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Surveillance of the existence of avian influenza virus in birds is essential in 

understanding its epidemiology and potential zoonosis. Point surveillance was made 

on December 2004 and May to August 2005 in wild birds, domestic poultry and 

environment. Seven out of 67 samples were positive for avian influenza infection 

resulting to a 10.4 % isolation rate during the winter. Partial sequencing revealed that 

all isolates were of H11N3 subtype. In the summer, a total of 584 tracheal, cloacal 

and environmental swabs were tested in the laboratory through virus isolation, real- 

time PCR and RT-PCR. All samples were negative.  To understand the evolution and 

ecology of the isolated virus, further sequencing was done for all eight genes of 

H11N3 and each gene sequence was phylogenetically analyzed with available 

sequences in the Influenza Sequence Database. Replication and transmission of 

H11N3 were also investigated through experimental infection of chicken and quail. 
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Chapter I: Introduction 

1.1 Overview 

 

Continuous surveillance of the presence of subtypes of avian influenza virus 

(AIV) in a wide range of birds is critical in its epidemiology and potential zoonosis. It 

may be called avian influenza virus in general, yet, it appears to cause asymptomatic 

infections and recurrent epidemics of mild-to-severe disease not only in wild and 

domestic birds but also in pigs, horses, ferrets, cats, dogs, seals, whales and humans.  

Online influenza database (www.flu.lanl.gov) displayed that most of the surveillance 

are done in birds. Detection of AIV in wild birds, particularly in birds from the orders 

Anseriformes (ducks, geese, swans) and Charadriiformes (terns, sandpipers, gulls), is 

essential to trace the movement of the virus between these bird populations (Lamb 

and Choppin 1983; Stallknecht and Shane 1988) and other avian and mammalian 

species. Wild aquatic birds are considered the natural reservoir of the virus and many 

of their species migrate in great distances.  Therefore, the dissemination and 

transmission of the virus become efficient because of their migration. During their 

movement, they commingle with other migrating and resident birds while their 

droppings can contaminate areas of heightened human and animal traffic. 

 

 Avian influenza is widely monitored in domestic poultry including chickens, 

turkeys, quails, game birds, domestic ducks, ratites and commercially-raised birds. 

The disease can result to severe economic loss if not detected immediately. If 
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detected, depopulation of the affected and exposed flock and neighboring farms is 

carried out to contain the virus and prevent the spread of disease. Depopulating or 

culling is the most economical and straightforward method of controlling the virus 

but this kind of measure is not possible in a wildlife setting. For this reason, 

surveillance of avian influenza in wild birds is increasingly becoming intricate, 

applying molecular techniques for quicker diagnosis and enhanced understanding of 

the ecology of the disease. The knowledge that will be gained from surveillance can 

succor in protecting veterinary industry and public health. The potential of a low 

pathogenic avian influenza (LPAI) virus from a wild bird of becoming highly 

pathogenic when transmitted to susceptible poultry population is beyond human 

control but surveillance can render authorities prepared for potential disease 

outbreaks. It is also requisite in epidemiological investigations involving the 

determination of the cause of such an outbreak: (a) whether it is a result of direct 

transmission of the virus from wild birds to poultry; (b) how long and what subtypes 

of AIV has been circulating in these birds and; (c) whether there is virulence shift 

occurring in AIV co-infections. 

 

Eradication of AIV is implausible at present because of the convergence of 

factors that come into play. These are bird migration and species interactions, highly 

concentrated poultry and swine farming, dense human and animal populations in 

cities and presence of traditional live animal markets. There is a relentless concern on 

AIV circulating in the live-bird markets (LBMs) because the subtypes that have been 

isolated in some of these markets are associated with the highly pathogenic 
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phenotypes, the H5 and H7 subtypes (Senne et al. 2003).  This is because LBMs, 

where strict biosecurity measures are hardly implemented, are common places where 

different species of live birds including wild waterfowl are sold for public 

consumption. Birds from a myriad of sources are transported in a common vehicle of 

middle persons and delivered to markets that may or may not have other birds from 

other suppliers. These circumstances promote circulation of AIV within the LBM. 

For more than ten years, the number of LPAI-positive markets persisted and 

increased until three years ago in the Northeast (Mullaney 2003; Trock et al. 2003). 

These markets are now closely monitored by regular inspection and surveillance by 

the US Department of Agriculture. 

 

Avian Influenza Type A virus can cause both Highly Pathogenic Avian 

Influenza (HPAI) and Low Pathogenic Avian Influenza (LPAI). The disease can be 

highly pathogenic to one species but can cause low pathogenicity to another. HPAI 

can cause severe, systemic disease with high mortality in chickens, turkeys, and other 

gallinaceous birds. It is not normally pathogenic to wild birds until recently when a 

HPAI cause mortalities in wild birds in Asia and Europe.  Clinical signs or gross 

lesions may be absent in peracute cases. However, in acute cases, observable lesions 

are cyanosis and edema of the head, comb, and wattle; edema and discoloration of the 

shanks and feet due to subcutaneous ecchymotic hemorrhages; petecchial 

hemorrhages on visceral organs and in muscles; and blood-tinged oral and nasal 

discharges. Neurological signs can include torticollis, opisthotonos, or incoordination  

(Kahn 2005).  
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The Office International des Epizooties (OIE), otherwise known as the World 

Organization for Animal Health listed HPAI in the List A disease. They classified 

AIV as HPAI if it conforms to the following criteria: (a) any influenza virus that is 

lethal for six, seven or eight of eight 4 to 8-week-old susceptible chickens within 10 

days following intravenous inoculation with 0.2 ml of a 1/10 dilution of a bacteria-

free, infective allantoic fluid; (b) for subtypes other than H5 and H7, there should be 

growth of the virus in cell culture with cytopathic effect or plaque formation in the 

absence of trypsin. If no growth is observed, the isolate is not considered to be a 

HPAI isolate; (c) for all H5 and H7 viruses of low pathogenicity and for other 

influenza viruses, if growth is observed in cell culture without trypsin, the amino acid 

sequence of the cleavage site of  the hemagglutinin gene must be determined. If the 

sequence is similar to that observed for other HPAI isolates, the isolate being tested 

will be considered to be HPAI (Pearson 2003). 

 

LPAI, on the other hand, causes mild disease in poultry and occasionally 

causes subclinical infections. AIV from wild birds, once introduced into a poultry 

population, can become endemic among the flock, manifesting itself as an inapparent 

infection to a mucosal respiratory infection. Symptoms include reduced egg 

production, reduced activity and reduced feed consumption. Other signs may include 

increased oculonasal discharge, skin lesions, nervous disorders, and diarrhea (Swayne 

and Suarez 2000). The ultimate impact on the poultry industry and farmers is 

enormous because affected farms have to be depopulated, disinfected and left without 

birds for an indefinite period of time. On a global perspective, a ban on poultry 
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products from an AI-infected country may be imposed by an importing country, 

resulting in significant economic losses to the poultry industry of the exporting 

country. When avian influenza, also known as bird flu, has cropped up in birds in 

Delaware in early 2004, Japan , South Korea and Russia imposed a ban against US 

poultry products.  

 

The need for a large-scale surveillance of AIV is also based on the etiologic 

agent’s characteristics. For an RNA virus like AIV, mutation, selection and 

reassortment occur making the mechanisms of their evolution and epidemiologic 

history complex and should be incessantly analyzed (Moya et al. 2004).  The RNA-

dependent RNA polymerase does not have an associated exonuclease proofreading 

activity, thus, increasing the chance of errors during replication (Steinhauer et al. 

1992). This infidelity of the polymerase makes the RNA virus prone to mutations. 

Combined with the predisposing factors in the environment and the state of the host, 

the characteristics of the virus are generally the basis for the viral antigenic drift and 

shift. The mutations are accidental in nature but could have an adverse effect on the 

ability of the virus to cause disease and widen its host range. This is the reason why 

an outbreak occurs every now and then. 

 

To keep pace with the evolving virus, investigators involved in disease 

surveillance around the globe have inferred to phylogenetic relationships of the genes 

of emerging and re-emerging subtypes of AIV by analyzing large amount of data with 

the use of bioinformatics and statistical algorithms. Results can be correlated to 
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describe the origin, occurrence and biological relationships of AIVs, to determine 

genes responsible for virulence and to assess what kind of gene reassortments have 

been taking place aside from recombinations of the 16 hemagglutinin and nine 

neuraminidase subtypes.  

 

1.2 Research Objectives 

 

The main goal of this research is to contribute to the existing knowledge on 

the nucleotide changes and reassortment taking place in AIV genome in wild birds 

necessary to become adapted to terrestrial birds and mammals thereby causing 

disease. This study is designed to fulfill two objectives at hand. First is to carry out 

point surveillance of AIV in wild and domestic birds. This activity will bring about 

data on the prevalence of avian influenza in an area and will entail active 

collaborations to aid in the procurement of samples. Collaborating to different 

agencies is an integral part of the surveillance as expertise on different aspects is put 

into one goal. The second objective is to perform genetic and biological 

characterization of AIV in order to aid in understanding phylogenetic relationships 

among isolates and representative subtypes. The gene sequence will be determined, 

aligned with other sequences and subjected to statistical algorithms for the generation 

of phylogenetic trees. A tree will be built for every gene segment.  

 

In a larger perspective, surveillance of AIV will lead to understanding of its 

ecology, socioeconomic impact and temporal and spatial patterns, thereby, effectively 
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aiding in the design of control programs for poultry production, defining risks to 

public health and monitoring of circulating viruses that can help in development of 

vaccines. 
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Chapter II: Review of Literature 

 

2.1 Genus Influenzavirus A  

 

Avian influenza viruses refer to the avian strains of influenza A virus that 

comprise the Genus Influenzavirus A of the family Orthomyxoviridae. Although it has 

an avian description, the virus can infect a wide variety of vertebrate hosts during its 

entire life cycle (Buechen-Osmond and Dallwitz 1996). It is an enveloped, spherical 

or pleiomorphic to filamentous structure of 80 to 120 nm in diameter (Figure 1). The 

envelope is a lipid bilayer derived from the plasma membrane of the infected host 

cell. It contains two types of surface glycoproteins called the hemagglutinin (HA) 

protein and, in lesser abundance, the neuraminidase (NA). Another integral protein 

contained in the envelope is the matrix 2 (M2) protein.  Underlying the lipid bilayer is 

the viral matrix (M1) protein that brings togetherwith the ribonucleoprotein core 

(RNP) and the envelope. The coiled RNPs (Heggeness et al. 1982) consist of the 

nucleocapsid (NP) encapsidating the RNA segments of the viral genome and the 

heterotrimeric RNA-dependent RNA polymerase complex (Polymerase basic protein 

1, PB1; Polymerase basic 2, PB2; Polymerase acid protein, PA). The viral genome is 

segmented into eight single-stranded negative sense RNA of 890 to 2,341 nucleotides 

(Table 1) (Fields et al. 2001) (Lamb and Choppin 1983).  

 

The shortest RNA segment of 890 nucleotides encodes for the nonstructural 

protein, NS1 and NS2.  NS1 has antagonistic effects on interferon (IFN) /   (Weber 



 

 9 

 

et al. 2004), cytokines that have antiviral activity and immunoregulatory function 

(Johnson and Baron 1976). Late in the viral infection, RNPs are transported out of 

the nucleus to the plasma membrane mediated by a protein adaptor molecule NS2, 

otherwise known as the nuclear export protein (NEP) (O'Neill et al. 1998). 

 

 

 

 

 

 

 

 

 

 

Figure 1. A schematic diagram of the structure of influenza A virus. This diagram is 

taken from www.agnr.umd.edu/avianflu.  Integral proteins HA, NA and M2 are found 

in the envelope. Underneath the envelope is the viral genome consisting of eight 

segmented, minus-sense RNA. Each RNA is associated with NP and RNA-dependent 

RNA polymerase complex (PB2, PB1 and PA) forming the ribonucleoprotein (RNP). 

RNPs are closely associated with the M1 which underlies the envelope. NS1 proteins 

are produced in AIV-infected cells.  NEP has a role in exporting of RNPs out of the 

nucleus during the late stage of viral infection. 
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Table 1. Influenza A virus* genome RNA segments  

Segment 
Nucleotide 

Length 
Encoded polypeptide 

1 2,341 Polymerase Basic 2 PB2 

2 2,341 Polymerase Basic 1 PB1 

3 2,233 Polymerase Acid PA 

4 1,778 Hemagglutinin HA 

5 1,565 Nucleoprotein NP 

6 1,413 Neuraminidase NA 

7 1,027 Matrix M1, M2 

8 890 Nonstructural Protein NS1, NS2 

* based on A/PR/8/34 strain (In: Fields Virology) 

 

 

Efficient virion formation is preceded by the presence of all eight segments of 

the viral RNA (vRNA) and selective incorporation of these segments is aided by the 

signal from the coding region of the NA viral RNA (Fujii et al. 2003).  The 

incorporated segments are arranged in a distinct pattern wherein seven segments of 

varying length surround a central segment (Noda et al. 2006).  M1 and all eight RNPs 

are brought to the apical plasma membrane containing lipids and transmembrane 

proteins in polarized epithelial cells. The RNPs are situated perpendicular to the 

plasma membrane prior to budding. Viral and host factors pushes the membrane 

outward until buds are formed at the assembly site and virus particles are released in 

the extracellular environment following closure of buds (Nayak et al. 2004). While 
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RNP’s are made in the host nucleus and transported with the help of NEP, M1 is 

synthesized by the cytosolic ribosomes. M1 has an L motif (Nayak et al. 2004) which 

is central to budding mechanism. M1 molecules bind vRNP’s as well as plasma 

membrane, possibly via the cytoplasmic tails of the two surface glycoproteins 

(Ruigrok et al. 2000). 

 

The entry of enveloped viruses like the influenza virus into cells is carried out 

through fusion of the viral membrane with the cell membrane. HA protrudes on the 

viral surface and binds to a sialic acid-containing receptor on the cell surface for 

attachment. Epizootics are associated with changes in antigenic structure of HA 

because it is the major antigen against which the neutralizing antibodies of the host 

are made (Cross et al. 2001). This pressure exerted by the immune system is believed 

to be a reason for the genetic mutations. HA is also responsible for viral entry into the 

cytoplasm through facilitated fusion of the membrane of the endocytosed virus 

particle with the endosomal membrane. The other surface glycoprotein, NA, is 

important in the removal of sialic acid residues from virion components in order to 

prevent the aggregation of virus particles (Kaverin et al. 1998) as well as sialic acid 

cleavage from the host cell to promote virus release and spread (Stray et al. 2000). 

 

In other words, influenza virus particles carry both a sialic acid–specific lectin 

(HA) for entry into cell and a sialidase (NA) for release of virions (Stray et al. 2000). 

Efficient infection requires fusion of HA to the respective cell receptors containing 

either a sialic acid linked to galactose by an alpha-2,3 linkage (SAalpha2,3Gal) or by 
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an alpha-2,6 linkage (SAalpha2,6Gal). All subtypes of HA found in avian species 

prefer binding to sialic acid in an 2,3-linkage to galactose. Important to note is that 

the HAs of human viruses recognize sialic acid in 2,6-linkage. Some species of birds 

like quail has both receptors in the respiratory and intestinal tract, therefore, can act as 

an intermediate host between the avian-like viruses and human-like viruses (Wan and 

Perez 2006). Aside from the receptor-specificity, the cross-species transfer of avian 

viruses into humans requires a change in binding specificity (Gamblin et al. 2004). 

 

 

2.2 History of Avian Influenza 

 

The virus was not classified as influenza virus until 1955, yet, outbreaks 

before the classification of the virus were already described. In 1878, fowl plague or a 

highly pathogenic form of avian influenza was reported by Perroncito in Italy. It was 

confused with an acute septicemic form of fowl cholera until 1880 when Rivolto and 

Delprato classified the two diseases based on clinical and pathological signs.  After 

12 years, another outbreak in chickens occurred in Northern Italy and spread to 

Austria, Germany, Belgium and France.  It became endemic in many parts of Europe 

since then. In the US, however, an outbreak of highly pathogenic avian influenza 

began in 1924 in the live poultry markets of New York, followed by New Jersey and  

Pennsylvania.  By middle of the twentieth century, highly pathogenic avian influenza 

was diagnosed in Europe, Middle East, Russia, Asia, North Africa, North and South 

America. During this time also, a milder form of the disease was recognized in 

chickens, domestic ducks and turkeys causing respiratory distress and drops in egg 
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production (Saif 2003).  There were no reports of AIV outbreaks in wild aquatic birds 

until 1961 when common terns (Sterna hirundo) died in South Africa. This was 

caused by a HP form of avian influenza (Swayne and Suarez 2000). In 1972, 

surveillance of Newcastle disease in migratory birds led to coincidental isolation of 

AIV (Slemons et al. 1974). Surveys revealed that many wild birds were positive for 

AIV infection based on isolation and serology but did not show any clinical sings of 

the disease. It was established, since then, that healthy wild birds are primordial 

reservoirs of AIV. They harbor the virus without causing disease to them. These birds 

act as silent reservoirs that can shed viruses in huge amounts which can further infect 

other poultry and mammals as well (Figure 2). This was a very important finding 

because it led to an active surveillance of AIV in wild birds.  

 

2.3 Role of Migratory Birds 

 

Avian influenza virus have been found in many wild bird species, most 

commonly in wild waterfowls with the highest frequency of isolation from mallard 

ducks, Anas platyrhynchos (Friend et al. 1999). Other families of wild birds that shed 

avian influenza virus are geese (e.g. Branta canadensis), swans (Cygnus olor), gulls 

(e.g. Larus argentatus), terns, waders (e.g. Calidris canutus), rails (e.g. Fulica 

americana), petrels (e.g Pterodroma lessonii), cormorants (e.g Phalacrocorax 

auritus), quail (Coturnix cotunix), pheasants (Phasianus colchicus) and ratites (e.g. 

Dromaius novaehollandiae) (Friend et al. 1999) (Olsen et al. 2006). All 16 HA and 



 

 14 

 

nine NA subtypes are found in these birds (Fouchier et al. 2005) (Hinshaw et al. 

1982) (Kawaoka et al. 1990) (Krauss et al. 2004) (Rohm et al. 1996). AIVs infect 

cells lining the intestinal tract of birds and are excreted in high concentrations in their 

feces. The mode of transmission is through feco-oral route (Fouchier et al. 2005).  

 

 

 

 

Figure 2. Wild waterfowls and shorebirds are natural reservoirs of avian influenza 

virus.  These birds can shed AIV subtypes that can infect a variety of species of 

animals including human. While AIVs are generally nonpathogenic in wild birds, 

they sometimes cause morbidity and mortality upon transmission to domestic birds 

and mammals. 
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 During migration of these birds, they can infect other waterfowls. For 

instance, in 1998, five hemagglutinin subtypes (H2, H3, H6, H9, and H12), six 

neuraminidase subtypes (N1, N2, N4, N5, N6, and N8), resulting to nine HA-NA 

combinations were isolated from the resident ducks in the eastern shore of Maryland. 

These viruses were introduced by migrating birds during the late summer as 

surveillance in these birds in the start of summer did not result in any positive 

isolations  (Slemons et al. 2003). This finding makes resident ducks serve as sentinels 

for AIV brought about by migratory fowls and at the same time, they can be 

amplifiers of infection to other birds in the area. 

 

  The intermixing of bird population is previously described. Matrix genes of 

viruses isolated from Canadian ducks and those of shorebird and gull viruses in the 

Delaware Bay have common ancestors as that of the M genes of most North 

American poultry viruses. Some North American AIVs contained M genes closely 

related to those of Eurasian lineage suggesting an interregional mixing of the two 

clades (Widjaja et al. 2004). Intermixing of bird species as well as interregional 

mixing greatly contribute to the reassortment of the virus which can result to a strain 

that can adapt to domestic birds and other mammals. 

 

 The role of migratory birds in the biological evolution of a low pathogenic to 

a high pathogenic form of the virus is evident in the current situation of the 

circulation of the subtype H5N1 in Asia, Europe, Middle East and some parts of 
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Africa.  In a timeline published by the World Health organization on 8
th

 May 2006, 

the H5N1 can be traced from 1996 when a high pathogenic (HP) form of this subtype 

was isolated from a farmed goose in Guangdong Province, China. In 1997, outbreaks 

of the HP H5N1 occurred in farms and wet markets in Hong Kong. Most of the birds 

in the wet markets of Hong Kong come from the Guangdong Province. The transport 

of the birds itself is a method of spreading the infecton. Eighteen cases of human 

infections were also documented in Hong Kong. This was the first evidence of H5N1 

causing fatal disease in man. Interestingly, outbreaks of H5N1 in waterfowls in 

recreational parks as well as in migratory birds in Hong Kong in late 2002 displayed 

disruption of the stable agent-host relationship between AIV and its natural reservoirs 

(Sturm-Ramirez et al. 2005).  Inoculation of this 2002 isolate to experimental mallard 

ducks gave surprising results.  The virus replicated in multiple organs and ducks 

develop acute disease including neurologic dysfunction followed by death (Sturm-

Ramirez et al. 2004). There were only two influenza viruses that caused deaths in 

aquatic birds: A/tern/South Africa/61 (H5N3), mentioned previously, and the HP 

H7N1 that caused outbreaks in Muscovy ducks (Cairina moschata) in Italy during 

1999-2000 (Capua et al. 2002). Late 2003, there was a postmortem isolation of H5N1 

from tissue samples of two tigers and two leopards fed with chicken carcasses in a 

Thailand zoo. This was the first time an H5N1 was isolated from these animals. This 

was followed by a report of H5N1 infection in poultry by the Republic of Korea, 

Vietnam, Japan, Thailand, Cambodia, Laos, Indonesia and China.  Another group of 

H5N1 fatalities occurred in a Thailand zoo in 2004 wherein one-third of the tiger 

population in the zoo either died or were euthanized.  
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Three years after the reported isolation of AIV from waterfowls in Hong 

Kong, thousands of migratory birds in Qinghai Lake died of the virus. Many people 

frequently visit the lake. In the same year, 2005, Russia and Kazakhstan reported 

H5N1 in poultry and dead migratory birds were seen in the area of outbreaks. This 

year, Azerbaijan confirmed H5N1 in migratory birds. Bulgaria, Greece, Slovenia and 

Italy had isolates from swans. Iran, Austria, UK and Germany also reported isolations 

from swans. The current situation bothered the public and the authorities alike 

because of the deaths of wild birds from AIV. And it seemed that the virus was 

spreading westward across the globe. Although a HP H5N1 had been killing its 

natural hosts, experimental infection of a 2004 isolate to ducks showed low 

pathogenicity in the experimental animals. This result showed that H5N1 can revert 

to a nonpathogenic form in order to maintain itself in its natural host. The 

experimental animals shed viruses in large amounts which suggest that the virus can 

possibly be maintained within the wild bird population and continue to circulate 

(Hulse-Post et al. 2005). 
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Chapter III: Materials and Methods 

 

3.1 Sampling sites 

 

Sample collections were done in the winter of 2004 and summer of 2005. 

There were 67 samples processed in the laboratory during the winter and 584 samples 

processed in summer. The 67 samples were a mixture of cloacal and tracheal swabs 

as well as fecal samples. The Maryland Department of Agriculture (MDA) in 

Salisbury submitted these samples. It was December of 2004 when duck die-offs in 

Chesapeake Bay were reported to MDA. The birds were brought to MDA for 

necropsy and further investigation.  

 

During the summer, a total of 584 samples including tracheal and cloacal 

swabs, fecal and environmental samples were tested in the laboratory. Most of the   

samples were pooled into five. A pool of samples consists of either five tracheal 

swabs or five cloacal swabs from different birds of the same species during the same 

day of collection.  These samples were collected in the months May to August 2005 

from migratory and non-migratory waterfowls, other wild birds, domestic poultry and 

environment. Birds included Canada geese, snow geese (Chen caerulescens), mallard 

ducks, muscovy ducks, wood ducks (Aix sponsa), mute swans, herring gulls, glaucous 

gulls (Larus hyperboreus), sandpipers (Actitis macularia), pheasants, and various 

strains of chickens (Gallus domesticus). There was a mixture of adult and juvenile 
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birds. Places of collections were Chesapeake Bay particularly on Poplar and Kent 

Islands, along the Wicomico River in Salisbury, Maryland, Salisbury Zoo and two 

live bird markets in Queens, New York.  All samples collected were inoculated in 

embryonated chicken eggs (B and E eggs, PA) and passaged two more times 

performing hemagglutination assay after each passage. To verify some results, 105 

cloacal swabs were subjected to real-time Polymerase Chain Reaction and 37 samples 

in Reverse Transcriptase-PCR (RT-PCR).  

 

3.2 Sample collection in wild birds  

 

 The December 2004 isolates were from dead ducks submitted to the Maryland 

Department of Agriculture Laboratory in Salisbury, MD. The species of the ducks 

were not specified, but the ducks were residents of the area. Cloacal and tracheal 

swabs were obtained from dead ducks by Dr. Daniel Bautista.  The swabs were 

placed in 3.7% Brain Heart Infusion (BD, Franklin Lakes, NJ) medium with 

Penicillin-Strpetomycin, Gentamicin and Amphotercin B and transported on ice to 

Avrum Gudelsky Veterinary Center, University of Maryland College Park,  for AI 

testing. 

  

 There were four field collections from wild birds made from May to August 

of 2005. One of the sites was Poplar Island, a five-acre island located in the upper 

middle Chesapeake Bay, southeast of Annapolis and northwest of Tilghman Island in 

Talbot County, Maryland. It was once a large island covering around 1,100 acres but 
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through the years, the land slowly eroded. The US Army Corps of Engineers and 

other local government entities started rebuilding it in 1998 to save it from further 

erosion. They are working to improve it as a nesting area for migrating birds. 

  

 According to the 2002-2003 Bird Surveys on Poplar Island and Vicinity 

(www.nab.usace.army.mil/projects/Maryland/PoplarIsland/birds.html), many birds 

from the orders Anseriformes, Charadriiformes, Ciconiiformes, Columbiformes, 

Coraciiformes, Falconiformes, Gaviiformes, Gruiformes, Passeriformes, 

Podicipediformes, Pelicaniformes,  and Strigiformes were sighted on the island. 

Overpopulation of some species of birds is inevitable and control measures are more 

often implemented. On June 2005, the Animal and Plant Health Inspection Service 

(APHIS) began Canada goose and gull control on the island. Two visits to the island 

were made with Jason Miller of the US Fish and Wildlife Service.  Cloacal swabs 

were taken from dead birds that were rounded up. The swabs were placed in  3.7% 

BHI broth with antibiotics (Penicillin-Streptomycin-Gentamycin; Amphotercin B) 

and immediately brought to the laboratory. 

 

 Similarly, mute swan control was also implemented in other sites of the 

Chesapeake Bay and the birds were submitted to MDA-Salisbury for necropsy. The 

cloacal swabs taken were sent to Avrum Gudelsky Veterinary Center, UMCP, as 

previously described.  
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 Water and fresh fecal samples were collected from the Wicomico River in 

Salisbury, MD. Different species of birds were sighted in this area which were 

previously mentioned. Cotton swabs were dipped into the water and feces separately 

and placed separately in 3.7% BHI broth containing antibiotics and transported on ice 

to Avrum Gudelsky Veterinary Center, UMCP. 

 

 Water and fresh fecal samples were also obtained as previously described 

from different parts of the Salisbury Zoo including cages housing North and South 

American ducks, an open pen with llamas in which mallard ducks and swan were 

found, parking lots, and picnic area which attracted brant geese. Swabs were 

immersed in 3.7% BHI broth with antibiotics and immediately placed in ice. 

 

 

3.3 Sample collection in live bird markets 

 

Two live bird markets were visited in Queens, New York together with Lisa 

Weiss, a trained technician of the New York Department of Agriculture. Apart from 

the tracheal and cloacal swab samples, floors, cages, walls and drains were also 

swabbed.  The NYDA regularly monitors most of the live bird markets in the area. 

The samples taken were placed in BHI transport medium prepared by National 

Veterinary Services Laboratories (NVSL), placed in ice and immediately hand carried 

to Avrum Gudelsky Veterinary Center, UMCP. 
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3.4 Collection procedures used in sites 

 

The transport medium, brain-heart infusion broth, were kept in ice at all times 

during the collection.  Gloves were used when taking swabs. Most of the swabs from 

the live bird markets were pooled by type of swab ,whether it was tracheal, cloacal or 

environmental, and by species of bird. Cloacal swabs were visibly coated with fecal 

material. If the bird was too small and could be harmed by swabbing, the collection of 

fresh feces served as an adequate alternative. The glass vials containing the transport 

medium were labeled and placed on ice.  As soon as the vials with samples reached 

the laboratory, they were either inoculated immediately to embryonated chicken eggs 

or stored in an ultra-low freezer (-70ºC). Samples were thawed once and immediately 

processed after thawing. 

 

New disposable boots and coveralls, caps and gloves were used for every 

market visited. Used swabs and protective clothing were left at the visited market for 

disposal. Live bird markets naturally sell a variety of species of birds. For land-based 

birds such as chicken and pheasants, both tracheal and cloacal swabs were collected. 

On the other hand, only cloacal swabs were collected from waterfowls such as ducks 

and geese. Freshly voided fecal samples were collected from the environment. 

 

There was no handling or trapping of live wild birds involved as far as sample 

collection is concerned. Samples taken in the field were either from dead birds or  

from fecal samples voided by wild birds. Cloacal swabs were immediately done upon 
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rounding up of dead birds as a result of the geese and swan control program. 

Swabbing of the cloaca involved stroking the cotton tip against the wall of lower 

intestinal tract and engorging it with feces. 

 

3.5 Processing of samples 

The easiest way of propagating avian influenza virus is by inoculating it into 

the allantoic cavity filled with allantoic fluid of  an embryonated chicken egg. The 

virus replicates in the cells lining the cavity and progeny viruses are released into the 

allantoic fluid as the cells are disrupted.  Before the actual inoculation, the eggs were 

incubated for 9-10 days at 37ºC with 55-60% humidity.  At  10
th

 day, the viability of 

the embryo was checked by candling the eggs. The blood vessels should be well-

defined and the embryo should show movement. A line was drawn on the shell 

marking the edge of the air sac.  

 

The samples in glass vials were vortexed for 3 seconds, transferred into 15 ml 

polypropylene tubes (Fisherbrand, Hampton, NH) and spun down at 1500 rpm (252 

g) for 15 minutes in a refrigerated centrifuge (4°C).  Meanwhile, 10-day old 

embryonated eggs were prepared by spraying the surfaces with 70% ethyl alcohol. A 

hole was gently drilled in the inoculation site (2-5 mm above the air cell line). Then, 

using a 1 ml syringe with gauge 23 needle, 0.6 ml of the supernatant fluid was drawn 

out from each tube. Exactly 0.2 ml was introduced into each of the three eggs. The 

holes were covered with melted paraffin. Eggs were then incubated at 37ºC on a still 

platform in a humidified incubator with 5% CO2 for 48 hours. 
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3.6 Hemagglutination Assay 

 

After 48-hour incubation, the allantoic fluid was harvested from the eggs. As 

soon as the eggs were taken out of the incubator, they were placed in a refrigerator 

(4ºC) overnight or in a freezer (-20ºC) for not more than 45 minutes. During this 

span, a 96-well round bottom plate was labeled. There were eight rows and 12 

columns in a plate and a line was drawn at the middle of the eight rows. Lines were 

drawn every other three columns resulting to eight groups of wells consisting of four 

rows and three columns for each group. Each well group was allocated for each 

sample given that each sample was inoculated into three eggs. Included in the 

allocation of well groups were positive and negative controls. Several metal scoopula, 

a metal round-bottom scapula and a pair of forceps were boiled in distilled water. The 

eggs were then taken out of the refrigerator or freezer, placed under the hood and 

sprayed with ethyl alcohol. The blunt end was slowly tapped using a spatula. When 

the shell cracked, the broken pieces were slowly taken out with the use of forceps 

exposing the air cell cavity. The air cell membrane was punctured using a sterilized 

scoopula placing it deep down into the allantoic cavity until allantoic fluid flowed 

out. One hundred l of the fluid was pipetted out of each infected egg and placed into 

a first-row well of the plate.  

 

Fifty l of 1X Phosphate Buffered Saline was added into the second, third and 

fourth rows of wells using a multichannel pipettor. Then, 50 l of allantoic fluid from 

the first well was removed, placed into the second well, and gently mixed by 

pipetting. Fifty l of the mixture was then discarded. This was repeated, taking 50 ul 
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from the second row of wells and placing it in the third row, thus producing two-fold 

serial dilutions. Fifty l of 0.5% chicken red blood cells was added to all the wells. 

One edge of the plate was tapped against to distribute the red blood cells in the wells. 

The plate was incubated at room temperature for 45 minutes to 1 hour. The presence 

of virus in an uncontaminated sample produced agglutination of the red blood cells 

i.e., the mixture in the well appeared diffusely pink in color. Negative results were 

indicated by the presence of red “button” on the bottom of the well due to settling of 

the red blood cells. 

 

3.7 RNA Extraction and RT-PCR 

 

For each sample, Beta-mercaptoethanol and RLT buffer (guanidine 

isothiocyanate-containing buffer) solution was prepared at a ratio of 10:1000. In 

1.5ml tube, 350 µl of the solution was added to 200 µl of allantoic fluid or BHI to 

lyse and homogenize the sample inactivating the RNases. Five hundred fifty ul of 

70% ethanol was then added to adjust binding conditions. The mix was transferred to 

an RNeasy (Qiagen, Valencia, CA) spin column for adsorption of RNA to membrane. 

The column was spun at 15,000 rpm in a microfuge. The contaminants were washed 

off three times using wash buffers RW1 and RPE. The RNA was eluted using 40 ul 

millipore water.  

 

 Complementary DNA (cDNA) was prepared by incubating 4.0 ul RNA, 0.5 ul 

Uni12 primer AGCAAAAGCAGG (1.0 ug/ul) (Widjaja et al. 2004) and 5.5 ul 
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millipore water in a tube in 70°C bath for five minutes, then, immediately placed in 

ice. Into the mixture, 4.0 ul of 2.5 mM dNTP’s, 4.0 ul of 5x Reverse Transcriptase 

buffer (Promega, Madison, WI), 1.0 ul RNaseout (Invitrogen, Carlsbad, CA) and 1.0 

ul Reverse Transcriptase AMV (Promega, Madison, WI) were added and immediately 

incubated in a 42°C water bath for 1 hour. The sample was heat inactivated at 70°C 

for 10 minutes. 

 

 To amplify a gene segment or fragment as in the case of large polymerase 

genes, 1.0 µl of cDNA was mixed with 1.5 µl each of forward and reverse primers 

(Invitrogen, Carlsbad, CA) of 100 ng/µl concentration, 1.0 µl 50X dNTP’s 

(Invitrogen), 5.0 µl 10x Taq buffer (Invitrogen) 0.75 µl Taq Polymerase (Invitrogen) 

and 39.0 µl millipore water in a 200 µl tube.  The tube was then placed in ice until the 

thermal cycler reached a temperature of 90°C. The tube with the sample was then 

transferred to the PTC-200 Peltier thermal cycler (Bio-Rad, Hercules, CA).  The 

sample was incubated at 94°C for 4 minutes and then subjected to 30 cycles of 94°C 

for 20 seconds for denaturation, 55°C for 30 seconds for primer annealing and 72°C 

for 5 minutes for polymerization. After 30 cycles, the sample was then further 

subjected to 72°C for 10 minutes before putting it to 4°C. 

 

 The PCR product was then ran on an agarose gel to determine if the desired 

gene was amplified. The gel was cut and extracted using QIAquick Gel Extraction Kit 

(Qiagen, Valencia, CA). 
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The sequence of template DNA was determined using synthetic 

oligonucleotides, 40 ng/ul concentration of either reverse or forward primer and 

rhodamine or dRhodamine Dye-Terminator Cycle Sequencing Ready Reaction Kits 

with AmpliTaq DNA polymerase FS (Applied Biosystems, Inc. Foster City, CA).  

The amplicons were sequenced on an automated Applied Biosystems 373 AI 3100 

system using cycle sequencing dye terminator chemistry. 

 

3.8 Real-Time PCR 

 

 A two-step method was used in the performance of real-time PCR. The 

hydrolysis probe used has the following sequence of the matrix gene nucleotide 

position 64-83: 5’FAM-TCA GGC CCC CTC AAA GCC GA-3’TAMRA with a final 

concentration of 300 nM. The reporter dye was 6-carboxyfluorescein (FAM), which 

has its emission spectra quenched due to the spatial proximity of a second fluorescent 

dye, 6-carboxy-tetramethyl-rhodamine (TAMRA). As for the forward primer, it has 

the following sequence: 5’AGA TGA GTC TTC TAA CCG AGG TCG 3’. The 

sequence was based on the M gene nucleotide position 23-46. On the other hand, the 

reverse primer sequence was based on nucleotide position 123-100: 5’TGC AAA 

AAC ATC TTC AAG TCT CTG3’. Both primers had final concentrations of 300nM. 

 

 Brilliant QPCR Master Mix (Stratagene, La Jolla, CA) protocol for mixture 

preparation was used. A three-step cycling protocol was followed according to the 

manufacturer’s recommendations. The PTC-200 DNA Engine Thermal Cycler with 
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Chromo-4 detector (Bio-Rad, Hercules, CA) with the corresponding Opticon Monitor 

software were used to process and analyze the samples. 

 

3.9 Phylogenetic Analysis 

 

The gene fragment sequences were compiled with the Seqman II program 

(DNASTAR, Madison, WI), and nucleotide sequences were aligned with close 

sequences from the Influenza Sequence Database. Primers were designed based on 

the initial sequencing done on the virus. When full-length sequence of the gene was 

done, consensus sequences were exported to EditSeq (DNASTAR, Madison, WI). 

Using MegAlign (DNASTAR, Madison, WI), the sequence of the isolate was entered 

and best-local-homology rapid search procedure (BLAST) was carried out to look for 

similar sequences in the database. The sequences chosen from the database were used 

for multiple alignment with the virus sequenced using the slow-accurate mode of 

ClustalW. Aligned sequences were exported as NEXUS files. This was done to 

facilitate opening of the file in MacClade 4 (Sinauer Associates, Inc, Sunderland, 

MA) and PAUP 4.0b10 Altivec (Sinauer Associates, Inc, Sunderland, MA) for 

alignment.  All phylogenetic relationships of the aligned sequence for each gene 

segment were generated with the use of a statistical algorithm called maximum 

parsimony method in conjunction with boostrapping in 100 replicates and stepwise-

addition method of full heuristic search (Hall 2001).   Trees were saved in either .tre 

or PICT format and opened with web-downloadable TreeviewX and Adobe Illustrator 

10.0 (Adobe, San Jose, CA).  
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Chapter IV:  Results and Discussion 

 

4.1 Viral isolation 

 There were a total of seven samples positive for AIV out of the 67 samples 

processed in December 2004. This resulted to a 10.4% isolation rate in the winter. A 

total of 584 samples were collected in the months of May to August 2005. After 

testing these samples, none turned out positive. Serum samples could have been 

helpful in monitoring and surveillance as antibodies against AIV can be detected in 

much longer time than the duration of detection of the virus itself in birds.  

 

 The reported die-offs of ducks in the Chesapeake Bay cannot be attributed to 

the apparent isolation of AIV alone because partial sequencing of the virus after the 

detection revealed an H11N3 subtype which is an apathogenic form of avian 

influenza. The isolation, though, was further investigated through phylogenetic 

analysis to know if the virus was related to other isolates in the area, especially in the 

Delmarva region which has more than 2,000 poultry farms. In the early part of 2004, 

300,000 birds were destroyed due to an outbreak of avian influenza in the region. 

 

 All seven isolates were of H11N3 subtype as revealed by partial sequences of 

the eight genes of the different isolates. One bird was positive in both tracheal and 

cloacal swabs, another bird was positive in tracheal swab, three birds were positive in 

cloacal swabs and one fecal sample was positive for AIV. 
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4.2 Phylogenetic trees 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Phylogenetic relationships of Hemagglutinin (HA) genes of 

A/duck/MD/S698/04 (H11N3), A/duck/MD/1T39/04 (H11N3), A/duck/MD/1C48/04 

(H11N3), A/duck/MD/1C73/04 (H11N3), A/duck/MD/2C40/04 (H11N3), 

A/duck/MD/2T70/04 (H11N3) in bold text and representative avian influenza virus 

isolates rooted to A/ring-billed gull/MD/704/77.  The tree was generated by using 

maximum parsimony in the PAUP 4.0b10. Bootstrap values from 100 replicates with 

full heuristic search method are indicated adjacent to the branches. Analysis was 

based on nucleotides 1-1765 (1765 bp) of the HA gene. Scale bar = 50 nucleotide 

changes. 
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Figure 4. Phylogenetic relationships of Neuraminidase (NA) genes of 

A/duck/MD/S698/04 (H11N3) in bold text and representative avian influenza virus 

isolates rooted to A/tern/South Africa/61 (H5N3).  The tree was generated by using 

maximum parsimony in the PAUP 4.0b10. Bootstrap values from 100 replicates with 

full heuristic search method are indicated adjacent to the branches. Analysis was 

based on nucleotides 970-1369 (400 bp) of the NA gene. Scale bar = 10 nucleotide 

changes. 
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Figure 5. Phylogenetic relationships of polymerase basic protein 2 (PB2) genes of 

A/duck/MD/S698/04 (H11N3) in bold text and representative avian influenza virus 

isolates rooted to A/goose/MN/5733-1/80 (H9N2).  The tree was generated by using 

maximum parsimony in the PAUP 4.0b10. Bootstrap values from 100 replicates with 

full heuristic search method are indicated adjacent to the branches. Analysis was 

based on nucleotides 1300-1699 (400 bp) of the PB2 gene. Scale bar = 10 nucleotide 

changes. 
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Figure 6. Phylogenetic relationships of polymerase basic protein 1 (PB1) genes of 

A/duck/MD/S698/04 (H11N3) in bold text and representative avian influenza virus 

isolates rooted to A/chicken/Hidalgo/28159-232/94 (H5N2).  The tree was generated 

by using maximum parsimony in the PAUP 4.0b10. Bootstrap values from 100 

replicates with full heuristic search method are indicated adjacent to the branches. 

Analysis was based on nucleotides 1740-2139 (400 bp) of the PB1 gene. Scale bar = 

5 nucleotide changes. 
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Figure 7. Phylogenetic relationships of polymerase acidic protein  (PA) genes of 

A/duck/MD/S698/04 (H11N3) in bold text and representative avian influenza virus 

isolates rooted to A/widgeon/Alberta/284/77 (H7N3).  The tree was generated by 

using maximum parsimony in the PAUP 4.0b10. Bootstrap values from 100 replicates 

with full heuristic search method are indicated adjacent to the branches. Analysis was 

based on nucleotides 1250-1649 (400 bp) of the PA gene. Scale bar = 5 nucleotide 

changes. 



 

 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Phylogenetic relationships of Nucleoprotein (NP) genes of 

A/duck/MD/S698/04 (H11N3) in bold text and representative avian influenza virus 

isolates rooted to A/widgeon/Alberta/284/77 (H7N3).  The tree was generated by 

using maximum parsimony in the PAUP 4.0b10. Bootstrap values from 100 replicates 

with full heuristic search method are indicated adjacent to the branches. Analysis was 

based on nucleotides 137-536 (400 bp) of the NP gene. Scale bar = 1 nucleotide 

change. 
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Figure 9. Phylogenetic relationships of Matrix protein (M) genes of 

A/duck/MD/S698/04 (H11N3) in bold text and representative avian influenza virus 

isolates rooted to A/swine/Ontario/42729A/01 (H3N3).  The tree was generated by 

using maximum parsimony in the PAUP 4.0b10. Bootstrap values from 100 replicates 

with full heuristic search method are indicated adjacent to the branches. Analysis was 

based on nucleotides 315-714 (400 bp) of the M gene. Scale bar = 1 nucleotide 

change. 
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Figure 10. Phylogenetic relationships of Nonstructural protein (NS) genes of 

A/duck/MD/S698/04 (H11N3) in bold text and representative avian influenza virus 

isolates rooted to A/swine/Ontario/42729A/01 (H3N3).  The tree was generated by 

using maximum parsimony in the PAUP 4.0b10. Bootstrap values from 100 replicates 

with full heuristic search method are indicated adjacent to the branches. Analysis was 

based on nucleotides 410-809 (400 bp) of the M gene. Scale bar = 1 nucleotide 

change. 

 

 

 



 

 38 

 

4.3 Discussion 

 

Some terms to describe the phylogenetic relationships are explained as 

follows. It is said that two genes are to be orthologous if they diverged after a 

speciation event while two genes are to be paralogous if they diverged after a 

duplication event (Fitch 1970). In other words, two genes belonging to different 

species are orthologous (ortho = exact) to each other when they diverged from exactly 

the same root. When a gene is duplicated descending from a root, it is paralogous 

(para =  parallel) to the copy. 

 

The result of the phylogenetic analysis of the Hemagglutinin gene of 

A/Duck/Maryland/S698/04 (H11N3) is shown in Figure 3.  Five other isolates form a 

cluster of homologous sequences. The tree was rooted to A/ring-billed 

gull/Maryland/1977 (H13N6) which generated distinct groups of H13, H16 and H11. 

Throughout the H11 sequences, two distinct clusters were observed, one cluster 

where the Maryland/04 belonged, is of North American lineage and another cluster is 

of Eurasian lineage. All the H11 in both clusters were isolated either from ducks, 

pintail, shorebird and sandpiper. Among the Eurasian lineage was 

A/duck/England/1956 (H11N6) which is the first H11 subtype isolated. This suggests 

that H11 has been circulating within the wild bird population and positive selection 

occurring within the gene has only been for further adaptation in these birds. If the 

tree was rooted to England/56, this would still form outgroups of H11, H13 and H16. 

Speciation from an H11 to H13 and H16 would still generate viruses adapted to wild 
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birds which are not pathogenic to them. An exception is one isolate A/pilot 

whale/Maine/328 HN/84 (H13N6) which is isolated from stranded pilot whales. The 

hemagglutinin sequence of the whale isolate is similar to isolates of H13 from gulls. 

Although H13 is an avian virus, it can enter marine mammal population but cannot be 

maintained as it caused mortality in the population (Chambers et al. 1989).  The 

similarity index of Maryland/04 to Maine/84 whale isolate is very low at 62.8%,  

suggestive of  a minimal potential of an H11 to speciate to an H13 which could cause 

outbreaks in pilot whales.  

 

Multiple alignment of the H11 and H13 in the tree revealed that a nine-

nucleotide (nt 30-38) deletion resulting in three-amino-acid-deletion from residues 7-

9 of the consensus sequence was present in the non-coding regions of H11 isolates.  

There was an insertion of six nucleotides at positions 479-484 of the consensus which 

corresponds to insertion of two amino acid residues serine (S) and glycine (G) at 

positions 154 and 155, respectively, of Maryland/04. Like most other H11s, 

Maryland/04 posesses the sequence PAIATR G at the cleavage site (indicated by 

arrow). Sequence combination of multiple basic amino acids (R, K and H) flanking 

the cleavage site of HA0 (Hemagglutinin precursor) are found in HPAI viruses. 

However,  LPAI viruses contain two basic amino acids at positions -1 and -4 from the 

cleavage site for H5 and at positions -1 and -3 for the H7. Basic residues at the 

cleavage site allows HA precursor, HA0 be cleaved by host proteases present in many 

parts of the body allowing replication of AIV in different tissues. For instance, the 

recent die-offs of swans in Italy (Terregino et al. 2006) is caused by H5N1 having 
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basic amino acids in   -1,-2,-3,-4 from the cleavage site plus an insertion of four 

nucleotides flanking the multibasic residues (Steinhauer 1999). AIV does not 

normally cause mortalities in wild birds but a sequence change in the cleavage site 

seems to be a determinant of its virulence even in its natural host. 

 

 

 

                                   
Figure 11. A/duck/MD/S698/04 (H11N3) sequence 

is compared to sequence in the cleavage site of other 

HA 

 

 

 

Phylogenetically, the Neuraminidase (NA) protein gene of Maryland/04 

assorted into paralogous clusters of exclusively of N3 subtype. The tree (Figure 4) is 

rooted to A/tern/South Africa/61 (H5N3) with a similarity index of 86.8% and 

minimally diverged into a North American, South American and Eurasian lineages. In 

the North American lineage, Maryland/04 descended similarly with A/chicken/British 

Columbia/04 (H7N3) and A/Chicken/British Columbia/GSC human B/04 (H7N3). It 

is not surprising, however, that the NA sequences share a close common ancestor 

because if the pathways to the wintering ground of migratory birds are considered, 

then, there is an enormous possibility that these migratory birds that carried the AIV 

for the emergence of Maryland/04 to the Chesapeake Bay may have come from 

Canada. 
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The NA genes of other AIV among this clade have been isolated not only 

from wild birds but also from pigs and domestic poultry. Many of the subtypes are of 

H7N3. In the tree, a distinct South American clade is the A/chicken/Chile/4347/02 

(H7N3) was formed. This suggested that viruses from the North America were 

different from isolates in South America. Maryland/04 is 83.5% similar to this virus. 

This LPAI Chilean virus was among the first AIV isolated from a broiler breeder 

flock in Chile which was followed by isolation of the same subtype of AIV a month 

later but is highly pathogenic. The pathogenicity of the virus was characterized also 

by basic amino acids in the HA1 cleavage site. 

 

NA is the other surface glycoprotein of AIV that determines the antigenicity 

of the virus. It functions mainly in the cleavage of sialic acid residues in which HA’s 

are bound. It also promotes penetration of the mucin layer of the respiratory tract to 

infect the epithelial cells. The function may not be exhibited by the NA of wild birds 

in particular because they mainly infect the lower digestive tract. But since the 

Maryland/04 NA is close to NA of AIV that caused morbidities in Chilean chickens 

then it can be a potential donor of the NA gene in the event of reassortment in 

suitable or intermediate host. It can even affect its natural host in the event of 

acquiring an HA with polybasic amino acids. 

 

The topology of the phylogenetic tree of Polymerase Basic protein 2, PB2 

gene (Figure 5) completely showed viruses that were of North American lineage 

isolated from ducks and other aquatic birds, pigs and domestic poultry. It was rooted 
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to A/goose/MN/5733-1/1980 (H9N2). The Maryland/04 PB2 nucleotide sequence 

was compared with AIV from chicken and pig. It is most paralogous to viruses 

isolated from ducks including an H9N2 from Alberta, Canada and orthologous to 

clusters containing mixture of avian-like and swine-like AIV. Like the NA, the PB2 

gene of Maryland/04 has close relationship to A/chicken/British Columbia/04 (H7N3) 

with a similarity index of 95.5% . 

 

The taxa included in the analysis of Polymerase Basic protein 1, PB1 (Figure 

6) are combinations of various HA and NA subtypes. Most are of aquatic bird origin 

but a distinct sublineage that includes the Maryland/04 is diversified to isolates from 

chicken and pig. A/chicken/British Columbia/04 (H7N3) and 

A/swine/Ontario/K01477/01 (H3N3) PB1’s close association with Maryland/04 is 

also evident in analysis of the NA and PB2 genes. 

 

Interestingly, the root used in this phylogeny, A/chicken/Hidalgo 28159-

232/1994 (H5N2) which has similarity index of 95.2% to the PB1 sequence of 

Maryland/04. Other H5N2’s in the consensus tree are of aquatic bird in origin isolated 

in the 1980’s. From the data given, it is convincing that Hidalgo/94 may have 

originally been circulating in wild bird species before its introduction into a flock of 

chickens causing high morbidity and mortality in Mexico (Swayne 1997). 

 

The sequence of Polymerase Acidic (PA) gene of Maryland/04 is closely 

related to PA of AIV in shorebirds isolated in the 1980’s (Figure 7). They emerged 
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from a common node that diverged into two more outgroups. One of the outgroups 

shows that few nucleotide changes in PA and other internal genes apparently increase 

the host range of relative viruses. This outgroup includes contemporary isolates 

(1991-2004) from the A/chicken/British Columbia/04 (H7N3) and 

A/swine/Ontario/01911-1/99 (H4N6).  The ancestral relationship between 

Maryland/04 PA gene and A/chicken/British Columbia/04 (H7N3) has been the same 

for all the above-mentioned gene segments except for HA. The tree formed only 

included isolates of North American lineage. 

 

Nucleoprotein (NP) sequences related to the Maryland/04 are conserved in the 

avian population, in particular with birds from the order Anseriformes. There were 

few isolates from shorebirds indicating intermixing of bird species. From the 

topology of the tree (Figure 8), one can infer that most  of the isolates are from birds 

in Alberta, Canada. This supports the earlier statement that Maryland/04 may have 

originated from a bird migrating from Canada. Another inference that can be made 

from the tree topology is that the lineage closest to the root 

A/widgeon/ALB/284/1977 (H7N3) in the 1970’s to early 80’s. The cluster of AIV 

that has the most nucleotide changes contains more contemporary isolates. This is a 

clear example of a virus undergoing positive selection to maintain itself in the 

population. NP is not exposed to the immune system so the evolution may be the 

result of nonsynonymous substitutions which are continuously occurring for further 

host-specific adaptation (Gorman et al. 1991). There were no insertions or deletions 

in the NP sequence of Maryland/04. 
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The Matrix (M) gene encodes for overlapping proteins, M1 and M2. M1 has 

conserved amino acid sequence of 252 while M2 has 97 amino acids. Like the NP 

gene, the evolution of M gene relies on host-specific adaptation (Widjaja et al. 2004) 

but the evolutionary steps are very minimal which involve nucleotide substitutions. 

The taxa included in the trees have more than 90% similarity with each other 

although some nucleotide changes within the taxa created clusters. Based on the 

topology (Figure 9) Maryland/04 directly evolved from a swine virus, 

A/swine/Ontario/427/729A/01 (H3N3) and had duplicated sequences of A/duck/New 

York/191255-79-/02 (H5N2) and A/chicken/NY 12273-11/99 (H7N3). The majority 

of the viruses are of duck and shorebird origin which do not create a distinct 

speciation from A/swine/Ontario/427/729A/01 (H5N2). There is only one distinct 

lineage observed suggestive of a relatively longer branch length. One of the terminal 

branches belong to A/chicken/British Columbia/04 (H7N3) which is a frequent 

member taxon with more than 90% similarity with the polymerase and NA genes.  

 

The nonstructural (NS) protein gene of AIV has the least length of nucleotides 

which is 890 long. Phylogenetic analysis (Figure 10) revealed synomymous branches 

of predominantly ducks and shorebirds from Canada. There were four out of 33 taxa 

that were of terrestrial bird origin.  

 

Maryland/04 may be nonpathogenic to the ducks from which it was isolated 

because of the genetic character of its hemagglutinin gene but the NA and polymerase 
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genes have attributes from LPAI and HPAI based on their evolution history. To 

assess the replication and transmission of the virus, experiments involving inoculation 

of Maryland/04 were performed. Separate experiments were carried out in two-week-

old SPF white leghorn chickens (Charles River Laboratories, Wilmington, MA) and 

three-week-old quail (UMCP, MD). Summary of the experiments is tabulated (Table 

1).  

 

No replication was detected from the three contact birds, therefore, there was 

no transmission of H11N3 in chickens. The three chickens infected with 1.0 ml of 

A/duck/MD/S698/04  inoculum with 5 x 10
6
 eID50/ml showed no clinical signs. 

Intratracheal, intranasal, oral and cloacal inoculation were done. There was an 

apparent replication in the lower intestinal tract of infected birds as suggested by viral 

shedding detected through HA Assay and real time PCR. All three chickens were 

positive for cloacal swabs at three day post-inoculation with a high virus titer of 10
4.6

 

eID50/ml. At five day post-inoculation, the titer of viral shedding of two out of three 

birds was 10
3.4

 eID50/ml. Oropharyngeal and cloacal swabs were collected at day 

seven and nine. No shedding were observed on these days. Necropsy of the birds was 

performed 14 days postinoculation. There were no significant findings except for 

some edematous lesions in the lungs of birds given 500 ul of the viral inoculum 

intratracheally. One infected bird had pinpoint hemorrhages on the inner  surface of 

the cecal tonsils. 
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The three quail were infected with 0.5 ml of A/duck/MD/S698/04  inoculum 

with 5 x 10
6
 eID50/ml. Both the infected and contact quail were positive for viral 

shedding at day 3 and day 5 post-inoculation. The replication in quail respiratory tract 

generated higher virus titers than chickens. This may contribute to a more efficient 

transmission of the virus but this needs further study. Serous exudates were observed 

in the oral cavity of the birds throughout the experiment though no decrease in 

activity was observed. Fourteen days post-inoculation, the birds were necropsied. 

Gross lesions in the lungs of both infected and contact quail included edema and 

ventral pneumonia. Petecchial hemorrhages were found in the upper respiratory tract. 

 

The experiments suggest that Maryland/04, though a duck virus, can replicate 

in chicken and quail. Important to note is that there were differences in the tissue 

tropism of the same H11N3 virus as suggested by the results of the experiments. 

Maryland/04 replicated in the lower intestinal tract of chickens while in quail, it 

replicated in the respiratory tract. The chicken may be a dead end host because it 

cannot transmit the virus to other chicken but shedding in the lower intestinal tract 

suggests replication of the virus. In contrast Maryland/04 can replicate and transmit in 

quail causing subclinical infection making these birds potential amplifiers of the 

virus. 

 

 

 

 



 

 47 

 

 

 

 

 

T
ab

le
 2

. 
R

ep
li

ca
ti

o
n
 a

n
d
 t

ra
n
sm

is
si

o
n
 o

f 
A

/d
u

ck
/M

D
/S

6
9

8
/0

4
 (

H
1
1
N

3
) 

v
ir

u
s 

in
 c

h
ic

k
en

 a
n
d
 q

u
ai

l.
  

T
w

o
-w

ee
k
-o

ld
 s

p
ec

if
ic

 p
at

h
o
g
en

 f
re

e 
(S

P
F

) 
W

h
it

e 
L

eg
h
o
rn

 c
h
ic

k
s 

w
er

e 
u
se

d
 i

n
 t

h
e 

re
p
li

ca
ti

o
n
 a

n
d
 

tr
an

sm
is

si
o
n
 s

tu
d
ie

s 
o
f 

H
1
1
N

3
. 

T
h

re
e 

ch
ic

k
s 

w
er

e 
in

fe
ct

ed
 a

n
d
 t

h
re

e 
ch

ic
k
s 

se
rv

ed
 a

s 
se

n
ti

n
el

 b
ir

d
s.

 

 T
h
re

e-
w

ee
k
-o

ld
 q

u
ai

l 
w

er
e 

u
se

d
 i

n
 t

h
e 

re
p
li

ca
ti

o
n
 a

n
d
 t

ra
n
sm

is
si

o
n
 s

tu
d
ie

s 
o
f 

H
1
1
N

3
. 
T

h
re

e 
q
u
ai

l 
w

er
e 

in
fe

ct
ed

 a
n
d
 t

h
re

e 
q
u
ai

l 
re

m
ai

n
ed

 a
s 

se
n
ti

n
el

 b
ir

d
s.

 

N
o
. 

o
f 

b
ir
d
s
 

s
h
e
d
d
in

g
/t

o
ta

l

V
ir
u
s
 t

it
e
r,

 

lo
g
1
0
e
ID

5
0
/m

l

N
o
. 

o
f 

b
ir
d
s
 

s
h
e
d
d
in

g
/t

o
ta

l

V
ir
u
s
 t

it
e
r,

 

lo
g
1
0
e
ID

5
0
/m

l

N
o
. 

o
f 

b
ir
d
s
 

s
h
e
d
d
in

g
/t

o
ta

l

V
ir
u
s
 t

it
e
r,

 

lo
g
1
0
e
ID

5
0
/m

l

N
o
. 

o
f 

b
ir
d
s
 

s
h
e
d
d
in

g
/t

o
ta

l

V
ir
u
s
 t

it
e
r,

 

lo
g
1
0
e
ID

5
0
/m

l

C
h
ic

k
e
n

In
fe

c
te

d
0
/3

0
3
/3

4
.6

0
/3

0
2
/3

3
.4

C
o
n
ta

c
t

0
/3

0
0
/3

0
0
/3

0
0
/3

0

Q
u
a
il

In
fe

c
te

d
3
/3

5
.2

0
/3

0
1
/3

2
.7

0
/3

0

C
o
n
ta

c
t

3
/3

4
.9

0
/3

0
2
/3

4
.1

0
/3

0

V
ir
u
s
 s

h
e
d
d
in

g
 o

n
 d

a
y
 3

 p
o
s
ti
n
o
c
u
la

ti
o
n

O
ro

p
h
a
ry

n
g
e
a
l

C
lo

a
c
a
l

V
ir
u
s
 s

h
e
d
d
in

g
 o

n
 d

a
y
 5

 p
o
s
ti
n
o
c
u
la

ti
o
n

O
ro

p
h
a
ry

n
g
e
a
l

C
lo

a
c
a
l



 

 48 

 

Chapter V:  Summary and Conclusion 

 

5.1 Meeting the objectives 

 Surveillance of wild and domestic birds  have been useful to many 

investigators to understand the ecology and molecular epidemiology of AIV, to 

determine the multifaceted nature of its virulence and assess the evolutionary 

relationships between the existing and emerging strains. The first objective of 

carrying out a point surveillance of avian influenza in wild and domestic birds were 

met. This resulted in the isolation of an H11N3 in the Chesapeake Bay and based on 

the study, it could be an introduction of the virus in the area from migrating birds 

from Canada. Seven AIVs isolated  were identical. The sequence of the representative 

virus, A/duck/MD/S698/04 (H11N3) was genetically characterized and its evolution 

was traced through phylogenetic analysis, which was the second objective of the 

study.  The hemagglutinin gene did not contain the polybasic cleavage site that is a 

characteristic of highly pathogenic avian influenza. MD/04 HA clustered with most 

isolates from Alberta, Canada associated with LPAI. But the other integral membrane 

protein, neuraminidase, was closely related to N3’s associated with LPAI and HPAI 

in historical outbreaks in domestic poultry, wild birds and other mammals. The 

internal viral genes, particularly, the polymerase genes have homologous sequences 

with an HPAI H7N3. Moreover, the topology of the internal genes of H11N3  is 

suggestive that  it had undergone reassortment. It also insinuated mixing or 

interactions of waterfowls and shorebirds can actually increase host range with 

minimal or absence of mutations. A year-round surveillance should be planned in 
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order to get intensive with tracking of the viruses introduced by migratory birds as 

well as to investigate the possible evolution of circulating viruses. 

 

  Infection of experimental birds with Maryland/04 did not show any 

significant clinical signs. Lower intestinal tract replication was apparent in chicken 

while oropharyngeal and lung replication were observed in quail. This virus can be 

classified as a nonpathogenic to a low pathogenic avian influenza.  

 

5.2 Significance of the study 

 

 During the course of the study further knowledge was gained on the role of 

wild birds in the dissemination of the virus to different species. It proved that 

surveillance is useful in understanding the ecology of existing and emerging avian 

influenza viruses. In the future, we look forward to potential isolation of  a virus that 

can be a prototype for vaccine production. 
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Appendices 
 

 

Appendix A. Two-Step Real-Time PCR Protocol 

 

 

1.  Perform the experiments aseptically. 

 

2. Prepare the experimental reaction in amber-colored tube by adding the 

following components in order: 

 

 Reagent Mixture 

   

   

6.5 ul RNase-free water 

12.5 ul 

1.5 ul 

1.5 ul 

1.5 ul 

 

2X Brilliant QPCR Master Mix (Stratagene Cat. No. 600549) 

300 nM probe M 64-83F    

300 nM forward primer M 23-46F  

300 nM reverse primer M123-100R 

 

 

3. Gently mix the reactions by pipetting up and down without creating bubbles. 

23.5 ul reagent mixture is placed into each well of 96-well white hard-shell PCR 

plate. 

 

4. Add 1.5 ul cDNA, gDNA or plasmid DNA 

 

5. Cover the plate and it is ready to load into the DNA Engine Thermal Cycler 

PTC-200 Peltier Cycler with Chromo4 Detector. 

 

6.  Run the PCR program below: 

 

 Three-step cycling protocol 

 

Cycles Duration of Cycle Temperature 

1 

40 

10 minutes 

30 seconds 

1.0 minute 

30 seconds 

95°C 

95°C 

55-60°C 

72°C 

 

*Place the plate into the instrument when the temperature of the block reaches 

50-60°C. 
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Appendix B. 3.7% Brain Heart Infusion Broth 

 

 

Materials: 

 

Double-distilled water 

Brain Heart Infusion (BHI) broth powder (BBL Cat no. 211060) 

Gentamicin 

Penicillin-Streptomycin 

Amphotercin B 

Two 1 liter volumetric flasks 

Ten sterile 125 ml glass bottles 

Weigh boats, spatula, stir bars, foil 

 

 

Procedures: 

 

1. Place 1000 ml ddH20 in the 1L flask. 

2. Add 37 g of BHI powder and dissolve by stirring over low heat. 

3. Put half of the solution into another 1L flask. Cover the two flasks with 

aluminum foil. Autoclave. 

4. After the two flasks cool down, add 2.5 ml Gentamicin and 5 ml Pen-Strep-

AmpB into each flask. This should be done under the hood. 

5. Distribute the BHI broth into10 glass botltes. Label each bottle, put paraffin 

tape around the cap and bottle and store in the freezer until needed. The 

solution should be stable for 5-6 months in the freezer. 

6. The broth can also be poured into glass vials. Under the hood, pipette 1.0 ml 

of BHIB into each vial and freeze until needed for swab collection. 
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