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The quantum states of an Al/AlOx/Al Cooper pair box (CPB) qubit were

measured at temperatures below 100 mK.

Detailed spectroscopic measurements of the excited state of the CPB were

made along with detailed measurements of the lifetime T1 of the first excited state.

The CPB states were probed using radio-frequency (rf) techniques to read out us-

ing either an rf - single-electron transistor (rf-SET) or a low-loss superconducting

resonator.

Using an rf-SET, I measured the excited state spectrum of a CPB from 15

to 50 GHz. In this spectrum, a few anomalous avoided level crossings (ALC) were

observed. These ALCs exhibited a strong gate voltage dependence and Josephson

energy (EJ) dependence, consistent with a charge fluctuator coupled to the CPB

island. A model Hamiltonian was used to fit the measured spectrum. Fitting param-

eters such as the charging energy EC/h = 12.1 GHz and the Josephson energy EJ/h

tuned between 2 GHz and 21 GHz for the CPB, and the well asymmetry, tunneling



amplitude, and the minimum hopping distance for each fluctuator were extracted.

The tunneling rates ranged from less than 3.5 to 13 GHz, i.e. values between 5

% and 150 % of the well asymmetry, and the dipole moments yield a minimum

hopping distance of 0.3 to 0.8 Å. I also made detailed measurements of the lifetime

of the first excited state away from the CPB charge degeneracy point and found

that the lifetime varied from less than 50 ns up to a few µs as the Josephson energy

EJ decreased, consistent with a charge noise (Sq ∼ 10−11 e2/Hz around 37 GHz

to Sq ∼ 10−12 e2/Hz around 27 GHz) coupled to the qubit. I also found that at

frequencies where an ALC was observed in the spectrum, a decrease in T1 occurred,

suggesting that the discrete charge defects are a significant source of dissipation in

the CPB.

I also designed and fabricated a “quasi-lumped element” thin-film supercon-

ducting Al microwave resonator on sapphire to be used for a dispersive read-out

of the CPB. The resonator consists of a meandering inductor and an interdigitated

capacitor coupled to a transmission line. At T = 30 mK and on resonance at 5.578

GHz, the transmission through the transmission line decreased by 15 dB and the

loaded quality factor was 60,000. I measured the temperature dependence of the res-

onator frequency and loss at temperatures as high as 500 mK and found reasonable

agreement with the Mattis-Bardeen theory.

Finally, I coupled a “quasi-lumped element” microwave resonator (f0 ≃ 5.443

GHz), made of superconducting Al on sapphire, to an Al/AlOx/Al CPB qubit.

Most of my measurements were made in the dispersive regime where EJ − hf0 is

much larger than the coupling strength. In this case, the qubit causes a small



state-dependent frequency shift in the resonator’s resonant frequency. By sending

down a second microwave tone (the pump), I was able to excite the CPB qubit.

In zero magnetic field with the CPB far detuned from the resonator, I measured

a 50 kHz decrease in f0 with the qubit in the ground state and biased near the

degeneracy point of the CPB. The charging energy and Josephson energy of the

CPB were determined from spectroscopy taken by saturating the CPB with a second

microwave tone and measuring the transmission through the resonator. The first

device had EC/h = 12.5 GHz and maximum EJ/h = 9 GHz. The second device

had EC/h = 6.24 GHz and EJ/h tuned between 4 GHz and 8 GHz. By changing

the external magnetic field, I could decrease the effective EJ of the CPB. From

modeling, I extracted coupling strengths g/2π = 11 MHz and 5 MHz for the first

and second device, respectively. Finally I did single and two-tone spectroscopy, and

measured the relaxation and Rabi oscillations of the CPB. From the first device, I

was able to obtain relaxation times T1 of 10.3 µs at EJ/h = 7 GHz on the CPB

degeneracy point and spectroscopic coherence times T ∗
2 ∼ 100 ns. From the second

device, I found relaxation times T1 of 200 µs at EJ/h = 4 GHz to 4.5 GHz decreasing

down to 4 µs around 8 GHz. There was also a depression in T1 around the resonant

frequency of the resonator. The Rabi decay times were found to be up to T
′ ∼ 330

ns.
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Chapter 1

Introduction

1.1 Motivation

After Richard Feynman proposed in 1982 that a quantum computer could

simulate a quantum system more efficiently than a classical computer [1], many the-

orists began working on understanding what a quantum computer might be capable

of doing. A decade later David Deutsch and Richard Jozsa noticed that a quantum

algorithm could be exponentially faster than a classical algorithm and proposed the

Deutsch−Jozsa algorithm as an example [2]. In the algorithm, a black box computes

a function f(x1, x2, ...., xn) with n inputs x1, x2, ...., xn. The input xn is either 0 or

1. If the black box maps all its inputs to the same number, 0 or 1, the function

f is defined to be constant. If the black box maps 50 % of inputs to 0 and the

other 50 % to 1, the function f is defined to be balanced. The task is to determine

whether f is constant or balanced with a minimum number of queries. For example,

suppose we query the black box for inputs of 0 and 1. If the black box outputs

f(0) = f(1) = 0 or f(0) = f(1) = 1, then we can say the black box is constant.

If it outputs f(0) ̸= f(1), the black box is balanced. In this classical example, to

figure the task out, we queried the black box twice. For n inputs, we need to query

the black box 2n−1 + 1 times in the worst case. What is remarkable is that if the

Deutsch−Jozsa quantum algorithm is used, we can get the answer after querying
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the black box only one time if we input the superposition of the n possible inputs.

A monumental step forward in quantum computing occurred in 1994 when

Peter Shor discovered a quantum algorithm (Shor’s algorithm [3]) that could factor

numbers exponentially faster than any known classical algorithm. Subsequently,

Lov Grover developed another quantum algorithm that could search an unsorted

database with quadratic speedup over classical computers [4].

In conventional computing, information is stored as 0’s and 1’s, or “bits”. In

a quantum computer, quantum two-level systems (i.e. a physical system with two

distinct energies) or “qubits”, are used to store information. Because a qubit is a

quantum mechanical system, it can not only be in |0⟩ or |1⟩, but it can exist in

an infinite number of possible superposition states α |0⟩ + β |1⟩. These superposi-

tion states give a quantum computer a significantly greater number of resources for

tackling certain types of problems.

It was soon recognized that it would not be easy to build a quantum computer.

In particular, quantum superposition states can be destroyed by interaction with

the environment. In a classical digital computer, one can preserve bit information

by making multiple copies and using error correction techniques. However, in a

quantum system, an unknown quantum state cannot be copied since the quantum

system would collapse to an eigenstate once it is measured; this is called the no-

cloning theorem [5]. Remarkably, Shor found a way to perform error correction on

qubits by copying and correcting a quantum system in which the information was

spread among highly entangled qubits [6]. Raymond Laflamme was subsequently

able to establish key results on compact quantum error correcting codes and showed
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that the codes would work if the error rate is below a certain tolerance limit [7].

Experimentalists were inspired by this theoretical progress, and many groups began

working towards constructing an actual quantum computer. As a result, many

potential qubits have been proposed and tested, though none have yet moved beyond

the laboratory.

In principle, any quantum two level system could be used as a qubit. Many

physically different approaches have been proposed: nuclear spins (NMR), trapped

ions, semiconductor quantum dots, and various superconducting devices. They all

have advantages and disadvantages. For example, NMR and trapped ions have

demonstrated long coherence times and entanglement of many qubits (up to 8 so

far). But it is generally believed that scaling to many more qubits will be diffi-

cult for these systems. In contrast semiconductor and superconductor approaches

appear to have good scalability; they can take advantage of very large scale in-

tegration (VLSI) using conventional fabrication technology. However, the general

problems with superconducting qubits are that coherence times have been fairly

short (typically microseconds or less) and the devices are sensitive to defects in the

material from which they are made. My work has been on one particular type of

superconducting qubit, the Cooper Pair Box.

1.2 Superconducting Qubits

Unlike a qubit formed from a single trapped ion [8], quantum superconduct-

ing circuits typically involve billions of atoms and electrons. Such a many-particle
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system can still act like a qubit (two-level system) because in a superconductor the

wave function describing the electrons condenses to one state. One consequence of

the condensation of the wave function is that when a superconducting loop is cooled

down below its transition temperature Tc, one finds the magnetic flux in the loop

is quantized in units of Φ◦ = h/2e = 2.068 × 10−15 T·m2. Another consequence of

the condensation to the ground state is that the electrons form Cooper pairs with

charge −2e, where e = 1.602× 10−19 C.

The key circuit component in all superconducting qubits is the Josephson

junction [9]. An ideal Josephson tunnel junction consists of two superconducting

electrodes separated by a thin insulating tunnel barrier (see Fig. 1.1). The dc

Josephson relation [10] says that the supercurrent IJ through the junction depends

on the phase difference γ across the tunnel barrier by the following relation:

IJ = I0 sin γ, (1.1)

where I0 is the critical current of the tunnel junction. The ac Josephson relation

says that γ will change with time if a voltage (VJ) is placed across the junction:

dγ

dt
=

2e

~
VJ ≡ 2π

Φ0

VJ , (1.2)

where Φ0 is the flux quantum.

The effective inductance of a tunnel junction can be obtained by taking the

time derivative of Eq. 1.1:

dIJ
dt

= I0 cos γ
dγ

dt
. (1.3)
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Thin tunnel barrier

Superconducting metal

(a)

(b)

(c)

Figure 1.1: (a) Schematic of a Josephson junction. (b) Circuit symbol for a big
Josephson junction and (c) circuit symbol for an ultra-small Josephson junction.
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Combining Eq. 1.2 and Eq. 1.3 leads to

VJ =
Φ0

2πI0 cos γ

dIJ
dt
. (1.4)

Equation 1.1 can now be used to write cos γ in the form

cos γ =

√
1−

(
IJ
I0

)2

. (1.5)

We note that for an inductor, V = LdI/dt. Comparing this with Eq. 1.4, we can

now define the Josephson inductance as

LJ =
Φ0

2π
√
I20 − I2J

. (1.6)

LJ clearly depends on the current and hence a junction acts as a non-linear inductor.

With the sandwich geometry used in typical junctions (see Fig. 1.1), one also gets

a capacitance that shunts across the junction and causes the junction to act as a

non-linear LC resonator. Because of the non-linearity associated with the inductor,

the energy levels are anharmonic. This is critical for being able to treat the junction

as a qubit (two-level system).

Roughly speaking, there are three broad classes of superconducting qubits [11]:

phase qubits, charge qubits, and flux qubits. The basic circuit schematics of the

qubits are illustrated in Fig. 1.2.

The prototypical phase qubit consists of a single Josephson junction biased by

a dc current. This device can be understood from the resistively and capacitively

shunted junction (RCSJ) model [12]. The current through the junction is the control

parameter; it controls the tilt of the washboard [see Fig. 1.2 (b)]. The potential has

6



Flux qubitPhase qubit

ФEXT

Charge qubit

Vg

Cg

I

0 1 2
0

1

2

n
g
 or Φ 

E
 /

 k
B

  
(K

)

(a)

(b) (c)

|eÚ

|gÚ

-1 0 1

-4

-2

0

2

E
 /

 E
J
 

γ /2π

|eÚ

|gÚ

Figure 1.2: Various superconducting qubits. (a) Schematic of phase qubit, charge
qubit, and flux qubit. (b) Energy levels of the phase qubit, and (c) Energy levels of
the charge qubit or flux qubit. Horizontal axis is ng for the charge qubit and Φ for
the flux qubit.
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wells with a potential barrier height that is adjustable by the bias current. Discrete

meta stable quantum states form in each well. The two lowest energy levels in

a well can be used as the ground state and the first excited state of the qubit.

Quantum mechanically, the system can tunnel out through the potential barrier

with a finite probability and begin running down the tilted washboard. This will

lead to a dc voltage across the junction. The tunneling escape rate depends on

the qubit state; higher states have a larger escape rate, since the barrier is smaller.

Thus, by measuring the escape rate and the bias current when a voltage appears

across the junction, one can infer the quantum state of the qubit. This also means

the phase qubit itself behaves as a read-out.

A charge qubit consists of an ultra-small Josephson junction that is connected

to a superconducting island, which has a small capacitance. In this qubit, the num-

ber of excess Cooper-pairs on the island is typically quantized and can be controlled

by an external gate voltage. The charge qubit has energy levels that are very an-

harmonic and the two lowest energy levels can be chosen as the qubit states [see

Fig. 1.2 (c)]. The energy spacing between qubit levels is tunable by a gate voltage

Vg, which is capacitively coupled to the island with capacitance Cg (or the reduced

gate voltage ng = CgVg/e), which is the control parameter. I discuss the theory of

charge qubits in chapter 2.

A flux qubit has one or more Josephson junctions in a small superconducting

loop. Typically, one junction is smaller than the other junctions and this effectively

increases the inductance of the loop. The direction of the supercurrent in the loop

can be either clockwise or counterclockwise, or a superposition of both directions,
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and is controlled by an external magnetic flux. Qubit states that have opposite

directions of magnetic moment in the loop can be measured using a dc SQUID

(Superconducting Quantum Interference Device), which is very sensitive to magnetic

flux.

1.3 History of the Cooper Pair Box

The Cooper Pair Box (CPB) was invented by the Saclay group in 1997 [13]. To

measure the excess charge, they used a dc-single electron transistor (SET) coupled

to the CPB island. The following year Rob Schoelkopf’s group at Yale developed a

radio frequency SET and was able to read out the CPB states quickly, i.e. with a

much larger bandwidth than was previously possible [14]. Then in 1999, Nakamura

et al. at NEC demonstrated the ability to coherently manipulate and measure the

quantum states of a CPB [15]. This was the first true superconducting qubit.

Unfortunately, the SET read-out turned out to be inherently dissipative and

too strongly coupled to the CPB, so that the CPB suffered from measurement back-

action [16]. Also, the SET cannot measure the CPB states at the charge degeneracy

point, where the CPB level spacing is insensitive to charge. To get around these

problems, in 2002 the Saclay group demonstrated a charge qubit with a new read-

out scheme, which they called Quantronium [17]. In this qubit a large shunting

capacitor made of a Josephson junction is weakly coupled to the CPB. This was the

first step towards a dispersive read-out scheme for the CPB and eventually evolved

into the Josephson bifurcation amplifier [18]. In 2004, the Yale group finally devised
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a true dispersive read-out “circuit Quantum electrodynamics (QED)” scheme [19]

in analogy with cavity QED in quantum optics [20] (see Fig. 1.3 and section 1.3.2).

1.3.1 Dissipative Read-Out

To measure the quantum states of our CPB qubit, I initially used a radio-

frequency single electron transistor (SET or Coulomb-blockade electrometer). A

radio-frequency single electron transistor is a very sensitive charge detection device,

with demonstrated charge sensitivities down to 6 µe/
√
Hz [22]. By capacitively

coupling an SET to the island of our CPB qubit, I was able to measure excess

charge on the CPB island and infer the state of the CPB.

While this scheme worked very well, there were two problems. First, I was

not able to measure the qubit at the charge degeneracy point (the so called “sweet

spot”) where the coherence times are longest. Second, the static dissipated power

was quite large (∼pW) and we believed this could create a fundamental source of

dissipation for our qubit.

1.3.2 Dispersive Read-Out

A dispersive read-out involves measuring a change in a reactance by observing

the shift in the resonance frequency of an LC circuit. In my work, the LC circuit

was a superconducting resonator with a resonant frequency of 5.4 GHz.

In the Yale group’s cavity quantum electrodynamics (QED) technique, one

measures the change of the electric susceptibility of a qubit by observing the res-

10



2g = Vacuum Rabi Frequency

κ = Decay Rate of Cavity

γ= Decay Rate of Atom

t = Atom Transit Time

(a)

(b)

Figure 1.3: Schematic of cavity quantum electrodynamics (QED). (a) Schematic of
optical cavity QED (picture from Jeff Kimble’s quantum optics group at Caltech)
and (b) schematic of superconducting circuit QED [21] (picture from Schoelkopf’s
group at Yale University).
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onance frequency change (∆fr) of a linear resonator coupled to a CPB. When a

resonator is capacitively coupled to a CPB, the resonance frequency depends on the

state of the CPB. This read-out is also called a dispersive read-out. If this read-out

is implemented properly, there can be very little power dissipated in the device and

very little back-action on the qubit.

For the circuit QED technique, many research groups have used a thin-film

half-wavelength resonator. A half-wavelength resonator is basically a length (L) of

metal that is capacitively connected to both the input and output transmission lines.

Since the ends are “open” at resonance, a current node and voltage anti-node are

formed at each end and there will be a lowest frequency mode and higher harmonics.

These higher harmonics can have a dramatic effect on T1 when operating the qubit

above the fundamental resonance [24].

To minimize the detrimental effect of harmonics on our qubit, I designed a

lumped element resonator with f0 = 5.4 GHz, and no harmonics up to f = 20 GHz.

When I coupled this resonator to a qubit, I observed the CPB spectrum, measured

T1 up to 200 µs, and observed Rabi oscillations. This work is described in Chapters

5-6.

1.4 Overview of the Thesis

Although many qubits will be needed to build a useful quantum computer,

research on single qubits is important for understanding qubit manipulation, read-

out, and decoherence mechanisms. To quantify decoherence, I measured the energy
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spectrum, energy relaxation times (T1), and Rabi decay times (T
′
) of a CPB. An-

other decoherence source is the back-action from the qubit read-out. By testing

different read-out schemes (dissipative and non-dissipative), I was able to see some

back-action effects.

In this thesis, I begin in Chapter 2 by discussing the CPB Hamiltonian, eigen-

states, and sources of decoherence. I next discuss my use of an SET to make

measurements of a CPB in Chapter 3. In Chapter 4, I present my detailed spec-

troscopic measurements of anomalous avoided level crossings. I also compare these

measurements with a model for a charge fluctuator coupled to a CPB and examine

the effect of these charge fluctuators on the relaxation time T1 of the qubit. In

Chapter 5, I discuss the lumped-element microwave resonator that I designed, built,

and measured. In Chapter 6, I then describe coupling the resonator to a CPB and

discuss my measurements on the coupled system. Finally, in Chapter 7, I finish with

a discussion of possible future work and some concluding and summary remarks.
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Chapter 2

Theory of the Cooper Pair Box (CPB)

2.1 Overview

In this chapter, I discuss the basic physics of a CPB, including the Hamiltonian,

energy levels, states, and factors that contribute to decoherence.

2.2 CPB Hamiltonian

Figure 2.1 (b) shows an SEM image of a typical CPB and Fig. 2.1 (a) shows

the circuit schematic. The CPB has a small superconducting island (100 nm wide

by 500nm long by 30 nm thick) connected to Cooper pair reservoirs or a super-

conducting ground through two small Josephson junctions in parallel. Due to the

small island capacitance and high impedance of the tunnel barrier, the electrostatic

energy it takes to add a single Cooper-pair is dominant in a CPB.

A Josephson junction also stores Josephson energy that depends on the phase

difference across the junction. The charging energy and the Josephson energy are

added together to get the CPB Hamiltonian. The energy levels and the relative

strengths of the charging versus Josephson energy can be tuned by an external

magnetic flux and an applied gate voltage, which are controllable variables or ex-

perimental knobs. The tuning of the Josephson energy is basically related to the
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Figure 2.1: Schematic of a CPB. (a) SEM image of a CPB. The picture was taken
by Dr. Pierre Echternach at the Jet Propulsion Laboratory (JPL). (b) Circuit
schematic of a CPB. Island is shown as bold lines.
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quantization of the magnetic flux in the CPB loop. The tuning of the charging

energy is related to the quantization of the charge in the CPB island.

2.2.1 Josephson Energy

The Josephson energy EJ can be derived from the Josephson relations (Eqs. 1.1

and 1.2). The work done on the junction can be found by integrating the “power”

W =
∫
dtIJVJ . Using the Josephson relations, one finds

W = c0 − EJ cos γ, (2.1)

where EJ = I0Φ0/2π and c0 is a constant that can be neglected. We see that the

only experimental parameter in EJ is the critical current I0 of the junction. To

modulate the critical current and hence the Josephson energy, we can place two

nominally identical junctions in parallel and apply an external magnetic flux Φa

to the resulting loop (see Fig. 2.1). In this situation, I0 = Imax
0 | cos(πΦa/Φ0)|,

where Imax
0 is the sum of the critical currents of the two junctions. Thus EJ can

be tuned according to EJ = EMax
J | cos(πΦa/Φ◦)| where EMax

J = ~Imax
0 /2e. Hence

by changing the magnetic field we can effectively modulate or change the effective

Josephson energy.

2.2.2 Charging Energy

By applying voltage Vg to a gate electrode, which is capacitively coupled to

the CPB island with capacitance Cg, we can control the discrete number n of excess

Cooper pairs on the island with respect to the neutral charge state on the island
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[see bold lines in Fig. 2.1 (b)]. The voltage affects the energy of Cooper pairs on

the island and the rate at which they can tunnel from the ground to the island.

The electrostatic potential of the island VI is determined by the gate voltage

Vg and the number n of excess Cooper pairs on the island. If there are no excess

charges on the island, then n = 0. The circuit in Fig. 2.1 (b) can be treated as a

voltage divider, and then the island potential is given by

VI =

1

CJ

1

CJ

+
1

Cg

Vg =
CgVg
CΣ

, (2.2)

where CJ = CJ1+CJ2 and CΣ = Cg+CJ is the total capacitance of the CPB island.

One can also consider the situation in which the gate voltage is zero and there are

n excess Cooper pairs on the island. For this case, the gate capacitor and junctions

are effectively connected to the island in parallel and the resulting island voltage

is:

VI = −2ne

CΣ

. (2.3)

When both excess Cooper pairs and positive gate voltage are both present, the

island potential is found by combining Eqs. 2.2 and 2.3:

VI =
e

CΣ

(ng − 2n), (2.4)

where ng = CgVg/e is the reduced gate voltage and e = 1.602 × 10−19 C. The

electrostatic energy of the CPB island is given by

U =
1

2
Cg(VI − Vg)

2 +
1

2
CJ(VI − 0)2. (2.5)
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In this circuit the gate voltage source does work to transfer excess charges

onto the island through the tunneling junction. Suppose there are n excess Cooper

pairs on the island and then another Cooper pair with charge −2e is delivered to

the island by the gate voltage source. Then, the new voltage on the island is given

by

V ′
I =

e

CΣ

[ng − 2(n+ 1)]. (2.6)

Thus, the voltage difference for the tunneling is equal to −2e/CΣ, so the charge on

the gate capacitor changes by −2eCg/CΣ. The work W done by the gate voltage

source for an excess Cooper pair is (2eCg/CΣ)Vg, and for n excess Cooper pairs,

W = 2neCg/CΣVg = 2nnge
2/CΣ [12].

Inserting Eq. 2.4 into U and subtractingW from U , we can get the electrostatic

free energy E of the system:

E =
1

2

e2

CΣ

(2n− ng)
2 + const., (2.7)

where the const = e2

2CΣ
(CJ

Cg
− 1)n2

g can be dropped since it does not depend on n and

thus has no effect on the charge transfer [12]. Hence, by changing the gate voltage,

our other experimental knob, we can control the number of excess Cooper pairs on

the island and also the detuning of CPB energy level.

Combining the Josephson energy and the electrostatic term discussed so far,

the Hamiltonian of a CPB is

H = EC(2n− ng)
2 − EJ cos γ, (2.8)

where EC = e2/2CΣ and EJ = EMax
J | cos(πΦa/Φ◦)|.
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We can also write cos γ = (eiγ + e−iγ)/2; the Josephson term corresponds

to a change of +/− one Cooper pair, and the e+iγ and e−iγ correspond to raising

and lowering operators [12]. The Hamiltonian describing the CPB in the number

representation is then given by [13, 25]

ĤCPB = EC

∑
n

(2n− ng)
2 |n⟩ ⟨n| − EJ

2

∑
n

(|n+ 1⟩ ⟨n|+ |n⟩ ⟨n+ 1|), (2.9)

where the summation is over all possible numbers of excess Cooper pairs and |n⟩ is

the number state of excess Cooper pairs on the island. The quasiparticle states [26,

27] were neglected in this calculation. For a numerical calculation, we truncate

the sum. For example, for four charge states n=-1, 0, 1, and 2, the Hamiltonian

becomes:

ĤCPB =


EC(−2× 1− ng)

2 −EJ/2 0 0

−EJ/2 EC(2× 0− ng)
2 −EJ/2 0

0 −EJ/2 EC(2× 1− ng)
2 −EJ/2

0 0 −EJ/2 EC(2× 2− ng)
2

 .

(2.10)

We can numerically solve the truncated CPB Hamiltonian and get the eigen-

values, which correspond to the energy levels of a CPB. Figure 2.2 shows the three

lowest levels (red, blue, and green curves) of the 4-level Hamiltonian. The dashed

curves correspond to the energy associated with the electrostatic charging energy

for n=-1, 0, 1, and 2. Note that the n=0 and n=1 dashed curves are degenerate

at ng=1 and the effect of EJ is to break that degeneracy by approximately EJ . At

ng = 1, the degenerate energy levels split into two energy levels: the ground state

(red curve in Fig. 2.2) and the first excited state (blue curve in Fig. 2.2). The first

and second excited state have a minimum splitting of approximately E2
J/16EC and
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J

∆
Al

n= 0 n= 1

n= -1/2 n= 1/2 n= 3/2

Figure 2.2: CPB energy levels. Dashed curves are the electrostatic energy of a CPB
with EC/kB=0.5 K and different number n of excess pairs. Red and blue curves are
energy eigenvalues from the CPB Hamiltonian with EJ/kB=0.6 K. The energy of
states with a quasiparticle are plotted as gray with the superconducting energy gap
∆Al/kB of 2 K.
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this minimum occurs at even values of ng. Finally, the grey region above the first ex-

cited state, with minimum at odd ng values, corresponds to a continuum of states of

the system in which a quasiparticle is present; they have been drawn schematically

in Fig. 2.2.

The operator n for the excess number of Cooper pairs is diagonal in the charge

basis and is given by

n̂ =
∑
n

n |n⟩ ⟨n| . (2.11)

In thermal equilibrium the average number ⟨n⟩ of excess Cooper pairs on the island

of a CPB is:

⟨n⟩ =
∑
i

⟨i| n̂ |i⟩Pi, (2.12)

where Pi = exp(−Ei/kBT )/
∑

i exp(−Ei/kBT ) is the probability of finding n excess

Cooper pairs on the island at a temperature T ,
∑

i Pi = 1, and |i⟩ is the i-th energy

eigenvector of the system.

2.3 Two-Level Approximation

For much of my work, I will be working in the limit EJ < EC with the device

biased near the charge degeneracy point. In this case, just two states n = 0 and

n = 1 play a role and all other states can be ignored because they have a much

higher energy. Hence, in this limit I can approximate the Hamiltonian as a two-

level system [28], specifically I will take the summation in Eq. 2.9 over just n = 0

and n = 1.
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2.3.1 Energy Levels

The 2-level CPB Hamiltonian in matrix form is

ĤCPB =

 EC(2× 0− ng)
2 −EJ/2

−EJ/2 EC(2× 1− ng)
2

 . (2.13)

Eq. 2.13 can be divided into two terms:

ĤCPB =

 −2EC(1− ng) −EJ/2

−EJ/2 2EC(1− ng)

+ EC [(1− ng)
2 + 1]

 1 0

0 1

 .

(2.14)

Note that the first matrix can be rewritten as

Ĥ = −Eel

2
σz −

EJ

2
σx, (2.15)

where Eel = 4EC(1− ng) and σz and σx are Pauli spin matrices. This Hamiltonian

shows the CPB behaves as a fictitious spin-1/2 particle under a pseudo-magnetic field

with components Bz = Eel and Bx = EJ . Thus, Eel points in the +z direction on

the Bloch sphere [see Fig. 2.3 (a)] in the charge basis and the north pole corresponds

to |0⟩. Equation 2.15 also implies that EJ points in the +x direction on the Bloch

sphere. Hence, the eigenstates of the CPB will lie on the XZ plane aligned with

the sum of two pseudo-magnetic fields. One can also see that a fluctuation in ng

will perturb Eel by δEel = −4ECδng [see Fig. 2.3 (c)].

The second matrix in Eq. 2.14 is diagonal and just a multiple of the identity

matrix, and hence it does not play a role in the difference of the energy eigenvalues.
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Figure 2.3: (a) Bloch sphere of a CPB in the charge basis and (b) the triangular
relationship of θ. (c) A voltage fluctuation (blue dashed line) leads to a fluctuation of
the electrostatic energy. (d) The energy difference (∆E = hf) between the ground
state and the first excited state of a CPB near ng = 1.
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Neglecting the second term, the energy eigenvalues are

Eg = −1

2

√
[4EC(1− ng)]2 + E2

J (2.16)

and

Ee = +
1

2

√
[4EC(1− ng)]2 + E2

J , (2.17)

where the subscript g represents the ground state and the subscript e represents the

first excited state of the system. These eigenvalues are plotted in Fig. 2.4 (a) as a

function of ng. The energy difference between Ee and Eg is

∆E =
√

[4EC(1− ng)]2 + E2
J . (2.18)

Note that ∆E = EJ at ng=1 and ∆E ≃ 4EC at ng=2 if EC ≫ EJ/4. For example,

when EC/h is 10.4 GHz and EJ/h is 5 GHz, one can get the CPB spectrum as in

Fig. 2.3 (d).

2.3.2 States

The eigenstates in terms of the excess charge states |0⟩ and |1⟩ are

|Ψg⟩ = cos(θ/2) |0⟩+ sin(θ/2) |1⟩ (2.19)

and

|Ψe⟩ = − sin(θ/2) |0⟩+ cos(θ/2) |1⟩ , (2.20)

where θ = arctan[EJ/4EC(1−ng)] is a function of ng and essentially the angle that

rotates the charge basis to the energy eigen basis [see Figs. 2.3 (b) and (c)]. If the

coherence time T2 (see section 2.5) is long enough, then we can create an arbitrary
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Figure 2.4: The two lowest levels of a CPB. (a) The energy levels in the first excited
state (red dashed curve) and the ground state (blue curve), and (b) The pair number
expectation values ⟨n⟩ in the first excited state (red dashed curve) and the ground
state (blue curve).
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state on the Bloch sphere [see Fig. 2.3 (a)] with a phase factor φ by exciting the

qubit at ∆E. At the charge degeneracy point of ng = 1, or θ = π/2, the ground

and excited states are in a superposition state of charge [see Fig. 2.4 (a)] as:

|Ψg(ng = 1)⟩ = 1√
2
(|0⟩+ |1⟩) (2.21)

and

|Ψe(ng = 1)⟩ = 1√
2
(− |0⟩+ |1⟩). (2.22)

2.3.3 Charge

We can also calculate the average number of excess Cooper pairs in the ground

state by ⟨Ψg| n̂ |Ψg⟩ = sin2(θ/2), plotted as the blue curve in Fig. 2.4 (b). The

average charge in the excited state ⟨Ψe| n̂ |Ψe⟩ is 1 − sin2(θ/2), shown as the red-

dashed curve in Fig. 2.4 (b). The staircase-like charge response to the gate voltage

is due to Coulomb blockade and is typically referred to as the Coulomb staircase.

For 0 < ng < 1, the average charge ⟨n⟩ ≃ 0 in the ground state. When the qubit is

excited by resonant microwaves, the average excess charge ⟨n⟩ will increase towards

1 for this range of ng. In contrast, for 1 < ng < 2, the average charge ⟨n⟩ ≃ 1 in the

ground state while the average charge ⟨n⟩ will decrease close to 0 when the qubit is

excited.

If EJ is made smaller, the curvature of the E or ⟨n⟩ versus ng plot at ng=1

becomes larger, representing the fact that the charge state becomes a better quantum

state of the system. It is also worth pointing out that if quasiparticles are present in

the system, then a step at ng=1 with ⟨n⟩ ∼1/2 will be present (see [30] for example).
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2.4 Energy Relaxation

With suitable choices for EC and EJ , the difference in energy between the

first excited state and the ground state can be reached with a standard microwave

source.

To excite our qubit, we typically introduce a microwave voltage perturbation

to the gate of the qubit: δVg(t). With the perturbation, the Hamiltonian in the

charge basis becomes

ĤCPB =

 −2EC(1− ng) −EJ/2

−EJ/2 2EC(1− ng)

+ 2ECδng(t)

 1 0

0 −1

 , (2.23)

where δng(t) = CgδVg(t)/e. Here the first matrix is the unperturbed Hamiltonian

and the second matrix is a perturbation. One can see that the σz term in the

charge basis, which arises from the electrostatic energy Eel, is perturbed by δng(t)

[see Fig. 2.3 (b) and (c)]. After rotating to the energy basis, such a perturbation

will couple the eigenstates |Ψe⟩ and |Ψg⟩, and can be decomposed into longitudinal

and transverse components with respect to the direction of eigenstates. To better

understand the effect of a fluctuation in ng, we can rotate the perturbed term in

Eq. 2.23 into the Ψe and Ψg basis using the rotational matrix

UR =

 cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

 . (2.24)
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The rotated perturbation Hamiltonian is given by

Ĥ ′ = 2ECδng(t)U
T
R

 1 0

0 −1

UR, (2.25)

or

Ĥ ′ = 2ECδng(t)

 cos θ − sin θ

− sin θ − cos θ

 . (2.26)

Using the triangular relationship for θ, EC = e2/2CΣ, and δng(t) = CgδVg(t)/e,

we can rewrite the perturbation Hamiltonian as

Ĥ ′ = δVg(t)eκc

 cos θ − sin θ

− sin θ − cos θ

 , (2.27)

or

Ĥ ′ =
eκcδVg(t)

∆E

 4EC(1− ng) −EJ

−EJ −4EC(1− ng)

 , (2.28)

where ∆E =
√

[4EC(1− ng)]2 + E2
J and κc ≡ Cg/CΣ is the coupling constant.

The off-diagonal terms in the perturbation Hamiltonian couple the ground

state to the excited state and vice versa and scales as EJ/∆E. If EJ/∆E is small in

the experiment, then I will need to increase the driving amplitude to see the same

population in the excited state because off-diagonal terms correspond to transitions

between the ground and excited state. The off-diagonal terms are also relevant to

energy relaxation from charge noise. As I will show in Chapter 3, I was able to

increase the lifetime of the qubit (off the charge degeneracy point) by decreasing

EJ . Thus, one can effectively decouple a CPB from relaxation due to voltage noise

or charge noise and increase the energy relaxation time T1.
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The energy relaxation time T1 can be derived from Fermi’s golden rule [29].

One finds:

1

T1
=
A2

~2
SV (△E/h), (2.29)

where A is a coupling factor for voltage fluctuations and SV (△E/h) is the spectral

density of voltage noise. I will discuss the spectral density of voltage noise in section

2.7. The coupling strength A = eκc sin θ can be found from the off-diagonal terms

in Eq. 2.27. Note that a voltage fluctuation leads to a fluctuation in the electro-

static energy, which can be divided into two components: δEel sin θ and δEel cos θ.

δEel sin θ is the component perpendicular to the direction of the eigenstates [See

Figs. 2.3 (b) and (c)]. This perturbation will cause mixing between states if the

frequency is equal to the energy level spacing ∆E. For voltage noise applied to the

gate, Eq. 2.29 can be rewritten explicitly as

1

T1
=

(eκc
~

)2 E2
J

[4EC(1− ng)]2 + E2
J

SV (△E/h). (2.30)

In general, to extract the spectral density of voltage noise, one needs to know

the source of noise and the CPB’s coupling to that noise source. For charge fluctua-

tions, a better figure of merit is the spectral density of charge noise, which is related

to the effective gate voltage power spectral density by Sq = C2
gSV . The spectral

density of charge noise Sq can be extracted from

1

T1
=

(
2EC

e~

)2
E2

J

[4EC(1− ng)]2 + E2
J

Sq(△E/h). (2.31)
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2.5 Dephasing

The coherence of the qubit is fragile and can be destroyed by interaction

with degrees of freedom of the environment. Such interactions affect the dynamics

of a qubit, causing energy relaxation and dephasing. Energy relaxation produces

“population” decay, which is quantified by T1, while a pure dephasing process is

quantified by Tφ. A pure dephasing process conserves the population but destroys

the phase coherence of superposition states. In general, decoherence sources include

energy relaxation and pure dephasing, and can be quantified by the coherence time

T2 [33, 34]

1

T2
=

1

2T1
+

1

Tφ
. (2.32)

To better understand dephasing, suppose the qubit is in an arbitrary state at

t = 0

|ψ(t = 0)⟩ = α |g⟩+ βeiφ0 |e⟩ , (2.33)

where
√

|α|2 + |β|2 = 1 and φ0 is the phase at t = 0. The state will evolve with

time as

|ψ(t)⟩ = α |g⟩+ βeiφ01(t) |e⟩ , (2.34)

where φ01(t) = (∆E/~)t. Suppose a random phase φn(t) is added due to perturba-

tion of the system so

|ψ(t)⟩ = α |g⟩+ βei[φ0+φ01(t)]eiφn(t)(t) |e⟩ . (2.35)

For measurements, a statistical ensemble of pure states should be considered. So

one can introduce the dephasing factor fφ(t) = ⟨eiφn(t)⟩, which becomes e−⟨φ2
n(t)⟩/2
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when φn(t) is chosen from a Gaussian distribution [35]. The calculation of the

mean-squared phase noise is given in references [35, 36, 37] as

⟨φ2
n(t)⟩ =

1

~2e2

(
∂∆E

∂ng

)2 ∫ +∞

−∞
dfSλ(f)

sin2(πft)

(πf)2
, (2.36)

where ∆E =
√

[4EC(1− ng)]2 + E2
J and Sλ(f) is the spectral density of λ.

Here I will consider two kinds of classical charge noise Scl(f) as Sλ(f): white

noise and 1/f noise. Yoshihara et al. observed both types of noise in their flux

qubit [38]. In the case of white noise, Scl(f) is constant over the whole frequency

range and the integral in Eq. 2.36 is given by

Scl(f = 0)t

π

∫ +∞

−∞
d(πft)

sin2(πft)

(πft)2
= Scl(f = 0)t. (2.37)

Then, the mean-squared phase noise becomes

⟨φ2
n(t)⟩ =

t

~2e2

(
∂∆E

∂ng

)2

Scl(f = 0). (2.38)

This leads to an exponential decay of the dephasing factor

fφ(t) = e−t/Tφ , (2.39)

where

1

Tφ
=

1

2~2e2

(
∂∆E

∂ng

)2

Scl(f = 0) (2.40)

Using Eq. 2.18 for ∆E versus ng, we get for the CPB in the presence of white noise,

1

Tφ
=

1

2~2e2
(4EC)

4(1− ng)
2

[4EC(1− ng)]2 + E2
J

Scl(f = 0). (2.41)

This result is what happens for diagonal terms in the perturbed Hamiltonian
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(Eq. 2.26), which cause changes in the energy levels (i.e. ac Stark effect). Thus a

charge or voltage fluctuation along the radial direction of the eigenstates can cause

dephasing of a qubit and yields the dephasing time [39]

1

Tφ
=
B2

~2
SV (f = 0), (2.42)

or

1

Tφ
=

(
2EC

e~

)2
[4EC(1− ng)]

2

[4EC(1− ng)]2 + E2
J

Sq(f = 0), (2.43)

where B = eκc cos θ is the coupling strength of the fluctuation in Eq. 2.27. Equa-

tion 2.43 predicts that the dephasing time is maximum at ng = 1 and decreases

quickly away from ng = 1. This is the origin of the charge noise “sweep spot” at

ng = 1.

The second type of classical noise is low frequency charge noise (i.e. 1/f noise).

The calculation of the mean-squared phase noise can be found in references [35, 36,

37], which give:

⟨φ2
n(t)⟩ =

1

~2e2

(
∂∆E

∂ng

)2 ∫ +∞

−∞
df

α

|f |
sin2(πft)

(πf)2
, (2.44)

where typically the amplitude of charge noise
√
α ≈ 10−3 − 10−4 e. Within the

maximum experimental measurement time te and the minimum time tm, one can

approximate Eq. 2.44 as [30, 37]

⟨φ2
n(t)⟩ ≃

1

~2e2

(
∂∆E

∂ng

)2 ∫ 1/tm

1/te

df
αt2

f
, (2.45)

or

⟨φ2
n(t)⟩ ≃

αt2

~2e2

(
∂∆E

∂ng

)2

ln

(
te
tm

)
, (2.46)
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which leads to the Gaussian dephasing factor

fφ(t) = e−(t/Tφ)2 . (2.47)

Hence, the dephasing time Tφ is given by

1

Tφ
=

√
α

2~2e2
ln

(
te
tm

) ∣∣∣∣∂∆E∂ng

∣∣∣∣ , (2.48)

or

1

Tφ
=

√
α

2~2e2
ln

(
te
tm

)
(4EC)

2|1− ng|√
[4EC(1− ng)]2 + E2

J

. (2.49)

For the dephasing at ng = 1, one has to consider the second order fluctuation

in energy ∆E [30]:

δ(∆E) =
1

2

∂2∆E

∂n2
g

(δng)
2, (2.50)

where

∂2∆E

∂n2
g

=
(4EC)

2√
[4EC(1− ng)]2 + E2

J

− 2(4EC)
4(1− ng)

2

(
√

[4EC(1− ng)]2 + E2
J)

3
. (2.51)

At ng = 1, this second order fluctuation is equal to (4EC)
2/EJ . The rms deviation

in ng for 1/f charge noise is, [103]:

(δng)
2 ≈ 1

e2

∫ 1/tm

1/te

df
α

f

=
α

e2
ln

(
te
tm

)
.

(2.52)

The corresponding rms phase noise [30] is then given by

δφ(t) ≈ 1

~

∫ t

0

δ(∆E) dt

=
α

2e2~
ln

(
te
tm

)
(4EC)

2

EJ

t

(2.53)

33



For δφ(t) = 1, the dephasing time Tφ at ng = 1 is given by

1

Tφ
=

α

2e2~
ln

(
te
tm

)
(4EC)

2

EJ

. (2.54)

If I assume a measurement bandwidth of 0.3 MHz or te = (1/0.3) µs and EJ/h = 6

GHz or tm = (1/6) ns, then ln(te/tm) ≃ 9.9. Assuming the amplitude of charge

noise
√
α ≈ 10−3 e and EC/kB = 0.3 K, one expects a dephasing time Tφ ≃ 310 ns

at ng = 1.

2.6 Rabi Oscillations

In order to understand the dynamics of the qubit, the states of the qubit when

it is driven sinusoidally should be examined through the time-dependent Schrödinger

equation:

Ĥ |Ψ⟩ = i~
∂ |Ψ⟩
∂t

. (2.55)

The qubit states can be written as

|Ψ(t)⟩ = cg(t)e
−iEgt/~ |g⟩+ ce(t)e

−iEet/~ |e⟩ . (2.56)

I will assume the driving harmonic wave has angular frequency ω, which is detuned

from the qubit transition angular frequency ω01 by δω, so that

ω = ω01 + δω, (2.57)

where ω01 = (Ee − Eg)/~. This harmonic wave causes a perturbation V̂ (t) to the

qubit Hamiltonian. Hence, the system Hamiltonian is given by
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Ĥ = Ĥ0 + V̂ (t), (2.58)

where Ĥ0 is the unperturbed, or time-independent Hamiltonian.

The system Hamiltonian (Eq. 2.58) and states (Eq. 2.56) should satisfy the

time-dependent Schrödinger equation, yielding two equations:

ċg(t) = − i

~

(
cg(t) ⟨g| V̂ (t) |g⟩+ ce(t) ⟨g| V̂ |e⟩ e−iω01t

)
(2.59)

ċe(t) = − i

~

(
cg(t) ⟨e| V̂ |g⟩ eiω01t + ce(t) ⟨e| V̂ (t) |e⟩

)
. (2.60)

To better understand the explicit form of V̂ (t), we first consider a semi-classical

situation in which the interaction between the harmonic wave and a qubit is due to

an effective dipole interaction to the electric field [32]:

V̂ (t) = exEx cosωt, (2.61)

where ex is the effective dipole moment of the qubit, which is aligned with the x-axis

and Ex is the amplitude of the polarized electric field E(t) ≡ Exx̂ cosωt. In this

case, the perturbation matrix elements are given by

Vij(t) ≡ ⟨i| V̂ (t) |j⟩ = eEx cosωt

∫
Ψ∗

ixΨjd
3x. (2.62)

Due to the odd parity of x, Vg,g = Ve,e = 0. Therefore, the perturbation Hamiltonian

is

V̂ (t) =

 0 eEx cosωt

eEx cosωt 0

 , (2.63)

where the dipole matrix elements ⟨g| V̂ (t) |e⟩ = ⟨e| V̂ (t) |g⟩ = eEx(e
iωt + e−iωt)/2.
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With these dipole matrix elements, Eqs. 2.59 and 2.60 can be re-expressed as

ċg(t) = − i

~
eEx

2

(
ei(ω−ω01)t + e−i(ω+ω01)t

)
ce(t) (2.64)

ċe(t) = − i

~
eEx

2

(
e−i(ω−ω01)t + ei(ω+ω01)t

)
cg(t). (2.65)

If we make the rotating wave approximation, we can neglect fast oscillating terms

such as ±(ω + ω01). The time derivative of Eq. 2.65 then leads to

c̈e(t) + i(ω − ω01)ċe(t) +

(
eEx

2~

)2

ce(t) = 0. (2.66)

A trial solution of the form eξt yields the quadratic equation

ξ2 + i(ω − ω01)ξ +

(
eEx

2~

)2

= 0. (2.67)

And the solution to the equation is

ξ = −iω − ω01

2
± i

Ω

2
, (2.68)

where

Ω ≡

√
(ω − ω01)2 + 4

(
eEx

2~

)2

(2.69)

is the Rabi flopping angular frequency. On resonance, ω − ω01 = 0 and Ω becomes

ΩR ≡ |eEx|/~, which is called the bare Rabi flopping angular frequency.

The initial conditions of cg(0) = 1 and ce(0) = 0 lead to

|ce|2 =
(
ΩR

Ω

)2

sin2(Ωt/2) (2.70)

In reality, the Rabi oscillation will be damped with a time constant T
′
[33, 34] that

36



is related to T1 and T2 by

1

T ′ =
1

2T1
+

1

2T2
. (2.71)

We now consider explicitly the perturbation Hamiltonian of the CPB qubit (see

Eq. 2.26). Instead of voltage noise δng(t), one can apply the harmonic perturbation

nrf
g cos(ωt), where nrf

g is the driving amplitude for the qubit. Hence, the CPB

Hamiltonian becomes:

Ĥ =
∆E

2

 −1 0

0 1

+
2ECn

rf
g cos(ωt)

∆E

 4EC(1− ng) −EJ

−EJ −4EC(1− ng)

 .

(2.72)

At ng = 1, the perturbation Hamiltonian reduces to

2ECn
rf
g cos(ωt)

 0 −1

−1 0

 . (2.73)

Comparing Eq. 2.73 with Eq. 2.63 yields the bare Rabi angular frequency of

the CPB qubit:

ΩR =
2EC |nrf

g |
~

. (2.74)

2.7 Spectral Density of Voltage Noise

Thermally driven electrical noise is common in low temperature experiments.

Such noise can be quantified by the power spectral density. The spectral density of

noise [29, 30] is defined as

Sf (ω) =
1

2π

∫ ∞

−∞
dτeiωτ ⟨f(τ)f(0)⟩, (2.75)
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where f can represent the current, charge, or voltage depending on the type of

the noise source and τ is time. The spectrum is symmetric for classical noise;

Sf (−ω) = Sf (+ω) since there’s no distinction between negative and positive fre-

quency. In quantum mechanics, f(τ) and f(0) are operators and do not commute

necessarily [29]. Therefore, Sf (−ω) ̸= Sf (+ω). Negative frequency noise transfers

energy from the noise source to the two-level system (exciting the two-level system),

and positive frequency noise does the opposite (relaxing the two-level system) [29].

The spectral density of voltage noise from a resistor R at frequency f in

thermal equilibrium at a temperature T is given by [29]

SV (f) =
2R~ω

1− e−~ω/kBT
(2.76)

SV (f) from a 50 Ω resistor is plotted in Fig. 2.5 at temperatures of 0.1 K, 1 K,

and 4K. Note that Eq. 2.76 is the “double-sided” power spectral density, which

means −∞ < ω <∞. Much more commonly used is the single-sided spectrum with

ω ≥ 0, which I am here calling the classical spectrum. For example, for ~ω ≪ kBT ,

Eq. 2.76 reduces to SV = 2kBTR, whereas the conventional single-sided expression

for Johnson noise is SV = 4kBTR.
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Figure 2.5: Spectral density of voltage noise. SV (f) at T=0.1 K (blue solid), 1 K
(green dashed), and 4 K (red dashed) for a 50 Ω resistor.
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Chapter 3

Dissipative Read-out Using a Superconducting Single Electron

Transistor

3.1 Overview

In this chapter, I describe the basic physics of the superconducting single

electron transistor (SET) and explain how I used a SET to read out the state of

a CPB. Similar to a CPB, the SET has a small superconducting island that is

coupled to two superconducting leads by two ultra-small tunnel junctions and the

number of excess Cooper pairs or electrons is controlled by a gate voltage Vg, which

is capacitively coupled to the island of the SET (see Fig. 3.1). Unlike the Cooper

Pair Box, we apply a bias voltage VDS across the two leads of the SET (the drain

and source) and measure the tunneling current through the device.

There are a few general conditions for tunneling processes to occur in SETs;

if these conditions are not met, an average tunneling current will not occur. First,

the process must be energetically favorable. Second, the total process must conserve

charge; i.e. when the cycle is complete the charge on the island must be the same as

when it began. This second condition is not too difficult to satisfy for single electron

tunneling but can be difficult to satisfy for Cooper-pair tunneling in superconduct-

ing SETs. The interplay of Cooper-pair and quasiparticle tunneling produces a very
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Current to Voltage preamplifier 

(DL instruments, Model 1211)

Vg,e
(a) 1 µm

DAC input
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C1
Cg,e C2

VDSVg,e

Voltage preamplifier            

(Stanford Research Systems,  

SR560)

VI,e

Figure 3.1: dc SET. (a) Schematic set up for dc SET. (b) Circuit schematic of a SET.
C1 and C2 are the ultra-small junction capacitances. Cg,e is the gate capacitance, Vg,e
is the gate voltage, and VI,e is the voltage on the island of the SET (“e” represents
the electrometer). VDS is the bias voltage applied to the junction C2.
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rich structure in a measurement of the tunneling current versus VDS and Vg. I will

not write down a master equation and work out the tunneling rates of these different

processes in this thesis [30]. Instead, I will explain where we observe specific reso-

nances in SETs, describe how we use these resonances during charge measurements,

and finally show how we can perform fast measurements using an rf-SET.

3.2 dc SET

3.2.1 SET in the Normal State

To describe the general properties of tunneling in an SET, I begin by examining

an SET in the normal state. Assume that initially there are ne excess electrons on

the island of the SET and a voltage VDS is across one junction (C2) [see Fig. 3.1 (b)].

The electrostatic energy of the SET island can be calculated using an approach that

is similar to what was used for the CPB (see the section 2.2.2). One finds [12]

U =
1

2
Cg,e(VI,e − Vg,e)

2 +
1

2
C1(VI,e − 0)2 +

1

2
C2(VI,e − VDS)

2, (3.1)

where the parameters are explained in Fig. 3.1 (b) and Cg,eVg,e = nee. With finite

VDS, electrons can tunnel through the junctions. When electrons tunnel and ne

goes to ne ± 1 through a junction, the change in the electrostatic energy is (1/2 ±

ne)e
2/C∑

,e, where C∑
,e = Cg,e+C1+C2 is the total capacitance of the SET island.

To find the free energy of the system, one needs to calculate the work done

by the two voltage sources. When an electron tunnels through the junction Cj, the
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work done by the voltage sources [12] is given by

Wj = −e
∑
i

(Vj − Vi)
Ci

CΣ

. (3.2)

Therefore, the work done for an electron tunneling through the junction C1 is W1 =

e(Cg,eVg,e + C2VDS)/CΣ. And the work done for an electron tunneling through the

junction C2 is W2 = nee(Cg,eVg,e − C1VDS)/C∑
,e.

Then, the change in the free energy by an electron tunneling from ne to ne±1

through the junction C1 is given by

∆E±
1 = E1(ne ± 1)− E1(ne), (3.3)

where E1(ne ± 1) = U(ne ± 1)− (ne ± 1) ·W1 and E1(ne) = U(ne)−neW1. And one

finds [12]

∆E±
1 =

e2

C∑
,e

[(
1

2
± ne

)
∓ Cg,eVg,e + C2VDS

e

]
. (3.4)

In a similar way, one can find the change in the free energy due to an electron

tunneling from ne to ne ± 1 through the junction C2 [12]:

∆E±
2 =

e2

C∑
,e

[(
1

2
± ne

)
∓ Cg,eVg,e − C1VDS

e

]
. (3.5)

For such a tunneling process to be energetically favorable, the energy change should

be less than zero. If the energy change is positive, then an average current will not

flow and this is called “the Coulomb blockade effect”.

For ∆E±
1 > 0, one finds

e(ne − 1/2) < C2VDS + eng,e < e(ne + 1/2), (3.6)
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and for ∆E±
2 > 0,

e(ne − 1/2) < −C1VDS + eng,e < e(ne + 1/2). (3.7)

The corresponding Coulomb blockade regimes are plotted as gray boxes in Fig. 3.2

(a). If the two junctions have different capacitances, the shape of the area becomes

asymmetric [see Fig. 3.2 (b)]. This kind of plot is generally called a “diamond map”.

Diamonds (gray areas) repeat by when ∆ne = 1 along ng,e and are degenerate at

ng,e = ±1/2, ± 3/2, etc. Outside these diamonds, there is a higher current flow by

single electron tunneling. One can also show that the current through the device is

modulated along ng,e at a fixed VDS with a periodicity of 1.

3.2.2 SET in the Superconducting State

The last section described single-electron tunneling in normal metal SET’s.

Tunneling in superconducting devices is profoundly changed because of Cooper-pair

tunneling and quasiparticle-quasiparticle tunneling. Quasiparticle tunneling events

in the superconducting SET can be understood by the “semiconductor model” [12],

where tunneling transitions are all horizontal; i.e. they occur at constant energy

after adjusting the relative levels of the Fermi energy µ in the two superconductors

to account for the applied potential difference eV (see Fig. 3.3). For quasiparticle

tunneling through one of the tunnel junctions at T = 0, the applied energy eV

should be equal to or bigger than 2∆g, where ∆g is the superconducting energy gap

[see Fig. 3.3 (a)]. We can estimate the energy available during tunneling from the

drain-source voltage across the SET junction capacitance. The portion of the total
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Figure 3.2: The Coulomb blockade area in a normal state SET. (a) The Coulomb
blockade area is shown as gray boxes when C1 = C2. (b) The Coulomb blockade
area becomes asymmetric when C1 ̸= C2.
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bias energy across each junction is κ1eVDS or κ2eVDS due to the voltage divider

formed by the three capacitances, C1, C2, and Cg,e (see Fig. 3.1), where

κ1 =
C2

C∑
,e

(3.8)

κ2 =
C1 + Cg,e

C∑
,e

. (3.9)

κi tells us the asymmetry between the two tunnel junctions in the SET; note that

κ1 + κ2 is equal to 1.

For quasiparticle tunneling at T = 0, the available energy must be enough to

break a Cooper pair into quasiparticles:

κieVDS ≥ ∆Ene→ne+1 + 2∆g, (3.10)

where ∆Ene→ne+1 = Ene+1 − Ene is the change in the electrostatic energy due to a

single quasiparticle tunneling on to the island of the SET and Ene = EC.e(ng,e−ne)
2.

We can rewrite Eq. 3.10 as

κieVDS ≥ EC,e(2ne − 2ng,e + 1) + 2∆g. (3.11)

In this range of VDS, quasiparticle tunneling is energetically favorable. Eq. 3.11 is

plotted as red lines in Fig. 3.4 (b).

For resonant tunneling of Cooper pairs through the SET, the free energy differ-

ence across two junctions should be zero [see Fig. 3.3 (b)]. Thus, the applied energy

must match the change in the electrostatic energy due to a Cooper pair tunneling.

Thus

2κieVDS = ∆Ene→ne+2, (3.12)
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m

Figure 3.3: Semiconductor model for SIS tunneling at T = 0. Density of states vs.
energy level of a superconducting/insulating/superconducting (SIS) tunnel junction.
(a) quasiparticle tunneling (b) Cooper pair tunneling. Blue area is occupied by
quasiparticles.
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where ∆Ene→ne+2 = Ene+2 − Ene . We can rewrite this as

κieVDS = EC,e(2ne − 2ng + 2). (3.13)

Note this is a resonant process and hence Eq. 3.13 is an equality, unlike the threshold

process associated with quasiparticle tunneling (Eq. 3.11). Quasiparticles can carry

extra energy as kinetic energy but a Cooper-pair cannot. Eq. 3.13 is plotted as

white lines in Fig. 3.4 (b).

Figure 3.4 (a) shows a false color plot of the measured current through a

superconducting SET versus VDS and ng,e. The schematic of the setup used for

measurement is shown in Fig. 3.1 (a). The current through the device “SET1” was

measured using a current-to-voltage preamplifier (DL instruments, Model 1211) in

battery mode. This voltage was in turn amplified by a low-noise voltage preamplifier

(Stanford Research Systems, Model SR560) in battery mode. These amplifiers were

set up close together inside the shielded room. A DAC (Data Acquisition Card,

National Instruments, PCI-6259) was used to adjust VDS and Vg,e. I stepped VDS

typically from -1 mV to 1 mV while monitoring the amplified voltage at each VDS

through the DAC. Then, I stepped Vg,e, repeating the same procedure.

From the map of the SET current versus VDS and ng,e, one can extract the

superconducting energy gap ∆g, the SET charging energy EC,e, and the junction re-

sistance in the normal state [see Fig. 3.5 (a)]. When VDS goes above 4∆g/e or below

−4∆g/e, quasiparticle current starts to flow. One can determine the superconduct-

ing energy gap ∆g from these VDS. Once VDS is large enough for quasiparticle-

quasiparticle tunneling, the current becomes proportional to VDS. One can also
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2EC,e/e

2EC,e/e + 2Dg/e

4Dg/e
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JQP
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Figure 3.4: dc-SET diamond map of device “SET1”. (a) Measured current through
a superconducting SET versus VDS and ng,e, and (b) same as (a) with predicted
tunneling process: quasiparticle tunneling (red lines) from Eq. 3.11 and Cooper pair
tunneling (white lines) from Eq. 3.13.
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Figure 3.5: Line cuts of SET diamond map of device “SET2”. (a) Line cut at gate
voltages of ng,e = 0.17 and ng,e = 0.52 showing JQP peak. (b) Line cut at drain-
source voltage VDS = 0.62 mV showing JQP peak. This is also called the “transfer
function” of the dc SET.
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extract the tunneling resistance RSET of the two junctions in series from the slope

of the current versus VDS characteristic [see Fig. 3.5 (a)]. Table 3.1 shows the pa-

rameters I extracted from the diamond map of two devices.

Some of the tunneling events in the diamond maps of the superconducting

SET involve sequential events composed of quasiparticle and Cooper pair tunneling

through the SET junctions. Noticeable currents within ±4∆g are results of cy-

cles, such as the Josephson quasiparticle (JQP) process and the double Josephson

quasiparticle (DJQP) process [72].

The JQP process shown in Fig. 3.6 (a) involves a Cooper-pair tunneling first

onto the SET island through one junction (e.g. junction 2). Then, two quasiparticle

tunneling events follow in sequence, with the quasiparticles tunneling off the SET

island through the other junction (e.g. junction 1). Since quasiparticle tunneling

is a threshold process and pair tunneling is a resonant process, the JQP cycle will

appear along white lines between eVDS = 2EC,e + 2∆g and eVDS = 4∆g, and is

highlighted with a blue dashed line in Fig. 3.4 (b).

The DJQP process shown in Fig. 3.6 (b) involves a Cooper pair tunneling first

onto the SET island through one junction (e.g. junction 2). Then, one quasiparticle

tunnels off of the SET island through the other junction (e.g. junction 1). Next, a

Cooper pair tunnels off of the SET island through junction 1. Finally, one quasi-

particle tunnels onto the SET island through junction 2 to return the charge to its

initial state. For this process, two Cooper pair tunneling events occur at the inter-

section of two white lines; e.g. eVDS = 2EC,e and ng,e = 1/2, which can be found

using Eq. 3.12 when ∆Ene=−1→+1 and ∆Ene=+2→0. Also, two quasiparticle tunnel-
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Table 3.1: Parameters of two SET devices measured at 40 mK as extracted from
measurements. A subscript “e” and “b” represent the electrometer and CPB, re-
spectively (see Fig. 3.15).

Parameters device “SET1” device “SET2”

∆g 214 µeV 214 µeV

κ1 0.57 0.58

κ2 0.43 0.42

RSET 195 kΩ 64 kΩ

EC,e 156 µeV 103 µeV

CΣ,e 0.5 fF 0.76 fF

Cg,e 7.6 aF 17.7 aF

Cg,eb 1.21 aF 3.92 aF

CC,be 10 aF 8.5 aF

Cg,be 3.1 aF 2.45 aF

EC/kB 0.77 K 0.58 K

CΣ 1.2 fF 1.57 fF

Cg 10.6 aF 6.5 aF
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Figure 3.6: Schematics of tunneling processes in a superconducting SET. (a) The
JQP cycle. The sequence of the process is #1 → #2 → #3 → #1 → ..... (b) The
DJQP cycle.
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ing events occur at the intersection of two red lines; e.g. eVDS = −4EC,e + 4∆g and

ng,e = 1/2, which can be found from two equations using Eq. 3.10 when ∆Ene=+1→+2

and ∆Ene=0→−1. Since quasiparticle tunneling is a threshold process and Cooper

pair tunneling is a resonant process, the DJQP cycle will occur at eVDS = 2EC,e

above eVDS = −4EC,e + 4∆g [see Fig. 3.4 (b)]. This suggests that the DJQP is

observable when EC,e > 2∆g/3. For example, device “SET2” had a charging en-

ergy of EC,e = 103 µeV, which is smaller than 2∆g/3 and it did not show a DJQP

peak (see Table 3.1). Note that all of the processes I have described involve some

quasiparticle tunneling and so the current is periodic in ng,e with a period of one

[see Fig. 3.5 (b)].

As figures 3.4 and 3.5 show, the current through my SETs is only a few nA for

the DJQP and JQP process. On the other hand, these processes are relatively sharp

in ng,e and hence very sensitive to changes in the electrostatic environment. Thus

these bias points are a good place to use the superconducting SET as a sensitive

electrometer.

3.3 rf-SET

One disadvantage of using a dc SET is that it has a small bandwidth when

connected to a 50 Ω cable; the capacitance from a typical length of cable is on the

order of 1 nF. Assuming the SET has a junction resistance of 100 kΩ, the mea-

surement bandwidth would be ∆f = 1/2πRC ≈ 1.5 kHz. Such a small bandwidth

will prevent fast measurements required for qubits. To overcome this limitation,
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Schoelkopf et al. developed the rf-SET [14] and achieved bandwidths on the order

of 100 MHz.

The basic idea of the rf-SET is to transform the high impedance of the SET to

50 Ω at a particular frequency (f0) using an LC tank circuit. The resonance is then

measured via the reflectance from the circuit at f0 (see Fig. 3.7). If the effective

impedance of the SET changes, this will change the impedance of the total circuit,

hence changing the reflectance of the circuit.

In designing the rf-SET, specifically the capacitance and inductance of the

tank circuit, there are two criteria we want to achieve:

1. we want to specify the resonant frequency.

2. we want the impedance to be 50 Ω on resonance.

For this calculation, we will assume the SET is simply a resistor RSET . The

impedance of the rf-SET circuit (see Fig. 3.7) is then given by

Z(ω) = iωLtank +
1

iωCtank +
1

RSET

. (3.14)

If RSET → ∞, the resonance frequency ω0 can be approximated as

ω0 ≃
1√

LtankCtank

. (3.15)

The impedance at the input of the tank circuit at the resonance frequency is given

by

Z(ω0) =
RSET

1 + (ω0RSETCtank)2
. (3.16)
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Figure 3.7: Schematic of the rf-SET. (a) Schematic of rf-SET with SEM image
of SET. (b) Schematic of rf-SET tank circuit. RSET is the resistance of the two
junctions of the SET. Z(ω) represents the impedance of the rf-SET.
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For Q = ω0RC ≫ 1, one finds Eq. 3.16 reduces to

Z(ω0) ≃
1

RSET (ω0Ctank)2
. (3.17)

If we set Z(ω0) = Z0 = 50 Ω, then

Ctank =
1

ω0

√
RSETZ0

. (3.18)

For a resonance frequency of 640 MHz and RSET = 50 kΩ to be matched to Z0 =

50 Ω, one needs Ctank = 157 fF from Eq. 3.18, and Ltank = 394 nH from Eq. 3.15.

For my rf-SET, an rf signal (640 MHz from Agilent E4426B) was sent down

to a directional coupler mounted on the mixing chamber of a dilution refrigerator

(see section 3.5 and Fig. 3.12). To provide both a dc bias (VDS) and the rf bias

to the SET, I used a bias-T [Minicircuit, see Figs. 3.7 (a) and 3.12]. The LC tank

circuit, which consists of a spiral inductor and an interdigitated capacitor, is shown

in Figs. 3.7 (b) and 3.9. The rf reflectance from the SET island was measured

at the resonance frequency (640 MHz) while the SET was dc biased at the JQP or

DJQP resonance with the gate of the electrometer tuned to maximize the sensitivity

to charge changes [72]. The resonance frequency can also be measured by looking

at the shot noise from the SET as it is filtered through the tank circuit. The rf

signal from the rf-SET was reflected back to the directional coupler and amplified

by a cryogenic amplifier at 4 K. After another rf-amplifier at room temperature, the

reflected signal was combined with a local oscillator signal at a mixer for a homodyne

measurement. The mixer output was amplified by a low-noise voltage preamplifier

and recorded.
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(a)

(b)

Figure 3.8: rf-SET diamond map of device “SET1”. (a) Measured rf-reflectance
through a superconducting SET versus VDS and ng,e. (b) Same as (a) with predicted
tunneling process: quasiparticle tunneling (red lines) from Eq. 3.11 and Cooper pair
tunneling (white lines) from Eq. 3.13. Compare with Fig. 3.4 for corresponding dc
maps. 58



Figure 3.8 shows the rf reflectance as a function of VDS and gate voltage

for device “SET1”. A DAC (Data Acquisition Card, National Instruments, PCI-

6259) was used to sweep VDS and Vg,e. I stepped VDS from -1 mV to 1 mV while

monitoring the amplified mixer output at each VDS with the DAC. Then, I stepped

Vg,e, repeating the same procedure. Since there was a small rf signal on top of VDS,

the measured rf reflectance was the dithered current signal, or the derivative of the

I-V curve. We could also sweep Vg,e up to a few kHz by using a digital oscilloscope

(Tektronix, TDS 3014B) instead of the DAC to take the data.

3.4 Device Fabrication

The SETs I used were fabricated at the Jet Propulsion Laboratory (JPL) by

Matt Shaw and Justin Schneiderman in Pierre Echternach’s group [42, 43]. They

patterned the tank circuit and the coplanar wave guide (see Fig. 3.9) using stan-

dard lift-off photolithography on a single-crystal quartz substrate. They used a

superconducting Al/Ti/Au trilayer deposited in an electron-beam evaporator for

the superconducting films of the tank circuit. The SET and the CPB were formed

together on top of the trilayer. They used electron beam lithography and stan-

dard double-angle evaporation of Al with an oxidation step to form an AlOx tunnel

barrier between the two Al layers [71]. A bilayer of MAA-MMA copolymer and

ZEP520 was used as the electron beam resist. I present a detailed description of the

fabrication in Chapter 5.
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Figure 3.9: L-edit image of the tank circuit. Gray color represents the coplanar
waveguide. Green area is for the e-beam fabrication. Blue colored area shows the
interdigitated capacitor and the spiral inductor for the tank circuit.
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3.5 Dilution Refrigerator Setup

A dilution refrigerator uses a mixture of He-3 and He-4 to reach mK tem-

peratures. Our Oxford Instruments model 100 dilution refrigerator has a cooling

power of 100 µW at 100 mK (see Fig. 3.11). I achieved a typical base temperature

of 40 mK for the rf-SET measurements of the CPB. The refrigerator has different

temperature stages: 300 K, 4 K, 1.5 K, 0.6 K, and 40 mK from the top of the

fridge to the cold stage. Since we were performing high frequency spectroscopy (up

to 50 GHz) on the qubit, we used coaxial cables that were not lossy. If we just

ran a microwave cable from room temperature to the mixing chamber, black body

noise from room temperature would create a number of deleterious effects, including

exciting the qubit.

To reduce or remove black body radiation, we used power attenuators at var-

ious temperatures in the refrigerator, with the goal of reducing the spectral density

of noise to that corresponding to the base temperature of the refrigerator. For this

work, we had a 10 dB attenuator at 4 K, 20 dB on the still at 0.6 K, and another

10 dB on the mixing chamber [see Figs. 3.10 (b) and 3.12]. In this case, the power

spectral density of the voltage noise at the cold end of the transmission line will be

SV (f, T3 = 0.03K)+α3SV (f, T2 = 0.6K)+α3α2SV (f, T1 = 4K)+α3α2α1SV (f, T0 = 300K),
(3.19)

where

SV (f) =
2R~ω

1− e−~ω/kBT
. (3.20)

Here R = 50 Ω and αi is the attenuation of the attenuator at temperature Ti.

Eq. 3.19 is plotted in Fig. 3.10 (a) as a black dotted curve with α1 = α3 = 10−1 for
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Figure 3.10: Power spectral density of voltage noise. (a) SV (f) at T=0.1 K (blue
solid), 1 K (green dashed), and 4 K (red dashed) for a 50 Ω resistor. The total
SV (f) with attenuators from room temperature to the base temperature is shown
as black dotted curve. (b) Coax cables with 50 Ω impedance attenuators at different
temperature stages. For a black dotted curve in (a), α1 = α3 = 10−1 for the 10 dB
attenuators and α2 = 10−2 for the 20 dB attenuator.
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Figure 3.11: Images of the dilution refrigerator and sample holder.
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Test and its schematic is in the lower right-hand corner.
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the 10 dB attenuators and α2 = 10−2 for the 20 dB attenuator. Although the cable

is connected to room temperature, Fig. 3.10 shows that the spectral density in this

set-up reaches the spectral density of noise at about 0.1 K and is compared with the

spectral density of noise at 1 K (dashed green curve) and 4 K (dashed red curve).

3.6 Shot Noise from the SET

One way that I characterized our rf-SET and the measurement set-up was by

measuring the shot noise in the SET. This allows us to find the resonance frequency

and measure the gain and noise temperature of our system. The idea is that the SET

produces classical shot noise SI = 2eηI, where I is a current through the SET and

η is 0.5 for large drain-source voltages [44]. This noise is white up to the bandwidth

of the SET.

The impedance Ztank(ω) at the input of the tank circuit was given by Eq. 3.14.

Given a current IDC through the tank circuit [see Fig 3.13 (a)], the voltage Vtank at

the input of the tank circuit is

Vtank = IDCZtank. (3.21)

The impedance of the SET junctions RSET and the capacitance Ctank is given by

ZRC =
1

1

RSET

+ iωCtank

. (3.22)

The voltage drop VRC across RSET and Ctank is given by

VRC =
Vtank
Ztank

ZRC . (3.23)
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Figure 3.13: Set up for shot noise measurement. (a) Amp1 from Berkshire is at
4 K and has a gain of 41 dB. Amp2 from Miteq is at room temperature and has
a gain of 39 dB. Amp3 is from Minicircuit, at room temperature, with a gain of
30 dB. (b) Shot noise in “SET1”. The blue curve is with Vds=0. The red curve is
with Vds=4.33 mV and the measured current In=20 nA. (c) The noise power after
subtracting the blue curve from the red curve in (b). From the Lorentzian fit (red
curve), the extracted resonance frequency (f0) is 642 MHz and the bandwidth (∆f)
is 14.2 MHz. The loaded QL = f0/∆f = 45. The resolution bandwidth (B) and
video bandwidth of the spectrum analyzer (Agilent E4407B) were both 1 MHz.
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Hence, fluctuations in VRC and Vtank are related by

δVRC =
δVtank
Ztank

ZRC . (3.24)

For shot noise, the rms current fluctuation is

δI =
√
2eηBIDC , (3.25)

where B is the measurement bandwidth. The resulting rms voltage fluctuation

across the SET junctions RSET is then given by

δV = δIRSET =
√
2eηBIDCRSET . (3.26)

This voltage fluctuation δV is the same as δVRC since RSET and Ctank are connected

in parallel. Thus, the rms voltage fluctuation across the tank circuit is:

δVtank =
δV Ztank

ZRC

=

√
2eηBIDCRSETZtank

ZRC

. (3.27)

Finally, the average noise power at the input of the tank circuit is given by

P =
|δVtank|2

Re[Ztank]
=

2eηBIDCR
2
SET

Re[Ztank]

∣∣∣∣Ztank

ZRC

∣∣∣∣2 . (3.28)

Assuming Ztank = Z0 = 50 Ω on resonance, one can approximate ZRC ≃

1/iωCtank since RSET ≫ 1/ωCtank, where Ctank ≃ 1/(ω0

√
Z0RSET ). Then, ZRC ≃

−i
√
R0RSET . The approximate noise power on resonance is then

P = 2eηBIDCRSET . (3.29)

Including the total gain G and the noise temperature TN of the system, the measured
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noise power is given by

PN = GB(kBTN + 2eηIDCRSET ). (3.30)

3.7 Noise Temperature of the System

I measured the noise power output [40] of the rf-SET (device “SET1”) as a

function of frequency near the tank circuit resonance when applying a relatively

large dc current through the SET (see Fig. 3.13). The dc current through the SET

produced shot noise, which excited the tank circuit. This noise was sent through

the three amplifiers to the spectrum analyzer [see Fig. 3.13 (b)]. The noise power at

non-zero VDS could be obtained by subtracting the zero VDS data from the non-zero

VDS data [see Fig. 3.13 (c)]. The current IDC through the tank circuit due to VDS

was measured by an ammeter [see Figs. 3.1 (a) and 3.13 (a)]. Figure 3.14 shows the

noise powers at the peak plotted as a function of IDC . By linearly fitting the peak

noise power versus IDC , I could determine the gain and the noise temperature of

the system using Eq. 3.30, where RSET was 195 kΩ. The extracted power gain was

3.04× 109 or 95 dB, which was 15 dB lower than the expected gain of 110 dB. The

noise temperature was 23 K. These results implied that there was additional loss in

the system (e.g. lossy cables between the device and the cryogenic amplifier).
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3.8 Measurements of Charge Staircase and CPB parameters

Up to now I have described the individual elements of my system. For example

in Chapter 2, I described how the CPB works and at the beginning of this chapter

I described how the SET works. Here I put it all together and describe the total

system and how we measure the excess charge on the CPB.

Figure 3.15 (a) shows an SEM image of the total device with the CPB and

SET labeled. As one can see in this image, the distance between the two islands

of the CPB and SET is small and the overlap length is large. This implies the

capacitance between the two islands is non-negligible.

The circuit schematic of the coupled system is shown in Fig. 3.15 (b). The

islands of the CPB and the rf-SET are capacitively coupled to the gate voltage Vg

and Vg,e, respectively. The SET and CPB are capacitively coupled to each other

with coupling capacitance CC,be. When an electron tunnels onto the CPB island,

the electrostatic potential of the CPB island changes by an amount ∆V = e/CΣ,

where CΣ is the total capacitance of the CPB island. This change in the electrostatic

potential of the CPB island is analogous to changing the gate voltage of the SET

(ng,e) by an amount ∆ng,e = CC,be∆V/e = CC,be/CΣ.

For all of the measurements in this dissertation, the rf-SET was biased at a

DJQP or JQP point. This is because the SET has a lot of gain at these biases and

there is also not a lot of current flowing through the SET. Figure 3.16 (a) shows the

change in reflectance as a function of VDS and ng,e near the DJQP peak for device

“SET1”. The transfer function [the line cut of the red line in Fig. 3.16 (a)] is plotted
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Figure 3.15: Schematic of rf-SET coupled to a CPB. (a) Scanning electron micro-
graph of the devices. (b) Schematic of experimental setup. The island of the rf-SET
is coupled to the island of the CPB (bold line) through the coupling capacitance of
CC,be. The cross talk between gate leads and islands is plotted as the dotted line.
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measuring the current through VDS.
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(a)

(b) (c)

Figure 3.16: Transfer function of the rf-SET. (a) The reflected rf power as a function
of VDS and Vg,e in the diamond map of device “SET1”. (b) ∆R along the line cut
of the red line in (a) along ng,e at a fixed VDS. This curve is called the transfer
function. (c) The line cut along the black line in (a), i.e. along VDS at a fixed ng,e.
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in Fig. 3.16 (b). The gain or sensitivity of the transfer function was maximum when

the SET was biased at ng,e ≈ 0.52 [see the red dot in Fig. 3.16 (b)]. An rf generator

(Agilent E4426B) was used to apply the rf signal. To take this data, a reflected

rf-signal was combined with a local oscillator signal (Agilent 83732B) at a single

port mixer for a homodyne measurement. It was the same method explained in

section 3.3.

There is unwanted cross talk between the gate voltage leads to the CPB and

SET, which is labeled as Cg,be and Cg,eb in Fig. 3.15 (b) (also see Table 3.1) . This

means that if I start to change Vg it will also cause ng,e to change. Thus, the SET

gate lead coupled to the CPB and the CPB gate lead coupled to the SET. One way

to compensate this cross talk is to ramp the SET and CPB gate voltages in opposite

directions. I used two arbitrary waveform generators (Agilent 33250A) to provide

the gate voltages. These were phase-locked together. I typically swept the gate

voltage linearly using a ramp at a frequency of 2 kHz. By compensating the SET

gate voltage with the CPB gate voltage, we could measure the CPB charge staircase

[see Fig. 3.17 (a)] at the operating point of the SET [see the red dot in Fig. 3.16

(b)]. Without exciting the CPB, one can observe the charge staircase [see blue curve

in Fig. 3.17 (a)], which is calibrated to the number of electrons on the CPB island.

The small step around ng=1 is due to non-equilibrium quasiparticles [26].

By measuring the staircase and applying a continuous microwave drive, I could

also excite the CPB when the microwaves were resonant with a CPB transition to

the excited state [see Fig. 2.4 (b)]. For example, when the CPB was resonant

with the microwave frequency f = 30 GHz, spectroscopic resonances of the CPB
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appeared at an ng of 0.55 and 1.45 [red curve in Fig. 3.17 (a)]. In order to extract

EJ and EC of the CPB, I took the staircases at different microwave frequencies

with a constant magnetic field from the superconducting magnet. In the first device

“SET1” I measured, I was not able to perform a continuous frequency sweep; instead

I found a few frequencies where I was able to excite the CPB. This problem was

due to a poorly matched microwave line (see Fig. 3.12). For this measurement, we

used an Agilent 83650B microwave source that allowed us to excite the CPB up to

50 GHz.

Figure 3.17 (b) shows the microwave frequency f versus the observed ∆ng

between two resonances of the CPB. The plot shows a distortion at ∆ng= 1.5 for f

between 33 and 37 GHz (the red dashed circle), which will be discussed in Chapter 4.

For now, I will not include the data points in the red dashed circle when doing fits.

Using the two level approximation in Eq. 2.18, I extracted EC/kB = (0.774±0.0012)

K and EJ/kB = (0.195± 0.0225) K by fitting to the remaining points [see Fig. 3.17

(c)]. This implies the minimum transition frequency EJ/h = 4.06 GHz, which is

outside the range of data shown due to the non-equilibrium quasiparticle step.

3.9 Measurements of Energy Relaxation Time T1

In order to measure the energy relaxation time T1 of the first excited state of

the CPB “SET1”, I used an rf-SET instead of a dc-SET so that I could make fast

measurements. The measurement bandwidth was determined by the tank circuit

in the rf-SET. To find the resonance frequency of the CPB for a particular ng, I

75



measured the CPB charge staircase by ramping the gate voltage ng while applying

a continuous microwave frequency; e.g. I found ng = 0.55 and 1.45 were resonant

to the CPB at f = 30 GHz [see Fig. 3.17 (a)]. I then biased the CPB with a fixed

ng (either 0.55 or 1.45) and turned the microwaves on for 100 µs to put the CPB

in an incoherent mixed state. The microwaves were then turned off and the decay

from the excited state was monitored as a function of time using the digital oscillo-

scope (Agilent 54855A Infiniium). By averaging 500,000 individual time traces, an

exponential decay from a mixed state to the ground state was measured; this decay

was fit to extract T1 (see Fig. 3.18).

By varying ng and the frequency, I was able to measure T1 as a function of

frequency. I performed these measurements from 23 GHz to 50 GHz; the lower

limit was determined by non-equilibrium quasiparticles populating the CPB and

the higher limit was fixed by our synthesized signal generator (Agilent 83650B).

Figure 3.19 (a) shows measurements of T1 at different Josephson energies EJ of the

CPB.

If I assume that voltage noise is the dominant noise source [45], then the energy

relaxation time T1 from the excited state to the ground state is given by Eq. 2.30:

1

T1
=

(eκc
~

)2 E2
J

[4EC(1− ng)]2 + E2
J

SV (△E/h). (3.31)

My T1 measurements confirmed that T1 was enhanced by decreasing EJ , which is

consistent with Eq. 2.30 and with voltage or charge noise being the dominant T1

mechanism (also see the perturbed Hamiltonian of the CPB in Eq. 2.28).

From a theoretical analysis of the spectral density of voltage noise using the

76



(a)

(b)

0.0 0.5 1.0 1.5

0.0

0.5

1.0

At ∆E/h = 29.56 GHz

 

 

P
e
 (

a
.u

)

Time (µs)

E
J
/k

B
 = 0.8 K; 

T
1
≤ 55 ns

E
J
/k

B
 = 0.63 K; 

T
1
 = 72 ns

E
J
/k

B
 = 0.42 K; 

T
1
 = 130 ns

E
J
/k

B
 = 0.28 K; 

T
1
 = 260 ns

0 5 10 15 20

0.0

0.5

1.0

E
J
/k

B
 = 0.199 K

T
1
~ 2 µs

At ∆E/h = 29.56 GHz

 

 

P
e
 (

a
.u

)

Time (µs)

E
J
/k

B
 = 0.099 K

T
1
~ 5 µs

Figure 3.18: T1 versus EJ at ∆E/h =29.56 GHz for CPB “SET1”.

77



20 25 30 35 40 45 50 55

0.1

1

10  E
J
/k

B
=0.1K

 E
J
/k

B
=0.199K

 E
J
/k

B
=0.248K

 E
J
/k

B
=0.28K

 E
J
/k

B
=0.42K

 E
J
/k

B
=0.63K

 E
J
/k

B
=0.80K

 

 

T
1
 (

µs
ec

)

f (GHz)

25 30 35 40 45 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

S
v
 (

(n
V

)2
/H

z)

f (GHz)

0.0

2.0x10
-12

4.0x10
-12

6.0x10
-12

8.0x10
-12

1.0x10
-11

1.2x10
-11

 S
q
 (

e
2
/H

z)

(a)

(b)

Figure 3.19: T1 versus EJ and ∆E/h of “SET1”. (a) T1 versus f = ∆E/h for
different EJ . (b) Voltage noise found from T1 data at EJ/kB =0.199 K shown in
(a).

78



gate capacitance of the CPB [45] and the SET [46], I extracted a spectral density

of voltage noise on the order of 0.1 nV 2/Hz from the SET to be the dominant noise

source. The effective coupling between the CPB and the SET was κeff = CC,be/CΣ ∼

0.01 where CC,be is the coupling capacitance between the island of the CPB and the

island of the SET and CΣ is the total capacitance of the CPB island.

The effective charge noise Sq using Eq. 2.31 was also from the T1 data [see

Fig. 3.19 (b)]. SV is the power spectral density of voltage noise and Sq charge noise

that the qubit sees. The spectral density of noise from T1 data shown in Fig. 3.19

(b) had a peak around 37 GHz. Later, I found that such a peak in the spectral

density of noise could be linked to anomalous energy level seen in Fig. 3.17 (b),

although this was not clear at the time.

3.10 CPB Spectrum

Before I moved on to the second device (CPB “SET2”), we upgraded the

microwave cable (the original was replaced with a BeCu cable with K connectors)

inside the refrigerator (see Fig. 3.12). This allowed measurements with bandwidth

up to 50 GHz and I was able to take continuous spectroscopy of the CPB (see

Fig. 3.20).

If EC of the CPB is known, one can fit the CPB spectrum as a function of

EJ . An easy way to fit the CPB spectrum is to take the staircase of the CPB as a

function of microwave frequency and overlay the theory plot on top of the data. In

Fig. 3.20, the color represents the average charge ⟨Q/e⟩ on the CPB island. When
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(b)
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Figure 3.20: Transition spectrum of device CPB “SET2” at different EJ . (a) The
CPB spectrum at zero magnetic field. The step size in frequency was 1 GHz. (b)
Same as (a) with the predicted spectrum from our system Hamiltonian (red dashed
curve) using the parameters EJ/kB= 1.1 K and EC/kB= 0.58 K. Blue curve is due
to two photon absorption. (c) The CPB spectrum at 6.45 Gauss. (d) Same as (c)
except for the predicted spectrum with EJ/kB= 0.1 K.
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the applied microwave frequency is resonant with a level splitting of the CPB, the

CPB state changes, causing a change in the charge on the island, which causes a

change in the reflectance of the rf-SET. For 0 < ng < 1, ⟨Q/e⟩ ≈ 0 and the plot

shows darker gray when the CPB is in the ground state. In this region when the

CPB is excited by resonant microwaves, ⟨Q/e⟩ increases towards 2 (brighter gray).

For 1 < ng < 2, ⟨Q/e⟩ = 2 (brighter gray) when the CPB is in the ground state.

When the CPB is excited by microwaves, ⟨Q/e⟩ decreases toward zero (dark gray).

Regions where the color changes comprise the CPB spectrum.

For fitting the data in Fig. 3.20, I used more than four n states since the

two-level approximation breaks down when EJ becomes larger [red dashed curve in

Fig. 3.20 (a)]. When EJ/kB was about 1.1 K, I was able to see the minimum of the

CPB spectrum at around 25 GHz (which corresponds to 1.1 K). When EJ/kB was

very small, it was hard to see the minimum of the CPB spectrum since there were

non-equilibrium quasiparticles at odd ng [26]. Also note that in Fig. 3.20 (c) around

f = 47 GHz the first excited state has a close avoided crossing with the second

excited state. I also found that when I applied relatively high power microwaves to

the CPB, two photon absorption was observed [blue curve in Fig. 3.20 (b) and (d)]

and this part of the spectrum also fit well to the theory. Table 3.1 summarizes the

parameters that I extracted for “SET1”, “SET2”, and their CPBs.
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Chapter 4

Anomalous Avoided Level Crossings in a CPB

4.1 Overview

In superconducting devices based on the dc and ac Josephson effects, impuri-

ties and defect states have long been linked to critical current fluctuators [49-53] and

charge noise [56-59]. Understanding this noise is interesting from a microscopic point

of view and is a key issue for certain applications, such as quantum computing, where

noise can severely limit the coherent manipulation of the quantum states. Recently,

several groups have reported the observation of discrete “two-level systems” coupled

to superconducting qubits [61-65]. Coupling between a superconducting device and

anomalous two-level systems (TLS) creates avoided level crossings in the transition

spectrum of the device. Such coupling is important because it causes energy dis-

sipation, dephasing, and loss of measurement fidelity. These new observations are

also interesting because they represent a new approach to studying fluctuators that

allows the extraction of microscopic information about individual microstates.

Initially, Ray Simmonds et al. observed many avoided level crossings in the

spectrum of a phase qubit [61] and argued that discrete TLSs were responsible.

Subsequently B. Plourde et al. observed them in the flux qubit [64], G. Ithier et

al. found them in the quantronium [65], and J. Schreier et al. observed them

in the transmon [67]. In this chapter, I describe my results on the first reported
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observations of avoided level crossings in a CPB [68, 69].

While it was initially proposed that the anomalous avoided level crossings

in phase qubits were due to critical current fluctuators [61], a later comparison of

the extracted hopping distance (from an analysis of an ensemble of avoided level

crossings) to atomic distances suggested that charge fluctuators were the source of

the avoided level crossings [62]. In contrast to a phase qubit, a Cooper Pair Box is

directly sensitive to charge. Thus we should expect to gain more information about

discrete charge fluctuators if they can be observed in the CPB spectrum.

As noted in Chapter 3, measurements of T1 as a function of frequency in CPB

“SET1” showed a large dip around 37 GHz. Our original hypothesis was that the

dip was happening at the charging energy of the SET, as predicted by theory [70].

To test this hypothesis we decided to measure a second device: “SET2”.

During preliminary measurements on “SET2”, I noticed two interesting things

about T1 and the energy levels. Figure 4.1 (a) shows a plot of the energy relaxation

rate Γ1 (= 1/T1) versus f at a small EJ . As one can see, there were a few notable

peaks in the decay rate, specifically at f = 19 GHz and f = 34 GHz. As Fig. 4.1

(a) shows, when I plotted ∆ng versus f from the CPB staircase, I also found a

few distortions in the energy level, as I observed in “SET1” [see Fig. 3.17 (b)].

Comparing the energy relaxation rate (red squares) and the ∆ng (blue dots) showed

a correlation between them, which seemed to have nothing to do with the charging

energy of the SET, EC,e/h = 24.9 GHz. That raised the question of what was

causing T1 to decrease at these specific frequencies.

To try to answer that question, I decided to take some detailed spectroscopic
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Figure 4.1: (a) Plot of 1/T1 and energy levels of the CPB “SET2”. The energy
relaxation rate (1/T1) of the CPB as a function of microwave frequency (red squares)
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33.5 GHz in the spectrum of the CPB “SET2”. The red and blue colors represent
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measurements of the qubit. Remarkably, I observed a few anomalous avoided level

crossings in the CPB spectrum in the 20 to 50 GHz frequency range [68]. For ex-

ample, Fig. 4.1 (b) shows one avoided level crossing in the measured CPB spectrum

near 33 GHz. Even more remarkably, it turned out that these anomalous avoided

level transitions were voltage dependent, just as you would expect if they were due to

charge fluctuators that were located in the Josephson tunnel junctions of the CPB.

From fitting our spectrum using a model of a charge fluctuator coupled to a CPB

Hamiltonian [69], I was able to extract microscopic parameters for each fluctuator,

such as the hopping distance, asymmetry of the well, and the tunneling rate. From

plots such as Fig. 4.1 (a), I was also able to show that these TLFs cause dissipation

in the CPB and found that by measuring T1 as a function of frequency I was able to

locate individual charge fluctuators. In the rest of this chapter, I describe in detail

the data and my analysis of the avoided level crossings.

4.2 EJ and Gate Voltage dependence of Crossings

Figure 4.2 shows a plot of the measured excess charge spectrum as a function

of ng and f for CPB “SET2”. The color scale represents the measured change in

the rf reflectance of the rf-SET, which is related to the induced charge on the CPB.

The measurement set-up was described in section 3.9 of the previous chapter (see

Fig. 3.15). For Fig. 4.2, I swept the gate voltage from ng = −0.5 to ng = 2.5 and

stepped the applied microwave frequency from 24 to 50 GHz in steps of 30 MHz.

For Fig. 3.20 the step size was 1 GHz. The white parabolic-like band for 0 < ng < 1
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Figure 4.2: Measured spectrum of CPB “SET2” when the applied microwave fre-
quency f was adjusted from 24 GHz to 50 GHz with EJ/kB= 1.12 K. The step size
of the frequency was 30 MHz. The white parabolic like band between 0 < ng < 1
corresponds to a measured change of ≈ 1e on the island of the CPB while the black
parabola between 1 < ng < 2 corresponds to a measured change of ≈ −1e on the
island of the CPB. The black and white arrows point to prominent avoided level
crossings.
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in Fig. 4.2 corresponds to a measured change of ≈ 1e on the island of the CPB while

the black parabola for 1 < ng < 2 corresponds to a measured change of ≈ −1e on

the island of the CPB. This is what one would expect if the CPB is being saturated

by resonant microwave power.

There are a number of things about this plot that I should comment on.

First, it is very challenging to design a microwave system that works at cryogenic

temperatures with a 50 GHz bandwidth. In particular not all of the connectors

were made to work up to 40 GHz and our sample packaging was not designed for

such high frequencies. This can lead to standing waves and places where very little

power or a lot of power gets to the device. For example, around 37 GHz the transfer

function of the rf-SET changed because there was a large amount of power reaching

it. Similarly, there are features around 40 GHz that we attribute to standing waves.

Despite these problems, there are a few things that can be observed in this

spectrum. For example, if one looks at the spectrum around 34 GHz and 43 GHz,

one finds there are discontinuities or avoided level crossings. These avoided level

crossings are not predicted by our Hamiltonian for the CPB (Eq. 2.9). Anomalous

avoided level crossings indicate that the qubit is coupled to additional quantum

systems. From my data we determined that these additional quantum systems are

charge fluctuators.

Figures 4.3 (a-d) show the spectrum around 34 GHz for EJ/kB=1.0 K, 0.87

K, 0.55 K, and 0.1 K. There are a few observations that I can make about this data.

First, the avoided level crossings at ng = −0.43 occurs at f = 34.3 GHz while for

ng = 0.48 it occurs at f = 33.5 GHz. This suggests that the anomalous system that
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Figure 4.3: Measured spectrum of CPB “SET2” around 34 GHz at different Joseph-
son energies, as specified in the plots. The red and blue colors represent the charge
on the island corresponding to a high probability of being in the excited and ground
state of the system, respectively. The arrows in (a) indicate small projections of the
avoided level spectrum that appear to point toward one another. The red dashed
curve is the predicted spectrum using a Hamiltonian consisting of a charged two
level fluctuator (see Table 4.1 for the microscopic parameters of the TLF) coupled
to a CPB.
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the qubit is coupled to is voltage sensitive, i.e. it has a charge. Second, the splitting

is largest at the largest value of EJ and decreases as EJ decreases; in particular at

the largest value of EJ the splitting size was 150 MHz while at the smallest EJ I

was not able to discern the splitting size. All of the anomalous avoided crossings we

observed showed this general EJ and ng dependence except for a possible splitting at

f = 39 GHz, which had a splitting size too small to measure at even the largest EJ .

This dependence of the crossings on gate voltage and Josephson energy is consistent

with the CPB being coupled to a charged fluctuator that is coupled to the charge

degree of freedom of the CPB. Also, note that in Fig. 4.2 the avoided level crossings

have a 2-e periodicity. This behavior suggests that the charge fluctuator resides in

one of the two tunnel junctions that form the CPB; the electrostatic potential of

the CPB island is given by VI = (ng − 2n)e/CΣ which has a periodicity of 2 in ng

for the different states of the CPB.

4.3 Model of a Charged TLS interacting with a CPB

In general, the Hamiltonian for a charged fluctuator would depend on the local

environment including other charged defects in the system. To simplify the problem,

we assume that the fluctuator takes the form of a point charge moving between

two potential wells, which is asymmetric (see Fig. 4.4). In this approximation the

Hamiltonian for the TLF is

ĤTLF = εa |xa⟩ ⟨xa|+ εb |xb⟩ ⟨xb|+ Tab(|xa⟩ ⟨xb|+ |xb⟩ ⟨xa|) (4.1)
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CPB island (Al)

Ground plane (Al )

Tunnel barrier (AlOx)

Vi , Qpi

(a)

η x

QTLF

z

d
d x

 

 

(b)

x

εa

εb

U

Tab

xa xb

QTLF

Figure 4.4: Schematic of TLF-CPB model. (a) Thin tunnel junction AlOx layer
with thickness “d” is sandwiched by Al ground plane and CPB island. The position
of TLF charge can be denoted by “x”. Red dot with black arrow represents hopping
of a TLF. (b) Asymmetric potential well for a charged fluctuator QTLF hopping
between two locations with tunneling rate Tab.
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or

ĤTLF =

 εa Tab

Tab εb

 , (4.2)

where εa is the energy of the fluctuator at position xa, εb is the energy of the

fluctuator at position xb, and Tab is the tunneling matrix element between the two

sites. For an isolated fluctuator, the difference in energy between the two states of

the TLF is given by
√
(εb − εa)2 + 4T 2

ab.

In order to see how the charged fluctuator is coupled to the CPB, assume that

the fluctuator is a point charge that resides in the tunnel junction with charge QTLF

[see Fig. 4.4 (a)]. Then, the change in the induced polarization charge on the island

of the CPB when the fluctuator tunnels from position xa to xb can be obtained

by Green’s reciprocity theorem, which relates electric potential and charge density.

Green’s reciprocity theorem [73] can be written as

∫
V

ρΦ′dτ +

∫
S

σΦ′da =

∫
V

ρ′Φdτ +

∫
S

σ′Φda, (4.3)

where Φ is the potential due to a volume-charge density ρ within a volume V and

a surface-charge density σ on the conducting surface bounding the volume V , while

Φ′ is the potential due to another charge distribution ρ′ and σ′. For the first charge

distribution, one can set ρ = QTLF δ(x)δ(y)δ(z − z0) for the charged fluctuator and

Φ = 0 with both conducting plates grounded. One can also assume those two plates

[see Fig. 4.4 (a)] are infinitely big so that one can ignore the fringe effect of the

E-field at the edge of plates. σ = σ1 + σ2 is the induced surface charge on both

plates 1 and 2, which we are trying to find. For the second charge distribution, one
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can set ρ′ = 0 (no charge inside the volume) and Φ′ = zV1/d with plate 1 grounded

and plate 2 (CPB island) at the voltage V1, where d is the distance between two

plates, or thickness of the tunnel junction. One also can set σ′ = ε0V1/d.

Now the first term in the left hand side of Eq. 4.3 yields QTLFV1z0/d. And the

second term becomes V1
∫
S2
σ2da = V1Q2 since Φ′(z = 0) = 0 and Φ′(z = d) = V1.

The first term in the right hand side of Eq. 4.3 is zero since ρ′ = 0 in the volume.

The second term also becomes zero since Φ = 0. Hence, the induced surface charge

Q2 on the CPB island is equal to −QTLF z0/d. When the ion QTLF hops from

za to zb, the induced surface charge, or the polarization charge Qpi would change

from −QTLF za/d to −QTLF zb/d. Then, the difference is ∆Qpi = QTLF (zb − za)/d.

By defining the x-axis as in Fig. 4.4 (a), we can write zb − za = (xb − xa) cos(η),

where xb − xa is the maximum displacement of the fluctuator and η is the angle of

displacement relative to the electric field in the junction. Finally, ∆Qpi = QTLF (xb−

xa) cos(η)/d.

Assume that there is an excess charge 2ne on the island from an initially

neutral condition and there is a charge fluctuator with QTLF at z in the tunnel

barrier. The induced surface charge Q2 = −QTLF z/d is formed locally close to the

charge fluctuator. Since the net charge on the island will be constant to maintain

2ne, a charge −Q2 will appear on the rest of the island. This charge is not a local

charge and is distributed over the gate and the junction capacitance in proportion

to their magnitude. The voltage at the island VI using Eq. 2.4 is given by

VI =
1

CΣ

[(2ne−Q2)− nge]. (4.4)
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Note one can replace 2ne by (2ne − Q2) when there is a charge fluctuator. With

the existence of the charge fluctuator, the voltage difference is equal to −Q2/CΣ,

leading to the charge on the gate voltage capacitor changing by −Q2Cg/CΣ. The

work WTLF done by the gate voltage source for that charge is (Q2Cg/CΣ)Vg, or

WTLF =
eQTLF

CΣ

z

d
ng. (4.5)

Inserting Eq. 4.4 into U (Eq. 2.5) and subtracting WTLF (Eq. 4.5) and W done for

n excess Cooper pair from U , we can get the free energy E of the system, which is

E =
1

2
Cg(VI − Vg)

2 +
1

2
CJ(VI − 0)2 −W −WTLF (4.6)

or

E =
e2

2CΣ

(
2n+

zQTLF

ed
− ng

)2

+
e2

2CΣ

(
CJ

Cg

− 1

)
n2
g. (4.7)

It can be reorganized as

E =
e2

2CΣ

(2n− ng)
2 +

e2

CΣ

(2n− ng)
zQTLF

ed
+ UTLF (z), (4.8)

where UTLF (z) is given by

UTLF (z) =
Q2

TLF

2CΣ

(z
d

)2

+ const., (4.9)

where the const = e2

2CΣ
(CJ

Cg
− 1)n2

g can be dropped since it does not depend on n

and z. In Eq. 4.8, the first term only depends on n and ng, thus it describes the

charging energy of the CPB. By adding the Josephson energy term, one has the

Hamiltonian of the CPB as Eq. 2.9. The second term shows the coupling between

the CPB and the TLF. Here, one can use the x-axis, defined as in Fig. 4.4 (a), and
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take z = x cos(η). This coupling Hamiltonian can be put in the form [69]:

ĤCPB−TLF = 2EC

∑
x=xa,xb

∑
n

(2n− ng)
QTLF

e

x cos(η)

d
|n⟩ |x⟩ ⟨x| ⟨n| . (4.10)

In Eq. 4.8, the last term UTLF (z) is the quadratic potential of the TLF. By adding

the kinetic energy of the TLF, we can get the Hamiltonian of the TLF as

HTLF =
P 2
TLF

2MTLF

+ UTLF (z), (4.11)

where PTLF and MTLF are the momentum and the mass of the TLF, respectively.

Now we assume that the TLF experienced atomic scale interactions that give the

potential UTLF (z) two wells that the TLF can tunnel between [see Fig. 4.4 (b)] and

that allow us to reduce HTLF to a 2 by 2 matrix as in Eq. 4.2.

The total Hamiltonian for a CPB coupled to a single charge fluctuator from

Eqs. 2.9, 4.2, and 4.10 is thus given by

Ĥtot = ĤCPB + ĤTLF + ĤCPB−TLF . (4.12)

Now, let us consider a truncated Hamiltonian for the CPB with three charge states

n=-1, 0 and 1 so that

ĤCPB =


EC(−2− ng)

2 −EJ/2 0

−EJ/2 EC(0− ng)
2 −EJ/2

0 −EJ/2 EC(2− ng)
2

 . (4.13)
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The Hamiltonian without the coupling between the CPB and TLF is given by

Ĥo = ĤTLF + ĤCPB

=

 εa Tab

Tab εb

⊗ I3 + I2 ⊗


EC(−2− ng)

2 −EJ/2 0

−EJ/2 EC(0− ng)
2 −EJ/2

0 −EJ/2 EC(2− ng)
2


=


EC(−2 − ng)

2 + εa −EJ/2 0 Tab 0 0

−EJ/2 EC(0 − ng)
2 + εa −EJ/2 0 Tab 0

0 −EJ/2 EC(2 − ng)
2 + εa 0 0 Tab

Tab 0 0 EC(−2 − ng)
2 + εb −EJ/2 0

0 Tab 0 −EJ/2 EC(0 − ng)
2 + εb −EJ/2

0 0 Tab 0 −EJ/2 EC(2 − ng)
2 + εb

 ,

(4.14)

where I2 and I3 are unit matrices. The coupling Hamiltonian between the CPB and

TLF is given by

ĤTLF−CPB

= I2 ⊗


(−2− ng) 0 0

0 (0− ng) 0

0 0 (2− ng)

 • 2ECQTLF

ed
cos(η)

 xa 0

0 xb

⊗
I3

=



Ea(−2− ng) 0 0 0 0 0

0 Ea(0− ng) 0 0 0 0

0 0 Ea(2− ng) 0 0 0

0 0 0 Eb(−2− ng) 0 0

0 0 0 0 Eb(0− ng) 0

0 0 0 0 0 Eb(2− ng)



,

(4.15)

where Ea = 2ECQTLFxa cos(η)/ed and Eb = 2ECQTLFxb cos(η)/ed . For conve-

nience, I take xa = 0, thus Ea = 0 and also εb = 0. This leaves five parameters:
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EC , EJ , Eb, εa, and Tab, where EC and EJ are determined by the CPB spectrum

independently of the TLF. Hence, εa, Tab, and Eb characterize the avoided level

crossings, where εa sets the well asymmetry, Tab sets the tunneling rate between the

two wells, and Eb determines the magnitude of the charge and its hopping distance.

4.4 Extracting TLS Tunneling, Asymmetry, and Dipole Parameters

There are three conditions in the data that can be used to determine the

three TLF parameters. The first condition is the excitation energy or the resonance

frequency of the avoided crossings. The second condition is the splitting size of

the avoided crossings. The last one is the “tilt” of the avoided crossings when the

transition frequency of a TLF is plotted versus ng.

Figures 4.5 and 4.6 show the energy eigenvalues and the transition frequencies

from the ground state to the excited states of the system of the total Hamiltonian

(Eq. 4.12) using Tab/kB = 0.39 K, QTLF δx cos(η)/ed = −0.074, and (εa − εb)/kB =

1.43 K (see parameters of N = 2 in Table 4.1). We note that in this model, an

avoided crossing occurs when the first excited state of the TLF is resonant with the

first excited state of the CPB. The change in the induced polarization charge on the

CPB island due to the fluctuator being excited ultimately gives rise to the avoided

level crossings at two different frequencies and two different reduced gate voltages

(i.e. it breaks the symmetry of the CPB). One can see the small shift of the red

curve (TLF energy band) horizontally by ∆Qpi/e along ng with respect to the black

curve (the ground state of the system) [See Fig. 4.5 (a)].
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Figure 4.5: Theory plot of coupled TLF-CPB energy levels. (a) Energy levels of
the coupled system. The parameters for this plot are given in N = 2 in Table 4.1.
Black curve represents the system in the ground state. Blue curves are for the CPB
in the excited state and the TLF in the ground state. Red curves are for the TLF
in the excited state and the CPB in the ground state. (b) Zoom in around ng=0
and E/kB=1.7 K.
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Figure 4.6: Theory plot of coupled TLF-CPB spectrum. (a) The transition spectrum
from Fig. 4.5. Red and blue curves are for the TLF and the CPB spectrum, respec-
tively. (b) Zoom in around ng=0 and 34 GHz. One finds avoided level crossings
between the TLF and CPB.
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The splitting size in our model also depends on EJ because coupling the two

excited states together is a second order process that involves both the tunneling

of a Cooper-pair and the tunneling of the TLF. We also note that the splitting

size depends on Tab as well. The dashed red curve in Fig. 4.3 shows the predicted

spectrum for the splitting we found near 34 GHz. Here we used fit parameters (εb−

εa)/kB = 1.427 K, Tab/kB = 0.39 K, and QTLF δx cos(η)/ed = −0.074 where δx =

(xb − xa) is the maximum displacement of the fluctuator. We note that extracting

these three parameters requires us to measure the splitting size and frequency of the

avoided crossings at two different gate voltages and that these fit parameters can be

varied by approximately 10 % while still yielding a good fit.

Table 4.1 summarizes the best fit results for all the avoided crossings I ob-

served. The avoided crossing near 39 GHz had a splitting size too small to resolve,

which places an upper bound on Tab of the TLF [see Fig. 4.7 (b)]. Note the splittings

around 43 and 43.5 GHz in Fig. 4.7 (a) cross the CPB spectrum in the opposite

direction from other splittings and have the largest tunneling rate (0.65 K, or 13.5

GHz). Assuming a TLF charge of QTLF = e and a tunnel barrier thickness of

d = 1.0 nm, we extract minimum hopping distances for the fluctuators that range

from 0.32 Å to 0.83 Å. It is worth noting that the crossings occur at different fre-

quency and gate voltage; these “four” avoided levels can be attributed to different

distinguishable charges, hopping with unique energy parameters.
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(a)

(c)

(b)

(d)

Figure 4.7: Four avoided level crossings. (a) Splittings around 43 GHz at
EJ/kB =0.95 K, (b) splitting features around 39 GHz atEJ/kB =0.1 K, (c) splittings
around 34 GHz at EJ/kB =1 K, and (d) splittings around 20 GHz at EJ/kB =0.1
K.
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4.5 Excess Charge Spectroscopy

The model also predicts state transitions of the TLF at gate voltages away

from the observed avoided crossings. Although these were not visible in Fig. 4.3, we

found that weak transitions could be observed far from the avoided crossing when

the microwave excitation power was increased by approximately a factor of ten to

-48 dBm. Figure 4.8 (a) shows the measured excess charge spectrum between an

applied frequency of 33 and 34.6 GHz; note the very faint transition due to the TLF

between ng = -1.25 and ng = -0.75. In this region the measured excess charge on

the CPB is approximately -0.03 e. I note that this is about an order of magnitude

smaller than predicted from our simple theory [68, 69], which is given by

Qδx

2d

1√
1 + (

2Tab
εb − εa

)2
. (4.16)

For comparison, Fig. 4.8 (b) overlays the predicted spectrum using the parameters

found in Fig. 4.3 and we find good agreement with the theory.

Similarly, Fig. 4.8 (c) shows the measured excess charge spectrum from 41.5

to 44.5 GHz; a frequency range where another prominent avoided crossing was

observed. Note that in Fig. 4.8 (c) we observe weak voltage-dependent transitions,

due to the TLF, near ng = 0.8 and f = 44.25 GHz; as well as between ng = −0.8

and -0.4. Again the predicted spectrum [see Fig. 4.8 (d)] follows the measured

spectrum accurately, strongly supporting the idea that the avoided level crossings

are due to charged TLFs. In this spectrum, we observe additional features due

to non-equilibrium quasiparticles, which create the apparent periodicity in ng of
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Figure 4.8: Excess charge spectrum in CPB “SET2” showing very weak TLF fea-
tures. Measured excess charge spectrum at relatively large microwave drive am-
plitudes near two of the more prominent avoided level crossings. (a) Measured
spectrum between 33 and 34.6 GHz with EJ/kB= 0.95 K (same avoided level cross-
ing as in Fig. 4.3). (b) Same as (a) with the predicted spectrum from our system
Hamiltonian (red dashed curve) using the parameters in Fig. 4.3 and Table 4.1
and observed local peaks in the spectrum due to the TLF as the blue points. (c)
Measured spectrum between 43 and 44.5 GHz at EJ/kB= 0.1 K. (d) Same as (c)
with predicted spectrum (red dashed curve) using the parameters in Table 4.1 and
observed local peaks in the spectrum due to the TLF as the blue points.
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1, [26, 27] multiple CPB spectra (i.e. spectra parallel to the CPB spectrum) due to

low frequency charge fluctuators, and horizontal bands which are due to a change

in the gain of the Coulomb-blockade electrometer.

4.6 T1 Measurement

I also measured the lifetime (T1) of CPB device “SET2” for the excited state of

the CPB as a function of the transition frequency. For these measurements, the CPB

was excited at its zero-to-one transition frequency, and the charge on the island was

continuously monitored as a function of time using the rf-SET after the excitation

source was turned off. The measurements were done at a small Josephson energy to

decouple the CPB from charge perturbations in the system and hence increase the

lifetime of the qubit to a maximum value [45, 46]. Figure 4.9 shows the measured

decay rate (Γ1 = 1/T1) from 15 GHz to 45 GHz at EJ/kB = 0.1 K. Several peaks

in the decay rate are evident. These increases in Γ1 occur when the CPB is in

resonance with a TLF; the measured lifetime decreases from a few microseconds to

1 µs or less. This decrease in T1 near a resonance was a useful tool for finding some

of the avoided crossings. This behavior suggests that the lifetime of these TLFs is

smaller than a few microseconds and that the interaction of the CPB with a charged

TLF is a source of dissipation for the CPB [74].
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Figure 4.9: Measured decay rate (Γ1) of excited state of a CPB “SET2” at EJ/kB =
0.1 K as a function of energy level separation after first cooldown (blue triangles)
and after the device was warmed up to room temperature and cooled back down to
T = 40 mK (red circles). The observed peaks in Γ1 before annealing (20, 34, 39,
and 43 GHz) and after annealing (23 GHz) correlate with the location of observed
avoided level crossings (see Table 4.1).
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4.7 Room Temperature Anneal

In order to investigate the stability of the TLFs, the device was warmed up to

room temperature. After “annealing” at room temperature for 14 days, the device

was cooled again to 40 mK. I found an avoided crossing associated with one level

in the 20 - 50 GHz range and one peak in the decay rate at the same frequency.

The new crossings occurred around f = 23 GHz and fitting to the charge model

gave: (εb − εa)/kB = 0.34 K, Tab/kB = 0.52 K, and QTLF δx cos(η)/ed = 0.078

(see Fig. 4.10). We also note that the fluctuators observed here were stable after

annealing at 4 K for two days or after placing the device in the normal state by

applying a 1 T magnetic field for one hour.

4.8 Conclusion

In conclusion, I observed unintended voltage-dependent transitions and avoided

level crossings in the excited state spectrum of a CPB, consistent with charge fluctu-

ators that can tunnel between two locations separated by atomic scale distances in

the tunnel junction. The spectra allow us to extract key microscopic parameters of

the TLF, such as the tunneling matrix element, and test some theories of fluctuators

in these devices [49, 75, 76]. The best fit parameters for the 5 TLF’s I observed are

summarized in Table 4.1. I also emphasize these are the first measurements of the

tunneling rates of TLFs in solid state qubits or other superconducting devices. The

hopping distances are at the Angstrom scale, as expected, but the tunneling terms

are surprisingly large.
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(a)

(b)

Figure 4.10: CPB spectrum after annealing to room temperature. (a) Avoided level
crossings around 23 GHz after annealing to room temperature. Red color represents
the excited state of the system with the maximum magnitude of 1e. Blue color
represents the ground state of the system. EJ/kB=0.55 K. (b) Same as (a) with the
predicted spectrum from our system Hamiltonian (red curve) using the parameters
in Table 4.1.
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Chapter 5

Dispersive Read-out: Superconducting Microwave Resonator

5.1 Overview

Compact thin-film superconducting (SC) microwave resonators can achieve

very high quality factors due to extremely low loss in the superconductor and sub-

strate. The resonance frequency will be perturbed by coupling to other systems,

allowing them to be used as detectors at low temperature. In this chapter, I de-

scribe the basic physics of the SC microwave resonator that I used to measure CPB

qubits.

The simplest component in a microwave network is a transmission line, which

consists of a center line and a ground. Since the transmission line typically has a

much longer length l than the wavelength λ of waves it carries, it can be treated as a

distributed-parameter network, where voltages and currents vary along the line and

in time [77]. If one takes an infinitesimal length ∆z of the transmission line, it can

be modeled as a lumped-element circuit [see Fig. 5.1 (b)]. The entire transmission

line can then be modeled as an infinite series of lumped elements, so called the

distributed element model.

For microwave integrated circuits, a planar transmission line is most conve-

nient since it is two-dimensional, compact, low cost, and easily fabricated [77]. The

coplanar wave guide (CPW) [78, 79] is commonly used as a transmission line but
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(a)

z

∆z

(b)

∆z

R∆z L∆z

G∆z C∆z

+

-

V(z), I(z)

Figure 5.1: Lumped-element model of a transmission line. (a) Top view of two planar
conducting wires forming a transmission line. Voltage V (z) and current I(z) from
waves propagation in + and − z direction. (b) Lumped-element equivalent circuit of
an infinitesimal length ∆z of the transmission line [77]. The series resistance R per
length is due to the finite conductivity of the conductor, the series inductance L per
length is from the total self-inductance of the two conductors, the shunt conductance
G per length is due to dielectric loss in the material between the two conductors, and
the shunt capacitance C per length is from the close proximity of two conductors.
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superconducting.

Figure 5.2: Coplanar waveguide (CPW) resonators. (a) A quarter-wavelength
(λ/4) resonator from the Jet Propulsion Laboratory and CalTech [80] and (b) half-
wavelength (λ/2) resonator from Schoelkopf’s group at Yale University [19].
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it also can be used to make a SC transmission line resonator. One way to make a

resonator is to take a CPW transmission line, short one end, and capacitively couple

the other end to another transmission line, or feed line [80] [see Fig. 5.2 (a)]. This

“quarter-wavelength (λ/4) resonator” will have resonances when the wavelength is

such that there is a current node on the open end and a voltage node at the shorted

end, i.e. when the length of the resonator l = (2n + 1)λn/4, where n = 0, 1, 2, ....

The fundamental resonance frequency f0 is given by c/4lneff , where c is the speed

of light in vacuum, neff =
√
(ϵ+ 1)/2 is the effective index of refraction for a CPW,

and ϵ is the dielectric constant of the substrate [81]. Another type of CPW resonator

is the half-wavelength (λ/2) resonator [19, 82] [see Fig. 5.2 (b)]. In this case, both

ends of the transmission line are open and capacitively coupled to the input and

output transmission lines. Thus, resonances will occur whenever l = nλn/2.

Note that both the λ/4 and λ/2 resonators have higher harmonics. Houck et al.

found these higher harmonics can significantly reduce the lifetime of the qubit [24]

due to the Purcell effect [84], which enhances the spontaneous emission of the qubit.

To couple to a CPB qubit without these higher harmonics, I built a quasi-

lumped element resonator [see Fig. 5.3 (b)]. This lumped-element resonator has

physical dimensions that are smaller than the operating wavelength so that the

variation of the voltage and current is minimized along the resonator. Ideally, this

leads to a single resonance frequency and makes it possible to read far-detuned

qubit states. Moreover, by minimizing the Purcell effect from higher harmonics, the

coherence time of a qubit coupled to the resonator should increase.
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Figure 5.3: (a) Schematic of a lumped-element resonator coupled to a two-port
network. The expected L and C from the geometry were 2 nH and 400 fF, respec-
tively [30, 79]. (b) Schematic of the wiring and the device picture. The transmission
line is connected to two matched loads Z0 in the microwave source and the input of
the rf amplifier. (c) Zoom-in of the resonator image. The green color is Al metal
and black is the sapphire substrate.
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5.2 Circuit Model of the Resonator and the S-Parameters

5.2.1 S-Parameters

The scattering matrix describes an N-port network and relates voltage waves

incident on the ports to those reflected from the ports. The matrix elements of the

scattering matrix are called S-parameters [77], which can be directly measured by a

vector network analyzer.

Consider the two-port network shown in Fig. 5.3 (a), where port 1 is on the left

side of the resonator and port 2 is on the right side of the resonator. The incident

voltage waves towards the resonator are defined as V +
1 and V +

2 from the two ports

and the reflected voltage waves from the resonator are defined as V −
1 and V −

2 for

the two ports. Those waves are related by the scattering matrix [S] as [77] V −
1

V −
2

 =

S11 S12

S21 S22


 V +

1

V +
2

 , (5.1)

where the matrix element Sij is determined as

Sij =

[
V −
i

V +
j

]
V +
k =0 for k ̸=j

. (5.2)

Thus, Sij is obtained by measuring V −
i with the incident wave V +

j and all other

incident waves zero, or terminated by matched loads Z0 to avoid reflections. Hence,

S11 = V −
1 /V

+
1 and S21 = V −

2 /V
+
1 with V +

2 = 0. And S12 = V −
1 /V

+
2 and S22 =

V −
2 /V

+
2 with V +

1 = 0.

Another useful set of parameters in the two-port network are the ABCD pa-
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rameters, which are the elements of the ABCD matrix [77]. The ABCD matrix is

particularly useful when one has a cascade connection of two-port networks, because

the response of a cascaded network can be found by multiplying the matrices of in-

dividual two-port networks. The ABCD matrix is defined by the total voltages and

currents at the input and output ports and is given by V1

I1

 =

A B

C D


 V2

I2

 , (5.3)

where Vn ≡ V +
n + V −

n and In ≡ I+n − I−n . The ABCD parameters are listed in Table

4.1 in the book by D. Pozar [77] for various two-port circuits. Pozar also gives the

conversion between ABCD parameters and S-parameters (see table 4.2 ref [77]). For

example, one finds that

S22 =
−A+B/Z0 − CZ0 +D

A+B/Z0 + CZ0 +D
(5.4)

and

S21 =
2

A+B/Z0 + CZ0 +D
. (5.5)

5.2.2 Loaded Parallel RLC Resonator

Our parallel RLC resonator is physically and galvanically floated from the sur-

rounding ground plane [see Fig. 5.3 (c)]. This allows one to capacitively bias the

resonator to a finite dc voltage, which is useful for biasing a CPB. The resonator is

in turn coupled to a transmission line. Note that a narrow ground strip is physically

located between the transmission line and resonator. The ground strip had a width
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of 5 µm and its presence reduced the coupling between the resonator and transmis-

sion line by a factor of approximately 7. The coupling likely has both capacitive and

inductive components, but in this thesis I assumed capacitive coupling to model the

impedances and S-parameters. For this model, I included capacitances Cc and Cf

from the resonator to the transmission line and to the ground plane, respectively

[see Fig. 5.3 (a)].

The resonator has a quasi-lumped inductor (L) on the left side and a quasi-

lumped capacitor (C) on the right side [see Fig. 5.3 (c)]. The capacitor has an

interdigital structure and the inductor has a meander structure. Two closely spaced

wires connect the two sides.

Our lumped-element resonator circuit has an impedance ZL formed from a

series connection of the parallel RLC resonator and the two capacitors Cc and Cf

[see Fig. 5.3 (a)]. From Table 4.1 in Pozar [77], one finds the ABCD matrix:A B

C D

 =

 1 0

1/ZL 0

 , (5.6)

where ZL is given by

ZL =
1

iωCc

+
1

iωCf

+
1

1

iωL
+ iωC +

1

R

. (5.7)

We expect the impedance of Cf around the resonance frequency to be much smaller

than the other impedances, so ZL can be approximated as

ZL ≃ 1

iωCc

+
1

1

iωL
+ iωC +

1

R

. (5.8)
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Given the ABCD parameters in Eq. 5.6, the S-parameters for our resonator can then

be found from Eqs. 5.4 and 5.5:

S22 = − Z0

2ZL + Z0

(5.9)

and

S21 =
2ZL

2ZL + Z0

. (5.10)

Note S11 = S22 and S12 = S21 based on the symmetry of the circuit. From Eqs. 5.9

and 5.10, one can also find that S21 = 1 + S22.

Insertion of ZL (Eq. 5.7) into S22 (Eq. 5.9) yields

S22 = − ζ
1

iωL
+ iω(C + Cc) +

1

R
+ ζ

, (5.11)

where

ζ = iωCc

(
1

iωL
+ iωC +

1

R

)
Z0

2
. (5.12)

Note that the loaded resonance frequency is defined as ω2
0 = 1/L(C + Cc) and I

also define ω = ω0 + ∆, where ∆ is the detuning. iω(C + Cc) can be rewritten as

i(ω0 +∆)/ω2
0L. And ω

−1 = ω−1
0 (1 + ∆/ω0)

−1 ≃ ω−1
0 (1−∆/ω0) for ∆ ≪ ω0. Then,

1/iωL in the denominator of Eq. 5.11 can be approximated as 1/i(ω0 + ∆)L ≃

(1−∆/ω0)/iω0L, which leads to the following approximation

1

iωL
+ iω(C + Cc) ≃ i

2∆

ω2
0L
. (5.13)

If we assume the detuning is small and that ω ≃ 2π × 5 GHz and Cc =4 fF,
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then R ≫ ωCc and ζ can be approximated as

ζ ≃
(
Cc

L
− ω2CcC

)
Z0

2
. (5.14)

One can also rewrite Cc/L = Cc(C + Cc)/L(C + Cc) = ω2
0Cc(C + Cc). Near the

resonance, ω ≃ ω0 so that ζ ≃ (ωCc)
2Z0/2. I can now define the external impedance

Re as

1

Re

=
(ωCc)

2Z0

2
. (5.15)

We can then rewrite S22 in Eq. 5.11 as

S22 ≃ − 1/Re

i
2∆

ω2
0L

+
1

R
+

1

Re

. (5.16)

By defining 1/RL = 1/R + 1/Re and multiplying RL in both the numerator and

denominator of Eq. 5.16, S22 becomes

S22 ≃ − RL/Re

1 + i
RL

ω0L

2∆

ω0

, (5.17)

or

S22 ≃ − QL/Qe

1 + iQL
2(ω − ω0)

ω0

, (5.18)

where QL = RL/ω0L is the loaded or total Q and Qe = Re/ω0L is the external Q.

The internal Q, Qi = R/ω0L, can be obtained from 1/Qi = 1/QL − 1/Qe.

Since S21 = 1 + S22, from Eqs. 5.9 and 5.10 we find

S21 = 1− QL/Qe

1 + iQL
2(ω − ω0)

ω0

. (5.19)

In our system |S21| is just the ratio of the “output voltage” to the “input voltage”
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Figure 5.4: Theory plots of the resonator resonance. (a) |S21| from Eq. 5.19, (b)
phase from Eq. 5.28, (c) Po/Pi from Eq. 5.20, and (d) circle from Eq. 5.26 and 5.27.
For the plots, I used following parameters: QL=70,000, Qe=72,000, and ω0/2π=5.58
GHz. The resulting Qi=2,520,000 from QL and Qe.
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|S21| = |V0/Vi| [see Fig. 5.4 (a)]. The ratio of transmitted power to the input power

through the resonator is |S21|2 [see Fig. 5.4 (c)] and is given by

Po

Pi

=

∣∣∣∣∣∣∣∣1−
QL/Qe

1 + iQL
2(ω − ω0)

ω0

∣∣∣∣∣∣∣∣
2

. (5.20)

For additional discussion of Fig. 5.4, see section 5.4.3.

5.2.3 Microwave Office Simulation

A lumped-element resonator has a smaller size than the wavelength at the

resonance frequency. This requires using a complex geometry compared to that of

a typical CPW λ/4 or λ/2 resonator. Our resonator is surrounded by a ground

plane and is coupled to the transmission line. Accurate physical simulations of

the resonator are essential to understanding its behavior. This design is similar to

another existing resonators designed by Kevin Osborn. This new design differs from

those designs in that it is not connected to the ground plane.

To aid in the simulation and design of the resonator, I used Microwave Office

(by AWR) [85]. Microwave Office is a planar-3D microwave simulator, which allows

faster simulation times compared to a full 3D microwave simulator such as HFSS

(High Frequency Structure Simulation) [86].

To simulate the Al films in the resonator, I used a “perfect metal” with thick-

ness of 100 nm. For the sapphire substrate, I used an insulator with a dielectric

constant of ϵ = 10.7, loss tangent of 5× 10−6, and thickness of 500 µm. Above the

metal surface I set the dielectric constant to its vacuum value ϵ = 1. The simulation
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Figure 5.5: Electric field simulation by Microwave Office of a lumped-element res-
onator driven on resonance.
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Figure 5.6: Current simulation by Microwave Office of a lumped-element resonator
driven on resonance.
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volume extended 500 µm above the Al metal layer and was defined by a perfect

conductor. For fast simulations, I typically simulated the area just around the res-

onator (see the simulation area in Fig. 5.5). The cell size for the simulation was 5

µm by 5 µm, which was the minimum feature size in the resonator. This gave a

typical simulation time of about 5 minutes. I also tried reducing the cell size to 1

µm by 1 µm and found no significant differences except a longer simulation time.

I used some measurements of quarter-wavelength resonators (on the same type

of sapphire) to define the dielectric constant of ϵ = 10.7. The simulated resonance

frequency was approximately 5.555 GHz, which deviated 5 % from the measured

resonance frequency. Since the dielectric loss determined the internal quality fac-

tor (Qi) of the resonator in the simulation, I simulated the resonator with different

dielectric losses of the substrate: tan δ = 0, 10−6, 5 × 10−6, 10−5, and 10−4. As

expected, the dielectric loss did not affect the external quality factor (Qe) of the

resonator, which was approximately Qe ∼ 45,000. Using the single model of capac-

itive coupling between the resonator and transmission line (i.e. Eqs. 5.15 and 5.19)

yielded Cc = 3.42 fF for the coupling capacitance.

Microwave Office also provides a 2D simulation of the electric fields in the

dielectrics and currents in the metals. Figure 5.5 shows that the E-field is mainly

concentrated in and distributed evenly over the capacitor on resonance. Figure 5.6

shows the corresponding even distribution of currents through the meandering in-

ductor at f = f0. These simulations confirmed that the design was acting as a quasi

lumped-element resonator. Microwave simulations of this resonator show no other

mode up to f = 28.3 GHz.
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5.3 Fabrication

In this section, I describe the fabrication of the resonator and the CPB qubit.

All processes were done at LPS.

After modeling the resonator in Microwave Office, the design was imported into

a CAD program (L-Edit), which I used to design the mask pattern for individual

cells and chips for a 3-inch wafer. Our standard cell or chip size was about 5 mm by

5 mm and I left about 250 µm between adjacent cells. One 3-inch wafer contained

about 100 chips typically. Once the layout was finalized, I exported it into GDS

format for an optical mask and submitted an order to Microtronics, Inc. [87]. The

4-inch by 4-inch soda-lime quartz mask had chrome features with the same scale as

the final features.

Two optical lithography masks were ordered: one for an Al layer and another

for a Ti/Au layer. The Al layer was for the resonator and the Ti/Au layer was for

leads of a SET and alignment markers. The SET and CPB were made by e-beam

lithography; I used the SET to estimate the junction resistances of the CPB (see

section 5.3.6).

5.3.1 Optical Lithography for defining the resonator

The optical lithography was done by conventional techniques in the LPS clean

room. I used a programmable spinner at 3000 RPM for 60 seconds in the fume hood

in order to spin the photo resist on the wafer [see Fig. 5.7 (a)]. For both the Al and

Ti/Au layers, I used a single layer resist (Futurrex, NR9-1000PY), which provides a
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Spinner and hot plates

Contact aligner

(Karl Suss MJB3)

E-beam evaporator

(CHA : Mark – 40)

Thermal evaporator

Figure 5.7: Equipment for fabrication. (a) Spinner and hotplates in the clean room,
(b) contact aligner in the clean room, (c) E-beam evaporator “CHA” in the clean
room, and (d) thermal evaporator.
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(c) (d)

Dicing Saw

( Disco-DAD 321)

E-beam writing SEM

(JEOL-6500F)

E-beam evaporator
Wire bonder

(West-Bond)

Figure 5.8: Equipment for fabrication. (a) Dicing saw, (b) E-beam writing SEM,
(c) E-beam evaporator “Sputnik”, and (d) wire-bonder.
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sufficient undercut for lifting off the deposited metal. After spinning the resist, the

wafer was baked on a hot plate at 160◦C for 3 minutes 30 seconds in a fume hood.

Exposure of UV light through the optical mask was done on a Karl Suss contact

aligner [see Fig. 5.7 (b)]. The wafer was then post-baked on a hot plate at 120◦C for

3 minutes 30 sec, then developed in RD6 developer for 12 sec, rinsed with distilled

water, and then dried with dry nitrogen. To deposit the Ti/Au layer, I used the

CHA electron beam evaporator with metal pockets [see Fig. 5.7 (c)].

For the Al deposition, I used a thermal evaporator [see Fig. 5.7 (d)]. This

thermal evaporator was mostly dedicated to aluminum and used a turbo molecular

pump from Varian (Turbo-V550) and a scroll pump from Varian. The vacuum pres-

sure in the main chamber reached 2× 10−7 Torr measured by an ion gauge (Varian:

SenTorr). The current through the tungsten e-beam filament was controlled manu-

ally to maintain a deposition rate of 5.5 Å/s at the deposition rate monitor (Sycon:

STM-100). After depositing about 100 nm of Al from the tungsten boat, the cham-

ber was vented, the boat was replaced, and two pure Al pellets (AL-0605, 99.9995

%, 4.74 mm diameter by 10 mm long, from Atomergic Chemetals Corp.) were

added in preparation for another sample. Once the chamber was vented, it typically

took a day to pump on the main chamber and reach base pressure. This thermal

evaporator also supports double-angle evaporation; it has a load-lock chamber and

rotatable feed-through.

Dielectric loss in the substrate can limit the internal quality factor of the

resonator and could affect the qubit as well. Single crystal sapphire has very low

dielectric loss at low drive voltages and low temperatures. With this in mind,
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we used c-plane oriented single-side-polished sapphire wafers with a thickness of

0.43 mm (Kyocera Industrial Ceramics Co.). For the optical lithography, I used

a negative lift-off resist (NR9-1000PY) (see detailed recipe in Appendix A). I had

some trouble with adhesion of the Al and undercut with this resist and the sapphire

wafers. With silicon wafers, I did not have these problems and we suspected that

it was due to the transparency of the sapphire. One way to solve the issue is to

deposit Al initially and then etch the Al layer. For etching the Al layer, I deposited

Al on the substrate first by either the thermal evaporator or CHA system with a

thickness of 100 nm. I checked the adhesion of the Al layer by using the wire-bonder

to make sure the adhesion was good. I then spun positive photo resist (OiR 906-10)

on the wafer and did photolithography (see the recipe in Appendix A). Another

advantage of the etching method over lift-off techniques is that a smooth sidewall

can be obtained.

5.3.2 Sample Preparation for Electron Beam Lithography

After depositing Al and Ti/Au, the wafer was ready for electron-beam (e-

beam) lithography. The SEM is the most common method in research laboratories

for fabricating sub-micron features [see Fig. 5.8 (b)]. I used two layers of E-beam

resist: ZEP 520A DR2.3 on the top and MMA(8.5)MMA EL11 for the undercut

on the bottom [see Fig. 5.10 (a)]. The thickness of ZEP and MMA was about 120

nm and 850 nm, respectively. They have different sensitivities to E-beam expo-

sure and require different developers [42, 43]. To prevent charging by the electron
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beam, which occurs with an insulating substrate, we deposit a 12.5 nm thick “anti-

charging” layer of Al on top of the resist by thermal evaporation before E-beam

writing. We do not use the E-beam evaporator for the anti-charging layer since the

E-beam resist could be exposed to scattered electrons before e-beam writing.

After depositing the anti-charging layer, the wafer was diced. Before dicing the

wafer, the resists and anti-charging layer was protected by a layer of “blue resist”

(FSC-M) (see recipe in Appendix A). LPS has a dicing saw [see Fig. 5.8 (a)] and we

used diamond blades (Dicing Blade Technology). The blade was a Hubbed Resinoid

type, which was permanently bonded to the hub and does not need a flange. The

choice of the blade depends on the material being cut. To dice single crystal quartz

and sapphire, we used a CX-010-325-080-H blade. For silicon and fused quartz, we

used a CX-010-600-080-H. The rotation speed of our blade was 22,000 rpm. The

feed speed for dicing also depends on the material. For silicon and fused quartz,

the feed speed was 3 mm/s. For single crystal quartz, the feed speed was 1.25

mm/s. For single crystal sapphire, the feed speed was 0.75 mm/s. When I used a

feed speed of 3 mm/s for sapphire, I found many cracks on the wafer. One day, I

found a lot of unknown material stuck to the wafer surface and suspected someone

had used the saw to dice an inappropriate material, which covered the dicing saw.

After that, I usually inspected the dicing saw (or sprayed water) around the blade

chuck. The wafer was fastened to the sample chuck in the dicing saw using double-

sided tape (ADWILLD-520T from ADWILL, Lintec). Any air bubbles should be

removed between the wafer and tape, otherwise the tape may release chips during

dicing. The dicing saw has a calibration process (Hairline alignment) in which the
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machine calibrates the position of the wafer after a test cutting.

Once the wafer was diced, I removed the individual chips and cleaned them

with Acetone, Methanol, and IPA for 1 minute each to remove the resist (FSC-M).

Any insulating residue could cause charging in the SEM, hence this needs to be

removed completely. I had the impression that when I stored the cleaned chip in

the dry box in the lab (not clean room) for more than a month, the E-beam resist

cracked after developing. I suspect the “blue resist” (FSC-M) protected the E-beam

resist from air. So, I liked to keep the chip with blue resist in the clean room and I

cleaned chips only when I was ready to perform e-beam lithography.

5.3.3 Electron Beam Writing

For E-beam writing, I used a JEOL 6500 SEM [see Fig. 5.8 (b)] with an

acceleration voltage of 30 kV. Maximum magnification is 500,000 and I imaged

a contamination spot to obtain a good focus. This SEM was also used to take

device images. For E-beam writing, I used the program Nanometer Pattern Gener-

ation System (NPGS) [88], which controls the SEM. NPGS requires that the design

be in DesignCAD format. I imported my CAD drawings into Design CAD using

LinkCAD. NPGS supports two layouts: alignment and pattern. After importing

my CAD drawing into DesignCAD, I created a Run file in NPGS, which contains

the exposure parameters: magnification, beam current, line dose (nC/cm), and area

dose (nC/cm2). Typical parameters during e-beam lithography were a magnification

for the writing equal to 900, beam current of 17 pA, and line dose of 8 nC/cm for
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the CPB and SET. The Run file executes an alignment layout first and then the

pattern layout. Using the alignment layout, one can adjust the position of the beam

relative to my Ti/Au alignment markers [see squares with size of 4µm by 4µm in

Fig. 5.9 (b) and (c)]. Then, NPGS processes the pattern layout to write the E-Beam

pattern based on the position of the alignment markers. One thing to be careful

about is to place the alignment markers away from the patterns by more than 30

µm, since the beam also exposes the resist during the alignment and the exposed

area is large compared with the size of the alignment markers [see the white area

(Al) around the alignment makers in Fig. 5.9 (c)].

Initially, I used Al for the resonator and alignment markers. I found that it

was really hard to see a thin Al layer on the sapphire wafer using the SEM and

this made it hard to even find the alignment markers. This happens because Al

is a low Z material and does not produce many secondary electrons that the SEM

detects for imaging. I also tried a low acceleration voltage and the backscattering

detector instead of the secondary electron detector, and tried using the coordinates

of the resonator to find the alignment markers. I also tried using a very sharp tip

to make a mark on the alignment markers. These methods did not help very much

and eventually I settled on using Ti/Au marks. This meant I had to use two masks

and two depositions; one for the Al resonator and another for the Ti/Au alignment

marks.

Once I finished the E-beam writing, I went to the clean room to develop the

two E-beam resists (see recipe in Appendix A). The develop time for ZEP was fixed

at 3 minutes, while the develop time for MMA could be varied depending on the
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Figure 5.9: Device images. (a) Chip image showing the CPW for SET and the
resonator, (b) CPB by E-beam lithography, and (c) SET by E-beam lithography.
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desired undercut.

5.3.4 Double-Angle Evaporation

I used standard double-angle evaporation of Al with an intervening oxidation

step to form an AlOx tunnel barrier between the two Al depositions [71] (see the

sequence of process steps in Fig. 5.10). Our E-beam evaporator, which we have

nicknamed “Sputnik” to distinguish from the CHA system, was used for my devices.

It has a turbo pump (Varian: Turbo-V1000HT), one scroll pump (Varian: SH-110)

to back up the turbo molecular pump, and another scroll pump to evacuate the

load-lock chamber. Sputnik consists of two chambers: a main chamber (for crucible

stages and a hemispherical cage) and a load-lock chamber. The base pressure of

the main chamber can reach 8 × 10−8 Torr. There are four crucibles for different

materials, but I only used an Al crucible. I put two pellets, which are the same type

of pellets I used for the thermal evaporator, in an intermetallic crucible, which is

reachable by long tweezers from the nearest small window.

The electron beams ejected from a tungsten filament were deflected by a mag-

net toward the center of the crucible. The E-beam power supply (e-Vap: CVS-3

(3kW)) was set to 5.36 kV, which was the optimum accelerating voltage to center

the beam on the crucible. Heated Al atoms evaporate toward the hemispherical

cage. The temperature of the crucible is high enough to melt Al (the melting point

of Al≃ 660◦C), so it needs to be water-cooled. There’s a shutter to block unwanted

Al right above the crucible. The deposition rate monitor (Inficon XTM/2) measures
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Josephson junction
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Top layer: ZEP 

Bottom layer: MMA

Substrate: Sapphire

Electron 

beams

Al

2a

Figure 5.10: Schematic of E-beam lithography. (a) Profile of resists on a chip. The
top layer is ZEP, the bottom layer is MMA, and the substrate or wafer is sapphire.
The picture is not to scale and the color is false. (b) Irradiate resist with focused
electron beam. (c) Develop resists, selectively. (d) First evaporation of Al at angle
θ1. (e) Oxidization of the first Al layer, followed by the second evaporation of Al at
angle θ2. Green color represents AlOx. (f) After lift-off of MMA.
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the resonance frequency (6 MHz) of a quartz crystal, which shifts due to the addi-

tional mass as material is deposited on the crystal. Since the crystal was located on

the hemispherical cage, we had to open the shutter to see the deposition rate. When

there is too much material on the crystal, the resonance shifts by several percent,

and the crystal needs to be replaced.

Once the deposition rate was stabilized to about 6 Å/s, I closed the shutter

and moved the sample from the load-lock chamber to the main chamber. The first

deposition angle (-15◦) was set on the transfer rod, then I opened the shutter and

monitored the deposition rate and accumulated thickness [see Fig. 5.10 (d)]. The

first deposition was set to a thickness of 30 nm. Then, I moved the device back to

the load-lock chamber, turned off the E-beam, and isolated the two chambers by

closing the gate valve. Before applying oxygen (ultra pure grade, UN1072) to the

device in the load-lock chamber, I measured the oxygen pressure in the small volume

of the pipe connected to a vacuum gauge. The ratio of the pressure in the small

pipe to that in the load-lock chamber was roughly 200. The device was oxidized for

2 minutes with an oxygen pressure of 757 mTorr in the load-lock chamber. After

that, the load-lock chamber was quickly pumped out using the scroll pump and then

I opened the gate valve to connect the two chambers. The second deposition was

done at an opposite angle (+15◦) with a film thickness of 50 nm. The lift-off process

of MMA [see Fig. 5.10 (f)] can be found in Appendix A.

The proper overlapping of the two Al layers in the double-angle evaporation

is essential to form a Josephson junction. Figure 5.11 (a) shows a side profile of

the developed E-beam resists [see also Fig 5.10 (a)]. The thickness of the resist top
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Figure 5.11: (a) Geometric dimensions of resist pattern, (b) example of a zero-angle
evaporation, and (c) example of double-angle evaporation.
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layer and bottom layer is given by ttop = 120 nm and tbottom = 850 nm, respectively.

The width of the opening in the developed top layer is defined as W . If the device

is rotated by an angle θ with respect to the incident Al being evaporated, then the

width of the deposited Al film, W
′
, is equal to W − ttop tan θ. The distance from

the right edge of the top hole to the center of the deposited film, b, is given by

W
′
/2 + (ttop + tbottom) tan θ. Then, the distance between two centers of top hole

and film, a, is given by b − W/2, or W
′
/2 + (ttop + tbottom) tan θ − W/2, which

2a corresponds to the distance between the centers of the two films after double-

angle evaporation [see Fig. 5.10 (e)]. Therefore, one can estimate how far two films

formed by double-angle evaporation will overlap, given ttop, tbottom,W , and θ. For

comparison, Fig. 5.11 (b) shows a pattern deposited with direct deposition, or zero-

angle, without a second deposition, and Fig. 5.11 (c) shows two films deposited by

double-angle evaporation with θ = 15◦.

5.3.5 Packaging

I used two different types of sample packaging; a Cu box and a PC board

that was mounted in a sample box [see Fig. 5.12]. For the Cu box, we adhered two

Ti/Au coplanar wave guides (CPW) to the Cu box; these wave guides were used for

transition of the rf from the SMA connector to the device. An SMA connector was

then soldered to the CPW. A device chip was inserted between the two CPWs and

glued to the Cu box by Silver paste. The PC board [see Fig. 5.12 (b)] was designed

by Ben Palmer and has a built-in CPW. The nice thing about the PC board is
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Figure 5.12: Sample holders. (a) Cu box and (b) PC Board with chip and connec-
tions.
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that the ground connections were done better than the first sample box since the

grounds were soldered in place and vias were also used to tie the upper ground plane

to ground plane on the back side. The PC board is enclosed by two Cu plates that

form the closed sample box.

After the device was mounted, wires need to be attached from the package to

the device. LPS has two wire-bonders: one is for Al and the other is for Au. I used

Al wires bonds to connect the device chip to the Ti/Au CPWs or the Cu on the PC

board. Au wires were used to bond the CPWs to the Cu box for grounding. For the

SET, I used Au wire-bonders since the SET was deposited on Ti/Au leads, which

were connected to the CPW launcher. Before bonding the SET CPW launcher to

the Ti/Au CPW, I shorted the CPW by putting a short to the SMA connector to

prevent electrostatic discharge from destroying the tunnel junctions of the SET.

5.3.6 Estimation of EJ

The maximum EJ of the CPB can be estimated from the tunnel junction

resistance and the superconducting gap using the Ambegaokar-Baratoff formula [89,

90]:

EJ,max =
RQ

RCPB

∆Al

8
, (5.21)

where RQ ≡ h/e2 =25.9 kΩ is the resistance quantum, ∆Al=2.5 K is the supercon-

ducting energy gap of Al, and RCPB is the total resistance of the two CPB junctions

in parallel. Since our CPB has two nominally identical junctions in parallel with

junction resistance of R1, we have RCPB = R1/2. Then, one can rewrite Eq. 5.21
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as

EJ,max =
2RQ

R1

∆Al

8
. (5.22)

By fabricating an SET with a CPB at the same time on the same chip with the

same junction sizes, I could estimate the resistance of a CPB and EJ by measuring

the SET resistance at room temperature. Of course the SET has two junctions in

series. Hence, the total resistance RSET of the SET is equal to 2R1, yielding the

following relation between RSET and EJ,max of the CPB:

EJ,max =
4RQ

RSET

∆Al

8
. (5.23)

Eq. 5.23 is plotted as a function of RSET in Fig. 5.13.

I measured the SET resistance at room temperature with a multimeter that

was set to a fixed 40 kΩ resistance range; if the multi meter is set to “Auto”, a high

current can go through the junctions and destroy them. Since static discharge can

damage the SET junctions, we also need to ground ourselves carefully.

5.4 Transmission Measurement and Analysis

5.4.1 He-3 Refrigerator

I used a He-3 Refrigerator to cool resonators for transmission measurements

[see the picture in Fig. 5.14 (a)]. The base temperature of the He-3 fridge is 350

mK, which is about a factor of ten higher than the base temperature of the He-

3/He-4 dilution refrigerator. Since a temperature of 350 mK is below the transition

temperature of aluminum (Tc ≃ 1.2 K), I was able to observe the resonance of the
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Figure 5.13: Expected EJ,max of the CPB versus the resistance of a test SET pre-
pared on the same chip. RSET is the total resistance of two SET junctions in series.
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Figure 5.14: He-3 refrigerator. (a) Photograph of He-3 refrigerator, and (b)
schematic of the He-3 system with the measurement setup. The input cables at-
tached to the device have about 10 dB loss. The isolator was a PAMTECH circulator
(CTH1409KS) terminated by 50 Ω.
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Al resonator. The main advantage of using a He-3 fridge is that the operation is

easier than the operation of a dilution refrigerator, the thermal cycling is quicker

than the dilution refrigerator, and the He-3 fridge consumes less liquid helium. It

is very useful when one needs to measure just the resonance frequency and quality

factors of many devices.

There are two temperature stages in the He-3 fridge: 4 K and 380 mK [see

Fig. 5.14 (b)]. The sample box was mounted on the cold stage, which is thermally

anchored to the liquid He-3 container. There are two attenuators at 4 K to attenuate

thermal noise from higher temperatures. An HP 8722D vector network analyzer was

used to measure the magnitude and phase of S21. For small applied powers, I used

a low noise amplifier before the network analyzer.

I measured S21 up to 20 GHz in order to check for higher harmonics of the

resonance. Fig. 5.15 (a) shows S21 up to 16 GHz. For this measurement, I used a

wide bandwidth amplifier, which had relatively flat gain up to 20 GHz. The isolator

was also removed. Though there were a lot of standing waves at high frequencies,

we only see one sharp resonance. This gives supporting evidence that our resonator

behaves as a lumped-element resonator.

One also sees a relatively slowly varying frequency-dependent background in

S21 [see Fig. 5.15 (b)] due to standing waves in the system. We noticed this back-

ground was still present at 4.6 K, when the resonator was in the normal state. The

2 dB offset is most likely associated with the phase of the Al changing from a su-

perconductor to a normal metal. By subtracting the S21 data at 4.6 K from the S21

at 380 mK, we were able to get a quasi-calibrated S21 measurement of the resonator

142



5.575 5.580 5.585 5.590

-11

-10

-9

-8

-7

-6

-5

 380 mK

 4.6 K

 

 

P
o
 /

 P
i (

d
B

)

f (GHz)

0 2 4 6 8 10 12 14 16

-5.0

-2.5

0.0

2.5

5.0

 

 

P
o
 /

 P
i (

d
B

)

f (GHz)

(a)

(b)

(c)

5.575 5.580 5.585 5.590

-4

-3

-2

-1

0

1

2

 

 

P
o
 /

 P
i (

d
B

)

f (GHz)

Figure 5.15: (a) S21 up to 16 GHz for “Resonator4” (see Table 5.1). S21 at 380
mK was calibrated by comparing S21 measured at 4.6 K, where the resonator was
normal and the resonance disappeared. (b) S21 around the resonance measured at
380 mK and 4.6 K. (c) Calibrated S21 after subtraction of the two S21 in (b).
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[see Fig. 5.15 (c)].

From the vector network analyzer, the magnitude and phase of S21 can be

found from the magnitude of Po/Pi and the phase θ [see Fig. 5.16 (a)]. The mag-

nitude Po/Pi is measured in units of dB for convenience and it can be converted

to a linear scale. By taking the square root of Po/Pi (in the linear scale), one can

get the ratio of transmitted voltage and input voltage, Vo/Vi. The real part of the

voltage ratio is then (Vo/Vi) cos θ and the imaginary part is (Vo/Vi) sin θ, and these

comprise a circle in the complex plane if Qi and Qe are independent of frequency.

5.4.2 He-3/He-4 Dilution Refrigerator

With the He-3 fridge, I noticed that the quality factor of the Al resonator

kept increasing as the temperature decreased down to the base temperature of 350

mK. This suggested that the quality factor might go up more if the temperature

dropped below 350 mK. To see if this would happen, we used the He-3/He-4 dilution

refrigerator and measured the Al resonator at the base temperature of 30 mK. For

the initial measurement in the dilution refrigerator, we did not have a cryogenic

amplifier and cryogenic isolators. We added only one 20 dB attenuator after the

device at the still stage, where the temperature is 0.6 K. The isolator and low

noise amplifier used in the He-3 fridge were used again and connected to the vector

network analyzer to measure S21 [see Fig. 5.16 (b)].
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(a)
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Figure 5.16: Measured resonance of “Resonator3” at 350 mK and “Resonator1” at
30 mK (see Table 5.1). (a) Resonance measured in the He-3 refrigerator at 350 mK.
This data was calibrated by the data taken at 4 K, and the background S21 was
normalized to 0 dB or 100 % transmission. (b) Resonance measured in the dilution
refrigerator at 30 mK. This data was not calibrated and the background for S21 was
not normalized.
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5.4.3 Fitting the resonance

In my measurements, I typically found that the resonance was not symmetric,

but could be fit [91, 92, 93], to a modified version of Eq. 5.20

Po

Pi

=

∣∣∣∣∣∣∣∣1−
QL/Qee

iϕ

1 + iQL
2(ω − ω0)

ω0

∣∣∣∣∣∣∣∣
2

, (5.24)

where ϕ is an additional fit parameter. Since eiϕ = cosϕ + i sinϕ, we can rewrite

this as

Po

Pi

= 1− 2QL

Qe

cosϕ+QL
2(ω − ω0)

ω0

sinϕ− QL

2Qe

1 +

[
QL

2(ω − ω0)

ω0

]2 . (5.25)

This is basically an ad hoc modified Lorentzian curve.

To get the phase function, one needs to decompose Vo/Vi into real and imagi-

nary parts. The real part is given by

Re

[
Vo
Vi

]
= 1− QL

Qe

cosϕ+QL
2(ω − ω0)

ω0

sinϕ

1 +

[
QL

2(ω − ω0)

ω0

]2 . (5.26)

The imaginary part is given by

Im

[
Vo
Vi

]
= −QL

Qe

sinϕ−QL
2(ω − ω0)

ω0

cosϕ

1 +

[
QL

2(ω − ω0)

ω0

]2 . (5.27)

The phase [see Fig. 5.4 (b)] is then given by

θ = θ0 + arctan

(
Im

[
Vo
Vi

]
/Re

[
Vo
Vi

])
. (5.28)

One can also plot the complex voltage by plotting the imaginary part versus

real part [see Fig. 5.4 (d)]. In the complex plot, the vector starts from (1,0) and
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rotates clockwise as the frequency increases from zero. On resonance in the limit

of zero damping, Vo/Vi = 0 and the vector is at the origin, (0,0). In general the

vector comes close to the origin; the diameter of the circle corresponds to QL/Qe.

From 1/QL = 1/Qi + 1/Qe, the diameter of the circle is also Qi/(Qi +Qe). Hence,

this is another way to extract the Qe while QL is determined by the width of the

resonance curve. If there is non-zero ϕ, then the circle will pivot by ϕ around

(1,1) and make the resonance curve asymmetric. This behavior is clearly evident in

Fig. 5.16 (b). This behavior can happen if the input and output lines have standing

wave resonances.

5.5 Power Dependence

The contribution of dielectric loss to the internal quality factor in the substrate

increases significantly at low temperatures and low drive voltages or power [62,

94]. This behavior is consistent with two-level systems (TLSs) in the substrate or

dielectric surface layers. In the low temperature and low voltage limit, TLSs are not

saturated, and so they can absorb energy, producing loss. Such dielectric loss can

be probed by measuring the quality factor of a superconducting high Q resonator

which is deposited on top of the dielectric material.

The power dependence of “Resonator2” is shown in Fig. 5.17. As I increased

the power, the line width of resonance curve decreased and the resonance frequency

increased, implying lower loss in the system, consistent with TLS behavior. Unlike

other resonators [94] on silicon wafers, our resonator on sapphire shows a relatively
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Figure 5.17: Power dependence of “Resonator2” (see Table 5.1). (a) S21 as a function
of input power to the resonator at 380 mK, and (b) 1/Qi as a function of the
rms voltage on the resonator. Average electric field is also scaled on the top axis
considering the gap of 5 µm between the fingers of the capacitor.
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monotonic variation of 1/Qi versus the applied voltage (power).

5.6 Temperature Dependence

In addition to the power, the temperature is also a good parameter to vary to

probe the loss mechanism of the superconducting resonator. With the resonator in

the He-3/He-4 dilution refrigerator, I observed a temperature dependence of the Al

resonator from 30 mK to 500 mK. From 30 mK to 200 mK, the resonance curve for

“Resonator1” did not change [see Fig. 5.18 (a)]. As the temperature was raised above

200 mK, the resonance shifted to lower frequency and the width of the resonance

also got wider [see Fig. 5.18 (a)]. In the complex plot [see Fig. 5.18 (b)], the biggest

circle corresponds to the sharpest resonance in S21. The circles looked the same

up to 200 mK. At 250 mK, the circle became slightly smaller and the diameter

of the circle became smaller and smaller as the temperature increased above this,

indicating that Qi was decreasing.

Examination of Fig. 5.18 (a) reveals that the resonance is very asymmetric

and the internal quality factor Qi is large compared to Qe at 30 mK. In fact the

QL I extracted from the resonance curve fit at 30 mK was bigger than Qe, which

resulted in a negative Qi. Instead, by fitting the diameter of the measured circle in

the complex plot, I was able to extract maximum QL = 70, 000 and Qi = 1, 000, 000

and found they did not change significantly from 30 mK to 200 mK (see blue squares

and red circles in Fig. 5.19). Since we did not have a cryogenic amplifier at that

time, I had to apply a relatively high power to the device and this saturated the
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Figure 5.18: Temperature dependence of “Resonator1”. (a) The transmitted power
versus frequency for different temperatures. (b) Extracted circles from the trans-
mitted power and phase for different temperatures.
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Mattis-Bardeen theory

(a)

(b)

Figure 5.19: Temperature dependence of Q and resonance frequency of “Res-
onator1”. (a) Extracted Q (QL, Qe, and Qi) from data in Fig. 5.18 as a function
of temperatures. Solid curves are the fit from the Mattis-Bardeen theory, which is
discussed in section 5.6.2. (b) The resonance frequency (f0) from data in Fig. 5.18
as a function of temperatures. Solid curve is the fit from the Mattis-Bardeen theory.
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TLSs in the sapphire wafer. This is why I got Qi’s up to a million.

By varying the temperature, I found QL started to decrease quickly above 200

mK, reaching 40,000 when the temperature increased to 300 mK (see Fig. 5.19). The

minimum QL observed was about 3,000 at 550 mK. Qe changed relatively little with

temperature, as expected. Above 600 mK, it was hard to see a clear resonance. The

resonance frequency also shifted lower as the temperature increased. The maximum

shift of the resonance frequency from 5.578 GHz was -3 MHz as the temperature

increased from 30 mK to 550 mK.

5.6.1 Two Fluid Model

To understand why the resonator behaves the way it does, I need to discuss

some of the basic physics of superconductivity. Superconductivity occurs below

the transition temperature Tc ≃ 1.2 K in aluminum. But superconductivity does

not produce 100 % perfect loss-less conductivity at non-zero temperatures. This

phenomenon can be explained by the Gorter-Casimir two-fluid model [12], which

was a classical model that was established before the BCS theory. The two-fluid

model assumes that a superconductor consists of a portion of superfluid (due to

paired electrons) and a portion of normal fluid (from unpaired electrons). The

density of paired electrons ns is given by

ns(T )

ntot

∼= 1−
(
T

Tc

)4

, (5.29)

where ntot = ns+nn is the total density of electrons and nn is the density of unpaired

electrons [see Fig. 5.20 (a)]. At T = 0 K, this model has all of the electrons in the
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Figure 5.20: Two fluid model. (a) ns and nn as a function of temperature from
two-fluid model. (b) Illustration of the flow of an unpaired electron (red dot) in the
crystal ions (black dots). (c) Illustration of the flow of paired electrons (red dots).
(d) Equivalent circuit of a superconductor in the two-fluid model.

153



superconductor paired. As temperature increases, the density of paired electrons

decreases and the density of unpaired electrons increases. When the temperature

approaches the transition temperature Tc, unpaired electrons become dominant.

This model has been well supported by experiment. For example, Schawlow and

Devlin [95] measured the penetration depth λL as a function of the temperature and

found

λL(T ) = λL(0)

[
1−

(
T

Tc

)4
]−1/2

, (5.30)

where λ2L = m/µ0nse
2.

By combining the two-fluid model with the Drude model, one can understand

the transport mechanism of electrons and pairs under an applied electric field E [see

Figs. 5.20 (b) and (c)]. Using Newton’s second law, the equation of motion of an

electron can be written as

m
dv

dt
= eE−m

v

τ
, (5.31)

where v is the velocity of the electron and τ is the relaxation time or mean free

time between electron collisions. Writing the oscillating electric field as Eeiωt, the

velocity is

v =
eτ

m

1

1 + iωτ
E. (5.32)

or

|v|
|E|

=
eτ

m

1

1 + (ωτ)2
− i

e

mω

(ωτ)2

1 + (ωτ)2
. (5.33)

Under the electric field, an unpaired electron would be scattered with a mean

free time between collisions on the order of ps. Thus at microwave frequencies, well

below the energy gap, ωτn ≪ 1. In this limit, the imaginary term in Eq. 5.33 goes
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to zero and |vn|/|E| is given by

|vn|
|E|

=
eτn
m
. (5.34)

In contrast, the paired electrons have a much longer mean free time. Then, ωτs ≫ 1,

which makes the real term in Eq. 5.33 go to zero and |vs|/|E| is given by

|vs|
|E|

= −i e

mω
. (5.35)

The total current density is made up of two current densities, or J = Jn+Js, where

Jn = nnevn and Js = nsevs. This can be modeled as Ohmic and reactive channels

in parallel [12] (see the equivalent circuit model in Fig. 5.20).

From the Ohm’s Law relation J = σE, one can get the complex conductivity

for the two-fluid model

σ(ω) =
nne

2τn
m

− i
nse

2

mω
. (5.36)

However, one needs to be careful in taking the limit ω → 0, and a full analysis

reveals the conductivity is infinite at dc and σ(ω) is [12]

σ(ω) =
πnse

2

2m
δ(ω) +

nne
2τn
m

− i
nse

2

mω
. (5.37)

Tinkham [12] defines the complex conductivity as

σ = σ1 − iσ2, (5.38)

where σ1 and σ2 are

σ1(ω) =
πnse

2

2m
δ(ω) +

nne
2τn
m

(5.39)
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and

σ2(ω) =
nse

2

mω
. (5.40)

For nonzero frequencies, σ1 is proportional to the density of unpaired electrons,

which contributes to the Ohmic loss of the conductor. σ2 is inversely proportional to

frequency but proportional to the density of paired electrons, which contributes to

the reactance of the conductor. One can also say that the paired electrons only con-

tribute to the inductance of the conductor. In the two-fluid model, the temperature

dependence of the conductivity is given by

σ1(T )

σn
=

(
T

Tc

)4

(5.41)

and

σ2(T )

σn
=

1

ωτ

[
1−

(
T

Tc

)4
]
, (5.42)

where σn = ntote
2τ/m is the conductivity in the normal state. Figure 5.21 (a) shows

the conductivity as a function of temperature when Tc = 1.2 K, ω/2π = 5.5 GHz,

and τ = 1 ps.

5.6.2 Complex Conductivity from the Mattis-Bardeen Theory

Mattis and Bardeen applied and extended the BCS theory to describe local

and nonlocal electrodynamics in superconductors, including effects of the energy

gap. From the Mattis-Bardeen theory [96], σ1 [97] in the limit kBT ≪ ∆0 and

~ω ≪ ∆0 can be approximated as

σ1
σn

≈ 4∆0

~ω
e
− ∆0

kBT sinh(ξ)K0(ξ), (5.43)
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whereK0 is the 0-th order modified Bessel function of the second kind, ξ = ~ω/2kBT ,

and ∆0 = 1.6 kBTc is the superconducting energy gap [98]. In the same limit, σ2 [97]

can be approximated as

σ2
σn

≈ π∆0

~ω

[
1−

√
2πkBT

∆0

e
− ∆0

kBT − 2e
− ∆0

kBT e−ξI0(ξ)

]
, (5.44)

where I0 is the 0-th order modified Bessel function of the first kind. For comparison,

Figure 5.21 shows the complex conductivity from the Mattis-Bardeen theory and

that from the two-fluid model.

5.6.3 Complex Power and Surface Impedance

Consider a plane wave that is normally incident on the surface of a conductor

[see Fig. 5.22 (a)]. I will assume that the conductor has a closed surface S and the

plane wave enters the surface S0, which is the front surface of the conductor. From

Poynting’s theorem, the complex power [77] into a closed surface S is

P =
1

2

∮
S

S · ds, (5.45)

where S = E×H∗ is the complex Poynting vector and ds points inward to the surface

in the normal direction with respect to the surface S. E and H are orthogonal to

each other and also to the direction of propagation. In Fig. 5.22 (a), S is parallel

with ds at the front surface S0 and the back surface of S. On the other sides, S is

orthogonal to ds, so S · ds=0 there. I will assume the contribution from the back

side of the surface is negligible because S decays rapidly in the conductor. Then,

157



(a)

(b)

2

1

/

/

n

n

σ σ
σ σ

(b)

2

1

/

/

n

n

σ σ
σ σ

Figure 5.21: Complex conductivity of Al versus temperature. (a) Complex conduc-
tivity from the two-fluid model with Tc = 1.2 K, ω/2π = 5.5 GHz, and τ = 1 ps. (b)
complex conductivity from the Mattis-Bardeen theory with ∆0 = 1.6 kBTc, Tc = 1.2
K, and ω/2π = 5.5 GHz. The solution in the gray region is not evaluated.
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Figure 5.22: A wave incident on a superconducting thin film. (a) Illustration of an
incident plane wave into the surface of a superconducting thin film, (b) equivalent
circuit with (a), and (c) illustration of a current flow along a superconducting thin
film CPW transmission line.
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the complex power can be written as

P =
1

2

∫
S0

E×H∗ · ẑds, (5.46)

where E×H∗ · ẑ = (ẑ×E)·H∗ = ZηH·H∗ = Zη|Ht|2 and where Ht is the component

of the field tangential to the surface S0. Zη is the intrinsic wave impedance of the

plane wave in the conductor, which is defined as the ratio of the E field and H field

and can be found from [77]

H(z) =
ẑ × E(z)

Zη

(5.47)

The intrinsic wave impedance of a plane wave in free space is Zη0 =
√
µ0/ε0 =

377 Ω. At the surface S0 or z = 0, one can define Zη as the surface impedance

Zs =
Et

Ht

|z=0. (5.48)

Then, the complex power at the surface S0 is given by

P =
1

2

∫
S0

Zs|Ht|2ds. (5.49)

The surface impedance Zs can be decomposed into real and imaginary parts:

Zs = Rs + iωLs, (5.50)

where Rs, and Ls are the surface resistance and surface inductance, respectively.

One can also obtain the real part and imaginary part of the complex power at the

surface S0 [see the circuit schematic in Fig. 5.22 (b)]. The real part corresponds to
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power loss (Pl) at the surface S0 due to the surface resistance and is

Pl =
1

2

∫
S0

Rs|Ht|2ds. (5.51)

The imaginary part represents the power (Pk) stored at the surface S0 in the form

of the kinetic energy of the charge carriers and is given by

Pk =
1

2

∫
S0

ωLs|Ht|2ds. (5.52)

5.6.4 Quality Factor of a Transmission Line Resonator

I now consider a situation that is more realistic for my experiments: a copla-

nar waveguide (CPW) which can support quasi-TEM (Transverse Electromagnetic)

waves [see Fig. 5.22 (c)]. In an ideal TEM mode, E and H are orthogonal to the

direction of the wave propagation. Also, E and H decay very quickly inside the

conductor, so to first order, a good assumption is that there is no field inside the

conductor. In a quasi-TEM mode, there could be a very small E field along the

propagation direction. In this thesis for simplicity, I will assume the CPW guides

an ideal TEM wave.

We can think of the TEM wave as propagating along the CPW in the ẑ direc-

tion so that E ×H is tangential to the surface S0, which can be set at z=0. Since

we assume that there is no field inside the conductor, we only need to calculate

the complex power around the contour of the conductor surface [see red contours

in Fig. 5.22 (c)]. Then, the power loss (Pl) per length at the surface S0 due to the
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surface resistance and is

Pl =
1

2

∮
C

Rs|Ht|2dl, (5.53)

where C includes three red contours in Figure 5.22 (c).

When there is a current flow I0 in the transmission line through a series re-

sistance R per length [see Fig. 5.1 (b)], the power dissipation per length is just

Pl = R|I0|2/2. We then find

R =
Rs

|I0|2

∮
C

|Ht|2dl. (5.54)

The kinetic power (Pk) per length of the charge carrier is given by

Pk =
1

2

∫
C

ωLs|Ht|2dl. (5.55)

Here we can define the kinetic inductance Lk per length, which is due to the inertia

of the charge carriers and the fact that they do not scatter. From circuit theory

with Lk and I0 in the transmission line, the kinetic power per unit length is just

Pk = ωLk|I0|2/2. Then, the kinetic inductance Lk per unit length is given by

Lk =
Ls

|I0|2

∮
C

|Ht|2dl. (5.56)

The H and E fields fill the space around the conductors. The time-average

stored magnetic energy (Wm) and electric energy (We) per length is:

Wm =
Lm|I0|2

4
(5.57)

and

We =
C|V0|2

4
, (5.58)
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where Lm is the self-inductance per unit length and C is the capacitance per unit

length, which are both determined by the geometry of the CPW. The total induc-

tance per unit length in the system is the sum of Lk and Lm. Then, the total

magnetic energy stored in the system per length is given by

Wm,tot =
(Lm + Lk)|I0|2

4
. (5.59)

The internal quality factor of the circuit is defined as [77]

Qi = ω
average energy stored

power loss
. (5.60)

When the circuit is driven on resonance,Wm,tot = We. Therefore, the average energy

stored is 2Wm,tot and the power loss is Pl. Then, we have

Qi = ω
(Lm + Lk)|I0|2/2

R|I0|2/2

= ω
(Lm + Lk)

R
.

(5.61)

Here we can introduce the kinetic inductance fraction αk [81, 92], which is the ratio

of the kinetic inductance Lk to the total inductance Lk + Lm:

αk =
Lk

Lk + Lm

, (5.62)

and we can write the quality factor as

Qi =
ω

αk

Lk

R
. (5.63)

Finally from Eqs. 5.54 and 5.56, one can express the quality factor in terms of the
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surface inductance and surface resistance:

Qi =
ω

αk

Ls

Rs

. (5.64)

5.6.5 Relation between the Complex Conductivity and the Surface

Impedance

In a superconductor, both local and non-local transport of current can be

observed. In particular, when the mean free path of the paired electrons becomes

very large in a “clean” superconductor, a non-local relationship is needed to explain

the electrodynamics.

The electrodynamic behavior of superconductors can be classified into three

regimes: (i) the extreme anomalous (non-local) limit in a thick film, (ii) the dirty

(local) limit in a thick film, and (iii) the dirty limit in a thin film. One can ex-

tract information about which limit a film is in from measurements of the surface

impedance, which can be related to the complex conductivity using the Mattis-

Bardeen theory [96, 81, 92].

For a thick film in the extreme anomalous limit [92],

Zs ∼ (σ2 + iσ1)
−1/3. (5.65)

For a thick film in the local limit [92],

Zs ∼ (σ1 − iσ2)
−1/2. (5.66)
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and for a thin film in the local limit [92],

Zs ∼ (σ1 − iσ2)
−1

∼ (σ1 + iσ2)/(σ
2
1 + σ2

2).

(5.67)

Comparing Eq. 5.50 with Eq. 5.67 for a thin film in the limit σ1 ≪ σ2, we find that

Rs ∼ σ1/(σ2)
2 (5.68)

and

Ls ∼ 1/(ωσ2). (5.69)

Using log differentiation, we can relate Zs and σ for the three limits [92] by

δZs

Zs

= γ
δσ

σ
(5.70)

where γ = −1/3 for a thick film in the extreme anomalous limit, -1/2 for a thick film

in the local limit, and -1 for a thin film in the local limit. These relations are useful

for understanding how a superconducting resonator behaves as the temperature

changes, as described in the next section.

5.6.6 Resonance Frequency and the Quality factor

The resonance frequency of a superconducting resonator will depend on tem-

perature due to the changes in the surface inductance. Applying log differentiation

to f0 = 1/2π
√
LC, the fractional frequency change of the resonator due to changes

in the inductance is

δf0
f0

= −δL
2L
, (5.71)
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where the total inductance is L = Lk + Lm. Assuming L ≫ δLm, one can approxi-

mate Eq. 5.71 as

δf0
f0

= −αk
δLk

2Lk

, (5.72)

where αk = Lk/L is the fractional kinetic inductance. Using Eqs. 5.56 and 5.72, one

can express this fractional frequency change in terms of the surface inductance:

δf0
f0

= −αk
δLs

2Ls

. (5.73)

For the thin films we are interested in, Ls ∼ 1/(ωσ2) from Eq. 5.69. Then, one can

re-express Eq. 5.73 in terms of the conductivity as

δf0
f0

= αk
δσ2
2σ2

. (5.74)

Integrating both sides, one has

f0(T )

f0(0)
=

[
σ2(T )

σ2(0)

]αk

2

=

[
1− σ2(0)− σ2(T )

σ2(0)

]αk

2

(5.75)

Using a Taylor’s series expansion in the limit [σ2(0) − σ2(T )]/σ2(0) ≪ 1, to a first

order, one has

f0(T )

f0(0)
≃ 1− αk

2

[
σ2(0)− σ2(T )

σ2(0)

]
(5.76)

Therefore, one can rewrite Eq. 5.74 as [81, 92]

f0(T )− f0(0)

f0(0)
≃ αk

σ2(T )− σ2(0)

2σ2(0)
. (5.77)

The quality factor of the resonator also depends on temperature due to the
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change of the surface resistance and inductance. For a thin film, Rs ∼ σ1/(σ2)
2

from Eq. 5.68 and Ls ∼ 1/(ωσ2) from Eq. 5.69. From Eq. 5.64, one can express the

quality factor as

Q =
σ2(T )

αkσ1(T )
. (5.78)

Considering other temperature-independent contributions to Q at zero temperature,

one can show that [81, 92]

1

Q(T )
≃ 1

Q(0)
+
αkσ1(T )

σ2(T )
. (5.79)

Figure 5.19 (a) shows the extracted quality factors for “Resonator1” as a

function of temperature, corresponding to the data shown in Fig. 5.18. Blue and

green squares are QL and Qe, respectively. Red circles are Qi, which was obtained

from 1/QL = 1/Qi+1/Qe. The black solid curve is from Eq. 5.78 with σ1 and σ2 from

the Mattis-Bardeen theory. The red and blue solid curves are from Eq. 5.79, where

QL(0) and Qe(0) were obtained from the data measured at 30 mK. Figure 5.19 (b)

shows the measured resonance frequency (blue circles) as a function of temperature,

from Fig. 5.18. The black solid curve is from Eq. 5.77. For the theoretical curves,

I used three free parameters: the superconducting gap energy ∆0 = 1.7 kBTc, the

transition temperature Tc = 1.3 K, and the fractional kinetic inductance αk = 0.035.

Examination of Fig. 5.18 shows (see page 151) the measured temperature de-

pendence of my device “Resonator1” followed the Mattis-Bardeen theory overall

with the addition of a temperature independent loss term. This suggests the rapid

decrease in f0 and QL above 200 mK was due to “normal electrons” or thermal
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quasiparticles. The main disagreement between the fit and the data is that the data

shows less internal loss (higher Qi) than the fit at 250 mK and 300 mK. This is ac-

tually consistent with the saturation of two-level systems at high temperatures [62],

and suggests that further analysis of this data could reveal additional information

about the “temperature independent” loss-term.
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Table 5.1: Parameters of measured lumped-element resonators. There were two
different wafer designs: “Wafer A” and “Wafer B”. All the resonators were made of
Al, had the same design, and did not go through e-beam lithography. The mask title
of “Wafer A” and “Wafer B” was “LC resonator” and “QWCPWv3”, respectively.
Devices from “Wafer A” and “Wafer B” are shown in Fig. 5.3 (b) and Fig. 5.9 (a),
respectively. Cu box and PCB are shown in Fig. 5.12 (a) and (b), respectively. Pi

is the applied power in the transmission line on the device.

Parameters “Resonator1” “Resonator2” “Resonator3” “Resonator4”

Wafer type A A A B

Wafer fabrication date May 22 ’08 Nov 07 ’08 March 04 ’09 April 02 ’09

Package type Cu box Cu box Cu box PCB

Refrigerator He-3/He-4 He-3 He-3 He-3

Photoresist NR7-1500PY OiR 906-10 OiR 906-10 NR9-1000PY

e-beam resist none LOR/ZEP MMA/ZEP none

Al thickness 150 nm 150 nm 100 nm 100 nm

Temperature 30 mK 380 mK 380 mK 380 mK

Pi -55 dBm -55 dBm -65 dBm -70 dBm

f0 (GHz) 5.578 5.601 5.531 5.582

QL 69,000 19,900 11,400 18,600

Qe 72,700 27,000 25,300 40,700

Qi 1,350,000 79,000 20,856 34,300
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Chapter 6

Circuit Quantum Electrodynamics (CQED)

6.1 Overview

Investigations of the interaction between light and matter have revealed in-

teresting quantum mechanical behavior. When a few photons are confined in a

cavity and can interact with an atom many times before the system spontaneously

decays, quantum electrodynamic effects can be observed. The cavity quantum elec-

trodynamics (cavity QED) started with microwaves and Rydberg atoms. The initial

experiments by Dan Kleppner at MIT were followed by S. Haroche in Paris and H.

Walther in Munich [100]. The interaction between a neutral atom and a photon in-

side an optical cavity was explored in quantum optics [20] [see Fig. 1.3 (a)]. Recent

circuit QED experiments [19] using a superconducting qubit (CPB) as an artificial

atom and a resonator as a cavity have opened a way to explore solid state qubits

[see Fig. 1.3 (b)] from a quantum optics perspective.

In this chapter, I discuss the physics of circuit QED and show measurements

on resonator-CPB coupled system that I fabricated (see device pictures in Fig. 6.1).

6.2 Quantized LC Resonator

For a quantum mechanical description of the interaction between photons and

an atom inside a cavity, one needs to quantize the states of the cavity or resonator.
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To begin, I consider a simple harmonic oscillator, which has an oscillating mass

m attached to a spring. The Hamiltonian is

H =
p2

2m
+
mω2

rx
2

2
, (6.1)

where p is the momentum of the mass, ωr/2π is the frequency of the oscillator, and

x is the displacement of the mass from the equilibrium position.

In quantum mechanics, x and p become operators that obey the commutation

relation [x, p] = i~. The Hamiltonian can be rewritten as

Ĥ = ~ωr

(
â†â+

1

2

)
= ~ωr

(
n̂r +

1

2

) (6.2)

by defining the creation operator

â† =
mωr

2~

(
x̂− ip̂

mωr

)
(6.3)

the annihilation operator

â =
mωr

2~

(
x̂+

ip̂

mωr

)
(6.4)

and the number operator n̂r = â†â.

In a lossless parallel LC resonator electrical circuit, the energy is

H =
Q2

2C
+

(Φ− Φa)
2

2L
, (6.5)

where Q is the charge stored on the capacitor with capacitance C, Φ is the total

flux in the inductor with inductance L, and Φa is the applied flux. If the resonator

is lossless, then one can model it as an ideal quantum resonator.
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By analogy with the mass-and-spring oscillator in Eq. 6.1, one can make the

transformation p → Q, m → C, Φ → x, and ωr → 1/
√
LC. If Q and Φ are

considered to be quantum operators, Q̂ and Φ̂ satisfy the commutation relation

[Φ̂, Q̂] = i~ [11]. Similarly the creation and annihilation operators in Eqs. 6.4 and

6.5 can be written as

â† =
1√

2~ZLC

(
Φ̂− iQ̂ZLC

)
(6.6)

and

â =
1√

2~ZLC

(
Φ̂ + iQ̂ZLC

)
, (6.7)

where ZLC =
√
L/C is the characteristic impedance of the LC resonator. Hence the

Hamiltonian of a quantized LC resonator has the same form as Eq. 6.2, where ωr is

the resonator frequency and n̂r = â†â is the number operator for photons stored in

the resonator.

6.3 Jaynes-Cummings Hamiltonian

When an atom and photons are coupled by an interaction of strength g inside

a cavity, their states become interdependent. As a result, one can no longer separate

the properties of the atom completely from the properties of the photons; i.e. they

are entangled. Such states are called dressed states [101] and the light will interact

with the atom until either the photons in the cavity decay or the atom decays and

the system returns to the ground state.

If we ignore both decay of the cavity and the atom and use the rotating wave

approximation, the coupled system can be approximated by the Jaynes-Cummings
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Hamiltonian [102, 21], which is given by

Ĥ = ~ωr(â
†â +

1

2
) +

~ωa

2
σz + ~g(â†σ− + âσ+). (6.8)

The first term represents the quantized energy levels of the uncoupled resonator. To

get the second term, a two-level approximation was used for the Hamiltonian of the

CPB:

ĤCPB =
~ωa

2
σz, (6.9)

where ~ωa =
√

[4EC(1− ng)]2 + E2
J corresponds to the energy difference between

Ee and Eg of a CPB (see Eq. 2.18). Note that ~ωa = EJ at ng = 1.

The third term in Eq. 6.8 describes the coupling between the resonator and

CPB. Taking into account the ng dependence of the CPB with θ = arctan[EJ/4EC(1−

ng)] [see Fig. 2.3 (b)], the coupling Hamiltonian is ~g(a† + a)[1 − ng − cos(θ)σz +

sin(θ)σx] [21]. At ng = 1, the maximum coupling strength between the resonator

and CPB is defined as g/2π in this thesis.

For capacitive coupling, ~g = (eCg,r/CΣ)Vvac,rms, where Cg,r is the coupling

capacitance between the CPB and resonator, CΣ is the total capacitance of the CPB

island, Vvac,rms =
√
~ωr/2C is the rms voltage amplitude for vacuum fluctuations,

and C is the capacitance of the resonator [see Fig. 6.2 (a)]. If ωr/2π = 5.5 GHz and

C = 0.4 pF, then Vvac,rms = 2.13 µV. Finally, σ− and σ+ annihilates and creates an

excitation of the CPB, respectively.

The Jaynes-Cummings Hamiltonian can be represented in matrix form [103,

104] [see Figure 6.3 (a)]. It consists of the following nr sub-matrices, H(nr), given
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Figure 6.2: (a) Schematic of resonator and CPB coupled together through the cou-
pling capacitance Cg,r. (b) Black dashed curve represents the transmitted power
through the bare resonator or with Cg,r = 0. Assuming a positive detuning
∆/2π = 555 MHz and the coupling strength g/2π = 5 MHz, the resonance fre-
quency fr increases by χ/2π = g2/(2π∆) ≈ 45 kHz when the qubit is in the excited
state (red curves) compared to the bare resonator. When the qubit is in the ground
state, fr decreases by the same amount of χ (blue curve). (c) Transmitted phase
through the coupled system depending on the state of the qubit.
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Figure 6.3: The Jaynes-Cummings Hamiltonian. (a) The matrix form of the Jaynes-
Cummings Hamiltonian in Eq. 6.8. nr is the number of photons stored in the
resonator. The Jaynes-Cummings Hamiltonian H consists of nr sub-matrices H(nr)

and zeros elsewhere. (b) The triangular relationship of θn (see Eq. 6.14).
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by

H(nr) = ~

 (nr −
1

2
)ωr +

ωa

2

√
nrg

√
nrg (nr +

1

2
)ωr −

ωa

2

 . (6.10)

The sub-matrix H(nr) connects two bare states: |nr⟩|g⟩ and |nr − 1⟩|e⟩, which differ

by the number of photons and excitation of the atom by ±1. The energy eigenvalues

of H(nr) are

Enr,± = nr~ωr ±
~
2

√
(ωa − ωr)2 + 4nrg2. (6.11)

For the lowest energy level, one finds E0,g = −~∆/2, where ∆ ≡ ωa − ωr is the

detuning between the resonator and the CPB. The second term in the square root

in Eq. 6.11 yields an ac Stark shift when g ̸= 0. Note that nr in Eq. 6.11 is strictly

speaking not the total number of photons in the system but rather the total number

of excitations [21] in the coupled system.

The eigenstates [21, 103, 104] of H(nr) in terms of the two bare states are given

by

|nr,+⟩ = sin θn|g⟩|nr⟩+ cos θn|e⟩|nr − 1⟩ (6.12)

and

|nr,−⟩ = cos θn|g⟩|nr⟩ − sin θn|e⟩|nr − 1⟩, (6.13)

where

θn =
1

2
arctan

(
2g
√
nr

∆

)
. (6.14)

The triangular relationship of θn is shown in Fig. 6.3 (b).

On resonance, when ∆ = ωa − ωr = 0, the energy difference (Enr,+ − En,−)

between the coupled states scales with 2~g√nr, which can be visualized by the
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dotted lines represent energy eigenvalues of coupled states; |nr,+⟩ and |nr,−⟩.
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Jaynes-Cummings ladder on the left-hand side in Fig. 6.4. The Jaynes-Cummings

ladder shows the energy levels of the atom-photon system. The bare states of the

atom and photons are represented by solid lines and the coupled states of the atom

and photons are represented by dashed lines. When nr = 1, the energy difference

between the coupled states corresponds to 2~g, which is called the vacuum Rabi

splitting. This means that if the state |g⟩|1⟩ is created, it will oscillate back and

forth between |g⟩|1⟩ and |e⟩|0⟩ at a frequency of g/π. Here “vacuum” means that

the atom is in the vacuum state when the resonator absorbs one photon from the

atom and vice versa.

The other limit of the Jaynes-Cummings Hamiltonian is the dispersive limit,

when ∆ ≫ g. In this limit, the Hamiltonian [102, 21, 103] is given by

Ĥ ≈ ~
(
ωr +

g2

∆
σz

)(
â†â +

1

2

)
+

~ωa

2
σz, (6.15)

where the first term yields the effective resonance frequency of the resonator. In

the first term, one can see that the resonance frequency of the resonator is shifted

by χ/2π = ±g2/(2π∆) depending on the state of the qubit. The Jaynes-Cummings

ladder on the right-hand side in Figure 6.4 shows schematically the change of the

resonance frequency from ωr of the uncoupled bare states to ωr−g2/∆ and ωr+g
2/∆

in the coupled states. Figures 6.2 (b) and (c) shows the qubit-state dependence of

the resonance; the resonance frequency increases or decreases by the dispersive shift

χ depending on the state of the qubit.

One can also obtain the change of resonator frequency from the energy eigen-

values in Eq. 6.11. In the dispersive limit, a Taylor’s series expansion can be per-
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formed in powers of 4nrg
2/∆2. To first order, the energy eigenvalues are

Enr,± = nr~ωr ±
(
~∆
2

+
~nrg

2

∆

)
. (6.16)

This expansion is valid as long as nr ≪ ncrit, where

ncrit =
∆2

4g2
, (6.17)

which defines a critical number of photons for the dispersive limit. For example,

ncrit = 100 when ∆/2π = 100 MHz and g/2π = 5 MHz.

In the dispersive limit, the excited state of the qubit |e⟩ is close to |+⟩. Hence,

the energy difference between two neighboring photon states (nr + 1 and nr) with

the qubit in the excited state is:

Enr+1,+ − Enr,+ = ~ωr +
~g2

∆
. (6.18)

Also, the energy difference between two neighboring photon states (nr + 1 and nr)

with the qubit in the ground state is:

Enr+1,− − Enr,− = ~ωr −
~g2

∆
. (6.19)

This leads to a dispersive frequency shift of the resonator which does not depend

on the number of excitation nr as long as nr ≪ ncrit is valid.

To see how the ac Stark shift effect [21, 106] arises in the coupled system in

the dispersive limit, one can rewrite Eq. 6.15 as

Ĥ ≈ ~ωr

(
â†â+

1

2

)
+

~
2

(
ωa +

2g2

∆
â†â+

g2

∆

)
σz, (6.20)
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where the second term yields the effective qubit angular frequency, 2nrg
2/∆ is the

ac Stark shift term, and g2/∆ is the Lamb shift induced by the vacuum field. Using

Eq. 6.16, the energy difference between two coupled states; |nr + 1,+⟩ and |nr,−⟩,

is given by

Enr+1,+ − Enr,− = ~ωa + ~(2nr + 1)
g2

∆
, (6.21)

reproducing the effective qubit energy given in Eq. 6.20. The Jaynes-Cummings

ladder on the right-hand side in Figure 6.4 shows the energy eigenvalues in the

dispersive limit.

For small θn in the dispersive limit, tan(2θn) in Eq. 6.14 becomes 2θn, leading

to θn ≃ g
√
nr/∆. Since sin θn ≃ θn and cos θn ≃ 1, the eigenstates in Eqs. 6.12 and

6.13 can be approximated as

|nr,+⟩ =
g
√
nr

∆
|g⟩|nr⟩+ |e⟩|nr − 1⟩ (6.22)

and

|nr,−⟩ = |g⟩|nr⟩ −
g
√
nr

∆
|e⟩|nr − 1⟩. (6.23)

6.4 Thermal Noise in a Resonator

In circuit QED experiments, it is important to prevent the resonator from

being excited by thermal noise. Ideally, the number of thermally occupied photons

in the resonator will be determined by the temperature of the bath and not by noise

coming down the electrical leads. The probability for a resonator with resonance
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frequency f and temperature T to be in the ground state is given by

Pg =
1∑∞

s=0 exp(−s
~ωr

kBT
)

=
1

Z
,

(6.24)

where the denominator is the grand partition function Z for the system. Assuming

a resonant frequency of ωr/2π = 5.4 GHz and a temperature T = 50 mK, the

probability of being in the ground state is 99.5 %. For these parameters, Fig. 6.5

(a) shows a semi-log plot of the probability of the resonator in the ground state as

a function of temperature.

We can also calculate the average number of excitations in the resonator as a

function of temperature. This is given by,

⟨nr⟩ =
∞∑

nr=0

nr exp(−nr
~ωr

kBT
)

Z
. (6.25)

Figure 6.5 (a) also shows a log-log plot of the expectation value of the number of

resonator excitations as a function of temperature. Examination of this plot shows

that to reach the limit where ⟨nr⟩ < 1 at fr = 5.4 GHz, we need to cool below

T = 0.37 K.

On the input side of our device we can put attenuators that thermalize incident

noise (see “Microwaves In” in Fig. 6.6). Since we only need very small powers at

the device we can put a fair amount of attenuation on this line. However, on

the output line from the device, we have to be more careful; we want as little

attenuation between the device and the first stage amplifier, otherwise the effective

noise temperature of the amplifier goes up (see “Microwaves Out” in Fig. 6.6). To
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isolate the device from noise at 4 K going down the output lines, I used isolators,

which blocked noise coming down the lines, but not signal going up the lines.

To understand how much isolation we need, recall that the qubit transition

rates are given by [29]

Γ↑ =

(
A

~

)2

SV (−f) (6.26)

Γ↓ =

(
A

~

)2

SV (f), (6.27)

where Γ↑ and Γ↓ represent the excitation and decay rate of the qubit, respectively,

and A is a coupling factor from the qubit to the voltage fluctuations. Here SV

represents the “double-sided” spectral density of voltage noise (see discussion in

sections 2.7 and 3.5). In thermal equilibrium at temperature T , the spectral density

of voltage noise from a resistor R (e.g. 50 Ω) at a frequency f is given by Eq. 2.76 or

Eq. 3.20. If we have a resistor (R) at temperature Ta and a coax cable that runs to

an attenuator with attenuation αb with the same effective resistance at temperature

Tb, then the effective spectral density of voltage noise on the transmission line at

the mixing chamber (see Eq. 3.19 and Fig. 3.10) is given by

SV (f) = SV (f, Tb) + αbSV (f, Ta) (6.28)

Figure 6.5 (b) shows a plot of the power spectral density of voltage noise as a function

of frequency for a 50 Ω resistor at a temperature of T = 0.37 K (see the black curve).

I also show the noise at Ta = 4 K with an αb = 10−1 = 10 dB attenuator at Tb = 50

mK (see the blue curve). For comparison, I also show noise from Ta = 4 K plus an

αb = 10−2 = 20 dB attenuator at Tb = 50 mK (see the red curve). We see that in
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order to make the noise temperature smaller than 0.37 K, one needs at least 20 dB

of attenuation on the mixing chamber.

Because of that attenuator, however, the total noise that the device sees is not

thermodynamic equilibrium noise; i.e. the spectral density does not obey

SV (+f) = exp

[
hf

kBT

]
SV (−f). (6.29)

To understand the effect of non-equilibrium noise we need to calculate the steady

state solution for the qubit to be in its excited state using the rate equations. We

will assume that we have a resonator and that transitions can only occur between

nearest neighbor levels. The rate of change of the probability of the ground state is

given by

dP0

dt
= P1Γ↓ − P0Γ↑. (6.30)

The rate of change of the probability of the nrth state, for nr > 0, is given by

dPnr

dt
= (nr + 1)Pnr+1Γ↓ + nrPnr−1Γ↑ − Pnr(nrΓ↓ + (nr + 1)Γ↑). (6.31)

Note the factor nr + 1 and nr in Eq. 6.31 come from the raising and lowering

operators.

Since we are considering the steady state condition, the left hand side is zero.

From Eq. 6.30 we have

P1 =
Γ↑

Γ↓
P0. (6.32)

For the second state, we have

P2 = (2Γ↓)
−1[P1(Γ↓ + 2Γ↑)− P0Γ↑] (6.33)
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or

P2 =

(
Γ↑

Γ↓

)2

P0. (6.34)

The recursion relation for the nrth state is just

Pnr =

(
Γ↑

Γ↓

)nr

P0. (6.35)

To solve for the probability of being in the ground state or the nrth state we

can use the normalization constraint

∞∑
nr=0

Pnr = 1. (6.36)

Solving for P0 we get

P0 =
1∑∞

nr=0

(
Γ↑

Γ↓

)nr

=
1(
1

1− Γ↑/Γ↓

)
= 1− Γ↑

Γ↓
.

(6.37)

The average number of photons can be found from Eqs. 6.35 and 6.37

⟨nr⟩ =
∞∑

nr=0

nrPnr

=
∞∑

nr=0

 nr

(
Γ↑

Γ↓

)nr

∑∞
s=0

(
Γ↑

Γ↓

)s

 .

(6.38)

Note that in the limit that the noise is thermal equilibrium noise (Eq. 6.29), Eq. 6.38

becomes Eq. 6.25. Using Eqs. 6.27, 6.28, and 6.38, I find that if there is one 10 dB

isolator on the mixing chamber, then the average number of photons is on the order

of 1.4 at Tb = 50 mK and 5.4 GHz. If we put a total of 20 dB of isolation on the
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mixing chamber we get an average number of photons of 0.16. For ⟨nr⟩ = 1, one

needs approximately 11.5 dB of isolation.

6.5 Experimental Setup

6.5.1 Dilution Refrigerator Setup

A schematic of cables and electrical components in the refrigerator is shown

in Fig. 6.6; this set-up went through a few iterations and this arrangement is what I

settled on in the end. A total of 60 dB attenuation was added to the microwave line

feeding power to the resonator. The dc line for the CPB gate voltage was combined

with microwaves using a bias T on the mixing chamber. There were no filters on

the dc lines because it is very lossy and behaved as a filter going to the device. The

total attenuation of the dc lines were about 27 dB at 0.5 GHz, 37 dB at 1 GHz, and

83 dB at 5 GHz [30]. To allow dc bias for the CPB, a dc block was placed right

after the sample. Figure 6.7 shows photographs of the cold stage and 4 K stage.

As I discussed in the last section on thermal noise, we need to use less attenu-

ation on the signal output line and still achieve high isolation from any noise going

from the 4 K stage to the device. For that purpose, I used two isolators in series on

the cold stage, with an isolation of 18 dB for each isolator between 4 and 8 GHz [see

Figs. 6.6 and 6.7 (a)]. Figures 6.8 (a) and (b) show the transmission and isolation

through each of the isolators, respectively. I measured each isolator individually by

immersing it in liquid nitrogen and measuring the S-parameters using a network

analyzer (Agilent E5071c). The transmission was flat with a small attenuation of
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Figure 6.7: (a) Photograph of components at the cold stage and (b) photograph of
components at the 4 K stage. For experiments after Dec 09 ’09, the dc block was
inserted between the device output and the isolator input on the cold stage.
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about 2.5 dB between 4 to 8 GHz, which is the bandwidth of the isolator. The

isolation was more than 20 dB from 4 to 8 GHz. The isolators also had magnetic

shielding that allowed them to be used up to 1,000 Gauss; it was necessary to apply

a magnetic field to vary EJ and it was best if this field did not affect the isolation.

After the device and isolators I used a stainless steel cable (UT85-SS-SS) with

attenuation of 3.5 dB around 5.5 GHz to connect the mixing chamber and 4 K stage.

We also tried to replace the lossy stainless steel cable with a BeCu cable to increase

the signal-to-noise ratio; the BeCu cable had only a 0.6 dB loss. But we noticed

that the refrigerator was only getting to 60 mK, probably due to heat flowing down

the BeCu cable, so we went back to using UT85-SS-SS.

Our low noise cryogenic amplifier (Caltech: Model 210, see Appendix B),

which is specified to have a noise temperature of 4 K around 5.5 GHz, was placed

in the liquid helium bath. To prevent this amplifier from going into self-oscillation,

we found we had to place a 3 dB attenuator right before the amplifier (see Fig. 6.6).

6.5.2 Measurement Setup

The set-up at the mixing chamber and 4 K stage were described in section

6.5.1. Here I describe the room temperature experimental setup. Figure 6.9 shows

a schematic of the measurement set-up. The blue dashed lines are for the cold stage

at 25 mK and red dashed lines are for the low noise amplifier at 4 K. Outside of the

dashed boxes are parts that are at room temperature. On the left-hand side of the

blue dashed box, one can see two microwave sources for two tones: the pump and

probe.
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The probe (the first tone) was used to measure the resonator while the pump

(the second tone) was used to manipulate and excite the qubit. They were combined

using a directional coupler (HP 87301D), which has a bandwidth from 1 GHz to 40

GHz. A Rubidium clock (Stanford Research Systems: FS725) [107] was used as a

10 MHz external clock for the signal generators. To sweep and dc bias the CPB

gate voltage, I used an arbitrary waveform generator (Tektronix AFG3102)

After the cryogenic amplifier, the microwave signal went to a room temperature

microwave isolator and bandpass filter with a center frequency of 5.5 GHz (see the

right-hand side of the red dashed lines in Fig. 6.9). The isolator was used to reduce

reflected signals while the bandpass filter was used to reduce the integrated signal

to a smaller band around the probe frequency. Next, the microwave signal was

amplified by a low noise amplifier (Miteq P/N: AMF-4F-04000800-12-10P), which

had a gain of 38 dB over 4 GHz to 8 GHz.

After the LNA, the signal was passed through a mixer (Marki: M1-0408),

where it was mixed down with a local oscillator (LO) to a low frequency signal,

or IF signal. This mixer technique is discussed in section 6.5.3. To filter some

leakage signal and reduce the integrated noise, the IF signal then passed through

two absorptive low pass filters (Picosecond Pulse Labs) with cut-off frequencies at

1.9 GHz and 35 MHz.

Finally, the IF signal was amplified with an IF amplifier (Minicircuit) then

sent to a digital oscilloscope (Agilent 54855A Infiniium), where we extracted the

amplitude and phase of the probe signal by digitizing the IF signal (see next section).

Before the IF signal reached the digital oscilloscope, I filtered it with low pass
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filters (Minicircuit) with cut-off frequencies at 1.9 MHz or 10 MHz. Next, the IF

signal was sampled and averaged by the digital oscilloscope. I preferred to use

this oscilloscope, rather than a conventional DAC because it has greater isolation

between the input ports. For clean spectroscopy, the typical IF frequency was 400

kHz and I used a lower cut-off filter. For time-domain measurements, I used a higher

IF frequency, up to 5 MHz.

6.5.3 Heterodyne Measurement

As I discussed in section 6.3, the resonator frequency changes depending on the

qubit state, and changes in the resonance frequency are measurable by monitoring

the transmitted amplitude and phase of a microwave signal [see Figs. 6.2 (b) and (c)].

To measure the response of a resonator, I initially used a vector network analyzer,

which was convenient for measuring S21 over a wide frequency range quickly. For a

qubit measurement, however, one needs a very accurate microwave source, ideally

to an Hz, whereas the width from our network analyzer was on the order of 50 kHz.

The measurement versatility of the network analyzer was also poor.

The resonance frequency of the resonator was fr = 5.5 GHz, which is not

convenient for measuring directly on an oscilloscope or DAC. One can convert the

frequency down to dc or low frequency by making a homodyne or heterodyne mea-

surement. Such frequency down-conversion can be performed by a microwave mixer;

note that a similar technique is used internally in a vector network analyzer.

A single channel mixer consists of an RF input, local oscillator (LO) input,
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and intermediate frequency (IF) output (see Fig. 6.9). The RF input voltage VRF

and LO input voltage VLO are

VRF (t) = A(t) sin(ωRF t+ ϕ(t)) (6.39)

VLO(t) = B0 sin(ωLOt), (6.40)

where A(t) and ϕ(t) represent the amplitude and phase of the probe signal from the

resonator and B0 is the constant voltage amplitude from the local oscillator, which

we assume has constant zero phase offset. The mixer multiplies the input voltage

signal with the voltage signal from the LO and produces an output voltage:

VIF (t) =
A(t)B0

2
[cos((ωRF − ωLO)t+ ϕ(t))− cos((ωRF + ωLO)t+ ϕ(t))]. (6.41)

Since we want an output that is the difference of two frequencies, we use a low-pass

filter to remove the high frequency component at ωRF +ωLO. The resulting IF signal

becomes

VIF (t) = A
′
(t) cos[ωIF t+ ϕ(t)], (6.42)

where A
′
(t) = A(t)B0/2 and ωIF = ωRF − ωLO.

For ωIF = 0, the IF signal is dc and this is a homodyne measurement. For a

homodyne measurement, we noticed that there is a lower limit to the input rf power

that can be used due to poor isolation between the LO and RF ports or due to

self-mixing of the LO [see the red curve in Fig. 6.8 (c)]. In contrast, a heterodyne

measurement (ωIF ̸= 0) avoids this problem in the low rf power limit [see the blue

curve in Fig. 6.8 (c)], but it requires two microwave sources with slightly different
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frequencies. The circuit QED experiments require a small number of photons, hence

we had to use a heterodyne measurement.

For a heterodyne measurement, the mixed down IF output VIF (t) is an ac

signal having a frequency of ωIF . In order to extract the in-phase I(t) and out-of-

phase Q(t) components from VIF (t), we used the Fourier transform [103]:

I(t) =
1

TIF

∫ t+TIF

t

cos(ωIF τ)VIF (τ)dτ, (6.43)

Q(t) =
1

TIF

∫ t+TIF

t

sin(ωIF τ)VIF (τ)dτ, (6.44)

where TIF = 2π/ωIF is the period of the IF frequency. In actual measurements, we

used a summation instead of an integral, hence Eqs. 6.43 and 6.44 become

I(t) =
1

TIF

N∑
n=0

cos(ωIF τn)VIF (τn)∆τ, (6.45)

Q(t) =
1

TIF

N∑
n=0

sin(ωIF τn)VIF (τn)∆τ, (6.46)

where τn = t + n∆τ , ∆τ = TIF/N , and N is the number of data points in an

IF period TIF . Note that I used a sampling rate for my measurements equal to

N × ωIF/2π.

From I(t) and Q(t), I can get the time dependent amplitude A
′
(t) and phase

ϕ(t):

A
′
(t) =

√
I(t)2 +Q(t)2 (6.47)

ϕ(t) = arctan

(
Q(t)

I(t)

)
. (6.48)
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6.6 Dispersive Limit

6.6.1 Dispersive Shift of the Resonator Resonance

The Jaynes-Cummings Hamiltonian (Eq. 6.15) predicts the dispersive fre-

quency shift of the resonator when the resonator is coupled to the qubit even when

the qubit ground state is far detuned. The corresponding dispersive shift of the res-

onator is χ/2π = g2/(2π∆), where the detuning ∆ is a function of EJ and ng. Note

that the amount of dispersive shift is the same regardless of whether the qubit is in

the ground state or excited state, except that the sign will be opposite. Measuring

χ/2π when the qubit is in the ground state turns out to be easier than when the

qubit is in the excited state; for the excited state, we need to apply a second tone

or pump frequency as well as the probe frequency. For single-tone spectroscopy,

I measured the transmitted amplitude and phase of the probe signal through the

resonator while sweeping the applied gate voltage to the CPB and stepping the

microwave probe frequency.

Figure 6.10 shows single-tone spectroscopy of device “LEQED1” at two dif-

ferent magnetic fields. The source power was -70 dBm and the total loss from the

directional coupler (17 dB) and attenuation in the refrigerator including cables (53.5

dB) was 70.5 dB from room temperature to the chip. Hence, the expected power of

the probe signal on the transmission line in the chip was approximately -140.5 dBm

or 8.9 aW. The relationship between the average power and number of photons in

the resonator is Pi = κr⟨nr⟩~ωr, where the energy decay rate of resonator is given

by κr/2π = fr/QL = 0.18 MHz (see Table 6.1). The average number of photons
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(a)

(b)

45 kHz

B = 0 G

150 kHz

B = - 2 G

Figure 6.10: Single-tone spectroscopy of device “LEQED1”. Measured transmitted
probe amplitude (gray color) in the log scale as a function of the probe frequency
f and ng at B = 0 Gauss (a) and B = -2 Gauss (b). The red curves in (a) and
(b) are the predicted spectrum from the Jaynes-Cummings Hamiltonian using the
matrix in Fig. 6.3. Measured EJ/h of (a) and (b) was 8.15 GHz and 6.29 GHz,
respectively from two-tone spectroscopy (see Fig. 6.13). From the detuning and
dispersive frequency shift, I extracted g/2π ≃ 11 MHz.
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in the resonator is expected to be approximately ⟨nr⟩ = 2. For this measurement,

I ramped the gate voltage at 500 Hz and stepped the microwave frequency with a

step size of 10 kHz. I averaged the IF signal 500 times at the oscilloscope and had

Labview average them again 20 times. Thus, the total number of average was 10,000

for each frequency.

At zero magnetic field, a small resonance frequency shift of 45 kHz was mea-

sured at ng = 1 and ng = 3 [see Fig. 6.10 (a)]. This was smaller than the resonator

width of 0.2 MHz [see Fig. 6.11 (a)]. The maximum EJ/h of the CPB “LEQED1”,

estimated from the SET resistance was 9 GHz and the measured EJ/h was 8.15

GHz at the same field used in this single-tone spectroscopy. As Eq. 6.19 predicts,

the dispersive shift did not increase as I increased the number of photons as long as

it was smaller than the critical number of photons, expected to be ncrit = 15, 000

given ∆/2π = 2.7 GHz and g/2π = 11 MHz. When I applied too much power, the

dispersive frequency shift started to break down and the resonator showed strange

behavior (see Fig. 7.2 and the discussion in section 7.1.3).

The observed dispersive shift has a periodicity in ng of 2, which implies that

there are no quasiparticles or at least a very small non-equilibrium quasiparticle

population. To calibrate ng, I warmed up the device to introduce thermal quasipar-

ticles. I heated the mixing chamber and monitored the periodicity of the dispersive

shift for temperatures of 30 mK, 150 mK, 200 mK, 250 mK, and 300 mK. When the

temperature reached 250 mK, another dispersive shift appeared and doubled the

periodicity due to thermal quasiparticles. In this way I calibrated ng and verified

1-e periodicity at T > 250 mK. For ∆ng = 2, or a change of one excess Cooper-pair
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(a)

(b)

150 kHz

ng=2 

ng=1

f = 5.4424 GHz     

f = 5.44256 GHz

Figure 6.11: (a) Line cuts of Fig. 6.10 (b) at ng = 1 and 2 along the probe frequency
f . The resonator frequency was pulled down by 150 kHz at ng=1, coupled with the
qubit in the ground state (red curve). (b) Line cuts of Fig. 6.10 (b) at f = 5.4424
GHz (black curve) and f = 5.44256 GHz (green curve) along ng.
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(2e) on the island of the CPB, I applied a change in the dc gate voltage ∆Vg = 68

mV. From 2e = Cg,dc∆Vg, the dc gate capacitance was thus Cg,dc = 4.7 aF.

Increasing the B field increased the dispersive shift as expected [see Fig. 6.10

(b)]. At B = −2 Gauss, I observed a dispersive shift of χ/2π = 150 kHz and EJ

was found to be about 6.2 GHz. EJ and EC of the CPB were measured by two-tone

spectroscopy, which is discussed in the next section. From the measured dispersive

shift χ/2π = 150 kHz and detuning ∆/2π = 0.847 GHz, I extracted a coupling

strength g/2π ≃ 11 MHz. Using the Jaynes-Cummings Hamiltonian in matrix form

(see Fig. 6.3) I was able to get a good fit to the dispersive shift of the resonator (see

the red curve in Fig. 6.10).

Figure 6.11 (a) shows line cuts along f at ng = 1 and 2 from Fig. 6.10 (b),

showing the transmitted power through the resonator. The resonator resonance

decreased by 150 kHz at ng = 1, or the charge degeneracy point, where the coupling

between the resonator and CPB was maximized since the detuning was minimized.

At ng = 2, the coupling was effectively off since the detuning was a maximum.

Figure 6.11 (b) shows line cuts along ng for fixed probe frequency from Fig. 6.10

(b). The green curve is the transmitted power as a function of ng when the probe

frequency was fixed to the resonator’s center frequency of f = 5.44256 GHz. At ng =

1 and 3, the transmitted power increased to 0 dB due to the dispersive shift of the

resonator. As ng moves away from those degeneracy points, the transmitted power

decreased to -17 dB, which corresponded to the amplitude of the resonance. The

black curve is the transmitted power as a function of ng when the probe frequency

was slightly detuned from the center frequency of the resonator and fixed to f =
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5.4424 GHz. Since the resonance shifted down to f = 5.4424 GHz, the transmitted

power dropped to -15 dB at ng = 1 and 3. This is the opposite behavior from

that of the green curve when the probe frequency was fixed to the center frequency

of the resonator. But, due to the asymmetry of the resonance curve along f , the

transmitted power for the black curve did not completely recover to 0 dB when ng

was away from the degeneracy points.

I was not able to observe the resonant limit, where ∆ = 0, directly by sin-

gle tone spectroscopy, since I found it was hard to control the EJ of the CPB

“LEQED1”. We suspect magnetic vortices entered into the device or the ground

plane, making it hard to change EJ smoothly. I also observed sudden drops in the

quality factor of the resonator and substantial changes in the resonance frequency

in nonzero magnetic fields. In those cases, I had to warm up above 1.3 K (Tc of the

Al) with the magnetic field zero and cool back down to recover a sharp resonance.

Figure 6.12 shows single-tone spectroscopy of the second device “LEQED2”.

Since this device had an estimated maximum EJ of 19 GHz from the SET resistance,

I could not observe the dispersive shift at zero magnetic field. Typically I applied a

magnetic field between ±4 and ±2 Gauss in order to see a dispersive shift. Assuming

the area of the CPB loop is 1µm × 1µm, under a magnetic field B = 1 Gauss, the

ratio of the applied flux Φa to the flux quantum Φ◦ is about 0.05. For B = 3 Gauss,

Φa/Φ◦ ≃ 0.145. Hence, one needs 20 Gauss for one flux quantum although this

ignores flux shielding and focussing from the ground plane.

When a magnetic field B = −2.855 Gauss was applied to the device, I observed

a dispersive shift of 150 kHz when the number of probe photons stored in the
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g
=1.2 

n
g
=1
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g
=1.2 

n
g
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500 kHz

Figure 6.12: Single-tone spectroscopy of device “LEQED2”. (a) Measured trans-
mitted probe amplitude (gray color in a log scale) and (b) phase as a function of
the probe frequency f and ng at B = -2.855 Gauss. (c) The resonator frequency
was pulled down by 500 kHz at ng=1, when the qubit was in the ground state (red
curve). (d) The transmitted phase through the resonator was also pulled down by
500 kHz at ng=1 (red curve). Measured EJ/h was 5.495 GHz from two-tone spec-
troscopy. From the detuning and dispersive frequency shift, I extracted g/2π ≃ 5
MHz.
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resonator was about 26. By measuring the CPB two-tone spectrum, I found EJ/h =

5.495 GHz. From the detuning and dispersive shift, I extracted the coupling strength

g/2π ≃ 5 MHz for device “LEQED2”. From the 2-e periodicity of the dispersive

shift, I found that the gate voltage Vg = 71 mV corresponded to ∆ng = 2 or one

excess Cooper-pair (2e) on the island of the CPB. From 2e = Cg,dcVg, I found the

dc gate capacitance Cg,dc was about 4.5 aF, which was similar to that of device

“LEQED1”.

When we measured device “LEQED1”, we found the phase fluctuated slowly

by about 120◦ in 10 hours, even though the RF and LO were locked together by

the external 10 MHz reference. To solve the phase problem, we decided to take

a phase reference from the RF and LO. We added each directional coupler to the

RF and LO output and divided the power for a second mixer. By mixing down

the divided power from the RF and LO, we obtained the phase reference. Then,

we subtracted the measured phase through the device “LEQED2” from the phase

reference. This also required taking two IF signals from two mixers simultaneously

through two channels on the digital oscilloscope. This method provided stable phase

signals and we measured the phase signal instead of the transmitted power for device

“LEQED2”,

6.6.2 CPB Transition Spectrum

In order to measure the CPB spectrum in the dispersive limit, I had to apply

a second microwave tone (pump) while measuring the transmitted signal of the first
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microwave tone (probe). With the qubit in the ground state and biased at the

degeneracy point, the probe frequency was fixed at the perturbed frequency of the

resonator. If the qubit was excited, the resonator frequency would increase as the

resonance curve shifted up. The resulting two-tone spectroscopy shows the change

of transmitted probe amplitude as a function of the pump frequency fpump and ng.

The white parabola in Fig. 6.13 (a) is the CPB spectrum of device “LEQED1”

at zero magnetic field. The step size in the pump frequency for (a) was 4 MHz and

the number of probe photons stored in the resonator was approximately ⟨nr⟩ = 22.

EJ/h was 8.43 GHz and I was able to see the spectrum up to 10 GHz though it

was very faint. The horizontal white lines were due to charge fluctuations in the

device. One can also see a faint second section of a parabola on the right-hand side

(the spectrum looks like two curves). This was most likely due to a low frequency

discrete charge fluctuator. At B = −2 Gauss, EJ/h decreased to 6.29 GHz [see the

CPB spectrum in Fig. 6.13 (c)]. The step size in the pump frequency was 500 kHz

and the number of probe photons stored in the resonator was about ⟨nr⟩ = 2. I

found good fits to the model for both data (a) and (c), and found EC/kB = 0.60 K

[see red curves in Fig. 6.13 (b) and (d)].

Fig. 6.14 (a) shows the CPB spectrum of device “LEQED2” at B = −1.47

Gauss. The step size in the pump frequency was 5 MHz and the number of probe

photons stored in the resonator was about ⟨nr⟩ = 18. Baladitya Suri took this data

by measuring the phase of the transmitted signal with the probe frequency fixed to

the resonant frequency of the uncoupled resonator. One can also see a faint second

parabola around ng = 1.1 and EJ = 6.35 GHz caused by a charge fluctuator. By
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(a)

(c)

(b)

(d)

Figure 6.13: Two-tone spectroscopy of device “LEQED1”. Measured transmitted
probe amplitude (gray color log scale) as a function of the pump frequency fpump

and ng at B = 0 Gauss (a) and B = -2 Gauss (b). The red curves in (b) and (d)
are the predicted CPB spectrum from the Jaynes-Cummings Hamiltonian using the
matrix in Fig. 6.3. EC/kB = 0.60 K was extracted by fitting CPB spectrums.
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(a)

(b)

(c)

Figure 6.14: Two-tone spectroscopy of device “LEQED2”. (a) Measured transmit-
ted probe phase (gray color) as a function of the pump frequency fpump and ng at
B = -1.47 Gauss. (b) Same data as (a) but fit to predicted spectrum (red curve).
EC/kB = 0.30 K was extracted by fitting the spectrum. (c) The gray scale plot
shows the net phase change of the transmitted probe after subtracting the average
background phase from the data in (a). B. Suri took this data and I analyzed it.
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fitting the spectrum, we extracted an EC/kB = 0.30 K [see red curves in Fig. 6.14

(b)].

6.6.3 Saturating the CPB

The expected excited state population Pe of the CPB due to the pump power

can be found from the steady state solution of the Bloch equations [108, 109]. Pe is

given by

Pe =
Ω2T1T2/2

1 + (ωpump − ωa)2T 2
2 + Ω2T1T2

, (6.49)

where Ω is the bare Rabi flopping angular frequency. Ignoring inhomogeneous broad-

ening, the half width at half maximum (HWHM) [108, 109] of the resonance is given

by

2π∆fHWHM =
1

T2

√
1 + Ω2T1T2. (6.50)

In the limit of low power, we can also write

2π∆fHWHM ≡ 1

T ∗
2

, (6.51)

where T ∗
2 is the spectroscopic coherence time of the qubit.

Since the Rabi frequency Ω is proportional to the amplitude of the pump

voltage, the ∆fHWHM of the resonance will increase with power. This is known

as “power broadening” [33]. If the pump power is very small, then the Ω term in

Eq. 6.50 can be ignored, leading to T ∗
2 ≃ T2, although this only holds, if we can

ignore inhomogeneous broadening. Fig. 6.15 (a) shows the measured spectroscopic

width of the CPB “LEQED1” at ng = 1 as a function of pump frequency and power
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Figure 6.15: (a) The spectroscopic resonance of CPB “LEQED1” as a function of
pump power at EJ/h = 6.325 GHz. The number of probe photons was about 2. (b)
Lorentzian curve fit of the CPB resonance measured at a pump power of 0.4 fW.
The Full Width Half Maximum (FWHM) was 3.16 MHz, which corresponds to T ∗

2

of 100 ns. (c) The population of the CPB in the excited state as a function of pump
power at ng = 1 and on resonance at EJ/h = 6.22 GHz. The number of probe
photons was about 200. The inset shows a zoom in of (c) below the pump power of
10 fW.
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while the number of probe photons was fixed to 2. As I increased the pump power,

the width of the CPB resonance also increased. Below a pump power of 126 aW, the

width did not decrease more. The minimum HWHM was about 1.58 MHz, which

corresponds to a spectroscopic coherence time T ∗
2 of 100 ns [see the green curve in

Fig. 6.15 (a) or Fig. 6.15 (b)]. Since T ∗
2 includes effects of inhomogeneous broadening

as well as decoherence effects, this implies the coherence time T2 of the CPB must

be greater than or equal to 100 ns.

At high power on resonance (ωpump = ωa), one expects the population Pe to be

saturated at 50 %. Fig. 6.15 (c) shows the measured Pe for ng = 1 and on resonance,

as I increased the pump power. I extracted Pe by measuring the amplitude of the

CPB resonance and assuming Pe = 0.5 when the amplitude was saturated. Pe was

saturated at pump powers of -90.5 dBm (0.9 pW) or larger. The inset in Fig. 6.15 (c)

shows Pe for pump powers 10 fW or less. Due to charge fluctuations in the system,

it was not always so easy to see a good quality CPB resonance. In particular, when

I took the data in Fig. 6.15 (c), I biased the CPB at ng = 1 and EJ/h = 6.22 GHz

and measured the amplitude of the CPB resonance as a function of pump power for

fast measurements. And for Fig. 6.15 (c), I did not measure the CPB resonance as

a function of fpump as Fig. 6.15 (a) since it took longer time and had more chances

to be fluctuated by low frequency charge noise.

To extract the coherence time T2 from the observed power broadening, we note

that in general

1

T ∗
2

=
1

T †
2

+

√
1 + Ω2T1T2

T2
, (6.52)
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where T †
2 is the inhomogeneous broadening time [33]. At small pump power, we can

ignore the Ω term and put the following bound on T2:

1

T ∗
2

≃ 1

T †
2

+
1

T2
≥ 1

T2
. (6.53)

The measured T ∗
2 was 100 ns when the pump power was 126 aW [see Fig. 6.15 (b)].

Pe was less than 0.1 at the same power [see the inset in Fig. 6.15 (c)]. From Eq. 6.53,

this means T2 ≥ T ∗
2 = 100 ns at the pump power of 126 aW. From T1 and the bound

on T2, I could also extract a bound on the dephasing time Tφ using Eq. 2.32. As I

discuss below, the measured T1 of the CPB around EJ = 6.29 GHz was about 2.3

µs, which is much longer than T2. Hence Tφ ≈ T2 ≥ 100 ns.

6.6.4 ac Stark Shift

It is important to know the number of photons in the resonator so that you do

not apply too much power to the device. One way to measure the number of photons

is the ac Stark shift of the qubit. When the resonator is strongly coupled to the qubit,

the ac Stark shift in the qubit energy level is observable and increases monotonically

with power [105, 106]. I used the ac Stark shift to calibrate the number of photons

in the resonator and extract the total attenuation on the input side of the microwave

cables at the base temperature. I biased the CPB “LEQED1” at ng = 1 and swept

the pump frequency while monitoring the transmitted amplitude of the probe [see

Fig. 6.16 (a)]. As I increased the power of the probe, EJ also increased. The pump

power was fixed to -124 dBm or about 400 aW to excite the CPB; this was a low

enough power (see previous section) not to saturate the CPB.
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Figure 6.16: ac Stark shift of CPB “LEQED1”. (a) Transmitted probe amplitude
as a function of pump frequency at the degeneracy point for various probe powers.
The asymmetric resonance could be due to the high pump power. (b) The probe
power (Pi) was calibrated from ac Stark shift. I extracted the ac Stark shift of 0.34
MHz per photon in the resonator.
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The CPB transition frequency fa due to the ac Stark shift (Eq. 6.21) is given

by

fa = fa,0 +
2g2⟨nr⟩
2π∆

, (6.54)

where ⟨nr⟩ is the average number of photons in the resonator, fa,0 is the CPB

transition frequency when ⟨nr⟩ = 0, and the detuning ∆/2π = fa,0−fr. fa,0 = 6.1469

GHz was obtained by the linear fit of EJ versus probe power. From single-tone

spectroscopy, I obtained a coupling strength g/2π = 11 MHz and the resonator

frequency fr = 5.4428 GHz. The factor g2/π∆ leads to an ac Stark shift of 0.34

MHz per photon at EJ/h = 6.1469 GHz. Finally, the input power of the probe is

related to the average number of photons in the resonator by

Pi = κr⟨nr⟩~ωr, (6.55)

where κr = ωr/QL ≃ 2π(0.18 MHz), given QL = 30, 000. Combining Eqs. 6.54 and

6.55 yields

Pi =
π∆

g2
ωr

QL

hfr(fa − fa,0)

=
2π × 0.18

0.34
hfr(fa − fa,0).

(6.56)

For example, the probe power was about 1 fW for an ac Stark shift of 85 MHz. From

this calibration and the known power at the source (and the fixed attenuators), I

extracted the line attenuation of 3.5 dB in the input side of microwave cables in the

refrigerator. I plot EJ versus the calibrated probe power and also ⟨nr⟩ versus probe

power in Fig. 6.16 (b).

Figure 6.17 shows the ac Stark shift in device “LEQED2”. fa,0 = 6.147 GHz

was obtained from a linear fit to EJ versus probe power. From single-tone spec-
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Figure 6.17: ac Stark shift of CPB “LEQED2”. The probe power (Pi) was calibrated
from the ac Stark shift. I extracted an ac Stark shift of 71 kHz per photon in the
resonator. B. Suri assisted with taking this data.
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troscopy, I obtained a coupling strength g/2π = 5 MHz and the resonator frequency

fr = 5.44544 GHz. The factor g2/π∆ leads to an ac Stark shift of 71 kHz per

photon. For this device κr = ωr/QL ≃ 2π(0.272 MHz), given QL = 20, 000. Then,

the power at the device can be found from

Pi =
2π0.272

0.071
hfr(fa − fa,0). (6.57)

For example, a probe power of about 10 fW was required to produce an ac Stark shift

of 120 MHz. From this calibration, I was again able to extract the line attenuation

of 3 dB in the input side of microwave cables in the refrigerator.

6.7 Near Resonant Limit

When the detuning ∆ is zero, the vacuum Rabi splitting g/2π will be observed

in the resonator-CPB spectrum. Achieving ∆ = 0 requires smooth control of EJ .

In device “LEQED1”, I had difficulty changing EJ precisely, most likely due to the

trapping of flux in the resonator. Nevertheless, I was able to reach a detuning of the

CPB from the resonator as small as -83 MHz. Figure 6.18 shows the corresponding

single-tone spectroscopy at B = −1.8 Gauss. By fitting the spectrum, I extracted

EJ of 5.36 GHz, which was close to the resonator frequency of 5.44 GHz. From the

fit to this data, I also confirmed g/2π = 11 MHz. Below f = 5.441 GHz and above

f = 5.446 GHz, I was not able to observe the dispersive frequency shift; as can be

seen in Fig. 6.18, the signal fades away.

Examination of Fig. 6.18 (a) shows that there is a parabola above the resonator
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Figure 6.18: Single-tone spectroscopy of device “LEQED1” for relatively small de-
tuning of the CPB from the resonator. (a) Single-tone spectroscopy when EJ was
close to the resonator frequency at B = −1.8 Gauss. (b) Same as (a) with the
predicted spectrum (red curves). By fitting the spectrum, I extracted EJ of 5.36
GHz. (c) Line cuts of (a) at ng = 1 (red curve) and ng = 0.66 (blue curve).
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resonance frequency by 1.5 MHz. Fig. 6.18 (c) shows the amplitude line cuts at

ng = 1 (red curve) and ng = 0.66 (blue curve) versus the probe frequency. By

fitting the line cut at ng = 1, I found the FWHM was about 600 kHz; this was only

3 times larger than the 200 kHz FWHM of the resonator resonance. This suggests

that the state corresponding to points on the parabola was mainly composed of an

excited state of the resonator, as would be expected theoretically from eigenstates

of the system.

6.8 Charge noise

Since the CPB is sensitive to gate voltage, charge fluctuators can also couple to

the CPB and change the effective ng. 1-e charge fluctuations are commonly seen [see

Fig. 6.19 (a)]. These fluctuations are random in time and required me to monitor

and reset the gate voltage for the measurement as necessary.

Sub-electron fluctuations are also visible [see Fig. 6.19 (b)], which shows the

phase shift of resonator “LEQED1” over time. I ran a program overnight to monitor

the phase shift. For this measurement, I fixed the pump frequency to EJ/h = 6.055

GHz with a constant power. I then repeatedly swept the gate voltage over a small

range, corresponding to ng between 0.91 and 1.1, and monitored the CPB resonance

along ng [see Fig. 6.19 (b)].

Examination of Fig. 6.19 (b) reveals a lot of jitter along ng. The fluctuations

are very small in ng and they appear to be occurring randomly. The line cut in

Fig. 6.19 (c) shows the phase noise produced by the charge fluctuations. From
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Figure 6.19: Charge noise in two devices. (a) Two-tone spectroscopy showing 1-e
charge jump in device “LEQED1”. (b) Sub-electron charge fluctuations in device
“LEQED2” with the CPB excited at EJ = 6.055 GHz. False color represents the
phase shift of the resonator due to the excitation of the CPB. (c) Line cut of (b) at
ng = 1.004.
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the CPB resonance, the calibration factor δng/δϕ was about 0.0023436 per degree.

From this conversion factor, the standard deviation σq of charge fluctuation was

about 0.00339 e. If the charge noise spectrum is 1/f , i.e. Sq(f) = A2/f , then I find

σ2
q = A2 ln(tmax/tmin) [103] (also see Eq. 2.52), where tmax = 5 hours for all data,

tmin = 20 seconds for one line scan, and σ2
q = (0.00339 e)2, hence ln(tmax/tmin) =

6.8 and A = 0.00339 e/
√
6.8 ≃ 1.3 × 10−3 e. This is similar value with typical

measurements [45].

6.9 Extraction of Device Parameters

I summarized the parameters of two CQED devices in Table 6.1. The pa-

rameters of the resonator were found by analyzing S21 data found using the vector

network analyzer with the resonator at 30 mK. Using a Lorentzian fit (see section

5.5.3) to |S21|, I extracted the resonator center frequency fr, loaded quality factor

QL, external quality factor Qe, internal quality factor Qi, and effective coupling ca-

pacitance Cc. The resonator decay rate κr/2π was calculated from κr/2π = fr/QL.

Using 2-e periodicity in the single-tone spectroscopy, I also extracted the dc

coupling capacitance Cg,dc from 2e = Cg,dcVg, where Vg is the applied dc gate volt-

age. The CPB charging energy EC was extracted by fitting the CPB spectrum

obtained from two-tone spectroscopy. The total capacitance of the CPB island CΣ

was calculated from EC = e2/2CΣ. I extracted the coupling strength g/2π from

the measured dispersive shift χ/2π = g2/(2π∆) in the single-tone spectroscopy

at ng = 1. The resonator to CPB coupling capacitance Cg,r was extracted from
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Table 6.1: Parameters of two CQED devices measured at 25 mK. EJ,max is from the
resistance of an SET built on the same chip as the CQED device. See section 6.9 for
the method of extracting parameters. Cg,rf was extracted from the Rabi oscillation
measurements (see section 6.11).

Parameters “LEQED1” (LE1-68) “LEQED2” (LE1-71)

fr 5.443 GHz 5.446 GHz

κr/2π 0.18 MHz 0.3 MHz

Qe 36,000 70,000

Qi 180,000 32,000

QL 30,000 22,000

Cc 3.9 fF 3 fF

EJ,max/h 9 GHz 19 GHz

EC/kB 0.60 K 0.30 K

CΣ 1.56 fF 3.12 fF

g/2π 11 MHz 5 MHz

Cg,r 33.3 aF 30.3 aF

Cg,dc 4.7 aF 4.5 aF

Cg,rf not measured 10.5 aF
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~g = eCg,r/CΣ

√
~ωr/2C, where C is the capacitance of the resonator (assumed to

be about 400 fF based on the geometry [30] and [79]).

6.10 T1 Measurement

To measure the energy relaxation time T1 of the CPB in the first excited state

(see Fig. 6.20), the CPB was excited as discussed in section 3.9, but here I used the

resonator instead of the rf-SET to monitor the state of the CPB.

For a relaxation measurement, the CPB is first prepared in the ground state

(no pump power). In this case, the resonator frequency at ng = 1 is detuned by

−χ/2π due to the dispersive shift when the detuning is positive (i.e. for EJ > ~ωr).

I found the change of the amplitude or phase was linear for small frequency shifts

in the dispersive limit. The resonator was continuously excited by the probe so that

the amplitude or phase of the probe was continuously monitored as a function of

time. When the qubit is excited, the resonant frequency of the resonator increases

due to the change in the dispersive shift. When the pump power changes, there

is a response time during which the resonator frequency settles to an equilibrium

value. The response time is the ring-up or ring-down time of the resonator, which

is determined by the decay rate of the resonator. If we turn off the pump power,

then the qubit starts to relax to the ground state, causing the resonator frequency

to relax back to the original frequency. As long as the qubit lifetime T1 is longer

than the ring-down time of the resonator, T1 should be measurable.

Figure 6.21 (a) shows the measured T1 as a function of EJ for devices “LEQED1”
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Figure 6.20: (a) Measured T1 of CPB “LEQED2” at ng = 1 and EJ/h = 6.31 GHz.
The pump was turned on at the measurement time t=0 s for 190 ns. The red curve
is the simple exponential curve fit to the decay after the pump switched off. From
the fit (red curve), T1 was about 33.8 µs ±0.5 µs. The number of probe photons
was about 20. (b) Measured T1 of device “LEQED2” at ng = 1 and EJ/h = 4.497
GHz. The pump was applied to the qubit for 750 µs and turned off at t=0 s. From
the fit (red curve), the extracted T1 was about 204.2 µs ±8.9 µs.
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and “LEQED2”. The CPB was biased at the charge degeneracy point ng = 1 for

this T1 data. Continuous microwaves were sent to the CPB for about 5 times T1

and turned off for the same time. Since I applied a microwave pulse longer than the

dephasing time of the qubit, the CPB was saturated to an incoherent mixed state

of the ground state and the excited state.

For device “LEQED1”, I only measured T1 for a few values of EJ [see red curve

in Fig. 6.21 (a)]. T1 was about 10 µs at EJ/h = 7 GHz and dropped to 2.3 µs at EJ/h

= 6.29 GHz. At EJ/h = 6.29 GHz, the CPB was detuned by more than 0.8 GHz

from the resonator frequency of 5.443 GHz, which was much larger than g/2π = 11

MHz. I monitored the decay of the CPB by measuring the amplitude decrease of the

probe, which was set to the dispersive shifted frequency so I could follow the linear

change of the amplitude. The measured ring-up time of the resonator was about

1.7 µs, which set the limit for the shortest T1 I could measure. The IF frequency

of the mixer was 5 or 10 MHz, which was faster than the resonator decay rate. For

“LEQED1”, we did not use an IF amplifier after the mixer and absorption low-pass

filters, while for device “LEQED2” we did use an IF amplifier (see Fig. 6.9). For

device “LEQED1” I added a low-pass filter (Minicircuit) with a cut-off frequency

of 30 MHz between the mixer and the oscilloscope (Agilent 54855A Infiniium) and

there was only one isolator on the cold stage at 30 mK. The number of probe photons

was ⟨nr⟩ ∼= 220.

To monitor the decay of the CPB “LEQED2”, I measured the phase change

of the probe. I set the probe frequency to the center resonant frequency of the

resonator, where the phase sensitivity was maximum and the phase change was
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Figure 6.21: (a) Measured T1 at ng = 1 as a function of EJ of two CQED devices.
The red and blue curves are T1 of device “LEQED1” and “LEQED2”, respectively.
Baladitya Suri helped me take those data. (b) Comparison of T1 of CPB “LEQED2”
and S21 (red curve) of the system at 25 mK. The S21 of device “LEQED1” is not
shown here.
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linear in the frequency shift. The measured ring-up time of the resonator was about

2 µs. The measurement set-up is shown in Fig. 6.9. Typically the IF frequency of

the mixer was 2 MHz. A low-pass filter (Minicircuit) with a cut-off frequency of

5 MHz was used after the IF amplifier. The number of probe photons was about

⟨nr⟩ = 26.

The blue curve in Fig. 6.21 (a) shows T1 versus EJ for device “LEQED2”. I

observed a maximum T1 of 200 µs at EJ/h ≃ 4.5 GHz and found that T1 decreased to

3.8 µs at 8.5 GHz. There was also a depression in T1 around the resonant frequency

of the resonator.

From the measured T1 versus frequency, one can extrapolate the spectral den-

sity of charge noise Sq in the CPB using Eq. 2.31. Since T1 was taken at ng = 1, Sq

can be extracted from

1

T1
=

(
2EC

e~

)2

Sq(EJ/h). (6.58)

Given EC/kB = 0.3 K, Sq ≃ 1 × 10−18 e2/Hz from the maximum T1 ≃ 200 µs at

EJ/h ≃ 4.5 GHz and Sq ≃ 4 × 10−17 e2/Hz from the minimum T1 ≃ 3.8 µs at

EJ/h ≃ 8.5 GHz.

If the charge noise power spectrum follows a 1/f distribution, i.e. Sq = A2/f ,

where A = 1.3 × 10−3 e was found from sub-electron fluctuations in section 6.8,

then Sq(1 Hz) = (1.3× 10−3 e)2/Hz. For 4.5 GHz, this would imply Sq(4.5 GHz) =

3.8 × 10−16 e2/Hz, and for 8.5 GHz, Sq(8.5 GHz) = 2 × 10−16 e2/Hz. Hence, the

estimated 1/f charge noise from low frequency Sq measurements is 1 to 2 orders of

magnitude larger than inferred Sq from T1 measurements.
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Another figure of merit for T1 is the loss tangent tan δ from the dielectric

material. We expect that in a simple RC system such as the CPB, the loss tangent

is given by

tan δ =
1

ωRCΣ

, (6.59)

where

R =
T1
CΣ

. (6.60)

From the maximum T1 = 200 µs at EJ/h = 4.5 GHz and CΣ = 3.12 fF, I find R ≃ 64

GΩ and tan δ = 1.7× 10−7, which is extremely low for AlOx tunnel junctions. This

suggests that Eqs. 6.59 and 6.60 need to be examined more carefully for the CPB.

Noise on the transmission line can be indirectly coupled to the CPB through

the resonator. When the CPB is far detuned from the resonance frequency of the

resonator, we expect that the resonator will tend to filter out the noise [21]. In the

dispersive limit, the energy relaxation rate due to the vacuum fluctuations in the

resonator is given by [21]

1

T1
=

( g
∆

)2

κr. (6.61)

When g/2π = 5 MHz, κr/2π = 0.18 MHz, and ∆/2π = 100 MHz, one gets T1 ≃

354 µs. Eq.6.61 provides an expected upper bound for the lifetime, and my measured

data does not violate this bound. Needless to say, this leaves open question of what

is setting T1 in the CPB.
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6.11 Rabi Oscillation Measurements

The spectroscopic coherence time T ∗
2 of device “LEQED1” implies the coher-

ence time T2 must be at least 100 ns (see section 6.6.3). I was able to observe Rabi

oscillations in the device, but unfortunately, it was damaged by an electrical shock

before I was able to take much data.

After the electrical event, I had a problem with holding the CPB at the de-

generacy point and maintaining the proper dispersive shift. We ran a number of

diagnostics to determine if the problem was with the measuring electronics or with

the device, and all our measurements suggested that the problem was in the device.

The main indication of a problem in device “LEQED1” was the response to

gate voltage when probe power was applied. One test I did was to send a step

function to the gate voltage from ng = 0 to ng = 1 and then measure the time it

took for the dispersive shift to settle to the steady state dispersive shift at ng = 1.

The shift should have been very rapid, but in fact the maximum time constant was

about 1.5 ms and the dispersive shift seemed to start out large and then disappear or

settle to a relatively small value. This was quite unexpected. These measurements

were done at different temperatures from (17 mK to 100 mK) and different average

photon numbers (from 1 to 290 photons).

I also found that the steady state dispersive shift increased when the number

of photons increased and when the temperature of the device increased. Even more

puzzling was that the time constant for the decay decreased when the temperature

increased. One hypothesis to explain my data was that the qubit at the base tem-
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perature of the refrigerator was actually heated up due to TLSs. The dispersive

shift disappeared because the qubit was being thermally excited by TLSs. When

we increased the temperature of the mixing chamber, we were increasing the ther-

mal conductivity of TLSs to the reservoir and that might effectively cool the TLSs.

The increase in the conductivity could also explain the shorter time decay at higher

temperatures. The strange part of my data was the dispersive shift improved when

I increased the number of photons in the resonator. We were not able to completely

understand this behavior. Hence, I decided to make another device “LEQED2”

(see Table 6.1), and I went on to make many Rabi oscillation measurements on this

device.

The way I did Rabi oscillation measurements is similar to the T1 measurement,

except the duration of the pump tone is varied. For a Rabi oscillation measurement,

I applied a pump tone for a short pulse length. During the pulse, the qubit state ro-

tates on the Bloch sphere and the system is left in a well-defined superposition state

that depends on the pulse length. Due to dephasing, the excited state population

will saturate to 0.5 if the pulse is sufficiently strong and the pulse length is much

longer than the dephasing time. One can measure the excited state population Pe

at the moment the pulse is turned off; thereafter the qubit begins to relax back to

the ground state. By varying the pulse duration, one can map out Pe as a function

of pulse length, and this tends to oscillate back and forth between 0 and 1 (see

discussion in section 2.6).

In the CPB, the dephasing time decreases quickly away from ng = 1 due to

charge noise, as discussed in section 2.5 (Eq. 2.43). In other words, the dephasing
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time is maximum at ng = 1, and this is where I biased CPB “LEQED2” for Rabi

oscillations. I used a small number of probe photons to excite the resonator contin-

uously and set the probe frequency to the center frequency of the resonator so that

I could calibrate the Pe by measuring the phase shift. In the dispersive limit, the

phase shift was small and changed linearly as the qubit state decayed from 1 to 0.

When the CPB detuning from the resonator is positive, the resonator frequency

increases as the CPB is driven into the excited state. This in turn caused a negative

change of the phase, which is dependent on Pe. When the pulse is off, the resonator

frequency returns to its original value within the qubit lifetime, causing a positive

change of the phase. One has to wait for the full relaxation of the qubit before

applying another pump pulse, otherwise the remnant excited state population of

the qubit will affect the Rabi oscillation. I set the repetition time of the pump pulse

to more than 5 times T1 ≃ 30 µs.

The phase shift can be converted into a calibrated Pe by measuring the phase

shift δϕ versus the dispersive frequency shift χ/2π. Suppose that for ng = 1 the

dispersive shift is −χ/2π when the CPB is in the ground state. Then when the

qubit is pumped fully into the excited state, the resonator frequency will increase

by 2 × χ/2π at ng = 1. From single-tone spectroscopy, one can also measure the

frequency and phase shift δϕ of the uncoupled resonator by going away from ng = 1;

this corresponds to δϕ for Pe = 0.5.

Figure 6.22 (a) shows a false color plot of the excited state population Pe

of the CPB “LEQED2” as a function of the pump pulse length and measurement

time. For this measurement, EJ was 6.15 GHz, the number of probe photons was
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Figure 6.22: (a) Excited state population Pe of the CPB “LEQED2” as a function of
the pump pulse length and measurement time. Red and blue represent the excited
state and ground state of the CPB, respectively. The resolution in the measurement
time was 1 µs. The number of probe photons was about 20, the pump voltage
was 33.5 µVrms, and EJ was 6.15 GHz. (b) Line cut along the pulse length at the
measurement time of 23 µs. The maximum measured population in the excited
state was about 80 %. From the fit (red curve), the extracted Rabi frequency was
39 MHz. (c) Measured Rabi frequency versus pump voltage applied. The red line
is a linear fit. The number of probe photons was about 26. EJ was 6.3 GHz.
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approximately 20, and I used a pump voltage of 33.5 µVrms. The pump pulse

repetition time was 200 µs, which was much longer than T1 of 30 µs. For this plot,

the pulse width of the pump microwaves was varied from 70 ns up to 300 ns with a

pulse step size of 2 ns, and the response of the probe was measured from 0 to 200

µs.

Figure 6.22 (b) shows a line cut along the pulse length at the measurement

time of 23 µs. I converted the phase change to excited state population Pe. The mea-

surement contrast was about 80 % with the loss in contrast mainly being associated

with the excited state. At the noddπ pulse points, I observed a maximum population

of the qubit in the excited state. The Rabi frequency in this case was about 39

MHz. And at the nevenπ pulse points, the excited state population was almost zero.

The loss of contrast may have been due to detuning, or it might have been caused

by something in the measurement process, and it will take more experimental work

to sort this out.

I next measured Rabi oscillations at different pump powers to verify that the

Rabi frequency varied as expected with pump power. Figure 6.22 (c) shows the

measured Rabi frequency versus the drive voltage at the on-chip transmission line.

This data was taken at a slightly different EJ than the data in Fig. 6.22 (b). One

sees from the plot that the Rabi frequency increased linearly with the drive (pump)

voltage. This linear dependence of the Rabi frequency on the pump power was

strong evidence that these were in fact Rabi oscillations; as discussed in section 2.6,

the bare Rabi flopping frequency on resonance is linearly proportional to the drive

voltage in the limit of low dissipation (see Eq. 2.74).

231



The relationship between the Rabi frequency fR and drive voltage Vrms can

also be used to extract the coupling Cg,rf between the drive voltage and CPB. The

harmonic perturbation is given by nrf
g cos(ωt), where nrf

g = Cg,rfVg,rf/e is the drive

amplitude for the qubit. The microwave source power is typically represented as

an equivalent rms power Prms. Assuming the transmission line is terminated with

a matched load R = 50 Ω, the rms voltage Vrms is given by
√
RPrms. Since the

voltage amplitude Vg,rf is equal to Vrms ×
√
2, the harmonic perturbation is given

by

nrf
g =

Cg,rfVrms

√
2

e
. (6.62)

For the simple case where the qubit is on resonance and there is no dissipation, one

can combine Eq. 2.74 and 6.62 to get the coupling capacitance Cg,rf as

Cg,rf =
eh

2
√
2EC

fR
Vrms

, (6.63)

where fR = ΩR/2π is the bare Rabi frequency. Using a linear fit, I extracted a slope

of 1.16 MHz/µVrms from the Rabi frequency data shown in Fig. 6.22 (c). Given

EC/kB = 0.3 K or EC/h = 6.24 GHz, I find Cg,rf ≃ 10.5 aF. This number is

2.3 times larger than Cg,dc = 4.5 aF. Additional measurements of Rabi frequency

versus EJ (not shown in this thesis) revealed a frequency dependence to Cg,rf . The

discrepancy between Cg,dc and Cg,rf could be related to the microwave circuit design

of the floated resonator, and this possibility needs to be carefully examined.

The Rabi decay time provides more information about the coherence time,

more directly than the spectroscopic coherence times T ∗
2 . However, I found it was
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hard to observe the Rabi decay due to discrete low-frequency charge fluctuations.

Figure 6.19 (b) shows how such a charge fluctuation can make measurements difficult

by fluctuating the operating voltage of the qubit. This problem meant that we

needed to complete the Rabi measurement in as short a time as possible. For

example, the data in Fig. 6.22 (a) was averaged for 50,000 trials at each pulse length

and took an hour. Hence, I decided to reduce the number of averages and the total

measurement time while keeping the pulse repetition rate the same. Figure 6.23

shows a measured Rabi decay for 2,000 trials for each pulse length; this data took

just a few minutes to acquire. I fit the data to:

Pe = A sin(2πfR(t− t0))e
−(t−t0)/T

′

+B (6.64)

and extracted a Rabi decay time of T
′
= 330 ns. Since the measured T1 at this EJ

was about 30 µs, we can conclude that T
′ ≃ 2T2 (from Eq. 2.71) and the resulting

coherence time T2 = 165 ns. Also using Eq. 2.32, we find Tφ ∼ T2 ≃ 165 ns. Thus

the Rabi time is much shorter than 2T1 because of dephasing.

6.12 Discussion of T1, T
′
, T2, and Tφ

The measured T1 of CPB “LEQED2” ranged from a few µs up to 200 µs

depending on EJ (see Fig. 6.21). I note that the largest T1 I found is an order of

magnitude larger than the largest times previously reported in CPB’s [110]. The

regularity of the dependence of T1 on frequency suggested that this behavior was due

to the microwave circuit. To test this idea, we did further measurements on Rabi
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Figure 6.23: Decay of Rabi oscillation in CPB “LEQED2” at ng = 1. The pump
power was -87 dBm or 2 pW, and the pump frequency was resonant with the CPB
at 6.05 GHz. The fit curve (red) yielded T

′
= 332 ns ±44 ns and fR = 11.92 MHz

±6 kHz. Baladitya took this data.
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oscillations versus pump power and EJ . These revealed a frequency dependence in

the coupling capacitance Cg,rf between the pump tone and the CPB and we found

that the frequency dependence of T1 was strongly correlated to Cg,rf . In addition

to the frequency dependence, we also observed two dips in T1 around 4 GHz and

5.64 GHz. Interestingly, I found S21 through the resonator [see Fig. 6.21 (b)] also

had two dips at similar frequencies. This suggests relaxation of the CPB qubit is

very sensitive to the microwave environment. Also I note there is a decrease of T1

around the resonator frequency, and this is expected due to the Purcell effect [24],

which stimulates the qubit to decay.

I was able to extract estimates for the coherence time T2 and dephasing time

Tφ of both CQED devices. For device “LEQED1”, I measured the spectroscopic

width to extract T ∗
2 . From T ∗

2 = 100 ns and T1 = 2 µs, I could find the bounds

Tφ ≈ T2 ≥ 100 ns. For device “LEQED2”, we measured a Rabi decay time T
′ ≈ 330

ns. From T
′
= 330 ns and T1 = 30 µs, we extracted Tφ ≃ T2 = 165 ns. Subsequent

measurements by Vitaley, Sergey, and Baladitya on device “LEQED2” have revealed

T
′
s up to ∼ 1.5 µs and this would imply Tφ ≃ T2 > 750 ns at that bias point.

For comparison, previous T1 and Ramsey fringe time T ∗
2 of a CPB measured

by the Yale group were about 7 µs and 0.5 µs, respectively [110]. With Eqs. 2.32

and 6.53, their CPB’s Tφ ≈ T2 > T ∗
2 = 0.5 µs. Recent T1 and Ramsey fringe time

T ∗
2 of a transmon measured by the Yale group were about 1.87 µs and 2.22 µs,

respectively [67]. With Eqs. 2.32 and 6.53, their transmon’s T2 ≥ T ∗
2 = 2.22 µs and

Tφ ≥ 5.5 µs.
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Chapter 7

Conclusions

7.1 Future Work

7.1.1 Charge Qubits

Based on my results on charge qubits, I have a few suggestions for future work.

Some of these recommendations are aimed at improving basic understanding of the

physics of CPBs while others are aimed at improving the performance of the devices.

The first suggestion would be to continue measurements on device “LEQED2”.

In particular, measurements of T
′
versus EJ , spin-echo measurements of T2, Ram-

sey measurements, and tomography measurements would be useful and interesting.

Some of these measurements are underway as I write this. It would also be interest-

ing to fabricate devices that are similar to “LEQED1” and “LEQED2” and measure

them to see if T1 depends systematically on EC and the coupling (both g and Cc

from the resonator to the transmission line). A systematic variation might provide

better understanding of the main source of relaxation in the qubit.

The Yale group has argued that improving the dephasing time of these devices

requires flattening the bands and decreasing the charging energy. This argument

has yet to yield devices with substantially better Tφ than I have reported here.

Decreasing the charging energy EC of the CPB to EC/kB = 0.030 K and studying
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the dephasing in those devices would be interesting. This will also probably require

increasing the coupling capacitance Cg,r by a factor of 10 to keep the coupling

strength g/2π on the order of 5 MHz. These changes would make devices similar

to the transmon [111] and in fact might produce worse performance than in my

current devices; the use of a larger Cg,r means greater sensitivity to noise in the

input transmission line and resonator and an increase in CΣ means an increase in

the dielectric loss.

7.1.2 Read-out Schemes

A better understanding of the coupling between the transmission line and

resonator might explain how the qubit couples to the environment or reveal how to

improve the isolation of the qubit from the environment. This suggests it would be

useful to examine some other resonator designs.

The resonator in Fig. 7.1 (a) could be implemented to read out a CPB in a

bandpass mode (by measuring S23 or S14) or a notch style mode (S21 or S34). This

resonator is coupled to two transmission lines, while the notch style resonator I

used was coupled to one transmission line. The second transmission line could also

provide better isolation between the pump and probe tones. Multiplexing resonators

is also possible by putting many resonators between two transmission lines.

The quarter wavelength (λ/4) CPW resonator [see Fig. 7.1 (b)] could be used

to read out the CPB. It would be interesting to see if there are any discernable dif-

ferences from my measurements on lumped-element LC resonators. The advantage
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(a)

(b)

100 µm

500 µm

l = (5 – 6) mm

21

1

2

3

4

Figure 7.1: New resonator designs for a CPB read-out. (a) Both bandpass and
notch style resonator with four ports and (b) a quarter wavelength resonator.
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(a)

(b)

(c)

Figure 7.2: Single-tone spectroscopy of device “LEQED1” with number of photons
of (a) 7,000, (b) 22,000, and (c) 70,000 in the resonator. EJ was about 8.45 GHz at
zero magnetic field.
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of the λ/4 resonator is perhaps a more controllable external Q of the resonator. By

increasing (decreasing) the length of the coupling strip, one can decrease (increase)

the Qe. For fast measurements of the CPB, one needs smaller Qe. The λ/4 res-

onator could also be used as a tunable resonator by placing a Josephson junction in

the resonator where it is terminated to the ground. A tunable resonator would be

interesting because it would act as a tunable coupling element between two qubits.

7.1.3 Many Photons in the Resonator

Figure 7.2 shows single-tone spectroscopy of device “LEQED1” as a function

of the number of photons stored in the resonator at EJ of 8.45 GHz. I started

from single photons and increased to 2, 7, 22, 70, 220, 2,200, 7,000, 22,000, and

70,000 photons. When 7,000 photons were stored in the resonator, the dispersive

shift of the resonator started to be distorted. The frequency shift pattern changed

as I increased the probe power. A complete understanding of this phenomenon

is lacking, although some of the behavior appears similar to dressed state effects

observed by C. M. Wilson et al. [112].

7.2 Summary of Key Results

Using an rf-SET to measure the charge on a CPB, I was able to observe

the CPB energy level spectrum and also a few avoided level crossings in the CPB

spectrum. I showed that each splitting was due to coupling between the qubit and a

charged two-level fluctuator located in the Josephson tunnel junction of the qubit.
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From fitting the spectrum, I was able to determine the parameters of the CPB and

charge fluctuators. I also observed a strong correlation of T1 with the location of

each avoided level crossing, which revealed that these discrete anomalous charge

fluctuators are a source of dissipation for our qubit.

Perhaps the most intriguing results reported in this thesis are of T1 for the

CPB measured using two read-out schemes: the rf-SET and microwave resonator

technique. With the rf-SET, I was not able to measure the CPB at ng = 1 due

to non-equilibrium quasiparticles [see the small step at ng = 1 in Fig. 3.17 (a)]

and because our read-out was not sensitive at this gate voltage. But, I was able

to measure T1 away from the charge degeneracy point, and at frequencies up to 50

GHz, where ng was close to 1.9. The maximum T1 was about 4 µs (see Fig. 3.19)

and an extrapolation of the spectral density of noise yields Sq ∼ 10−12 e2/Hz at 27

GHz.

By coupling the CPB to a high-Q lumped-element resonator, I was able to

bias the CPB at or near ng = 1, measure the state of the qubit, and perform

T1 and Rabi measurements. My measurements at ng = 1 revealed a maximum

T1 = 200 µs for EJ/h = 4.5 GHz [see Fig. 6.21 (a)] and a minimum T1 ≃ 3.8 µs

for EJ/h ≃ 8.5 GHz. This places an upper bound on the spectral density of charge

noise Sq ≤ 4×10−17 e2/Hz at 8.5 GHz. A strong frequency dependence of the qubit

lifetime was also observed: I noticed there were a few dips in T1 as a function of

EJ and these dips coincided with dips in S21 of the system. From these results,

I concluded that the dispersive read-out using the resonator enhanced the qubit

relaxation time by a factor of 30 and decreased Sq by a factor of 106 compared with
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the dissipative read-out using the rf-SET.

Being able to bias the CPB at ng = 1 was also a major step forward in

increasing the coherence time. At ng = 1, I was able to measure Rabi oscillations of

the CPB. By measuring the Rabi flopping frequency as a function of the pump power

and EJ , we were able to extract the coupling capacitance Cg,rf between the pump

tone and CPB. The extracted Cg,rf showed a strong frequency dependence from 1.25

aF at EJ/h = 4.467 GHz to 10.5 aF at EJ/h = 6.04 GHz. We noticed this frequency

dependence of T1 was strongly related to Cg,rf ’s frequency dependence. Preliminary

measurements of Rabi oscillation revealed Rabi decay times on the order of 330 ns,

which leads to an estimated coherence time T2 = 165 ns. This value is about 1/2 the

dephasing time of 310 ns expected from the discussion in section 2.5 (see Eq. 2.54).

The coherence time reported in this thesis is still smaller than that of other CPB

(T2 ≥ 500 ns) [110] and transmon (T2 ≥ 2.2 µs) [67], but ongoing and preliminary

measurements have revealed Rabi decay times up to 1.5 µs. Further measurements

are likely to reveal still larger times at specific biases, although this is to be seen.
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Appendix A

Device Fabrication Recipes

For building the resonator and CPB, I used recipes that were developed by

Vitaley Zaretskey and Ben Palmer.

◦ Photo lithography: Futurrex NR9-1000PY (negative lift-off resist)
1. Blow away any dust on the 3-inch sapphire wafer using compressed N2 (if

the wafer was clean in the dry box in the clean room).
2. Put wafer on the 3-inch chuck in the spinner and test-run the programmed

spinner.
3. Spin NR9-1000PY on the wafer at 3000 rpm for 60 sec and ramp down at

1000 rpm/s. Make sure the back side of wafer is clean. If needed, clean it
by a Q-tip with Acetone on it.

4. Prebake wafer at 160◦C for 3 minutes 30 sec (use hot plate).
5. Expose wafer in the contact aligner for 8 sec.
6. Postbake wafer at 120◦C for 3 minutes 30 sec.
7. Develop the photo resist by RD6 for 12 sec in a beaker and then dispose

RD6 in the Acid/Base sink.
8. Rinse wafer by D.I. water in a beaker for 1 minute.
9. Blow dry wafer.
10. Check the developed resist under the optical microscope.

◦ Lift-off of NR9-1000PY after Al deposition.
1. Pour 450 mL of RR5 in a 500 mL beaker.
2. Place wafer in a teflon wafer holder and leave the wafer in RR5 for about

two hours at room temperature.
3. Ultrasound the beaker for 15 minutes.
4. Prepare another 500 mL beaker with 450 mL Acetone.
5. Remove wafer from RR5 and immediately immerse it in the Acetone.
6. Ultrasound the beaker for 15 minutes.
7. Rinse wafer by Acetone, Methanol, and IPA for 1 minute each.
8. Blow dry wafer on the teflon holder.
9. Check the metal pattern using an optical microscope.
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◦ Spin the protective (blue) resist (FSC-M) for the wafer dicing.
1. Blow wafer to remove any dust on it.
2. Put wafer on the 3-inch chuck in the spinner.
3. Spin FSC-M on the wafer at 2000 rpm for 60 sec and ramp down at 500

rpm/s.
4. Bake wafer at 120◦C for 3 minutes 30 sec.

◦ Photolithography: Etching Al with OiR 906-10 (positive resist)
1. Clean and blow dry wafer, which has Al deposited. One needs to prepare

large Al etchant to be warm up.
2. Pour Aluminum etchant in a big and wider beaker with a magnetic stir bar

(wear double gloves, plastic gown, and face protection / hat).
3. Heat up the beaker on the hot plate at 55◦C and set the magnetic stir spin

to 600 rpm. Cover the beaker with a dish.
4. Put wafer on the 3-inch chuck in the spinner and test-run the programmed

spinner.
5. Spin HMDS at 2000 rpm for 60 sec and ramp down at 500 rpm/s.
6. Spin OiR 906-10 at 3500 rpm for 60 sec and ramp down at 1000 rpm/s.

Make sure the back side of wafer is clean. If needed, clean it using a Q-tip
and Acetone.

7. Prebake wafer at 90◦C for 1 minute.
8. Expose wafer in the contact aligner for 5 sec.
9. Postbake wafer at 120◦C for 1 minute.
10. Develop the photoresist by OPD 4262 in a beaker for 1 minute at room

temperature and later dispose OPD 4262 in the Acid/Base sink.
11. Rinse wafer by D.I. water in a beaker for 1 minute.
12. Blow dry wafer.
13. Check the developed resist under an optical microscope.
14. Use the teflon holder and place the wafer in the Al etchant. The wafer will

spin slowly with the magnetic stir bar. Later dispose the Al etchant in the
Acid sink.

15. Within one or two minutes, the parts of the wafer become transparent at
which point remove and rinse the wafer in D.I. water in another beaker.

16. Rinse wafer by Acetone, Methanol, and IPA for 1 minute each (be sure the
Al etchant is gone since it reacts with Acetone).

17. Blow dry wafer.
18. Check the metal patterning under the optical microscope.
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◦ Electron beam lithography: MMA/ZEP spin-on
1. Clean and blow dry wafer, which has only Al pattern on it after the optical

lithography.
2. Spin MMA(8.5)MAA EL11 on the wafer at 1000 rpm for 60 sec and ramp

down at 500 rpm/s. The thickness should be approximately 940 nm.
3. Prebake wafer at 180◦C for 5 minutes.
4. Put wafer on the 3-inch chuck in the spinner and test-run the programmed

spinner.
5. Spin ZEP 520A DR2.3 at 5000 rpm for 60 sec and ramp down at 500 rpm/s.
6. Prebake wafer at 180◦C for 5 minutes. The thickness should be approxi-

mately 120 nm.
7. One should do another prebake at 180◦C for 30 minutes in the oven. It will

strengthen the resist by further baking out the solvent.

◦ Electron beam lithography: MMA/ZEP develop after E-beam writing
1. Place chip in OPD 4262 for 1 minute to strip the Al anti-charging layer.
2. Rinse chip by D.I. water for 1 minute.
3. Develop ZEP layer in ZED-N50 for 3 minutes and later dispose ZED-N50 in

a storage bottle.
4. Rinse chip by IPA for 1 minute.
5. Develop MMA layer by IPA:D.I. water of 5:1 (IPA of 50 mL and D.I. water

of 10 mL).
6. Rinse chip using IPA for 1 minute.
7. Blow dry chip.

◦ Electron beam lithography: MMA lift-off after Al deposition
1. Prepare NMP in two small beakers and put chip on one beaker.
2. Place two beakers on the hot plate at 120◦C in the fume hood for 30 minutes.

One needs to be careful of the flash point of NMP (120◦C). Since actual
temperature inside the solution is lower than the temperature on the hot
plate surface, I increased up to 120◦C.

3. Agitate the chip in NMP using tweezers to shake off metal pieces.
4. Put chip quickly into another beaker.
5. Place the beaker on the hot plate at 120◦C of NMP for 10 minutes.
6. Quickly dip and rinse chip in a beaker of IPA before NMP dries out and

leaves residue on the chip.
7. Blow dry chip.
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Appendix B
Caltech Amplifier Kit

(a)

b

c

d

e

f5 inches

(b) (c)

(d)

(e) (f)

Figure B.1: (a) Caltech Amplifier kit. (b) AC to DC (+/- 5 V) power supply
module (Acopian). (c) DC bias regulator module (Caltech: CITBias1). I used the
recommended bias setting for our specified LNA (S/N:210): Vd = 1.2 V, Vg1 = 2.1 V,
and Vg2 = 2.1 V. (d) and (e) Fischer connector assemblies. (f) A Caltech amplifier.
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