
ABSTRACT

Title of dissertation: DESIGN TOOLS FOR DYNAMIC,
DATA-DRIVEN, STREAM MINING
SYSTEMS

Kishan Palintha Sudusinghe,
Doctor of Philosophy, 2015

Dissertation directed by: Professor Shuvra S. Bhattacharyya
Department of Electrical and Computer
Engineering
and Institute for Advanced Computer
Studies

The proliferation of sensing devices and cost- and energy-efficient embed-

ded processors has contributed to an increasing interest in adaptive stream mining

(ASM) systems. In this class of signal processing systems, knowledge is extracted

from data streams in real-time as the data arrives, rather than in a store-now, pro-

cess later fashion. The evolution of machine learning methods in many application

areas has contributed to demands for efficient and accurate information extraction

from streams of data arriving at distributed, mobile, and heterogeneous processing

nodes. To enhance accuracy, and meet the stringent constraints in which they must

be deployed, it is important for ASM systems to be effective in adapting knowledge

extraction approaches and processing configurations based on data characteristics

and operational conditions. In this thesis, we address these challenges in design and

implementation of ASM systems. We develop systematic methods and supporting



design tools for ASM systems that integrate (1) foundations of dataflow modeling

for high level signal processing system design, and (2) the paradigm on Dynamic

Data-Driven Application Systems (DDDAS). More specifically, the contributions of

this thesis can be broadly categorized in to three major directions:

1. We develop a new design framework that systematically applies dataflow

methodologies for high level signal processing system design, and adaptive

stream mining based on dynamic topologies of classifiers. In particular, we

introduce a new design environment, called the lightweight dataflow for dy-

namic data driven application systems environment (LiD4E). LiD4E provides

formal semantics, rooted in dataflow principles, for design and implementa-

tion of a broad class of stream mining topologies. Using this novel application

of dataflow methods, LiD4E facilitates the efficient and reliable mapping and

adaptation of classifier topologies into implementations on embedded plat-

forms.

2. We introduce new design methods for data-driven digital signal processing

(DSP) systems that are targeted to resource- and energy-constrained embed-

ded environments, such as unmanned areal vehicles (UAVs), mobile commu-

nication platforms, and wireless sensor networks. We develop a design and

implementation framework for multi-mode, data driven embedded signal pro-

cessing systems, where application modes with complementary trade-offs are

selected, configured, executed, and switched dynamically, in a data-driven

manner. We demonstrate the utility of our proposed new design methods on



an energy-constrained, multi-mode face detection application.

3. We introduce new methods for multiobjective, system-level optimization that

have been incorporated into the LiD4E design tool described previously. More

specifically, we develop new methods for integrated modeling and optimiza-

tion of real-time stream mining constraints, multidimensional stream mining

performance (e.g., precision and recall), and energy efficiency. Using a design

methodology centered on data-driven control of and coordination between al-

ternative dataflow subsystems for stream mining (classification modes), we

develop systematic methods for exploring complex, multidimensional design

spaces associated with dynamic stream mining systems, and deriving sets of

Pareto-optimal system configurations that can be switched among based on

data characteristics and operating constraints.



DESIGN TOOLS FOR DYNAMIC, DATA-DRIVEN,

STREAM MINING SYSTEMS

By

Kishan Palintha Sudusinghe

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Shuvra S. Bhattacharyya, Chair/Advisor
Professor Steven Tretter
Professor Manoj Franklin
Professor Donald Yeung
Professor Rance Cleaveland



c© Copyright by

Kishan Palintha Sudusinghe
2015



Dedication

To my Dad and Mom

ii



Acknowledgments

I would like to give my sincere thanks to my advisor and mentor Prof. Shuvra

Bhattacharyya for his invaluable guidance, support, encouragement, and inspiration.

I am particularly grateful for believing in me and giving me plenty of opportunities

and resources to be successful in my career as a PhD student. His unwavering

support not only made this possible but also motivated me in many ways to be a

disciplined and a productive researcher and a student. He has helped me in many

ways and have motivated me during the difficult times in my life as a PhD student.

Professor Bhattacharyya have assisted, guided, and prepared me for life beyond the

PhD. Due to his attention to detail and very thorough and disciplined review process

I have been able to publish quality publications in top-tier conferences with quality

results. I also learned many important lessons from him that I have no doubt will

be fruitful and pay dividends in future. For all this and many more, I am so grateful

and thankful to you, Professor.

I am very much thankful to my PhD dissertation committee - Prof. Steven

Tretter, Prof. Manoj Franklin, Prof. Donald Yeung, and Prof. Rance Cleaveland for

being very flexible, accommodating, and above all for their reviewing of the thesis

and valuable feedback.

The time I spent in DSPCAD research group under the leadership of Prof.

Shuvra Bhattacharyya is one of the most memorable time in my life. I have formed

many life-long connections and learned from many of the brightest and smartest

people I have encountered in my life. Through many stages in my career as a

iii



PhD student, current and past members of the research group have helped me

enormously. I would like to thank Dr. William Plishker, Dr. Chung-Ching Shen,

Dr. Nimish Sane, Dr. Hsiang-Huang Wu, Dr. Lai-huei Wang, and Dr. George Zaki

for their advice and assistance during the early stages of my PhD. I thank Dr. Ilya

Chukhman, Scott Kim, Yanzhou Liu, and Shouxin Lin for their support during the

later stages in my PhD. I would also like to thank Yang Jiao, Lin Li, Kyunghun

Lee, Haifa Ben Salem and Alexandre Mercat who have assisted me in many ways.

I would like to acknowledge Marshal Plan Scholarship foundation for awarding

me with a scholarship to research abroad in Austria and my collaborators in Univer-

sity of Applied Sciences in Salzburg, Austria for welcoming me warmly and assisting

me through out my stay in Salzburg as a PhD student and a visiting researcher.

I would also like to thank my brothers Shahan Sudusinghe and Emmash Sudus-

inghe, people closest to my heart, Anushka Imbuldeniya and Sachiko De Silva for

believing in me and motivating me through out my life and especially during the

PhD. They have been the pillars of support for me during the most difficult time in

my life.

Finally and most importantly, I would like to thank my parents without whom

my PhD would not have been a reality. They have tirelessly supported me and

encouraged me to aim and reach higher. They have sacrificed many luxury and

comfort in their life to give me this opportunity. I cannot thank them enough and

this thesis and its dedication to them is a small thank you from me.

Last but not least, I thank God for giving me the opportunity and guiding me

spiritually through out my PhD.

iv



The research underlying in this thesis was supported in part by the Air Force

office of Scientific Research (AFOSR) and I would like to acknowledge their support

v



Table of Contents

List of Figures viii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Hierarchical Dataflow Modeling . . . . . . . . . . . . . . . . . 5
1.2.2 Multi-mode Stream Mining . . . . . . . . . . . . . . . . . . . 6
1.2.3 Multiobjective Design Optimization . . . . . . . . . . . . . . . 8

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 10
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Core Functional Dataflow . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Lightweight Dataflow Environment . . . . . . . . . . . . . . . . . . . 14
2.4 Dynamic Data-Driven Applications Systems . . . . . . . . . . . . . . 17
2.5 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 SVM Implementation in LIDE . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Framework for Design and Implementation of ASM Systems 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Hierarchical Core Functional Dataflow . . . . . . . . . . . . . . . . . 33
3.4 Design and Implementation Framework . . . . . . . . . . . . . . . . . 36
3.5 Case Study: Face Detection . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Adaptive Classification . . . . . . . . . . . . . . . . . . . . . . 40
3.5.2 Experimental Setup and Results . . . . . . . . . . . . . . . . . 43

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vi



4 Model Based Design Environment for Data-Driven
Embedded Signal Processing Systems 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Application Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Dynamic, Multi-Mode Scheduling . . . . . . . . . . . . . . . . . . . . 57
4.5 Case Study: Face Detection . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 Additional Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.1 Energy Consumption Model . . . . . . . . . . . . . . . . . . . 66
4.6.2 Execution Time Model . . . . . . . . . . . . . . . . . . . . . . 68
4.6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.4 Measurement Vector and Performance Evaluation Points . . . 73
4.6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Multiobjective Design Optimization 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Background on DHMM . . . . . . . . . . . . . . . . . . . . . . 84
5.3.2 AMDO Design Methodology . . . . . . . . . . . . . . . . . . . 86

5.4 Case Study: Vehicle Classification . . . . . . . . . . . . . . . . . . . . 90
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5.1 FSM Parameterization . . . . . . . . . . . . . . . . . . . . . . 93
5.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusion and Future Work 105
6.1 Hierarchical Dataflow Modeling . . . . . . . . . . . . . . . . . . . . . 106
6.2 Multi-mode System Design . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3 Multiobjective Design Optimization . . . . . . . . . . . . . . . . . . . 108

Bibliography 110

vii



List of Figures

1.1 An illustration of the design space for adaptive stream mining systems. 2

2.1 An illustration of a CFDF actor. . . . . . . . . . . . . . . . . . . . . 12
2.2 An illustration of function prototypes for designing a CFDF actor. . . 16
2.3 An illustration of the DDDAS paradigm applied to adaptive stream

mining systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 An illustration of an input space, feature space, and kernel function

(mapping function) in SVMs. . . . . . . . . . . . . . . . . . . . . . . 22
2.5 An outline of the construct function for an SVM actor. . . . . . . . . 26
2.6 An outline of the enable function for the SVM actor example. . . . . 27
2.7 An outline of the invoke function for the SVM actor example. . . . . 28
2.8 The terminate function for the SVM actor example. . . . . . . . . . . 28

3.1 Control of subgraphs in hierarchical CFDF actors. . . . . . . . . . . . 36
3.2 Overview of ASM system design in LiD4E. . . . . . . . . . . . . . . . 38

4.1 Data-driven, multi-mode embedded system design flow. . . . . . . . . 50
4.2 Modeling multi-mode DDDAS designs using HCFDF graphs. . . . . . 56
4.3 A simple SDHMM scheduler with one metric and 3 application modes. 60
4.4 Energy efficiency trends across DHMM and static designs for a simple

SDHMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5 Average accuracy trends across DHMM and static designs for a simple

SDHMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 False positive rate trends across DHMM and static designs for a sim-

ple SDHMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Marginal execution time probability distribution for Classifier 1. . . . 70
4.8 Marginal execution time probability distribution for Classifier 2. . . . 70
4.9 Marginal execution time probability distribution for Classifier 3. . . . 71
4.10 Marginal execution time probability distribution for Classifier 4. . . . 72
4.11 An extended version of the DHMM state machine for our face detec-

tion case study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.12 Energy efficiency trends across DHMM and static systems for our

extended SDHMM design. . . . . . . . . . . . . . . . . . . . . . . . . . 76

viii



4.13 Deadline miss rate trends across DHMM and static systems four our
extended SDHMM design. . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.14 Average accuracy trends across DHMM and static systems for our
extended SDHMM design. . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.15 False positive rate trends across DHMM and static systems for our
extended SDHMM design. . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 An overview of the adaptive multiobjective design optimization
(AMDO) framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 An illustration of SDHMM for the experimental vehicle classification
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 An illustration of the vehicle classification system that is employed
in our experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Task execution time for classifier subsystem 1. . . . . . . . . . . . . . 102
5.5 Task execution time for classifier subsystem 2. . . . . . . . . . . . . . 103
5.6 Task execution time for classifier subsystem 3. . . . . . . . . . . . . . 104

ix



Chapter 1: Introduction

1.1 Overview

With the increasing need for accurate mining and classification from a great

variety of data content, and the growth of associated applications in mobile and dis-

tributed contexts, stream mining systems require increasing amounts of flexibility,

extensibility, and adaptivity for effective deployment. In stream mining systems,

knowledge is extracted from data streams in real-time as the data arrives, rather

than in a store-now, process later fashion. Design and implementation of stream

mining systems is complex due to various critical factors, including complex ap-

plication requirements that involve constraints on energy efficiency, accuracy, and

real-time performance; diverse operational platforms, such as resource-constrained

sensor nodes, centralized and distributed servers, and hand-held computers (smart-

phones and tablets); and a wide variety of data content types that must be handled,

including textual, speech, image, and video content, as well as data arriving from a

growing variety of sensing devices.

At the same time, demand for real-time knowledge extraction from streams of

data is increasing continually. This demand comes from a broad spectrum of appli-

cation areas, including surveillance, cybersecurity, intelligent transportation, earth

1



Figure 1.1: An illustration of the design space for adaptive stream mining systems.

science (e.g., water management and seismic monitoring), online financial analy-

sis, manufacturing process control, multimedia search, health and life sciences, and

medical services (e.g., see [1–3]). Figure 1.1 illustrates design challenges encoun-

tered and the complexity of the design space in the development of adaptive stream

mining applications.

In this thesis, we address these challenges through an integration of methods

in (1) adaptive classifier topologies for stream mining; (2) dataflow-based design and

optimization of signal processing systems; and (3) dynamic data-driven applications

systems (DDDAS).

Adaptive configuration of classifier topologies and operating points can be

effective in enhancing performance trade-offs, such as trade-offs between classifier

2



accuracy and processing delay [2]. Here by classifier topologies, we mean networked

interconnections of individual classifiers that cooperate on the given stream mining

task, and that can be configured and connected in a modular fashion. In this context,

one important aspect of modular configuration is the selection of specific operating

points for the individual classifiers, which determine their associated trade-offs be-

tween detection probability and false alarm rate. A given classifier in general offers

a range of such trade-offs, referred to as the detection error trade-off (DET) curve

of the classifier.

In the context of signal processing applications, dataflow provides methods

to represent, analyze, and optimize hardware/software systems in terms of graphi-

cal, data-driven models of computation [4]. In this modeling approach, application

systems are represented as directed graphs in which graph vertices, called actors,

represent computational components, and each edge represents the communication

of data from an output of one actor to an input of another. A wide variety of tech-

niques has been developed and continues to evolve for dataflow modeling, analysis

of dataflow graphs, and mapping dataflow graphs into efficient implementations [5].

The DDDAS paradigm centers on the deep integration of instrumentation

processes into application system design, and the use of such instrumentation to

dynamically control how data is processed, and how future data is acquired, includ-

ing how future rounds of instrumentation are configured [6, 7]. DDDAS methods

are of increasing importance in part because ubiquitous sensors are now able to

collect massive volumes of data for application systems, and tools are needed to

efficiently and accurately determine which portions of this data are most relevant

3



to the current application context.

Previously, the areas of adaptive stream mining, dataflow, and DDDAS have

evolved largely in independent directions. One important contribution of this thesis

is to investigate synergies among these areas, and develop effective methods and

tools for applying them in an integrated manner.

In the remainder of this chapter, we outline the specific contributions of this

thesis.

1.2 Contributions

In this thesis, we have developed new techniques for design and implementa-

tion of adaptive stream mining application systems that are targeted to dynamic,

resource-constrained, embedded environments. The tools and techniques developed

in this work are not specific to any particular kind of stream mining application do-

main, and can be readily adapted across a wide range of areas that require real-time

knowledge extraction from data streams. Our proposed new design tools are built to

accommodate application-, algorithm-, instrumentation-, and design space-models,

and integrate them in a systematic manner for optimized system design.

The contributions of this thesis are presented in three main parts — hierar-

chical dataflow modeling for dynamic, data-driven signal processing systems; design

and scheduling for multi-mode stream mining; and multiobjective design optimiza-

tion.

4



1.2.1 Hierarchical Dataflow Modeling

Prior work on signal processing oriented dataflow models of computation

has emphasized static dataflow models, such as synchronous and cyclo-static

dataflow [8–10]. In these models, the rates at which actors produce and consume

data from their individual actors ports are deterministic, and known at compile time.

Adaptive stream mining systems, however, require support for dynamic dataflow

rates. Such support is needed, for example, to accommodate the flexibility required

in handling multi-mode and dynamically reconfigurable stream mining behavior.

Additionally, since our objective is to facilitate design of complex stream mining

systems, support for hierarchical modeling is important for the model of computa-

tion that we employ. However, existing design methods based on dynamic dataflow

graphs focus primarily on flat (non-hierarchical) representations (e.g., see [5]). With

these motivations, we introduce in this thesis a novel, hierarchical, dynamic dataflow

modeling approach called hierarchical core functional dataflow (HCFDF).

The HCFDF model of computation can be viewed as an integration of hier-

archical semantics into the previously-developed core functional dataflow (CFDF)

model of computation [11,12], where the execution behavior of actors is determined

dynamically through the use of distinct actor-level operational modes. More back-

ground on the CFDF model is described in Section 2.2.

Efficient integration of hierarchical semantics into CFDF involves a number

of challenges that must be addressed, including the problem of ensuring that hi-

erarchical embeddings of subsystems (subgraphs) adhere to the appropriate model

5



of computation within the subsystems in which they are embedded — that is, to

ensure that when a HCFDF graph G1 is nested within a higher level graph G2, the

interfaces of G2 within G1 conform to HCFDF semantics. Additionally, methods

are needed to efficiently specify adaptive stream mining systems using the developed

hierarchical modeling methods, and to map the resulting models systematically into

optimized implementations.

To address these challenges, we have developed a novel design tool called

lightweight dataflow for dynamic data driven application systems (LiD4E). LiD4E

extends the lightweight dataflow environment (LIDE) [13,14] with new capabilities

for modeling, implementation, and design space exploration. These new capabilities

are designed carefully to support the domain of adaptive stream mining systems,

and more generally, for data-driven signal processing systems. The HCFDF model

of computation, its realization in the LiD4E design tool, and the demonstration of

LiD4E on practical stream mining systems form the first major contribution of this

thesis.

The HCFDF model of computation and LiD4E design tool are presented in

detail in Chapter 3.

1.2.2 Multi-mode Stream Mining

To exploit the potential of adaptive stream mining systems, designers must be

able to efficiently model and integrate alternative classification modes for performing

a given stream mining task (e.g., see [15]). Here, by a mode, we mean a distinct

6



classifier configuration or a distinct networked interconnection of multiple classifiers.

For example, different modes may provide alternative trade-offs among metrics such

as classification accuracy, false positive rate, energy efficiency, and real-time perfor-

mance. The availability of alternative modes representing different trade-off points

provides increased agility at runtime to automatically select a system configuration

that is well matched to time-varying application conditions and constraints.

For example, when a surveillance system is in a state of “standby” opera-

tion (no potential threat has been detected), it is often desirable to operate in a

mode that optimizes energy efficiency at some expense in classification accuracy

and false positive profile. Once a potential threat has been detected, it is strategic

to transition to a higher accuracy mode that has higher average power consumption.

Furthermore, the degree to which energy efficiency should be traded off for accuracy

during such a transition may depend strongly on constraints on available battery

capacity (in case mobile sensor nodes are employed) or thermal considerations.

In the second major contribution of this thesis, we develop design method-

ologies and tools for scheduling and implementation of multi-mode adaptive stream

mining systems on resource-constrained embedded processing platforms. Here, by

scheduling we mean the assignment of computational tasks (modeled as dataflow

graph actors) onto processing resources, and the ordering of actors that share

the same processor. Scheduling is an important step in the mapping of applica-

tions onto embedded platforms as it affects many key implementation metrics, in-

cluding latency, throughput, memory requirements, and energy consumption (e.g.,

see [16–20]). We introduce a scheduling framework called the DDDAS-HCFDF-

7



multi-mode (DHMM) framework, and demonstrate this framework by prototyping

it within the LiD4E design environment. The DHMM framework provides a system-

atic approach for integrating instrumentation, classifier configuration, and run-time

adaptation with efficient scheduling of embedded stream mining systems.

The DHMM framework is presented in detail in Chapter 4.

1.2.3 Multiobjective Design Optimization

Multiobjective optimization is important in the adaptive stream mining do-

main since applications in this domain must operate in the context of diverse op-

erational constraints and optimization objectives. Metrics of interest include those

related to real-time performance, including latency and throughput; those related

to stream mining accuracy, such as precision and recall; and those related to energy

efficiency, including peak and average power consumption.

In the third major contribution of this thesis, we develop new methods for

multiobjective design optimization and design space exploration for adaptive stream

mining systems. These methods build on the LiD4E design environment and DHMM

scheduling framework described in Section 1.2.1 and Section 1.2.2, and are based

on deeply integrated processes of instrumentation, measurement, profiling, and dy-

namic mode control processes to help designers navigate complex, multidimensional

design evaluation spaces. Our new multiobjective design optimization approach,

called adaptive multiobjective design optimization (AMDO), provides formal meth-

ods for constructing and manipulating parameterized stream mining systems, and

8



allows designers to efficiently explore and control the operational trade-offs that are

realized by appropriate configuration of system-level adaptation methods.

The AMDO approach is is presented in detail in Chapter 5.

1.3 Outline of Thesis

The remainder of this dissertation is organized as follows. Chapter 2 provides

background on various topics that are relevant for this research, including relevant

background on dataflow models, the Dynamic Data Driven Applications Systems

(DDDAS) paradigm, and machine learning. In Chapter 3, we present the hier-

archical core functional dataflow (HCFDF) model of computation and lightweight

dataflow for dynamic data driven application systems (LiD4E) design tool. In Chap-

ter 4, we present the DDDAS-HCFDF-multi-mode (DHMM) scheduling framework.

In Chapter 5, we present the adaptive multiobjective design optimization (AMDO)

approach for multidimensional design space exploration and system-level optimiza-

tion. We conclude in Chapter 6 with a summary of the developments in the thesis,

and a discussion of directions for future work.

9



Chapter 2: Background

2.1 Overview

In this chapter, we provide background on core concepts that are applied and

built upon in the work presented in this thesis.

2.2 Core Functional Dataflow

Core functional dataflow (CFDF) is a dataflow model of computation that is

geared toward design, analysis, and implementation of signal processing systems [11].

CFDF can be viewed as a programming model for developing signal processing

components and systems that have statically known patterns of production and

consumption rates (dataflow rates), as well as ones that employ dynamic dataflow

rates.

In the context of signal processing system design, a dataflow graph consists a

set of vertices and a set of edges, where the vertexes (actors) represent computa-

tional functions of arbitrary complexity, and edges represent first-in-first-out (FIFO)

buffers that store data values as they pass between actors [4, 5]. Such data values

are encapsulated in objects that are called tokens.

10



A dataflow edge can be represented as an ordered pair e = (v1, v2), where v1

and v2 are actors in the enclosing dataflow graph. Here, v1, denoted by src(e), is

called the source actor (or simply “source”) of e, and v2, denoted by snk(e), is called

the sink actor (or simply “sink”) of e.

Execution of a dataflow actor is decomposed into a sequence of discrete units

of execution, called firings, where each actor firing consumes and produces a well-

defined number of (zero or more) tokens on each input and output port, respec-

tively [4]. Different variants of dataflow have been developed for signal processing

system design based on different restrictions on actor production and consumption

rates. For example, in synchronous dataflow (SDF), production and consumption

rates are fixed and statically known [8], and in cyclo-static dataflow (CSDF), pro-

duction and consumption rates can vary dynamically but only according to periodic

patterns of fixed, statically known rates [9].

A CFDF actor A (dataflow graph functional component) has a set of n ≥ 1

operational modes S = {m1, m2, . . . , mn}, and at any given time during execution of

an enclosing dataflow graph, A has a unique current mode. During each execution

(dataflow firing), A executes in its current mode, producing and consuming data

on its dataflow ports, and updates its current mode. Each mode mi is restricted

to have synchronous dataflow (SDF) semantics meaning that the number of data

values produced or consumed from each actor port is constant [4]. However, different

modes can have different production and consumption rates, which allows an actor

to have dynamic (non-SDF) behavior across modes.

The specification of a CFDF actor includes two functions, enable and invoke.

11



Figure 2.1: An illustration of a CFDF actor.

The Boolean-valued enable function returns true if the actor has sufficient data on

its input ports and sufficient empty space on its output buffers to support a single

firing in its current mode. The invoke function fires the actor in its current mode,

and updates the current mode as determined as part of the firing [12].

Figure 2.1 shows an illustration of an actor that is designed using the CFDF

model of computation. A CFDF actor can have any number of input ports and

output ports as long as there is at least one input or output port. Each input or

output port is connected to a dataflow edge in the enclosing dataflow graph where

the actor is instantiated. As illustrated in Figure 2.1, the current actor mode is in

general used by both the invoke and enable functions of the actor, and execution of

the invoke function can change the current actor mode.

For a given CFDF graph G, a schedule is defined as a sequence of actor firings.

12



Given a set of buffer capacities (positive integer buffer sizes) for the edges, a schedule

S is valid if whenever an actor A is fired in S, there is sufficient input data on all

input ports of A and sufficient empty space on all output ports of A to support the

mode of A that is associated with the firing. In other words, if the enable function

is executed just prior to any firing in a valid schedule, it should return true.

A periodic schedule for an SDF graph is a finite schedule that guarantees that

every actor is fired at least once, the graph does not deadlock, and there is no net

change in the number of tokens on any edge in the graph (i.e., the total number

of tokens produced on each edge during the execution of the schedule is equal to

the total number consumed from the edge). A periodic schedule can be iterated an

arbitrary number of times with bounded memory requirements for the graph edges.

This is an important property for signal processing applications, which must often

operate on very large data streams, and on streams whose length (number of data

samples) is not known in advance.

The existence of periodic schedules can be determined in finite time for SDF

graphs and CSDF graphs, and when they exist for these classes of graphs, efficient

algorithms are available for computing periodic schedules [8,10]. For many dynamic

dataflow models of computation, including CFDF, the problem of whether or not

dataflow graphs can be executed on unbounded streams with bounded memory

requirements is undecidable [11, 21, 22]. This is a price designers pay for the added

flexibility offered by such dynamic dataflow models.

13



2.3 Lightweight Dataflow Environment

The lightweight dataflow environment (LIDE) is a flexible design and im-

plementation environment that allows designers to experiment with and explore

dataflow-based techniques for design and implementation of signal processing sys-

tems [13,14]. LIDE is developed with a minimalistic approach that focuses on essen-

tial application programming interface (API) features for signal processing oriented,

dataflow-based development. The framework provides capabilities for implement-

ing signal processing systems in a variety of programming languages, and across a

variety of platforms, including field programmable gate arrays, graphics processing

units, desktop workstations, and programmable digital signal processors.

LIDE includes a number of libraries of dataflow graph element (actor and

edge) implementations. The available library components include different kinds

of FIFO implementations, basic signal processing actors, and actors for interfac-

ing with input and output files. Using LIDE, designers can flexibly develop their

own dataflow graph elements, other application-specific functional components (e.g.,

control-, parameterization-, and instrumentation-related modules), and schedulers

to construct specialized dataflow-based systems.

For example, the work presented in this thesis includes prototypes of new

design tools, dataflow graph elements, and schedules that are developed for efficient

support of the ASM domain.

Design of actors within the LIDE framework is based on the semantics of

the CFDF model of computation described in Section 2.2. LIDE also applies the

14



lightweight dataflow (LWDF) programming methodology, which provides a set of ab-

stract application programming interfaces (APIs) that allow designers to construct,

connect, and manipulate CFDF-based actor implementations [14]. LIDE provides

concrete realizations of the LWDF programming methodology in a number of pro-

gramming environments, including C, CUDA, and Verilog. The work presented in

this thesis employs a C-language realization of the LWDF programming methodol-

ogy, called LIDE-C, to implement and experiment with ASM systems.

When designing actors in LIDE-C, we use four interface functions, called the

construct, enable, invoke and terminate functions. Implementation of an actor in

LIDE-C centers on implementation of these interface functions for the actor. The

construct function creates an instance of the actor and connects the ports of the

actor to a set of edges that is passed through the function argument list. Using

this mechanism of connecting actor ports to edges, the designer can build up the

necessary topological connections between inputs and outputs of different actors in

a graph. The construct function can also be utilized to perform any other pre-

execution initialization tasks associated with a particular actor — i.e., tasks that

are carried out before the first firing of the actor in an execution of the enclosing

dataflow graph.

Conversely, the terminate function allows the designer to “close-out” aspects

of the underlying actor, including deallocation of relevant storage objects, once

the actor is no longer needed in the context of its enclosing graph. For example,

the terminate function for an actor A could be called once the graph has finished

execution or when the graph is being reconfigured in such a way that A is no longer

15



Figure 2.2: An illustration of function prototypes for designing a CFDF actor.

used in the graph.

The enable and invoke functions for a LIDE-C actor provide implementations

of the abstract CFDF enable and invoke semantics, respectively, that are described

in Section 2.2. Intuitively, the enable function provides a lightweight mechanism to

check at run-time whether or not a given actor is fireable — i.e., whether there is

enough input data and empty buffer space to support the next firing of the actor.

The invoke function provides the functionality to perform a single firing for the

actor or a single block of firings if actor-level vectorization or “scalable dataflow

semantics” are employed [23–25].

As an illustration of an actor interface in LIDE-C, Figure 2.2 shows prototypes

of the construct, enable, invoke, and terminate functions, respectively, for a LIDE-C

library actor that performs Gaussian filtering in an image. A more detailed example

of a LIDE-C actor implementation will be discussed in Section 2.6.

16



2.4 Dynamic Data-Driven Applications Systems

The growth in technologies for sensing and computation has contributed to

large increases in the volume of data that must be managed and analyzed in many

kinds of applications. The deployment of such “big data” applications across dis-

tributed embedded systems results in the need to extract information efficiently from

streams of data while adhering to complex challenges in networked, resource-limited,

real-time environments. The paradigm of dynamic data-driven applications systems

(DDDAS) is important in addressing such design challenges, which are central to

the application domain of adaptive stream mining systems that is targeted in this

thesis (e.g., see [26]).

DDDAS is a paradigm in which models are analyzed or simulated concur-

rently with executing applications, and measurements are dynamically monitored

and adapted to help ensure that the models can be used effectively to control how

the application is configured (e.g., what kinds of algorithms are employed, and the

settings of the algorithm parameters), and how it executes on the target platform [7].

This leads to a deep integration of modeling, instrumentation, measurement, and

measurement-driven adaptation throughout the design process. Furthermore, the

notion of adaptation is extended to apply with equal emphasis to both the applica-

tion configurations, and the instrumentation configurations (e.g., which sensors to

monitor, what resolutions to employ, and how to filter the input data). In contrast,

instrumentation is often largely ignored or treated as an afterthought or “side issue”

in conventional design processes.

17



An important aspect of the DDDAS paradigm is the ability to integrate data

dynamically into an application. Such data can be raw data that needs storage or

further processing by the application (e.g., speech, image or video signals) or instru-

mentation data (e.g., battery capacity data, data from monitoring communication

channel conditions, and information about resource utilization in the underlying

processing platform). DDDAS also involves the ability to dynamically steer the

control of an application system based on the results of specific subsystems, includ-

ing subsystems that are dedicated to instrumentation. Such control can be carried

out in an effort to best align the current application, platform and instrumentation

configurations with the region of the overall application design space that the sys-

tem is currently operating in. This design space region is estimated or predicted by

the models that are managed concurrently with the executing applications as part

of the DDDAS methodology.

Figure 2.3 shows an illustration of representative applications, algorithms,

models, and design space components in the use of DDDAS methods for design

and implementation of adaptive stream systems.

The DDDAS paradigm is relevant across a wide range of application areas.

Examples include weather analysis [27], image guided neurosurgery [28], 3D track-

ing [29], and financial modeling. For further discussion on the use of DDDAS meth-

ods in various application domains, we refer the reader to [7].

The work presented in this thesis focuses specifically on the modeling and

design space aspects illustrated in Figure 2.3. Through our emphasis on model-based

design methodologies, specifically in the context of dataflow models of computation,

18



Figure 2.3: An illustration of the DDDAS paradigm applied to adaptive stream

mining systems.

19



we develop novel modeling formulations and novel ways of applying models in the

areas of application specification, instrumentation subsystem design, system-level

adaptation, and task scheduling. These aspects of our contributions are emphasized

in Chapter 3 and Chapter 4.

By the design space of an adaptive stream mining system, we mean the set of all

system configurations — including all valid combinations of application-, algorithm-,

and implementation-level configurations — that can be employed when the system is

operating. Each element of the design space influences system performance in terms

of the relevant design metrics, which in our demonstrations and experiments include

metrics that relate to processing speed, energy consumption, real-time performance,

and stream mining accuracy. The design evaluation space associated with a given

design space and a given set of design metrics is the set of achievable performance

levels in terms of all of the metrics. Thus, for example, if each design metric is

measured as a real number and there are n metrics, then the design evaluation

space can be represented as a subset of Rn, where R is the set of real numbers.

Adaptive stream mining systems and many other classes of applications sys-

tems are characterized by complex, multidimensional, design evaluation spaces. An

important challenge is the development of design methodologies and tools that allow

designers to understand and navigate these spaces and their associated design spaces

so that they can select and deploy the most strategic operational trade-offs for the

application scenarios of interest. For example, two common scenarios of interest

in surveillance applications are (1) low-performance, low-fidelity standby states are

that are designed to consume minimal energy and trigger an alert when a possible

20



threat is detected, and (2) high-performance, high-fidelity alert states that perform

more intensive monitoring, analysis, and communication under situations when a

threat is suspected.

In Chapter 5 of this thesis, we develop new methods to model and systemat-

ically navigate complex, multidimensional design evaluation spaces associated with

adaptive stream mining systems.

2.5 Support Vector Machines

Support vector machines (SVMs) provide a supervised learning approach in

machine learning that is used for classification and regression analysis. SVMs have

gained significant popularity over recent years for their effectiveness, and amenabil-

ity to mathematical analysis [30–32]. An SVM can be characterized as a linear

algorithm in a high-dimensional feature space. Although SVMs are widely used for

linear classification, they can also perform non-linear classification tasks efficiently

through the use of a certain form of function called a kernel function [32]. The

experimental adaptive stream mining systems developed in this thesis involve ex-

tensive use of non-linear classification through use of Gaussian radial basis functions

(RBFs) as kernel functions.

Figure 2.4 illustrates how a kernel function maps instances from the SVM input

space into a higher dimensional feature space, and how classification is carried in

the feature space using hyperplanes that separate elements of different classes. For

further background on SVMs, we refer the reader to [30, 32].

21



Figure 2.4: An illustration of an input space, feature space, and kernel function

(mapping function) in SVMs.

2.6 SVM Implementation in LIDE

As described previously, the experimental adaptive stream mining systems

developed in this thesis, including the SVM subsystems on which these systems

are constructed, are programmed using LIDE-C, which is the integration of the

lightweight dataflow programming methodology with the C programming language.

In this section, we outline and illustrate our approach to implementing SVMs using

LIDE-C.

We implement an SVM classifier in LIDE as an individual actor. Topolo-

gies of classifiers that provide complex functions using networked connections of

SVMs can then be constructed by instantiating multiple SVM actors in LIDE-C

and connecting them with lightweight dataflow edge implementations. Using LIDE

as a foundation, we have developed additional domain-specific features for adaptive

stream mining system implementation (beyond the development of SVM actor li-

22



brary components). The resulting design environment, called lightweight dataflow

for dynamic data driven application systems (LiD4E) is presented in Chapter 3,

and the contributions in Chapter 4 and Chapter 5 represent extensions to LiD4E

to provide more advanced capabilities, including multi-mode stream mining system

design, and multiobjective optimization.

Figure 2.5 shows an outline of the construct function for our SVM actor

implementation. The first four function parameters, input_data, input_svs,

input_alphas, and output_class, correspond to the FIFOs associated with the

dataflow edges that are to be connected to actor ports in the enclosing dataflow

graph. The inputs that are processed by the actor include the raw data that needs

to be classified, and other SVM classifier parameters, such as the number of support

vectors, alpha, bias, and sigma (from the RBF kernel). The classified class data is

produced on the output FIFO labeled output_class.

Note that not all of the actor ports are accessed during all of the CFDF modes.

For example, the SVM parameters are used only during a mode that is designated

for configuring or “loading” the actor parameters. When the actor is invoked in its

main data processing (stream mining) mode, it does not access the input ports that

are used to load actor parameters. Also, note that the process of instantiating an

actor includes initializing function pointers in the context to the addresses of the

enable and invoke functions for the actor.

Figure 2.6 shows an outline of the enable function for our SVM actor imple-

mentation.

An outline of the invoke function for our SVM actor implementation is shown

23



in Figure 2.7. This illustrates the general convention in CFDF where the invoke

function executes an unconditional actor firing (regardless of the state of the input

and output FIFOs). It is the scheduler’s responsibility to ensure that there is enough

data and output space, which it can do efficiently by using the enable function as

needed (or through static analysis if parts of the schedule or all of the schedule

are being constructed statically). If the invoke function is called when there is

insufficient data on the actor inputs or insufficient space on the outputs, then the

results are unpredictable, and are likely to lead to incorrect application behavior.

The potential for such problems needs to be addressed in the verification or testing

processes for the actor. Efficient methods for validating implementations of CFDF

actors are developed in [33].

Finally, the terminate function for our SVM actor implementation is shown

in Figure 2.8. The terminate function is responsible for releasing memory that has

been allocated during construction and execution of the actor. Typically, actor fir-

ings do not allocate memory, and the construct function is the source of the memory

allocations that have to be considered in the terminate function. However, complex

actors that maintain large and varying amounts of state may employ memory allo-

cation (and even deallocation) within the actor firings (invoke functions). Such use

of memory should be taken into account when implementing the terminate function.

24



2.7 Summary

In this chapter, we have reviewed various concepts and methods as back-

ground for the work that is presented in the subsequent chapters of this thesis. We

have reviewed the core functional dataflow (CFDF) model of computation, and the

lightweight dataflow environment (LIDE), which is a software package that sup-

ports design and implementation of signal processing systems in terms of CFDF

models. We have also reviewed concepts of dynamic data-driven applications sys-

tems (DDDAS), which is a novel paradigm that promotes deep integration of models,

instrumentation, measurements, and data-driven control of system configurations.

Finally, we have reviewed support vector machines (SVMs), and illustrated the im-

plementation of an SVM actor in LIDE.

25



Figure 2.5: An outline of the construct function for an SVM actor.

26



Figure 2.6: An outline of the enable function for the SVM actor example.

27



Figure 2.7: An outline of the invoke function for the SVM actor example.

Figure 2.8: The terminate function for the SVM actor example.

28



Chapter 3: Framework for Design and Implementation of ASM Sys-

tems

3.1 Introduction

As motivated in Chapter 1, Adaptive Stream Mining (ASM) is an important

area of research in multimedia signal processing with the growing demand and de-

ployment of multimedia and text based content in distributed processing nodes, and

strict requirements for information being readily available in such nodes. Real-time

knowledge extraction and classification is of high importance in a wide spectrum

of multimedia processing application areas, including surveillance, cyber-security,

transportation (e.g., intelligent traffic control), earth science (e.g., water manage-

ment, seismic monitoring), online financial analysis, manufacturing process control,

multimedia search engines, health and life sciences, and medical services [1–3].

As processing nodes become distributed and mobile, static, database oriented

(e.g., query-driven) approaches to stream mining do not scale well. Additionally, dis-

tributed environments pose stringent constraints on system design for high volume

multimedia content and energy efficient operation. Such systems need significant

adaptivity to meet the dynamically changing needs of a wide range of users oper-

29



ating in a correspondingly wide range of environments, and employing devices that

utilize diverse processing platforms.

In such distributed and dynamic operating environments, there is no notion

of steady state processing or equilibrium that a system design can be targeted for.

In particular, the operations that are most efficiently suited to the dynamically

varying data characteristics must be configured carefully at run-time. Furthermore,

there may be significant opportunity to streamline system operation by tuning the

underlying embedded software structure (e.g., the task scheduling and memory man-

agement configurations) at run-time based on dynamically changing data charac-

teristics, environmental conditions, and operational constraints. Novel design and

implementation techniques are needed to address this growing need for adaptive,

performance- and energy-optimized implementation of multimedia stream mining

systems in the context of dynamic, data-driven processing scenarios.

In this chapter, we address this problem by introducing new design methods

and an associated design tool that targets efficient implementation of data-driven,

multimedia ASM systems, which is an emerging class of important applications in

the broader area of dynamic, data-driven application systems (DDDAS) [7]. Our

approach is based on new techniques involving signal processing oriented dataflow

models of computation (e.g., see [5]). We introduce a novel dataflow modeling tech-

nique, Hierarchical Core-Functional Dataflow (HCFDF), to address the challenges

mentioned above pertaining to ASM applications. Our technique is especially tai-

lored for classification and knowledge extraction, and for helping designers to under-

stand the parallel and distributed structure of ASM systems, and map these struc-

30



tures into efficient implementations. Based on this modeling technique, we introduce

a unified design and implementation framework, called the Lightweight Dataflow for

Dynamic Data-Driven Application Systems Environment (LiD4E), that can be used

to systematically integrate adaptivity and data-driven system-level reconfiguration

into arbitrary stream mining algorithms. We demonstrate key features of this tool

through a face detection application.

Material in this chapter was published in preliminary form in [34].

3.2 Related Work

The design methodology presented in this chapter belongs to the broad class of

dataflow-based design techniques for digital signal processing (DSP) systems (e.g.,

see [4, 5]). In such dataflow techniques, DSP systems are represented by designers

in terms of dataflow graphs in which graph vertices (actors) represent signal pro-

cessing tasks of arbitrary complexity, and edges represent logical communication

channels between pairs of actors. Unlike conventional, compiler-oriented uses of

dataflow, where it is employed as an intermediate representation, signal processing

oriented dataflow techniques use dataflow as a programming model with semantics

that are matched carefully to the specific DSP application domains to which they

are targeted [5]. The work presented in this chapter provides the first systematic

integration of such dataflow-based design and implementation with the emerging

domain of multimedia adaptive stream mining systems. Further aspects of the nov-

elty in our new dataflow based design methods are discussed in Section 3.3 and

31



Section 3.4.

Some current stream mining systems take a database-centric approach where

relational operators are applied to streaming data. Since relational operators are

well-understood, the system can statically determine the optimal operator order

and placement over the available resource topology. Although some systems like

Telegraph CQ [35] provide dynamic adaptation to available resources, they do not

factor in application knowledge to achieve the best resource-to-accuracy trade-offs.

A limitation of existing work in stream mining systems is that the resulting

processing delay has seldom been analyzed and, when it has been, it has always

been analyzed in steady-state, at equilibrium, after all processing nodes are con-

figured. However, the equilibrium can often be elusive due to the dynamic arrival

and departure of query applications. Hence, the delay incurred when dynamically

reconfiguring the different classifiers’ operating points and organizing the classifier

topology, out of equilibrium, is very important for real-time stream mining appli-

cations because it reduces the amount of time available to process incoming data.

This reconfiguration delay out of equilibrium must be considered when designing

solutions for real-time stream mining systems. Through its deeply integrated sup-

port for classifier parameterization, dynamic classifier and topological adaptation,

and dataflow graph scheduling, the design framework presented in this chapter pro-

vides a foundation for analyzing, experimenting with, and optimizing the costs and

benefits of adaptation and reconfiguration in ASM implementations.

32



3.3 Hierarchical Core Functional Dataflow

Unlike traditional stream processing, where the pipeline is deterministic, we

focus on applications where the pipeline is data dependent and dynamically chang-

ing. In this chapter, we introduce hierarchical semantics for the core functional

dataflow (CFDF) model of computation, which was discussed in Chapter 2, and we

demonstrate the utility of this new form of modeling in the design and implemen-

tation of ASM systems. We refer to the model of computation that results from

the integration of this hierarchical semantics with CFDF as hierarchical core func-

tional dataflow (HCFDF). CFDF has been demonstrated in prior work to be useful

for multimedia system design [36], and our integration of hierarchical semantics in

CFDF helps to enhance the scalability and flexibility of CFDF-based design meth-

ods, and provides a critical enabler for our proposed ASM-targeted implementation

techniques.

A major motivation for HCFDF is to encapsulate dynamic and adaptive

topologies (subsystems) of real-time ASM applications so that they can be con-

trolled flexibly and precisely by other HCFDF subsystems. HCFDF allows for the

unique dynamic dataflow modeling and scheduling features of CFDF to be applied

hierarchically so that complex, data-driven ASM topologies can be composed and

scheduled. The CFDF model has similarities to other dataflow models, such as

scenario-aware dataflow (SADF) [37], and we envision that the framework devel-

oped in this chapter can be adapted to such related models. Such generalization is

a useful direction for further work.

33



HCFDF generalizes CFDF, which is developed in [12] and introduced in sec-

tion 2.2. HCFDF graphs extend CFDF semantics with a specialized class of hierar-

chical actors. A hierarchical actor H in an HCFDF graph can be viewed as a CFDF

actor that has an associated set of nested HCFDF subgraphs σ = N1, N2, . . . , Nc,

where c is referred to as the cardinality of H . For each subgraph Ni, the specifi-

cation of H places the interface ports of Ni in one-to-one correspondence with a

subset of the actor ports of H . Furthermore, each operational mode µi of H can

invoke an arbitrary subset of the subgraphs within σ with each subgraph being in-

voked any number of times. The key restriction here is that the net data production

and consumption at the actor ports for each µi must be constant, so that the actor

“appears from the outside” as a CFDF actor. Such constant net production and

consumption can be guaranteed if the nested subgraphs are all SDF graphs and are

all invoked constant numbers of times within each mode. However, more flexible

forms of dataflow and data-dependent subsystem invocation rates can be incorpo-

rated as long as the net production and consumption volumes at the ports of H are

constant over the entire mode execution.

Figure 3.1 illustrates a pseudocode sketch of how subgraphs can be invoked

flexibly within the specification of a hierarchical actor in HCFDF. In this example,

we assume that graph1 and graph2 are both SDF graphs that have the same net

production and consumption rates at their input and output interfaces. The data

availability for each subgraph invocation is ensured as part of the CFDF enable

function constraint for the given actor mode (M0 in this case). The symbols T1

and T2 represent subgraph termination conditions (STCs), which are objects that

34



specify “how long” to execute each graph. For example, in a particular hierarchical

instantiation, an SDF subgraph may have its STC specified as a positive integer

blocking factor, which gives the number of iterations to execute for any minimal

periodic schedule for the graph. Such a specification is unambiguous in terms of

the well-defined concept of minimal periodic schedules in the SDF model of com-

putation. The actual schedule that is used to execute each subgraph is not part of

the schedule specification. The schedule can be computed or otherwise determined

by the synthesis tool, at run-time or using a combination of synthesis-time and

run-time techniques. Such separation of concerns between scheduling and system

specification is a fundamental objective in dataflow-based signal processing environ-

ments (e.g., see [5]), which our HCFDF framework supports through its subgraph

invocation interface.

The HCFDF model promotes modularity as specialized kinds of SDF graphs,

as well other kinds of CFDF graphs, can be reused readily across different applica-

tions and across different subsystems of the same application by integrating them

through hierarchical CFDF actors.

The formulation of HCFDF introduced in this chapter is inspired by the mod-

eling techniques of interfaced-based SDF, and heterochronous SDF [38,39]; however,

HCFDF is unique in its provision for encapsulating and configuring arbitrary col-

lections of SDF graphs, as well as more general forms of dataflow graphs, within

individual hierarchical actors.

35



Figure 3.1: Control of subgraphs in hierarchical CFDF actors.

3.4 Design and Implementation Framework

In this section, we present a new design tool called the Lightweight Dataflow

for Dynamic Data-Driven Applications Systems Environment (LiD4E). LiD4E is

developed as a design tool plug-in oriented toward ASM system design. Specifi-

cally, LiD4E is a plug-in to the previously developed lightweight dataflow (LiDE)

framework [40], which provides features for design and implementation of signal

processing systems using dataflow graphs (see Section 2.3). LiD4E incorporates a

36



first version implementation of HCFDF semantics to support the novel capabilities

for ASM system design that are presented in this chapter.

To support the adaptive, dynamic, and autonomous nature of ASM applica-

tions, we include a set of new decision and control actors (dataflow graph functional

components) in the LiD4E framework. These are called adaptation manager, and

adaptive classification module actors. LiD4E also applies instrumentation actors,

which were introduced in [36] as a means for integrating static and run-time instru-

mentation capabilities systematically within a formal dataflow context. In LiD4E,

instrumentation actors are used to provide monitoring and feedback to drive the

adaptation tasks in an overall ASM system. Because instrumentation actors are

themselves genuine dataflow components, their functionality can be parameterized,

adapted, scheduled, and transformed in a way that is full integrated with the over-

all system design. This allows the instrumentation mechanisms to adapt seamlessly

and efficiently as needed by the deployed ASM system.

Figure 3.2 illustrates how adaptation mangers, adaptive classification modules,

and instrumentation actors interact in the LiD4E framework. The bottom part of

Figure 3.2 illustrates a stream of facial images being injected as input into the

system, as we employ face detection as a demonstration application in Section 3.5.

However, the overall ASM system design and implementation framework illustrated

in Figure 3.2 can be applied to arbitrary media types for a wide variety of different

classification tasks.

The blocks labeled Adaptation Manager, Instrumentation Actor, Performance

Constraints, Feedback, and Output around the periphery in Figure 3.2 represent

37



Figure 3.2: Overview of ASM system design in LiD4E.

standard components in our LiD4E-based ASM system design framework. While

these actors can be instantiated and connected in arbitrary ways with other actors,

the schema shown in Figure 3.2 can be viewed as a specific design pattern that can

be used in LiD4E to implement a broad class of multimedia ASM systems.

To enable formal analysis, and systematic simulation and code generation

in terms of the CFDF model of computation, these actors must adhere to CFDF

semantics at their interfaces (see Section 3.3). Subject to this interfacing restriction,

the actors can be developed using arbitrary platform-oriented languages (e.g., C,

CUDA, Verilog or VHDL), and can employ arbitrary specialized algorithms and

38



implementation techniques within them to achieve the associated specialized parts

of the overall ASM system functionality illustrated in Figure 3.2.

Intuitively, the Adaptation Manager provides front-end decision-making to

select an appropriate classifier type based on the current performance constraints

and feedback from instrumenting system performance and output values. As with

the other blocks in Figure 3.2, this block can be implemented as a primitive CFDF

actor or as a hierarchical actor that encapsulates an arbitrary collection of HCFDF

subsystems.

The Instrumentation Actor collects runtime statistics of the system so that

they can be monitored to drive system adaptation. For further details on the use of

instrumentation actors in CFDF graphs, we refer the reader to [36].

The Performance Constraints actor provides a flexible CFDF interface to con-

trol the criteria under which the overall system will be adapted and optimized at

run-time. These constraints can (1) be specified by a human through an appropriate

user interface, (2) arrive through a communication network, (3) result autonomously

from monitoring of system resources (e.g., battery levels), or (4) be formulated us-

ing any combination of these three general methods. In the version of the LiD4E

framework that is described in this chapter, we support only the first method — user

interface based constraint specification. Integration of a more rich class of constraint

specification features is covered in the later chapters of this thesis.

The block in Figure 3.2 labeled Adaptive Classification Module (ACM) rep-

resents a hierarchical actor, which encapsulates a set C of classifiers that are to be

deployed as the “computational core” of the targeted ASM system. During a given

39



invocation of the ACM actor, an arbitrary subset of classifiers within C can be se-

lected, configured, connected, and operated in a cooperative manner (e.g., through

the class of classification topologies studied in [2]). We elaborate more on design

and application of the ACM actor in Section 3.5.

3.5 Case Study: Face Detection

In this section, we demonstrate the utility of the LiD4E environment and the

underlying HCFDF model of computation with a case study centering on an ASM

system for face detection.

3.5.1 Adaptive Classification

Adaptive classification systems are in general comprised of multiple classifiers

with different parameters or performance goals (e.g., see [2]). In this context, we

define “adaptive” as the ability of a system to change its operational parameters

based on feedback or external input to maximize the effectiveness of the classifi-

cation system, and select strategic combinations of classifiers dynamically through

systematic processes to account for input data, operational constraints, and classi-

fier characteristics. We define a “non-adaptive system” as one that operates using

only one (static) set of parameters.

Support vector machines (SVMs) are supervised learning models that can be

used for classification purposes (e.g., see [41]). A trained SVM classification model

takes input data and calculates a value, which can then be thresholded to determine

40



the class of the data. Conceptually, an SVM model is a representation of the training

examples as hyperplanes with different classes separated by the widest gap allowed

in the mapped space. The examples that are used to construct this “maximum

margin” are known as support vectors (SVs). Nonlinear classification using SVMs

can be effective for the task of face detection [42]. One of the most popular kernels

in this context is the Gaussian radial basis function, defined by:

k(xi, xSV ) = exp(−γ‖xi − xSV ‖
2), (3.1)

where x represents the data point and γ is a parameter that can be configured. By

using the kernel trick (i.e., the method for mapping observations to an inner product

space), an SVM model can be trained efficiently on the data. Cross-validation can

be used to determine the optimal parameter values for each SVM based on the needs

of the application.

In this case study, we experiment with three SVM classifiers designed with

different performance goals: high accuracy, low runtime, and low false positive rates.

This experimentation is carried out through HCFDF-based modeling of multi-modal

SVM classification using the three classifiers in conjunction with the framework of

Figure 3.2, and dynamic selection of the classifier to use based on situational goals.

We design, implement, and experiment with this ASM system using the LiD4E

environment.

In LiD4E, each subsystem can be operated as an independent dataflow graph

with its own schedule or set of alternative schedules. This capability, along with the

41



associated classifier configurations, allows each subsystem to be specialized in terms

of different operational qualities, such as high accuracy, low runtime, and low false

positive rate. The focus at the subsystem level is to provide the desired functionality

and associated operational qualities so that the subsystem can be selected when

those qualities are determined to match best with the dynamic, data-driven needs

of the application.

In this case study, each subsystem consumes input data — in the form of im-

age pixels — and produces output data using an SVM classifier that is specialized

(through its parameterization) for certain operational qualities, as described earlier.

The common objective of all of the classifiers employed is to determine whether or

not a given input image corresponds to a human face. The actors that are instanti-

ated within the subsystems are the same; however, their parameters are configured

in different ways to provide the desired trade-offs among operational qualities. Each

subsystem consists of one actor to read the parameters of the associated classifier

from a file, and another actor to perform classification using the SVM classifier. For

embedded implementation when the parameter sets are of manageable size, the sets

can be retrieved from memory rather than a file. Exploration in LiD4E with such

resource-constrained, embedded implementation techniques is a useful direction for

future work.

In our experiments, we provide streams of dynamically-varying application

constraints, as explained before, as input to the ASM system. Such a “constraint

stream” simulates the effect of dynamic, data-driven changes in operational require-

ments. Based on the most recently applied constraints to the system, one of the

42



classifiers ct is chosen whose associated operational features are best matched to the

constraints. Subsequent input data is then directed to ct (and diverted from the

other classifiers) until changes in constraints cause selection of a new classifier. We

use a simple task scheduling strategy, called the canonical scheduler, for each clas-

sifier subsystem [12]. The different subsystem-level schedules are then integrated

based on HCFDF semantics, as discussed in Section 3.3. A canonical schedule is

easy to construct and understand, and is therefore useful during simulation and

functional validation. Exploration of more sophisticated scheduling techniques in

LiD4E, including techniques that are optimized for specific platforms, is a useful

direction for future work.

3.5.2 Experimental Setup and Results

Our LiD4E-based ASM system was implemented for face detection on a 3GHz

desktop computer with two Intel Xeon CPUs and 3GB RAM, and with Ubuntu

10.04 as the operating system. We used C as the language for programming individ-

ual actors, and used associated C-based libraries in LiD4E to provide HCFDF-based

actor integration, dataflow buffer management, and scheduling. We used the gcc

version 3.4.4 compiler for the back end of the implementation process. We de-

veloped the SVM classifiers using MATLAB, trained the classifiers using the MIT

CBCL face database [43], and then ported them to C for LiD4E-based actor im-

plementation. The functional accuracy of LiD4E was verified through individual

simulation of each of the SVMs using MATLAB. Each subsystem consisting of the

43



different SVM classifiers was checked to ensure that the input data only went to one

of the subsystems. Test images from the MIT CBCL face database were used in the

verification.

The overall functionality of our LiD4E-based ASM system implementation was

validated by comparing if the correct sequence of classifiers was selected based on

the applied sequence of application constraints, and comparing the results of the

individual classifier invocations from LiD4E with the results of the corresponding

MATLAB-based classifier prototypes. Table 3.1 shows the runtimes for several

alternative configurations of our LiD4E-based ASM system. For each “single run”

experiment, one 19x19 image was input into each classification subsystem with a

specific operational constraint. The “stream run” data was collected using, for each

experiment, a sequence of three 19x19 images. The row in Table 3.1 labeled “all

modes enabled” gives aggregate results for executing all three classifiers on each of

the three images in the input stream, while the other “stream run” rows correspond

to application of individual classifiers in isolation.

With our ASM design framework, implemented systems can switch dynami-

cally among modes so that the classifiers employed are best matched to the con-

straints and data characteristics presented by the external input. However, because

different classifiers can be utilized, there may be a performance loss when using

classifiers that have longer run-times than the fastest classifier available within the

system. Such a trade-off may be desirable when there is a greater need for accuracy

or a lower false positive rate. To quantify this trade-off, we compare each ASM sys-

tem developed in LiD4E with a corresponding non-adaptive system that uses only

44



the fastest available classifier. The run-time aspect of this comparison is captured

by the performance loss ratio (PLR), which gives the ratio of run-times between the

classifier employed (numerator) and the fastest available one (denominator). The

PLR quantifies the performance loss (in exchange for higher quality classification

results) compared to a non-adaptive system that operates using only the fastest

available classifier.

An average of 26% improvement in execution time per classifier invocation is

observed in the stream version of the experiments. This improvement can be at-

tributed to amortization of start-up and termination overhead of the LiD4E system,

including program startup overhead associated with the underlying operating sys-

tem, across longer input data sets. The overall benefits of such amortization increase

with the length of the input stream. The overhead attributed to the LiD4E-based

ASM framework (Figure 3.2) was measured as (τ−κ)/τ , where τ represents the total

execution time of all of the actors in Figure 3.2, and κ represents the execution time

of the core classification tasks (the classifier actors). This overhead was measured

to consistently fall in the range of 0.75%–1.1%, depending on the type of classifier

employed. The overhead of our proposed ASM system design framework is thus

found to be relatively small, and much smaller than the overall system overhead,

which is inclusive of operating system overheads, as described above.

Most importantly, the results in Table 3.1 provide insight into the capability of

our novel framework to dynamically adapt to trade-offs in performance and accuracy.

They also demonstrate the ability to achieve improved performance through a unified

design framework that adheres to relevant operational constraints.

45



Execution Classifier Average Standard Performance

Mode Mode Execution Time Deviation Loss Ratio

(seconds)

Mode with highest 0.492 0.080 1.469

accuracy classifier

Single Run Mode with fastest 0.335 0.064 —

classifier

Mode with lowest false 1.762 0.262 5.260

positive classifier

All modes enabled 2.116 0.297 3.182

Mode with highest 1.038 0.160 1.561

accuracy classifier

Stream Run Mode with fastest 0.665 0.104 —

Classifier

Mode with lowest false 4.514 0.360 6.788

positive classifier

Table 3.1: Face detection run-times using LiD4E. The unit of run-time measurement

here is seconds.

46



3.6 Summary

In this chapter, we have introduced LiD4E (lightweight dataflow for dynamic

data driven applications systems environment) as a formal dataflow based design

framework for multimedia adaptive stream mining (ASM) applications. Through an

ASM application for face detection, we have demonstrated the capability of LiD4E

to enable systematic trade-off exploration among ASM figures of merit, including

classification accuracy, processing speed, and minimization of false positive rates.

Furthermore, through their formal connection to dataflow foundations, ASM system

models in LiD4E expose application concurrency while ensuring determinacy in the

execution results regardless of which scheduling technique is employed. Through

such scheduling flexibility, designers of ASM systems have the potential to further

enhance trade-off exploration and run-time adaptation. Thus, building on the design

methods developed in this chapter to explore new scheduling techniques for ASM

systems is a useful direction for further investigation.

47



Chapter 4: Model Based Design Environment for Data-Driven

Embedded Signal Processing Systems

4.1 Introduction

Embedded systems are often deployed and configured to handle multiple ap-

plication tasks concurrently across different subsets of processing resources. In the

domain of embedded signal processing, modern platforms consist of multiple process-

ing cores that can concurrently support DSP- (digital signal processing) intensive

functions such as multimedia (e.g., face recognition, speaker identification, pattern

recognition) and wireless communication (e.g., GSM, digital radio, NFC, Bluetooth),

as well as control-oriented functions, such as those associated with user interfaces

and file management (e.g., see [5]). With the increasing need for efficient and robust

development of embedded systems, it is important to utilize and effectively manage

the limited resources available in these computing devices dynamically in the context

of data characteristics and operating conditions. Static modeling and management

of execution constraints, including those involving energy consumption, real-time

performance, computational resources, and core application accuracy, is not effective

in designing efficient embedded systems that must adapt to time-varying require-

48



ments. Thus, in this chapter, we develop new techniques for dynamic, data-driven

modeling, scheduling, monitoring, and execution of DSP applications running on

resource limited embedded platforms.

Dataflow modeling techniques are widely used to model, schedule and imple-

ment DSP systems [5]. Adaptive Stream Mining (ASM) is an important subclass

of DSP applications where real-time knowledge extraction and classification are

of high importance [15]. Unlike traditional data mining systems, where data is

stored statically and mined through queries on the static (or slowly changing) data,

ASM data arrives continuously and must be processed in real-time. Statically con-

figured approaches to ASM processing do not scale well, with scalability problems

getting worse as ASM nodes become distributed and mobile. Furthermore, integrat-

ing diverse application subsystems or diverse configurations of the same subsystem

(multi-mode operation) for trade-off optimization or information integration requires

adhering to global constraints on resource utilization and performance, while man-

aging different quality-of-service (QoS)characteristics of the subsystems. Therefore,

novel design and implementation techniques that deviate from traditional, statically-

oriented stream mining system design are needed to address the growing need for

performance- and energy-optimized implementation of ASM in the context of dy-

namic, data-driven, and multi-mode processing scenarios. A conceptual design flow

for this class of targeted multi-mode scenarios is illustrated in Figure 4.1.

This work represents a novel integration of dataflow based design methods for

signal processing with the paradigm of Dynamic Data-Driven Application Systems

(DDDAS). High-level, signal-processing-oriented dataflow models of computation al-

49



Figure 4.1: Data-driven, multi-mode embedded system design flow.

low designers to systematically formulate the design flow for a DSP system, and to

integrate hardware, software, and application constraints into such design flows [5].

DDDAS is a paradigm that rigorously integrates application system modeling, in-

strumentation, and dynamic, feedback-driven adaptation of model and instrumen-

tation parameters based on measured data characteristics [7]. In this work, we

combine the methodology of dataflow-based DSP system design with the DDDAS

paradigm to address the novel constraints and challenges of real-time, multi-mode

ASM processing on embedded platforms. Our proposed new design framework pro-

vides a structured approach for design, implementation and optimization of ASM

systems under stringent platform constraints and dynamically-changing application

50



requirements and data characteristics.

To address the design and implementation of multi-mode ASM systems, we

apply in this chapter our previously introduced (see Section 3.3) dataflow modeling

technique called Hierarchical Core Functional Dataflow (HCFDF) [34]. In partic-

ular, we present a novel application of HCFDF to efficiently model and manage

multi-mode application scenarios. In this modeling approach, dynamic adaptation

is represented through hierarchical inclusion of a special kind of actor (dataflow-

based software component) called a decision actor. Such hierarchical use of decision

actors is employed to switch among application subsystems based on data-driven

demands involving performance-energy tradeoffs.

We also apply the HCFDF model to develop new methods for performance-

energy-aware, dynamic scheduling of application subsystems. These scheduling tech-

niques are geared towards efficient, context-aware adaptation of embedded DSP sys-

tems in multi-mode design scenarios. We integrate our new scheduling techniques

with DDDAS concepts to introduce a unique model-based design environment for

data-driven resource, constrained DSP applications. This design environment is

prototyped and demonstrated by building on the Lightweight Dataflow for Dynamic

Data-Driven Application Systems Environment (LiD4E), which is a tool for ex-

perimentation with and optimization of dataflow-based design methods for ASM

systems [34] that is described in detail in Chapter 3

Material in this chapter was published in preliminary form in [44].

51



4.2 Related Work

As mentioned in Section 4.1, the work presented in this chapter is rooted

in core concepts of the DDDAS paradigm [7], and of dataflow-based design for

DSP systems (e.g., see [4, 5]). In DSP-oriented dataflow modeling, applications are

represented in terms of dataflow graphs, where graph vertices (actors) represent

signal processing tasks of arbitrary complexity, and edges represent logical FIFO

communication channels between pairs of actors. In this work, we apply dataflow as

a programming model with semantics that are carefully matched to the targeted DSP

application domain — i.e., dynamic, data-driven signal processing systems [5, 34],

and more specifically, adaptive stream mining systems. This modeling approach

differs from uses of dataflow as a compiler intermediate representation (e.g., see [45]),

and as a form of computer architecture [46].

The work presented in this chapter builds upon our previous work on adaptive

stream mining systems for multimedia applications [34]. This chapter goes beyond

the previous work described in chapter 3 by investigating design and implementation

problems for multi-mode applications, and by developing new scheduling techniques

for mapping applications onto embedded platforms while monitoring and managing

dynamically-changing data characteristics and operational constraints.

Various studies on embedded stream mining have focused on performance op-

timizations for specific applications (e.g., see [47–49]). Similarly, the works of [48,49]

provide generalized scheduling and design strategies respectively, but focus on stat-

ically configured systems, without emphasis on handling time-varying data charac-

52



teristics. Work in this chapter is distinguished from these prior efforts in our focus

on multi-mode application systems, and the integrated application of dataflow and

DDDAS principles to such a multi-mode context.

Another relevant direction of prior work has involved the incorporation of data-

driven adaptability to individual signal processing functional components (dataflow

actors and their underlying algorithm parameters). For example, the works pre-

sented in [50–52] have studied such capabilities for speech processing applications.

Here, adaptability is achieved by dynamically updating the key signal flow graph

components, such as Hidden Markov Models (HMMs), linear predictive coding

(LPC) blocks, and Mel-Frequency cepstral coefficients (MFCC) within a given

speech recognition application [50,51]. These methods are relevant to diverse appli-

cations, including speaker verification, audiovisual forgery, and low bit rate speech

coding. The methods can provide useful building blocks (parameterized actor and

subsystem designs) for the directions that we pursue in this chapter. However, the

approach that we pursue in this chapter is more flexible in terms of data-driven op-

eration since we consider adaptation of application models globally (at the dataflow

graph and scheduling level) as well as locally (at the level of individual actors or

subsystems).

4.3 Application Modeling

In this section, we discuss the modeling methods applied in our new design

environment for data-driven signal processing systems, and we demonstrate how

53



they can be applied to the design of multi-mode application systems. These mod-

eling methods are supported by the the LiD4E design tool, which is introduced in

Section 4.1, and provides a foundation for our prototyping of and experimentation

with the methods developed in this chapter. While the underlying modeling founda-

tion (HCFDF semantics) reviewed in this section has been developed in chapter 3,

our application of HCFDF semantics to multi-mode applications is a novel aspect

described in this chapter.

A key feature of LiD4E is the provision for signal processing pipelines (i.e.,

chains of signal processing modules, such as classifiers, digital filters and trans-

form operators) that can be data dependent and dynamically changing. LiD4E

employs hierarchical core functional dataflow (HCFDF) semantics as the specific

form of dynamic dataflow [34]. Through its emphasis on supporting structured,

application-level dynamic dataflow modeling, HCFDF provides a formal, model-

based framework through which applications in DSP and related domains can be

designed and analyzed precisely in terms of integrated principles of DDDAS and

dataflow.

In HCFDF graphs, actors are specified in terms of sets of processing modes,

where each mode has static (dataflow rates) — i.e., each mode produces and con-

sumes a fixed number of data values (tokens) on each actor port. However, different

modes of the same actor can have different dataflow rates, and the actor mode

can change from one actor execution (firing) to the next, there by allowing for dy-

namic dataflow behavior (dynamic rates). Additionally, HCFDF allows dataflow

graphs to be hierarchically embedded (nested) within actors of higher level HCFDF

54



graphs, thereby allowing complex systems to be constructed and analyzed in a scal-

able manner. The design rules prescribed for hierarchical composition in HCFDF

graphs ensure that actors at each level in a design hierarchy conform to the seman-

tics of HCFDF or some restricted subset of HCFDF semantics, such as cyclo-static

dataflow (CSDF) or synchronous dataflow (SDF) [8, 53]. For further details on

HCFDF semantics, we refer the reader to [34].

As demonstrated preliminary in [34] and described in chapter 3 of this the-

sis, HCFDF modeling enables run-time adaptation of signal processing topologies,

including dataflow graphs that are constructed using arbitrary combinations of clas-

sifiers, filters, and transform units. Through the inclusion of a special HCFDF design

component called an adaptive classification module (ACM), the designer can invoke

multiple operating modes at run-time, and selection of such operating modes can

be driven based on system feedback — e.g., based on instrumentation that mon-

itors data characteristics, and guides selection based on desired trade-offs among

performance, accuracy, and energy consumption.

To apply such a hierarchical, DDDAS-based dataflow design methodology to

the multi-mode application scenarios targeted in this chapter, we represent a system

design as a set of mutually exclusive application modes SM = {µ1, µ2, . . . , µN},

where each µi represents a set of application subsystems that are active during

the corresponding mode together with the configurations (actor-, application- and

schedule-level parameters) that are to be applied to the subsystems whenever µi

executes. This is illustrated in Figure 4.2. Although execution across the µis is

carried out sequentially, based on an ordering that can be determined dynamically,

55



Figure 4.2: Modeling multi-mode DDDAS designs using HCFDF graphs.

execution within each µi can consist of concurrent executions of an arbitrary number

of HCFDF-based subsystems (dataflow subgraphs), and parallelism can be exploited

within and across these concurrently executing subsystems.

Additionally, in our proposed design environment, the µis can share HCFDF

subgraphs among them to promote code reuse, and reduce program memory re-

quirements. For example, if a common speech processing subsystem is invoked in

multiple application modes, it can be referenced from each of those modes, while

having separate parameter settings, if desired, across the different modes that em-

ploy it. This leads, for example, to a design representation of information fusion

alternatives as parameterized subsets of dataflow subgraphs, where each subgraph

can be specialized to a particular type of information source (e.g., image, video,

56



network event streams, speech, or high fidelity audio).

4.4 Dynamic, Multi-Mode Scheduling

To integrate system-level, dynamic, data-driven operation into the targeted

class of signal processing applications, we describe in this section an adaptive

scheduling strategy for dynamic configuration and scheduling of multi-mode HCFDF

graphs. The scheduling approach described here is capable of dynamically adapt-

ing the selected application mode (e.g., high performance, high accuracy processing

versus low energy, approximate processing) based on the overall health status of the

target platform (e.g., available battery capacity), as well as on the data processing

scenario (e.g., high-performance, alarm-driven scenarios versus low energy, standby

scenarios).

The general scheduling approach, which we call the DHMM (DDDAS-HCFDF

Multi-Mode) scheduler, involves a set of measurements m1, m2, . . . , mk — from the

target platform, operating environment or system output — that are to be taken

at discrete times during execution. Here, each measurement mi corresponds to a

distinct metric (e.g., instantaneous power consumption, remaining battery capac-

ity, selected frequency content values for some kind of sensor data, or processing

resource utilization as a percentage of available platform resources, to name a few

possibilities).

A natural way to schedule these measurements is just after each iteration

of the executing application mode, since dataflow graph iteration is a commonly

57



used concept of time window in the analysis of signal processing oriented dataflow

programs (e.g., see [5]). Here, an application iteration can be defined to mean the

processing period for a set of data frames (e.g., with one frame associated with each

monitored sensor) for the current application mode, or can be parameterized to cover

some number F of frame sets, where F can be adjusted dynamically to control to

trade-offs among measurement overhead, adaptation frequency, and reactivity (the

speed with which system reconfiguration can track changes in the measured data).

Figure 4.3 and Figure 4.11 show two design iterations (a simple version and

an advanced version) of an example state machine SDHMM as part of the DHMM

methodology.

The sequence of measurement vectors, {(m1(i), m2(i), . . . , mk(i)) | i =

1, 2, . . .}, obtained by this application-iteration-level instrumentation process drives

a state machine SDHMM , where the states are in one-to-one correspondence with the

application modes, and each state σ has an associated function (i.e, a computational

function, not just a mathematical function) fσ. The purpose of each function fσ is

to compute parameter values for the mode associated with the state σ based on the

newly observed instrumentation data (measurement vector), and any state variables

that are maintained for σ. The state machine SDHMM thus plays a central role in

relating the instrumentation subsystem, which generates the measurement vectors,

to the available application modes and their underlying dataflow subgraphs.

The design of the instrumentation subsystem — including selection of the met-

rics {mi}— along with the design of the state machine SDHMM are important aspects

of our overall adaptive scheduling methodology. The instrumentation subsystem and

58



SDHMM together with the HCFDF-based application- and mode-level dataflow sub-

graphs that they control lead to a precise, formally rooted, and platform-independent

design framework for integrating DDDAS, dataflow, and multi-mode signal process-

ing principles. In Section 4.5 we concretely demonstrate the DHMM scheduling

methodology on a multi-modal, DDDAS-driven, design and implementation case

study involving image processing.

We would like to emphasize that the objective of the DHMM scheduling

methodology is not to introduce a new specialized scheduling algorithm for mapping

dataflow graphs but rather to provide a systematic framework with which differ-

ent schedules or scheduling algorithms can be integrated to provide DDDAS-driven,

multi-mode integration for collections of signal processing subsystems (dataflow sub-

graphs). In particular, the “mode-level schedules” that are are used to execute spe-

cific application modes under specific mode parameter settings are not part of the

DHMM framework specification. Such schedules can be derived by hand, statically

by a software synthesis tool, at run-time or using a combination of synthesis-time

and run-time techniques. Such separation of concerns between scheduling and sys-

tem specification is a fundamental objective for dataflow-based signal processing

environments (e.g., see [5]), and for model-based design tools in general.

4.5 Case Study: Face Detection

In this section, we demonstrate our proposed multi-mode, DDDAS-driven de-

sign approach, and our associated DHMM scheduling framework with a multi-mode

59



Figure 4.3: A simple SDHMM scheduler with one metric and 3 application modes.

application case study involving face detection. The measurement vector that we

consider in the instrumentation subsystem consists of a single component m1, which

corresponds to battery capacity, and the state machine SDHMM is designed to gradu-

ally trade-off processing accuracy for energy efficiency as battery capacity drops from

full to empty. Thus, we demonstrate how the targeted embedded system adapts in

response to periodically measured data on system health, along with an underlying

model of the design space across alternative classifier configurations.

The state machine design associated with this case study is illustrated in Fig-

ure 4.3.

4.5.1 Experimental Setup

Our experiments were performed through simulation on an Intel Core i7-2600K

CPU (3.40GHz, 15GB RAM) running the Ubuntu 12.04 LTS operating system.

The simulation — including HCFDF-based functionality for the DHMM scheduler,

multi-mode application subsystems, and instrumentation subsystem — was imple-

60



mented using the LiD4E environment [34]. In particular, the C-based application

programming interfaces (APIs) of LiD4E were employed; thus, our experimental sys-

tem implementation can be viewed as a C language realization that employs LiD4E

APIs to achieve the desired forms of high level dataflow semantics.

The experiments reported on in this section can be viewed as providing ini-

tial demonstration and validation of the multi-mode, DDDAS design methodol-

ogy presented in this chapter. More complex experiments — e.g., involving multi-

dimensional instrumentation spaces (measurement vectors with multiple compo-

nents) and implementations on embedded platforms — are a useful direction for

future work.

The face detection application that we experiment with in this chapter is based

on an application introduced in [34], with modifications incorporated to integrate

the DHMM scheduling framework with the metric m1 described above for battery

capacity, and a state machine SDHMM that is designed to provide decreasing levels of

processing accuracy and energy consumption as the battery level decreases. These

alternative accuracy/energy trade-offs are captured discretely through three sepa-

rate states (application modes) in SDHMM . The three modes correspond to three

distinct classifier configurations, which can be viewed, respectively, as configura-

tions that provide maximum energy efficiency; a trade-off among accuracy, energy

efficiency, and false positive rates; and a minimum false positive rate. We refer

to these modes as M1, M2, and M3. Here, energy efficiency is measured in terms

of the amount of energy consumed per classification operation (mode invocation).

Thus, M1 has the lowest energy consumption, M3 has the highest, and M2 has an

61



intermediate level of energy consumption.

The accuracy and false positive rates for a set of executed classification op-

erations are defined, following standard convention, as follows. Suppose that C

classification tasks are performed, and among these, c1, c2, c3, c4 tasks represent the

true positives, true negatives, false positives, and false negatives (see equation 4.1),

respectively. Thus,

C = c1 + c2 + c3 + c4. (4.1)

We define the associated classification accuracy as:

accuracy = (c1 + c2)/C (4.2)

and the false positive rate (FP rate) as:

FPrate = c3/C (4.3)

In many kinds of operational scenarios — e.g., where false positives are much

more costly compared to false negatives — the FP rate is viewed as being more

important than maximizing accuracy (at least up to some allowable degradation in

accuracy).

The scheduler state machine SDHMM is parameterized with a two-element vec-

tor, ν ∈ V , called the threshold vector. Here, V , the set of permissible values for ν,

is defined by

62



V = {(x, y) | 0 ≤ y ≤ x ≤ 1}. (4.4)

Given an initial battery capacity J , transitions between modes are carried out

in SDHMM by starting initially in M3, transitioning to M2 once the battery capacity

falls below x × J , and then transitioning to M1 (the most energy efficient mode)

once the battery capacity falls to y × J . Certain boundary conditions in V lead

naturally to special cases in the trajectory of modes. For example, if x = 1, then

we transition immediately to M2, and if x = y, then M2 is effectively skipped.

In our experiments, we use F = 1 as the iteration length (see Section 4.4),

meaning that the DHMM scheduler makes its next assessment about whether to

switch modes after each new image is processed. The SVM classifier parameters for

all three application modes were developed using MATLAB, trained using the MIT

CBCL face database [43], and then ported to C in the LiD4E environment.

4.5.2 Experiment Results

In our simulation setup, we estimate the energy consumption of a classification

task as being proportional to the latency, and we assume that the target platform

consumes negligible energy consumption during idle periods through use of power-

saving sleep capabilities. More specifically, we assume a constant average power

consumption ρ across all modes so that the battery energy drained for a given mode

invocation is estimated as ρ × τ(µ), where τ(µ) is the average latency (processing

time), as measured for mode µ. This model is used to simulate draining of the bat-

63



tery from full capacity to empty capacity. This simulated draining process in turn

creates a stream of battery capacity data, which is used to drive the DHMM adap-

tation process implemented by SDHMM . This is a relatively simple model of energy

consumption; an application of a more sophisticated energy models is discussed in

Section 4.6.1.

Figure 4.4 through Figure 4.6 show experimental results for several different

threshold vectors. The overall energy efficiency (Figure 4.4) gives a measure of the

total number of processed images across the lifetime of the system (i.e., until the bat-

tery is fully drained). The three threshold vectors towards the right (labeled SDF1,

SDF2, and SDF3) each correspond to execution of a single mode for the entire input

stream (no state transitions). Such implementations represent statically-structured

implementations that do not employ multi-mode/DDDAS capabilities, and can be

implemented as synchronous dataflow (SDF) graphs, without use of more dynamic

features, including HCFDF modeling or the proposed DHMM scheduler.

Intuitively, the DHMM-based system provides a way to achieve configurable,

graceful degradation of classification quality (accuracy and FP rate) as the battery

expires. This can be important, for example, if a mission lasts significantly longer

than expected. The results in Figure 4.4 through Figure 4.6 help to quantify this

kind of graceful degradation, and also demonstrate another important advantage of

the DHMM-based approach: the approach allows for finer-grained control over the

overall design evaluation space (i.e., in this case, the space involving energy efficiency,

accuracy, and FP rate). By varying the threshold vector, the designer or a run-time

system can steer the overall system performance (across the entire mission) towards

64



Figure 4.4: Energy efficiency trends across DHMM and static designs for a simple

SDHMM .

a specific Pareto-optimal point in the space that represents the best trade-off for

the application. Thus, rather than being confined by just the trade-offs provided

by the individual classifiers (i.e., the three rightmost bars in Figure 4.4 through

Figure 4.6 for this case study), the designer or run-time system has a large amount of

control in steering the overall performance into other regions of the underlying design

evaluation space. These capabilities — configurable and graceful degradation and

the production of new, Pareto-optimal operating alternatives — represent significant

advantages derived by applying the multi-mode, DDDAS techniques proposed in this

chapter.

65



Figure 4.5: Average accuracy trends across DHMM and static designs for a simple

SDHMM .

4.6 Additional Experiments

In this section, we discuss additional experiments that provide further demon-

stration of the methods introduced in this chapter.

4.6.1 Energy Consumption Model

One of the key challenges of deploying adaptive stream mining systems on dis-

tributed, embedded environments is to carefully incorporate the energy consumption

of the embedded platform into design space exploration processes. Such distributed

66



Figure 4.6: False positive rate trends across DHMM and static designs for a simple

SDHMM .

embedded platforms often operate from highly limited energy sources. In this sec-

tion, we have carefully integrated energy consumption into design space exploration

for stream mining system design. The energy model we use in this section is based

on the model described in [54] with a number of adaptations to make it better suited

to the targeted class of applications and platforms in this work. The goal of this

section is not to introduce a novel energy consumption model but to support sys-

tematic integration of designer-specified energy models into design space exploration

for adaptive stream mining systems.

When the energy model described in [54] is applied to a given execution of a

67



dataflow-based application graph, each dataflow actor ν is characterized by a pair

of attributes, (P (ν), ti(ν)), where P (ν) denotes an estimate of the average power

consumed by the actor and ti(ν) denotes the ith execution time instance — that is,

the execution time taken by the ith firing of ν. Similarly, each dataflow edge e is

characterized by a pair of attributes (P (e), ti(e)), that represent, respectively, the

average power consumption for data communication across the edge, and the time

taken by the ith data transfer across the edge.

Utilizing these attributes, the total energy consumption for an application

graph execution can be estimated as:

Etotal =
∑

∀ν∈V

(

firings(ν)∑

i=1

P (ν) · ti(ν)) +
∑

∀e∈E

(

comm(e)∑

i=1

P (e) · ti(e)). (4.5)

For more details on the energy model that we have applied, we refer the

reader to [54]. We adapt this model in this section by using it to derive estimates

of average power consumption for each application mode in a multi-mode adaptive

stream mining system.

4.6.2 Execution Time Model

The experiments conducted in this section of the thesis are simulations based

on offline measurements of actor and embedded platform characteristics. Techniques

related to execution time modeling and analysis have been studied extensively in

the literature. These techniques can be broadly classified in to static, probabilistic,

and hybrid methods. Static methods that estimate the worst case execution time

68



(WCET) are covered, for example, in [55–57]. However, since our design methods

in this thesis make extensive use of dynamic system-level adaptation, existing static

execution time models and analysis methods do not match our design framework

well.

Instead, we adapt in our work the empirical execution time modeling approach

proposed in [58]. Using this approach, we derive execution time probability distribu-

tions through actual measurements on the targeted hardware and across the set of

relevant application modes. The model proposed in [58] utilizes measured time du-

rations for response time and round-trip time associated with computational tasks,

along with measurements to model “null-code”. This “null-code” component of the

estimation method is used to model overheads, including communication cost.

Motivated by the modeling approach proposed in [58], we measure classifica-

tion time and total execution time on targeted stream mining platforms utilizing the

software development kits (SDKs) provided by the platforms. From this collected

execution time data, we compute the marginal probability distribution (M-PDF) for

each relevant application task, and apply the resulting M-PDF to model execution

time when simulating the performance of system implementations for the associated

application and platform. In particular, during simulation, we randomly generate

an execution time value for each relevant actor firing or subsystem execution using a

corresponding M-PDF that is generated based on the collected execution time data

and M-PDF derivation process described above.

Further details on our employed execution time modeling approach are dis-

cussed in Section 4.6.3. Figure 4.7 through Figure 4.10 show the M-PDF distribution

69



Figure 4.7: Marginal execution time probability distribution for Classifier 1.

Figure 4.8: Marginal execution time probability distribution for Classifier 2.

70



Figure 4.9: Marginal execution time probability distribution for Classifier 3.

for each classifier subgraph.

4.6.3 Experimental Setup

We utilized a Nexus 7, Android-based mobile platform as our primary target

platform for the system implementation demonstrated in these experiments. The

execution time instances were generated by porting the dataflow-based C language

implementation (LIDE-C implementation) from a PC environment (where the ap-

plication was initially prototyped) to the SDK of the Nexus 7 platform.

A minimum of 20 execution time instances for each classifier configuration was

generated. The marginal-PDF was then computed based on the Execution Time

Probability Density Function (ETPDF) model introduced in [58] and described in

71



Figure 4.10: Marginal execution time probability distribution for Classifier 4.

Section 4.6.2. In addition to the classifier modes M1, M2, and M3 described in

Section 4.5.1, we developed a new classifier configuration M4. This new classifier

mode can be considered as having operational trade-offs that are intermediate with

respect to M2 and M3 in terms of the investigated metrics.

Based on our empirical approach to execution time and energy modeling, the

energy consumption of the four classifiers can be ranked in the following order (from

highest to lowest energy consumption): M3 (highest), M4, M2, M1 (lowest).

The power consumed by the different classifier configurations was modeled as

described in Section 4.5, along with the execution time models from the derived

marginal ETPDFs that characterize classifier run-time efficiency. The addition of

the new classifier configuration (M4) enabled more control capability in the state

72



machine SDHMM with increased flexibility in exploring operational trade-offs. This

flexibility came at the expense of a more complex state machine design.

4.6.4 Measurement Vector and Performance Evaluation Points

We employed a 2-dimensional measurement vector (m1, m2), where m1 repre-

sents battery capacity (as before), and m2 is a measure of system throughput.

We also introduce a system input called the performance evaluation point

(PEP), which is introduced so that a user or automated supervisory engine can

control the frequency with which periodic system performance can be evaluated.

Thus, the PEP can be varied, for example, to trade-off accuracy, energy efficiency,

and real-time performance in different ways.

In our experimental setup we covered both externally generated (e.g., user-

specified) and automated PEP configuration of the system. Here, the user specified

PEP is modeled as a Poisson process with independent identically distributed (iid)

exponential inter-arrival times. The expected value λ was varied for each DHMM

experiment shown in Figure 4.12 through Figure 4.15. The rate value, λ, is derived

from the number of control points in the DHMM state machine SDHMM .

Automated PEP configuration was modeled through a uniform distribution.

Such automated PEP configuration allows system performance to be assessed con-

sistently, and independent of any external performance assessment control.

The approaches employed here for PEP configuration are relatively simple. In-

vestigation of more advanced PEP approaches for DHMM execution is an interesting

73



direction for future work.

For more robust system operation, we introduced a power down state in the

DHMM state machine SDHMM . The power down state is employed to gracefully

power down the system once the battery level falls below a pre-defined threshold.

This threshold is represented by ǫ. Thus, a state transition to the power down state

is made once the battery capacity measurement indicates that m1 ≤ ǫ.

4.6.5 Experimental Results

The extended DHMM state machine SDHMM , based on the enhancements de-

scribed above, is shown in Figure 4.11. Here, functions f1(m1) and f2(m1) pro-

vide Boolean indicators of whether or not the system is over-performing or under-

performing, respectively, in relation to the corresponding thresholds defined for

metric m1. Similarly, f3(m2) and f4(m2) represent indicators of over-performance

and under-performance, respectively, in relation to pre-defined thresholds for met-

ric m2. The functions g1(·) and g2(·) represent control triggers that correspond to

automatically-generated and externally-generated, PEP-related transition points,

respectively.

As mentioned in Section 4.6.3, automated PEP execution was modeled in our

experiments using a uniform distribution and externally-generated PEP execution

was modeled using using a Poisson arrival process. The battery capacity thresh-

old ǫ for the power down state was set to 3.5% of the total battery capacity. The

application mode states that are in one-to-one correspondence with the classifier

74



Figure 4.11: An extended version of the DHMM state machine for our face detection

case study.

subsystems are labeled SMi , where i ranges from 1 through 4 and provides the index

of the corresponding classifier configuration. Thus, i = 1, 2, 3, 4 correspond to appli-

cation modes M1,M2,M3,M4, respectively. Intermediate states that provide finer

granularity of control (at a lower level of granularity compared to being restricted

to only mode-level control) are denoted as SIDi , where i provides the index of the

intermediate state.

Figure 4.12 through Figure 4.15 show experimental results for the extended

state machine setup described above. We experimented with 7 different DHMM con-

figurations. In addition to the static configurations that we employed in the previous

experiment, we also added a new static-configuration experiment corresponding to

the new classifier configuration M4 (this is labeled as SDF–4 in Figure 4.12 through

75



Figure 4.12: Energy efficiency trends across DHMM and static systems for our

extended SDHMM design.

Figure 4.15).

Figure 4.13 shows the overall deadline miss rate of the system for each DHMM

and static (SDF) system experiment.

4.7 Summary

In this chapter, we have developed an approach to design and implemen-

tation of multi-mode, data driven signal processing systems. We have devel-

oped methods for modeling and designing such systems using integrated princi-

ples of dynamic data driven application systems (DDDAS) and high-level, dynamic

dataflow models of computation. We have introduced a scheduling framework, called

the DHMM (DDDAS-HCFDF Multi-Mode) scheduler, for instrumentation-driven,

adaptive scheduling in multi-mode signal processing systems. Through a case study

76



Figure 4.13: Deadline miss rate trends across DHMM and static systems four our

extended SDHMM design.

of an energy-constrained, multi-mode face detection system, we have demonstrated

and quantified significant advantages of our proposed new methods. Useful direc-

tions for future work include (1) extensions to multiple sensing modalities, such as

integrated image and speech processing, and (2) experimentation with instrumen-

tation subsystems that produce multidimensional outputs (e.g., channel quality in

addition to power consumption).

77



Figure 4.14: Average accuracy trends across DHMM and static systems for our

extended SDHMM design.

Figure 4.15: False positive rate trends across DHMM and static systems for our

extended SDHMM design.

78



Chapter 5: Multiobjective Design Optimization

5.1 Introduction

A challenging aspect of adaptive stream mining (ASM) systems is the diverse

sets of operational constraints and objectives under which they must be deployed.

The specific constraints that take precedence may depend strongly on the opera-

tional scenario and associated data. For example, in the midst of a security breach or

intrusion, conserving energy is less important while delay is key; on the other hand,

if there is no detected threat, conserving energy may be critical. Furthermore, such

multidimensional constraints and objectives are often in conflict with one another

so that trade-offs must be carefully guided and rigorously optimized to achieve re-

sults that yield acceptable levels of reliability and quality of service. For example,

classification accuracy (the rate of correct classifications), false positive rates in clas-

sification, processing latency, processing throughput, and energy consumption per

classification operation are metrics that may all be relevant to some degree in a

particular stream mining deployment. Conventional approaches to design and im-

plementation of ASM systems often focus on small subsets of relevant metrics in

isolation (e.g., the trade-off between accuracy and false positive rate) or orient the

implementation process toward a particular subspace (e.g., throughput-constrained

79



accuracy maximization).

Motivated by these complex, multidimensional, data-dependent design spaces

in ASM systems, we demonstrate in this chapter methods for integrated modeling

and multiobjective design optimization of real-time stream mining systems. Our

proposed design framework is readily adaptable to different kinds of operational con-

straints and objectives. For concreteness, we develop our methods in the context of

real-time performance, multidimensional stream mining performance (precision and

recall), and energy efficiency. These metrics are discussed in detail in Section 5.4.

Using a design methodology centered on data-driven control of and coordination be-

tween alternative dataflow subsystems for stream mining (classification modes), we

develop systematic methods for exploring complex, multidimensional design spaces

associated with dynamic stream mining systems, and deriving sets of Pareto-optimal

system configurations that can be switched among based on data characteristics and

operating constraints.

We demonstrate and experiment with our methods for data-driven, multiob-

jective optimization through their integration in the Lightweight Dataflow for Dy-

namic Data-Driven Application Systems Environment (LiD4E), which is a software

tool for experimentation with and optimization of dataflow-based design methods

for ASM systems [34], as described in Chapter 3. Using LiD4E together with our

new methods for multiobjective optimization, we experiment with a multiclass ve-

hicle classification system that categorizes vehicles among three distinct classes —

cars, buses and vans — from images. Through experiments on this vehicle clas-

sification application, we demonstrate the effectiveness of our methods in deriving

80



Pareto-optimal design options and quantifying complex implementation trade-offs.

These capabilities can provide significant insight to the system designer to identify

the set of design configurations that best matches the targeted set of application

scenarios and their associated system requirements.

The remainder of this chapter is organized as follows. In Section 5.2, we dis-

cuss related work in DDDAS methods, real-time stream mining, and dataflow-based

design methodologies for signal processing systems. Section 6.3 introduces our pro-

posed new multiobjective design optimization framework, and Section 5.4 presents

a vehicle classification case study to demonstrate the framework. In Section 5.5,

we present experimental results from this case study. Finally, Section 5.6 provides

conclusions and future research directions.

Material in this chapter was published in preliminary form in [59].

5.2 Related Work

The work presented in this chapter is rooted in core concepts of the DDDAS

paradigm [7]; real-time stream mining [15]; and dataflow-based design methodolo-

gies for signal processing systems (e.g., see [4,5]). In this form of dataflow modeling,

applications are represented in terms of dataflow graphs, where graph vertices (ac-

tors) represent signal processing tasks of arbitrary complexity, and edges represent

logical FIFO communication channels between pairs of actors. In this chapter, we

apply dataflow as a programming model with semantics that are matched to the

domain of adaptive stream mining systems [34, 44]. This modeling approach differs

81



from uses of dataflow as a compiler intermediate representation (e.g., see [45]), and

as a form of computer architecture [46].

The work presented in this chapter builds upon our previous work on ASMs

for multimedia applications [34] that is described in Chapter 3, and extends the dy-

namic, multi-mode stream mining framework [44] that is discussed in chapter 4 with

powerful capabilities for multiobjective design space exploration and optimization.

More specifically, contributions introduced in this chapter include new techniques

for modeling, control and optimization of multiobjective design spaces in ASM im-

plementation; extension of the multi-mode design framework of [44] to multiclass

recognition systems (i.e., to classifiers that map to two or more different output

classes); and application to a multiclass vehicle detection problem that is relevant

to surveillance and traffic monitoring.

Design and implementation techniques for stream mining systems have been

studied before in a statically configured environment, and with relatively fine granu-

larity (low level) optimizations on application performance (e.g., see [47–49]). Here,

by “statically-configured,” we mean that the processing methods are not adapted

dynamically in response to data characteristics or operational context. Our work in

this chapter deviates from this body of prior work in that our focus is on a dynamic,

data-driven implementation context, and also, we focus on coarser granularity op-

timizations — in particular, optimizations for configuring and coordinating across

different stream mining classification subsystems and application modes.

Incorporation of data-driven operation in individual signal processing func-

tional components has been studied in [50, 51]. This related work has been de-

82



veloped in the context of speech recognition. Although this work relates to the

dynamic, data-driven theme of our contribution in this thesis, the approach that we

demonstrate in this chapter is more flexible in terms of data-driven operation since

we consider adaptation of application modes globally (at the dataflow graph and

scheduling levels) as well as locally (at the level of individual actors or subsystems).

In contrast, this body of related work on data-driven speech processing focuses on

local optimizations. However, techniques derived from works such as [50, 51] can

provide useful building blocks (parameterized actor and subsystem designs) for the

DDDAS design framework described in this chapter. Integration of such building

blocks into our proposed framework is a useful direction for future work.

We emphasize that the objective of this chapter is not to introduce new types

of classification techniques nor to endorse a particular type of classifier, but rather

to provide a systematic framework for optimized configuration, control, and co-

ordination across arbitrary sets of complementary classifiers (i.e., classifiers with

complementary profiles of operational trade-offs). In our implementations and ex-

periments, we utilize Support Vector Machine (SVM) classifiers, although our design

framework is readily adaptable to the use of other types of classifiers. Use of SVM

classifiers for low-sample data sets, and as efficient, robust components for gen-

eral classification purposes has been motivated extensively in the literature (e.g.,

see [60, 61]).

83



5.3 Design Methodology

In this section, we introduce the system model that we employ in our new

multiobjective design optimization framework, which we refer to as the ASM mul-

tiobjective design optimization framework, abbreviated as AMDO. AMDO is built

upon the DDDAS-HCFDF-Multi-Mode (DHMM) scheduling framework introduced

in [44] and described in Chapter 4. Here, HCFDF stands for hierarchical core func-

tional dataflow [34], which is the underlying model of computation for the DHMM

framework that was introduced in Chapter 3.

5.3.1 Background on DHMM

We first review in this section key aspects of the DHMM system model that

are inherited by AMDO. The developments in this chapter build on the DHMM

model, and incorporate flexible and powerful new capabilities for multiobjective

optimization and design space exploration. In DHMM, an ASM system design is

represented as a set of mutually exclusive application modes:

SM = {µ1, µ2, . . . , µN}. (5.1)

.

Here, each µi represents a set of application subsystems that are active during

the corresponding mode together with the configurations, such as actor-, application-

and schedule-level parameters, that are to be applied to the subsystems whenever µi

84



executes. Each design is also characterized by a set of measurements, corresponding

to the associated DDDAS-based instrumentation subsystem, M = m1, m2, . . . , mk.

These measurements can be made from arbitrary sources, including the system in-

put, target platform, system output or operating environment. Each mi corresponds

to a distinct metric, such as power consumption, remaining battery capacity, or se-

lected frequency content profiles for some kind of sensor data.

A key aspect of the DHMM model is a state machine SDHMM in which states

correspond to application modes, and transitions correspond to changes made by the

executing system to the current mode in response to input data that is monitored

by SDHMM . This input data comes from the measurements mi, which are performed

iteratively according to periodic processes or other kinds of timing patterns (e.g.,

dependent on the current mode).

In DHMM, the functionality of specific application modes is represented us-

ing the hierarchical core functional dataflow (HCFDF) model of computation [34],

while SDHMM is employed for dynamic and adaptive model-based coordination and

parameter control across different modes. In HCFDF-based dataflow graph speci-

fications, software components (actors) are specified in terms of sets of processing

modes, where each mode has static dataflow rates — i.e., each mode produces and

consumes a fixed number of data values (tokens) on each actor port. However,

different modes of the same actor can have different dataflow rates, and the actor

mode can change from one actor execution (firing) to the next, thereby allowing for

dynamic dataflow behavior (dynamic rates). Additionally, HCFDF allows dataflow

graphs to be hierarchically embedded within actors of higher level HCFDF graphs,

85



thereby allowing complex systems to be constructed and analyzed in a scalable man-

ner. For further details on the HCFDF model of computation, we refer the reader

to [34] and Chapter 3.

5.3.2 AMDO Design Methodology

The AMDO design methodology incorporates the instrumentation subsystem

M and mode-transition state machine SDHMM of DHMM. The methodology addi-

tionally incorporates a parameterization P of SDHMM for use in exploring the design

space associated with implementations that are controlled by SDHMM in conjunc-

tion with the underlying application modes. More specifically, P = (p1, p2, . . . , pK),

called the design space parameter set (DSPS) of the AMDO model, is a sequence

of parameters of SDHMM , where each pi has an associated domain domain(i), which

gives the set of admissible parameter settings (configurations) for pi during execu-

tion of SDHMM . For clarity and conciseness, we assume in the remainder of this

chapter that the domain(i) ⊂ R for all i, where R denotes the set of real numbers.

Figure 5.1 shows an overview of the AMDO design methodology. The AMDO

framework is designed to systematically integrate designer-specified sets of optimiza-

tion objectives, explore the resulting multidimensional design spaces and extract

Pareto-optimal design configurations.

When applying the AMDO methodology, the parameterization P of SDHMM

is central to the processes of design space exploration and multiobjective optimiza-

tion. Different parameter configurations of SDHMM in general lead to different ways

86



Figure 5.1: An overview of the adaptive multiobjective design optimization (AMDO)

framework.

in which data-driven adaptation is controlled, and in which the multidimensional

design evaluation metrics, such as energy consumption, real-time performance, and

stream mining accuracy, are traded-off throughout the execution process. Addition-

ally, the high level dataflow model of the targeted ASM application together with the

FSM-driven application governed by SDHMM provides a model-based representation

that can be employed for efficient simulation so that a wide variety of alternative

parameter configurations and associated design points can be evaluated.

Two other aspects in the operation of an AMDO-based stream mining imple-

mentation are periodic performance assessment (PPA), and performance assessment

actors (PAAs). In each state of SDHMM , the recent performance of the system is

assessed in terms of the set of relevant metrics M . This PPA process helps to de-

termine whether SDHMM should remain in its current state or whether a transition

87



should be made to a different state. The operation of the PAAs may in general

depend on the values of parameters in P . The determination of whether or not a

transition is made and which new state should be the target of each PPA-related

transition is made by SDHMM with input from the PAAs. Each PAA A is a software

component (dataflow actor) that takes as input a selected subset of data obtained

from the DDDAS instrumentation subsystem during a window of recent operation

(e.g., during the last 10ms or last 100 processed data packets).

On each execution of A, the output of A is a member of the set

sPAA = {γo, γi , γu}, (5.2)

where γo represents an indication by A that the system is currently overperforming

with respect to the form of performance assessment carried out by A. Similarly, γu

represents and indication by A that the system is underperforming, and γi indicates

that the performance of the system is within an intermediate range — neither too

high (at potential expense of other objectives) nor too low. Intuitively, a PAA can

be viewed as a standard interface for capturing data-dependent characteristics of

system operation, and relating them dynamically to a compact set of values (γo, γi ,

and γu). The values generated by the different PAAs can then be processed in an

integrated way by SDHMM to control overall system operation.

For example, an AMDO system could be designed with three PAAs A1, A2, A3

that correspond, respectively, to performance assessment for speech processing qual-

ity (accuracy), energy consumption, and processing speed. During each PPA, these

88



PAAs would each provide an input to the controller for SDHMM indicating the

“health” of the system’s recent performance with respect to the corresponding as-

sessment considerations. Logic within the controller would then process these inputs

to determine whether or not to remain in the current state, and what state to tran-

sition to if a transition is to be made. For example, if the system is found to be

underperforming in terms of energy consumption (i.e., consuming excessive amounts

of energy), this may favor a transition to a more energy-efficient application mode.

Similarly, overperforming with respect to speed may lead to transition to a process-

ing mode that is slower and more favorable in terms of other objectives, such as

energy consumption or quality.

As with the state machine parameterization P , the design of the PAAs, and

the associated controller logic for processing the PAA outputs are design issues of

the given AMDO. The objective of the AMDO design methodology is thus to raise

the level of abstraction for stream mining system implementation in a structured

manner so that the system designer can focus on a standard, well-defined set of

DDDAS-based system components — SDHMM , P , the PAA set — that interact in a

systematic manner.

Thus, we represent an AMDO system α by a tuple

α = (SDHMM , P, T ), (5.3)

where the elements of this tuple respectively specify the state machine, parameter-

ization, and PAA set associated with α.

89



Using an AMDO system α = (SDHMM , P, T ), the designer can evaluate mul-

tidimensional system performance for a variety of parameter settings within P to

generate alternative design points, while each parameter setting influences system

operation (through SDHMM and T ) to trade off different performance objectives in

a specific way. In Section 5.4 and Section 5.5, we demonstrate the application of

the AMDO design methodology on a practical surveillance application case study

involving vehicle detection. This case study helps to make the developments in this

section more concrete, and to demonstrate the utility of the AMDO methodology as

a framework for multiobjective design space exploration and optimization of ASM

systems.

5.4 Case Study: Vehicle Classification

To validate and demonstrate the AMDO framework, we have developed a mul-

tiobjective optimization case study of a data-driven ASM application that is relevant

to surveillance systems. Specifically, our case study involves a vehicle classification

system in which images of detected vehicles are analyzed to classify each vehicle

as either a bus, car or van. The classification system is assumed to be a mobile

system that is capable of being deployed with agility and low cost in operational

environments. This mobile deployment feature makes energy efficiency an impor-

tant metric to consider in the design evaluation space for the system. Figure 5.3

shows an illustration of the vehicle classification system. Section 5.5.2 describes the

application in more detail.

90



We have performed extensive simulations to evaluate a complex, five-

dimensional design evaluation space (i.e., a space of trade-offs involving selected

implementation metrics) that is based on several relevant, and often competing

deployment objectives. Specifically, the design evaluation space considered encom-

passes the metrics of throughput (data rate), deadline miss rate (real-time per-

formance), energy efficiency, precision for detecting cars (one objective related to

classification accuracy), and recall for detecting cars (another accuracy-related ob-

jective). Thus, a main goal of the case study is to expose Pareto points in a complex

multidimensional space of designs for deploying the vehicle classification application

on a targeted mobile device.

Here, the throughput, in terms of images per second, gives the rate at which

the system can process images. If T denotes the throughput, then the reciprocal

(1/T ) specifies the deadline, which is in units of seconds per image, and gives the

maximum time allowed to process a single image. Whenever the AMDO system fails

to process an image within its associated deadline period, a deadline miss occurs.

For a given stream mining execution consisting of an input stream that contains I

images, the deadline miss rate r is computed as:

deadlinemissrate(r) = (Nmiss/I), (5.4)

where Nmiss is the total number of deadline misses encountered throughout the

execution.

Figure 5.2 provides an illustration of the state machine SDHMM for our AMDO-

91



based vehicle classification system. The state machine includes three application

modes, labeled ZM,1, ZM,2, ZM,3, which represent one-against-one (1A1) support vec-

tor machine (SVM) classifier subsystems with varied parameter configurations. For

background on this type of classifier, we refer the reader to [60]. The classifiers are

configured with Gaussian radial basis function kernels that have different combina-

tions of sigma and box constraint values. These three alternative application modes

yield different operational trade-offs in terms of execution time, energy consumption,

precision, and recall. The AMDO framework provides a systematic way to exploit

such variety in application modes to derive diverse sets of alternative design points

(Pareto designs) during multiobjective optimization. The states in Figure 5.2 with

labels of the form ZP,i correspond to PPA points. Each of these states encapsulates

a single PAA, and is entered periodically from its associated application mode. The

transitions in the state machine are executed either from periodic interrupts that

trigger PPAs or from decisions that are computed from the relevant PAAs.

The state labeled ZM,E in Figure 5.2 is a special state that is dedicated to

providing graceful shutdown of the system once the battery capacity c has fallen to

a value that is less than or equal to a pre-defined threshold ǫ. In our experiments

(see Section 5.5), we employed ǫ = 5%.

Since our targeted application is a multiclass classification application (a clas-

sification application that involves more than two classes), we employ precision and

recall as metrics for assessing classification accuracy. These metrics are commonly

used for multiclass classification systems. We arbitrarily choose cars as the relevant

vehicle class for the precision and recall calculations. Thus, the precision is calcu-

92



Figure 5.2: An illustration of SDHMM for the experimental vehicle classification

system.

lated as TP/(TP +FP) and the recall is calculated as TP/(TP + FN ), where TP ,

FP , and FN denote, respectively, the numbers of true positives, false positives, and

false negatives as related to detection of cars (the selected relevant class).

5.5 Experiments

In this section, we present experimental results derived from applying the

AMDO framework on the vehicle classification application introduced in Section 5.4.

5.5.1 FSM Parameterization

Recall from Section 6.3 that an AMDO system can be expressed by a tuple

(SDHMM , P, T ), where the elements of this tuple specify the state machine, param-

eterization, and PAA set for the system. In our experimental vehicle classification

93



system, the employed SDHMM is illustrated in Figure 5.2. The PAA set consists

of 3 actors, which provide performance assessment in terms of deadline miss rate,

execution speed, and remaining battery capacity.

The FSM parameterization P that we employed in our experiments can be

expressed as P = (p1, p2, p3, p4, p5). Here, p1 represents the deadline for processing

each image (i.e., the reciprocal of the supported image processing throughput); p2

represents the deadline miss tolerance, which specifies what percentage of deadlines

can be missed before the system is considered to be underperforming in terms of

real-time operation; p3 represents an analogous tolerance on execution-time over-

performance — the system is considered to be overperforming in terms of execution

time if the average execution time of an application mode is less than the product

(p1× p3); p4 specifies what percentage of system battery capacity must be exceeded

for the system to be overperforming in terms of energy availability; and similarly,

p5 specifies a minimum threshold (percentage) on battery capacity below which the

system is considered to be underperforming in terms of battery capacity. Collec-

tively, the five parameters in the vector P defined above control how the PAAs in

SDHMM cooperate, in a deeply data-driven manner, to explore different regions of the

overall design evaluation space — as these parameters are varied, different design

trade-offs are concretely realized.

This particular parameterization P is one specific parameterization that we

experimented with to concretely demonstrate the AMDO framework; other param-

eterizations can be derived to drive data-driven, multiobjective optimization in dif-

ferent ways. A central contribution of the AMDO framework is to structure and

94



raise the level of abstraction in data-driven multiobjective optimization by intro-

ducing this kind of parameterization as a first class citizen in the design process

for ASM systems. This is an advance over conventional methods for ASM system

implementation, which focus on ad-hoc fine-tuning of control code, on analysis of

static (non-data-driven) design configurations, or on individual design metrics in

isolation.

Our vehicle classification case study, illustrated in Figure 5.3, involved a three

step process.

5.5.2 Experimental Setup

Our vehicle classification case study, illustrated in Figure 5.3, involved a three

step process.

1. We implemented the classifier subsystems in MATLAB for offline training and

for generating required classifier parameters (i.e., bias, and support vectors).

These off-line-generated parameters were then applied for real-time classifica-

tion tasks on the targeted mobile platform (described below). The MATLAB

implementation was also used for functional validation.

2. Using the LiD4E environment described in Section 5.1, we have also imple-

mented the classifier subsystems (application modes) employed for vehicle

classification on a mobile platform (Android-based, Nexus 7, first-generation

tablet). We performed extensive profiling of the performance of these mobile-

device-targeted subsystem implementations. Data from this mobile-device-

95



based profiling, including execution time and energy consumption data, was

employed to provide characterizations of classifier operation that were applied

in the simulation model.

3. We have implemented a simulation model for the vehicle classification sys-

tem on a desktop computer using the model-based design approach underly-

ing AMDO. The developed simulation environment provides validation of the

vehicle classification functionality, along with multidimensional performance

assessment of system operation.

Figure 5.4 through Figure 5.6 show execution-time-related profiling data ex-

tracted from running the application setup on the targeted mobile platform.

We used 561 vehicle silhouettes from the Statlog dataset [62] for training and

281 images for experimentation. The image sets for training and testing were chosen

randomly. We made a minor modification to the annotations in the Statlog dataset

by combining the two distinct class labels for cars, “Saab” and “Opel”, into a single

class labeled “cars”. Hence, as described in Section 5.1, our modified dataset consists

of three class labels in total — buses, cars, and vans.

5.5.3 Experimental Results

Using the AMDO system design and experimental setup described in Sec-

tion 5.5.1 and Section 5.5.2, we simulated 26 different design points corresponding

to 26 different configurations of the FSM parameter SET P . The alternative com-

binations of parameter settings were selected manually with a view towards exper-

96



imenting with diverse combinations of parameter settings. Alternatively, one could

generate and simulate parameter settings using an automated approach, such as

an approach that employs a multiobjective evolutionary algorithm (e.g., see [63])

to maintain populations of parameter settings, and employs our AMDO simulation

framework for fitness evaluation. Such automated design space exploration using

the AMDO framework is a useful direction for future work.

As discussed in Section 5.4, the design evaluation metrics considered in our

experiments are throughput; deadline miss rate; energy efficiency; and both precision

and recall for detecting cars. Here, energy efficiency is measured as the number

of images that were processed (excluding deadline misses) for a given amount of

initial battery capacity. The amount of initial battery capacity employed in the

experiments was 432.5 milliampere-hours (mAh). The metric employed for energy

efficiency thus gives an indication of the total volume of data that can be processed

before the given amount of battery capacity expires.

Table 5.1 lists the set of Pareto-optimal designs from among the set Y of 26

design points that we generated in our experiments. Here, we say that a point y ∈ Y

is Pareto-optimal if for any other point y′ ∈ Y , y′ is inferior to y in terms of at least

one design evaluation metric. For general background on Pareto optimization in

the context of electronic system design, we refer the reader to [64]. Intuitively, a

Pareto point represents a useful design point to keep track of during design space

exploration because such a design point cannot be improved upon in any dimension

without sacrificing quality in at least one other dimension. Among the 26 design

points explored in our experiments, 16 (61%) were found to be Pareto-optimal.

97



These 16 points are the ones that are listed in Table 5.1 along with their simulated

performance results in terms of the five targeted design evaluation metrics.

In summary, the experiments and results presented in this section demonstrate

concretely how AMDO enables designers to rapidly investigate diverse sets of alter-

native design points for an ASM system (1) relative to a complex multidimensional

design evaluation space, and (2) in a manner that systematically takes into account

data-driven adaptation of application modes and system implementation parameters

within a unified framework.

5.6 Summary

In this chapter, we have introduced a new multiobjective design optimization

framework for adaptive stream stream mining systems (ASMs). The framework,

called the ASM multiobjective design optimization (AMDO) framework, employs

a novel design methodology centered on data-driven control of and coordination

between alternative dataflow subsystems for stream mining. AMDO allows sys-

tem designers to efficiently explore complex, multidimensional design evaluation

spaces in a data-driven manner, and is readily adaptable to different kinds of oper-

ational constraints and objectives. We have integrated AMDO into the Lightweight

Dataflow for DDDAS Environment (LiD4E) tool for design and implementation

ASM systems, and demonstrated the framework using a case study involving real-

time and energy-constrained multiclass vehicle classification. Useful directions for

future work include development of automated design space exploration methods

98



Design Energy Deadline Throughput Average Average

ID Efficiency Miss Rate (images per Precision Recall for

(images processed) (%) second) for Cars (%) Cars (%)

AMDO-1 861237 0.13 83.33 99.15 95.42

AMDO-2 847853 0.36 90.91 99.15 95.49

AMDO-3 679407 2.01 90.91 98.27 97.34

AMDO-4 656775 0.36 66.67 97.90 97.90

AMDO-5 861438 0.07 66.67 99.15 95.42

AMDO-6 651649 4.20 100.00 98.09 97.61

AMDO-7 656566 0.35 62.50 97.90 97.90

AMDO-8 821935 0.06 62.50 99.02 96.76

AMDO-9 861654 0.03 62.50 99.15 95.42

AMDO-10 861312 0.10 76.92 99.15 95.42

AMDO-11 861162 0.13 83.33 95.42 99.15

AMDO-12 653875 1.06 83.33 97.90 97.90

AMDO-13 849897 0.03 62.50 99.15 95.50

AMDO-14 723423 18.13 135.14 99.27 95.17

AMDO-15 18470 98.09 169.49 99.27 95.10

AMDO-16 155060 83.75 166.67 99.27 95.10

Table 5.1: Pareto-optimal design points derived through design space exploration.

99



using the AMDO framework, such as integration of AMDO methods with multiob-

jective evolutionary algorithms.

100



Figure 5.3: An illustration of the vehicle classification system that is employed in

our experiments.

101



Figure 5.4: Task execution time for classifier subsystem 1.

102



Figure 5.5: Task execution time for classifier subsystem 2.

103



Figure 5.6: Task execution time for classifier subsystem 3.

104



Chapter 6: Conclusion and Future Work

In this thesis, we have motivated the need for new design methods for the

emerging domain of adaptive stream mining systems, which encompasses a growing

class of applications at the intersection of big data processing, ubiquitous sensing,

and real-time systems. We have also motivated how the paradigm of Dynamic Data

Driven Applications Systems (DDDAS), and the methodology of dataflow-based

design of signal processing systems offer valuable concepts and methods that are

relevant to the adaptive stream mining domain. This thesis represents an effort to

integrate and apply the methods of DDDAS and dataflow to develop new design

methods and associated software tools that address implementation challenges for

adaptive stream mining systems.

The contributions of this thesis can be categorized into three main areas:

• Hierarchical dataflow modeling and supporting design tools for dynamic, data-

driven signal processing systems;

• design and scheduling for multi-mode stream mining; and

• multiobjective design optimization in the context of the aforementioned areas.

In the remainder of this chapter, we summarize our contributions in these

105



areas, and outline useful directions for future work.

6.1 Hierarchical Dataflow Modeling

In chapter 3, we introduced the hierarchical core functional dataflow (HCFDF)

model of computation, and demonstrated its utility in modeling adaptive stream

mining systems. HCFDF is derived by integrating hierarchical semantics into the

previously-developed core functional dataflow (CFDF) model [11, 12]. HCFDF is

designed to help manage complexity in dynamic dataflow designs, while enforcing

consistency with CFDF semantics throughout the design hierarchy.

To facilitate design and implementation of adaptive stream mining systems

using dataflow methods and the hierarchical design capabilities of HCFDF, we de-

veloped a novel design tool called lightweight dataflow for dynamic data driven

application systems (LiD4E). LiD4E extends the lightweight dataflow environment

(LIDE) [13,14] with new capabilities for modeling, implementation, and design space

exploration, as well as capabilities for applying the DDDAS paradigm efficiently to

manage system configurations for stream mining and data-driven signal processing.

We demonstrated the capabilities of LiD4E using a face detection application

in which alternative classifiers with different trade-offs are available at run-time, and

the applied classifier is dynamically adapted to strategically align system operation

with time varying application constraints. Through this case study, we demon-

strated the ability of LiD4E and the underlying HCFDF modeling techniques to

provide systematic, reliable, and, efficient adaptation of system performance.

106



Useful directions for future work on LiD4E include the integration of para-

metric dataflow techniques, such as those provided by the parameterized dataflow

and parameterized and interfaced dataflow (PiMM) meta-models [65, 66]. Such

techniques provide the potential for efficient quasi-static scheduling through pa-

rameterized scheduling structures. The investigation of such quasi-static scheduling

techniques in connection with parametric dataflow models is an interesting research

direction that has potential for further improvements in efficiency, modeling flexi-

bility, and reliability through formal guarantees of system properties.

6.2 Multi-mode System Design

Building on the modeling methods and tools described in chapter 3, we ad-

dressed the design and implementation of multi-mode stream mining systems in

Chapter 4. In this chapter, we introduced the DHMM (DDDAS-HCFDF-Multi-

Mode) scheduling framework for modeling and management of alternative stream

mining application modes. An important aspect of this scheduling framework and

the associated DHMM design methodology is the modeling of DDDAS-oriented in-

strumentation systems as first class citizens in the design process. Thus, in the

DHMM approach, dataflow methods provide a unified approach for specifying and

integrating application behavior, decomposed as alternative operational modes; in-

strumentation behavior; and reconfiguration behavior that adapts future modes and

instrumentation operations based on the analysis of data from recent instrumenta-

tion measurements.

107



A key component of the DHMM design methodology is the use of a state ma-

chine, called the DHMM state machine, as a standard subsystem for coordinating

DDDAS-based integration of instrumentation, application execution, and configura-

tion management throughout the stream mining process. Each state in the DHMM

state machine encapsulates a function for configuring system parameters based on

the application mode represented by that state, while transitions between states are

triggered when analysis of instrumentation data indicates that migration to a differ-

ent mode would be better aligned in terms of current data characteristics and system

requirements. The DHMM design methodology centers on the integrated use of (1)

such state machine driven coordination across different application modes, along

with (2) the HCDF-based modeling of individual modes and the instrumentation

functionality that is used to guide state transitions and intra-state configuration

functionality.

6.3 Multiobjective Design Optimization

In Chapter 5, we augmented the DHMM scheduling framework developed in

Chapter 4 with new capabilities for modeling, navigation, and optimization involving

complex, multidimensional design evaluation spaces. This work is motivated by the

need to consider adaptive configuration of system operation across diverse, often-

competing implementation metrics, including power and energy consumption, real-

time performance, and multidimensional metrics that are commonly associated with

stream mining quality of service (e.g., detection accuracy and false positive rates).

108



To address this challenge, we introduced in Chapter 5 the Adaptive stream

mining Multiobjective Design Optimization (AMDO) framework. The AMDO

framework inherits from DHMM the HCDF modeling approach, and the state-

machine-based coordination involving instrumentation and configuration manage-

ment. Additionally, AMDO introduces methods for parameterizing the DHMM

state machine and for applying state machine parameters in a systematic fashion

to periodically assess system performance (based on the underlying DDDAS-based

instrumentation subsystem), and drive state transition logic based on such assess-

ments. The AMDO framework provides a novel approach for parametrically man-

aging how data driven adaption is controlled, and how multidimensional design

evaluation metrics are consequently traded off throughout the execution process.

The proposed AMDO framework is developed as a methodology in which de-

sign and implementation of stream mining systems is structured through the inte-

grated design of DHMM state machines, state machine parameterizations, applica-

tion subsystems, instrumentation subsystems, and specialized dataflow components

called performance assessment actors (PAAs). Useful directions for future work in-

clude development of automated design space exploration methods using the AMDO

framework, such as integration of AMDO methods with multiobjective evolutionary

algorithms [63, 67, 68].

109



Bibliography

[1] L. Amini, H. Andrade, F. Eskesen, R. King, Y. Park, P. Selo, and C. Venka-
tramani. The stream processing core. Technical Report RSC 23798, 2005.

[2] R. Ducasse, D. Turaga, and M. van der Schaar. Adaptive topologic optimiza-
tion for large-scale stream mining. IEEE Journal on Selected Topics in Signal
Processing, 4(3):620–636, June 2010.

[3] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over
distributed data streams. In ACM SIGMOD, 2003.

[4] E. A. Lee and T. M. Parks. Dataflow process networks. Proceedings of the
IEEE, pages 773–799, May 1995.

[5] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, editors. Hand-
book of Signal Processing Systems. Springer, second edition, 2013. ISBN: 978-
1-4614-6858-5 (Print); 978-1-4614-6859-2 (Online).

[6] F. Darema. Dynamic data driven applications systems: A new paradigm for
application simulations and measurements. In Proceedings of the International
Conference on Computational Science, pages 662–669, 2004.

[7] F. Darema. Grid computing and beyond: The context of dynamic data driven
applications systems. Proceedings of the IEEE, 93(2):692–697, 2005.

[8] E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the
IEEE, 75(9):1235–1245, September 1987.

[9] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static data
flow. In Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing, pages 3255–3258, May 1995.

[10] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from
Dataflow Graphs. Kluwer Academic Publishers, 1996.

110



[11] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya. Func-
tional DIF for rapid prototyping. In Proceedings of the International Symposium
on Rapid System Prototyping, pages 17–23, Monterey, California, June 2008.

[12] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya. Heterogeneous
design in functional DIF. In Proceedings of the International Workshop on
Systems, Architectures, Modeling, and Simulation, 2008.

[13] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya. A lightweight dataflow
approach for design and implementation of SDR systems. In Proceedings of
the Wireless Innovation Conference and Product Exposition, pages 640–645,
Washington DC, USA, November 2010.

[14] C. Shen, W. Plishker, and S. S. Bhattacharyya. Dataflow-based design and
implementation of image processing applications. In L. Guan, Y. He, and S.-Y.
Kung, editors, Multimedia Image and Video Processing, pages 609–629. CRC
Press, second edition, 2012. Chapter 24.

[15] R. Ducasse and M. van der Schaar. Finding it now: Construction and config-
uration of networked classifiers in real-time stream mining systems. In S. S.
Bhattacharyya, E. F. Deprettere, R. Leupers, and J. Takala, editors, Handbook
of Signal Processing Systems, pages 97–134. Springer, second edition, 2013.

[16] S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and
Synchronization. CRC Press, second edition, 2009. ISBN:1420048015.

[17] Y. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. Journal of the Association for Computing Ma-
chinery, 31(4):406–471, December 1999.

[18] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data
flow programs for digital signal processing. IEEE Transactions on Computers,
36(1):24–35, 1987.

[19] H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Transactions
on Parallel and Distributed Systems, 13(3):260–274, 2002.

[20] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. Jour-
nal of Concurrency and Computation: Practice & Experience, 23(2):187–198,
February 2011.

[21] J. T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory using
the Token Flow Model. PhD thesis, Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, September 1993.

111



[22] W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya. Heterogeneous
design in functional DIF. In P. Stenström, editor, Transactions on High-
Performance Embedded Architectures and Compilers IV, volume 6760 of Lecture
Notes in Computer Science, pages 391–408. Springer Berlin / Heidelberg, 2011.

[23] S. Ritz, M. Pankert, and H. Meyr. High level software synthesis for signal pro-
cessing systems. In Proceedings of the International Conference on Application
Specific Array Processors, August 1992.

[24] S. Ritz, M. Pankert, and H. Meyr. Optimum vectorization of scalable syn-
chronous dataflow graphs. In Proceedings of the International Conference on
Application Specific Array Processors, October 1993.

[25] M. Ko, C. Shen, and S. S. Bhattacharyya. Memory-constrained block pro-
cessing for DSP software optimization. Journal of Signal Processing Systems,
50(2):163–177, February 2008.

[26] S. S. Bhattacharyya, M. van der Schaar, O. Atan, C. Tekin, and K. Sudusinghe.
Data-driven stream mining systems for computer vision. In B. Kisacanin and
M. Gelautz, editors, Advances in Embedded Computer Vision, Advances in
Computer Vision and Pattern Recognition, pages 249–264. Springer, 2014.

[27] B. Plale, D. Gannon, D. Reed, S. Graves, K. Droegemeier, B. Wilhelmson, and
M. Ramamurthy. Towards dynamically adaptive weather analysis and forecast-
ing in LEAD. In Proceedings of the International Conference on Computational
Science, pages 624–631, 2005.

[28] A. Majumdar, A. Birnbaum, D. J. Choi, A. Trivedi, S. K. Warfield,
K. Baldridge, and P. Krysl. A dynamic data driven grid system for intra-
operative image guided neurosurgery. In Proceedings of the International Con-
ference on Computational Science, pages 672–679, 2005.

[29] D. Metaxas and G. Tsechpenakis. Dynamic data driven coupling of continu-
ous and discrete methods for 3D tracking. In Proceedings of the International
Conference on Computational Science, pages 712–720, 2005.

[30] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. Support
vector machines. IEEE Intelligent Systems and their Applications, 13(4):18–28,
1998.

[31] V. D. Sánchez. Advanced support vector machines and kernel methods. Neu-
rocomputing, 55:5–20, 2003.

[32] C. Campbell. Kernel methods: a survey of current techniques. Neurocomputing,
48:63–84, 2002.

[33] I. Chukhman and S. S. Bhattacharyya. Instrumentation-driven framework for
validation of dataflow applications. In Proceedings of the IEEE Workshop on
Signal Processing Systems, pages 1–6, Belfast, UK, October 2014.

112



[34] K. Sudusinghe, S. Won, M. van der Schaar, and S. S. Bhattacharyya. A novel
framework for design and implementation of adaptive stream mining systems.
In Proceedings of the IEEE International Conference on Multimedia and Expo,
pages 1–6, San Jose, California, July 2013.

[35] S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin, J. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, and M. Shah.
Telegraphcq: Continuous dataflow processing for an uncertain world. In CIDR,
2003.

[36] C. Shen, H. Wu, N. Sane, W. Plishker, and S. S. Bhattacharyya. A design tool
for efficient mapping of multimedia applications onto heterogeneous platforms.
In Proceedings of the IEEE International Conference on Multimedia and Expo,
2011.

[37] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V. Gheorghita,
and S. Stuijk. A scenario-aware data flow model for combined long-run aver-
age and worst-case performance analysis. In Proceedings of the International
Conference on Formal Methods and Models for Codesign, July 2006.

[38] J. Piat, S. S. Bhattacharyya, and M. Raulet. Loop transformations for interface-
based hierarchies in SDF graphs. In Proceedings of the International Conference
on Application Specific Systems, Architectures, and Processors, 2010.

[39] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite state machines with
multiple concurrency models. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 18(6):742–760, June 1999.

[40] C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya. A lightweight dataflow
approach for design and implementation of SDR systems. In Proceedings of the
Wireless Innovation Conference and Product Exposition, 2010.

[41] C. J. C. Burges. A tutorial on support vector machines for pattern recognition.
Knowledge Discovery and Data Mining, 2(2), 1998.

[42] B. Heisele, P. Ho, J. Wu, and T. Poggio. Face recognition: component-based
versus global approaches. Journal of Computer Vision and Image Understand-
ing, 91(1–2):6–21, 2003.

[43] CBCL face database #1. http://cbcl.mit.edu/software-datasets/

FaceData2.html, 2010.

[44] K. Sudusinghe, I. Cho, M. van der Schaar, and S. S. Bhattacharyya. Model
based design environment for data-driven embedded signal processing systems.
In Proceedings of the International Conference on Computational Science, pages
1193–1202, Cairns, Australia, June 2014.

113



[45] W. Najjar, B. Draper, W. Bohm, and R. Beveridge. The cameron project: High-
level programming of image processing applications on reconfigurable comput-
ing machines. In Proceedings of the PACT Workshop on Reconfigurable Com-
puting, 1998.

[46] J. B. Dennis. Dataflow supercomputers. Computer, 13(11), November 1980.

[47] U. Ramacher. Software-defined radio prospects for multistandard mobile
phones. Computer, 40(10):62–69, 2007.

[48] J. Pisharath, N. Jiang, and A. Choudhary. Evaluation of application-aware
heterogeneous embedded systems for performance and energy consumption. In
Proceedings of the IEEE Real-Time Technology and Applications Symposium,
pages 124–132, 2003.

[49] F. König, D. Boers, F. Slomka, U. Margull, M. Niemetz, and G. Wirrer. Appli-
cation specific performance indicators for quantitative evaluation of the timing
behavior for embedded real-time systems. In Proceedings of the Design, Au-
tomation and Test in Europe Conference and Exhibition, pages 519–523, 2009.

[50] G. Chollet, K. McTait, and D. Petrovska-Delacrétaz. Data driven approaches
to speech and language processing. In Nonlinear Speech Modeling and Applica-
tions, pages 164–198. Springer, 2005.

[51] G. Aradilla, J. Vepa, and H. Bourlard. Improving speech recognition using
a data-driven approach. Technical Report IDIAP-RR 05-66, IDIAP Research
Institute, April 2005.

[52] H. Ney, D. Mergel, A. Noll, and A. Paeseler and. Data driven search organiza-
tion for continuous speech recognition. IEEE Transactions on Signal Processing,
40(2):272–281, 1992.

[53] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static
dataflow. IEEE Transactions on Signal Processing, 44(2):397–408, February
1996.

[54] C. Shen, W. L. Plishker, D. Ko, S. S. Bhattacharyya, and N. Goldsman. Energy-
driven distribution of signal processing applications across wireless sensor net-
works. ACM Transactions on Sensor Networks, 6(3), June 2010. Article No.
24, 32 pages, DOI:10.1145/1754414.1754420.

[55] I. Estevez-Ayres, M. Garcia-Valls, and P. Basanta-Val. Enabling WCET-based
composition of service-based real-time applications. ACM SIGBED Review,
2(3):25–29, 2005.

[56] J. Fredriksson. Increasing accuracy of property predictions for embedded real-
time components. In Proceedings of the Euromicro Conference on Real-Time
Systems, 2006.

114



[57] R. Wilhelm et al. The worst-case execution-time problem — overview of meth-
ods and survey of tools. ACM Transactions on Embedded Computing Systems,
7(3), 2008.

[58] R. Perrone, R. Macedo, G. Lima, and V. Lima. An approach for estimating
execution time probability distributions of component-based real-time systems.
15(11):2142–2165, 2009.

[59] K. Sudusinghe, Y. Jiao, H. Ben Salem, M. van der Schaar, and S. S. Bhat-
tacharyya. Multiobjective design optimization in the lightweight dataflow for
DDDAS environment (LiD4E). In Proceedings of the International Conference
on Computational Science, Reykjavik, Iceland, June 2015. To appear.

[60] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support
vector machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

[61] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Computing
Surveys, 38(4), 2006.

[62] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[63] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A compar-
ative case study and the strength Pareto approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, November 1999.

[64] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill,
1994.

[65] K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, and S. Aridhi. PiMM:
Parameterized and interfaced dataflow meta-model for MPSoCs runtime recon-
figuration. In Proceedings of the International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation, pages 41–48, Samos,
Greece, July 2013.

[66] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling
for DSP systems. IEEE Transactions on Signal Processing, 49(10):2408–2421,
October 2001. DOI:10.1109/78.950795.

[67] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C. Coello. A
survey of multiobjective evolutionary algorithms for data mining: Part i. IEEE
Transactions on Evolutionary Computation, 18(1):4–19, 2014.

[68] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C. A. C. Coello. A
survey of multiobjective evolutionary algorithms for data mining: Part ii. IEEE
Transactions on Evolutionary Computation, 18(1):20–35, 2014.

115


