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Designing computational models that can understand language at a human level is

a foundational goal in the field of natural language processing (NLP). Given a sentence,

machines are capable of translating it into many different languages, generating a corre-

sponding syntactic parse tree, marking words that refer to people or places, and much

more. These tasks are solved by statistical machine learning algorithms, which leverage

patterns in large datasets to build predictive models. Many recent advances in NLP are due

to deep learning models (parameterized as neural networks), which bypass user-specified

features in favor of building representations of language directly from the text.

Despite many deep learning-fueled advances at the word and sentence level, however,

computers still struggle to understand high-level discourse structure in language, or the

way in which authors combine and order different units of text (e.g., sentences, paragraphs,

chapters) to express a coherent message or narrative. Part of the reason is data-related, as

there are few existing datasets for contextual language-based problems, and some tasks

are too complex to be framed as supervised learning problems; for the latter type, we



must either resort to unsupervised learning or devise training objectives that simulate the

supervised setting. Another reason is architectural: neural networks designed for sentence-

level tasks require additional functionality, interpretability, and efficiency to operate at

the discourse level. In this thesis, I design deep learning architectures for three NLP

tasks that require integrating information across high-level linguistic context: question

answering, fictional relationship understanding, and comic book narrative modeling. While

these tasks are very different from each other on the surface, I show that similar neural

network modules can be used in each case to form contextual representations. I conclude

by discussing potential avenues for future research that seeks to understand increasingly

large and complex context.
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Chapter 1

Introduction

1.1 Overview

Designing computational models that can understand language at a human level is a

foundational goal in the field of natural language processing (NLP). Given a sentence,

machines are now capable of translating it into many different languages, generating a

corresponding syntactic parse tree, and marking words within the sentence that refer to

people or places. These tasks are solved by statistical machine learning (ML) algorithms,

which leverage patterns in large datasets to build predictive models. Many recent advances

in NLP are due to deep learning models, which distinguish themselves from other ML

models by building representations of language directly from the text instead of relying on

user-specified features. My thesis explores deep learning for language-based tasks that

go beyond the sentence level, requiring understanding of both immediate and high-level

context to solve.

Deep learning refers to a family of models called deep neural networks that pass

their input through multiple layers, each of which performs a nonlinear transformation. In

the common training paradigm of supervised learning, networks learn from large datasets

of input/output pairs; for example, consider the task of machine translation, where neural

networks reach state-of-the-art performance when trained on parallel corpora containing

millions of sentence-to-sentence translations (e.g., English-to-French). The deeper and
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larger the network, the more labeled examples it needs to generalize. Many low-level tasks

have large annotated datasets that were created decades ago (e.g., Europarl, OntoNotes,

Penn Treebank), making them popular choices for deep learning researchers.

Despite these advances at the word and sentence level, however, computers still

struggle to understand high-level discourse structure in language, or the way in which

authors combine and order different units of text (e.g., sentences, paragraphs, chapters) to

express a coherent message or narrative. Part of the reason is data-related, as there are no

existing datasets for many contextual language-based problems, and some tasks are too

complex to be framed as supervised learning problems. For the latter type, we must either

resort to unsupervised learning or devise training objectives that simulate the supervised

setting.

1.2 Roadmap

In this thesis, I design deep learning architectures for three different NLP tasks that require

integrating information across high-level linguistic contexts: question answering, fictional

relationship understanding, and comic book narrative modeling. On the surface these tasks

are very different from one another, and if we were to use a traditional feature-engineering

based approach to solve them, each task’s feature set would be very different as well.

However, within the deep learning framework, the neural network architectures designed

for these tasks all use the same building blocks; I will go over these basic modules in

Chapter 2. The following three chapters, detailed more fully below, correspond to each of

the three tasks. Finally, Chapter 7 concludes the thesis by discussing the pros and cons
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of deep learning methods for large-scale language understanding and also presents future

directions for this kind of research.

1.2.1 Question Answering from Paragraphs and Conversations

Computerized question answering (QA) is a diverse subfield of NLP. There are many

types of questions that we may want a computer to be able to answer, of which we focus

on (1) factoid questions, whose answers are well-known entities (e.g., trivia questions),

and (2) logical questions, which require parsing natural language into an intermediate

logical representation that is then executed on a database to retrieve the answer. While

fundamentally different from one another, both of these types contain instances where

discourse understanding is required to answer the question.

Chapter 3 focuses specifically on quiz bowl, a factoid QA trivia game whose questions

are similar to those in the TV show “Jeopardy!”. In the quiz bowl setting, questions are four

to five sentences long, each of which independently identifies the answer. We formulate

quiz bowl as a supervised classification problem using a large dataset of question-answer

pairs; this setting is most similar to the low-level NLP tasks discussed earlier. Here most

of our modeling is at the sentence-level, and we look at simple techniques for aggregating

information across the entire question.

In Chapter 4, I look at sequential semantic parsing, which requires models to learn

how to convert natural language questions to an SQL-like parse language. The answers to

these sequential questions are located within corresponding HTML tables from Wikipedia,

which act as question-specific databases. Each sequence contains multiple questions that

3



often require reasoning about information from previously-observed context (e.g., “What

are all of the countries that participated in the 2012 Olympics? Of those, which won at

least two gold medals?”). Unlike the quiz bowl case, we do not have full supervision for

this task; thus, we treat it as a structured prediction problem solved using a reward-guided

search process reminiscent of reinforcement learning methods.

1.2.2 Understanding Dynamic Fictional Relationships in Novels

Both of the QA tasks involve relatively short contexts, but in many language domains human

readers must make sense of large, complex text. Consider novels, which contain character-

centric narratives; relationships between characters develop chapter by chapter, and events

in the story often have huge impact on these relationships. Developing computer models

for understanding stories is a far cry from sentential NLP tasks as it requires integrating

information across huge contexts. Furthermore, the task requires processing dependencies

that span thousands of sentences or more, not just a paragraph as in the QA tasks.

In Chapter 5, I design a new deep neural network architecture for temporally model-

ing fictional relationships across entire books. The network is trained in an unsupervised

fashion, as there is no existing annotated dataset for this task and creating one is not

possible given the subjective nature of the task. Since evaluation is a challenge without

ground-truth annotations, I propose a novel interpretable dictionary layer whose output

can be directly analyzed by human evaluators.
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1.2.3 Making Connective Inferences in Comic Books

In the real world, humans process many different sources of information, not just text.

For example, comic books have panels that contain both visual information (in the form

of artwork) and language by way of dialogue. Stories are told in sequences of panels; to

understand the action and dialogue in a particular panel, readers must have understood

everything that happened in the preceding panels. One interesting aspect of comics is

that their artists cannot possibly draw every action of every scene due to the physical

constraints of the page. In practice, this limitation manifests itself in adjacent panels that

often differ wildly in terms of space and time. Thus, integrating information across comic

book panels is more difficult than in video frames, as readers must make many connective

inferences to form a coherent story. In Chapter 6, I focus on computationally modeling

these inferences by proposing several tasks that test a neural network’s ability to predict

aspects of future panels given some context.
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Chapter 2

Background: Deep Learning for Discourse-Level NLP

In traditional machine learning models for NLP, humans inject substantial prior knowledge

of the task into the algorithmic design in the form of features. In text classification

problems, a classifier is then trained over these features to predict a given label. As a

running example for this chapter, I consider the task of detecting the political ideology

of an author (e.g., liberal or conservative, in United States politics) based on a sentence

they wrote.1 For this task, our features could be counts of words or phrases that we deem

indicative of political ideology; for example, the phrase small business leans conservative,

while climate change leans liberal.

Manually designing features is a fine strategy if we assume that the input sentences

are simple. However, this assumption is often not valid; consider the phrase so-called

“climate change”. It becomes difficult to manually design features that accurately represent

the content of more complex constructions such as the scare quotes in this one, which flip

the polarity of the phrase from liberal to conservative. Do we want to have an individual

feature for so-called “climate change”, or perhaps make a separate feature for words in

scare quotes? If the latter, how do we detect which quotation marks are used as scare

quotes and which are not?

Deep learning removes the human burden of feature engineering by bypassing

predefined features (or feature templates) in favor of learned representations from the

1I built a recursive neural network for this task in Iyyer et al. (2014b).
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raw text input. In NLP, this process involves learning a composition function, which tells

the model how to combine individual words to obtain useful representations of sentences

or larger units of text. In this chapter, I introduce different neural network architectures

for performing composition; the models discussed here will be expanded upon in future

chapters. Then, I describe how neural models (as well as traditional NLP methods) have

previously been used for discourse-level language comprehension, which is the topic of

this thesis.

2.1 Representing Words with Vectors

Setting aside deep learning for the moment, let us consider a standard bag-of-unigrams

classifier for our ideology problem. Here, we have a separate feature for each word in

our vocabulary, which means that each word has a “one-hot” vector representation. The

corresponding vector for a given word is of the size of the vocabulary (usually thousands

of words) where each dimension k represents the identity of a distinct word wk. For any

wk, the value at dimension k is 1, while all other dimensions are zeros.

A major problem with one-hot vectors is that they cannot by themselves give an idea

of the similarity between two words, as all words are equally different from each other

since the inner product between the vectors for any two words is zero. Low-dimensional

embeddings address this issue by restricting the number of dimensions to a hyperparameter

d (usually between 50 and 500) and allowing each dimension to take on a real value, as

opposed to a binary zero or one. As shown in Figure 2.1, synonymous and similar words

form clusters in the learned vector space when trained to capture word co-occurrence
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Figure 2.1: Two dimensional visualization of word embeddings. On the left
side, words associated with numbers or counting are clustered together, while
on the right side we see an occupation cluster. (Credit: Christopher Olah)

statistics of large datasets. These representations form the basis for the neural network

architectures that I discuss in the rest of this chapter.

2.2 Simple Composition Functions: Neural Bag-of-Words

A composition function takes as input a sequence of word embeddings X and outputs a

single vector z. To be more concrete, we define the word embedding matrix for a given

vocabulary V as L, which is of size d× |V |. Each column vw of L is the embedding for

the word w corresponding to that column. The input to a composition function g is then

the sequence of word embeddings vw for w ∈ X , and its output z is not necessarily of

dimensionality d.
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so-called climate change

so-called climate change

so-called climate change

NBOW

RNN

TREE-NN

Figure 2.2: Three different neural network architectures used as composition
functions for the phrase “so-called climate change”. Top: neural bag-of-words;
Middle: recurrent neural network; Bottom: tree-structured neural network.

The simplest composition function is the neural bag-of-words model (NBOW, top of

Figure 2.2), which is an element-wise vector arithmetic operation that has no additional
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parameters beyond L. “Bag-of-words” refers to the fact that the function does not consider

the order of the words in X when computing z; this is not the case with the more complex

models discussed later in this chapter. Popular choices for NBOW functions include the

vector sum or vector average; the latter can be written as

z = g(w ∈ X) =
1

|X|
∑
w∈X

vw. (2.1)

2.2.1 Training Models for Text Classification

How do we train our composition function to learn representations useful for, say, our

ideology classification task? We can formalize the task as a binary classification problem,

where we map an input sequence of tokens X to one of two labels. Since this formalism

implies a supervised learning objective, we must have a dataset of sentences that have

been annotated with their authors’ ideologies.2 Our goal is then to learn a composition

function that does a good job of predicting these labels. Using the vector average as our

composition function, we first apply Equation 2.1 to X to get a vector z, which will serve

as input to a classification layer.

Specifically, we apply a logistic regression that takes in z and produces a prediction

ŷ. This is a softmax layer, which induces estimated probabilities for each output label:

ŷp = softmax(Wz), (2.2)

2In Iyyer et al. (2014b) I introduce the Ideological Books Corpus, a dataset for political ideology
classification.
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where the softmax function is

softmax(q) =
exp q∑k
j=1 exp qj

(2.3)

and W is a 2× d matrix for our two-label problem.3

We want the predictions of the softmax layer to match our annotated data; the

discrepancy between categorical predictions and annotations is measured through the

cross-entropy loss. We optimize the model parameters to minimize the cross-entropy

loss over all sentences in the corpus. The cross-entropy loss of a single example X with

ground-truth label y is

`(ŷ) =
2∑
p=1

yp ∗ log(ŷp). (2.4)

This induces a supervised objective function over all sentences in the dataset: a

regularized sum over all losses normalized by the number of training examples N ,

C =
1

N

N∑
i

`(ŷi) +
λ

2
|θ|2. (2.5)

The model parameters θ (here the word embedding matrix L and the softmax matrix

W ) can be optimized using a variety of online or batch methods. Commonly-used algo-

rithms include Adam (Kingma and Ba, 2014) and the diagonal variant of AdaGrad (Duchi

et al., 2011). The gradient of the objective, shown in Eq. (2.6), is computed using back-

propagation (Rumelhart et al., 1986), which essentially involves repeated application of

3Bias terms should be included, but I omit them here for simplicity.
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the chain rule.

∂C

∂θ
=

1

N

N∑
i

∂`(ŷi)

∂θ
+ λθ. (2.6)

2.3 Deep NBOW Models

The NBOW is a linear model; it does not have any nonlinear transformations between

its input and the classification layer, which limits its expressivity. The intuition behind

deep feed-forward neural networks is that each layer learns a more abstract representation

of the input than the previous one (Bengio et al., 2013). We can apply this concept to

the NBOW model discussed above with the expectation that each layer will increasingly

magnify small but meaningful differences in the word embedding average. To be more

concrete, take s1 as the sentence “I am supportive of legislation that aims to reduce global

warming” and generate s2 and s3 by replacing “supportive” with “indifferent” and then

again by “opposed”. The vector averages of these three sentences are almost identical, but

the averages associated with the synonymous sentences s1 and s2 are slightly more similar

to each other than they are to s3’s average.

Could adding depth to NBOW make small such distinctions as this one more ap-

parent? In Equation 2.1, we compute z, the vector representation for input text X , by

averaging the word vectors vw∈X . Instead of directly passing this representation to an

output layer, we can further transform z by adding more layers before applying the softmax.

Suppose we have n layers, z1...n. We compute each layer

zi = f(Wi · zi−1) (2.7)
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and feed the final layer’s representation, zn, to a softmax layer for prediction. f here is an

element-wise nonlinearity such as tanh.

This model, which I call the deep averaging network (DAN), is still a bag-of-words

model, but its depth allows it to capture subtle variations in the input better than the

standard NBOW model.4 Furthermore, computing each layer requires just a single matrix

multiplication, so the complexity scales with the number of layers instead of the number

of words in the sentence as in more complex models. In practice, we find no significant

difference between the training time of a DAN and that of the shallow NBOW model.

2.4 Recurrent Neural Networks

Now that we know how to train simple composition functions, we move to models that

consider the word order and syntactic structure of their input. We will start with the

recurrent neural network, or RNN. Just like before, feeding a sequence of text X into an

RNN yields a vector that represents the sequence; we will call this vector a hidden state,

or hn. A softmax layer over hn predicts the output label.

RNNs read input sentences from left to right, which means that they compute a

hidden state at every word in the input. The computation of a hidden state ht depends on

both the current input embedding vwt and the previous hidden state ht−1. Formally, RNNs

are defined as

ht = f(W

 vwt

ht−1

), (2.8)

4This statement is corroborated by experimental findings in (Iyyer et al., 2015).
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where, like before, f is an element-wise nonlinearity such as tanh. The model is then

trained just like before, except here we have an additional model parameter (the transition

matrix W), and the gradients are computed through a variant of backpropagation called

backpropagation through time (Werbos, 1990).

RNNs can suffer from the vanishing gradient problem, which refers to the phe-

nomenon of gradients from earlier time steps having much lower magnitudes than those at

more recent ones. This issue arises from repeated applications of the weight matrix W in

Equation 2.8, which is proven to result in vanishing gradients if the largest eigenvalue of

W is less than 1 (Pascanu et al., 2013). Multiple variants have been proposed to combat

this problem, the most popular of which are the long short-term memory (Hochreiter and

Schmidhuber, 1997, LSTM) and the gated recurrent unit (Cho et al., 2014, GRU). I will

return to LSTM units in Chapter 6.

2.4.1 Tree-Structured Variants

Equation 2.8 implies a fixed left-branching tree structure. The equation can, however, be

extended to operate on predefined tree structures, as in the case of tree neural networks

(TreeNN). These models were first introduced by Pollack (1990) and recently repopular-

ized by Richard Socher and colleagues (Socher et al., 2011b,a). Here, the composition

function g depends on a syntactic parse tree of the input sequence. The representation

for any internal node in a binary parse tree is computed as a nonlinear function of the

representations of its children. A more powerful TreeNN variant is the recursive neural

tensor network (RecNTN), which modifies g to include a costly tensor product (Socher
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et al., 2013).

Given a binary constituency parse tree of a sentence, the leaves of the tree will be

the words of the sentence w1...n where each word is associated with a vector vw ∈ L. The

parse tree defines how these words form phrases (bottom of Figure 2.2). Each of these

phrases p also has an associated vector xp ∈ Rd of a user-specified dimensionality. These

phrase vectors should represent the meaning of the phrases composed of individual words.

As phrases themselves merge into complete sentences, the underlying vector representation

is trained to retain the sentence’s whole meaning.

The challenge is to describe how vectors combine to form complete representations.

If two words a and b merge to form phrase p, we posit that the phrase-level vector is

xp = f(W

va
vb

), (2.9)

where W is a 2d× d composition matrix shared across all nodes in the tree.

The “recursive” aspect of the TreeNN lies in its use of weight sharing. The composi-

tion matrix is repeatedly applied to nodes in the parse tree in a bottom-up fashion. Thus,

once xp is computed for a non-root node p, it will be fed into Eq. (2.9) again as part of the

computation for its parent’s phrase vector xpar:

xpar = f(W

vc
xp

). (2.10)
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Mrs. Dalloway said she would buy the flowers herself

ROOT

NN NSUBJ

NSUBJ

AUX

CCOMP

DET NSUBJ

XCOMP

Figure 2.3: Dependency parse tree of the opening sentence of Virginia Woolf’s
Mrs. Dalloway.

2.4.1.1 Dependency Tree RecNNs

TreeNNs are not limited to only binary tree structures; in fact, dependency tree neural

networks (DTreeNN) have shown improved performance on image-to-text mapping and

question answering tasks (Socher et al., 2014; Iyyer et al., 2014a) compared to constituency

tree TreeNNs. Because every node of a dependency parse tree is associated with a word, it

has less nodes in total than a corresponding constituency tree, which reduces vanishing

gradient issues. However, internal nodes of dependency parse trees are unbounded in the

number of children they can have, which makes weight sharing more complicated than in

the constituency case. The solution is to “untie” the composition matrices by dependency

relations, which allows us to inject more syntactic information into the model.

Untying the model in this way requires more than one composition matrix, unlike

the binary tree case. In particular, we associate a separate d × d matrix Wr with each

dependency relation r in our dataset and learn these matrices during training. Syntactically

untying these matrices allows the model to take advantage of relation identity as well as

tree structure. We include an additional d× d matrix, Wv, to incorporate the word vector

vw at a node n into the hidden vector hn.

Given a dependency parse tree, we first compute hidden representations for the leaf
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nodes. For example, the hidden representation hmrs. for the parse tree given in Figure 2.4.1.1

is

hmrs. = f(Wv · vmrs.). (2.11)

After finishing with the leaves, we move to interior nodes whose children have already

been processed. Continuing from mrs. to its parent, dalloway, we compute

hdalloway = f(WNN · hmrs. + Wv · vdalloway). (2.12)

We repeat this process up to the root, which is

hsaid = f(WNSUBJ · hdalloway + WCCOMP · hbuy + Wv · vsaid). (2.13)

The composition equation for any node n with children K(n) and word vector vw is hn =

f(Wv · vw + b1 +
∑

k∈K(n)

WR(n,k) · hk), (2.14)

where R(n, k) is the dependency relation between node n and child node k. The model is

trained using the same procedure as that for constituency-tree TreeNNs.

2.5 Discourse-Level Representation Learning

The neural network architectures described above have mainly been applied to sentence-

level NLP tasks. The objective of this thesis is to go beyond the sentence to discourse-level

language comprehension. In this section, I provide an overview of existing discourse-level
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language understanding methods, and I also go over more recent deep learning-based

developments in this area. The latter discussion will be at a relatively high level, as specific

instances of these models will be described more fully in later chapters.

2.5.1 Discourse-Level Understanding

The term discourse refers to any unit of text that consists of more than one sentence.

Discourse coherence refers to the logical order of sentences and how each fits with

the others to produce a larger understandable meaning. As an example, a paragraph

constructed by randomly selecting four sentences from this chapter would almost certainly

have low coherence. There are many ways to formalize coherence, such as Hobbs’ set

of coherence relations (Hobbs, 1979) that categorizes inter-sentence relationships as

“explanations”, “elaborations”, or “results”, among others. A popular formalism in the

NLP community is rhetorical structure theory (RST), which categorizes units of text (not

just sentences) into different roles (e.g., “background”, “evidence”) that define how they

can be combined together in a hierarchical fashion (Mann and Thompson, 1988). The task

of discourse parsing (Soricut and Marcu, 2003; Feng and Hirst, 2012; Ji and Eisenstein,

2014) automatically discovers these sorts of relations in text, trained using annotated

datasets such as the RST Discourse Treebank (Carlson et al., 2003) or the Penn Discourse

Treebank (Miltsakaki et al., 2004). Other research in this vein looks at cross-sentential

coreference resolution (van Hoek, 1997).

Aside from coherence, sentence cohesion is also an important property of discourse.

Take the task of discourse segmentation (Passonneau and Litman, 1997), which involves
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detecting boundaries in a given document where the topic of discussion shifts. Instances

of lexical cohesion are useful for this task; for example, a repetition of certain words or

their synonyms likely indicates that the topic has not changed (Halliday and Hasan, 1976).

These types of features are taken into account by methods such as TextTiling (Hearst,

1997), which automatically segment documents into their subtopics.

In my thesis, I focus on coherence relations between sentences and larger units of

text rather than cohesive ones. In contrast to traditional discourse research on coherence,

the work in my thesis does not focus on discovering specific connections between nearby

sentences (e.g., discourse relations). Instead, I focus on learning representations from

discourse-level language that are useful for downstream tasks; this is an atheoretical

approach that does not depend on a specified discourse formalism. Examples of simple

and general discourse-level representations are bag-of-words (or bag-of-ngrams) vectors,

or the slightly more involved TF-IDF formulation (Salton and McGill, 1986) popular in

information retrieval. However, these representations are constant across all tasks, unlike

machine learning models whose parameters are updating using a task-specific error signal.

More complex models that perform some sort of matrix factorization, such as supervised

latent Dirichlet allocation (SLDA) (Mcauliffe and Blei, 2008), are able to modify their

representations from downstream supervision. Finally, research on scripts, or sequenced

actions for common situations, is also relevant to the portions of my dissertation research

that focus on creative language; Section 5.6 discusses this line of work in more detail.
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2.5.2 Deep Discourse-Level Representation Learning

Unsupervised deep learning models have shown increased effectiveness over the above non-

neural methods in terms of learning general purpose discourse-level representations. Two

popular examples are Paragraph Vector (Le and Mikolov, 2014), which applies algorithms

from word embedding learning to paragraphs, and recurrent autoencoder-based methods

that reconstruct entire documents through bottleneck representations learned by neural

networks (Li et al., 2015).

Task-specific discourse-level representations have also seen increased research inter-

est. For example, recurrent / convolutional network hybrids have been used for document-

level sentiment analysis (Tang et al., 2015), and some reading comprehension-style

question-answering tasks also rely on similar methods for representing passages (Dhingra

et al., 2017); these tasks and models are most related to the QA tasks I discuss in Chapters 3

and 4. However, building deep discourse-level models for underspecified tasks, such as

the fictional relationship analysis of Chapter 5, steps farther from the current trends in this

research area, and interpretability becomes a critical factor for these tasks.
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Chapter 3

Deep Learning for Multi-Sentence Factoid Question Answering

Armed with both deep learning fundamentals and descriptions of both existing (RNN) and

newly-proposed (DAN) models from the last chapter, we are now prepared to jump into

applications of these models.1 Here we focus on the task of question answering (QA)

where input questions are multiple sentences long. How do we apply models like TreeNNs

across multiple sentences? Are such complex models even necessary? In this chapter, I

demonstrate that a very simple element-wise vector average is effective for a factoid QA

task called quiz bowl, which is a trivia game whose questions describe famous entities

(e.g., authors, battles, novels). The following chapter describes a more challenging QA task

for which averaging is insufficient to capture all of the necessary contextual information,

motivating the use of structured prediction methods.

3.1 Quiz Bowl: Factoid QA

Consider factoid question answering: given a description of an entity, identify the person,

place, or thing discussed. We describe a task with high-quality mappings from natural

language text to entities in Section 3.1.1. This task—quiz bowl—is a challenging natural

language problem with large amounts of diverse and compositional data.

To answer quiz bowl questions, we develop a dependency tree neural network in

1This chapter synthesizes work previously published in Iyyer et al. (2014a, EMNLP) and Iyyer et al.
(2015, ACL).
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Later in its existence, this polity’s leader was chosen by a group that included three bishops and six
laymen, up from the seven who traditionally made the decision. Free imperial cities in this polity included
Basel and Speyer. Dissolved in 1806, its key events included the Investiture Controversy and the Golden
Bull of 1356. Led by Charles V, Frederick Barbarossa, and Otto I, for 10 points, name this polity, which
ruled most of what is now Germany through the Middle Ages and rarely ruled its titular city.

Figure 3.1: An example quiz bowl question about the Holy Roman Empire.
The first sentence contains no words or named entities that by themselves are
indicative of the answer, while subsequent sentences contain more and more
obvious clues.

Section 3.1.2 and extend it to combine predictions across sentences to produce a question

answering neural network with trans-sentential averaging (QANTA). We evaluate our model

against strong computer and human baselines in Section 3.1.3 and conclude by examining

the latent space and model mistakes.

3.1.1 Matching Text to Entities: Quiz Bowl

Every weekend, hundreds of high school and college students play a game where they

map raw text to well-known entities. This is a trivia competition called quiz bowl. Quiz

bowl questions consist of four to six sentences and are associated with factoid answers

(e.g., history questions ask players to identify specific battles, presidents, or events). Every

sentence in a quiz bowl question is guaranteed to contain clues that uniquely identify

its answer, even without the context of previous sentences. Players answer at any time—

ideally more quickly than the opponent—and are rewarded for correct answers.

Automatic approaches to quiz bowl based on existing NLP techniques are doomed

to failure. Quiz bowl questions have a property called pyramidality, which means that

sentences early in a question contain harder, more obscure clues, while later sentences

are “giveaways”. This design rewards players with deep knowledge of a particular subject
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and thwarts bag of words methods. Sometimes the first sentence contains no named

entities—answering the question correctly requires an actual understanding of the sentence

(Figure 3.1). Later sentences, however, progressively reveal more well-known and uniquely

identifying terms.

Previous work answers quiz bowl questions using a bag of words (naı̈ve Bayes)

approach (Boyd-Graber et al., 2012). These models fail on sentences like the first one in

Figure 3.1, a typical hard, initial clue. Tree-structured neural networks (TreeNNs), in con-

trast to simpler models, can capture the compositional aspect of such sentences (Hermann

et al., 2013).

TreeNNs require many redundant training examples to learn meaningful representa-

tions, which in the quiz bowl setting means we need multiple questions about the same

answer. Fortunately, hundreds of questions are produced during the school year for quiz

bowl competitions, yielding many different examples of questions asking about any entity

of note (see Section 3.1.3.1 for more details). Thus, we have built-in redundancy (the

number of “askable” entities is limited), but also built-in diversity, as difficult clues cannot

appear in every question without becoming well-known.

3.1.2 Negative Sampling Instead of Softmax

In this chapter we use the dependency-tree TreeNN (DTreeNN) that we defined formally

in Chapter 2, with one important difference: we no longer use a softmax output layer. Our

goal is to map questions to their corresponding answer entities. Because there are a limited

number of possible answers, we can view this as a multi-class classification task. While a
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softmax layer over every node in the tree could predict answers (Socher et al., 2011b; Iyyer

et al., 2014b), this method overlooks that most answers are themselves words (features) in

other questions (e.g., a question on World War II might mention the Battle of the Bulge

and vice versa). Thus, word vectors associated with such answers can be trained in the

same vector space as question text,2 enabling us to model relationships between answers

instead of assuming incorrectly that all answers are independent. To take advantage of this

observation, we train both the answers and questions jointly in a single model, rather than

training each separately and holding embeddings fixed during DTreeNN training.

Intuitively, we want to encourage the vectors of question sentences to be near their

correct answers and far away from incorrect answers. We accomplish this goal by using a

contrastive max-margin objective function described below. While we are not interested in

obtaining a ranked list of answers,3 we observe better performance by adding the weighted

approximate-rank pairwise (WARP) loss proposed in Weston et al. (2011) to our objective

function.

Given a sentence paired with its correct answer c, we randomly select j incorrect

answers from the set of all incorrect answers and denote this subset as Z. Since c is part of

the vocabulary, it has a vector xc ∈ L. An incorrect answer z ∈ Z is also associated with a

vector xz ∈ L. We define S to be the set of all nodes in the sentence’s dependency tree,

where an individual node s ∈ S is associated with the hidden vector hs. The error for the
2Of course, questions never contain their own answer as part of the text.
3In quiz bowl, all wrong guesses are equally detrimental to a team’s score, no matter how “close” a guess

is to the correct answer.
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sentence is

C(S, θ) =
∑
s∈S

∑
z∈Z

R(rank(c, s, Z))max(0, 1− xc · hs + xz · hs), (3.1)

where the function rank(c, s, Z) provides the rank of correct answer c with respect to the

incorrect answers Z. We transform this rank into a loss function4 shown by Usunier et al.

(2009) to optimize the top of the ranked list, R(r) =
r∑
i=1

1/i.

Since rank(c, s, Z) is expensive to compute, we approximate it by randomly sam-

pling K incorrect answers until a violation is observed (xc · hs < 1 + xz · hs) and set

rank(c, s, Z) = (|Z| − 1)/K, as in previous work (Weston et al., 2011; Hermann et al.,

2014). The model minimizes the sum of the error over all sentences T normalized by the

number of nodes N in the training set,

J(θ) =
1

N

∑
t∈T

C(t, θ). (3.2)

The parameters θ = (Wr∈R,Wv,We, b), where R represents all dependency relations in

the data, are optimized using AdaGrad as before (Duchi et al., 2011).5 In Section 3.1.3 we

compare performance to an identical model (FIXED-QANTA) that excludes answer vectors

from L and show that training them as part of θ produces significantly better results.

4Adding this loss term to the objective function not only increases performance but also speeds up
convergence

5We set the initial learning rate η = 0.05 and reset the squared gradient sum to zero every five epochs.
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The gradient of the objective function,

∂C

∂θ
=

1

N

∑
t∈T

∂J(t)

∂θ
, (3.3)

is again computed using backpropagation through structure (Goller and Kuchler, 1996).

3.1.3 Experiments

We compare the performance of QANTA against multiple strong baselines on two datasets.

QANTA outperforms all baselines trained only on question text and improves an information

retrieval model trained on all of Wikipedia. QANTA requires that an input sentence describes

an entity without mentioning that entity, a constraint that is not followed by Wikipedia

sentences.6 While IR methods can operate over Wikipedia text with no issues, we show

that the representations learned by QANTA over just a dataset of question-answer pairs can

significantly improve the performance of IR systems.

3.1.3.1 Datasets

We evaluate our algorithms on a corpus of over 100,000 question/answer pairs from

two different sources. First, we expand the dataset used in Boyd-Graber et al. (2012)

with publically-available questions from quiz bowl tournaments held after that work was

published. This gives us 46,842 questions in fourteen different categories. To this dataset

we add 65,212 questions from NAQT, an organization that runs quiz bowl tournaments and

6We tried transforming Wikipedia sentences into quiz bowl sentences by replacing answer mentions with
appropriate descriptors (e.g., “Joseph Heller” with “this author”), but the resulting sentences suffered from a
variety of grammatical issues and did not help the final result.
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generously shared with us all of their questions from 1998–2013.

Because some categories contain substantially fewer questions than others (e.g.,

astronomy has only 331 questions), we consider only literature and history questions, as

these two categories account for more than 40% of the corpus. This leaves us with 21,041

history questions and 22,956 literature questions.

Data Preparation To make this problem feasible, we only consider a limited set of the

most popular quiz bowl answers. Before we filter out uncommon answers, we first need

to map all raw answer strings to a canonical set to get around formatting and redundancy

issues. Most quiz bowl answers are written to provide as much information about the entity

as possible. For example, the following is the raw answer text of a question on the Chinese

leader Sun Yat-sen: Sun Yat-sen; or Sun Yixian; or Sun Wen; or Sun Deming; or Nakayama

Sho; or Nagao Takano. Quiz bowl writers vary in how many alternate acceptable answers

they provide, which makes it tricky to strip superfluous information from the answers

using rule-based approaches.

Instead, we use Whoosh,7 an information retrieval library, to generate features in an

active learning classifier that matches existing answer strings to Wikipedia titles. If we are

unable to find a match with a high enough confidence score, we throw the question out of

our dataset. After this standardization process and manual vetting of the resulting output,

we can use the Wikipedia page titles as training labels for the DTreeNN and baseline

models.8

Quiz bowl answer distribution has a long-tail: 65.6% of answers only occur once or

7https://pypi.python.org/pypi/Whoosh/
8Code and non-NAQT data available at http://cs.umd.edu/˜miyyer/qblearn.
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twice in the corpus. We filter out all answers that do not occur at least six times, which

leaves us with 451 history answers and 595 literature answers that occur on average twelve

times in the corpus. These pruning steps result in 4,460 usable history questions and 5,685

literature questions. While ideally we would have used all answers, our model benefits

from many training examples per answer to learn meaningful representations; this issue

can possibly be addressed with techniques from zero shot learning (Palatucci et al., 2009;

Pasupat and Liang, 2014), which we leave to future work.

We apply basic named entity recognition (NER) by replacing all occurrences of

answers in the question text with single entities (e.g., Ernest Hemingway becomes

Ernest Hemingway). While we experimented with more advanced NER systems to detect

non-answer entities, they could not handle multi-word named entities like the book Love

in the Time of Cholera (title case) or battle names (e.g., Battle of Midway). A simple

search/replace on all answers in our corpus works better for multi-word entities.

The preprocessed data are split into folds by tournament. We choose the past two

national tournaments9 as our test set as well as questions previously answered by players

in Boyd-Graber et al. (2012) and assign all other questions to train and dev sets. History

results are reported on a training set of 3,761 questions with 14,217 sentences and a test set

of 699 questions with 2,768 sentences. Literature results are reported on a training set of

4,777 questions with 17,972 sentences and a test set of 908 questions with 3,577 sentences.

Finally, we initialize the word embedding matrix We with word2vec (Mikolov et al.,

2013) trained on the preprocessed question text in our training set.10 We use the hierarchical

9The tournaments were selected because NAQT does not reuse any questions or clues within these
tournaments.

10Out-of-vocabulary words from the test set are initialized randomly.
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skip-gram model setting with a window size of five words.

3.1.4 Baselines

We pit QANTA against two types of baselines: unordered bag of words models, which

enable comparison to a standard NLP baseline, and information retrieval models, which

allow us to compare against traditional question answering techniques.

BOW The BOW baseline is a logistic regression classifier trained on binary unigram

indicators.11 This simple discriminative model is an improvement over the generative quiz

bowl answering model of Boyd-Graber et al. (2012).

BOW-DT The BOW-DT baseline is identical to BOW except we augment the feature set

with dependency relation indicators. We include this baseline to isolate the effects of the

dependency tree structure from our compositional model.

IR-QB The IR-QB baseline maps questions to answers using the state-of-the-art Whoosh

IR engine. The knowledge base for IR-QB consists of “pages” associated with each answer,

where each page is the union of training question text for that answer. Given a partial

question, the text is first preprocessed using a query language similar to that of Apache

Lucene. This processed query is then matched to pages uses BM-25 term weighting, and the

top-ranked page is considered to be the model’s guess. We also incorporate fuzzy queries

to catch misspellings and plurals and use Whoosh’s built-in query expansion functionality

to add related keywords to our queries.

IR-WIKI The IR-WIKI model is identical to the IR-QB model except that each “page” in

11Raw word counts, frequencies, and TF-IDF weighted features did not increase performance, nor did
adding bigrams to the feature set (possibly because multi-word named entities are already collapsed into
single words).
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its knowledge base also includes all text from the associated answer’s Wikipedia article.

Since all other baselines and DTreeNN models operate only on the question text, this is

not a valid comparison, but we offer it to show that we can improve even this strong model

using QANTA.

3.1.5 DTreeNN Configurations

For all DTreeNN models the vector dimension d and the number of wrong answers per

node j is set to 100. All model parameters other than L are randomly initialized. The

nonlinearity f is again the normalized tanh function.12

QANTA is our DTreeNN model with feature averaging across previously-seen sen-

tences in a question. To obtain the final answer prediction given a partial question, we

first generate a feature representation for each sentence within that partial question. This

representation is computed by concatenating together the word embeddings and hidden

representations averaged over all nodes in the tree as well as the root node’s hidden vector.

Finally, we send the average of all of the individual sentence features13 as input to a logistic

regression classifier for answer prediction.

FIXED-QANTA uses the same DTreeNN configuration as QANTA except the answer

vectors are kept constant as in the text-to-image model.

12The standard tanh function produced heavy saturation at higher levels of the trees, and corrective
weighting as in Socher et al. (2014) hurt our model because named entities that occur as leaves are often
more important than non-terminal phrases.

13Initial experiments with L2 regularization hurt performance on a validation set.
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History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

BOW 27.5 51.3 53.1 19.3 43.4 46.7
BOW-DT 35.4 57.7 60.2 24.4 51.8 55.7
IR-QB 37.5 65.9 71.4 27.4 54.0 61.9
FIXED-QANTA 38.3 64.4 66.2 28.9 57.7 62.3
QANTA 47.1 72.1 73.7 36.4 68.2 69.1

IR-WIKI 53.7 76.6 77.5 41.8 74.0 73.3
QANTA+IR-WIKI 59.8 81.8 82.3 44.7 78.7 76.6

Table 3.1: Accuracy for history and literature at the first two sentence positions
of each question and the full question. The top half of the table compares
models trained on questions only, while the IR models in the bottom half have
access to Wikipedia. QANTA outperforms all baselines that are restricted to
just the question data, and it substantially improves an IR model with access
to Wikipedia despite being trained on much less data.

3.1.6 Human Comparison

Previous work provides human answers (Boyd-Graber et al., 2012) for quiz bowl questions.

We use human records for 1,201 history guesses and 1,715 literature guesses from twenty-

two of the quiz bowl players who answered the most questions.14

The standard scoring system for quiz bowl is 10 points for a correct guess and -5

points for an incorrect guess. We use this metric to compute a total score for each human.

To obtain the corresponding score for our model, we force it to imitate each human’s

guessing policy. For example, Figure 3.1.6 shows a human answering in the middle of the

second sentence. Since our model only considers sentence-level increments, we compare

the model’s prediction after the first sentence to the human prediction, which means our

model is privy to less information than humans.

14Participants were skilled quiz bowl players and are not representative of the general population.
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A minor character in this play can be summoned by a bell that does not always work; that character also
doesn’t have eyelids. Near the end, a woman who drowned her illegitimate child attempts to stab another
woman in the Second Empire-style 3 room in which the entire play takes place. For 10 points, Estelle
and Ines are characters in which existentialist play in which Garcin claims “Hell is other people”, written
by Jean-Paul Sartre?

Figure 3.2: A question on the play “No Exit” with human buzz position
marked as 3. Since the buzz occurs in the middle of the second sentence, our
model is only allowed to see the first sentence.
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Figure 3.3: Comparisons of QANTA+IR-WIKI to human quiz bowl players.
Each bar represents an individual human, and the bar height corresponds
to the difference between the model score and the human score. Bars are
ordered by human skill. Red bars indicate that the human is winning, while
blue bars indicate that the model is winning. QANTA+IR-WIKI outperforms
most humans on history questions but fails to defeat the “average” human on
literature questions.

The resulting distributions are shown in Figure 3.1.6—our model does better than the

average player on history questions, tying or defeating sixteen of the twenty-two players,

but it does worse on literature questions, where it only ties or defeats eight players. The

figure indicates that literature questions are harder than history questions for our model,

which is corroborated by the experimental results discussed in the next section.

3.1.7 Discussion

In this section, we examine why QANTA improves over our baselines by giving examples of

questions that are incorrectly classified by all baselines but correctly classified by QANTA.

We also take a close look at some sentences that all models fail to answer correctly. Finally,
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we visualize the answer space learned by QANTA.

3.1.7.1 Experimental Results

Table 3.1.5 shows that when bag of words and information retrieval methods are restricted

to question data, they perform significantly worse than QANTA on early sentence positions.

The performance of BOW-DT indicates that while the dependency tree structure helps by

itself, the compositional distributed representations learned by QANTA are more useful. The

significant improvement when we train answers as part of our vocabulary (see Section 3.1.2)

indicates that our model uses answer occurrences within question text to learn a more

informative vector space.

The disparity between IR-QB and IR-WIKI indicates that the information retrieval

models need lots of external data to work well at all sentence positions. IR-WIKI performs

better than other models because Wikipedia contains many more sentences that partially

match specific words or phrases found in early clues than the question training set. In

particular, it is impossible for all other models to answer clues in the test set that have no

semantically similar or equivalent analogues in the training question data. With that said,

IR methods can also operate over data that does not follow the special constraints of quiz

bowl questions (e.g., every sentence uniquely identifies the answer, answers don’t appear

in their corresponding questions), which QANTA cannot handle. By combining QANTA

and IR-WIKI, we are able to leverage access to huge knowledge bases along with deep

compositional representations, giving us the best of both worlds.
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3.1.7.2 Where the Attribute Space Helps Answer Questions

We look closely at the first sentence from a literature question about the author Thomas

Mann: “He left unfinished a novel whose title character forges his father’s signature to get

out of school and avoids the draft by feigning desire to join”.

All baselines, including IR-WIKI, are unable to predict the correct answer given only

this sentence. However, QANTA makes the correct prediction. The sentence contains no

named entities, which makes it almost impossible for bag of words or string matching

algorithms to predict correctly. Figure 3.1.7.4 shows that the plot description associated

with the “novel” node is strongly indicative of the answer. The five highest-scored answers

are all male authors,15 which shows that our model is able to learn the answer type without

any hand-crafted rules.

Our next example, the first sentence in Table 3.1.7.4, is from the first position of a

question on John Quincy Adams, which is correctly answered by only QANTA. The bag

of words model guesses Henry Clay, who was also a Secretary of State in the nineteenth

century and helped John Quincy Adams get elected to the presidency in a “corrupt bargain”.

However, the model can reason that while Henry Clay was active at the same time and

involved in the same political problems of the era, he did not represent the Amistad slaves,

nor did he negotiate the Treaty of Ghent.

15three of whom who also have well-known unfinished novels

34



3.1.7.3 Where all Models Struggle

Quiz bowl questions are intentionally written to make players work to get the answer,

especially at early sentence positions. Our model fails to answer correctly more than half

the time after hearing only the first sentence. We examine some examples to see if there

are any patterns to what makes a question “hard” for machine learning models.

Consider this question about the Italian explorer John Cabot: “As a young man, this

native of Genoa disguised himself as a Muslim to make a pilgrimage to Mecca”.

While it is obvious to human readers that the man described in this sentence is

not actually a Muslim, QANTA has to accurately model the verb disguised to make that

inference. We show the score plot of this sentence in Figure 3.1.7.4. The model, after

presumably seeing many instances of muslim and mecca associated with Mughal emperors,

is unable to prevent this information from propagating up to the root node. On the bright

side, our model is able to learn that the question is expecting a human answer rather than

non-human entities like the Umayyad Caliphate.

More examples of impressive answers by QANTA as well as incorrect guesses by all

systems are shown in Table 3.1.7.4.

3.1.7.4 Examining the Attribute Space

Figure 3.1.7.4 shows a t-SNE visualization (Van der Maaten and Hinton, 2008) of the 451

answers in our history dataset. The vector space is divided into six general clusters, and

we focus in particular on the US presidents. Zooming in on this section reveals temporal

clustering: presidents who were in office during the same timeframe occur closer together.

35



TSNE-1

T
S
N
E
-2

Wars, rebellions, and battles
U.S. presidents
Prime ministers
Explorers & emperors
Policies
Other

tammany_hall

calvin_coolidge

lollardy

fourth_crusade

songhai_empire

peace_of_westphalia

inca_empire

atahualpa

charles_sumner

john_paul_jones

wounded_knee_massacre

huldrych_zwingli

darius_i

battle_of_ayacucho

john_cabot
ghana

ulysses_s._grant

hartford_convention
civilian_conservation_corps

roger_williams_(theologian)

george_h._pendleton

william_mckinley

victoria_woodhull

credit_mobilier_of_america_scandal henry_cabot_lodge,_jr.

mughal_empire

john_marshall

cultural_revolution

guadalcanal

louisiana_purchase

night_of_the_long_knives

chandragupta_maurya

samuel_de_champlain

thirty_years'_war

compromise_of_1850

battle_of_hastings

battle_of_salamis

akbar

lewis_cass

dawes_plan

hernando_de_soto

carthage

joseph_mccarthy

maine

salvador_allende

battle_of_gettysburg

mikhail_gorbachev

aaron_burr

equal_rights_amendment

war_of_the_spanish_succession

coxey's_army

george_meade

fourteen_points

mapp_v._ohio
sam_houston

ming_dynasty

boxer_rebellion

anti-masonic_party

porfirio_diaz

treaty_of_portsmouth

thebes,_greece

golden_horde

francisco_i._madero

hittites

james_g._blaine
schenck_v._united_states

caligula

william_walker_(filibuster)

henry_vii_of_england

konrad_adenauer

kellogg-briand_pact

battle_of_culloden

treaty_of_brest-litovsk

william_penn

a._philip_randolph

henry_l._stimson

whig_party_(united_states)

caroline_affair
clarence_darrow

whiskey_rebellion

battle_of_midway

battle_of_lepanto

adolf_eichmann

georges_clemenceau

battle_of_the_little_bighornpontiac_(person)

black_hawk_war

battle_of_tannenberg

clayton_antitrust_act

provisions_of_oxford

battle_of_actium

suez_crisis

spartacus

dorr_rebellion

jay_treaty

triangle_shirtwaist_factory_fire

kamakura_shogunate

julius_nyerere

frederick_douglass

pierre_trudeau

nagasaki

suleiman_the_magnificent

falklands_war

war_of_devolution

charlemagne

daniel_boone

edict_of_nantes

harry_s._truman

shaka

pedro_alvares_cabral

thomas_hart_benton_(politician)

battle_of_the_coral_sea

peterloo_massacre

battle_of_bosworth_field

roger_b._taney

bernardo_o'higgins

neville_chamberlain

henry_hudson

cyrus_the_great

jane_addams

rough_riders

james_a._garfield

napoleon_iii

missouri_compromise

battle_of_leyte_gulf

ambrose_burnside

trent_affair

maria_theresa

william_ewart_gladstone

walter_mondale

barry_goldwater
louis_riel

hideki_tojo

marco_polo

brian_mulroney

truman_doctrine

roald_amundsen

tokugawa_shogunate

eleanor_of_aquitaine

louis_brandeis

battle_of_trenton

khmer_empire

benito_juarez

battle_of_antietam

whiskey_ring

otto_von_bismarck

booker_t._washington

battle_of_bannockburneugene_v._debs

erie_canal

jameson_raid

green_mountain_boys

haymarket_affair

finland

fashoda_incident

battle_of_shiloh

hannibal

john_jay

easter_rising

jamaica

brook_farm

umayyad_caliphate

muhammad

francis_drake

clara_barton

shays'_rebellion
verdun

hadrianvyacheslav_molotov
oda_nobunaga

canossa

samuel_gompers

battle_of_bunker_hill
battle_of_plassey

david_livingstone

solon
pericles

tang_dynasty

teutonic_knights

second_vatican_council

alfred_dreyfus

henry_the_navigator

nelson_mandela

peasants'_revolt

gaius_marius

getulio_vargas

horatio_gates

john_t._scopes

league_of_nations

first_battle_of_bull_run

alfred_the_great

leonid_brezhnev

cherokee

long_march

emiliano_zapata

james_monroe

woodrow_wilson

vandals

william_henry_harrison

battle_of_puebla

battle_of_zama

justinian_i

thaddeus_stevens

cecil_rhodes

kwame_nkrumah

diet_of_worms

george_armstrong_custer

battle_of_agincourt

seminole_wars

shah_jahan

amerigo_vespucci

john_foster_dulles

lester_b._pearson

oregon_trail

claudius

lateran_treaty

chester_a._arthur

opium_wars

treaty_of_utrecht
knights_of_labor

alexander_hamilton

plessy_v._ferguson

horace_greeley

mary_baker_eddy

alexander_kerensky

jacquerie

treaty_of_ghent
bay_of_pigs_invasion

antonio_lopez_de_santa_anna

great_northern_war

henry_i_of_england

council_of_trent

chiang_kai-shek

samuel_j._tilden

fidel_castro

wilmot_proviso

yuan_dynasty

bastille

benjamin_harrison

war_of_the_austrian_successioncrimean_war

john_brown_(abolitionist)

teapot_dome_scandal

albert_b._fall

marcus_licinius_crassus

earl_warren

warren_g._harding

gunpowder_plot

homestead_strike

samuel_adams

john_peter_zenger

thomas_paine

free_soil_party

st._bartholomew's_day_massacre

arthur_wellesley,_1st_duke_of_wellington

charles_de_gaulle

leon_trotsky

hugh_capet

alexander_h._stephens

haile_selassie

william_h._seward

rutherford_b._hayes

safavid_dynasty

muhammad_ali_jinnah

kulturkampf

maximilien_de_robespierre

hubert_humphrey

luddite

hull_house

philip_ii_of_macedon

guelphs_and_ghibellines

byzantine_empire

albigensian_crusade

diocletian

fort_ticonderoga

parthian_empire

charles_martel

william_jennings_bryan

alexander_ii_of_russia

ferdinand_magellan

state_of_franklin

ivan_the_terrible

martin_luther_(1953_film)

millard_fillmore

francisco_franco

aethelred_the_unready

ronald_reagan

benito_mussolini

henry_clay

kitchen_cabinet

black_hole_of_calcutta

ancient_corinth

john_wilkes_booth

john_tyler

robert_walpole

huey_long

tokugawa_ieyasu

thomas_nast

nikita_khrushchev

andrew_jackson

portugal

labour_party_(uk)

monroe_doctrine

john_quincy_adams

congress_of_berlin

tecumseh

jacques_cartier

battle_of_the_thames

spanish_civil_war

ethiopia

fugitive_slave_laws

john_a._macdonald

council_of_chalcedon

pancho_villa

war_of_the_pacific

george_wallace

susan_b._anthony

marcus_garvey

grover_cleveland
john_hay

george_b._mcclellan

october_manifesto

vitus_bering

john_hancock

william_lloyd_garrison

platt_amendment

mary,_queen_of_scots

first_triumvirate

francisco_vasquez_de_coronado

margaret_thatcher

sherman_antitrust_act

hanseatic_league

henry_morton_stanley

july_revolution

stephen_a._douglas

xyz_affair

jimmy_carter

francisco_pizarro

kublai_khan

vasco_da_gama

sparta

battle_of_caporetto

ostend_manifesto

mustafa_kemal_ataturk

peter_the_great

gang_of_four

battle_of_chancellorsville

david_lloyd_george

cardinal_mazarin

embargo_act_of_1807

brigham_young

charles_lindbergh

hudson's_bay_company

attila

paris_commune

jefferson_davis

amelia_earhart

mali_empire

adolf_hitler

benedict_arnold

camillo_benso,_count_of_cavour

meiji_restoration

black_panther_party

mark_antony

franklin_pierce

molly_maguires

zachary_taylor

han_dynasty

adlai_stevenson_ii

james_k._polk

douglas_macarthur

boston_massacre

toyotomi_hideyoshi

greenback_party

second_boer_war
third_crusade

james_buchanan

john_sherman

george_washington

wars_of_the_roses

atlantic_charter

eleanor_roosevelt

congress_of_vienna

john_wycliffe

winston_churchill

emilio_aguinaldo

miguel_hidalgo_y_costilla

second_bank_of_the_united_states

council_of_constance

seneca_falls_convention

first_crusade

spiro_agnew

taiping_rebellion

mao_zedong

paul_von_hindenburg

albany_congress

jawaharlal_nehru

battle_of_blenheim

ethan_allen

antonio_de_oliveira_salazar

herbert_hoover

pepin_the_short

indira_gandhi

william_howard_taftthomas_jefferson

gamal_abdel_nasser

oliver_cromwell

salmon_p._chase

battle_of_austerlitz

benjamin_disraeli

gadsden_purchase

girolamo_savonarola

treaty_of_tordesillas

battle_of_marathon

elizabeth_cady_stanton

battle_of_kings_mountain
christopher_columbus

william_the_conqueror

battle_of_trafalgar

charles_evans_hughes

cleisthenes

william_tecumseh_sherman

mobutu_sese_seko

prague_spring

babur

peloponnesian_war

jacques_marquette

nero

paraguay

hyksos

martin_van_buren

bonus_army

charles_stewart_parnell

edward_the_confessor

bartolomeu_dias

salem_witch_trials

battle_of_the_bulge

john_adams

maginot_line

henry_cabot_lodge

giuseppe_garibaldi

daniel_webster

john_c._calhoun

treaty_of_waitangi

zebulon_pike

genghis_khan

calvin_coolidge
william_mckinley

james_monroe

woodrow_wilson

william_henry_harrison

benjamin_harrison

millard_fillmore

ronald_reagan

john_tyler andrew_jackson
john_quincy_adams

grover_cleveland

jimmy_carter

franklin_pierce

zachary_taylor

james_buchanan

george_washington

herbert_hoover
william_howard_taft

thomas_jefferson

martin_van_buren

john_adams

Figure 3.4: t-SNE 2-D projections of 451 answer vectors divided into six
major clusters. The blue cluster is predominantly populated by U.S. presidents.
The zoomed plot reveals temporal clustering among the presidents based on
the years they spent in office.

This observation shows that QANTA is capable of learning attributes of entities during

training.
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Thomas Mann
Joseph Conrad

Henrik Ibsen
Franz Kafka

Henry James

Figure 3.5: A question on the German novelist Thomas Mann that contains
no named entities, along with the five top answers as scored by QANTA. Each
cell in the heatmap corresponds to the score (inner product) between a node in
the parse tree and the given answer, and the dependency parse of the sentence
is shown on the left. All of our baselines, including IR-WIKI, are wrong, while
QANTA uses the plot description to make a correct guess.
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Akbar
Shah Jahan

Muhammad
Babur

Ghana

Figure 3.6: An extremely misleading question about John Cabot, at least
to computer models. The words muslim and mecca lead to three Mughal
emperors in the top five guesses from QANTA; other models are similarly led
awry.
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Q he also successfully represented the amistad slaves and negotiated
the treaty of ghent and the annexation of florida from spain during
his stint as secretary of state under james monroe

A john quincy adams, henry clay, andrew jackson
Q this work refers to people who fell on their knees in hopeless cathe-

drals and who jumped off the brooklyn bridge
A howl, the tempest, paradise lost
Q despite the fact that twenty six martyrs were crucified here in the late

sixteenth century it remained the center of christianity in its country
A nagasaki, guadalcanal, ethiopia
Q this novel parodies freudianism in a chapter about the protagonist ’s

dream of holding a live fish in his hands
A

billy budd, the ambassadors, all my sons
Q a contemporary of elizabeth i he came to power two years before her

and died two years later
A

grover cleveland, benjamin harrison, henry cabot lodge

Table 3.2: Five example sentences occuring at the first sentence position along
with their top three answers as scored by QANTA; correct answers are marked
with blue and wrong answers are marked with red. QANTA gets the first three
correct, unlike all other baselines. The last two questions are too difficult
for all of our models, requiring external knowledge (e.g., Freudianism) and
temporal reasoning.

3.2 Simpler Quiz Bowl Models

QANTA is a relatively complex model, containing many different composition matrices

and relying on sentential parse trees for the composition order. After finishing the QANTA

project, I wanted to explore different neural network architectures for quiz bowl. During

experimentation, a simple word vector average yielded highly competitive results, despite

the fact that it throws out all word order information. The deep averaging network,

described in Chapter 2, was borne out of these experiments. To conclude this chapter, I

revisit the quiz bowl task with a DAN instead of DTreeNN and discover that averaging is

an effective sentence composition method when paired with a novel dropout variant; this

result influences design decisions made for the RMN model described in the next chapter.
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Model Pos 1 Pos 2 Full Time(s)

BoW-DT 35.4 57.7 60.2 —
IR 37.5 65.9 71.4 N/A
QANTA 47.1 72.1 73.7 314
DAN 46.4 70.8 71.8 18

IR-WIKI 53.7 76.6 77.5 N/A
QANTA-WIKI 46.5 72.8 73.9 1,648
DAN-WIKI 54.8 75.5 77.1 119

Table 3.3: The DAN achieves slightly lower accuracies than the more complex
QANTA in much less training time, even at early sentence positions where
compositionality plays a bigger role. When Wikipedia is added to the training
set (bottom half of table), the DAN outperforms QANTA and achieves com-
parable accuracy to a state-of-the-art information retrieval baseline, which
highlights a benefit of ignoring word order for this task.
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Figure 3.7: Randomly dropping out 30% of words from the vector average is
optimal for the quiz bowl task, yielding a gain in absolute accuracy of almost
3% on the quiz bowl question dataset compared to the same model trained
with no word dropout.

3.2.1 DANs for Quiz Bowl

On the same quiz bowl dataset, the DAN outperforms other bag-of-words models and is

competitive with QANTA, but requires much less training time. More interestingly, we
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find that unlike the TreeNN, the DAN significantly benefits from out-of-domain Wikipedia

training data. As a reminder, QANTA’s dependency-tree TreeNNshows substantial im-

provements over other QA methods, leading to the hypothesis that correctly modeling

compositionality is crucial for answering hard questions. Before describing the exper-

iments, I introduce word dropout, a regularization method that can benefit any neural

composition function.

3.2.1.1 Word Dropout Improves Robustness

Dropout regularizes neural networks by randomly setting hidden and/or input units to

zero with some probability p (Hinton et al., 2012; Srivastava et al., 2014). Given a neural

network with n units, dropout prevents overfitting by creating an ensemble of 2n different

networks that share parameters, where each network consists of some combination of

dropped and undropped units. Instead of dropping units, a natural extension for the DAN

model is to randomly drop word tokens’ entire word embeddings from the vector average.

Another way to view word dropout is as an application of dropout to the one-hot encoding

(Section 2.1) of a given sentence. Using this method, which we call word dropout, our

network theoretically sees 2|X| different token sequences for each input X .

We posit a vector r with |X| independent Bernoulli trials, each of which equals 1

with probability p. The embedding vw for token w in X is dropped from the average if

rw is 0, which exponentially increases the number of unique examples the network sees
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during training. This allows us to modify Equation 2.1:

rw ∼ Bernoulli(p) (3.4)

X̂ = {w|w ∈ X and rw > 0} (3.5)

z = g(w ∈ X) =

∑
w∈X̂ vw

|X̂|
. (3.6)

Depending on the choice of p, many of the “dropped” versions of an original training

instance will be very similar to each other, but for shorter inputs this is less likely. We

might drop a very important token, such as “horrible” in “the crab rangoon was especially

horrible”; however, since the number of word types that are predictive of the output labels

is low compared to non-predictive ones (e.g., neutral words in sentiment analysis), we

always see improvements using this technique.

Theoretically, word dropout can also be applied to other neural network-based

approaches. However, we observe no significant performance differences in preliminary

experiments when applying word dropout to leaf nodes in TreeNNs for sentiment analysis

(dropped leaf representations are set to zero vectors), and it slightly hurts performance on

the question answering task.

Dataset and Experimental Setup We train a DAN over the history questions from Iyyer

et al. (2014a).16 This dataset is augmented with 49,581 sentence/page-title pairs from the

Wikipedia articles associated with the answers in the dataset. For fair comparison with

QANTA, we use a normalized tanh activation function at the last layer instead of ReLu,

16The training set contains 14,219 sentences over 3,761 questions. For more detail about data and baseline
systems, see Iyyer et al. (2014a).
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and we also change the output layer from a softmax to the margin ranking loss Weston

et al. (2011) used in QANTA. We initialize the DAN with the same pretrained 100-d word

embeddings that were used to initialize QANTA.

We also evaluate the effectiveness of word dropout on this task in Figure 3.2. Cross-

validation indicates that p = 0.3 works best for question answering, although the im-

provement in accuracy is negligible for sentiment analysis. Finally, continuing the trend

observed in the sentiment experiments, DAN converges much faster than QANTA.

DANs Improve with Noisy Data Table 3.2 shows that while DAN is slightly worse than

QANTA when trained only on question-answer pairs, it improves when trained on additional

out-of-domain Wikipedia data (DAN-WIKI), reaching performance comparable to that

of a state-of-the-art information retrieval system (IR-WIKI). QANTA, in contrast, barely

improves when Wikipedia data is added (QANTA-WIKI) possibly due to the syntactic

differences between Wikipedia text and quiz bowl question text.

The most common syntactic structures in quiz bowl sentences are imperative con-

structions such as “Identify this British author who wrote Wuthering Heights”, which are

almost never seen in Wikipedia. Furthermore, the subject of most quiz bowl sentences

is a pronoun or pronomial mention referring to the answer, a property that is not true

of Wikipedia sentences (e.g., “Little of Emily’s work from this period survives, except

for poems spoken by characters.”). Finally, many Wikipedia sentences do not uniquely

identify the title of the page they come from, such as the following sentence from Emily

Brontë’s page: “She does not seem to have made any friends outside her family.” While

noisy data affect both DAN and QANTA, the latter is further hampered by the syntactic
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divergence between quiz bowl questions and Wikipedia, which may explain the lack of

improvement in accuracy.

3.3 Conclusion

In this chapter, I first introduce QANTA, a dependency-tree neural network for factoid

question answering that outperforms bag of words and information retrieval baselines. The

model improves upon a contrastive max-margin objective function from previous work to

dynamically update answer vectors during training with a single model. Additionally, I

show that sentence-level representations can be easily and effectively combined to generate

paragraph-level representations with more predictive power than those of the individual

sentences. In the final section of the chapter, I show that the complex machinery of the

DTreeNN is actually unnecessary for quiz bowl, and that deep bag-of-words models can

achieve similar performance with much less training time.
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Chapter 4

Sequential Semantic Parsing: Integrating Context with Structured

Prediction

In the previous chapter, we formalize quiz bowl as a classification problem and used very

simple methods to extract information from discourse-level context. Semantic parsing,

which is the task I explore in this chapter, cannot be tackled in the same way. A semantic

parser maps natural language text to meaning representations in formal logic (Liang, 2016);

instead of producing an answer prediction as in classification, the goal here is to produce

a formal query (or semantic parse) of the question. Once a natural language question

has been mapped to a formal query, its answer can be retrieved by executing the query

on a back-end structured database. Semantic parsing is well-studied for single-sentence

questions, but how can it be extended to cover conversational QA with dependencies

between turns?

This chapter includes content and figures previously published in Iyyer et al. (2017b),

the work for which was done during an internship at Microsoft Research in 2016.

4.1 Motivating Contextual Understanding for Semantic Parsing

One of the main focuses of semantic parsing research is how to address compositionality

in language, and complicated questions have been specifically targeted in the design of a

recently-released QA dataset (Pasupat and Liang, 2015). Take for example the following
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question: “of those actresses who won a Tony after 1960, which one took the most amount

of years after winning the Tony to win an Oscar?” The corresponding logical form is highly

compositional; in order to answer it, many sub-questions must be implicitly answered in

the process (e.g., “who won a Tony after 1960?”).

While semantic parsers should be able to answer very complicated questions, in

reality these questions are rarely issued by users.1 Because users can interact with a QA

system repeatedly, there is no need to assume a single-turn QA setting where the exact

question intent has to be captured with just one complex question. The same intent can be

more naturally expressed through a sequence of simpler questions, as shown below:

1. What actresses won a Tony after 1960?

2. Of those, who later won an Oscar?

3. Who had the biggest gap between their two award wins?

Decomposing complicated intents into multiple related but simpler questions is arguably a

more effective strategy to explore a topic of interest, and it reduces the cognitive burden on

both the person who asks the question and the one who answers it.2

In this work, we study semantic parsing for answering sequences of simple re-

lated questions. We collect a dataset of question sequences called SequentialQA (SQA;

Section 4.2)3 by asking crowdsourced workers to decompose complicated questions sam-

pled from the WikiTableQuestions dataset (Pasupat and Liang, 2015) into multiple easier

ones. SQA, which contains 6,066 question sequences with 17,553 total question-answer

1For instance, there are only 3.75% questions with more than 15 words in WikiAnswers (Fader et al.,
2014).

2Studies have shown increased sentence complexity links to longer reading times (Hale, 2006; Levy,
2008; Frank, 2013).

3Available at http://aka.ms/sqa
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come from Earth?
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appeared most 
recently?

Original intent: 
What super hero 
from Earth appeared 
most recently?

Legion of Super Heroes Post-Infinite Crisis

Figure 4.1: An example question sequence created from a compositional
question intent. Workers must write questions whose answers are subsets of
cells in the table.

pairs, is to the best of our knowledge the first semantic parsing dataset for sequential

question answering. Section 4.3 describes our novel dynamic neural semantic parsing

framework (DynSP), a weakly supervised structured-output learning approach based on

reward-guided search that is designed for solving sequential QA. We demonstrate in Sec-

tion 4.4 that DynSP achieves higher accuracies than existing systems on SQA, and we

offer a qualitative analysis of question types that our method answers effectively, as well

as those on which it struggles.

4.2 A Dataset of Question Sequences

We collect the SequentialQA (SQA) dataset via crowdsourcing by leveraging WikiTable-

Questions (Pasupat and Liang, 2015, henceforth WTQ), which contains highly composi-
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tional questions associated with HTML tables from Wikipedia.

Each crowdsourcing task contains a long, complex question originally from WTQ as

the question intent. The workers are asked to compose a sequence of simpler questions

that lead to the final intent; an example of this process is shown in Figure 4.2.

To simplify the task for workers, we only use questions from WTQ whose answers

are cells in the table, which excludes those involving arithmetic and counting. We likewise

also restrict the questions our workers can write to those answerable by only table cells.

These restrictions speed the annotation process because workers can just click on the table

to answer their question. They also allow us to collect answer coordinates (row and column

in the table) as opposed to answer text, which removes many normalization issues for

answer string matching in evaluation. Finally, we only use long questions that contain nine

or more words as intents; shorter questions tend to be simpler and are thus less amenable

to decomposition.

4.2.1 Properties of SQA

In total, we use 2,022 question intents from the train and test folds of the WTQ for

decomposition. Three workers decompose each intent, resulting in 6,066 unique questions

sequences containing 17,553 total question-answer pairs (for an average of 2.9 questions

per sequence). We divide the dataset into train and test using the original WTQ folds,

resulting in an 83/17 train/test split. Importantly, just like in WTQ, none of the tables in

the test set are in the training set.

We identify three frequently-occurring question classes: column selection, subset
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selection, and row selection.4 In column selection questions, the answer is an entire

column of the table; these questions account for 23% of all questions in SQA. Subset

and row selection are more complicated than column selection, as they usually contain

coreferences to the previous question’s answer. In subset selections, the answer is a subset

of the previous question’s answer; similarly, the answers to row selections occur in the

same row(s) as the previous answer but in a different column. Subset selections make up

27% of SQA, while row selections are an additional 19%. The remaining 31% contains

more complex combinations of these three types.

We also observe dramatic differences in the types of questions that are asked at each

position of the sequence. For example, 51% of the first questions in the sequences are

column selections (e.g., “what are all of the teams?”). This number dwindles to just 18%

when we look at the second question of each sequence, which indicates that the collected

sequences start with general questions and progress to more specific ones.

4.3 Dynamic Neural Semantic Parsing

The unique setting of SQA provides both opportunities and challenges. On the one hand,

it contains short questions with less compositionality, which in theory should reduce the

difficulty of the semantic parsing problem; on the other hand, the additional contextual

dependencies of the preceding questions and their answers increase modeling complexity.

These observations lead us to propose a dynamic neural semantic parsing framework

(DynSP) trained using a reward-guided search procedure for solving SQA.

4In the example sequence “what are all of the tournaments? in which one did he score the least points?
on what date was that?”, the first question is a column selection, the second is a subset selection, and the last
one is a row selection.
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Given a question (optionally along with previous questions and answers) and a table,

DynSP formulates the semantic parsing problem as a state–action search problem. Each

state represents a complete or partial parse, while each action corresponds to an operation

to extend a parse. The goal during inference is to find an end state with the highest score

as the predicted parse.

The quality of the induced semantic parse obviously depends on the scoring func-

tion. In our design, the score of a state is determined by the scores of actions taken

from the initial state to the target state, which are predicted by different neural network

modules based on action type. By leveraging a margin-based objective function, the model

learning procedure resembles several structured-output learning algorithms such as struc-

tured SVMs (Tsochantaridis et al., 2005), but can take either strong or weak supervision

seamlessly.

DynSP is inspired by STAGG, a search-based semantic parser (Yih et al., 2015), as

well as the dynamic neural module network (DNMN) of Andreas et al. (2016). Much like

STAGG, DynSP chains together different modules as search progresses; however, these

modules are implemented as neural networks, which enables end-to-end training as in

DNMN. The key difference between DynSP and DNMN is that in DynSP the network

structure of an example is not predetermined. Instead, different network structures are

constructed dynamically as our learning procedure explores the state space.

It is straightforward to answer sequential questions using our framework: we allow

the model to take the previous question and its answers as input, with a slightly modified

action space to reflect a dependent semantic parse. The same search and learning procedure

is then able to effortlessly adapt to the new setting. In this section, we first describe the
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formal language underlying DynSP, followed by the model formulation and learning

algorithm.

4.3.1 Semantic parse language

Because tables are used as the data source to answer questions in SQA, we decide to form

our semantic parses in an SQL-like language5. Our parses consist of two parts: a select

statement and conjunctions of zero or more conditions.

A select statement is associated with a column name, which is referred to as the

answer column. Conditions enforce additional constraints on which cells in the answer

column can be chosen; a select statement without any conditions indicates that an entire

column of the table is the answer to the question. In particular, each condition contains a

column name as the condition column and an operator with zero or more arguments. The

operators in this work include: =, 6=, >,≥, <,≤, argmin, argmax. A cell in the answer

column is only a legitimate answer if the cell of the corresponding row in the condition

column satisfies the constraint defined by the operator and its arguments.

As a concrete example, suppose the data source is the same table in Fig. 4.2. The

semantic parse of the question “Which super heroes came from Earth and first appeared

after 2009?” is “Select Character Where {Home World = Earth} ∧ {First Appeared >

2009}” and the answers are {Dragonwing, Harmonia}.

To handle the sequential aspect of SQA, we extend the semantic parse language by

adding a preamble statement subsequent. A subsequent statement contains only condi-

5Our framework is not restricted to the formal language we use in this work. In addition, the structured
query can be straightforwardly represented in other formal languages, such as the lambda DCS logic used
in (Pasupat and Liang, 2015).
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tions, as it essentially adds constraints to the semantic parse of the previous question. For

instance, if the follow-up question is “Which of them breathes fire?”, then the correspond-

ing semantic parse is “Subsequent Where {Powers = Fire breath}”. The answer to this

question is {Dragonwing}, a subset of the previous answer.

4.3.2 Model formulation

We start introducing our model design by first defining the state and action space. Let S be

the set of states and A the set of all actions. A state s ∈ S is simply a sequence of variable

length of actions {a1, a2, a3, · · · , at}, where ai ∈ A. An empty sequence, s0 = φ, is a

special state used as the starting point of search.

As mentioned earlier, a state represents a (partial) semantic parse of one question.

Each action is thus a legitimate operation that can be added to grow the semantic parse.

Our action space design is tied closely to the statements defined by our parse language;

in particular, an action instance is either a complete or partial statement, and action

instances are grouped by type. For example, select and subsequent operations are two

action types. A condition statement is formed by two different action types: (1) selection

of the condition column, and (2) the comparison operator. The instances of each action

type differ in their arguments (e.g., column names, or specific cells in a column). Because

conditions in a subsequent parse rely on previous questions and answers, they belong to

different action types from regular conditions. Table 4.3.2 summarizes the action space

defined in this work.

Any state that represents a complete and legitimate parse is an end state. Search does
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Id Type # Action instances
A1 Select-column # columns
A2 Cond-column # columns
A3 Op-Equal (=) # rows
A4 Op-NotEqual (6=) # rows
A5 Op-GT (>) # numbers / datetimes
A6 Op-GE (≥) # numbers / datetimes
A7 Op-LT (<) # numbers / datetimes
A8 Op-LE (≤) # numbers / datetimes
A9 Op-ArgMin # numbers / datetimes
A10 Op-ArgMax # numbers / datetimes
A11 Subsequent 1
A12 S-Cond-column # columns
A13 S-Op-Equal (=) # rows
A14 S-Op-NotEqual (6=) # rows
A15 S-Op-GT (>) # numbers / datetimes
A16 S-Op-GE (≥) # numbers / datetimes
A17 S-Op-LT (<) # numbers / datetimes
A18 S-Op-LE (≤) # numbers / datetimes
A19 S-Op-ArgMin # numbers / datetimes
A20 S-Op-ArgMax # numbers / datetimes

Table 4.1: Types of actions and the number of action instances in each type.
Numbers / datetimes are the mentions discovered in the question (plus the
previous question if it is a subsequent condition).

not necessarily need to stop at an end state, because adding more actions (e.g., condition

statements) can lead to another end state. Take the same example question from before:

“Which super heroes came from Earth and first appeared after 2009?”. One action sequence

that represents the parse is {(A1) select-column Character, (A2) cond-column Home

World, (A3) op-equal Earth, (A2) cond-column First Appeared, (A5) op-gt 2009}.

Many states represent semantically equivalent parses (e.g., those with the same

actions ordered differently, or states with repeated conditions). To prune the search space,

we introduce the function Act(s) ⊂ A, which defines the actions that can be taken when

given a state s. Borrowing the idea of staged state generation in Yih et al. (2015), we

choose a default ordering of actions based on their types, dictating that a select action must
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A1 A2 A3...A10

s0

A2

A11 A12 A13...A20

A12

Figure 4.2: Possible action transitions based on their types (see Table 4.3.2).
Shaded circles are end states.

be picked first and that a condition-column needs to be determined before the operator is

chosen. The full transition diagram is presented in Fig. 4.3.2. To implement this transition

order, we only need to check the last action in the state. In addition, we also disallow

adding duplicates of actions that already exist in the state.

We use beam search to find an end state with the highest score for inference. Let

st be a state consisting of a sequence of actions a1, a2, · · · , at. The state value function

V is defined recursively as V (st) = V (st−1) + π(st−1, at), V (s0) = 0, where the policy

function π(s, a) scores an action a ∈ Act(s) given the current state.

4.3.3 Policy function

The intuition behind the policy function can be summarized as follows. Halfway through

the construction of a semantic parse, the policy function measures the quality of an

immediate action that can be taken next given the current state (i.e., the question and

actions that have previously been chosen). To enable integrated, end-to-end learning,

the policy function in our framework is parameterized using neural networks. Because
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each action type has very different semantics, we design different network structures (i.e.,

modules) accordingly.

Most of our network structures encourage learning semantic matching functions

between the words in the question and table (either the column names or cells). Here

we illustrate the design using the select-column action type (A1). Conceptually, the

corresponding module is a combination of various matching scores. Let WQ be the

embeddings of words in the question and WC be the embeddings of words in the target

column name. The component matching functions are:

fmax =
1

|WC |
∑

wc∈WC

max
wq∈WQ

wTq wc

favg =

 1

|WC |
∑

wc∈WC

wc

T  1

|WQ|
∑

wq∈WQ

wq



Essentially, for each word in the column name, fmax finds the highest matching

question word and outputs the average score. Conversely, favg simply uses the average

word vectors of the question and column name and returns their inner product. In another

variant of favg, we replace the question representation with the output of a bi-directional

LSTM model. These matching component functions are combined by a 2-layer feed-

forward neural network, which outputs a scalar value as the action score.
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4.3.4 Model learning

Because the state value function V is defined recursively as the sum of scores of actions

in the sequence, the goal of model optimization is to learn the parameters in the neural

networks behind the policy function. Let θ be the collection of all the model parameters.

Then the state value function can be written as: Vθ(st) =
∑t

i=1 πθ(si−1, ai).

In a fully supervised setting where the correct semantic parse of each question is

available, learning the policy function can be reduced to a sequence prediction problem.

However, while having full supervision leads to a better semantic parser, collecting the

correct parses requires a much more sophisticated UI design (Yih et al., 2016). In many

scenarios, such as the one in the SQA dataset, it is often the case that only the answers

to the questions are available. Adapting a learning algorithm to this weakly supervised

setting is thus critical.

Generally speaking, weakly supervised semantic parsers operate on one assumption—

a candidate semantic parse is treated as a correct one if it results in answers that are identical

to the gold answers. Therefore, a straightforward modification of existing structured

learning algorithms in our setting is to use any semantic parse found to evaluate to the

correct answers during beam search as a reference parse, and then update the model

parameters accordingly. In practice, however, this approach is often problematic: the

search space can grow enormously, and when coupled with poor model performance early

during training, this leads to beams that contain no parses evaluating to the correct answer.

As a result, learning becomes inefficient and takes a long time to converge.

In this work, we propose a conceptually simple learning algorithm for weakly

56



supervised training that sidesteps the inefficient learning problem. Our key insight is

to conduct inference using a beam search procedure guided by an approximate reward

function. The search procedure is executed twice for each training example, one for finding

the best possible reference semantic parse and the other for finding the predicted semantic

parse to update the model. Our framework is suitable for learning from either implicit or

explicit supervision. Below we describe how we adapt it to the semantic parsing problem

in this work.

Approximate reward LetA(s) be the answers retrieved by executing the semantic parse

represented by state s, and let A∗ be the set of gold answers of a given question. We

define the reward R(s;A∗) = 1[A(s) = A∗], or the accuracy of the retrieved answers. We

use R(s) as the abbreviation for R(s;A∗). A state s with R(s) = 1 is called a goal state.

Directly using this reward function in search of goal states can be difficult, as rewards

of most states are 0. However, even when the answers from a semantic parse are not

completely correct, some overlap with the gold answers can still hint that the state is

close to a goal state, thus providing useful information to guide search. To formalize this

idea, we define an approximated reward R̃(s) in this work using the Jaccard coefficient

(R̃(s) = |A(s) ∩ A∗|/|A(s) ∪ A∗|). If s is a goal state, then obviously R̃(s) = R(s) = 1.

Also because our actions effectively add additional constraints to exclude some table cells,

any succeeding states of s′ with R̃(s′) = 0 will also have 0 approximate reward and can be

pruned from search immediately.

We use the approximate reward R̃ to guide our beam search to find the reference

parses (i.e., goal states). Some variations of the approximate reward can make learning
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more efficient. For instance, we use the model score for tie-breaking, effectively making

the approximate reward function depend on the model parameters:

R̃θ(s) = |A(s) ∩ A∗|/|A(s) ∪ A∗|+ εVθ(s), (4.1)

where ε is a small constant. When a goal state is not found, the state with the highest

approximate reward can still be used as a surrogate reference.

Updating parameters The model parameters are updated by first finding the most

violated state ŝ and then comparing ŝ with a reference state s∗ to compute a loss. The idea

of finding the most violated state comes from Taskar et al. (2004), with the intuition that

the learning algorithm should make the state value function behave similarly to the reward.

Formally, for every state s, we would like the value function to satisfy the following

constraint:

Vθ(s
∗)− Vθ(s) ≥ R(s∗)−R(s) (4.2)

R(s∗)−R(s) is thus the margin. As discussed above, we use approximate reward function

R̃θ instead of the true reward. We want to update the model parameters θ to make sure that

the constraint is satisfied. When the constraint is violated, the degree of violation can be

written as:

L(s) = Vθ(s)− Vθ(s∗)− R̃θ(s) + R̃θ(s
∗) (4.3)

In the algorithm, we want to find the state such that the corresponding constraint is most

violated. Finding the most violated state is then equivalent to finding the state with the
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Algorithm 1 Model parameter updates
1: for pick a labeled data (x,A∗) do
2: s∗ ← argmax

s∈E(x)
R̃(s;A∗)

3: ŝ← argmax
s∈E(x)

Vθ(s)− R̃(s;A∗)

4: update θ by minimizing max(L(s), 0)
5: end for

highest value of Vθ(s)− R̃θ(s) as the other two terms are constant.

Algorithm 4.3.4 sketches the key steps of our method in each iteration. It first picks

a training instance (x and y), where x represents the table and the question, and y is the

gold answer set. The approximate reward function R̃ is defined by y, while E(x) is the set

of end states for this instance. Line 2 finds the best reference and Line 3 finds the most

violated state, both relying on beam search for approximate inference. Line 4 computes

the gradient of the loss in Eq. Eq. (4.3), which is then used in backpropagation to update

the model parameters.

4.4 Experiments

Since the questions in SQA are decomposed from those in WTQ, we compare our method,

DynSP, to two existing semantic parsers designed for WTQ: (1) the floating parser (FP)

of Pasupat and Liang (2015), and (2) the neural programmer (NP) of Neelakantan et al.

(2017). We describe below each system’s configurations in more detail and qualitatively

compare and contrast their performance on SQA.

Floating parser: The floating parser (Pasupat and Liang, 2015) maps questions to

logical forms and then executes them on the table to retrieve the answers. It was designed
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specifically for the WTQ task (achieving 37.0% accuracy on the WTQ test set) and differs

from other semantic parsers by not anchoring predicates to tokens in the question, relying

instead on typing constraints to reduce the search space. Using FP as-is results in poor

performance on SQA because the system is configured for questions with single answers,

while SQA contains many questions with multiple-cell answers. We address this issue by

removing a pruning hyperparameter (tooManyValues) and features that add bias on the

denotation size.

Neural programmer: The neural programmer (NP) proposed by Neelakantan et al.

(2017) has shown promising results on WTQ, achieving accuracies on par with those of

FP. Similar to our method, NP contains specialized neural modules that perform discrete

operations such as argmax and argmin, and it is able to chain together multiple modules

to answer a single question. However, module selection in NP is computed via soft

attention (Cho et al., 2014), and information is propagated from one module to the next

using a recurrent neural network. Since module selection is not tied to a pre-defined

parse language like DynSP, NP simply runs for a fixed number of recurrent timesteps per

question rather than growing a parse until it is complete.

Comparing the baseline systems: FP and NP exemplify two very different paradigms

for designing a semantic parsing system to answer questions using structured data. FP

is a feature-rich system that aims to output the correct semantic parse (in a logical parse

language) for a given question. On the other hand, the end-to-end neural network of NP

relies on its modular architectures to output a probability distribution over cells in a table
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given a question. While NP can learn more powerful neural matching functions between

questions and tables than FP’s simpler feature-based matching, NP cannot produce a

complete, discrete semantic parse, which means that its actions can only be interpreted

coarsely by looking at the order of the modules selected at each timestep.6 Furthermore,

FP’s design theoretically allows it to operate on partial tables indirectly through an API,

which is necessary if tables are large and stored in a backend database, while NP requires

upfront access to the full tables to facilitate end-to-end model differentiability.7

Even though FP and NP are powerful systems designed for the more difficult, com-

positional questions in WTQ, our method outperforms both systems on SQA when we

consider all questions within a sequence independently of each other (a fair comparison),

demonstrating the power of our search-based semantic parsing framework. More interest-

ingly, when we leverage the sequential information by including the subsequent action,

our method improves almost 3% in absolute accuracy.

DynSP combines the best parts of both FP and NP. Given a question, we try to

generate its correct semantic parse in a formal language that can be predefined by the

choice of structured data source (e.g., SQL). However, we push the burden of feature

engineering to neural networks as in NP. Our framework is easier to extend to the sequential

setting of SQA than either baseline system, requiring just the additional subsequent action.

FP’s reliance on a hand-designed grammar necessitates extra rules that operate over

partial tables from the previous question, which if added would blow up the search space.

Meanwhile, modifying NP to handle sequential QA is non-trivial due to soft module and

6Since NP uses a fixed number of timesteps for each question, the module order is not guaranteed to
correspond to a complete parse.

7In fact, NP is restricted during training to only questions whose associated tables have fewer than a
certain threshold of rows and columns due to computational constraints.
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answer selection; it is not immediately clear how to constrain predictions for one question

based on the probability distribution over table cells from the previous question in the

sequence.

To more fairly compare DynSP to the baseline systems, we also experiment with a

“concatenated questions” setting, which allows the baselines to access sequential context.

Here, we treat concatenated question prefixes of a sequence as additional training examples,

where a question prefix includes all questions prior to the current question in the sequence.

For example, suppose the question sequence is: 1. what are all of the teams? 2. of

those, which won championships? For the second question, in addition to the original

question–answer pair, we add the concatenated question sequence “what are all of the

teams? of those, which won championships?” paired with the second question’s answer.

We refer to these concatenated question baselines as FP+ and NP+.

4.4.1 DynSP implementation details

Unlike previous dynamic neural network frameworks (Andreas et al., 2016; Looks et al.,

2017), where each example can have different but predetermined structure, DynSP needs to

dynamically explores and constructs different neural network structures for each question.

Therefore, we choose DyNet (Neubig et al., 2017) as our implementation platform for its

flexibility in composing computation graphs. We optimize our model parameters using

standard stochastic gradient descent. The word embeddings are initialized with 100-d

pretrained GloVe vectors (Pennington et al., 2014) and fine-tuned during training with

dropout rate 0.5. For follow-up questions, we choose uniformly at random to use either
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gold answers to the previous question or the model’s previous predictions.8 We constrain

the maximum length of actions to 3 for computational efficiency and set the beam size to

15 in our reported models, as accuracy gains are negligible with larger beam sizes. We

train our model for 30 epochs, although the best model on the validation set is usually

found within the first 20 epochs. Only CPU is used in model training, and each epoch in

the beam size 15 setting takes about 30 minutes to complete.

4.4.2 Results & Analysis

Table 4.4.2 shows the results of the baseline systems as well as our method on SQA’s

test set. For each system, we show both the overall accuracy, the sequence accuracy

(the percentage of sequences for which every question was answered correctly), and the

accuracy at each position in the sequence. Our method without any sequential information

(DynSP) outperforms the standard baselines, and when the subsequent action is added

(DynSP∗), we improve both overall and sequence accuracy over the concatenated-question

baselines.

With that said, all of the systems struggle to answer all questions within a sequence

correctly, despite the fact that each individual question is simpler on average than those

in WTQ. Most of the errors made by our system are due to either semantic matching

challenges or limitations of the underlying parse language. In the middle example of

Figure 4.4.2, the first question asks for a list of super heroes; from the model’s point of

view, Real name is a more relevant column than Character, although the latter is correct.

The second question also contains a challenging matching problem where the unlisted

8Only predicted answers are used at test time.
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Model All Seq Pos 1 Pos 2 Pos 3

FP 34.1 7.2 52.6 25.6 25.9
NP 39.4 10.8 58.9 35.9 24.6

DynSP 42.0 10.2 70.9 35.8 20.1

FP+ 33.2 7.7 51.4 22.2 22.3
NP+ 40.2 11.8 60.0 35.9 25.5

DynSP∗ 44.7 12.8 70.4 41.1 23.6

Table 4.2: Accuracies of all systems on SQA; the models in the first half of
the table treat questions independently, while those in the second half consider
sequential context. Our method outperforms existing ones both in terms of
overall accuracy as well as sequence accuracy.

home worlds referred to in the question are marked as Unknown in the table. Many of

these matching issues are resolved by humans using common sense, which for computers

requires far more data than is available in SQA to learn.

Even when there are no tricky discrepancies between question and table text, ques-

tions are often complex enough that their semantic parses cannot be expressed in our parse

language. Although trivial on the surface, the final question in the bottom sequence of

Figure 4.4.2 is one such example; the correct semantic parse requires access to the answers

of both the first and second question, actions that we have not currently implemented in our

language due to concerns with the search space size. Increasing the number of complex

actions requires designing smarter optimization procedures, which we leave to future work.
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1. Which nations competed in the FINA women’s water polo cup?

2. Of these nations, which ones took home at least one gold medal? 

3. Of those, which ranked in the top 2 positions?

SELECT Nation

SUBSEQUENT WHERE Gold != 0

SUBSEQUENT WHERE Rank <= 2

1. Who are all of the super heroes?

2. Which of those does not have a home world listed? 
SELECT

SUBSEQUENT WHERE !=

CharacterReal name

Home world UnknownVyrga

1. How many naturalizations did Maghreb have in 2000?

2. How many naturalizations did North America have in 2000?

3. Which had more?

SELECT 2000

SUBSEQUENT WHERE …Origin = North America

WHERE =…Origin Maghreb

SELECT 2000 WHERE =…Origin North America

MAX SUBSEQUENT 1 SUBSEQUENT 2

SELECT …Origin WHERE 2000 =

Figure 4.3: Parses computed by DynSP for three test sequences (actions in
blue boxes, values from table in white boxes). Top: all three questions are
parsed correctly. Middle: semantic matching errors cause the model to select
incorrect columns and conditions. Bottom: The final question is unanswerable
due to limitations of our parse language.
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4.5 Related Work

Previous work on conversational QA has focused on small, single-domain datasets. Perhaps

most related to our task is the context-dependent sentence analysis described in (Zettle-

moyer and Collins, 2009), where conversations between customers and travel agents are

mapped to logical forms after resolving referential expressions. (Artzi and Zettlemoyer,

2011) use another dataset of travel booking conversations to learn a semantic parser for

complicated queries given user clarifications. More recently, Long et al. (2016) collect

three contextual semantic parsing datasets (from synthetic domains) that contain coref-

erences to entities and actions. We differentiate ourselves from these prior works in two

significant ways: first, our dataset is not restricted to a particular domain, and second, a

major goal of our work is to analyze the different types of sequence progressions people

create when they are trying to express a complicated intent.

Complex, interactive QA tasks have also been proposed in the information retrieval

community, where the data source is a corpus of newswire text (Kelly and Lin, 2007).

We also build on aspects of some existing interactive question-answering systems. For

example, Harabagiu et al. (2005) include a module that predicts what a user will ask next

given their current question.

Other than FP and NP, the work of Neural Symbolic Machines (NSM) (Liang et al.,

2017) is perhaps the closest to ours. NSM aims to generate formal semantic parses of

questions that can be executed on Freebase to retrieve answers, and is trained using the

REINFORCE algorithm (Williams, 1992) augmented with approximate gold parses found

in a separate curriculum learning stage. In comparison, finding reference parses is an
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integral part of our algorithm. Our non-probabilistic, margin-based objective function also

helps avoid the need for empirical tricks to handle normalization and proper sampling,

which are crucial when applying REINFORCE in practice.

4.6 Conclusion & Future Work

In this work we move towards a conversational, multi-turn QA scenario in which systems

must rely on prior context to answer the user’s current question. To this end, we introduce

SQA, a dataset that consists of 6,066 unique sequences of inter-related questions about

Wikipedia tables, with 17,553 questions-answer pairs in total. To the best of our knowledge,

SQA is the first semantic parsing dataset that addresses sequential question answering.

We propose DynSP, a dynamic neural semantic parsing framework, for solving SQA. By

formulating semantic parsing as a state–action search problem, our method learns modular

neural network models through reward-guided search. DynSP outperforms existing state-

of-the-art systems designed for answering complex questions when applied to SQA, and

increases the gain after incorporating the subsequent actions.

In the future, we plan to investigate several interesting research questions triggered by

this work. For instance, although our current formal language design covers most question

types in SQA, it is nevertheless important to extend it further to make the semantic parser

more robust (e.g., by including UNION or allowing comparison of multiple previous

answers). Practically, allowing a more complicated semantic parse structure—either by

increasing the number of primitive statements or the length of the parse—poses serious

computational challenges in both model learning and inference. Because of the dynamic
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nature of our framework, it is not trivial to leverage the computational capabilities of GPUs

using minibatched training; we plan to investigate ways to take full advantage of modern

computing machinery in the near future. Finally, better resolution of semantic matching

errors is a top priority, and unsupervised learning from large external corpora is one way

to make progress in this direction.
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Chapter 5

Dynamically Modeling Fictional Relationships

The quiz bowl questions in Chapter 3 contain paragraph-length contexts, while the conver-

sational histories in the sequential QA problem of Chapter 4 average about three sentences

in length. Many language domains contain contexts that are substantially longer and more

complicated. Consider novels, which contain character-centric narratives; relationships

between characters develop chapter by chapter, and events in the story often have huge

impact on these relationships. In this chapter, we consider the following question: how

do we build neural networks that can produce valuable insights from just the raw texts of

novels without any annotated data?1

5.1 Motivation

When two characters in a book break bread, is their meal just a result of biological needs

or does it mean more? Cognard-Black et al. (2014) argue that this simple interaction

reflects the diversity and background of the characters, while Foster (2009) suggests that

the tone of a meal can portend either good or ill for the rest of the book. To support such

theories, scholars use their literary expertise to draw connections between disparate books:

Gabriel Conroy’s dissonance from his family at a sumptuous feast in Joyce’s The Dead,

the frustration of Tyler’s mother in Dinner at the Homesick Restaurant, and the grudging

1This chapter covers models and datasets previously proposed in Iyyer et al. (2016, NAACL).
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love love

sadness

joy

love

fantasy

love

fantasy

sickness

death

sadness

death

marriage

sickness

murder

passage of time

I love him more 
than ever. We are 
to be married on 
28 September.

I feel so weak and worn 
out … looked quite grieved 
… I hadn't the spirit

poor girl, there is 
peace for her at 
last. It is the end!

Arthur placed the 
stake over her 
heart … he struck 
with all his might. 
The Thing in the 
coffin writhed …

Figure 5.1: An example trajectory depicting the dynamic relationship between
Lucy and Arthur in Bram Stoker’s Dracula, which starts with love and ends
with Arthur killing the vampiric Lucy. Each column describes the relationship
state at a particular time by weights over a set of descriptors (larger weights
shown as bigger boxes). Our goal is to learn—without supervision—both the
descriptors and the trajectories from raw fictional texts.

respect for a blind man eating meatloaf in Carver’s Cathedral.

However, these insights do not come cheap. It takes years of careful reading

and internalization to make connections across books, which means that relationship

symmetries and archetypes are likely to remain hidden in the millions of books published

every year unless literary scholars are actively searching for them.

Natural language processing techniques have been increasingly used to assist in

these literary investigations by discovering patterns in texts (Jockers, 2013). In Section 5.6

we review existing techniques that classify or cluster relationships between characters

in books using a fixed set of labels (e.g., friend or enemy). However, such approaches
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ignore interactions between characters that lie outside of the established lexicon and cannot

account for the dynamic nature of relationships that evolve through the course of a book,

such as the vampiric downfall of Lucy and Arthur’s engagement in Dracula (Figure 5) or

Winston Smith’s rat-induced betrayal of Julia in 1984.

To address these issues, we propose the task of unsupervised relationship modeling,

in which a model jointly learns a set of relationship descriptors as well as relationship

trajectories for pairs of literary characters. Instead of assigning a single descriptor to a

particular relationship, the trajectories learned by the model are sequences of descriptors

as in Figure 5.

The Bayesian hidden topic Markov model (HTMM) of Gruber et al. (2007) emerges as

a natural choice for our task because it is capable of computing relationship descriptors (in

the form of topics) and has an additional temporal component. However, our experiments

show that the descriptors learned by the HTMM are not coherent and focus more on

events or environments (e.g., meals, outdoors) than interpersonal states like happiness and

sadness.

Motivated by recent advances in deep learning, we propose the relationship modeling

network (RMN), which is a novel variant of a deep recurrent autoencoder that incorporates

dictionary learning to learn relationship descriptors. We show that the RMN achieves

better descriptor coherence and trajectory accuracy than the HTMM and other topic model

baselines in two crowdsourced evaluations described in Section 5.4. In Section 5.5 we

show qualitative results and make connections to existing literary scholarship.
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5.2 A Dataset of Character Interactions

Our dataset consists of 1,383 fictional works pulled from Project Gutenberg and other

Internet sources. Project Gutenberg has a limited selection (outside of science fiction) of

mostly classic literature, so we add more contemporary novels from various genres such

as mystery, romance, and fantasy to our dataset.

To identify character mentions, we run the Book-NLP pipeline of Bamman et al.

(2014), which includes character name clustering, quoted speaker identification, and coref-

erence resolution.2 For every detected character mention, we define a span as beginning

100 tokens before the mention and ending 100 tokens after the mention. We do not use

sentence or paragraph boundaries because they vary considerably depending on the author

(e.g., William Faulkner routinely wrote single sentences longer than many of Hemingway’s

paragraphs). All spans in our dataset contain mentions to exactly two characters. This is a

rather strict requirement that forces a reduction in data size, but spans in which more than

two characters are mentioned are generally noisier.

Once we have identified usable spans in the dataset, we apply a second filtering step

that removes relationships containing fewer than five spans. Without this filter, our dataset

is dominated by fleeting interactions between minor characters; this is undesirable since

our focus is on longer, mutable relationships. Finally, we filter our vocabulary by removing

the 500 most frequently occurring words, as well as all words that occur in fewer than 100

books. The latter step helps correct for variation in time period and genre (e.g., “thou” and

2While this pipeline works reasonably well, it is unreliable for first-person narratives; we leave the
necessary improvements to character name clustering, which are further expanded upon in Vala et al. (2015),
for future work.
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“thy” found in older works like the Canterbury Tales). Our final dataset contains 20,013

relationships and 380,408 spans, while our vocabulary contains 16,223 words.3

5.3 Relationship Modeling Networks

This section mathematically describes how we apply the RMN to relationship modeling

on our dataset. Our model is similar in spirit to topic models: for an input dataset, the

output of the RMN is a set of relationship descriptors (topics) and—for each relationship in

the dataset—a trajectory, or a sequence of probability distributions over these descriptors

(document-topic assignments). However, the RMN uses recent advances in deep learning to

achieve better control over descriptor coherence and trajectory smoothness (Section 5.4).

5.3.1 Formalizing the Problem

Assume we have two characters c1 and c2 in book b. We define Sc1,c2 as a sequence of

token spans where each span st ∈ Sc1,c2 is itself a set of tokens {w1, w2, . . . , wl} of fixed

size l that contains mentions (either directly or by coreference) to both c1 and c2. In other

words, Sc1,c2 includes the text of every scene, chronologically ordered, in which c1 and c2

are present together.

5.3.2 Model Description

As in other neural network models for natural language processing, we begin by associating

each word type w in our vocabulary with a real-valued embedding vw ∈ R
d. These

3Code and span data available at http://github.com/miyyer/rmn.
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rt = RTdt

Mrs. Reilly looked at her son slyly and asked, 
"Ignatius, you sure you not a communiss?" 
"Oh, my God!" Ignatius bellowed. "Every 
day I am subjected to a McCarthyite 
witchhunt in this crumbling building. No!"

Mrs. Reilly Ignatius “A Confederacy
  of Dunces”

ht = f(Wh · [vst
; vc1

; vc2
; vb])

vst vc1
vc2 vb

dt�1

R

dt = ↵ · softmax(Wd · [ht; dt�1])+

(1� ↵) · dt�1

: previous state

: descriptor
   matrix

: reconstruction
   of input span

: distribution over        
  descriptors

Figure 5.2: An example of the RMN’s computations at a single time step.
The model approximates the vector average of an input span (vst) as a linear
combination of descriptors from R. The descriptor weights dt define the
relationship state at each time step and—when viewed as a sequence—form a
relationship trajectory.

embeddings are rows of a V × d matrix L, where V is the vocabulary size. Similarly,

characters and books have their own embeddings in rows of matrices C and B. We want

B to capture global context information (e.g., “Moby Dick” takes place at sea) and C to
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capture immutable aspects of characters not related to their relationships (e.g., Javert is a

police officer). Finally, the RMN learns embeddings for relationship descriptors, which

requires a second matrix R of size K × d where K is the number of descriptors, analogous

to the number of topics in topic models.

Each input to the RMN is a tuple that contains identifiers for a book and two charac-

ters, as well as the spans corresponding to their relationship: (b, c1, c2, Sc1,c2). Given one

such input, our objective is to reconstruct Sc1,c2 using a linear combination of relationship

descriptors from R as shown in Figure 5.3; we now describe this process formally.

5.3.2.1 Modeling Spans with Vector Averages

We use the DAN architecture detailed in Chapter 2 for span representation; below are the

specific details. We compute a vector representation for each span st in Sc1,c2 by averaging

the embeddings of the words in that span,

vst =
1

l

∑
w∈st

vw. (5.1)

Then, we concatenate vst with the character embeddings vc1 and vc2 as well as the book

embedding vb and feed the resulting vector into a standard feed-forward layer to obtain a

hidden state ht,

ht = f(Wh · [vst ;vc1 ;vc2 ;vb]). (5.2)

In all experiments, the transformation matrix Wh is d × 4d, and we set f to the ReLu

function, ReLu(x) = max(0, x).
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5.3.2.2 Approximating Spans with Relationship Descriptors

Now that we can obtain representations of spans, we move on to learning descriptors

using a variant of dictionary learning (Olshausen and Field, 1997; Elad and Aharon, 2006),

where our descriptor matrix R is the dictionary and we are trying to approximate input

spans as a linear combination of items from this dictionary.

Suppose we compute a hidden state for every span st in Sc1,c2 (Equation 5.2). Now,

given an ht, we compute a weight vector dt over K relationship descriptors with some

composition function g, which is fully specified in the next section. Conceptually, each

dt is a relationship state, and a relationship trajectory is a sequence of chronologically-

ordered relationship states as shown in Figure 5. After computing dt, we use it to compute

a reconstruction vector rt by taking a weighted average over relationship descriptors,

rt = RTdt. (5.3)

Our goal is to make rt similar to vst . We use a contrastive max-margin objective function

similar to previous work (Weston et al., 2011; Socher et al., 2014). We randomly sample

spans from our dataset and compute the vector average vsn for each sampled span as

in Equation 5.1. This subset of span vectors is N . The unregularized objective J is a

hinge loss that minimizes the inner product between rt and the negative samples while

simultaneously maximizing the inner product between rt and vst ,

J(θ) =

|Sc1,c2 |∑
t=0

∑
n∈N

max(0, 1− rtvst + rtvsn), (5.4)
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where θ represents the model parameters.

5.3.2.3 Computing Weights over Descriptors

What function should we choose for our composition function g to represent a relationship

state at a given time step? On the face of it, this seems trivial; we can project ht to K

dimensions and then apply a softmax or some other nonlinearity that yields non-negative

weights.4 However, this method ignores the relationship states at previous time steps. To

model the temporal aspect of relationships, we can add a recurrent connection,

dt = softmax(Wd · [ht;dt−1]) (5.5)

where Wd is of size K × (d+K) and softmax(q) = exp q/
∑k

j=1 exp qj.

Our hope is that this recurrent connection will carry some of the previous relationship

state over to the current time step. It should be unlikely for two characters in love at time

t to fall out of love at time t + 1 even if st+1 does not include any love-related words.

However, because the objective function in Equation 5.4 maximizes similarity with the

current time step’s input, the model is not forced to learn a smooth interpolation between

the previous state and the current one. A natural remedy is to have the model predict the

next time step’s input instead, but this proves hard to optimize.

We instead force the model to use the previous relationship state by modifying

4We experiment with a variety of nonlinearities but find that the softmax yields the most interpretable
results due to its predisposition to select a single descriptor.
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Equation 5.5 to include a linear interpolation between dt and dt−1,

dt = α · softmax(Wd · [ht;dt−1])+

(1− α) · dt−1.
(5.6)

Here, α is a scalar between 0 and 1. We experiment with setting α to a fixed value of 0.5

as well as allowing the model to learn α as in

α = σ(vT
α · [ht;dt−1;vst ]), (5.7)

where σ is the sigmoid function and vα is a vector of dimensionality 2d + K. Fixing

α = 0.5 initially and then tuning it after other parameters have converged improves training

stability; for the specific hyperparameters we use see Section 5.4.5

5.3.2.4 Interpreting Descriptors and Enforcing Uniqueness

Recall that each descriptor is a d-dimensional row of R. Because our objective function J

forces these descriptors to be in the same vector space as that of the word embeddings L,

we can interpret them by looking at nearest neighbors in L using cosine distance as the

similarity metric.

To discourage learning descriptors that are too similar to each other, we add another

penalty term X to our objective function,

X(θ) =
∥∥RRT − I

∥∥ , (5.8)

5This strategy is reminiscent of alternative minimization strategies for dictionary learning (Agarwal et al.,
2014), where the dictionary and weights are learned separately by keeping the other fixed.
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where I is the identity matrix. This term comes from the component orthogonality con-

straint in independent component analysis (Hyvärinen and Oja, 2000).

We add J and X together to obtain our final training objective L,

L(θ) = J(θ) + λX(θ), (5.9)

where λ is a hyperparameter that controls the magnitude of the uniqueness penalty.

5.4 Evaluating Descriptors and Trajectories

Because no previous work explores the interpretability of unsupervised relationship mod-

eling over time, evaluating the RMN is tricky. Further compounding the problem is the

subjective nature of the task; for example, is a trajectory that ignores a key event better

than one that hallucinates episodes absent from source text?

With these issues in mind, we conduct three evaluations to show that our output

is reasonable. First, we conduct a crowdsourced interpretability experiment that shows

RMNs produce significantly more coherent descriptors than three topic model baselines.

A second crowdsourced task indicates that our model produces trajectories that match

plot summaries more accurately than topic models. Finally, we qualitatively compare the

RMN’s output to existing static annotations of literary relationships and find both expected

and surprising results.
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5.4.1 Topic Model Baselines

Before moving onto the evaluations, we briefly describe three baseline models, all of

which are Bayesian generative models. Latent Dirichlet allocation (Blei et al., 2003,

LDA) learns a single document-topic distribution per document; we can apply LDA to our

dataset by concatenating all spans from a relationship into a single document. Similarly,

NUBBI (Chang et al., 2009a) learns separate sets of topics for relationships and individual

characters.6

LDA and NUBBI are incapable of taking into account the chronological ordering

of the spans because they view all relationships tokens as exchangeable. While we can

compare the descriptors learned by these models to those of the RMN, we cannot evaluate

their trajectories. We turn instead to the hidden topic Markov model (Gruber et al., 2007,

HTMM), which foregoes the bag-of-words assumption of LDA and NUBBI in favor of

modeling topic segments within a document as a Markov chain. This model outputs a

smooth sequence of topic assignments over a document, so we can compare the trajectories

it learns on our dataset to those of the RMN.

5.4.2 Experimental Settings

In our descriptor interpretability experiments, we vary the number of descriptors (topics)

for all models (K = 10, 30, 50). We train LDA and NUBBI for 100 iterations with a

collapsed Gibbs sampler, and the HTMM uses the default setting of 100 EM iterations.

For the RMN, we initialize the word embedding matrix L with 300-dimensional

6NUBBI requires additional spans that mention only a single character to differentiate character topics
from relationship topics. None of the other models receives these extra data.
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GloVe embeddings trained on the Common Crawl (Pennington et al., 2014). The character

and book embeddings (C and B) are initialized randomly. We fix α to 0.5 for the first 15

epochs of training; after the descriptor matrix R has converged, we fix R and tune α using

Equation 5.6 for 15 more epochs.7 Since the topic model baselines do not have access

to character and book metadata, for fair comparison we also train a “generic” version of

the RMN (GRMN) where the metadata embeddings are removed from Equation 5.2. The

uniqueness penalty λ is set to 10−4.

All of the RMN model parameters except L are optimized using Adam (Kingma

and Ba, 2014) with a learning rate of 0.001 for 30 epochs; the word embeddings are

not fine-tuned during training.8 We also apply word dropout (see Section 3.2.1.1) to the

input spans, removing words from the vector average computation in Equation 5.1 with

probability 0.5.

5.4.3 Do Descriptors Make Sense?

The goal of our first experiment is to compare the descriptors R learned by the RMN

to the topics learned by the topic model baselines. We conduct a word intrusion exper-

iment (Chang et al., 2009b): workers identify an “intruder” word from a set of words

that—other than the intruder—come from the same topic. For the topic models, the five

most probable words are joined by a highly-probable word from a different topic as the

intruder. We use the same procedure for the RMN and GRMN, except that cosine similarity

to descriptor embeddings replaces topic-word probability. To control for randomness in
7Preliminary experiments show that learning α and R simultaneously results in less interpretable descrip-

tors.
8Tuning L ruins descriptor interpretability; pretrained embeddings are likely already a good solution for

our problem.
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RMN HTMM

Label MP Nearest Neighbors Label MP Most Probable Words

sadness 1.0 regretful rueful pity pained
despondent

violence 1.0 sword shot blood shouted
swung

love 1.0 love delightful happiness en-
joyed

boats 1.0 ship boat captain deck crew

murder 1.0 autopsy arrested homicide
murdered

food 1.0 kitchen mouth glass food
bread

worship 0.1 toil pray devote yourselves
gather

sci-fi 0.0 suppose earth robots com-
puter certain

moodiness 0.3 glumly snickered quizzically
guiltily

fantasy 0.0 agreed magician dragon cas-
tle talent

informal 0.4 kinda damn heck guess shitty military 0.1 ship captain lucky hour gen-
eral

Table 5.1: Three high-precision (top) and three low-precision (bottom) descrip-
tors for the RMN and HTMM, along with labels from an external evaluator and
model precision (MP) computed via word intrusion experiments. The RMN is
able to learn a variety of interpersonal states (e.g., love, sadness), while the
HTMM’s most coherent topics are about concrete objects or events.
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Figure 5.3: Model precision results from our word intrusion task. The RMN
learns more interpretable descriptors than three topic model baselines.

82



the training process, we train three of each model, so the final experiment consists of 1,350

tasks (K = 10, 30, 50 descriptors per trial, three trials per model).

We collect judgments from ten different workers for each task using the Crowdflower

platform.9 Our evaluation metric, model precision (MP), is the fraction of workers that

select the correct intruder word for a descriptor k. Low model precision signals descriptors

that lack cohesive themes.

On average, the RMN’s descriptors are much more interpretable than those of the

baselines, as it achieves a mean model precision of 0.73 (Figure 5.4.3) across all values

of K. There is little difference between the model precision of the three topic model

baselines, which hover around 0.5. There is also little difference between the GRMN and

RMN; however, visualizing the learned character and book embeddings as in Figure 5.5 may

be insightful for literary scholars. We show example high and low precision descriptors for

the RMN and HTMM in Table 5.4.2; a full list is included in the supplementary material.

5.4.4 Do Trajectories Make Sense?

While the previous evaluation focused only on descriptor quality, our next experiment

compares the trajectories learned by the best RMN model from the intrusion experiment

(measured by highest mean model precision) to those learned by the best HTMM model,

which is the only baseline capable of learning relationship trajectories. Workers read a plot

summary and choose which model’s trajectory best represents the relationship in question.

We use the K = 30 setting because it provides the best balance between descriptor variety

and trajectory interpretability.

9http://www.crowdflower.com
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For this evaluation, we crawl Wikipedia, Goodreads, and SparkNotes for plot sum-

maries associated with our 1,383 books. We then remove all relationships where each

involved character is not mentioned at least five times in the summary, which results in

a final evaluation set of 125 relationships.10 We present workers with two characters,

a plot summary, and a visualization of trajectories learned by the RMN and the HTMM

(Figure 5.4.4). The workers then select the trajectory that best matches the relationship

described by the summary.

To generate the visualizations, we first have an external annotator label each descrip-

tor from both models with a single word as in Table 5.4.2. For fairness, the annotator is

unaware of the underlying models. For the RMN, we visualize trajectories by displaying

the label of the argmax over descriptor weights dt at each time step t. Similarly, for the

HTMM, we display the most probable topic at each time step.11

The results of this task with seven workers per comparison favor the RMN: for 87 out

of the 125 evaluated relationships (69.6%), the workers choose the RMN’s trajectory over

the HTMM’s. We compute the Fleiss κ value (Fleiss, 1971) to correct our inter-annotator

agreement for chance and find that κ = 0.32, indicating fair agreement among the workers.

Furthermore, thirty-four relationships had unanimous agreement among the seven workers;

of these, twenty-six were unanimous in favor of the RMN compared to only eight for the

HTMM.
10Without this filtering step, workers do not have enough information to compare the two models since

most of the characters in our dataset are not mentioned in summaries.
11To reduce visual clutter, we ignore descriptors that persist for only a single time step.
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Summary: Govinda is Siddhartha’s best friend and sometimes his 
follower. Like Siddhartha, Govinda devotes his life to the quest for 
understanding and enlightenment. He leaves his village with 
Siddhartha to join the Samanas, then leaves the Samanas to follow 
Gotama. He searches for enlightenment independently of Siddhartha 
but persists in looking for teachers who can show him the way. In the 
end, he is able to achieve enlightenment only because of 
Siddhartha’s love for him.

A B

TI
M

E

Siddhartha and Govinda

Figure 5.4: An example from the Crowdflower summary matching task;
workers are asked to choose the trajectory (here, “A” is generated by the RMN
and “B” by the HTMM) that best matches a provided summary that describes
the relationship between Siddartha and Govinda (from Siddartha by Hesse).

5.4.5 What Makes a Relationship Positive?

While the previous two experiments show that the RMN is more interpretable and accurate

than baseline models, we have not yet shown that its insights can aid in drawing connections
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across various books and genres. As a first step in this direction, we investigate what

makes a relationship positive or negative by comparing trajectories from the RMN and

HTMM to static affinity annotations from a recently-released dataset (Massey et al., 2015)

of fictional relationships. Expected correlations (e.g., murder and sadness are strongly

negative descriptors) emerge alongside surprising ones (politics is negative, religion is

positive).

The affinity labeling task of Massey et al. (2015) requires workers to describe a given

relationship as positive, negative, or neutral. We consider only non-neutral relationships

for which two annotators agree on the affinity label and remove all books not present in

our own dataset. This filtering step results in 120 relationships, 78% of which are positive

and the remaining 22% negative.

Since the annotations are static, we first aggregate our trajectories across all time

steps. We compute K-dimensional “average positive” and “average negative” weight

vectors ap and an by averaging the relationship states dt for the RMN and the document-

topic distributions for the HTMM across all time steps for relationships labeled with a

particular affinity. Then, we compute the vector difference ap−an and sort it to produce a

ranked list of descriptors, where descriptors with positive differences occur more frequently

in positive relationships. Table 5.4.5 shows the most positive and most negative descriptors;

of particular interest is the large negative weight associated with political relationships

from both models.
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Model Positive Negative

RMN education, love, reli-
gion, sex

politics, murder,
sadness, royalty

HTMM love, parental, busi-
ness, outdoors

love, politics, vio-
lence, crime

Table 5.2: Descriptors most characteristic of positive and negative relation-
ships, computed using existing annotations. Compared to the RMN, the HTMM
struggles to coherently characterize negative relationships. Interestingly, both
models show negative predispositions for political relationships, perhaps due
to genre bias or class differences.

TI
M

E

HTMMRMN

Storm Island: David and Lucy

HTMMRMN

A Tale of Two Cities: Darnay and Lucie

HTMMRMN

Dracula: Arthur and Lucy

Figure 5.5: Left: the RMN is able to model Arthur and Lucy’s trajectory
reasonably well compared to our manually-created version in Figure 5. Middle:
both models agree on event-based descriptors such as food and sex. Right: a
failure case for the RMN in which it is unable to learn that Lucie Manette and
Charles Darnay are in love.

5.5 Qualitative Analysis

Our experiments show the superiority of the RMN over various topic model baselines

in both descriptor interpretability and trajectory accuracy, but what causes the improved

performance? In this section, we analyze similarities between the RMN and HTMM and

look at qualitative examples where the RMN succeeds and fails. We also connect the

findings of our affinity experiment to existing literary scholarship.

Both models are equally proficient at learning and assigning event-based descriptors
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Figure 5.6: Clusters from PCA visualizations of the RMN’s learned book (left)
and character (right) embeddings. We see a cluster of books about war and
violence (many of which are authored by Tom Clancy) as well as a cluster of
lead female characters from primarily romance novels. These visualizations
show that the RMN can recover useful static representations of characters and
books in addition to the dynamic relationship trajectories.

(e.g., crime, violence, food). More specifically, the RMN and HTMM agree on environ-

mental descriptions (e.g., boats, outdoors) and graphic sexual scenes (Figure 5.5, middle).

However, the RMN is more sophisticated with interpersonal relationships. None

of the topic model baselines learns negative emotional descriptors such as sadness or

suffering, which explains the inaccurate HTMM trajectory of Arthur and Lucy in the

left-most panel of Figure 5.5. All of the topic model baselines learn duplicate topics; in

Table 5.4.5, one love descriptor is highly positive while a duplicate is strongly negative.12

The RMN circumvents this problem with its uniqueness penalty (Equation 5.8).

While the increased descriptor variety is a positive, sometimes it leads the RMN

astray. The model largely ignores the love between Charles Darnay and Lucie Manette in

Dickens’ A Tale of Two Cities due to book’s sad tone; meanwhile, the HTMM’s trajectory,

12This “duplicate love” phenomenon persists even when we reduce the number of topics.
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while vastly simplified, does pick up on the romance (Figure 5.5, right). While the RMN’s

learnable book and character embeddings should help, the signal in a span cannot lead to

the “proper” descriptor.

Both the RMN and HTMM learn that politics is strongly negative (Table 5.4.5).

Existing scholarship supports this finding: Victorian-era authors, for example, are “ob-

sessed with otherness . . . of antiquated social and legal institutions, and of autocratic

and/or dictatorial abusive government” (Zarifopol-Johnston, 1995), while in science fic-

tion, “dystopia—–precisely because it is so much more common (than utopia)—–bears

the aspect of lived experience” (Gordin et al., 2010). Our affinity data comes primarily

from Victorian novels (e.g., by Dickens and George Eliot), leading us to believe that that

the models are behaving reasonably. Finally, returning to the “extra” meaning of meals

discussed at the beginning of the chapter, food occurs slightly more frequently in positive

relationships.

5.6 Related Work

There are two major areas upon which our work builds: computational literary analysis

and deep neural networks for natural language processing.

Most previous work in computational literary analysis has focused either on charac-

ters or events. In the former category, graphical models and classifiers have been proposed

for learning character personas from novels (Bamman et al., 2014; Flekova and Gurevych,

2015) and film summaries (Bamman et al., 2013). The NUBBI model of Chang et al.

(2009a) learns topics that statically describe characters and their relationships. Because
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these models lack temporal components (the focus of our task), we compare instead against

the HTMM of Gruber et al. (2007).

Closest to our own work is the supervised structured prediction problem of Chaturvedi

et al. (2016), in which features are designed to predict dynamic sequences of positive and

negative interactions between two characters in plot summaries. Other research in this

area includes social network construction from novels (Elson et al., 2010; Srivastava et al.,

2016) and film (Krishnan and Eisenstein, 2015), as well as attempts to summarize and

generate stories (Elsner, 2012).

While some of the relationship descriptors learned by our model are character-centric,

others are more events-based, depicting actions rather than feelings; such descriptors

have been the focus of much previous work (Schank and Abelson, 1977; Chambers and

Jurafsky, 2008, 2009; Orr et al., 2014). Our model is more closely related to the plot units

framework (Lehnert, 1981; Goyal et al., 2013), which annotates events with emotional

states.

The RMN builds on deep recurrent autoencoders such as the hierarchical LSTM

autoencoder of Li et al. (2015); however, it is more efficient because of the span-level vector

averaging. It is also similar to recent neural topic model architectures (Cao et al., 2015;

Das et al., 2015), although these models are limited to static document representations. We

hope to apply the RMN to nonfictional datasets as well; in this vein, Iyyer et al. (2014b)

apply a neural network to sentences from nonfiction political books for ideology prediction.

More generally, topic models and related generative models are a central tool for

understanding large corpora from science (Talley et al., 2011) to politics (Nguyen et al.,

2014). We show representation learning models like RMN can be just as interpretable as
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LDA-based models. Other applications for which researchers have prioritized interpretable

vector representations include text-to-vision mappings (Lazaridou et al., 2014) and word

embeddings (Fyshe et al., 2015; Faruqui et al., 2015).

5.7 Conclusion

We formalize the task of unsupervised relationship modeling, which involves learning

a set of relationship descriptors as well as a trajectory over these descriptors for each

relationship in an input dataset. We present the RMN, a novel neural network architecture

for this task that generates more interpretable descriptors and trajectories than topic model

baselines. Finally, we show that the output of our model can lead to interesting insights

when combined with annotations in an existing dataset.
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Chapter 6

Understanding Panel-to-Panel Inferences in Comic Books

So far, we have looked at problems that involve understanding and extracting information

from language-based contexts. To close out this thesis, I look at comic books, a multimodal

domain that incorporates images and language into a single medium. As we will see, the

network architectures are similar to those used in the previous chapters, and the challenges

of leveraging information from previously-observed context still remain.1

Figure 6.1: Where did the snake in the last panel come from? Why is it biting
the man? Is the man in the second panel the same as the man in the first panel?
To answer these questions, readers form a larger meaning out of the narration
boxes, speech bubbles, and artwork by applying closure across panels.

1This chapter includes content and figures from Iyyer et al. (2017a, CVPR).
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6.1 Motivation

Comics are fragmented scenes forged into full-fledged stories by the imagination of their

readers. A comics creator can condense anything from a centuries-long intergalactic war

to an ordinary family dinner into a single panel. But it is what the creator hides from their

pages that makes comics truly interesting: the unspoken conversations and unseen actions

that lurk in the spaces (or gutters) between adjacent panels. For example, the dialogue in

Figure 6 suggests that between the second and third panels, Gilda commands her snakes to

chase after a frightened Michael in some sort of strange cult initiation. Through a process

called closure (McCloud, 1994), which involves (1) understanding individual panels and

(2) making connective inferences across panels, readers form coherent storylines from

seemingly disparate panels such as these. In this chapter, we study whether computers can

do the same by collecting a dataset of comic books (COMICS) and designing several tasks

that require closure to solve.

Section 6.2 describes how we create COMICS,2 which contains ∼1.2 million panels

drawn from almost 4,000 publicly-available comic books published during the “Golden

Age” of American comics (1938–1954). COMICS is challenging in both style and content

compared to natural images (e.g., photographs), which are the focus of most existing

datasets and methods (Krizhevsky et al., 2012; Xu et al., 2015; Xiong et al., 2016). Much

like painters, comic artists can render a single object or concept in multiple artistic styles to

evoke different emotional responses from the reader. For example, the lions in Figure 6.1

are drawn with varying degrees of realism: the more cartoonish lions, from humorous

2Data, code, and annotations available at http://github.com/miyyer/comics
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comics, take on human expressions (e.g., surprise, nastiness), while those from adventure

comics are more photorealistic.

Comics are not just visual: creators push their stories forward through text—speech

balloons, thought clouds, and narrative boxes—which we identify and transcribe using

optical character recognition (OCR). Together, text and image are often intricately woven

together to tell a story that neither could tell on its own (Section 6.5). To understand a story,

readers must connect dialogue and narration to characters and environments; furthermore,

the text must be read in the proper order, as panels often depict long scenes rather than

individual moments (Cohn, 2010). Text plays a much larger role in COMICS than it does

for existing datasets of visual stories (Huang et al., 2016b).

To test machines’ ability to perform closure, we present three novel cloze-style tasks

in Section 6.6 that require a deep understanding of narrative and character to solve. In

Section 6.7, we design four neural architectures to examine the impact of multimodality

and contextual understanding via closure. All of these models perform significantly worse

than humans on our tasks; we conclude with an error analysis (Section 6.8) that suggests

future avenues for improvement.

6.2 Creating a dataset of comic books

Comics, defined by cartoonist Will Eisner as sequential art (Eisner, 1990), tell their stories

in sequences of panels, or single frames that can contain both images and text. Existing

comics datasets (Guérin et al., 2013; Matsui et al., 2015) are too small to train data-hungry

machine learning models for narrative understanding; additionally, they lack diversity in
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Figure 6.2: Different artistic renderings of lions taken from the COMICS
dataset. The left-facing lions are more cartoonish (and humorous) than the
ones facing right, which come from action and adventure comics that rely on
realism to provide thrills.

visual style and genres. Thus, we build our own dataset, COMICS, by (1) downloading

comics in the public domain, (2) segmenting each page into panels, (3) extracting textbox

locations from panels, and (4) running OCR on textboxes and post-processing the output.

Table 6.2.1 summarizes the contents of COMICS. The rest of this section describes each

step of our data creation pipeline.
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# Books 3,948
# Pages 198,657
# Panels 1,229,664
# Textboxes 2,498,657

Text cloze instances 89,412
Visual cloze instances 587,797
Char. coherence instances 72,313

Table 6.1: Statistics describing dataset size (top) and the number of total
instances for each of our three tasks (bottom).

6.2.1 Where do our comics come from?

The “Golden Age of Comics” began during America’s Great Depression and lasted through

World War II, ending in the mid-1950s with the passage of strict censorship regulations.

In contrast to the long, world-building story arcs popular in later eras, Golden Age

comics tend to be small and self-contained; a single book usually contains multiple

different stories sharing a common theme (e.g., crime or mystery). While the best-selling

Golden Age comics tell of American superheroes triumphing over German and Japanese

villains, a variety of other genres (such as romance, humor, and horror) also enjoyed

popularity (Goulart, 2004). The Digital Comics Museum (DCM)3 hosts user-uploaded

scans of many comics by lesser-known Golden Age publishers that are now in the public

domain due to copyright expiration. To avoid off-square images and missing pages, as the

scans vary in resolution and quality, we download the 4,000 highest-rated comic books

from DCM.4

3http://digitalcomicmuseum.com/
4Some of the panels in COMICS contain offensive caricatures and opinions reflective of that period in

American history.
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6.2.2 Breaking comics into their basic elements

The DCM comics are distributed as compressed archives of JPEG page scans. To analyze

closure, which occurs from panel-to-panel, we first extract panels from the page images.

Next, we extract textboxes from the panels, as both location and content of textboxes are

important for character and narrative understanding.

Panel segmentation: Previous work on panel segmentation uses heuristics (Li et al.,

2014) or algorithms such as density gradients and recursive cuts (Tanaka et al., 2007; Pang

et al., 2014b; Rigaud et al., 2015) that rely on pages with uniformly white backgrounds and

clean gutters. Unfortunately, scanned images of eighty-year old comics do not particularly

adhere to these standards; furthermore, many DCM comics have non-standard panel layouts

and/or textboxes that extend across gutters to multiple panels.

After our attempts to use existing panel segmentation software failed, we turned to

deep learning. We annotate 500 randomly-selected pages from our dataset with rectangular

bounding boxes for panels. Each bounding box encloses both the panel artwork and the

textboxes within the panel; in cases where a textbox spans multiple panels, we necessarily

also include portions of the neighboring panel. After annotation, we train a region-based

convolutional neural network to automatically detect panels. In particular, we use Faster

R-CNN (Ren et al., 2015) initialized with a pretrained VGG CNN M 1024 model (Chatfield

et al., 2014) and alternatingly optimize the region proposal network and the detection

network. In Western comics, panels are usually read left-to-right, top-to-bottom, so we

also have to properly order all of the panels within a page after extraction. We compute
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the midpoint of each panel and sort them using Morton order (Morton, 1966), which gives

incorrect orderings only for rare and complicated panel layouts.

Textbox segmentation: Since we are particularly interested in modeling the interplay be-

tween text and artwork, we need to also convert the text in each panel to a machine-readable

format.5 As with panel segmentation, existing comic textbox detection algorithms (Ho

et al., 2012; Rigaud et al., 2013) could not accurately localize textboxes for our data.

Thus, we resort again to Faster R-CNN: we annotate 1,500 panels for textboxes,6 train a

Faster-R-CNN, and sort the extracted textboxes within each panel using Morton order.

6.2.3 OCR

The final step of our data creation pipeline is applying OCR to the extracted textbox

images. We unsuccessfully experimented with two trainable open-source OCR systems,

Tesseract (Smith, 2007) and Ocular (Berg-Kirkpatrick et al., 2013), as well as Abbyy’s

consumer-grade FineReader.7 The ineffectiveness of these systems is likely due to the

considerable variation in comic fonts as well as domain mismatches with pretrained

language models (comics text is always capitalized, and dialogue phenomena such as

dialects may not be adequately represented in training data). Google’s Cloud Vision OCR8

performs much better on comics than any other system we tried. While it sometimes

5Alternatively, modules for text spotting and recognition (Jaderberg et al., 2016) could be built into
architectures for our downstream tasks, but since comic dialogues can be quite lengthy, these modules would
likely perform poorly.

6We make a distinction between narration and dialogue; the former usually occurs in strictly rectangular
boxes at the top of each panel and contains text describing or introducing a new scene, while the latter is
usually found in speech balloons or thought clouds.

7http://www.abbyy.com
8http://cloud.google.com/vision
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struggles to detect short words or punctuation marks, the quality of the transcriptions is

good considering the image domain and quality. We use the Cloud Vision API to run OCR

on all 2.5 million textboxes for a cost of $3,000. We post-process the transcriptions by

removing systematic spelling errors (e.g., failing to recognize the first letter of a word).

Finally, each book in our dataset contains three or four full-page product advertisements;

since they are irrelevant for our purposes, we train a classifier on the transcriptions to

remove them.

6.3 OCR Post-Processing and Advertisement Removal

OCR makes systematic mistakes on our textboxes. We target two types of these mistakes

using PyEnchant:9 1) where the OCR system fails to recognize the first letter of a particular

word (e.g., eleportation instead of teleportation), and 2) where the OCR system transcribes

part of a word as a single alphabetical character. To eliminate errors of the first type, we

start by tokenizing the OCR output using NLTK’s Punkt Tokenizer.10 We then sort the

vocabulary of the tokenized OCR output in decreasing order of frequency and pick words

ranked from 10,001 to 100,000, because most misspelled words are also rare. For each of

these words that is length three or longer, we look up the most likely suggestion offered by

PyEnchant. If the only difference between the most likely suggestion and the original word

is an additional letter in the first position of the suggestion, then we replace the word with

the suggestion everywhere in our corpus. To correct the second type of errors, we simply

delete all single character alphabetical tokens that are not one of a, d, i, m, s, t—characters

9http://pythonhosted.org/pyenchant/faq.html
10http://www.nltk.org/
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that can plausibly occur by themselves quite frequently (some occur after an apostrophe).

In addition to spelling errors, the books in COMICS contain many advertisements that

we need to remove before generating data for our tasks. While most dialogue and narration

boxes contain less than 30 words, longer textboxes frequently come from full-page product

advertisements (e.g., Figure 6.3). However, detecting ads from page images is not easy.

Some ads are deceptively similar to comic pages, containing images and even containing

faux mini-comics. Aside from ads, there are also other undesirable pages; many books

contain text-only short stories in addition to comics. We remove these kinds of pages using

features from OCR transcriptions. We annotate each page of 100 random books with a

label indicating the presence or absence of an invalid page as our training set and each

page of twenty random books as our test set. Out of 6,117 annotated pages, 697 of them

are either advertisements or text-only stories (11.4%). We train a binary classifier using

Vowpal Wabbit:11 which takes the OCR text for all the panels of a pages as lexical features

(unigrams and bigrams). We improve our model by adding features like total count of

words in the page and a count of non-alphanumeric characters. Our model gives us a total

misclassification error of 8% and a false negative error of 17.3%, which means it misses

one invalid page out of every six. The model has a negligible false positive error of 0.2%.

Using this model to filter the entire dataset of 198,657 pages yields 13,200 invalid pages.

6.4 Examples from Dataset Creation

OCR transcription is the final stage of our data creation pipeline (panel extraction →

textbox extraction→ OCR). Therefore, faulty outputs in any of the preceeding steps can
11https://github.com/JohnLangford/vowpal_wabbit/wiki
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Figure 6.3: An advertisement from the dataset. The juxtaposition of text and image causes
it to slightly resemble a comics page.
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Figure 6.4: A minor OCR error. Mistakes such as predicting “BG” for “BIG” are under-
standable, since the ‘I’ in “BIG” is barely visible. Similarly, the “IC” in “QUICKLY”
looks a lot like “K” in this font. Finally, “SUB STANCE” is predicted rather than “SUB-
STANCE”, due to an end-of-line word break.

lead to faulty OCR outputs. In Figure 6.4, there are only minor errors in OCR extraction

due to understandable misinterpretations of the text in the dialog boxes. For example,

the OCR interprets the letters “IC” as “K”, which leads to incorrectly predicting the word

“QUICKLY” as “QUKKLY”. However, in Figure 6.5, we observe a more critical error due

to missing pixels in the panel extraction process. Due to the layout of the textbox in the

panel, crucial portions of the text are trimmed from view; while the OCR does a valiant job

of predicting the contents of the textbox, its output is gibberish.

6.5 Data Analysis

In this section, we explore what makes understanding narratives in COMICS difficult,

focusing specifically on intrapanel behavior (how images and text interact within a panel)

and interpanel transitions (how the narrative advances from one panel to the next). We

characterize panels and transitions using a modified version of the annotation scheme in
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Figure 6.5: A major OCR error. In part a) of the figure, note the location of the panel in
the page. b) gives us the panel as predicted by the RCNN, but a critical portion of the
text is missing. As a consequence, the textbox extraction is also faulty, rendering the OCR

completely meaningless.

Scott McCloud’s “Understanding Comics” (McCloud, 1994). Over 90% of panels rely

on both text and image to convey information, as opposed to just using a single modality.

Closure is also important: to understand most transitions between panels, readers must

make complex inferences that often require common sense (e.g., connecting jumps in

space and/or time, recognizing when new characters have been introduced to an existing

scene). We conclude that any model trained to understand narrative flow in COMICS will

have to effectively tie together multimodal inputs through closure.

To perform our analysis, we manually annotate 250 randomly-selected pairs of

consecutive panels from COMICS. Each panel of a pair is annotated for intrapanel behavior,

while an interpanel annotation is assigned to the transition between the panels. Two

annotators independently categorize each pair, and a third annotator makes the final
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INTRAPANEL

SUBJECT-TO-SUBJECT: 32.7%

SCENE-TO-SCENE: 13.8%

ACTION-TO-ACTION: 34.6%

CONTINUED CONVERSATION: 17.7%

INTERDEPENDENT: 92.1%

WORD-SPECIFIC: 4.4%

PARALLEL: 0.57%

PICTURE-SPECIFIC: 2.8%

MOMENT-TO-MOMENT: 0.39%

Figure 6.6: Five example panel sequences from COMICS, one for each type of
interpanel transition. Individual panel borders are color-coded to match their
intrapanel categories (legend in bottom-left). Moment-to-moment transitions
unfold like frames in a movie, while scene-to-scene transitions are loosely
strung together by narrative boxes. Percentages are the relative prevalance of
the transition or panel type in an annotated subset of COMICS.

decision when they disagree. We use four intrapanel categories (definitions from McCloud,

percentages from our annotations):

1. Word-specific, 4.4%: The pictures illustrate, but do not significantly add to a largely

complete text.

2. Picture-specific, 2.8%: The words do little more than add a soundtrack to a visually-

told sequence.

3. Parallel, 0.6%: Words and pictures seem to follow very different courses without

intersecting.

4. Interdependent, 92.1%: Words and pictures go hand-in-hand to convey an idea

that neither could convey alone.

We group interpanel transitions into five categories:
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1. Moment-to-moment, 0.4%: Almost no time passes between panels, much like

adjacent frames in a video.

2. Action-to-action, 34.6%: The same subjects progress through an action within the

same scene.

3. Subject-to-subject, 32.7%: New subjects are introduced while staying within the

same scene or idea.

4. Scene-to-scene, 13.8%: Significant changes in time or space between the two

panels.

5. Continued conversation, 17.7%: Subjects continue a conversation across panels

without any other changes.

The two annotators agree on 96% of the intrapanel annotations (Cohen’s κ = 0.657),

which is unsurprising because almost every panel is interdependent. The interpanel task is

significantly harder: agreement is only 68% (Cohen’s κ = 0.605). Panel transitions are

more diverse, as all types except moment-to-moment are relatively common (Figure 6.5);

interestingly, moment-to-moment transitions require the least amount of closure as there

is almost no change in time or space between the panels. Multiple transition types may

occur in the same panel, such as simultaneous changes in subjects and actions, which also

contributes to the lower interpanel agreement.

6.6 Tasks that test closure

To explore closure in COMICS, we design three novel tasks (text cloze, visual cloze, and

character coherence) that test a model’s ability to understand narratives and characters
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THANKS OLD TIMER! 
THE BATS WOULD 

HAVE GOT US, SURE! 
WHERE’D THEY COME 

FROM?

SCOTTY’S MY NAME. 
I’M THE SHERIFF. MEAN 
TO TELL YOU’VE NEVER 
HEARD OF THE BATS?

THANKS OLD TIMER! THE 
BATS WOULD HAVE GOT 

US, SURE! WHERE’D 
THEY COME FROM?

SCOTTY’S MY 
NAME. I’M THE 

SHERIFF. MEAN TO 
TELL YOU’VE 

NEVER HEARD OF 
THE BATS?

character 
coherence

visual
cloze

Figure 6.7: In the character coherence task (top), a model must order the
dialogues in the final panel, while visual cloze (bottom) requires choosing the
image of the panel that follows the given context. For visualization purposes,
we show the original context panels; during model training and evaluation,
textboxes are blacked out in every panel.

given a few panels of context. As shown in the previous section’s analysis, a high percent-

age of panel transitions require non-trivial inferences from the reader; to successfully solve

our proposed tasks, a model must be able to make the same kinds of connections.

While their objectives are different, all three tasks follow the same format: given

preceding panels pi−1, pi−2, . . . , pi−n as context, a model is asked to predict some aspect

of panel pi. While previous work on visual storytelling focuses on generating text given

some context (Huang et al., 2016a), the dialogue-heavy text in COMICS makes evaluation

difficult (e.g., dialects, grammatical variations, many rare words). We want our evaluations

to focus specifically on closure, not generated text quality, so we instead use a cloze-style

framework (Taylor, 1953): given c candidates—with a single correct option—models must

use the context panels to rank the correct candidate higher than the others. The rest of this
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section describes each of the three tasks in detail; Table 6.2.1 provides the total instances

of each task with the number of context panels n = 3.

Text Cloze: In the text cloze task, we ask the model to predict what text out of a set

of candidates belongs in a particular textbox, given both context panels (text and image)

as well as the current panel image. While initially we did not put any constraints on the

task design, we quickly noticed two major issues. First, since the panel images include

textboxes, any model trained on this task could in principle learn to crudely imitate OCR

by matching text candidates to the actual image of the text. To solve this problem, we

“black out” the rectangle given by the bounding boxes for each textbox in a panel (see

Figure 6.6).12 Second, panels often have multiple textboxes (e.g., conversations between

characters); to focus on interpanel transitions rather than intrapanel complexity, we restrict

pi to panels that contain only a single textbox. Thus, nothing from the current panel matters

other than the artwork; the majority of the predictive information comes from previous

panels.

Visual Cloze: We know from Section 6.5 that in most cases, text and image work

interdependently to tell a story. In the visual cloze task, we follow the same set-up as in text

cloze, but our candidates are images instead of text. A key difference is that models are not

given text from the final panel; in text cloze, models are allowed to look at the final panel’s

artwork. This design is motivated by eyetracking studies in single-panel cartoons, which

show that readers look at artwork before reading the text (Carroll et al., 1992), although

12To reduce the chance of models trivially correlating candidate length to textbox size, we remove very
short and very long candidates.

107



atypical font style and text length can invert this order (Foulsham et al., 2016).

Character Coherence: While the previous two tasks focus mainly on narrative structure,

our third task attempts to isolate character understanding through a re-ordering task. Given

a jumbled set of text from the textboxes in panel pi, a model must learn to match each

candidate to its corresponding textbox. We restrict this task to panels that contain exactly

two dialogue boxes (narration boxes are excluded to focus the task on characters). While it

is often easy to order the text based on the language alone (e.g., “how’s it going” always

comes before “fine, how about you?”), many cases require inferring which character is

likely to utter a particular bit of dialogue based on both their previous utterances and their

appearance (e.g., Figure 6.6, top).

6.6.1 Task Difficulty

For text cloze and visual cloze, we have two difficulty settings that vary in how cloze

candidates are chosen. In the easy setting, we sample textboxes (or panel images) from the

entire COMICS dataset at random. Most incorrect candidates in the easy setting have no

relation to the provided context, as they come from completely different books and genres.

This setting is thus easier for models to “cheat” on by relying on stylistic indicators instead

of contextual information. With that said, the task is still non-trivial; for example, many

bits of short dialogue can be applicable in a variety of scenarios. In the hard case, the

candidates come from nearby pages, so models must rely on the context to perform well.

For text cloze, all candidates are likely to mention the same character names and entities,

while color schemes and textures become much less distinguishing for visual cloze.
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HIYA KID! ALL 
ALONE???

ALICE! I’VE BEEN 
LOOKING ALL 
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Figure 6.8: The image-text architecture applied to an instance of the text cloze
task. Pretrained image features are combined with learned text features in a
hierarchical LSTM architecture to form a context representation, which is then
used to score text candidates.

6.7 Models & Experiments

To measure the difficulty of these tasks for deep learning models, we adapt strong baselines

for multimodal language and vision understanding tasks to the comics domain. We

evaluate four different neural models, variants of which were also used to benchmark

the Visual Question Answering dataset (Antol et al., 2015) and encode context for visual

storytelling (Huang et al., 2016b): text-only, image-only, and two image-text models.

Our best-performing model encodes panels with a hierarchical LSTM architecture (see

Figure 6.7).

On text cloze, accuracy increases when models are given images (in the form of

pretrained VGG-16 features) in addition to text; on the other tasks, incorporating both

modalities is less important. Additionally, for the text cloze and visual cloze tasks, models

perform far worse on the hard setting than the easy setting, confirming our intuition that
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these tasks are non-trivial when we control for stylistic dissimilarities between candidates.

Finally, none of the architectures outperform human baselines, which demonstrates the

difficulty of understanding COMICS: image features obtained from models trained on

natural images cannot capture the vast variation in artistic styles, and textual models

struggle with the richness and ambiguity of colloquial dialogue highly dependent on visual

contexts. In the rest of this section, we first introduce a shared notation and then use it to

specify all of our models.

6.7.1 Model definitions

In all of our tasks, we are asked to make a prediction about a particular panel given the

preceding n panels as context.13 Each panel consists of three distinct elements: image, text

(OCR output), and textbox bounding box coordinates. For any panel pi, the corresponding

image is zi. Since there can be multiple textboxes per panel, we refer to individual textbox

contents and bounding boxes as tix and bix , respectively. Each of our tasks has a different

set of answer candidates A: text cloze has three text candidates ta1...3 , visual cloze has three

image candidates za1...3 , and character coherence has two combinations of text / bounding

box pairs, {ta1/ba1 , ta2/ba2} and {ta1/ba2 , ta2/ba1}. Our architectures differ mainly in the

encoding function g that converts a sequence of context panels pi−1, pi−2, . . . , pi−n into a

fixed-length vector c. We score the answer candidates by taking their inner product with c

and normalizing with the softmax function,

s = softmax(AT c), (6.1)

13Test and validation instances for all tasks come from comic books that are unseen during training.
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and we minimize the cross-entropy loss against the ground-truth labels.14

Text-only: The text-only baseline only has access to the text tix within each panel. Our

encoding function g processes this text on multiple levels: we first compute a representation

for each tix with a word embedding sum15 and then combine multiple textboxes within the

same panel using an intrapanel LSTM (Hochreiter and Schmidhuber, 1997). Finally, we

feed the panel-level representations to an interpanel LSTM and take its final hidden state

as the context representation (Figure 6.7). For text cloze, the answer candidates are also

encoded with a word embedding sum; for visual cloze, we project the 4096-d fc7 layer of

VGG-16 down to the word embedding dimensionality with a fully-connected layer.16

Image-only: The image-only baseline is even simpler: we feed the fc7 features of each

context panel to an LSTM and use the same objective function as before to score candidates.

For visual cloze, we project both the context and answer representations to 512-d with

additional fully-connected layers before scoring. While the COMICS dataset is certainly

large, we do not attempt learning visual features from scratch as our task-specific signals

are far more complicated than simple image classification. We also try fine-tuning the

lower-level layers of VGG-16 (Aytar et al., 2016); however, this substantially lowers task

accuracy even with very small learning rates for the fine-tuned layers.

14Performance falters slightly on a development set with contrastive max-margin loss functions (Socher
et al., 2014) in place of our softmax alternative.

15As in previous work for visual question answering (Zhou et al., 2015), we observe no noticeable
improvement with more sophisticated encoding architectures.

16For training and testing, we use three panels of context and three candidates. We use a vocabulary size
of 30,000 words, restrict the maximum number of textboxes per panel to three, and set the dimensionality
of word embeddings and LSTM hidden states to 256. Models are optimized using Adam (Kingma and Ba,
2014) for ten epochs, after which we select the best-performing model on the dev set.
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Model Text Cloze Visual Cloze Char. Coheren.

easy hard easy hard

Random 33.3 33.3 33.3 33.3 50.0
Text-only 63.4 52.9 55.9 48.4 68.2

Image-only 51.7 49.4 85.7 63.2 70.9
NC-image-text 63.1 59.6 - - 65.2

Image-text 68.6 61.0 81.3 59.1 69.3

Human – 84 – 88 87

Table 6.2: Combining image and text in neural architectures improves their
ability to predict the next image or dialogue in COMICS narratives. The contex-
tual information present in preceding panels is useful for all tasks: the model
that only looks at a single panel (NC-image-text) always underperforms its
context-aware counterpart. However, even the best performing models lag
well behind humans.

Image-text: We combine the previous two models by concatenating the output of the

intrapanel LSTM with the fc7 representation of the image and passing the result through a

fully-connected layer before feeding it to the interpanel LSTM (Figure 6.7). For text cloze

and character coherence, we also experiment with a variant of the image-text baseline

that has no access to the context panels, which we dub NC-image-text. In this model, the

scoring function computes inner products between the image features of pi and the text

candidates.17

6.8 Error Analysis

Table 4.4.2 contains our full experimental results, which we briefly summarize here. On

text cloze, the image-text model dominates those trained on a single modality. However,

text is much less helpful for visual cloze than it is for text cloze, suggesting that visual

similarity dominates the former task. Having the context of the preceding panels helps

17We cannot apply this model to visual cloze because we are not allowed access to the artwork in panel pi.
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across the board, although the improvements are lower in the hard setting. There is more

variation across the models in the easy setting; we hypothesize that the hard case requires

moving away from pretrained image features, and transfer learning methods may prove

effective here. Differences between models on character coherence are minor; we suspect

that more complicated attentional architectures that leverage the bounding box locations

bix are necessary to “follow” speech bubble tails to the characters who speak them.

We also compare all models to a human baseline, for which the authors manually

solve one hundred instances of each task (in the hard setting) given the same preprocessed

input that is fed to the neural architectures. Most human errors are the result of poor OCR

quality (e.g., misspelled words) or low image resolution. Humans comfortably outperform

all models, making it worthwhile to look at where computers fail but humans succeed.
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catfish creek 
jail

thanks , lem ah 
sho nuff will

hang tight evah   
one - we ‘ uns are 
UNK for the drink !

you won ‘ t be 
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transmitter
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black magic 

UNK him , boys !
guess i ‘ ll … great 
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correct candidate incorrect candidates

black hood 
overcoming 

scorpio
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murdered next!
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Figure 6.9: Three text cloze examples from the development set, shown
with a single panel of context (boxed candidates are predictions by the text-
image model). The airplane artwork in the top row helps the image-text
model choose the correct answer, while the text-only model fails because the
dialogue lacks contextual information. Conversely, the bottom two rows show
the image-text model ignoring the context in favor of choosing a candidate
that mentions something visually present in the last panel.114



The top row in Figure 6.8 demonstrates an instance (from easy text cloze where the

image helps the model make the correct prediction. The text-only model has no idea that

an airplane (referred to here as a “ship”) is present in the panel sequence, as the dialogue

in the context panels make no mention of it. In contrast, the image-text model is able to

use the artwork to rule out the two incorrect candidates.

The bottom two rows in Figure 6.8 show hard text cloze instances in which the

image-text model is deceived by the artwork in the final panel. While the final panel of the

middle row does contain what looks to be a creek, “catfish creek jail” is more suited for a

narrative box than a speech bubble, while the meaning of the correct candidate is obscured

by the dialect and out-of-vocabulary token. Similarly, a camera films a fight scene in the

last row; the model selects a candidate that describes a fight instead of focusing on the

context in which the scene occurs. These examples suggest that the contextual information

is overridden by strong associations between text and image, motivating architectures that

go beyond similarity by leveraging external world knowledge to determine whether an

utterance is truly appropriate in a given situation.

6.9 Related Work

Our work is related to three main areas: (1) multimodal tasks that require language and

vision understanding, (2) computational methods that focus on non-natural images, and (3)

models that characterize language-based narratives.

Deep learning has renewed interest in jointly reasoning about vision and language.

Datasets such as MS COCO (Lin et al., 2014) and Visual Genome (Krishna et al., 2016)
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have enabled image captioning (Vinyals et al., 2015; Karpathy and Li, 2015; Xu et al.,

2015) and visual question answering (Malinowski et al., 2015; Lu et al., 2016). Similar to

our character coherence task, researchers have built models that match TV show characters

with their visual attributes (Everingham et al., 2006) and speech patterns (Haurilet et al.,

2016).

Closest to our own comic book setting is the visual storytelling task, in which

systems must generate (Huang et al., 2016a) or reorder (Agrawal et al., 2016) stories given

a dataset (SIND) of photos from Flikr galleries of “storyable” events such as weddings

and birthday parties. SIND’s images are fundamentally different from COMICS in that

they lack coherent characters and accompanying dialogue. Comics are created by skilled

professionals, not crowdsourced workers, and they offer a far greater variety of character-

centric stories that depend on dialogue to further the narrative; with that said, the text in

COMICS is less suited for generation because of OCR errors.

We build here on previous work that attempts to understand non-natural images.

Zitnick et al. (Zitnick et al., 2016) discover semantic scene properties from a clip art

dataset featuring characters and objects in a limited variety of settings. Applications of

deep learning to paintings include tasks such as detecting objects in oil paintings (Crowley

and Zisserman, 2014; Crowley et al., 2015) and answering questions about artwork (Guha

et al., 2016). Previous computational work on comics focuses primarily on extracting

elements such as panels and textboxes (Rigaud, 2014); in addition to the references in

Section 6.2, there is a large body of segmentation research on manga (Aramaki et al., 2014;

Pang et al., 2014a; Matsui, 2015; Kovanen and Aizawa, 2015).

To the best of our knowledge, we are the first to computationally model content in
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comic books as opposed to just extracting their elements. We follow previous work in

language-based narrative understanding; very similar to our text cloze task is the “Story

Cloze Test” (Mostafazadeh et al., 2016), in which models must predict the ending to a

short (four sentences long) story. Just like our tasks, the Story Cloze Test proves difficult

for computers and motivates future research into commonsense knowledge acquisition.

Others have studied characters (Elson et al., 2010; Bamman et al., 2014; Iyyer et al., 2016)

and narrative structure (Schank and Abelson, 1977; Lehnert, 1981; Chambers and Jurafsky,

2009) in novels.

6.10 Conclusion & Future Work

We present the COMICS dataset, which contains over 1.2 million panels from “Golden Age”

comic books. We design three cloze-style tasks on COMICS to explore closure, or how

readers connect disparate panels into coherent stories. Experiments with different neural

architectures, along with a manual data analysis, confirm the importance of multimodal

models that combine text and image for comics understanding. We additionally show that

context is crucial for predicting narrative or character-centric aspects of panels.

However, for computers to reach human performance, they will need to become

better at leveraging context. Readers rely on commonsense knowledge to make sense of

dramatic scene and camera changes; how can we inject such knowledge into our models?

Another potentially intriguing direction, especially given recent advances in generative

adversarial networks (Goodfellow et al., 2014), is generating artwork given dialogue (or

vice versa). Finally, COMICS presents a golden opportunity for transfer learning; can we
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train models that generalize across natural and non-natural images much like humans do?
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Chapter 7

Conclusion

In this thesis, I have explored a variety of deep neural network architectures for tasks that

involve both small and large-scale discourse-level understanding. These tasks encompass

a wide variety of contexts, from short questions to sequences of images; the unifying

factor is our ability to tackle all of them using a collection of neural network modules.

The work here departs from traditional NLP work on discourse by not specifying the

type of relations between different units of text as we would in rhetorical structure theory

(see Section 2.5.1 for details), for example. Instead, neural networks implicitly reason

about these connections; in the relationships modeling work of Chapter 5, we do not

specify anything other than the number of relationship types, and the model fills them by

leveraging patterns it learns from the input data. Deep learning holds much promise for

discourse-level representation learning; to wrap up my thesis, I will first recap each chapter

before offering proposed directions for future research in this area.

7.1 Contextual Question Answering

I first presented two question-answering tasks, quiz bowl and sequential semantic parsing,

which focused on small paragraph-length inputs. For quiz bowl, we have complete

supervision in the form of question-answer pairs, and simple vector averaging serves

to effectively aggregate information across sentences. In contrast, our semantic parsing
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setting is not fully supervised: we have question-answer pairs but lack the ground-truth

intermediate logical form. This makes both answering questions and using information

from previous questions more difficult than in quiz bowl; we settle on a modular neural

network trained via structured output learning.

7.1.1 Future Directions for QA

For both tasks, we look at small context sizes, which was necessary to make the problems

approachable. Here I outline future directions that seek to expand context complexity and

size.

Quiz bowl Quiz bowl contains questions about language domains such as literature

with huge, convoluted contexts (as we saw with the fictional relationships in Chapter 5).

Simply training on paragraph-long questions is not enough to answer these questions at

early positions, especially if the clues do not occur during training. For example, take

this clue from a question on Henrik Ibsen’s “A Doll’s House”: In a scene from this play,

one character practices a tarantella to prevent another character from opening his mail.

We rarely expect to see references to this particular scene during training, if at all, as it is

relatively obscure. The only way to answer clues like this is to allow the model access to

the raw source material, which opens up another can of worms: how do we map this clue to

scenes in the play? This “inverse summarization” problem is a potentially very interesting

avenue of research, as it requires both small and large-scale context understanding.
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Sequential semantic parsing The SQA dataset is a first step in the direction of conver-

sational QA. With that said, it is not by any means a perfect simulation of real conversation.

We assume that the user is always asking a question at each turn, and that the computer is

always answering it. This paradigm is of course not always true in real life, as computers

may want to ask clarifying questions given underspecified queries, and users may want to

incorporate more chat-like turns rather than bombarding the computer with questions in an

effort to make the conversation seem more natural. To bring the task closer to real-world

conversation, we need to equip our QA models with the ability to generate language in

addition to existing semantic parse functionality. This is a challenging goal because not

only does the network need to generate grammatical, meaningful utterances, but it also

needs to decide when to switch to “chat mode“ and when to execute a semantic parse over

a knowledge base.

7.2 Comprehending Novels and Comics

The most difficult problems I tackle in this thesis are applications of deep learning to

creative domains. In the QA tasks, we looked at short contexts in a relatively small answer

space; for quiz bowl, we have a fixed set of a few thousand answers, while for SQA each

question’s answer space is defined by its corresponding table. In Chapter 5, I propose a

neural network architecture to model the dynamics of fictional relationships that span entire

novels, while in Chapter 6 I explore comic narrative understanding with deep learning.
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7.2.1 Future Directions in Creative Understanding

There is a long (and perhaps impossible) road ahead for machines before they can “read”

a novel or comic book at the same level of understanding as human readers. For one,

humans possess a wealth of world knowledge and personal experiences that they can

access while reading, while neural networks start with a blank slate and have to pick up

world knowledge and commonsense reasoning just from their training data. An important

open question is exactly how to bake world knowledge into these networks prior to or

during training; can purely unsupervised methods learn this knowledge from raw text, or

do we need to leverage large annotated resources?

Regarding the relationship modeling task, there are many avenues for further re-

search. For example, the RMN model ignores asymmetric relationships, and so modeling

unrequited love and other more complex relationships is not feasible within the current

framework. To capture these sorts of relationships, we cannot use bag-of-words models

like the DAN to compose span representations, as syntactic features are crucial to deter-

mine agent-patient relationships and other features indicative of asymmetry; architectures

such as TreeNNs could perhaps be of value here. Another potential future direction is

considering the entire book rather than just spans of text that contain relevant character

mentions, as interactions between other characters and descriptive language about the

environment are useful sources of information.

Finally, in addition to the future directions mentioned in Chapter 6 regarding the

comic books project, there are more ambitious tasks to be solved in this domain. Generating

dialogue and artwork using adversarial networks is one such application. A less lofty goal
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might be to accomplish panel reordering: given a set of n panels from a comic book page,

can a model learn to sort them into the correct order? To solve this task for large values of

n, the model needs a lot of external knowledge; pretraining on frames from movies is a

concrete way to inject such knowledge into the network.
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Amit Goyal, Ellen Riloff, and Hal Daumé III. A computational model for plot units. Computational
Intelligence Journal, 29(3), 2013.

Amit Gruber, Yair Weiss, and Michal Rosen-Zvi. Hidden topic markov models. In Proceedings of Artificial
Intelligence and Statistics, 2007.
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network for factoid question answering over paragraphs. In Proceedings of Empirical Methods in Natural
Language Processing, 2014a.

Mohit Iyyer, Peter Enns, Jordan Boyd-Graber, and Philip Resnik. Political ideology detection using recursive
neural networks. In Proceedings of the Association for Computational Linguistics, 2014b.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. Deep unordered composition
rivals syntactic methods for text classification. In Proceedings of the Association for Computational
Linguistics, 2015.

Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jordan Boyd-Graber, and Hal Daumé III. Feuding families
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