) method responding to

bounded disturbances.

Section 3.2 contains a brief discussion of the MRAC problem. In section
3.3, we describe the form of the nonlinear processes that we deal with in our
approach. The statement of the design problem and some notation are intro-
duced in section 3.4. The main results and adaptive laws are stated and derived

in section 3.5. Some topics of interest such as the rate of convergence of the

4]



algorithm and the choice of an adaptive gain vector are discussed in section 3.6.

In section 3.7, some modifications are made, the effect of integral action with
anti-windup capability in the stability of the adaptive system is investigated, and
the continuous version of the control law is presented. Section 3.8 generalizes
our SISO result to MIMO case where several PID controllers need to be tuned

at the same time in an interactive multiple loop environment.

3.2 Model Reference Adaptive Control:

In section 2.7, we stated that the “self-tuning regulator” (STR) is one of the main
approaches to adaptive control. MRAC is another main approach to adaptive
control which is based on model-following. That is, the controller parameters
are adjusted so that the closed-loop behavior will be close to that of a prescribed

model.

The basic ideas of MRAC are illustrated in Figure (3.1). In this figure, y,
is the process output to be controlled. The desired performance is expressed in
terms of a reference model which gives the desired response y., to an input com-
mand signal u.. The error y,, — y, is formed on-line and continuously monitored
through the block called “adjustment mechanism”. This block generates the
controller parameters based on the error in the adaptive system. Hence, some

updating rules need to be specified within this block.



U Reference | ym Adjustment
Model Mechanism [*

Controller Parameters

Controller | u Process Up

Y

Figure 3.1: Model Reference Adaptive Control (MRAC)

There are three common approaches to update the controller:

o The gradient approach
e Lyapunov stability theory

e Passivity theory

These methods have been widely described in the adaptive control literature:
[OWK69,Par81,Par66,Lan79,Moh88,NL80,N+85,Mon74,Mor80]. Our approach
is based on Lyapunov stability theory. First, an error system is derived. Then,
an adaptation mechanism is developed to guarantee that the error y,, — y, goes

to zero.

The error system is obtained in section 3.4, and the adaptive PID parameters

adjustment rules are derived in section 3.5.
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3.3 System Description:

Even though PID controllers have a simple structure, they can control most
industrial systems sufficiently provided that the demands on the performance of
the control are not too high. In general, as it was discussed in section 2.7 and
2.8, PID control is sufficient for processes where the dominant dynamics are of
second order. Since PID controllers have limited complexity, more complicated
systems with high frequency dynamics should be controlled by more sophisti-
cated algorithms. Our goal is to derive an adaptive PID tuning technique for a
class of nonlinear dynamical systems modeled or approximated by the following

nonlinear time-varying differential equation:

Yp = am(ymyp;t)'gp + apo(ypvgﬁt)'yp + f(oit) + bp(yp’ymt)'“ +v (3~1)

def R
g = g(ypaypaypv--') ) bp ?é 0

v < Vmae (3.2)

where y, is the process output, u is the control, a,,, a,,, and b, are known
nonlinear time-varying coefficients, v is a disturbance, g(-) and f(-) are unknown
nonlinear functions. It is, however, assumed that there exists a measurable

function p(yp, yp; t) such that:

If(a; )] < p(up,tpit) YO, Ypy Upyt (3.3)
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It should be noted that equation (3.1) does not restrict the class of actual
nonlinear systems to which the controller can be applied to be second order.
It only restricts the nominal system model to such a form. Moreover, if the
high frequency dynamics are bounded through the inequality in (3.3), then no

approximation is necessary.

The reference model, specified by the designer, which describes the behavior
expected from the controlled process is identified by a second order linear, time-

invariant, asymptotically stable differential equation:

gm = amly.m + amoym + bmuc (3'4)

where u. is a piecewise continuous bounded input command signal to the refer-

ence model.

3.4 Notations and Problem Formulation:

By defining the state vectors as:

xpl def yP Lmi def Ym
(L'p = = N :Em = =

Zpy Yp Tm2 Ym

€1 def Ym — Yp

€2 Ym — yp
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we can rewrite equations (3.1) and (3.4):

Tp = Ap(zpit)-zp + F(oil) + By(zpt)-u + D (3.5)
T = Am Ty + Bn - uc (36)
where:
0 1 0
Ap(zp;t) = , Flojt) =
apo(:cp; t) am(xp;t) ] flo;t)
0 r 0
By(zp;t) = , D =
bp(mp;t) v
0 1 0
Am = 5 B, =
a”mo aml bm

The control law u is the output of a PID controller which has the general
structure given by equations (2.6) and (2.7). The adaptive control loop we will

be using has the form shown in Figure (3.2).

In the control loop of Figure (3.2), there are several signal paths (such as
€is Yps Ym, Uc, - - ) available to the designer, and an adaptive PID controller may

therefore have different combinations of the terms defined by relations given in

(2.7).
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Figure 3.2: Adaptive PID Controller

Hence, an adaptive PID controller has a higher degree of freedom, in the sense
described in section 2.3.4, than the conventional error regulators introduced in
the last chapter. One possible candidate for the control law of the type given

by (2.6) is the following:

where € is a function of e; and e, called the “weighted error”, which we will

define in the next section.

The objective of the PID controller in Figure (3.2), then, is to guarantee that
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the error € tends asymptotically to zero, i.e.
e(t) = — as t — 00

By subtracting equations (3.5) and (3.6), we observe that the error vector &

satisfies the following vector differential equation:

€ = An-€ + (Amn—4,) 2, — Flo) — B,ru — D + Bn-u. (3.8)

Equation (3.8) is a nonlinear time-varying system with u defined by equation
(2.6), and is said to be written in “ error space ” since it describes the evolution of
process errors with respect to the desired trajectories. We would like to analyze
the stability properties of this system for various forms of the control law u such
as the one given by (3.7). More specifically, we would like to find the structure
of the control algorithm and the value of its corresponding parameters, so that
the system in (3.8) becomes asymptotically stable. Hence, the model following
problem (see section 3.2) can be restated as to find the respective updating rules
for PID parameters in (3.7), i.e. prp, Kdyp’ I\'puc, Kp,, and K;,, such that

the solution of (3.8) tends asymptotically to zero.

3.5 Adaptive PID Design

Let G € R'*? be a gain vector defined as:
G ¥ BI.P (3.9)
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where P € R2*? is a symmetric positive definite matrix which is the solution of

the Lyapunov equation:
P A, + A.T-P = =Q (3.10)

and Q € R¥*? is a symmetric positive definite design matrix. As we show in the
next section, the rate at which the error € approaches to zero depends on @) and
is constrained by A,, through equation (3.10). Since A,, is an asymptotic stable
matrix, specified in (3.6), the Lyapunov equation (3.10) gives a unique sym-
metric positive definite solution P for every symmetric positive definite design

matrix .

Let:

o
-

e = G ¢ (3.11)

where € is a scalar function of e; and e; called “weighted error,” and G is as
defined in (3.9).
Define BJ as the pseudoinverse of B,:
B} = (BI-B,)" BT

p

and observe that:

Bl = [0 g;w
3
; 0 0 (3.12)
Bp . Bp =
01
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Hence:

B, = (B,-Bl)-bn
An— A, = (BP'BJ)‘(Am—Ap)
(3.13)
D = (B-Bl)-D
F = (B,-Bl)-F

These relations are known as Erzberger’s conditions for perfect model following

[Erz68].

We choose the following Lyapunov function:
V) = el.P-e (3.14)

with P the solution of the Lyapunov equation (3.10), and the process control in

the form:

ui(t) = prpy,, + Kdypy,, + Kpy uc + Ke (3.15)
where K¢ is an offset term. For V one obtains from (3.8) and (3.14) the following
expression:

V = (P -An + AnT-P)e + 26TP(A, — A,)z, — 26TP - F(0)
—2¢TP - Bu + 2¢TP. Bhu. — 2e'P-D
from (3.10) and (3.13) this leads to:
V = _&TQs + 2TGTBI(A, — Az, — 2%TGTBF(o)
_96TGTy + 287GTB] Bou, — 26TGTBID
= —efQe42e7GT B,lL(Am — Az,

_ BiF(c) + BiBuu. — BID—u (3.16)
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Taking into account (3.11) and (3.12):

. 2¢ )
V(e) = —&"Qe + b—[aoyp + a1y — f(o) + bpu. — v — bu] (3.17)
p
where:
Go = am, — dp,
(3.18)
a1 = Qm; — ap,

and an,, ap, are defined in (3.1) and (3.3).

Therefore, assuming the process control u in (3.17) is given by (3.15), we

have:

2€

+ 5 (ag — prpyp)yp + (a3 — prdyp)yp (3.19)
+ (bn = byKpy, Juc — (f(0) + v+ byKe)]

A suitable choice for the controller parameters is:

>
P
I
=
i'a
88
3

N
12
—~|~
818
3
A
N R

(3.20)

=
~
o
|
Z];
)

p(Tpit)
[\,6 — ('r ?t)+vmaa:

- stgnle
| p(xp't)l g ( )

|

where p(-) and Vg, are defined in (3.3) and (3.2), ao and a; are defined in

(3.18), and:
+1 ife>0

sign(e) = | 0 ife=0 (3.21)

-1 ife<O
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which acts as a relay (refer to section 2.4.2). Choosing the controller parameters
according to (3.20) causes the error e; = ¥, —y, to approach zero asymptotically.

This is apparent by substituting these parameters into (3.19) which gives:

V() = —&TQe — 25| f(o) + v+ by AL Vs o
by ' |y
= —efQe —2 [{—f(a) + g—v + P(2pi1) + Vmas € .sign(e)] (3.22)
p b |0
from inequalities in (3.2) and (3.3) we get:
V(e) € —€TQ& < —Amin(Q) - ||E|f? (3.23)

Hence, since V(€) is zero only at € = 0 and is negative everywhere else, we

conclude that as long as there is error, the error vector € tends to zero, i.e:

lim & = 0 Ve(0) € R? (3.24)

t—o0

and consequently: Yp = Ym

In order for (3.20) to guarantee asymptotic stability of the error system given
by (3.8), we need to assure that the null solution, i.e. € = 0, is the equilibrium
point of (3.8). This is not clear from the conditions given by (3.1)-(3.4) since the
structure of disturbances v and the nonlinear term f(-) is not given, and con-
sequently f(€) is not necessarily zero at € = 0 for different operating points .
* As a result, despite the fact that the error € approaches to the origin (as long as
there is nonzero error), and hence z, — @, disturbances v and the non-zero
nonlinearity f(zn) reexcite the error system (3.8) when € reaches zero (since

€1 # 0). Therefore, the origin is not the equilibrium state and consequently, the



error vector will remain bounded where the magnitude of the bounds depends

on the form of v, vyez, and the value of f(-) at z,.

By introducing an integrator into the control law (3.15), a zero steady state
solution can practically be enforced in the error system (see section 2.2). To
interpret this, assume v = 0, the integrator adds just enough control u to
compensate for non-zero nonlinearities at &, = @, or to say at € = 0. The null
solution of (3.8) will then be asymptotically stable. Small perturbations (about
the equilibrium state 0) due to the bounded disturbances v will not affect the

stability of (3.8) since, as mentioned before, the error approaches to zero.
With the addition of the integrator, the control law in (3.15) is modified to:
uy(t) = prpyp + Kdyp Yp + KPucuC + Ke + 1 (3.25)

where I stands for the integral action term. We derive this term by modifying
the Lyapunov function used in (3.14) and search for conditions that conserve

the stability of the adaptive system. Consider the candidate Lyapunov function:

1
W) = el-P-é + g-ﬂ (3.26)

where P is the symmetric positive definite matrix given by (3.10). Note that

from (3.14) we have:

1
W=V 4+ — I
2y

Let us now evaluate W

. . 1 dI
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Using the control law in (3.25) with coefficients given by (3.20) results in a slight

modification to (3.22) (we omit the details):

. i1
W) = —efQe -2 if(a) + Y + P(Zpit) + Vmar sign(e)
by by 19
1 dl
—2¢-1 -1 — :
€] + " o (3.27)
Hence:
. 1 dl
W < —&TQe — 21 + =-1-—
~ dt
1
= —&fQe + 5 [% - 2’76] (3.28)
Consequently, if we choose:
dl
— = (3.2
7 2y € (3.29)
then W will be a negative definite function:
W) < —e"Qe < —Amin(Q) - [lEl’ (3.30)

Note that W = 0 only if & = 0. (3.28) and (3.29) suggest that a suitable choice

for the integral term [ in (3.25) is:
t
I =1 = K,-E/ edt (3.31)
0

where K;, = 2y. As a result, W in (3.26) will be decreasing as long as the
error € is not zero, and it is constant when € = 0. Clearly, the error is forced to
converge to zero from any non-zero initial state €(0). The asymptotic stability

of the error system follows.
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It should be noted that if the disturbance v slowly varies, such as simple ramp
or step function disturbances (offsets), over some time intervals, the integrator
will still enforce the zero equilibrium in (3.8) at corresponding time intervals.
If disturbances are much faster than the integral action time constant and the
process dynamics, an error envelope will exist in which the error oscillates around
the zero state equilibrium. The amplitude of this envelope will depend on the
magnitude of disturbances v and on how fast the process reacts to its input

(delay in the process).

In (3.29), 7 is a constant design parameter to be chosen by the user, and its
value depends in general on the process gain, time-constant, and the operating
point z,,. If v is chosen very large, the integrator accumulates large values and
while the stability will still be conserved since (3.30) does not depend on the
numerical value of 7, the transient response will be poor. In this case, as it
will be explored in section 3.7.1, integral anti-windup needs to be employed. In
the next section, after we approximate the time-constant of the adaptive system
and estimate the rate of convergence at which the error approaches to zero,

suggestions on the numerical range of v will be given.
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3.6 Rate of Convergence

In this section we discuss the transient behavior of the error system. More
specifically, we search for an estimate of the decay rate of the error € to its zero

equilibrium state. Define:

_T —
def . | € Qe

An equivalent definition of 7 is:

n ¥ min{eTQz; e7Pe =1} (3.33)
€
We observe:
eTQe = -V
< <
= Tpe =V

where V = €T P¢ is as defined in (3.14). Then:
V< -V

and

V < V(e(to), to) - e~ (3.34)
where &(tg) = & is the initial error at time to. Hence:
eTPe < (&7 Pgg) - e (3.35)

Interpreting é7 P€ as the distance from the origin in error space, (3.35) approx-
imates how fast the equilibrium is approached. Since P is a positive definite

matrix, we have:
Amin(P) - [[E])? < &TPe < Amaa(P) - [lElf? (3.36)
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where Amin(P) and Apa(P) are minimum and maximum eigenvalues of P re-

spectively. Therefore:

el Pe ol Pé
s2 < & 0 €0 —n(t-to) (
and:
)‘max P — SL(t— /
lell < A.—H-||e(to)]]-e%(t fo) (3.38)

Equation (3.38) implies that ||&]| decays at least as fast as e 7 *. This suggests
that the transient rate of convergence for y, to approach y, (or: € — 0) is at

least:

r = n/2 (3.39)

Hence, 1/r is an estimate of the time-constant for the adaptive system.

To compute 7 in (3.33) one can use the Lagrange multiplier technique as
described in [Ort70]. Let u be the Lagrange multiplier. From (3.33), we need
to minimize:

mjn{éTQé — p- éTPé}
€
Taking partial derivative with respective to € and equating it to zero gives:
(Q—uP) &nin = 0 (3.40)
which implies that g is an eigenvalue of the matrix (QP~"), and:

T = _ T p= . _
EminQEmin = Yo €pinPemin = 1
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since X . Pémi, = 1 from (3.33). The term €L . Q€min is minimum when g is

minimum and hence:

1 = Anin(QP7) (3.41)

i.e. 1 is the minimum eigenvalue of the matrix (QP~'). Note that 5 is positive
since e7 Q& in (3.33) is always positive (Q is p.d.). Hence:

_ /\mm(QP—l) )
po= fminds (3.42)

Now that we have an estimate for the rate at which error converges to zero,
equation (3.38) and (3.42) can be used in order to estimate a numerical range for

7 in (3.29) which result in a smooth transient response for the adaptive system.

From (3.11) and (3.9) we have:
lell = NG -ell < 6] [Pl < [bplAmaz(P) - [le]

and (3.38) gives:

Amaz(P) —r(t—to)
el < 10p|Amas(P) - Yoo (P) ll€(to)]] - €
© M- ||e(to)] - e (3.43)
and:
t
- dtll < 2 dt
1l = 1 [ 29edtl < 2 [l

Now assuming b, is constant:

i
M) < oM feto)] - [ e dt
0

Sl (3.44)

r
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If b, is not constant, then its average over the corresponding time period should
be approximated within M in (3.44). Inequality (3.44) suggests that the integral
term always remains bounded at most by 2—7}{ - ||é(to)]]. Also, that I approaches

its value at steady state, denoted by I°, at most with the rate r. From (3.26)

and (3.30):
1
W(e) = eTPe + 5;-12 < Wi(e(to)) Vt=to (3.45)
Hence:
1
Z.ﬁ < €7 (to) P &(to) < Amas(P) - [[€(t0)]
and:

I < /29 Amaa(P) - [I€(to)] (3-46)

This together with (3.44) implies:
2yvM
1] < min { o Aman(P) ~7—}-||é(t0)|| o p o (347)
r

As mentioned earlier, the primary objective of the integrator is to enforce a zero
steady state in the error system. This implies that the bound on |I| in (3.47)
should be big enough so that the integral term can reach I° (the value of I at

the steady state & = 0 or z, = @, ). From (3.8), I° may be computed as:

o _ —f(@m)
I° = by (2m) (3.48)

and hence one candidate for 7 is such that:
Ipar ~ I° (3.49)

59



However, since f(-) is unknown we use (3.48) instead to find a bound I2,,, on I°

max

such that |I°] < I? . and then choose 4 based on Ig,,,. Another alternative is

ar max*

to perform a test by simply observing the process response, using some nominal
value for 4, and then measuring the value of I at the given operating condition
T,. The value for 4 found by using I2,,, instead of I° can also be used as an

initial setting for v in this test. In most cases where the bound function p(-)

in (3.2) is chosen reasonably tight, the following value for v obtained based on

I? .. works reasonably well. From (3.48):
p(Tm)
I = (3.50)
|bp(2m )|

and in order for I°__ to be reachable by I in (3.47) and to prevent integral

max

windup a suitable choice for v is such that: I, ~ I2,,,. or:

maxr

P (Tm) r - p(Tm) }

v "”"{2AW<P>|bp<xm>|2né<to>|| ST, o) - GG (3.51)

Since Q is a design matrix, to be chosen by the designer, one can adjust 7
in (3.41) by varying Q. By assumption, A, in (3.6) is an asymptotically stable
matrix. Hence, for any positive definite matrix @, the Lyapunov equation (3.10)
gives a unique positive definite matrix P, and for a fixed @, 7 is constrained by
this Lyapunov equation. For a given reference system A, in order to achieve a
better rate of convergence r, we need to choose () such that Amin(@P7Y) is as

large as it could get.
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To find a suitable @, let us choose the diagonal form:
Qq = (3.52)

where ¢ is a parameter to be determined. Note that @, in (3.52) is normalized
since by multiplying (), with a scalar number eigenvalues of (QP~') do not

change. From (3.10) and (3.52) we have:

P11 D2 0 1 0 am, P1 D2 q 0
. + . = —

P2 Ps3 Uy Oy 1 am, P2 P3 0 1

and can be solved for p;:

_ a‘gno q = amo + a?nl
h 20y Uy
-1 (3.53)
P2 207mg
ps = 1= q0m,
\ 20 Gy

Hence, for any A,,, P as a function of ¢ is given by (3.53). Eigenvalues of
(QP~') can then be computed as a function of ¢, where the smaller of the two
is denoted by Amin(q). To maximize Anin(g), one can solve the corresponding
optimization problem:

maz Apmin(q)
q

and find a suitable value for ¢ that gives the largest Apnin(QP71).

Another way to find the best ¢ for a given A, is to simply plot Amin(q) as
a function of ¢, and take the numerical value of ¢ corresponding to maximum

Amin(QP71). An example is treated in the next chapter.
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3.7 Modifications of the Algorithm

In this section, the algorithm presented in section 3.5 is partially modified. In
section 3.7.1, The effect of anti-windup (discussed in sec 2.3.2) on the stability
of the adaptive controller will be explored. The relay-type offset term K¢ in
(3.20) will be replaced by a continuous simple proportional term followed by a

hard limiter in section 3.7.2.

It should be noted that all modifications of P, I, and D terms discussed
in section 2.3 should also be carried out in implementing the adaptive PID

controller.

3.7.1 Integral Action with Anti-Windup:

As discussed in section 2.3.2, to prevent the build-up of error when actuator is
saturated, and hence, get a better performance result when the controller comes
out of the saturated condition, integral anti-windup should be employed. For
this purpose, it is common to limit the integral term with some fixed maximum
and minimum bounds. The magnitudes of these bounds depend on the dynamics

and limitations of the control actuators and the process.

Limiting integral action may cause stability problems since the update rule

in (3.29) and the relationship in (3.30) will not hold on the boundary limits of

the integral term (i.e. when % = 0 is forced) unless ¢ = 0. Hence, we need to
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compensate for this in other terms of the control law.

Let us define the saturation function as:

c ifr>c

sat (z,c) = ¢ iflz] <c

—c ifr < —c

\

c >0

then the integral with anti-windup is simply:

I = sat(le,c)

Ie = K f(fe dr

(3.54)

(3.55)

where ¢ > 0 is the limit of the integral term, and is a design parameter. We

modify (3.26) to produce the candidate Lyapunov function:

1
e —_— —T . . e —_— — 2
W(e) = e -P-e + o (I—c¢)
with K¢ in (3.20) modified by:
; p(Zp;t) + Vimasw .
K¢ = + c| - sign(e)
‘ [ [bp (23 )]

To evaluate W when the control law u is given by (3.25), we have:

+ 3 (a0 = byl oy + (a1 = byKay, )i
+ (b — bpKpy Jue — (f(0) + v+ be)]
—2el + %(I—c) . %

and employing (3.55), (3.57), and (3.20) gives:
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1. Before integral saturation (|I| < ¢):

W) < —éTQe — 2cesign(e)
2€

e N

+£. i{._g _ 1/ ﬂ

v \a@ T T\
N e’

0

= —eTQe — 2ce(sign(e) + 1)

< —€Qe
Hence:
W<0 ife#0
(3.59)
W=0 ife=0
2. During integral saturation (|| = ¢):
W) < —eTQe — 2cesign(e)
dI 0dI
L] 2= _ — c- hainl
+3 7 2ve c (1/7dt)
0
= —eTQe — 2ce(sign(e) £ 1)
< —&fQe
Hence:
W <0 ife#0
(3.60)
W=0 ife=0

(3.59) and (3.60) show that, with modification of K¢ in (3.57), W is decreasing
before and during integral saturation as long as there is some error €, and it is
constant when & = 0. Asymptotic stability of the error system, therefore, will

not be effected by integral saturation.
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3.7.2 Continuous Version:

The K¢ term in (3.20) and (3.57) acts as a relay with a gain £(z,;t) where:

. def p(mp;t)+vmax
onit) = 2 (i)

(3.61)

This discontinuous term sometimes introduces undesirable chattering in the con-
trol signal which often makes the controller difficult to realize in practice. A
continuous version of this term can therefore be implemented using the follow-

ing approximation:

+1 ife>&
sign(€) = \ €/& if || < & (3.62)
-1 ife< =&

\

where £ is a design parameter, typically small and its value depends on the
controller actuators’ characteristics. Notice that by an appropriate choice of £
the resulting continuous control law, achieved by implementing (3.62) in the K¢
term of (3.20) or (3.57), is arbitrarily close to the original discontinuous term,
and hence, it gives a performance close to that of the discontinuous version. The

modified control law is then the following PID-type control:

= I(Pypyp + I\’dypyp + KPucuC + Kpesat (6,&) + sat (Ie, c)
(3.63)
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where:

( g~
<4 — mo ~“po
- _ aml—al
Rey, = =
Kpy, = (3.64)

Py
5

i
SR S

=
Il
ro

v
where sat (€,o) is a limiter function of height &y defined in (3.54), £(-) is defined

in (3.61), & 1is a design parameter, and am,, ap,, bm, and b, are given in (3.1)

and (3.4).

An alternative to the fixed approximation in (3.62) is to vary £ as the error
e changes. The following choice of £,(€) guarantees the asymptotic stability of
the error system (3.8) achieved by the PID controller given by (3.63) for any

scalar 6 > 0, where § is a design parameter and pm;, is the minimum eigenvalue

of Q:
_ Nmin(Q) -
which results in:
Vo< =X
(3.66)
;\ _ é-1

- 75
Hence, the rate of convergence for ||&|| — 0 will be A/2.

Another alternative in approximating the sign(-) function with a continuous
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function is the following [ACG84]:

sign(e) = (3.67)

le] + 7
where 7 1s a small positive constant. This approximation acts like a “soft limiter”

of height one.

3.8 Generalizations to Multiloop Systems:

In this section we apply our design scheme described in sections 3.5 and 3.7
which originally was developed for SISO systems to an interacting multiloop

system where each subsystem is assumed to be of the form given by descriptions

(3.1)-(3.3).
We consider a dynamical system composed of n subprocesses governed by:

X, = Af(Xpit)- X, + Bp(Xp5t)-U + Flost) + D (3.68)
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Where:

Yp:
yp2 I 1
Lp, r
Ut
Zpo
ypn Y UQ
def p
Xp = = : = — N U =
Ypy Y,
sz Un
xp2n
ypn
0 I,
def
Ay, = Lo
alPl “ e anPl an+1P1 e a’2nP1
aan e anPn an+1Pn e a2nPn
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0 0---0
OTLXTL
def
By = \bp 0 0=
Bpl
0 bp, O
0 0 - bp
0 0
0 0, 0 0,
Floit) = |—| & | 22| p = || & |22
fi F Uy D,
fn Un
L J L J

and y,, is the output of the ¢th subprocess. Note that all matrix entries Qjp,
and bp, can be nonlinear functions of X,. § is a function of y,,, ¥p, and higher
derivatives of outputs. While the functional forms of @;, and bp, are assumed
known, the nonlinear functions f; and disturbances v; are uncertain and subject

to the following relationships for some known measurable functions p;(X,;t) and
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bounds v, :

|fi(a:t)] < pi(Xp3 )
(3.69)

[Vi] < Vippas

The first step of the design is to choose a reference model, a linear second order

time-invariant differential equation, for each subprocess:

:i]m.* = almiym,' + A0, Ym; + bm.'uc, t = 152a"'7n’ (370)

As noted in section 3.3, the desired performance characteristics expected from
the controlled system is given by (3.70) which may also be rewritten in the

following form:

Xm = AmXm + Bn-U. (3.71)

where X,, € R, U. € R", A,, € R?*?" B, € R*"*?" and:

Am = , Bm = _—
Amo | Am1 By
T
Ymy
ue, |
ymn Ym
X = = || , v =
Yrmy Y
Ue,,
ymn

L -

with Ane = diag (ao,, ), Am1 = diag (a1,,,), Bm1 = diag (b, )-
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Define the error vector as:
E = Xp — X, (3.72)
and the vector differential equation governing the behavior of € is:
€ = Am-& + (An—A,) X, — F(o;t) — B,-U ~ D + B, -U. (3.73)

Hence, the design objective is to find the controls u; in U such that the error €

tends asymptotically to zero, i.e.
é(t) = — as t — 0o (3.74)

Define the gain matrix G € R"**":
G« BI.P (3.75)

where P € R2"%?" is a symmetric positive definite matrix and is the solution of

the Lyapunov equation:
P A, + AT -P = —Q (3.76)

and Q € R¥™*?" is a symmetric positive definite design matrix which, as dis-

cussed in section 3.5 and 3.6, specifies the rate of convergence in the error system.

Observe that the matching conditions (Erzberger’s conditions [Erz68]) for

71



perfect model following are satisfied:

(3.77)
D =(B,-B})-D
F =(B,-B})-F
with!:
BJ[-—-[ : (1)} 3.78
P 0 | diag = ( )
Let the weighted error € € ™! be:
€1
e goe=|: (3.79)
€n

with GG obtained by (3.75), and choose the Lyapunov function candidate:
V(e) = el -P-¢ (3.80)
where P is the solution of (3.76).

For V, we obtain the same expression as in (3.16):

-C"T

. ——
V= —eTQe +27GT | By (Am — A))z,

— BlF(¢) + BiBuu. — BID-U] (3.81)

1BJ,‘ = (BT - B,)™! - BY is the pseudoinverse of B, as defined in section 3.5.
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From (3.69), (3.78), and (3.79) we have:

n 61 . n .
+ 2 Z ?): [a??/p; + Clz}yp + Z [ajP, Yp, t Antip, ypf]
=1 t

i
i
~filo) + bmue, — vi — bpu (3.82)
where:
a?: ao,,, — Gip
' (3.83)
a?:almi — Ontip,

Note that each ith term of the summation in (3.82) has a structure identi-
cal to that of equation (3.17) in section 3.5 except the interacting terms with
coefficients akp, for k = 1,---,2n which is the result of multiloop interactions
defined within (3.68). This similarity between MIMO case and SISO case simply
generalizes our treatment developed in previous sections and suggests the same
form of PID parameter adaptation laws given in (3.63) and (3.64) with slight

modification:

ui(t)zpypi + D?)p.‘ + Puci + Pe' + L+ Z [P?ZJPJ t D})PJ]

i=1
J#
:I’};ypypi + K;ypym + K}i’ucu"i + K};esat (e, &%) + sat (I, ¢)

+3 [K;,J,ypj + K iy,
j=1

i
! (3.84)

73



where:

]’Z _ a’Omi ‘a'Op.
Pyp bp,
t
i . ai,, —Q1p
d ==
yp P,

Kp = fzﬁol (3.85)

K}e =2
, -qj5
J P]
=Un4jp

with:
Xp; t) + ’Uima:z

(X .p) def pi(
S T ]

+ (3.86)

as defined in section 3.7. Notice that in simple multiloop processes, axp, -= 0 for

most k # ¢ which substantially simplifies the algorithm above.
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Chapter 4

Simulations

In this chapter we apply the design scheme developed in the last chapter to
several nonlinear processes which illustrate the performance of the proposed
adaptive PID controller. A simulation routine for this purpose was developed
using EASY5W (Engineering Analysis System) software package. A schematic
view of the simulated adaptive system generated by EASY5W is shown in Figure

(4.1).

4.1 Example 1:

Consider a process that satisfies the following differential equation:
()
Jp = ap, - Up + Gy Yp + Q1-sin(Biyp) + az-cos(Boyp) + bp-u + v (4.1)

where y,, is the process output, u is the control input, and v is a disturbance in

the form of a random process.
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Assuming a,, = 1,4, = 2,b, = 5,07 < 1, and a; < 1.5, we have:

If(g)l < p =25 (4.2)

Suppose the parameters oy, a,, 51 and S, are unknown to the controller. For
simulation, we chose: 8, = 100, 8, = 10,a; = 1, and ay = 1.5. The bound

Umaz ON the disturbance v is:
[v] € Ve = 1.5 (4.3)
The desired linear model considered is:
Yp = —19y, — 90y, + 90u. (4.4)

with two poles at s = —9 and s = —10. Figures (4.2) and (4.3) show the
transient response of the simulated adaptive system with initial error e,(0) = 16,

and the PID control law as in (3.63):

(4.5)
=I\’pypyp + Kdypg]p + Kpucuc + Kpsat (¢,£0) + sat (Ie,c)
where the PID parameters are determined from (3.64):
prp =—18.4
K’iyp = —4
Kp, = 18 (4.6)
Kp, = 09
K, = 2
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and for & in (3.62) we chose: £, = 0.01. Figures (4.4) and (4.5) show the same

results for a longer simulation run time.

We note that f(-) in (4.1) is treated as an uncertain nonlinearity, and the
controller does not assume knowledge of this term. The bound in (4.2) is there-
fore, instead of f(-), employed to tune the controller using the tuning rules given
by (3.64). The command input signal u. and the control u for this simulation
are shown in Figure (4.6). In Figure (4.7), integral term I¢, proportional error

term K¢ and disturbances v are shown.

The design matrix ¢}, was chosen as (¢ = 0.011):

1 0
Qg = (4.7)
00.011
where ¢ was optimized through the procedure described in section 3.6. Figure (4.8)

shows the relationship between ¢ and A, (QP~!), which was obtained using

Mathematica:

Hence, P, was found by solving the Lyapunov equation (3.10):

0.1579 0.005556
P, = (4.8)
0.005556 0.0005819
Consequently, € given by (3.11) and (3.9), was obtained using P = 1000 P, with:

/\min(QP—l) = 5.56

Amaz(QP™1) = 32.44
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which determined the rate of convergence for the adaptive system as:

_ /\min(QP-I) _

which means the error decays at least as fast as e=278%,

Figure (4.9) shows the error trajectories in the adaptive loop, namely: ¢, e,

and e,, and as shown, they approach zero asymptotically.

4.2 Example 2:

Our second illustration was made using a nonlinear plant governed by the fol-

lowing differential equation:

)
Up — Up — 23/,2> + ;11-sin(ﬁ1t) + ag-cos(fay,) = Hu + v (4.9)

Choosing: a3 = 1,a; = 1.5, 8, = 3, and f#, = 6 gave:

|fyp)] < p = 25 (4.10)

Throughout this simulation we used: & = 0.01, Ve = 1, and e;(z = 0) = 8.
Figures {(4.10) through (4.29) show the results for four different cases. We used
the same desired model as before (equation (4.4)), and therefore the matrices P

and () are the same as the ones in the last example (4.7) and (4.8).
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Controller parameters were again computed from (3.64):

Kp, = —18—2,/5
Kdyp = —4
Kp, = 18 (4.11)
Kp, = p+t;max 35

| K = 2

In case 1, Figures (4.10) through (4.13), the command input signal:
u. = 10sin(2t) 4+ 5cos(3t) (4.12)

was applied. In case 2, Figures (4.17) through (4.14), the same input was ap-
plied, but a 5% measurement noise was added to the plant output y,, and its

derivative was estimated with a second order filter. The filter used the Tustin’s

approximation method given by equation (2.17) (see section 2.3.3 for details)

with 7 = 50.

In cases 3 and 4, Figures (4.18) through (4.23) and Figures (4.24) through
(4.29) respectively, we repeated the previous cases except for the input signal u,

which was replaced by a square wave signal.

Figures (4.14) and (4.24) show a slight degradation of the transient response
of the closed-loop system due to the output measurement noise in the adaptive
system. Figures (4.15) and (4.25) compare the desired model output derivative,
plant output derivative, and the approzimated derivative. These figures con-

firm our earlier statements concerning the effect of the derivative term (D) in
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improving the transient response and the importance of the output derivative

approximation employed in the PID controller.

4.3 Example 3:

In the third example, a saturation function, such as the one given by equation
(3.54), was added to the plant treated in the last example. The amplitude of

the saturation function used was ¢ = 5 which resulted in:

1fy)l < p=254+5 =175 (4.13)

Hence, the PID parameters were the same as in (4.11) except for the K¢ term

which needed to be changed to :

7.5

The results for two cases are plotted in Figures (4.30) through (4.37). In
the first case, Figures (4.30) through (4.33), the input was the same as the one
in (4.12), and no measurement noise was applied. In the second case, however,
a 5% measurement noise was added and the output derivative was estimated
as we did in case 2 and 4 in the previous example. Notice the deterioration
in the performance when the measurement noise was introduced in the system.
As in the earlier two examples, all the error trajectories in the adaptive system

approached zero.
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Adaptive PID of Nonlinear Systems with Sin & Cos Terms
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Figure 4.2: Desired Model and Plant Output Trajectories: y, and y, in
Example 1
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Figure 4.3: Desired Model and Plant Output Derivative Trajectories: ¥, and g,
in Example 1
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Adaptive PID Control of Nonlinear Systems with Sin & Cos Terms
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Figure 4.4: Desired Model and Plant Output Trajectories: y, and y, in
Example 1
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Adaptive PID Control of Nonlinear Systems with Sin & Cos Terms
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Figure 4.5: Desired Model and Plant Output Derivative Trajectories: y,, and y,
in Example 1
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Adaptive PID of Nonlinear Systems with Sin & Cos Terms
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Figure 4.6: Control u and Command Input Signal u. in Example 1
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Figure 4.7: Integral term I¢, K¢, and Disturbances v in Example 1
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Adaptive PID of Nonlinear Systems with Sin & Cos Terms
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Example 2, Case 1
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Figure 4.12: Error Trajectories in Example 2, Case 1
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Example 2, Case 3
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108



i
| |
Uc -4 “
-8 {
-12
0 2 4 6 8 10
TIME
1
A —\
Yp 4 \
\\
-4
-8 N\
-12
0 2 4 6 8 10
TIME

Figure 4.29: Command Input Signal u. and Plant Output with Noise §, in
Example 2, Case 4

109



o Ym

° YU \

\ \

-15

Figure 4.30: Desired Model and Plant Output Trajectories: y, and y, in
Example 3, Case 1

110



Ty \\ / Py, \\ |
T N

-40

Figure 4.31: Desired Model and Plant Output Derivative Trajectories: y,, and
Y, in Example 3, Case 1

111



€1 =Ym — Yp

62:ym_yp

6
TIME

12

TIME

12

TIME

Figure 4.32: Error Trajectories in Example 3, Case 1

12



AVA

VA

4
a 0 \/

RVA

i
-40 \/

\/\\

Figure 4.33: Control U in Example 3, Case 1

113



15

a Ym \ /
o yp \ [

-10

<\
il
&=

-15

TIME
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Chapter 5

Conclusions and Future

Research

5.1 Conclusions:

In this thesis we presented a systematic way to design an adaptive PID controller
for nonlinear systems where the dominant dynamics are of second order. The
structure and tuning of the proposed adaptive controller is very straight forward

and is given in terms of simple formulas.

While conventional PID controllers and classical adaptive PID controllers can
be used only if the controlled plant can be considered linear and time-invariant

over a certain operating range during the tuning and adaptation processes, the
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design scheme and tuning rules presented in this thesis are developed and justi-
fied for nonlinear time-varying and/or uncertain plants. The uncertain nonlin-
earities, however, are assumed to be bounded by a known constant or a function
of the plant output and its derivative. Accordingly, the resulting adaptive PID
controller can handle systems with completely or partially known nonlinearities
without losing the simple structure of a typical PID algorithm. The disturbances
in the system are dealt with in a systematic way within the design scheme and

they are assumed to be bounded by a known parameter.

In Chapter Two, we introduced the basics of the PID control and presented
several tuning techniques for PID controllers. The well-known open-loop and
closed-loop Ziegler-Nichols classical tuning methods were reviewed. The relay
feedback experiment of Astrom and Hagglund that gives the essential infor-
mation about the process dynamics necessary for the tuning of a PID con-
troller was described. We showed how simple conventional process identifica-
tion techniques can be combined with PID tuning rules to give autotuning.
With the help of microprocessor technology, tuning procedure is therefore per-
formed automatically on demand from an operator. We also reviewed the
self-tuning regulator (STR) problem and described how STR can be employed in
the design of PID controllers. We also showed that STR is obtained by combin-
ing an on-line estimation routine with the controller underlying design problem.

A pole-placement approach was used in order to illustrate the STR technique.
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In Chapter Three, we turned our attention to nonlinear time-varying and
uncertain plants. We described the model reference adaptive control (MRAC)
problem and obtained an error model for the adaptive system that describes the
evolution of the process errors relative to some desired trajectories. We showed
how the design objectives and performance criteria can be stated within a de-
sired reference model that describes the behavior expected from the controlled
process. We noted that the purpose of the adaptive PID controller is to as-
sure that the plant output follows that of the reference model; and for this we
employed the Lyapunov stability theory to seek the conditions upon which the

asymptotic stability of the error system is guaranteed.

For the SISO case we used the asymptotic stability conditions of the error
system to construct a PID-type controller scheme and derived its corresponding
tuning rules. We then proceeded to obtain an estimate of the decay rate for
the error in the adaptive loop and found that this rate is constrained to the
reference model characteristics. We showed how the designer can increase this
rate and find a highest possible rate once the reference model is chosen. We
slightly modified the algorithm in order to get a smooth continuous PID control

law and summarized the results in equations (3.63) and (3.64).

The MIMO case was simply a generalization of our investigation in the SISO
case. We developed a design scheme for a system composed of n interacting

subprocesses, each of which was controlled by a simple PID controller. We
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showed the closed-loop stability of the adaptive system subject to these controls.

In Chapter Four, we illustrated the performance of the proposed adaptive
PID controller. We looked at the behavior of several nonlinear systems subject to
uncertainty and random disturbances. Although these systems were open-loop
unstable, we saw that the desired trajectories were followed as it was expected
through our stability analysis for the closed-loop behavior of the overall adaptive
system. The simulations showed that the approximations we made in Chapter 3
in order to get a smooth and continuous control worked very well. Moreover,
we saw the effect of the output measurement noise on the derivative estimation

which led to slight degradation of the performance of the adaptive system.

5.2 Future Research:

There are several areas of investigation which need to be explored. Although
extensive simulations have confirmed the usefulness of the suggested algorithm
in this thesis, laboratory tests and implementation of the design scheme must be
carried out in order to see the usefulness of the proposed algorithm in industrial

control practice.

For systems with high order dominant dynamics, PID control is generally
not adequate; and accordingly, upgrading the existing PID design schemes that

handle dominant high frequencies needs to be further explored. This will lead
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undoubtedly to higher order and more complex controllers. As mentioned in
Chapter Two, the simple structure of PID controllers limit their performance,
and systems with large delays or with complex dynamics are hard to control
with these controllers. For these systems, incorporating deadtime compensators

or adaptive predictive algorithms in a nonlinear setting is therefore needed.

One can further automate the control process by introducing an identification
scheme in the adaptive loop to estimate a range for some of the plant parameters.

This could effectively help designers to employ tighter bounds in the design

scheme and result in a less costly and smoother control.
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