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Abstract. State-of-the-art fault detection methods are equipment and domain specific and non-

comprehensive. As a result, the applicability of these methods in different domains is very limited

and they can achieve significant levels of performance by having knowledge of the domain and

the ability to mimic human thinking in identifying the source of a fault with a comprehensive

knowledge of the system and its surroundings. This technical report presents a comprehensive

semantic framework for fault detection and diagnostics (FDD) in systems simulation and control.

Our proposed methodology entails of implementation of the knowledge bases for FDD purposes

through the utilization of ontologies and offers improved functionalities of such system through

inference-based reasoning to derive knowledge about the irregularities in the operation. We exercise

the proposed approach by working step by step through the setup and solution of a fault detection

and diagnostics problem for a small-scale heating, ventilating and air-conditioning (HVAC) system.
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Chapter 1

Introduction

This technical report is concerned with the development of ontology and rule-based model-

ing abstractions, procedures, and prototype software for automated fault detection and diagnostic

(FDD) analysis of condition-based maintenance in multi-domain systems (e.g., buildings, health

monitoring, power plants and aviation systems). The report builds upon our previous work on

requirements engineering [6, 5, 18], system of systems [36], and behavior modeling and analysis of

engineering systems [4, 14, 15, 29, 32] with semantic web technologies.

1.1 Problem Statement

Automated fault detection and diagnostic (FDD) techniques provide a means of detecting

unwanted conditions (i.e., “faults”) in systems by recognizing deviations in real-time or recorded

data values from expected values, and then diagnosing the causes leading to the faults. Automated

fault detection and diagnostic (FDD) techniques provide mechanisms for condition-based mainte-

nance of engineered systems (e.g., buildings, health monitoring, power plants and aviation systems).

Proper implementation of FDD can enable pro-active identification and remediation of faults before

they become significantly deleterious to the safety, security, or efficiency of the operating system.

Within the building sector, degraded or poorly-maintained equipment currently accounts

for 15 to 30 % of energy consumption in commercial buildings [21]. Approximately 50 to 67 % of

air conditioners (residential and commercial) are either improperly charged or have airflow issues

[37] and [22]. Faulty heating, ventilating, air conditioning, and refrigeration (HVAC&R) systems
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Figure 1.1: Architecture of engineering simulations connected to semantic models (ontologies and
rules) reasoners for fault detection and diagnostic analysis (Adapted from Delgoshaei, Austin and
Pertzborn [15]).

contribute to 1.5 to 2.5 % of total commercial building consumption [43]. Much of this energy usage

could be prevented by utilizing automated condition-based maintenance. During the last decade,

considerable research has focused on the development of FDD methods for HVAC&R systems.

This work has been driven, in part, by the historically less-than-optimal operation of many state-

of-the-art HVAC systems. Yet, in spite of recent advances in building simulation, automation

and control (see the arrangement of ontologies, rules, reasoning and simulation software in Figure

1.1, automatic methods for FDD of building systems remain at a relatively immature stage of

development. As a result, we require more advanced FDD techniques that leverage the untapped

capabilities of building automation integrated with methods in artificial intelligence and semantic

modeling. These interdisciplinary FDD systems can benefit from utilizing knowledge repositories

for storing automation/simulation data and the inference-based reasoning techniques to obtain

additional higher information, such as sensors location, equipment service area.

1.2 Objectives and Scope

This report describes a framework for knowledge-based fault detection and diagnostics in

multi-domain systems, with a focus on applications to HVAC Systems. In a departure from state-
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of-the-art developments in ontology engineering, which place a priority on the development and

testing of ontologies alone, our objective is to create a modeling framework that supports:

1. Concurrent data-driven development of domain models, ontologies and rules, and

2. Inference-based reasoning for detection of faults and their causes.

The proposed method employs the Web Ontology Language (OWL) [31] and Jena API [2] for the

development of semantic models (ontologies and rules) spanning the building, mechanical equip-

ment, sensor, fault detection and diagnostics (FDD), occupant and weather domains. Support for

spatial reasoning among entities is provided at the meta-domain level.

The remainder of this report proceeds as follows: Chapter 2 describes the work in FDD,

and a brief introduction to the uses of the Semantic Web and its enabling technologies. The

proposed methodology is described in Chapter 3. Chapters 4 and 5 cover: (1) the meta-domain and

domain-specific ontologies and rules, respectively, and (2) a step-by-step procedure for detection

and analysis of system faults. Chapter 6 presents a case study problem that involves detection

of faults in a simple building – procedures for reasoning across multiple domains are presented.

Finally, the conclusions of this study and a discussion of next steps is presented in Chapter 7.

6



Chapter 2

Background

2.1 Related Work

Recent advances in building automation technologies provide a means for sensing and

collecting the data needed for software applications to automatically detect and diagnose faults

in buildings. During the past few decades a variety of FDD techniques have been developed

in different domains, including model-based, rule-based, knowledge-based, and simulation-based

approaches. Katipamula and Brambley summarizes FDD research for HVAC systems [21]. Their

work also describes different fundamental FDD methods under the two main categories of model-

based and empirical (history-based) approaches. The major difference in these approaches lies in

the nature of the knowledge used to formulate the diagnostics. Model-based diagnostics evaluate

residuals between actual system measurements and a priori models (e.g., first principle models).

Data-driven empirical strategies, on the other hand, do not require a priori models.

Model-based methods can be quantitative or qualitative. Quantitative models represent

the requisite a priori knowledge of the system in terms of mathematical equations, typically as

explicit descriptions of the physics underlying system components. Qualitative models, conversely,

combine concepts such as descriptive “states” and “rules” into statements that are axiological

instead of mathematical, expressing operational correctness or desirability through an axiology, a

value system, appropriate to each physical application. As a result, the building system operation

can be continuously classified as being either faulty or not faulty.

Rule-based strategies are one example of qualitative model-based FDD methods. Rules can
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be based on first principles or they can be inferred from historical experiments, but in either case

they represent expert qualitative knowledge that no purely quantitative representation could model.

The first diagnostic expert systems for technical fault diagnosis were developed at MIT by Scherer

and White [34]. Since then, diagnostic systems have evolved from rule-based to model-based and

expert systems approaches. Semantic models offer a means for the representation of distributed and

explicit knowledge and provide ways through inference-based rules to derive implicit knowledge.

Berners-Lee and co-workers [10] point to the benefits of ontology usage for knowledge

representation, and utilizing high-level reasoning capabilities in the area of agent-based control

solutions. Exploitation of semantics and ontologies in the area of agent-based engineering systems

has become one of the hot topics recently. The main reason behind this trend is the success and

promotion of Semantic Web technologies to enable languages that are both machine and human

processable. Semantic Web-based applications have been developed in the areas of health care [16],

biology [39, 24], and transportation [12]. In the area of fault detection and diagnostics, Batic [8]

has developed an ontology-based fault detection and diagnosis systems and tested it on airport

ontologies to detect the high level irregularities in the operation of airport heating/cooling plants.

Also, Schumann [35] highlights the potential impacts of artificial intelligence techniques such as on-

tologies on tackling the challenges in obtaining a unified diagnosis framework. The benefit of this

approach is that ontologies are an essential technology guaranteeing data and information interop-

erability in heterogeneous and content-rich environments [28] which is at heart of comprehensive

fault detection and diagnostic methods.

2.2 The Semantic Web

2.2.1 Semantic Web Technologies

The World Wide Web was invented in 1989 by Tim Berners-Lee, with the initial purpose

to meet the demand for automatic information-sharing among members of scientific communities

[10]. At that time, Berners-Lee identified two main goals for the World Wide Web:

1. To make the Web a collaborative medium and,

2. To make the Web understandable and automatically processable by machines.
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Figure 2.1: Technologies in Semantic Web Layer Cake [17].

Over the past twenty years the first part of this vision has come to pass. The development of

Web browsers created a means for humans to retrieve and render information, and then manually

interpret and understand the meaning of the content. A second more ambitious vision for the Web

is support for semantic data structures and pathways for machine-to-machine communications that

carry the semantic meaning for data in addition to its values. Thus, instead of broadly searching

for someone based, perhaps based on a few keywords, semantic web provides a means to search

precisely for someone based on their name, plus semantic relationships to places of employment,

attendance at events, age, and so forth.

Figure 2.1 illustrates the technical infrastructure that supports the Semantic Web vision,

and the foundation upon which we hope to build our system-behavior models. Each layer exploits

and uses capabilities of the layers below. The extended markup language (XML) enables the

construction and management of documents composed of structured portable data. The resource

description framework (RDF) allows for the modeling of graphs of resources on the Web. An

RDF Schema (RDF-S) provides the basic vocabulary for RDF statements, and the machinery to

create hierarchies of classes and properties. Our semantic models make extensive use of the Web

Ontology Language (OWL) and expressive features of descriptive logic (DL) formalisms. Inference-

based mechanisms allow a system to infer a new statement from existing statements. Together,

these features and language capabilities provide the foundations for representing knowledge bases
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(e.g., in the building, HVAC equipment and weather domains) and reasoning over that knowledge

to detect faults and systematically verify hypotheses through evaluation of supporting evidence.

2.3 Semantic Model

Semantic models consist of ontologies, graphs of individuals (specific instances), and

inference-based rules in the form of if <conditions> then <consequences>. Together, these en-

tities and mechanisms allow for the construction and execution of domain-specific knowledge bases.

2.3.1 Ontologies

An ontology is a formal and explicit representation of the concepts, referred to as “classes”

(e.g., cooling coil, valve), and their interrelationships in a domain. The classes may have attributes

that are stored as a simple data type properties” (e.g., coil setpoint). Support for semantic re-

lationships between classes is provided by object properties (e.g., a coil has as a valve). For the

representation of domains where there are many variations to be represented, but common data

properties among those variants, ontology languages provide support for the organization of sim-

ilar concepts into hierarchies, and support for propagation of data and object properties through

hierarchies via inheritance mechanisms. We may wish to state, for example, that a cooling coil is

a type of coil. In this hierarchy, the class cooling coil is a subclass of the class coil. And the class

coil is superclass of the class cooling coil. The details of the classes, data properties and object

properties can be summarized as follows:

• Classes: Valve, Cooling Coil

• Datatype properties: coilTemperature (double), isClosed (Boolean), coilSetpoint(double)

• Object Property: hasValve

2.3.2 Individuals

Individuals are instances of ontology concepts, and their purpose is to represent the data

in a domain, e.g.,
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• Individuals: ValveI, ValveII, Ccoil, Hcoil

• Storing individuals: ¡Hcoil hasValve ValveII¿

One common syntax for representing facts about a domain is the triple structure <subject, predi-

cate, object>.

2.3.3 Inference Rules

Inference rules and their associated reasoning mechanisms provide a way derive new in-

formation based on the existing data stored in the ontology in the form of: if <conditions> then

<consequent>. For example, the script:

Logical Rule:

(?coil rdf:Type coil) (?coil setPoint ?sp)

(?coil coilTemperature ?cp) equal(?cp,?sp)

(?coil hasValve ?valve) -> (?valve isClosed true)

Stored individuals : <Hcoil hasValve ValveII>

<Ccoil coilTemperature 35>

<Ccoil coilSetpoint 35>

Inferred Knowledge: <ValveII isClosed true>

takes existing facts and rule that covers the setpoint and temperature of a coil to infer that a valve

is closed.

A key benefit of semantic modeling frameworks is that the ontologies and rules are human

readable, yet they can also be compiled into code that is executable on machines.
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Chapter 3

Methodology

3.1 State-of-the-Art Development of Semantic Models

In state-of-the-art development of semantic models, a common strategy is to provide classes

and data properties for all possible configurations within a domain, as well as linkage to related

domains. Considering the maturity of present-day software engineering techniques, it is somewhat

surprising that motions of “simplicity in system design” through modularity of semantic models

(e.g., bundling of ontologies and rules) do not seem to exist.

3.1.1 Integrated Model-Centric Engineering Ontologies (IMCE)

The integrated model-centric engineering ontologies (IMCE) developed at the JPL (Jet

Propulsion Laboratory) during the 2000-2010 era [9, 41] are a representative examples of state-

of-the-art practice for development of semantic models and associated software tools. For the

team-based development of semantic models we are concerned with two aspects of state-of-the-art

development: (1) over-specificaton of dependency (import) relations among the ontologies, and (2)

over use of multiple inheritance relationships in the specification of new ontologies, and specifically

note:

1. Dependency (Import) Relationships Among Key Ontologies. Figure 3.1 shows the

graph of import (dependency) relationships among the key ontologies. Loosely speaking,

the IMCE ontologies are organized into two groups: foundational ontologies and discipline

12
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Figure 3.2: Schematic of multiple inheritance in action.
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ontologies. Notice that the electrical engineering ontology (i.e., electrical.owl) imports the

mechanical engineering ontology (i.e., mechanical.owl). Both the electrical and mechanical

engineering ontologies import a multitude of foundation ontologies (e.g., analysis.owl, mis-

sion.owl, base.owl, project.owl, time.owl) and make extensive use of multiple inheritance

mechanisms in the development of new classes. The result is ontologies containing more

than two hundred classes, with some classes containing three or four dozen data and object

properties. The relationship among ontologies is more complicated than it needs to be.

2. Over Use of Multiple Inheritance in Ontology Specification. Multiple inheritance

in system modeling languages and some computer programming languages (e.g., C++) is a

feature which allows an object or class to inherit characteristics and from more than one parent

object or parent class. At the very least, the question of whether or not to provide support for

multiple inheritance in system development is a controversial topic. The first problem is that

multiple inheritance introduces ambiguity into system specification. The upper half of Figure

3.2 shows, for example, a scenario where class A is sub-classed by classes B and C, and the the

method doSomething() in class A is over-ridden by customized versions of doSomething()

in classes B and C. We have no objection to this part of the model setup. The problems begin

in the lower half of Figure 3.2 where class D inherits data and methods from both classes B

and C. At this point, the specification of doSomething() within D is ambiguous – should we

use the version inherited from class B, or perhaps the version inherited from class C? One

way of resolving this ambiguity is to add a custom version of doSomething() in class D, but

then efficiency through reuse and organization of system concepts into hierarchies is lost and

has zero benefit.

In a multiple inheritance ontology, like object-oriented software, classes can have more than

one superclass. A second area of concern is related to ontology subsumption: that is, given

an ontology O and two classes A, B, we wish to formally verify that class A is a subset of

the interpretation of B in every model of O. The graph import relationships shown in Figure

3.1 shows how easy it is to assemble complex relationships among individual ontologies.

This specific example does not contain loops, but given the number of unnecessary import

relationships shown in Figure 3.1, it is not hard to see (intentional or not) how loops in

dependencies among ontologies could be created. For sets of ontologies containing hundreds

of classes, it is simply impractical to manually verify these relations.
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We believe that the latter greatly complicates the challenge in creating rules that can effectively

operate on individual (and across) semantic domains.

3.2 Proposed Architecture Framework

In a first step toward mitigating these complexities, we propose the semantic modeling

framework shown in Figure 3.3.

Domain Data Models and

Weather model

Occupant model

EnvironmentEnvironment

Occupant.owl

Weather.owl

Rules
Domain

Occupant.rules

Weather.rules

and Properties
Ontology Classes

Engineering

Building model

Sensor model

Equipment model

FDD model

Engineering

Building.owl

Sensor.owl

Equipment.owl

FDD.owl

Engineering

Building.rules

Sensor.rules

Equipment.rules

FDD.rules

Sources of Data (XML data files)

visit

Framework for Executable Processing of Events
load

Semantic Graphsload

load

Reasoner

graph transformation

...........

Spatial.rules

Spatial.owlload

Environment

Meta−Domain Ontology & Rules

design flow design flow

Framework for Concurrent Data−Driven Development of Domain Models, Ontologies and Rules

Figure 3.3: Proposed architecture for: (1) concurrent data-driven development of domain models,
ontologies and rules, and (2) executable processing of events.

Our goal is to support two objectives:

1. Concurrent data-driven development of domain models, ontologies and rules, and

15



2. Executable processing of incoming faults.

Instead of creating ontologies and then developing a few rules for validation of model properties, our

goal is to put the development of data, ontologies and rules on an equal footing. A key advantage

of this approach is that it forces designers to provide semantic representations for data that are

needed in decision making, and increases the likelihood that data not needed for decision making

will be left out. Rules will be developed for verification of domain properties and processing of

faults through reasoning with data sources, possibly from multiple domains. Implementation of the

latter goal leads to semantic graphs that will dynamically adapt to the consequences of incoming

data and events (e.g., changing occupant locations and weather events) acting on the system.

Our second strategy is to minimize the use of multiple inheritance in the specification of

OWL ontologies and, instead, explore opportunities for replacing inheritance relationships by object

property relations. In order for the architectural framework to be both scalable and adaptable to

changing external conditions, the ontologies will need to be modular, and the rules will need to act

both within a domain and across domains.

3.3 Working with Jena and Jena Rules

Our prototype software implementation makes extensive use of Apache Jena and Jena

Rules. Apache Jena [2] is an open source Java framework for building Semantic Web and linked

data applications. Jena provides APIs (application programming interfaces) for developing code

that handles RDF (resource description framework), RDFS, OWL (web ontology language) and

SPARQL (support for query of RDF graphs). The Jena rule-based inference subsystem is designed

to allow a range of inference engines or reasoners to be plugged into Jena. Jena Rules is one such

engine.

Jena Rules employs facts and assertions described in OWL to infer additional facts from

instance data and class descriptions. As illustrated in Figure 3.4, it also provides support for the

development of builtin functions that can link to external software programs and streams of data

sensed in the real world. For the implementation of the vision implied by Figure 3.3, particularly

support for spatial and temporal reasoning, the latter turns out to be crucially important because,

by default, OWL only provides builtin datatype support for numbers (i.e., float and double),
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Figure 3.4: Framework for forward chaining of facts and results of builtin functions to new assertions
(derived facts).

booleans (i.e., to represent true and false) and character strings (i.e., string). To combat the

lack of support for complex data types, such as those needed to represent data for spatial and

temporal reasoning, we adopt a strategy of embedding the relevant data in character strings, and

then designing builtin functions and external software that can parse the data into spatial/temporal

models, and then make the reasoning computations that are required.

3.4 Data-Driven Approach to Generation of Individuals in Seman-

tic Graphs

In the proposed framework semantic models are the composition of ontologies, rules and

data, which cooperatively work together to represent and model the response of multi-domain

17



environments to events.
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load load
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System

Homogeneous Data

Figure 3.5: Data-driven approach to generation of individuals in semantic graphs.

Figure 3.5 illustrates a data-driven approach to the generation of individuals in semantic

graphs. First, data is imported into Java Object data models using JAXB, the XML binding for

Java [19]. We assume in this figure that the data is stored in an XML file but, of course, it could also

come from other sources (such as streams of data shown in Figure 3.4). After the ontologies and

rules have been loaded into the Jena Semantic Model, the semantic model creates instances of the

relevant OWL ontologies by visiting the data model and gathering information on the individuals

within a particular domain (e.g., building, sensor, occupant). Once the data has been transferred

to the Jena Semantic Model and used to create an ontology instance, the rules are applied.

The lower section of Figure 3.5 shows the effect that this model has on the heterogeneity

of data that needs to be managed. Generally speaking, it can be expected that the data models

will be highly heterogeneous. When a semantic graph visits a data model to obtain the model

individuals, only seven data types are available. Thus, as data moves from the data model into the

semantic graph, the overall problem becomes homogeneous in the types of data stored. Thus, a key

challenge in making this simplification of the problem data lies in the design and implementation

of the appropriate visitor design pattern routines.
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Chapter 4

Meta-Domain Ontologies and Rules

In systems analysis, a meta model defines the languages (semantics) and processes (struc-

ture and constraints) from which models can be formed. The meta model for SysML [26] defines,

for example, more than 250 entities from which SysML diagrams can be constructed. The seman-

tic modeling counterpart of software engineering meta-models is meta-domain ontologies and rules

that have universal application to the implementation of targeted domain models. Sometimes the

name fundamental is used instead of meta-domain. In either case, semantic descriptions of time,

space, physical units and currency can all be thought of as essential elements for describing how

our world actually works.

4.1 Spatial Ontology and Rules

This study employs spatial reasoning to determine the relationship of sensors and occupants

to geometric entities such as rooms and building zones. Reasoning procedures are based on the

logic of regions and their connectivity, allowing one to address issues of the form: what is true,

and where? Formal theories for reasoning with space – points, lines, and regions – are covered by

region connected calculus [33]. A robust implementation of two-dimensional spatial entities and

associated reasoning procedures is provided by the Java Topology Suite (JTS) [20].
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4.1.1 Experimental Ontology and Rules for Spatial Reasoning

Figure 4.1 shows an abbreviated representation of our experimental spatial (geometry)

ontology and associated data and object properties. High-level classes – abstract concepts – are

provided for entities that represent singular geometry (e.g., AbstractGeometry) and groups of

entities (e.g., AbstractGeometryCollection).

hasBoundingBox
String

hasGeometry

LineString

LineRing

Polygon Point

MultiPolygonMultiPoint

AbstractGeometryCollection

exterior

interior

contains

contains

AbstractGeometryBoundingBox

Figure 4.1: Abbreviated representation of spatial (geometry) ontology and associated data and
object properties.

Specific types of geometry (e.g,, Polygon, MultiPoint) are organized into a hierarchy similar

to the Java implementation in JTS. The high-level class AbstractGeometry contains a Datatype

property, hasGeometry, which stores a string representation of the JTS geometry. For example,

the abbreviated string

POLYGON (( 0 0, 0 5, ... 0 0))

shows the format for pairs of (x,y) coordinates defining a two-dimensional polygon. This feature

allows a semantic model to visit a domain data model, and gather a complete description of the

two-dimensional geometry.

Within Jena Rules, families of builtin functions can be developed to evaluate the geometric

20



relationship between pairs of spatial entities (e.g., to determine whether or not a point is contained

within a polygon).

Jena Rules

// Rule to check if a sensor is inside a room ...

[ BuildingRule01: (?r rdf:type bld:Room) (?r bld:hasGeometry ?rg) (?rg geom:hasGeometry ?rjts)

(?s rdf:type sen:Sensor) (?s sen:hasGeometry ?sg) (?sg geom:hasGeometry ?sjts)

getPointInPolygon(?sjts,?rjts,?t)

equal(?t, "true"^^xs:boolean) -> (?s bld:isInRoom ?r)]

Figure 4.2: Rules to determine the rooms in which sensors have been placed.

Figure 4.2 shows, for example, the Jena Rule that identifies the room in which a sensor is placed.

An English translation of the rule fragments is as follows: If (?r) is a room with geometry (?rg)

and string representation (?rjts), and (?s) is a sensor with geometry (?sg) and string representation

(?sjts), then the builtin function getPointInPolygon(?sjts,?rjts,?t) will determine if the sensor (point

geometry) is inside the room (polygon geometry) and return the result as a boolean (?t). If (?t) is

true, then the sensor is inside the room and a new relationship (?s bld:isInRoom ?r) is created. A

similar rule would be written to establish the relationship between sensors and HVAC zones.
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Chapter 5

Domain Ontologies and Rules

The domain-specific ontologies and rules are organized into two groups: (1) engineering

ontologies and rules, and (2) surrounding environment ontologies and rules. In Figures 5.1 through

5.12 we use red rectangles with heavy dashed edges to highlight the classes that participate in the

rule checking and/or the case study problem presented in Chapter 6.

5.1 Engineering Ontologies and Rules

The engineering ontologies and rules cover four domains: (1) buildings, (2) mechanical

equipment, (3) sensors, and (4) procedures for fault detection and diagnosis.

5.1.1 Building Ontology and Rules

The prototype building ontology and rules (see Figures 5.1 and 5.2) provide computational

support for the representation of two-dimensional floorplan geometry, modeling relationships be-

tween elements of floorplan geometry and sensors, zones for HVAC control, and building elements

such as doors, windows and walls. The latter are modeled as subclasses of a component that has

geometry described by a JTS string.

Connections to the mechanical equipment and occupancy domains are achieved through

data properties for the building environment state; see, for example, hasRoomSetpoint and isOc-

cupied. Object properties record the relationship of a room to relevant HVAC zones and sensors.
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Figure 5.1: Schematic of building ontology classes and properties.
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Jena Rules

// Rule to check if two zones intersect ...

[ BuildingRule02: (?r1 rdf:type bld:Zone) (?r1 bld:hasGeometry ?r1g) (?r1g geom:hasGeometry ?r1jts)

(?r2 rdf:type bld:Zone) (?r2 bld:hasGeometry ?r2g) (?r2g geom:hasGeometry ?r2jts)

notEqual( ?r1jts, ?r2jts ) getPointInPolygon( ?r1jts, ?r2jts, ?t)

equal(?t, "true"^^xs:boolean) -> (?r1 bld:intersects ?r2)]

Figure 5.2: Rule for Zone Intersect.

Windows have the boolean data property isOpen to record whether or not a particular window is

open. As we will soon in the case study problem, this parameter plays a pivotal role in diagnostic

analysis of the causes leading to a fault in mechanical equipment.

The prototype software implementation has one rule for determining the spatial relationship

among zones of the building. The rule systematically retrieves the JTS geometry of each zone,

verifies they are not equal, and then uses the builtin function getPointInPolygon() to verify their

geometric relationship. As previously noted, these backend computations are handled by the Java

Topology Suite software [20].

5.1.2 Mechanical Equipment Ontology and Rules

Figures 5.3 and 5.4 illustrate the concepts (i.e., ontology classes), properties (i.e., data and

object properties) and rules governing the operation and identification of faults in mechanical sys-

tems equipment. In practice, datatype property values associated with the various ontologies will

be set from streams of data either performed by a simulation tool (e.g. EnergyPlus, Dymola, TRN-

SYS) [13, 23, 40], or perhaps from measurements taken in a real building, working in conjunction

with BACnet protocols [7] and a co-simulation middleware.

The semantic graph shown in Figure 5.3 is quite broad, covering concepts from chillers and

fans to zones. The scope of our investigation focuses on faults associated with valves, coils and air

handling units. Basic rules (see Figure 5.4) are provides for: (1) controlling the flow in a valve, (2)

determining if a valve is leaky, and (3) identifying situations where the normal operational status

of a valve is false. Thus, we are able to determine that when a cooling coil valve is faulty, the

associated air handling unit is also faulty.
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Figure 5.3: Schematic of mechanical equipment ontology classes and properties.
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Jena Rules

// Close the valve when the coil temperature is the same as coil setpoint.

[ EquipmentRule01: (?coil rdf:type eq:Coil) (?coil eq:hasCoilSetpoint ?sp)

(?coil eq:hasCoilTemperature ?cp) equal(?sp,?cp) (?coil eq:hasValve ?valve) ->

(?valve eq:isShutOff "true"^^xs:boolean) print(’valve is shut’)]

// If the valve is shut, the temperature of the air that passes through the coil

// has to be the same. Otherwise, the valve is leaky

[ EquipmentRule02: (?hwv rdf:type eq:Valve) (?hwv eq:isShutOff "true"^^xs:boolean)

(?c rdf:type eq:Coil)(?c eq:hasValve ?hwv) (?c eq:Tad ?t1)

(?c eq:Tas ?t2) notEqual(?t2 ?t1) -> (?hwv eq:isLeaky "true"^^xs:boolean)

(?hwv eq:hasNormalOperationalStatus "false"^^xs:boolean) print(’valve is Leaky’) ]

// If the a valve fails, the AHU fails too ...

[ EquipmentRule03: (?hwv rdf:type eq:Valve) (?AHU eq:hasCoil ?c) (?c eq:hasValve ?v)

(?v eq:hasNormalOperationalStatus "false"^^xs:boolean) ->

print(’AHUMalfunction’) (?AHU eq:hasNormalOperationalStatus "false"^^xs:boolean)]

Figure 5.4: Rules for establishing the operational status and simple operations of mechanical equip-
ment.

5.1.3 Sensor Ontology and Rules

Figure 5.5 shows the classes and properties in our experimental sensor ontology. Our

goal is to provide computational support for modeling: (1) sensor operation, including when a

sensor reading might be outside an acceptable working range, and (2) determining the location

of a sensor relative to the environment in which it is embedded. These objectives are achieved

with three classes: Sensor, Measurement, and the external class Geometry. Support for modeling

various types of sensor (e.g., temperature sensor, flow sensor, and CO2 sensor) is provided through

the definition of specialized sensor classes that subclass Sensor. The class Measurement has data

properties to keep track of the current sensor value, the time, and the units associated with the

measurement.

Two sensor rules (see Figure 5.6) are supported: (1) To determine if a sensor reading is

beyond the acceptable range, (2) To determine the room in which the sensor is located. The first

rule uses the classes Sensor and Measurement and associate properties. The second rule uses the

classes Sensor and Geometry.
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Figure 5.5: Sensor ontology classes and properties.

Jena Rules

// Simple rule to check if a sensor is broken ...

[ SensorRule01: (?s rdf:type sen:Sensor) (?s sen:hasMeasurement ?m) (?m sen:hasValue ?r)

isOutOfRange(?m ?t) -> (?s sen:isBroken ?t) ]

Figure 5.6: Rule for intersection of HVAC zones.
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Figure 5.7: Fault detection and diagnostic ontology classes and properties.

Jena Rules

// General purpose rule for recording when a fault has occurred.

[FDDRule01: (?st rdf:type fdd:State) (?st fdd:hasCurrentValue ?csv)

(?st fdd:belongsToFault ?F) (?st fdd:hasExpectedValue ?esv)

notEqual(?csc,?esv) -> (?F fdd:hasOccured ’’true’’) print(’faultoccured’)]

Figure 5.8: Rule for detecting a faulty state.
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5.1.4 Fault Detection and Diagnostic Ontologies, Rules, and Procedures

The fault detection and diagnostic (FDD) ontology (see Figure 5.7) captures the knowledge

needed for: (1) identifying that a fault exists, and (2) systematically diagnosing the fault to find

the root causes. The main classes in this process are State, Fault, Hypothesis and Evidence. State

is a high-level state representation that has data values – see, for example, the boolean properties

hasExpectedValue and hasCurrentValu – common to many types of state representation. Our

experimental FDD ontology also supports DTSState, a subclass of State, designed to represent

states associated with dynamic thermal sensation (DTS).

ID

Evidence

Hypothesis

isValid
ID

T/F

ID
hasHypothesisID

Fault

hasID
ID

State

currentValue

T/F
expectedValue

isViolated

hasEvidenceID

isVerified

indicates

has

supportedBy

T/F

T/F

T/F

hasStateName

Figure 5.9: Flow chart for identification of faults and identification and verification of hypotheses
and supporting evidence.

Figure 5.9 is a flowchart for fault detection and the identification and verification of rel-
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evant hypotheses and supporting evidence. The step-by-step procedure for detecting a fault and

diagnosing its causes corresponds to a traversal through the classes State, Fault, Hypothesis and

Evidence. A fault is indicated when the current and expected values of a state are in conflict.

Each fault has a hypothesis that needs to be supported by evidence. The evaluation procedure

works backwards. Verification of the evidence is a prerequisite to validating a hypothesis. In an

implementation of the procedure, data properties indicate whether or not a fault has been verified,

whether or not an hypothesis has been verified, and whether or not supporting evidence is valid.

This procedure is mirrored by set of rules shown in Figure 5.8.

5.2 Surrounding Environment Ontologies and Rules

The surrounding environment ontologies and rules include model support for the building

occupants and weather phenomena.

5.2.1 Occupant Ontology and Rules

While several studies [1, 25] have recently identified the importance of including inhabitants

as an integral part of simulation and control of energy systems and indoor environments, present-

day procedures rely on predetermined occupancy schedules and/or empirical estimates based on

sensors. For fault detection and diagnostic analysis of mechanical equipment in buildings, solutions

are complicated by the strong coupling of human presence, comfort and behavior, to details of the

building state (e.g., whether or not a window is open) and surrounding environment (e.g., what

side of the building is in the sun).

Figures 5.10 and 5.11 take a first step toward the development of an ontology and rules

for modeling occupant presence. The ontology expands upon the work of Mahdavi and Taheri [27],

and considers four sub-category problems: (1) location, (2) actions (e.g., open/close window), (3)

attitudes (e.g., thermal sensation) and (4) preferences in terms of temperature and moisture of the

air. We model occupant location with a point geometry in the building, Figure 5.11 shows two

rules that infer occupant’s location and thermal comfort respectively.
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Figure 5.10: Schematic of occupant ontology classes and properties.

Jena Rules

// Determine romm in which an occupant is located.

[ OccupantRule01: (?r rdf:type bld:Room) (?o rdf:type occ:Occupant)

(?o occ:hasOccupantGeometry ?og) (?og geom:hasGeometry ?ojts)

(?r bld:hasGeometry ?rg) (?rg geom:hasGeometry ?rjts)

getPointInPolygon(?ojts,?rjts,?t) equal(?t, "true"^^xs:boolean) ->

(?r bld:hasOccupant ?o) print(?o,’OccupantisInRoom’,?r,?t)]

// When positive values of DTSIndex are greater than 0.3, an occupant is not comfortable.

[ OccupantRule02: (?oc rdf:type occ:Occupant) (?oc occ:hasDTSIndex ?v) greaterThan(?v,0.3)

(?oc occ:hasDTSState ?dts) -> print(?oc,’isComfortable’ "false"^^xs:boolean)

(?oc occ:isComfortable "false"^^xs:boolean)

(?dts fdd:hasCurrentValue "false"^^xs:boolean)]

Figure 5.11: Rule for occupants location and thermal comfort.
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Figure 5.12: Partial view of weather ontology classes and properties (Source: Adapted from Staroch
[38]).
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5.2.2 Weather Ontology and Rules

Based upon the work of Staroch [38], Figure 5.12 presents the concepts that are used in

Weather Ontology. The main concepts are Weather Phenomenon, Weather Report, and Weather

State. The weather state is composed of different Weather phenomenon class holds the physical

attributes regarding the weather such as the temperature, pressure, solar radiation, wind and cloud.

Weather data is obtained from current Weather [42], a free and open source API (application

programming interface) that provides access to historical as well as current and future forecast

weather data from an online server. A Weather report can include data about the current weather

or a forecast, specified in terms of start time and duration. For example, a medium range weather

report has duration of more than 3 hours, with a start time of less than 12 hours into the future.

Jena Rules

// Use current temperature value to identify a frosty temperature condition ...

WeatherRule01: (?t rdf:type we:Temperature) (?t we:hasTemperatureValue ?tv)

lessThan(?tv,0) -> (?t rdf:type we:Frost)

(?t, we:isCondition, "true"^^xs:boolean) print(?tv,’FrostCondition’)]

// Use current temperature value to identify a heat temperature condition ...

WeatherRule02: (?t rdf:type we:Temperature) (?t we:hasTemperatureValue ?tv)

greaterThan (?tv,30) -> (?t rdf:type we:Heat)

(?t, we:isCondition, "true"^^xs:boolean) print(?tv,’Heat’)

Figure 5.13: Rules to detect weather condition.

Figure 5.13 presents two rules that use the current temperature value to identify a frosty and

heat temperature conditions. A Frost temperature condition occurs when observed temperature is

below 0 C. A Heat temperature condition occurs when observed temperature is above 30 C. Similar

intervals of temperature range can be defined for cold, below room temperature (at least 10 C and

less than 20 C), and so forth.
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Chapter 6

Case Study Problem

To examine capabilities of the framework for knowledge-based fault detection and diagnostic

analysis, this chapter presents a case study test problem where faults in HVAC equipment are

triggered by occupant discomfort in a conditioned space. The case study shows how heterogeneous

data and knowledge from a variety of sources and domains can be integrated into a single semantic

graph, how ontologies and rules can work together to detect the existence of a fault, and then

diagnose the causes by systematically considering hypotheses and the supporting evidence.

6.1 Problem Description

Figure 6.1 is a plan view of the case study problem setup, consisting a small two-room

building architecture, three sensors and three building occupants. See Appendix A for a complete

description of the floorplan geometry and sensor characteristics. Not shown is the mechanical

equipment responsible for conditioning the room temperature and achieving acceptable levels of

occupant comfort. The mechanical equipment consists of an air handling unit (AHU). The AHU

has a coil (i.e., for heating and cooling). The water temperature that flows to the coil is managed

by a valve.

Three rules are responsible for the operation and classification of faults in the mechanical

equipment:

• Close the valve when the coil temperature is the same as coil setpoint.
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Occupant 1 Occupant 2

Occupant 3

Room 1 Room 2

Figure 6.1: Plan view of two-room building architecture, sensors, and building occupants.

• If the valve is shut, the temperature of the air that passes through the coil has to be the

same. Otherwise, the valve is leaky

• If the a valve fails, the AHU fails too.

One measure to evaluate thermal comfort for the occupants is through computing the thermal

sensation as a function of environmental factors such as outdoor and indoor temperature and

some personal factors such as clothing levels. A dynamic model to compute thermal sensation

(DTS) index to was introduced by Chen and co-workers [11]. According to thermal sensation scale

suggested by ASHRAE [3], an acceptable range for occupancy comfort is the interval [−0.3, 0.3].

By comparing the current and expected values in a DTS state, the rules in Figure 5.8 will infer

the existence of a faulty state, and then systematically examine the evidence associated with each

hypothesis to find a root cause.

6.2 Snapshot of Semantic Graph Model Assembly

Figure 6.2 shows a snapshot of the building, equipment, sensor, weather, and FDD on-

tologies integrated together, and populated with system data. The semantic graph model contains

instances of ontologies (individuals), relationships among individuals (often spanning domains),
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Figure 6.2: Snapshot of fully assembled semantic graph model. The data values will be computed
and filled by the rules.
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Class Individual Description

State DTSState 1 The DTS index in between [−0.3, 0.3].

Fault TCFault 1 The DTS index lies outside the interval [−0.3, 0.3] when the
air-handling unit is operating.

Evidence

Evidence 1 The CO2 sensor reading is above the normal range the and
that shows the window is open.

Evidence 2 The outdoor temperature is greater than room setpoint.

Evidence 3 A sensor’s reading is outside the range that indicates the
sensor is broken.

Evidence 4 A component is AHU is malfunctioning that results in an
abnormal operation of AHU.

Hypothesis

Hypothesis 1 Warm outside air is leaking into the room through an open
window –> Supported by Evidence 1 and Evidence 2.

Hypothesis 2 The serving air-handling unit has abnormal operation. –>
Supported by Evidence 3.

Hypothesis 3 The room sensor that provides feed-back to AHU reaching
its target setpoint is broken –> Supported by Evidence 4.

Table 6.1: Instances of states, hypotheses, and evidence for identifying the cause for abnormal
occupant thermal comfort value.
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Jena Rules

// Evidence Rule 01: A window is open base on C02 concentration in the room.

// -------------------------------------------------------------------------

[ EvidenceRule01: (?cs rdf:type sen:CO2Sensor) (?cs bld:isInRoom ?room)

(?r bld:hasWindow ?w)(?cs bld:hasReading ?m) lessThan(?m,600)

greaterThan(?m,400) (?e fdd:hasEvidenceID ?n) equal("1"^^xs:integer,?n) ->

(?w building:isOpen "true"^^xs:boolean) (?e fdd:isTrue "true"^^xs:boolean) ]

// Evidence Rule 02: Outside temperature is warmer than the setpoint.

// -------------------------------------------------------------------------

[ EvidenceRule02: (?r rdf:type bld:Room) (?r bld:hasSetpoint ?sp)

(?t rdf:type we:Temperature) (?t we:hasTemperatureValue ?tv)

greaterThan(?tv,?sp) equal("2"^^xs:integer,?n) (?e rdf:type fdd:Evidence)

(?e fdd:hasEvidenceID ?n) -> (?e fdd:isTrue "true"^^xs:boolean) ]

// Evidence Rule 03: Temperature sensor in a room is broken.

// -------------------------------------------------------------------------

[EvidenceRule03: (?ts rdf:type sen:TemperatureSensor) (?ts bld:isInRoom ?room)

(?ts bld:isBroken ?t) equal(?t, "true"^^xs:boolean) equal("3"^^xs:integer,?n)

(?e rdf:type fdd:Evidence)

(?e fdd:hasEvidenceID ?n ->(?e fdd:isTrue "true"^^xs:boolean) ]

// Evidence Rule 04: Malfunction is in the Air Handling Unit.

// -------------------------------------------------------------------------

[EvidenceRule04: (?AHU rdf:type eq:AHU) (?v eq:hasNormalOperationalStatus "false"^^xs:boolean)

equal(?t, "true"^^xs:boolean) equal("4"^^xs:integer,?n)

(?e rdf:type fdd:Evidence)-> (?e fdd:isTrue "true"^^xs:boolean) ]

// FDD Rule 02: Indicate when thermal comfort in a conditioned room has expected value.

// ------------------------------------------------------------------------------------

[FDDRule02: (?AHU rdf:type eq:AHU)(?AHU eq:servesRoom ?r)(?r bld:hasOccupant ?oc)

(?oc occ:hasDTSState ?dts) (?AHU eq:status ?s)

equal(?s "Operating") -> print(’Expected DTS’,?oc)

(?dts fdd:hasExpectedValue "true"^^xs:boolean) ]

Figure 6.3: Fault detection diagnostic rules for operation of a heating coil and for checking evidence
3 and evidence 4.
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and data values associated with various individuals.

From a fault detection and diagnostics standpoint, the main points to note are as follows:

• Occupant 1 is located in Room 1.

• Room 1 has window, a temperature sensor (Sensor 001), and a carbon dioxide sensor (Sensor

002). HVAC services are provided to Room 1 by air handling unit AHU 001. AHU 001 has

a coil (Coil 001); Coil 001 has a valve (Valve 001).

• The datatype property for AHU001 “normal Operation” is set to false. This setting is based

on the system data and the result of equipment rules 01 through 03 being triggered.

• The setpoint temperature for Room 1 is 24 C, but the current temperature reading for Sensor

001 is 57 C.

• OccupantRule02 sets the ”isComfortable” datatype property for Occupant1 to “false” as the

result of a DTSindex value of 4.

• Occupant 1 has dynamic thermal sensation (DTS) state DTSState 1. DTSState 1 indicates

a thermal comfort fault (TCFault1), which will be diagnosed by looking at three hypotheses

and their supporting evidence.

• The relationship between Hypotheses 1 through 3 and supporting evidence is shown along

the bottom of Figure 6.2. Users may query the semantic graph to find the correct hypotheses

and valid supporting evidence.

6.3 Test Problem Scenario and Hypothesis Evaluation Procedure

The test problem scenario assumes that the numerical value of occupant thermal comfort

in a conditioned room has fallen outside the acceptable range. This is detected by FDD Rule 01.

With this scenario in place, any one of three hypotheses could potentially be true. To correctly

identify the correct hypothesis, the system requires to reason among the facts and identify the

evidence existing in different domains,

• The outdoor temperature is higher than the setpoint (weather) and the window in the room

is open (building, sensor, weather).
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• The air-handling unit is malfunctioning (mechanical equipment),

• The room sensor providing feed-back to the air-handling unit to reach its target setpoint is

broken (sensor).

As a result, this task will require comprehensive reasoning over multiple domains and identifying

the supporting evidence to the most probable hypothesis. To achieve this, we used the proposed

framework and implemented ontologies for weather, building, occupant, sensor and equipment

domains. The ontologies are populated with data. However, in general this data will be obtained

from simulations or real buildings.

6.4 Synthesis of Multi-domain Rules

Table 6.1 describes the instances for key concepts of FDD ontology as they apply to the

test case problem, and explains details of the individuals for FDD ontology. For the case study

problem, the chain of dependency relationships between hypotheses and supporting evidence is as

follows:

• Hypothesis 1 is that warm outside air is leaking into the room through an open window.

Evaluation of this hypothesis is supported by execution of two evidence rules, EvidenceRul01

and EvidenceRule02.

• Hypothesis 2 is that the serving air-handling unit has abnormal operation. Evaluation of this

hypothesis is supported execution of EvidenceRule03.

• Hypothesis 3 states that the room sensor that provides feedback to AHU reaching its target

setpoint is broken. Supporting evidence is provided by the execution of EvidenceRule04.

Figure 6.3 presents the fault detection diagnostic rules for: (1) Operation of a heating coil, (2)

Checking evidence 3 and evidence 4, and (3) Detecting when the thermal comfort in a conditioned

room matches its expected value.
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Figure 6.4: Snapshot of multi-domain evaluation and forward chaining of rules.
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6.5 Multi-domain Rule Evaluation

Figure 6.4 shows a snapshot of multi-domain evaluation and forward chaining of rules. From

an evaluation standpoint, the eight rules can be clustered into two pathways, the first focusing on

fault detection and the second focusing on diagnostic investigation of probable causes, represented

as hypotheses and supporting evidence.

6.5.1 Fault Detection

The first pathway identifies the existence of a fault and is covered by rules 1 through 4:

• Rule 01: Use OccupantRule01 (see Figure 5.11) to determine when an occupant is located in

a room.

• Rule 02: Use FDDRule02 (see Figure 6.3) to determine the expected comfort of an occupant.

• Rule 03: Use OccupantRule02 (see Figure 5.11) to determine the current comfort of an

occupant.

• Rule 04: Use OccupantRule02 (see Figure 5.11) to compute when a fault has occurred.

determine in which room an occupant is located and whether or not the current value of occupant

comfort matches the expected value of comfort. In the snapshot, activation of Rule 01 determines

that: Occupant1 is located in Room1. A separate execution would also determine that Occupant2

is also located in Room1. Activation of Rule 02 is based upon the output of Rule 01, state data

from the building domain, the relationship of the air handling unit to Room1. In the snapshot

trace, the output of Rule 02 states that DTSState for Occupant1 is true and that Occupant1 has

a DTSIndex of 4. A fault occurs when there is a discrepancy between the current and expected

values of comfort (see F7 and F9), as indicated by the values of current and expected values of

DTSState.
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6.5.2 Fault Diagnostics

By systematically examining hypotheses and supporting evidence, the second pathway

diagnoses the causes of a fault. For the scenario outlined in Figure 6.4, this procedure is covered

by rules 5 through 8:

• Rule 05: Use EquipmentRule01 (see Figure 5.4) to determine if a valve is shut.

• Rule 06: Use EquipmentRule02 (see Figure 5.4) to determine if the coil has failed.

• Rule 07: Use EquipmentRule03 (see Figure 5.4) to determine whether or not the air handling

unit has failed.

• Rule 08: If EvidenceRule04 (see Figure 6.3) evaluates to true then Hypothesis 3 is true.

The rule for determining whether or not the valve is shut takes input values from the Coil001

CoilSetpoint (44) and CoilTemperature (44) (see F12 and F13), and checks to verify that the coil

has a valve. In our scenario, the rule output (F14) is true, indicating that Valve001 is shut, and

hence in Rule 06 normal operation evaluates to false. A simple check to verify that the coil belongs

to air handling unit AHU001 generates the conclusion that normal operation of the AHU is false (see

F19). Finally, input from the room occupancy test and a test to verify that AHU001 is connected

to Room1, leads to the conclusion Evidence 4 is supported and Hypothesis 3 is valid. Finally, we

note that except for the room occupancy information feeding into Rule 08, the fault detection and

diagnosis pathways operate independently.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

We have proposed in this report a knowledge-based framework for fault detection and

diagnostics. The underlying process closely mimics the “thinking process” that humans follow in

identifying and diagnosing the causes of a fault. Thus, the steps of gathering data for the par-

ticipating domains, populating ontologies with individuals, and using rules to detect and diagnose

faults and their causes is easy for humans to understand and generally applicable to other domains

(e.g., building energy, automotive, health care) for FDD purposes. Capabilities of the prototype

implementation has been demonstrated by working step by step through the procedure of detecting

and diagnosing the source of faults in an HVAC system.

Key advantages of this approach include: (1) it is decoupled from the system simulation,

(2) it is comprehensive, and (3) it is scalable. In fact, the process for expanding an application to

include new domains as they come along is very straight forward. The inference-based rules are

guaranteed to check at anytime a changed occurred in a an ontology resulting in event-driven fault

detection and diagnostic. Finally, inference-based rules provide mechanisms in capturing chain

effects that exists in the nature of system failure – for example, if a valve is not operational, the

evidence that AHU is not operating properly also holds true.
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7.2 Future Work

In our prototype implementation, the small two-room building model extracted data from a

custom “system data model” currently under development. We expect that a more mature version

of this ontology would extract semantic information from instances of building information models

(BIM) such as the Industry Foundation Class (IFC). Future work will also include deployment

in real building systems. We anticipate that the proposed methodology will be integrated into

building automation systems (BAS) and support investigations where analytic built-in functions

are implemented in the condition part of inference-based rules. These functions will perform time-

history analyses to identify a faulty state for the system. We anticipate a trend where formal

approaches to analysis are used to irregularities in building performance, which are indicators of

possible system faults. Moreover, we will investigate strategies for taking control actions based on

recognized faults of the system.
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Appendix A

Building System Data Model

This appendix contains a complete description of the building system data model repre-

sented in XML. The data model formulation is inspired by OpenStreetMap [30] (OSM) and its

use of only three types of tag – <node>, <way> and <relation> – and associated attributes to

represent an extremely wide range of system structures found in urban areas. Thus, we begin with

<node>, <way> and <relation> and add new tags for component (i.e., <component>) and shape

(i.e., <shape>). In a departure from OSM, our long-term intent is that components will have var-

ious forms of continuous and discrete behavior. Attributes inside the shape (i.e., <shape>) specify

how the component, way, or relation should be visualized.

We employ JAXB technology [19] to import the XML data files into the system data model.

The data model formulation supports hashmaps of attribute data within each of the tagsets and,

as such, is very general and naturally extensible.

A.1 System Data Model (SystemDataModel.xml)

The following XML contains details (i.e., room geometry, sensors, doors, windows and

portals) for the two-room model shown in Figure 6.1.

<?xml version="1.0" encoding="UTF-8"?>

<SystemDataModel author="Mark Austin" date="2017-06" source="UMD">
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<!-- ======================================= -->

<!-- Part 01: Building Data Model Attributes -->

<!-- ======================================= -->

<attribute key = "latitude" value = " 45.00"/>

<attribute key = "longitude" value = "-46.00"/>

<attribute key = "orientation" value = "0.0"/>

<attribute key = "units" value = "m"/>

<!-- =================================== -->

<!-- Part 02: Boundary Nodes and Sensors -->

<!-- =================================== -->

<!-- Corner point nodes -->

<node ID="001" x = " 0.0" y = "0.0" type="Point" />

<node ID="002" x = " 8.5" y = "0.0" type="Point" />

<node ID="003" x = " 9.5" y = "0.0" type="Point" />

<node ID="004" x = "10.0" y = "0.0" type="Point" />

<node ID="005" x = "13.5" y = "0.0" type="Point" />

<node ID="006" x = "14.5" y = "0.0" type="Point" />

<node ID="007" x = "15.0" y = "0.0" type="Point" />

<node ID="008" x = " 0.0" y = "5.0" type="Point" />

<node ID="009" x = " 1.5" y = "5.0" type="Point" />

<node ID="010" x = " 3.0" y = "5.0" type="Point" />

<node ID="011" x = " 7.0" y = "5.0" type="Point" />

<node ID="012" x = " 8.5" y = "5.0" type="Point" />

<node ID="013" x = "10.0" y = "5.0" type="Point" />

<node ID="014" x = "12.5" y = "5.0" type="Point" />

<node ID="015" x = "13.5" y = "5.0" type="Point" />

<node ID="016" x = "15.0" y = "5.0" type="Point" />

<!-- =============================== -->

<!-- Part 03: Ways for Wall Segments -->

<!-- =============================== -->

<!-- Sequence of ways defining boundary of AVW 2206 ... -->

<way ID="001" type="Boundary">

<description text="Interior Office Wall Segment." />

<attribute key = "type" value = "InteriorWall"/>

<attribute key = "material" value = "drywall"/>

<attribute key = "thickness" value = "20"/>

<attribute key = "units" value = "cm"/>

<node ID="002" />

<node ID="001" />

<node ID="008" />

<shape type = "LineString">

<attribute key = "width" value = "6.0"/>

</shape>

</way>

<way ID="002" type="Boundary">

<description text="Exterior Wall Segment." />
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<attribute key = "type" value = "ExteriorWall"/>

<attribute key = "material" value = "Masonry"/>

<attribute key = "thickness" value = "30"/>

<attribute key = "units" value = "cm"/>

<node ID="008" />

<node ID="009" />

<shape type = "LineString">

<attribute key = "width" value = "9.0"/>

</shape>

</way>

<way ID="003" type="Boundary">

<description text="Exterior Wall Segment." />

<attribute key = "type" value = "ExteriorWall"/>

<attribute key = "material" value = "Masonry"/>

<attribute key = "thickness" value = "30"/>

<attribute key = "units" value = "cm"/>

<node ID="010" />

<node ID="011" />

<shape type = "LineString">

<attribute key = "width" value = "9.0"/>

</shape>

</way>

<way ID="004" type="Boundary">

<description text="Exterior Wall Segment." />

<attribute key = "type" value = "ExteriorWall"/>

<attribute key = "material" value = "Masonry"/>

<attribute key = "thickness" value = "30"/>

<attribute key = "units" value = "cm"/>

<node ID="012" />

<node ID="013" />

<shape type = "LineString">

<attribute key = "width" value = "9.0"/>

</shape>

</way>

<way ID="006" type="Boundary">

<description text="Interior Office Wall Segment." />

<attribute key = "type" value = "InteriorWall"/>

<attribute key = "material" value = "drywall"/>

<attribute key = "thickness" value = "20"/>

<attribute key = "units" value = "cm"/>

<node ID="013" />

<node ID="004" />

<node ID="003" />

<shape type = "LineString">

<attribute key = "width" value = "6.0"/>

</shape>

</way>

<!-- Sequence of ways defining boundary of AVW 2210 ... -->

<way ID="007" type="Boundary">

<description text="Interior Office Wall Segment." />
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<attribute key = "type" value = "InteriorWall"/>

<attribute key = "material" value = "drywall"/>

<attribute key = "thickness" value = "20"/>

<attribute key = "units" value = "cm"/>

<node ID="005" />

<node ID="004" />

<node ID="013" />

<shape type = "LineString">

<attribute key = "width" value = "6.0"/>

</shape>

</way>

<way ID="008" type="Boundary">

<description text="Exterior Wall Segment." />

<attribute key = "type" value = "ExteriorWall"/>

<attribute key = "material" value = "Masonry"/>

<attribute key = "thickness" value = "30"/>

<attribute key = "units" value = "cm"/>

<node ID="013" />

<node ID="014" />

<shape type = "LineString">

<attribute key = "width" value = "9.0"/>

</shape>

</way>

<way ID="009" type="Boundary">

<description text="Exterior Wall Segment." />

<attribute key = "type" value = "ExteriorWall"/>

<attribute key = "material" value = "Masonry"/>

<attribute key = "thickness" value = "30"/>

<attribute key = "units" value = "cm"/>

<node ID="015" />

<node ID="016" />

<shape type = "LineString">

<attribute key = "width" value = "9.0"/>

</shape>

</way>

<way ID="010" type="Boundary">

<description text="Interior Office Wall Segment." />

<attribute key = "type" value = "InteriorWall"/>

<attribute key = "material" value = "drywall"/>

<attribute key = "thickness" value = "20"/>

<attribute key = "units" value = "cm"/>

<node ID="016" />

<node ID="007" />

<node ID="006" />

<shape type = "LineString">

<attribute key = "width" value = "6.0"/>

</shape>

</way>

<!-- Window portals for AVW 2206 and AVW 2210 ... -->

<way ID="011" type="Portal">
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<description text="Window portal for AVW 2206." />

<attribute key = "type" value = "WindowOpening"/>

<node ID="009" />

<node ID="010" />

</way>

<way ID="012" type="Portal">

<description text="Window portal for AVW 2206." />

<attribute key = "type" value = "WindowOpening"/>

<node ID="011" />

<node ID="012" />

</way>

<way ID="013" type="Portal">

<description text="Window portal for AVW 2210." />

<attribute key = "type" value = "WindowOpening"/>

<node ID="014" />

<node ID="015" />

</way>

<!-- Doorway portals for AVW 2206 and AVW 2210 ... -->

<way ID="014" type="Portal">

<description text="Doorway for AVW 2206." />

<attribute key = "type" value = "Doorway"/>

<node ID="002" />

<node ID="003" />

</way>

<way ID="015" type="Portal">

<description text="Doorway for AVW 2210." />

<attribute key = "type" value = "Doorway"/>

<node ID="005" />

<node ID="006" />

</way>

<!-- ============================= -->

<!-- Part 04: AVW office relations -->

<!-- ============================= -->

<!-- Relations for room boundaries ... -->

<relation ID="001" type="CompositeBoundary">

<description text="AVW Rm 2206 (Room Boundary)" />

<attribute key = "function" value = "Office"/>

<way ID="001" />

<way ID="002" />

<way ID="011" />

<way ID="003" />

<way ID="012" />

<way ID="004" />

<way ID="006" />

<way ID="014" />

<shape type = "MultiPolygon">

<attribute key = "opacity" value = "0.3"/>
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<attribute key = "color" value = "LightBlue"/>

</shape>

</relation>

<relation ID="002" type="CompositeBoundary">

<description text="AVW Rm 2210 (Room Boundary)" />

<attribute key = "function" value = "Office"/>

<way ID="007" />

<way ID="008" />

<way ID="013" />

<way ID="009" />

<way ID="010" />

<way ID="015" />

<shape type = "MultiPolygon">

<attribute key = "opacity" value = "0.3"/>

<attribute key = "color" value = "LightBlue"/>

</shape>

</relation>

<!-- Relations for individual rooms ... -->

<relation ID="003" type="Room">

<description text="AVW Rm 2206 (Faculty Office)" />

<attribute key = "function" value = "Office"/>

<attribute key = "area" value = "50.0"/>

<attribute key = "units" value = "m^2"/>

<relation ID="001" />

</relation>

<relation ID="004" type="Room">

<description text="AVW Rm 2210 (Faculty Office)" />

<attribute key = "function" value = "Office"/>

<attribute key = "area" value = "25.0"/>

<attribute key = "units" value = "m^2"/>

<relation ID="002" />

</relation>

<!-- ============================================ -->

<!-- Part 05: Architectural and Sensor Components -->

<!-- ============================================ -->

<!-- Sensor Components -->

<component ID="001" x = " 2.5" y = "2.5" type="Sensor">

<description text="Smoke Detector." />

<attribute key = "measurement" value = "Smoke"/>

<attribute key = "name" value = "Smell-Smoke-Call-911"/>

<attribute key = "status" value = "Broken"/>

<shape type = "Circle">

<attribute key = "radius" value = "3.0"/>

<attribute key = "color" value = "Red"/>

</shape>

</component>

<component ID="002" x = " 7.5" y = "2.5" type="Sensor">
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<description text="Room Thermometer." />

<attribute key = "measurement" value = "Temperature"/>

<attribute key = "name" value = "Excellanto Temp-001"/>

<attribute key = "status" value = "Operating"/>

<shape type = "Square">

<attribute key = "side" value = "5.0"/>

<attribute key = "opacity" value = "1.0"/>

<attribute key = "color" value = "Green"/>

</shape>

</component>

<component ID="003" x = " 12.5" y = "2.5" type="Sensor">

<description text="Room Thermometer." />

<attribute key = "measurement" value = "Temperature"/>

<attribute key = "name" value = "Excellanto Temp-001"/>

<attribute key = "status" value = "Operating"/>

<shape type = "Rectangle">

<attribute key = "width" value = "5.0"/>

<attribute key = "height" value = "5.0"/>

<attribute key = "opacity" value = "1.0"/>

<attribute key = "color" value = "Green"/>

</shape>

</component>

<!-- Building Architecture Components -->

<component ID="004" type="Window">

<description text="Double-Paned Office Window" />

<attribute key = "width" value = "1.0"/>

<attribute key = "height" value = "2.0"/>

<attribute key = "units" value = "m"/>

<attribute key = "status" value = "Open" />

<shape type = "Rectangle">

<attribute key = "opacity" value = "1.0"/>

<attribute key = "color" value = "Green"/>

</shape>

</component>

</SystemDataModel>

Key points to note are as follows:

1. Rooms are specified in two parts. Relations 001 and 002, i.e.,

<relation ID="001" type="CompositeBoundary"> ...

<relation ID="002" type="CompositeBoundary"> ...
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define the geometry of Rooms 1 and 2, respectively. The relations are of type “composite

boundary” because the room perimeters are mixtures of physical wall elements and portals,

windows and doors. The abbreviated details of relations for Rooms 1 and 2 are specified as:

<relation ID="003" type="Room">

<description text="AVW Rm 2206 (Faculty Office)" />

<relation ID="001" />

</relation>

<relation ID="004" type="Room">

<description text="AVW Rm 2210 (Faculty Office)" />

<relation ID="002" />

</relation>

On the software backend, connections between the various types of relations and components,

ways and sequences of nodes, is managed by a series of hashmaps.

2. Notice that the room specifications do not contain references to the sensors (i.e., components

001 through 003). Instead, we use spatial reasoning to infer in which room each sensor is

located.
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