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This dissertation considers efficient computational algorithms for solving pa-

rameterized discrete partial differential equations (PDEs) using techniques of reduced-

order modeling. Parameterized equations of this type arise in numerous mathemat-

ical models. In some settings, e.g. sensitivity analysis, design optimization, and

uncertainty quantification, it is necessary to compute discrete solutions of the PDEs

at many parameter values. Accuracy considerations often lead to algebraic systems

with many unknowns whose solution via traditional methods can be expensive.

Reduced-order models use a reduced space to approximate the parameterized PDE,

where the reduced space is of a significantly smaller dimension than that of the

discrete PDE. Solving an approximation of the problem on the reduced space leads

to reduction in cost, often with little loss of accuracy.

In the reduced basis method, an offline step finds an approximation of the solu-

tion space and an online step utilizes this approximation to solve a smaller reduced

problem, which provides an accurate estimate of the solution. Traditionally, the



reduced problem is solved using direct methods. However, the size of the reduced

system needed to produce solutions of a given accuracy depends on the characteris-

tics of the problem, and it may happen that the size is significantly smaller than that

of the original discrete problem but large enough to make direct solution costly. In

this scenario, it is more effective to use iterative methods to solve the reduced prob-

lem. To demonstrate this we construct preconditioners for the reduced-order models

or construct well-conditioned reduced-order models. We demonstrate that by using

iterative methods, reduced-order models of larger dimension can be effective.

There are several reasons that iterative methods are well suited to reduced-

order modeling. In particular, we take advantage of the similarity of the realizations

of parameterized systems, either by reusing preconditioners or by recycling Krylov

vectors. These two approaches are shown to be effective when the underlying PDE

is linear. For nonlinear problems, we utilize the discrete empirical interpolation

method (DEIM) to cheaply evaluate the nonlinear components of the reduced model.

The method identifies points in the PDE discretization necessary for representing

the nonlinear component of the reduced model accurately. This approach incurs

online computational costs that are independent of the spatial dimension of the

discretized PDE. When this method is used to assemble the reduced model cheaply,

iterative methods are shown to further improve efficiency in the online step.

Finally, when the traditional offline/online approach is ineffective for a given

problem, reduced-order models can be used to accelerate the solution of the full

model. We follow the solution model of Krylov subspace recycling methods for se-

quences of linear systems where the coefficient matrices vary. A Krylov subspace



recycling method contains a reduced-order model and an iterative method that

searches the space orthogonal to the reduced space. We once again use iterative

solution techniques for the solution of the reduced models that arise in this con-

text. In this case, the iterative methods converge quickly when the reduced basis is

constructed to be naturally well conditioned.
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Chapter 1

Introduction

Parameterized partial differential equations (PDEs) are useful for modeling

physical systems where coefficients, boundary conditions, or initial conditions de-

pend on input parameters. In settings of this type, users may require the computa-

tion of discrete solutions of the PDE for many values of the input parameter set, for

example, to perform parameter estimation, sensitivity analysis, design optimization,

or statistical analysis of random processes. When an accurate spatial discretization

is needed, this can be a prohibitively expensive task. One approach for addressing

this difficulty is to use reduced-order models. The parameterized problem is approx-

imated on a reduced space of smaller dimension than that of the discrete PDE. This

thesis considers reduced-order modeling for efficiently solving such parameterized

PDEs with specific focus on incorporating the techniques of iterative linear solvers

to improve efficiency.

Instances where reduced-order modeling can be used are the many-query con-

text and real-time applications. In many-query applications, the PDE must be

solved at many different parameter values so the cost of generating a reduced-order

model is amortized by many cheaper solutions of the reduced model. Examples of

the many-query approach are abundant in uncertainty quantification. For example,

the expectation and variance of a PDE with random parameters can be computed
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using Monte-Carlo or stochastic collocation methods, both of which fit the many-

query model. Real-time applications, for example estimation and control, require

the computation of the solution at a set of parameter values to be done as quickly

as possible. Therefore, the cost of generating the reduced-order model can be very

high as long as the solutions can be obtained rapidly in the real-time application.

Early work in reduced-order modeling models differential systems in specific

domains [1,50] and more general finite-dimensional systems including ODEs [57]. It

can be also used for models in fluid dynamics [56]. Current work focuses on many as-

pects of reduced-order modeling including improving efficiency and extending these

methods to nonlinear and time-dependent problems [11].

In this chapter, we begin with an overview of the techniques of reduced-order

modeling including methods for computing the reduced basis. Next, we discuss

reduced-order modeling specifically for linear operators with affine dependence on

the parameters. For this problem, we describe the offline-online paradigm as well

as the computational difficulties that arise when this method is extended to the

nonaffine and nonlinear cases. We review methods to address these difficulties—the

so-called hyper-reduction methods. We then discuss a few of the drawbacks to the

offline-online paradigm and present alternatives to this approach, specifically Krylov

subspace recycling methods. We describe some Krylov subspace recycling methods.

We conclude with a discussion of the goals and outline of the thesis.
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1.1 Reduced-order modeling

Reduced-order modeling can be used when the manifold of solutions for the

parameterized PDE can be accurately represented by a low-dimensional vector space

[11]. When such a representation exists, reduced-order modeling finds this lower-

dimensional subspace, known as the reduced space, and projects the original problem

onto this space. The projected problem, known as the reduced model, is of a smaller

dimension and thus, can be solved more efficiently. The solution of the reduced

model produces an approximation to the solution with minimal loss of accuracy.

One method for reduced-order modeling is the reduced basis method [51]. Let

us describe the method using a parameterized elliptic PDE

L(~x, ξ;u) = f(~x) (1.1)

defined on a spatial domain D and subject to boundary conditions on ∂D

B(~x, ξ;u) = g(~x) , (1.2)

where ξ = [ξ1, ξ2, . . . , ξm]T is a vector of input parameters. Let Γ represent the space

of possible parameter values of ξ. Consider a discretization of the PDE of order N

such that A(u; ξ)u(ξ) = f . This is referred to as the full model. Reduced basis

methods compute a small number of solutions, u(ξ1), . . .u(ξk), known as snapshots,

and then for other parameters, ξ 6= ξj, find an approximation to u(ξ) in the space

spanned by {u(ξj)}kj=1. In the traditional approach, the computations are divided

into offline and online steps. The (possibly expensive) offline step computes the

snapshots and builds a basis of the low-dimensional vector space spanned by them.
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The online step, which is intended to be inexpensive (because k is small), computes a

projected version of the original problem (using, for example, a Galerkin projection)

in the k-dimensional space. The projected problem, known as the reduced model,

has a solution ũ(ξ) which is an approximation of the solution u(ξ).

There are several ingredients which define the reduced basis method including

the projection method, an a posteriori error estimate (or error indicator), and the

method used to construct the reduced basis. We briefly review some of the choices

for these ingredients.

1.1.1 Projection methods

The reduced model is defined by the projection of the full model onto the

reduced space. Define the trial basis Q of the reduced space such that the approx-

imation to the solution is ũ = Qû where û is the solution of the reduced model.

The reduced model is generated by the projection using a test basis. When the test

basis is equivalent to the trial basis, the result is the Galerkin projection, so that

the reduced model is

QTAQû = QTf . (1.3)

The Galerkin projection is optimal for minimizing the error in the A norm for the

case when A is symmetric positive definite [14]. When the test basis is different

from the trial basis, the methodology entails a Petrov-Galerkin projection. For a

linear operator, A(u; ξ) = A(ξ), the choice of AQ for the test basis generates the
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reduced model

QTATAQû = QTATf , (1.4)

where the solution ũ = Qû, minimizes the state error in the ATA norm [14]. This

problem is equivalent to solving the minimization problem,

ũ = arg min
u∈range(Q)

||R(u)||2 , (1.5)

where R(u) = Au − f . More generally for nonlinear problems, the solution to the

least squares problem in equation (1.5) is equivalent to Petrov-Galerkin projection

with a test basis JR(u)Q where JR(u) = ∂R(u)
∂u

is the Jacobian of the residual R(u)

[18].

1.1.2 Error estimate

An important component of successful reduced-order models is a cheap, accu-

rate a posteriori error estimate of the reduced model. This error estimate determines

if the solution computed using reduced model is accurate enough. It should be cheap

to compute since it is part of the online computation. We will see in Section 1.1.3

that it also plays an important role in several methods for constructing the reduced

basis. A common choice for the error estimator is the normalized residual,

ηξ =
||Aũ(ξ)− f ||2
||f ||2

.

In the case of affine parameter dependence, this residual can be computed with

computation cost independent of N [29]. Further discussion of this point is deferred

to Section 1.2.
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1.1.3 Offline construction of the reduced basis

In the offline-online paradigm, the primary task of the offline step is the con-

struction of the reduced basis. This portion of the computation may be expensive.

The following construction methods vary in offline cost, size of the reduced basis,

and accuracy of the resulting reduced-order models.

The proper orthogonal decomposition (POD) derived from solutions obtained

for a subset of the parameter space produces an orthogonal basis of an approximation

of the space spanned by the snapshots [61]. The POD method takes a set of ntrial

snapshots of the solution S = [u(ξ(1)), ..., u(ξ(ntrial))] and takes the singular value

decomposition (SVD)

S = V ΣW T ,

where V = [v1, ..., vntrial ] and W are orthogonal and Σ is a diagonal matrix with

the singular values sorted in order of decreasing magnitude. The reduced basis is

defined as Q = [v1, .., vk] with k < ntrial. This produces an orthogonal basis Q which

contains the important components from the snapshot matrix S. The disadvantage

of the POD is that the number of snapshots, ntrial, used to construct S is ad hoc.

It is possible that the number of solutions of the full model required to find a basis

with satisfactory accuracy could be quite large.

Alternatively, a reduced basis can be formed by finding an orthogonal basis for

the span of the snapshots constructed using the modified Gram-Schmidt algorithm

where the parameters at which the snapshots are taken are chosen carefully. In

these methods, the number of full solutions required will be the same as the rank
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of the reduced basis. The process for choosing the random samples is known as

snapshot selection, and methods include greedy sampling [11], variations on greedy

sampling [27], error minimization methods [14], and sparse grids [29].

The greedy snapshot selection method [11, 72] depends on a subset of the

parameter space of ntrial samples, denoted Γtrial, and an a posteriori estimate of

the reduced model. The basis is initialized with a single snapshot and then the

reduced model is solved at all ntrial parameters. The sample which maximizes the

error estimator is selected and the full model is solved at this parameter. The

resulting snapshot is used to augment the basis. This process continues until all ntrial

parameters have reduced solutions whose error estimate is below some threshold

τ . There is a variation of this approach for problems with parameters that are

nonuniform random variables, where weights are used to give preference to higher

probability solutions during the greedy selection [20].

As described above, greedy methods are performed using a discretization of

the parameter space Γtrial. Ideally, the greedy method would choose the parameter

which maximizes the error estimator from the continuous parameter space, Γ. If the

snapshots were chosen this way, the greedy method would have favorable conver-

gence properties with respect to the Kolmogorov n-width. The Kolmogorov n-width,

dn(F), is defined as the error that would be obtained using the best n-dimensional

space that can represent the function space F [7]. Formally, the Kolmogorov width

dn(F) = inf
dim(Y )=n

sup
f∈F

dist(f, Y )

where dist(f, Y ) = ||f −PY f || and PY is the orthogonal projector of a function onto
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Y [9]. Let Qn be the space spanned by an n-dimensional basis Q found using the

greedy algorithm (over the continuous space). It has been shown [13] that

dist(F ,Qn) ≤ Cn2ndn(F) ,

where C is constant. So if the Kolmogorov n-width dn(F) decays at a rate faster

than (1/n)2−n, the greedy basis will be optimal. Other relationships between the

greedy approximation error and the Kolmogorov width are discussed in [9] including

the case where if dn(F) ≤Mn−α, then

dist(F ,Qn) ≤ CαMn−α

where Cα depends only on α and improvements on these results are given in [25].

A similar extension for the weighted greedy algorithm is presented in [20].

Note that these results assume that greedy samples are taken over the entire

continuous parameter space. With practical greedy algorithms, the performance is

limited by how well the discretization or sample represents the parameter space.

Bui-Thanh et. al [14] introduce a method to address this issue where the greedy

search is performed over a continuous space. This search requires the solution of

a PDE-constrained optimization problem. Thus, it is limited by the feasibility of

solving the PDE-constrained optimization problem for the given reduced model and

the resulting high offline costs.

Other methods have been considered to improve greedy sampling with the

discrete approach. For example, Γtrial used for greedy sampling can be constructed

adaptively [37]. An extension of this method, the “hp reduced basis” method [27]
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uses a refinement procedure to construct separate bases for subdomains of the pa-

rameter space. First, the parameter space is divided into subdomains based on

the errors generated via greedy sampling (the analogue of h-refinement) and then

the usual greedy sampling procedure is used on each subdomain (the analogue of

p-refinement). Note that this generates a separate basis for each subdomain, so one

might expect that the dimension of each of the reduced bases will be smaller than

if a single reduced basis was used for the entire parameter domain. This method

has been shown to significantly reduce online costs (because each reduced problem

is smaller) at an additional offline cost. This method is especially amenable to ap-

plications where the solutions vary greatly over the parameter domain. It will take

more samples in regions where the solution is varying most, but the resulting larger

reduced basis will be used only in that region.

The POD method and the greedy algorithm both rely on a method for sam-

pling a subset of the parameter space effectively. There are several choices for sam-

pling methods. First, uniform sampling is generally too expensive especially as the

number of parameters increases. The second, random sampling has the disadvan-

tage that it might fail to recognize regions of the input space. Sampling methods

which balance these extremes include Latin hypercube sampling, central Voronoi

tessellation (CVT), or sparse grids [14,29].

The snapshot selection technique used to construct the reduced bases in Chap-

ters 2 and 3 is random sampling. A snapshot is taken only if the reduced solution

at the current sample fails some error criterion. The method is defined by a random

sample of ntrial parameters, Γtrial, and a threshold tolerance τ . The basis is initial-
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ized using a single snapshot. Then for each of the parameters, the reduced problem

is solved. If the error indicator of the reduced solution is below the tolerance τ , the

computation proceeds to the next parameter. Otherwise, the full model is solved

and the snapshot is used to augment the reduced basis.

For this strategy (and other snapshot selection techniques), it is easy to enrich

the basis at any point during the online computation. If a parameter encountered

during the online computation fails to satisfy the tolerance, τ , the full model can

be solved and the basis augmented. As long as this occurs infrequently, it will

not be too costly. Depending on the application, this approach may be preferable.

For example, the goal of many-query applications is the efficient solution at all

parameters; therefore, spending less time offline and occasionally augmenting online

will lead to overall lower costs. In real-time applications, however, a more careful

offline construction may be required to ensure that the reduced model will always

produce solutions to the required accuracy. Other methods can be used to gain

more accuracy from a reduced model in an online context without a complete solve

of the full model. For further discussion of these methods, see Section 1.4.

1.2 Reduced-order models of linear affine operators

In the case of linear operators with affine dependence on the parameters, the

cost of the online step is independent of the dimension of the discrete PDE. The

assumption of affine dependence allows a discrete operator A(ξ) to be written as a
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sum of parameter-independent operators, {Ai}, i.e.

A(ξ) =
s∑
i=1

ϕi(ξ)Ai ,

where ϕi : Rm 7→ R. Thus, the reduced operator QTA(ξ)Q can be constructed as

QTA(ξ)Q =
s∑
i=1

ϕi(ξ)Q
TAiQ . (1.6)

If the members of {QTAiQ} are precomputed during the offline portion of the com-

putation, the online cost of forming the matrix of equation (1.6) depends only on the

number of parameters m and the dimension of the reduced basis k. The cost of solv-

ing the reduced problem depends only on k. As long as k � N , the cost of solving

the reduced problem at each parameter will be significantly cheaper than the cost

of solving the full problem. In addition, the norm of the residual R(ũ) = AQû− f

can be computed using matrices precomputed offline as well:

||AQû− f ||22 = ûT
s∑
i=1

s∑
j=1

ϕi(ξ)ϕj(ξ)Q
TATi AjQû− 2ûT

s∑
i=1

ϕi(ξ)Q
TATi f + fTf

where QTATi AjQ and QTATi f are precomputed [11, 29]. Note that for the spatial

discretizations considered in this thesis A tends to be sparse and AQû−f is relatively

cheap to compute in the usual way. So for simplicity, this is the approach used for

the residual computation.

1.3 Reduced order models of nonlinear operators

When this offline-online approach is applied to a nonlinear problem or a prob-

lem with nonaffine parameter dependence, the online step using the traditional
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reduced model is not independent of N . Given a discretized PDE with a nonlinear

component F (u; ξ), the full model is

G(u) = Au+ F (u; ξ)− b = 0 . (1.7)

The reduced model using the Galerkin projection is

Gr(û) = QTA(ξ)Qû+QTF (Qû; ξ)−QT b = 0 . (1.8)

The projection of the nonlinear operator QTF (Qû; ξ) is of dimension k, but since it

depends on the solution, it must be assembled at each step of a nonlinear iteration.

Using a nonlinear solution method, e.g. the Picard iteration, each nonlinear iteration

requires the construction of the Jacobian matrix associated with F (Qûi; ξ) and

multiplication by QT , where both operations depend on N .

For some cases the operators can be approximated by a sum of solution-

independent matrices. For a quadratic operator with affine dependence on the

parameters, it is possible to write the reduced operator as a sum of parameter-

independent, solution-independent matrices [29]. This is only possible for certain

classes of problems and even if the problem can be written as a sum of these re-

duced matrices it requires storage of these (dense) matrices. A general nonlinear

operator or an operator with nonaffine parameter dependence can be treated using

so-called hyper-reduction techniques which decrease the online costs associated with

assembling the nonlinear components.
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1.3.1 Hyper-reduction

One example of hyper-reduction is the empirical interpolation method (EIM).

This method determines interpolating continuous functions of the governing PDE.

This method was originally developed to deal with nonaffine parameter dependence

[6] and was extended to nonlinear elliptic and parabolic operators in [36]. The

functions are chosen using a greedy procedure where values of the parameter are

selected. Then the approximation is formed by interpolating the solution from the

selected points. Like the greedy procedures for constructing the reduced basis, it is

often more computationally convenient to perform the greedy construction using a

discrete set of samples of the parameter space instead of over continuous solution

spaces [7].

1.3.1.1 Discrete empirical interpolation method

This leads to the discrete variant of EIM, the discrete empirical interpola-

tion method (DEIM) [19], which generates the approximation from snapshots of

the nonlinear component. In addition, the DEIM treats the nonlinear component

of the model separately from the linear components. Thus, it requires a basis that

represents just the nonlinear component of the solution. Referred to as the non-

linear basis, this basis, V , is generated using the POD method, with snapshots

S = [F (u(ξ(1))), ..., F (u(ξ(k)))] where u(ξ(i)) is the discrete solution. The DEIM se-

lects a subset of spatial grid points from the discretization of the PDE (i.e. indices of

F ) using a greedy algorithm. Therefore, the DEIM approximation of the nonlinear
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operator is

F̄ (u; ξ) = V (P TV )−1P TF (u; ξ)

where P is a N×ndeim matrix that selects ndeim interpolating points from the spatial

grid. An error bound for this approximation is given in [19]

||F − F̄ ||2 ≤ ||(P TV )−1||2||(I − V V T )F ||2 . (1.9)

The second factor in this expression depends on how well V represents the solution

space of the nonlinear components. This can be decreased by taking more snapshots

for S. The growth of the first factor is limited by the greedy selection of indices [19].

This approximation produces the DEIM model, Gdeim(û) = 0, where

Gdeim(û) = QTAQû+QT F̄ (Qû; ξ)−QT b . (1.10)

= QTAQû+QTV (P TV )−1P TF (u; ξ)−QT b . (1.11)

The matrix QTV (P TV )−1 can be computed offline since it is parameter and solution

independent. The online computation requires the construction of P TF (u; ξ) which

means that F (u; ξ) is only needed at the interpolation points. This can be done

cheaply if the components of F (u; ξ) depend only on a few entries of u. This condi-

tion is typically satisfied for discretized PDEs. For further discussion of assembly in

the finite element case, see [4]. The subset of elements that must be tracked during

a DEIM computation is referred to as the sample mesh. The cost of the offline

computation using DEIM scales with the number of elements in the sample mesh

and not with the number of elements in the full mesh.
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1.3.1.2 Gappy POD method

In the case of DEIM, the number of indices in the interpolation is equivalent

to the number of columns of V . This ensures that (P TV )−1 is computable. A vari-

ation of this approach is gappy POD [3, 32] where the number of indices, ng, can

exceed the number of basis vectors. The approximation of the nonlinear compo-

nent is F̂ = V (P TV )†P TF (u; ξ) where (P TV )† is the Moore-Penrose pseudoinverse.

Equivalently F̂ = V α where α is the solution of the least squares problem

α = arg min
α̂
||P TV α̂− P TF ||2 .

The number of indices ng can now be anything, but for improvement over DEIM it

should be larger than the number of columns of V . When ng is equivalent to the

number of columns of V , this approach is equivalent to the DEIM method [3]. The

algorithm used to select the indices for gappy POD follows the greedy approaches

used in EIM and DEIM; it loops through the basis vectors and chooses the index

which maximizes the error in the approximation made with the partial set of indices

[18]. There is a similar error bound for gappy POD to that produced for DEIM in

equation (1.9) [19]. Define R from the economical QR-factorization of P TV , and

the bound is [18]

||F − F̂ ||2 ≤ ||R−1||2||(I − V V T )F ||2 .

1.3.1.3 Computational costs of hyper-reduction methods

To illustrate the costs of solving equation (1.8) with and without hyper-

reduction, consider the case of a nonlinear operator with affine dependence on the
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parameters. Let JF (u) denote the Jacobian of F (u). Then

JGr(û) = QTAQ+QTJF (Qû)Q .

Therefore for a given nonlinear iteration for the reduced model in equation (1.8) we

have
ûn+1 = ûn − JGr(ûn)−1Gr(ûn)
ûn+1 = ûn − (QTAQ+QTJF (Qûn)Q)−1Gr(ûn) .

Thus the following linear system must be solved each iteration

(QTAQ+QTJF (Qũn)Q)δû = −Gr(ûn) .

The primary costs associated with solving the reduced model are the following.

1. Initial assembly of the matrix QTAQ, performed once; with the assumption

of affine structure of the operator, it will have cost O(mk2).

2. Computation of JF (Qûn) performed every iteration. This scales with the size

of the discretization, N .

3. Assembly of QTJF (Qûn)Q performed every iteration at cost O(Nk2).

4. Solution of a dense linear system with k × k matrix QTAQ + QTJF (Qûn)Q.

This costs O(k3) when using direct methods.

Hyper-reduction methods are meant to decrease the online costs associated with

computation of JF (Qûn) in point 2 and the assembly of the reduced matrixQTJF (Qûn)Q

in point 3. For the DEIM and gappy POD methods, the cost of assembling P TJF̄ (Qûn)

and P TJF̂ (Qûn) scale with ndeim and ng respectively. Similarly the assembly costs

are O(ndeimk
2) and O(ngk

2) respectively. The other costs of the online step remain

the same.
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1.4 Beyond the offline-online approach

There are many applications where the offline-online approach is not practical.

For example, in many-query applications it could be that the goal is to obtain the

solution at all of the points as quickly as possible. If the offline cost of the method

is too high, the cost savings in the online step might not be enough to amortize

the offline cost. For example, greedy algorithms ensure that the dimension of the

reduced basis is as small as possible and thus the online cost will be very small, but

if a cheaper offline method can produce a reduced basis with only a slightly higher

dimension, then it may be the preferred approach for a particular application.

In addition, there are situations where the parameter space cannot be sampled.

For example, a parabolic PDE can be viewed as an elliptic PDE parameterized in

time [11] and time is treated as the parameter. When this is the case, the problem

at some parameter depends on the solution at a previous time step. In addition, the

PDE may depend on both time and parameters. In these cases, it is not obvious

what would be the best approach for generating snapshots. Some methods have been

devised for this [15, 49], where snapshots are taken for a variety of parameters and

time steps. However, the performance of the reduced model for time steps beyond

where the snapshots were taken is unknown. As an alternative approach, one could

treat this problem as a sequence of linear systems. Similarly, we could take this

viewpoint for a nonlinear problem where the sequence of linear systems is generated

by the nonlinear iteration. Finally, there are situations where the cost of the full

model is too high for the full model to be solved at enough samples to produce an
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accurate basis. In these cases, reduced-order models can be used to accelerate the

solution of the full model.

Each of these situations have led to efforts to consider a more blended approach

to reduced-order modeling. For example, the reduced basis collocation method [29]

obtains the reduced solution using a current reduced basis and if the error estimate

does not satisfy the tolerance then the full model is solved and the new solution

snapshot is added to the basis. At the end of the computation, the solution is known

at each point on the collocation grid. Another method reuses the coarse grid and

transfer operators obtained from using algebraic multigrid to so solve nearby linear

systems where the linear systems come from a stochastic collocation problem [34,35].

Another approach avoids the solution of the full model when an online solution

does not satisfy the tolerance. The adaptive h-refinement reduced-order model [15]

splits the basis vectors into vectors with disjoint support, so the resulting reduced

model is more accurate. A big advantage of this approach is that as the dimension

of the refined reduced basis approaches the dimension of the full model, the error

between the full and reduced solutions approaches zero. This is reassuring to be

able to recover the full model solution if necessary. The example of a parameterized

inviscid Burger’s equation in [15] illustrates that a reduced basis constructed using

snapshots of the solution taken at times before a shock is able to adapt online to

accurately represent the solutions with the shock.

Another class of methods that use a blended approach is Krylov subspace

recycling. This methodology can be viewed as using a reduced model to accelerate

the convergence of the full model, where the full model is posed as a sequence of
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varying linear systems. Krylov subspace recycling has been used to accelerate the

solution of sequences of linear systems applications such as fracture modeling and

diffuse optical tomography [39] and to accelerate the solution of the linear systems

that arise in stochastic collocation problems [33].

1.5 Krylov subspace recycling

Krylov subspace recycling methods are used to solve sequences of linear sys-

tems

Ajx̄j = bj, j = 1, ..., ns . (1.12)

The goal is to find xj such that

||bj − Ajxj||2
||bj||2

< δ ,

as quickly as possible for all ns systems in the sequence. The idea of recycling is to

select a subspace of a generated Krylov space that will most aid in convergence of the

Krylov subspace method for the next system in the sequence. This selected subspace

is referred to as the recycled space. There are two components to a Krylov subspace

recycling method. The first finds the solution on range of the recycled space. We

can view the first component as the solution to a reduced model where the reduced

model is defined by the projection of the linear system onto the recycled space. The

second component finds the solution of the full problem to a given tolerance using a

Krylov subspace method. The iteration begins with the reduced solution and then

the ensuing full solve is accelerated by enforcing orthogonality to the recycle space.
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Originally, Krylov recycling methods were developed in the case where Aj

is fixed. For full orthogonalization methods like GMRES [65] the computational

work per iteration grows with the iteration. Thus it becomes computationally and

memory inefficient to keep the full basis. Restarted GMRES [65] simply throws

away all of the information about the Krylov basis and begins the iteration again

with the current solution as the initial guess for the solution in the next cycle. This

procedure solves equation (4.1) where Aj = A ∀j and bj is updated every restart,

since it depends on the initial solution.

This restarting process is known to decrease the rate of convergence [46]. This

decrease occurs because after the restart the new Krylov basis vectors that are gener-

ated can be anywhere in the space. If, instead, a subset of the Krylov basis vectors is

retained, new basis vectors can be chosen to be orthogonal to the old Krylov vectors

so that the search space is smaller. So, given a set of recycled vectors Y , a Krylov

subspace recycling method projects the problem onto this space (reduced model)

and then uses a Krylov solver to generated new Krylov vectors that are orthogonal

to Y . In methods that are based on the Arnoldi iteration, like GMRES, the basis

vectors are orthogonalized using the 2-norm. In the conjugate gradient method, the

basis vectors are orthogonalized with respect to the A-norm; this method is known

as the augmented conjugate gradient method [66]. The reduced problem in this case

is

Y TAjY x̂ = Y T bj . (1.13)

Once the approximation of the solution on the range of Y is obtained, the procedure
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requires search directions, pk, to be Aj-orthogonal to Y such that Y TAjpk = 0 for

k = 0, 1, .., nj.

In theory, the recycle space for the Krylov subspace recycling method can be

any set of vectors. The methods are most effective, however, when the recycle space

is formed using the Krylov basis vectors obtained in the previous cycle or cycles.

Since the solution to the previous problem lies on the range of the Krylov vectors,

for a given system, if the sequence of coefficient matrices and right-hand sides do not

vary significantly, the solution to the next linear system in the sequence is probably

close to the range of the Krylov vectors. In cases where the convergence of the Krylov

method depends on the spectrum of A – as is the case for a conjugate gradient

method or for certain classes of matrices using the GMRES method – the best

vectors to recycle are the eigenvectors of A. Since it is often the small eigenvalues

which hamper convergence, we would like to keep the eigenvectors associated with

the smallest eigenvalues. The exact eigenvectors are unavailable, but the harmonic

Ritz vectors provide approximations of the eigenvectors associated with the smallest

eigenvalues. Using the harmonic Ritz vectors to compress a recycle space gives rise

the method known as deflation. Deflation is a popular technique for Krylov subspace

recycling and is used in GMRES-DR (GMRES with deflated restarting) [47] and the

deflated conjugate gradient method [66].

Krylov subspace recycling can be generalized to sequences where the matrix

varies. For example, the GCRO-DR method [55], a deflated restarting method for

the GCRO Krylov solver uses deflated restarting within a single solve and after

convergence of the solution for the jth system, it adapts the Krylov basis generated
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for Aj to a basis for Aj+1.

Another method adapted for varying left hand sides is a recycling method

described in [62]. The recycling method keeps all the Krylov vectors P = [p0, ..., pn]

from the previous solve as the recycle basis for the augmented conjugate gradient al-

gorithm. This solution method also introduces the idea of using an iterative method

to solve the reduced problem that arises in the augmented CG method. The search

directions are weighted to produce a well-conditioned reduced problem. Further-

more, [16] suggests that using both the direct and iterative methods provide the

reduced solution quickly. The key to this approach is that direct methods are used

with the most important recycled vectors and the fast-converging iterative method

produces the solution on a larger space. This mixed approach is the topic of study

of Chapter 4.

1.6 Using iterative methods for reduced models

Reduced-order modeling is only effective when online costs are cheap. Given

a reduced model (made independent of the spatial dimension using interpolation

techniques like DEIM, if necessary), the costs of obtaining solutions of the assembled

reduced model depend on the size of the basis k and the solution method. There

are two ways to keep costs low in solution of linear systems of the reduced-order

model. The first is to construct the smallest possible basis. The second is to choose

the most efficient solution method. A great deal of work in reduced-order modeling

has been in developing methods for constructing the reduced bases (i.e. keeping
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k small). Many of these methods were discussed in Section 1.1.3. Often the best

approach will depend on the application at hand. In addition, the application will

determine what restrictions (if any) to place on the offline costs. In this thesis, we

take the perspective that the user has made a choice based on the problem, accuracy

requirements, number of parameters etc. which has defined the dimension k. The

question we address is for this fixed k, what is the most efficient solution technique?

The traditional approach to solving the systems reduced-order models is di-

rect methods. For example for the linear affine reduced operator defined in equa-

tion (1.6), the solution of the reduced model can be obtained using direct methods

with cost O(k3). In some cases, however, efficient techniques for the full model (like

multigrid) exist and could have cost as low as O(N). Therefore, it is possible that

k � N , but k3 6� N . In this range of k, iterative methods with cost O(pk2) where

p is the number of iterations for convergence, can be more efficient – increasing the

range of k where reduced-order modeling is effective.

We consider iterative solution methods for reduced-order models of moder-

ate size, and, in particular, we develop preconditioning strategies for the reduced

problem. One of the key reasons that using iterative methods with an offline-online

paradigm is effective is that the cost of constructing preconditioners can be relegated

to the offline step. The relatedness of the linear systems is key for constructing a

reduced-order model, but this property also means that good preconditioners for

mean or other representative parameter(s) can be effective as preconditioners of the

reduced model for nearby problems. Chapter 2 and 3 will discuss preconditioners

and iterative methods for problems using the offline-online approach for the linear,
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affine case (Chapter 2) and the nonlinear case (Chapter 3). Chapter 4 moves aways

from the offline-online approach by using iterative methods on the full model which

are accelerated by the reduced model. In addition, we can use iterative methods

for solving the reduced problems embedded in this approach. In that case the re-

duced order model and recycled directions are chosen in such away that the reduced

problem is naturally well conditioned.

1.7 Outline of Thesis

In Chapter 2, we discuss using iterative methods to solve reduced models and

develop preconditioners for the case with linear operators with affine dependence

on the parameters. We will demonstrate the effectiveness of these preconditioners

and iterative methods for two benchmark problems, the steady-state diffusion and

convection-diffusion-reaction equations with random diffusion and reaction coeffi-

cients respectively.

In Chapter 3, we extend these ideas to nonlinear operators where the online

costs are first made independent of spatial dimension using the discrete empirical

interpolation method. Costs of the online computation are then further decreased

using iterative methods and preconditioners. This extension is illustrated using the

steady-state Navier-Stokes equations.

In Chapter 4, we move past the strictly offline-online approach and discuss

a blended method, the POD-augmented Krylov subspace recycling method. This

method implements a Krylov subspace recycling framework which compresses vec-

24



tors using a weighted POD method. This approach is compared to deflation, a

traditional approach to Krylov subspace recycling. In addition, the weighted POD

method can be used in conjunction with a goal-oriented norm to ensure the fast

convergence to an output of interest.

Chapter 5 provides the conclusion to the thesis.
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Chapter 2

Preconditioners for reduced-order models of linear operators

2.1 Introduction

The reduced basis method reduces the cost of solving parameterized partial

differential equations (PDEs) when the solution is needed at many parameter values.

Computational costs are decreased by approximating the parameterized problem

using a reduced space of significantly smaller dimension than that of the discrete

PDE. Let the PDE

L(~x, ξ;u) = f(~x) (2.1)

be defined on a spatial domain D and subject to boundary conditions on ∂D

B(~x, ξ;u) = g(~x) , (2.2)

where ξ = [ξ1, ξ2, . . . , ξm]T is a vector of input parameters. Reduced basis methods

compute a (relatively) small number of solutions, u(·, ξ(1)), . . .u(·, ξ(k)), known as

snapshots, and then for other parameters, ξ 6= ξ(j), attempt to find u(·, ξ) in the

space spanned by {u(·, ξ(j))}kj=1.

One approach to reduced-order modeling is the offline-online paradigm. The

computation is divided into offline and online steps. The offline step can be ex-

pensive and is performed only once. It constructs a basis, Q, of an approximation

of the solution space. The online step uses the reduced basis to solve a reduced
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problem which provides an accurate estimate of the solution at each parameter

ξ = [ξ1, ..., ξm]T . We expect the computational cost of the online step to be small

since k is small. The underlying philosophy behind this approach is that the expense

of the offline computation can be amortized to produce savings for many simulations

(using many parameter values) in the online computations. It is also essential in

cases where the online step must be performed in real time.

The dimension of the reduced space k is governed by characteristics of the

problem, for example the number of parameters and the desired accuracy of reduced

solutions. The conventional wisdom is that these systems can be solved cheaply

using direct methods, at costs lower than what would be needed to solve the original

discrete PDE. This is reasonable when k, the size of the reduced basis, is significantly

smaller than N , the size of the discrete space. However, when efficient (O(N))

algorithms, such as multigrid, are available for the discrete PDE, it may happen

that k is smaller than N by a large amount, but direct methods (of complexity

O(k3)) do not lead to reduced costs. In these cases, when k is of moderate size, we

have shown that iterative methods can be used to solve the reduced problem more

cheaply than direct methods.

The key component to the efficiency of the iterative methods is a precondi-

tioner constructed as part of the offline computation. We use preconditioners that

are parameter-dependent, but we have seen in our examples that the preconditioner

works nearly as well when it comes from a single mean parameter as when it is con-

structed using the same parameter as the reduced problem we are solving. Using a

single parameter is what enables the cost of constructing the preconditioner to be
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moved offline. With these preconditioners we will show that iterative methods are

more efficient than direct methods when k is above a certain threshold.

An outline of this chapter is as follows. In Section 2.2, we review the reduced

basis methodology for linear partial differential operators with affine dependence on

parameters. In Section 2.3, we discuss iterative methods for the solution of larger re-

duced problems and develop the preconditioning strategy we use with such methods.

In Section 2.4, we demonstrate the effectiveness of these techniques for solving two

benchmark problems, the steady-state diffusion and convection-diffusion-reaction

equations, and in Section 2.5, we draw some conclusions.

2.2 Offline-online reduced basis method

In a finite element setting, we seek a discrete solution uh of the PDE in a

finite-dimensional affine space Xh such that

L(uh(·, ξ), vh) = l(vh) ∀vh ∈ Xh
0 . (2.3)

For simplicity, we consider Dirichlet problems, and Xh
0 is the subset of Xh corre-

sponding to homogenous Dirichlet boundary conditions. Given a basis Q which

spans {qj}kj=1 such that qj ∈ Xh
0 , we solve the reduced model

L(ũ0(·, ξ), vh) = l(vh) ∀vh ∈ span(Q) , (2.4)

for ũ0 ∈ span(Q), which is used to construct an approximation of the full solution,

ũ = ũ0 + ubc, where ubc is the solution on the boundary. The accuracy of this

approximation depends on how well the reduced basis represents the solution space.
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Thus, constructing this basis requires balancing two conflicting requirements: its

rank, k, should be small enough so there is a benefit with respect to efficiency from

using the reduced model, but k should also be large enough to ensure accuracy of

the approximation.

We will also assume that the operators L and B in (2.1) and (2.2) are affinely

dependent on ξ, i.e. for L,

L(~x, ξ;u) =

sL∑
i=1

ψi(ξ) li(~x;u) (2.5)

where {li(~x;u)}sLi=1 are parameter-independent operators and ψi : Rm → R. This

assumption leads to efficiencies for linear operators as well as mildly nonlinear (say,

quadratic [29]) ones, because part of the reduced model can be precomputed as part

of the offline step and the cost of solving the reduced model does not depend on the

size of the full model. For example, for a linear PDE the solution of the full model

in equation (2.3) is obtained by solving a matrix equation of the form

A(ξ)uξ = f , (2.6)

where the order of the system, N , depends on the number of points in the spatial

discretization of D and is assumed to be large. Let Q be an N×k orthogonal matrix

whose columns span the same space as that determined by the coefficient vectors of

the set of snapshots.

2.2.1 Online costs for the reduced basis method

The Galerkin projection of the reduced model of order k is

QTA(ξ)Qur,ξ = QTf , (2.7)
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where ũξ = Qur,ξ is the approximation of the solution of equation (2.6) on the

interior of D. Because of the assumption of affine dependence, the coefficient matrix

has the structure

A(ξ) =

sL+sB∑
i=1

ψi(ξ)Ai , (2.8)

and the reduced model can be written

sL+sB∑
i=1

ψi(ξ)[Q
TAiQ]ur,ξ = QTf . (2.9)

In this form, the matrices {QTAiQ} are parameter independent and thus can be

precomputed as part of the offline step. The online step of the reduced model

includes the assembly of the sum in equation (2.9). The cost of this computation

is of order (sL + sB)k2, and the total online cost is this plus the cost of solving an

order k linear system. Hence, the cost of the reduced model is independent of N ,

the size of the full model. We will consider methods for handling nonlinear and/or

nonaffine operators in the next chapter.

The conventional point of view is that the reduced model will be significantly

less expensive to solve than the full model. The traditional choice for solving the

reduced model in equation (2.7) is direct methods, at a computational cost of O(k3).

On the other hand, it is often possible to use multigrid methods to solve the (full-

sized) linear system arising from discretized PDEs, at cost O(N) [12,31]. Therefore,

using the reduced model with a direct method is effective only when k � N . The

focus of this study is the case when the rank of the reduced basis k is of magnitude

where the cost of direct methods for the reduced problem is not smaller than for

solving the full problem, even though k is still of moderate size. In such situations,
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there may be an advantage to using alternative solution methods.

Consider the use of iterative methods for the reduced model (2.7). In this case,

the cost of such methods is O(pk2) where p is the number of iterations required for

convergence; the factor of k2 comes from the cost of a dense matrix-vector product

by QTA(ξ)Q. Thus, this will be an effective approach when p is small. It is well

known that preconditioners are needed for the fast convergence of iterative methods.

Thus, we need a preconditioner for the reduced matrix.

2.3 Preconditioners for the reduced model

Consider a reformulated version of equation (2.7) given by[
A−1 Q
QT 0

] [
v
ur

]
=

[
0

−QTf

]
. (2.10)

Equation (2.10) has the form of a saddle point system, a well-studied problem, for

which a preconditioner may take the form [31][
F 0
0 S

]
.

With the formal choice F = A−1, it can be shown that the optimal choice for S is

the Schur complement [48], which for (2.10) is

S = QTAQ . (2.11)

That this is equivalent to the matrix of the reduced model suggests that the reduced

model in equation (2.7) can be preconditioned using the Schur complement or an

approximation to the Schur complement. The first preconditioner we consider for

the reduced-order model in equation (2.7) is the exact Schur preconditioner which
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requires the application of the inverse

S−1(ξ) = (QTA(ξ)Q)−1 .

This is done by first computing the Cholesky factorization of QTA(ξ)Q and then

solving two triangular systems.

To produce an approximation of the Schur complement, we will mimic an

approach used successfully in a different context (for models of computational fluid

dynamics), the so-called least-squares commutator (LSC) method [31]. Here the

Schur complement is approximated by the matrix

P̂S ≡ (QTQ)(QTA−1Q)−1(QTQ) . (2.12)

Since Q is orthogonal, this operator simplifies to

P̂S =
(
QTA−1Q

)−1
.

This is referred to as the exact LSC preconditioner.

The exact Schur preconditioner depends on (QTAQ)−1 the operation we are

trying to approximate in the reduced model. The exact LSC preconditioner depends

on A−1, which is the operator we are trying to approximate in the full model.

Thus both preconditioners are impractical. However, recall that A depends on a

parameter ξ. We could choose a single representative vector of parameters, ξ(0),

to define the preconditioner, which allows the construction of the preconditioner to

be moved offline. Therefore, the exact Schur preconditioner (QTA(ξ(0))Q)−1 can be

constructed offline by computing its Cholesky factors. In the case of the exact LSC

preconditioner we solve k full systems to compute A−1(ξ(0))Q and premultiply by
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QT . A variation of this idea is to use a collection of representative parameter vectors

to define a collection of preconditioners, all computed in the offline step.

In the exact LSC preconditioner P̂S, we can replace A with a spectrally equiv-

alent operator, i.e., one for which there exist σ0 and σ1 independent of spatial

dimension such that

σ0 ≤
xTAx

xTPAx
≤ σ1 . (2.13)

Thus we can use a preconditioner designed for A to produce a preconditioner of S,

yielding

PS = (QTP−1
A Q)−1 or P−1

S = QTP−1
A Q . (2.14)

This is referred to as the approximate LSC preconditioner. In this case we can

construct P−1
S explicitly by

• Constructing what is needed for a representation of P−1
A . We will define P−1

A

using an algebraic multigrid (AMG) method. Therefore, this step consists of

computing the sequence of coarse grids, grid transfer operators, and smoothing

operators obtained for a multigrid solution of systems of discrete PDEs. With

these, we have what is needed to apply the action of P−1
A to a vector.

• Explicitly computing the (dense) order-k matrix QTP−1
A Q by applying the

algebraic multigrid operation to each of the columns of Q and then premulti-

plying the matrix P−1
A Q by QT .

This study will consider the exact Schur preconditioner, the exact LSC precondi-

tioner, and the approximate LSC preconditioner.
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2.4 Numerical results

To illustrate the effectiveness of these ideas, we apply the reduced basis method

to two examples of PDEs with random coefficients. We compare the performance of

the iterative solver for the reduced model with the direct reduced solution and the

multigrid solution of the full system.

The first example is a steady-state diffusion equation with parameter-dependent

diffusion coefficient,

−∇ · a(~x, ξ)∇u(~x, ξ) = f(~x) in D × Γ

u(~x, ξ) = gD(~x) on ∂DD × Γ

a(~x, ξ)∂u(~x,ξ)
∂n

= 0 on ∂DN × Γ ,

(2.15)

where D ⊂ R2 and the diffusion coefficient, a(~x, ξ), is a random field depending on a

vector of m random variables, ξ = [ξ1, ξ2, ..., ξm]T . The second example is a steady-

state convection-diffusion-reaction equation with an uncertain reaction coefficient,

r(~x, ξ),

−ν∇2u(~x, ξ) + ~w · ∇u(~x, ξ) + r(~x, ξ)u(~x, ξ) = f(~x) in D × Γ

u(~x, ξ) = gD(~x) on ∂DD × Γ

∂u(~x,ξ)
∂n

= 0 on ∂DN × Γ,

(2.16)

where the domain D ⊂ R2, ν is the diffusion coefficient, ~w is the convective velocity,

and ∇ · ~w = 0.

2.4.1 Adaptive offline construction

We turn now to the methodology used to compute a reduced basis Q. Assume

the full discretized model A(ξ)uξ = f is defined on a parameter space Γ =
∏m

i=1 Γi
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such that ξi ∈ Γi := [ai, bi]. The reduced basis is constructed using an adaptive

algorithm summarized in Algorithm 1. The procedure begins with Q as a single

vector, the normalized discrete solution uξ(0) where ξ(0) = E[ξ]. The parameter space

is randomly sampled M times and for each sample, ξ, the reduced model is solved

with the current Q. This produces an approximation to the solution ũξ = Qur,ξ+ubc

whose accuracy is estimated by an error indicator, ηξ. If ηξ exceeds a predefined

tolerance, τ , the full solution for this ξ is computed and the new snapshot, uξ, is used

to update the reduced basis. The basis matrix Q is augmented using the modified

Gram-Schmidt algorithm, ensuring that the basis will have orthogonal columns. We

used as an error indicator the relative residual

ηξ =
||A(ξ)ũξ − f ||2

||f ||2
. (2.17)

This method is applied to the steady-state diffusion equation and the steady-state

convection-diffusion-reaction equation beginning with M = 2000 random samples

of ξ. This produces a candidate basis Q. To assess the quality of this basis, we

computed the reduced solution for an additional 100 samples; if each of these reduced

solutions satisfied the error tolerance, then Q was accepted as the reduced basis. For

case 1 of the diffusion equation (see below) and the convection-diffusion-reaction

equation, this strategy produced an acceptable Q with a few exceptions. In general,

M ≥ 3000 was required for some experiments with the diffusion equation (referred

to as case 2 below, where the details are stated).

Remark: The convergence properties of this strategy for offline computation

of the basis are not known, in contrast to greedy search algorithms, which produce
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Algorithm 1 Construction of the reduced basis using random selection

Compute uξ(0) using the full model

Q =

[
u
ξ(0)

||u
ξ(0)
||2

]
for j =1:M do

Select random sample ξ(j) ∈ Γ
Solve the reduced model QTA(ξ(j))Qur,ξ(j) = QTf
Compute ηξ(j)
if ηξ(j) > τ then

Compute u(ξ(j)) using the full model
Use the snapshot to augment Q

end if
end for

reduced bases of quasi-optimal dimension [9]. In a comparison of Algorithm 1 with

a greedy algorithm, we found that for multiple examples of the benchmark problems

studied in this section, the size of the reduced basis was never more than 10% larger

than that produced by a greedy algorithm and in many cases the basis sizes were

identical. The cost (in CPU time) of Algorithm 1 is significantly lower. Our concern

is efficient implementation of the online step, and for simplicity we used Algorithm

1 for the offline computation.

2.4.2 Diffusion equation

The steady-state diffusion problem with a random coefficient in equation (2.15)

can be used to model the effects of groundwater flow [74]. For more details on this

problem, see [20]. The weak formulation for a fixed value of ξ is

(aξ∇u,∇v) = (f, v) ∀v ∈ H1
0 (D) . (2.18)

Bilinear Q1 elements are used to generate a discretized system, A(ξ)uξ = f of order

N for the full model [31]. We use source term f(~x) = 1. Boundary conditions will
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be addressed below for each case.

We consider two finite-dimensional representations of the random field for the

diffusion coefficient a(~x, ξ): a truncated Karhunen-Loève (KL) expansion (case 1)

and a piecewise constant coefficient (case 2). The truncated KL-expansion is defined

by

a(~x, ξ(ω)) = µ(~x) +
m∑
i=1

√
λiai(~x)ξi(ω) , (2.19)

where µ(~x) is the mean of the random field, λi and ai(~x) are the eigenvalues and

eigenfunctions of the covariance function, and ξi(ω) are independent uniform random

variables. We take the covariance function to be

C(~x, ~y) = σ2 exp

(
−|x1 − x2|

c
− |y1 − y2|

c

)
, (2.20)

where σ is the standard deviation and c is the correlation length, which describes the

strength of the relationship between the value of the random field at ~x1 = (x1, y1)

and ~x2 = (x2, y2). A large value of c implies that a(~x1, ξ) and a(~x2, ξ) are likely to

be highly correlated. We will also use the truncated KL expansion to represent the

reaction coefficient in the convection-diffusion-reaction equation (2.16).

For the piecewise constant diffusion coefficient, the domain, D, is divided into

m = nd × nd subdomains as in Figure 2.1, where

a(~x, ξ) = ξi , (2.21)

on the ith subdomain. Here {ξi}mi=1 are independent uniform random variables

defined on Γi = [0.01, 1].

Consider the influence of the parameters on the overall value of the coefficient
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Figure 2.1: Domain for diffusion equation case 2: piecewise random coefficients.

for these two representations. The impact of the parameters in the truncated KL-

expansion is unequal because the expansion weights the parameters by the eigenval-

ues of the covariance operator. Thus, for example, ξ1 and ξ2 are more influential to

the value of a(~x, ξ) than ξm−1 and ξm, when the eigenvalues are labeled in decreasing

order. In contrast, the piecewise random coefficients are equally weighted.

Algorithm 1 is used to generate the reduced basis Q. Once the reduced basis

is generated we are able to solve the reduced problem defined in equation (2.7). The

preconditioners for this system, discussed in Section 2.3 depend on parameters. For

the exact Schur and exact LSC preconditioner, we consider two ways to select this

parameter.

1. Offline: The mean parameter ξ(0) = E[ξ]. The Cholesky factor of QTA(ξ(0))Q

is computed offline for the exact Schur preconditioner. For the exact LSC

preconditioner, A(ξ(0))−1 is applied to the columns of Q using a direct solve

and A(ξ(0))−1Q is premultiplied by QT .

2. Online: The parameter ξ is the same parameter whose solution we are seeking.

This is an expensive online cost. For the exact Schur preconditioner case, it

requires solving the reduced problem directly and in the exact LSC precondi-
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tioner it requires solving the full model k times. The inclusion of this approach

is to provide a comparison for the offline method and not as practical method

for constructing preconditioners.

Recall that the approximate LSC preconditioner, defined in equation (2.14),

utilizes P−1
A , a preconditioner of A. We will specify P−1

A using multigrid, which

is well known to be effective for diffusion problems [12]. For the implementation,

we use a smoothed aggregation algebraic multigrid routine from Python Algebraic

Multigrid package (PyAMG) with the default settings [8]: the presmoother and

postsmoother are one iteration of Gauss-Seidel, the maximum size of the coarse grid

is 500, and the pseudoinverse is used to solve the system on the coarse grid. To

compute the preconditioner for the reduced problem, the multigrid operator P−1
A is

applied to Q, by performing one V-cycle on each of the k columns of Q. We study

three ways to select the parameter used to specify PA.

1. Single-parameter offline: P0 is derived from multigrid applied to A(ξ(0)) where

ξ(0) is the mean parameter, E[ξ].

2. Multiple-parameter offline: A set of s parameters is used to define s precom-

puted offline preconditioners, P1, . . . , Ps. This is done using multigrid applied

to A(ξ(1)), . . . , A(ξ(s)). For the online component given ξ, ξ(j) ∈ {ξ(1), . . . , ξ(s)}

is selected such that ||ξ(j) − ξ||2 is minimized and Pj is used as the precon-

ditioner. There are several possibilities for choosing {ξ(1), . . . , ξ(s)} including

random sampling, quasi-random sampling, and sparse grids. Sparse grids are

used to limit costs of quadrature and interpolation of functions depending on
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high-dimensional parameter sets. Since we are working with high-dimensional

parameter spaces and would like to represent the parameter space with as few

parameters as possible, we choose the so-called No Boundary sparse grid [41].

The first level of the grid, of size s = 2m+ 1, is obtained using the spinterp

toolbox [42].

3. Online: PA(ξ) comes from multigrid applied to A(ξ) where ξ is the same param-

eter whose solution we are seeking. The time to construct the preconditioner

online is quite large. It requires building the coarse grid and smoothing op-

erators and the significantly more expensive step of applying them to each

column of Q in order to compute QTP−1
A(ξ)Q. It is included here to give a lower

bound for how well offline preconditioning could perform.

The examples are implemented using Python and run with an Intel 2.9 GHz i7

processor and 8 GB of RAM. (The full model finite element discretizations are im-

ported from the Incompressible Flow and Iterative Solver Software (IFISS) package

which is implemented in Matlab [68]). The full solution is obtained using algebraic

multigrid with stopping criterion

||f − A(ξ)uj||2 ≤ 10−5||f ||2 ,

where uj is the solution after j iterations of multigrid, implemented with the same

settings outlined above. For iterative solution of the reduced problem, we use the

preconditioned conjugate gradient (PCG) method with stopping criterion

||QTf −QTAQur,j||
||QTf || <

τ

10
, (2.22)
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where ur,j is the reduced iterate at step j. The given times for online precondition-

ing do not include the significant time required to construct the multigrid precon-

ditioner, and the time for multiple-parameter preconditioning does not include the

trivial time to find the minimizer ξ∗.

Case 1: Truncated Karhunen-Loève expansion.

The random field, a(~x, ξ), is represented by a truncated Karhunen-Loève ex-

pansion defined on D = [0, 1]×[0, 1] described in equation (2.19). Dirichlet boundary

conditions gD(~x) = 0 are imposed on the boundary where x = 0 and x = 1 and

homogenous Neumann conditions are used on the remainder of the boundary.

We choose ξi to be independent and uniformly distributed random variables

on Γi = [−1, 1] and fix µ(~x) = 1 and σ = 0.5. The correlation length c is varied; the

number of parameters m is chosen to ensure that 95% of the variance in the random

field is captured, i.e. ∑m
i=1 λi∑N
i=1 λi

≥ 0.95 . (2.23)

Algorithm 1 with M = 2000 was used to construct a basis using both τ = 10−5

and τ = 10−8 for the error tolerance.1 Decreasing the tolerance has the effect of

increasing the size of the reduced basis, and for smaller τ the reduced model solutions

from both direct and iterative methods require additional time; this tolerance has

no effect on the full system solution.

1The example with m = 325 parameters (see Table 2.1) required M = 3000 for τ = 10−5, N =

2572, and τ = 10−8, N ≥ 652.
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N
c 3 1.5 0.75 0.375
m 7 17 65 325

332

k 36 91 237 501
exact Schur Offline 3.9 4.2 4.5 4.6
exact Schur Online 1.0 1.0 1.0 1.0
exact LSC Offline 5.1 5.7 5.0 5.0
exact LSC Online 5.0 5.0 4.0 4.0
inexact LSC Offline 6.0 6.6 6.3 6.4
inexact LSC Online 6.0 6.0 6.0 6.0

652

k 35 93 250 603
exact Schur Offline 3.9 4.1 4.5 4.7
exact Schur Online 1.0 1.0 1.0 1.0
exact LSC Offline 5.9 6.0 6.0 5.8
exact LSC Online 5.0 5.1 5.0 5.0
inexact LSC Offline 6.0 6.3 6.2 6.1
inexact LSC Online 6.0 6.0 6.0 6.0

1292

k 35 95 259 642
exact Schur Offline 3.9 4.1 4.6 4.7
exact Schur Online 1.0 1.0 1.0 1.0
exact LSC Offline 5.7 6.2 6.7 6.4
exact LSC Online 5.0 5.9 6.0 5.7
inexact LSC Offline 6.3 7.3 8.0 8.1
inexact LSC Online 6.1 7.0 8.0 8.0

2572

k 35 96 263 657
exact Schur Offline 3.8 4.2 4.6 4.6
exact Schur Online 1.0 1.0 1.0 1.0
exact LSC Offline 6.0 6.4 6.9 7.2
exact LSC Online 5.0 6.0 6.0 6.0
inexact LSC Offline 6.9 8.0 8.2 8.7
inexact LSC Online 7.02 8.0 8.0 8.3

Table 2.1: Average iteration counts for preconditioned conjugate gradient algorithm
applied to the reduced diffusion problem in case 1 (KL expansion), with τ = 10−5.

To assess performance, we solve the reduced problem for 100 randomly chosen

parameters using a direct method, the conjugate gradient method without precon-

ditioning, and the conjugate gradient method for the exact Schur, exact LSC, and

2This case is anomalous because the offline preconditioners converge in one fewer iteration than

the online preconditioner for several samples.
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approximate LSC preconditioners. Table 2.1 presents the average iteration counts

for the conjugate gradient method for the three preconditioners. The time (in sec-

onds) for the full algebraic multigrid solution, the reduced direct method, and the

offline conjugate gradient method are presented in Table 2.2 with the fastest method

for each case in bold. Table 2.3 shows the costs of constructing the offline precon-

ditioner for each of the three methods.

N
c 3 1.5 0.75 0.375
m 7 17 65 325

332

k 36 91 237 501
Full AMG 0.0145 0.0142 0.0142 0.0155
Reduced Direct 0.0002 0.0004 0.0016 0.0092
Reduced Iterative exact Schur 0.0002 0.0003 0.0004 0.0027
Reduced Iterative exact LSC 0.0003 0.0003 0.0005 0.0031
Reduced Iterative inexact LSC 0.0003 0.0003 0.0005 0.0034

652

k 35 93 250 603
Full AMG 0.1718 0.1643 0.1662 0.1791
Reduced Direct 0.0002 0.0005 0.0018 0.0165
Reduced Iterative exact Schur 0.0002 0.0003 0.0005 0.0038
Reduced Iterative exact LSC 0.0003 0.0003 0.0005 0.0051
Reduced Iterative inexact LSC 0.0003 0.0003 0.0006 0.0051

1292

k 35 95 259 642
Full AMG 0.1041 0.1080 0.1076 0.1227
Reduced Direct 0.0002 0.0005 0.0020 0.0186
Reduced Iterative exact Schur 0.0002 0.0003 0.0007 0.0054
Reduced Iterative exact LSC 0.0003 0.0003 0.0009 0.0069
Reduced Iterative inexact LSC 0.0003 0.0004 0.0010 0.0089

2572

k 35 96 263 657
Full AMG 0.3432 0.3289 0.3343 0.3660
Reduced Direct 0.0002 0.0005 0.0020 0.0194
Reduced Iterative exact Schur 0.0002 0.0003 0.0007 0.0051
Reduced Iterative exact LSC 0.0003 0.0003 0.0010 0.0078
Reduced Iterative inexact LSC 0.0003 0.0004 0.0011 0.0092

Table 2.2: Average CPU time for solving the reduced diffusion problem in case 1
(KL expansion), with τ = 10−5.

The exact Schur preconditioner, as expected, produces the lowest iteration
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N
c 3 1.5 0.75 0.375
m 7 17 65 325

332

k 36 91 237 501
exact Schur 0.0007 0.003 0.02 0.08
exact LSC 0.14 0.37 1.11 2.15
inexact LSC 0.14 0.15 0.22 0.35

652

k 35 93 250 603
exact Schur 0.002 0.007 0.05 0.33
exact LSC 0.75 2.07 5.36 14.7
inexact LSC 0.31 0.37 0.58 1.29

1292

k 35 95 259 642
exact Schur 0.009 0.03 0.21 1.05
exact LSC 4.38 11.9 31.3 93.7
inexact LSC 0.33 0.50 1.24 4.30

2572

k 35 96 263 657
exact Schur 0.03 0.11 1.06 4.83
exact LSC 28.0 82.4 221 568
inexact LSC 0.79 1.90 4.89 14.2

Table 2.3: CPU time to construct the (offline) preconditioner for τ = 10−5.

counts of the three preconditioners seen in Table 2.1. The exact LSC, P̂S, performs

next best in terms of iteration count, though not significantly. However, Table 2.3

shows that the approximate LSC, PS, is significantly cheaper to construct than the

exact LSC. The advantage of the approximate LSC preconditioner over the exact

Schur preconditioner is that is based on a preconditioner of the full model and

thus can be adapted for any preconditioner of the full model. Secondly, it has

the advantage that it can be updated quickly when Q, the preconditioner, or the

parameter is updated. Although, the results presented in this study consider only

the case where the preconditioners are k × k matrices formed offline, we remark

that the approximate LSC preconditioner could be applied as a matvec. First, the

matrix Q is applied, then the full multigrid preconditioner followed by multiplication
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by QT . Although this cost would scale with the dimension N of the full problem,

this approach allows the flexibility of changing the reduced basis or preconditioner

online. This approach may be required in cases where the solution method is not

strictly divided into offline and online steps. Such a strategy would be impractical

with the exact Schur and exact LSC preconditioners.

Table 2.2 demonstrates that the iterative methods are faster than direct meth-

ods for k ≥ 91. For the remainder of this chapter, we will perform comparisons

using only the approximate LSC preconditioner for the reduced iterative method.

The average iteration counts for the conjugate gradient method for the approximate

LSC preconditioner for a single and multiple offline parameters and τ = 10−8 are

presented in Table 2.4. The time (in seconds) for the full algebraic multigrid solu-

tion, the reduced direct method, and the single-parameter offline conjugate gradient

method are presented in Table 2.5 with the fastest method for each case again shown

in bold.

Table 2.4 shows that the number of iterations needed for PCG grows only

slightly as the size of the reduced basis grows, whereas the iterations for unprecon-

ditioned conjugate gradient grow significantly. Also note that the single-parameter

preconditioner performs nearly as well as the online preconditioner, so using the

mean parameter to construct the preconditioner is an effective choice for the entire

parameter space.

Table 2.5 illustrates that the single-parameter offline preconditioned conjugate

gradient method is faster than direct methods when the reduced basis is of size

k ≥ 254. For τ = 10−8 this holds for both m = 17 and m = 65. The improvement is
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N
c 3 1.5 0.75 0.375
m 7 17 65 325

332

k 97 254 607 982
None 60.1 90.7 101.7 103.9
Single 10.0 9.3 9.5 8.9
Multiple 10.0 9.3 9.5 8.9
Online 10.0 9.0 9.0 8.0

652

k 100 265 699 1679
None 68.8 129.3 175.5 200.3
Single 10.0 10.0 8.5 8.7
Multiple 10.0 10.0 8.5 8.7
Online 10.0 9.8 8.0 8.0

1292

k 102 269 729 1808
None 70.1 149.5 252.5 339.1
Single 11.2 14.6 12.9 11.0
Multiple 11.2 14.6 12.9 11.0
Online 11.0 14.8 13.0 11.0

2572

k 102 275 740 1846
None 70.4 154.0 293.6 473.7
Single 11.0 13.7 15.4 13.5
Multiple 11.0 13.7 15.4 13.5
Online 11.0 13.0 15.0 13.0

Table 2.4: Average iteration counts for preconditioned conjugate gradient algorithm
applied to the reduced diffusion problem in case 1 (KL expansion), with τ = 10−8

using the approximate LSC preconditioner.
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N
c 3 1.5 0.75 0.375
m 7 17 65 325

332

k 97 254 607 982
Full AMG 0.0202 0.0205 0.0214 0.0228
Reduced Direct 0.0003 0.0016 0.0181 0.0699
Reduced Iterative 0.0004 0.0008 0.0036 0.0103

652

k 100 265 699 1679
Full AMG 0.1768 0.1961 0.1947 0.1974
Reduced Direct 0.0003 0.0021 0.0262 0.3207
Reduced Iterative 0.0004 0.0010 0.0044 0.0252

1292

k 102 269 729 1808
Full AMG 0.1195 0.1286 0.1347 0.1443
Reduced Direct 0.0003 0.0020 0.0287 0.4452
Reduced Iterative 0.0005 0.0013 0.0070 0.0449

2572

k 102 275 740 1846
Full AMG 0.3163 0.2988 0.3030 0.3778
Reduced Direct 0.0004 0.0024 0.0302 0.4498
Reduced Iterative 0.0005 0.0012 0.0088 0.0619

Table 2.5: Average CPU time for solving the reduced diffusion problem in case 1
(KL expansion), with τ = 10−8 using the offline approximate LSC preconditioner.

more dramatic for the case of m = 65, when the reduced basis size is k ≈ 700. For

all values of m and N the reduced iterative method is more efficient than solving

the full system.

For this example, the size of the reduced basis is consistent as the spatial size,

N , is increased. This is especially clear for the smaller values of m. This is expected;

see discussion in [29] suggesting that this size is in correspondence with the rank of

the underlying solution space associated with the continuous model. There is some

growth in k the basis size, for the larger values of m, but we expect these values

to eventually tend toward a constant as the spatial resolution increases. Since the

cost of solving the full system grows with N , as expected, the advantage of using

the reduced model also increases as the mesh is refined.
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Case 2: Piecewise constant coefficient.

The diffusion coefficient, a(~x, ξ), for this case is defined in equation (2.21) on

a domain D = [−1, 1]× [−1, 1] with gD(~x) = 0 on the entire boundary. Algorithm 1

with M = 3000 and τ = 10−8 was used to construct the bases.3 The average

iteration counts for solving 100 reduced problems are given in Table 2.6 for the

conjugate gradient method.

m 4 16 36 64 100

332

k 27 193 321 449 577
None 31.9 113.9 126.4 127.9 128.0
Single 17.2 32.3 44.0 52.0 59.5
Multiple 15.7 30.1 42.4 50.3 57.0
Online 11.4 13.0 13.6 12.7 12.0

652

k 29 309 625 897 1153
None 42.3 234.1 254.9 258.3 256.4
Single 20.1 38.2 47.0 54.8 64.2
Multiple 18.7 35.5 44.9 53.1 65.4
Online 14.3 17.0 18.2 18.9 18.9

1292

k 33 359 862 1519 2219
None 60.3 432.9 493.6 519.2 518.9
Single 24.2 37.5 47.6 58.1 64.9
Multiple 22.7 35.2 45.2 56.0 72.4
Online 19.1 19.0 22.0 24.1 25.2

2572

k 36 394 979 1789 2801
None 82.0 808.9 976.8 1035.6 1037.3
Single 30.4 44.0 50.9 62.2 71.1
Multiple 28.6 41.7 48.5 60.3 84.1
Online 25.1 25.8 25.7 27.8 29.7

Table 2.6: Average iteration counts for preconditioned conjugate gradient algorithm
applied to the reduced diffusion problem in case 2, with τ = 10−8 with approximate
LSC preconditioner.

In contrast to the results for case 1, the iteration counts for the offline approx-

3The example with m = 100 parameters and N = 2572 required M = 4000 to construct a basis

that meets the criteria discussed earlier in this section.
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N m 4 16 36 64 100

332

k 27 193 321 449 577
Full AMG 0.0218 0.0203 0.0215 0.0210 0.0208
Reduced Direct 0.0001 0.0010 0.0032 0.0073 0.0152
Reduced Iterative 0.0006 0.0019 0.0045 0.0090 0.0181

652

k 29 309 625 897 1153
Full AMG 0.1679 0.1601 0.1669 0.1811 0.1760
Reduced Direct 0.0002 0.0026 0.0187 0.0543 0.1088
Reduced Iterative 0.0007 0.0034 0.0176 0.0458 0.0832

1292

k 33 359 862 1519 2219
Full AMG 0.1134 0.1202 0.1357 0.1184 0.1194
Reduced Direct 0.0002 0.0038 0.0461 0.2319 0.6659
Reduced Iterative 0.0009 0.0041 0.0364 0.1340 0.3060

2572

k 36 394 979 1789 2801
Full AMG 0.3376 0.3519 0.3291 0.3365 0.3568
Reduced Direct 0.0002 0.0051 0.0670 0.3555 1.2972
Reduced Iterative 0.0010 0.0060 0.0485 0.1928 0.5365

Table 2.7: Average CPU time solving the reduced diffusion problem in case 2 (piece-
wise constant), with τ = 10−8 with the approximate LSC preconditioner.

imate LSC preconditioner are somewhat larger than those for the online ones (see

Table 2.6). We attribute this to the fact that for this example, all the parameters

are weighted equally in their contribution to the model, unlike the situation for the

KL expansion. Thus, the single (or small number) of parameter sets used for the

offline preconditioners are not as effective at capturing the character of the parame-

ter space. Despite this, the important trends for the preconditioned solvers are the

same as for case 1: iteration counts depend only mildly on the number of terms

m in equation (2.5) or the size k of the reduced basis. There is little advantage of

the “multiple-parameter” over the “single-parameter” approach. Thus we use this

single-parameter preconditioned conjugate gradient method as the iterative method

to compare to the reduced direct and full multigrid methods in Table 2.7.

We highlight the trends displayed in Table 2.7 as follows.
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• For the reduced problem, the iterative solver is more efficient than the direct

solver for large reduced bases, in particular whenever the size k of the reduced

basis is greater than or equal to 625.

• As the dimension of the spatial discretization increases, the solution of the

reduced model is less expensive than solution of the full model. Moreover,

as in case 1, the size of the reduced basis tends to a constant as the mesh is

refined, so solution costs also tend to a constant.

• For fixed spatial dimension, the costs of solving the full system are constant

whereas the size of the reduced model increases with the number of parameters,

m, and N . For the largest choices of these values, m = 100 and N = 2572, the

full AMG costs are lowest. However, for fine enough spatial meshes such that

k has stabilized (as in case 1), we expect that the cost of the reduced model

will be smaller.

2.4.3 Behavior of eigenvalues

The performance of the preconditioned conjugate gradient method for solving

the reduced problem depends on the extremal values of the Rayleigh quotient

x̂TQTA(ξ)Qx̂

x̂TP (ξ(0))x̂
(2.24)

where P (ξ(0)) is the offline reduced preconditioner. For the exact Schur case when

ξ = ξ(0) this quotient is

x̂TQTA(ξ)Qx̂

x̂TQTA(ξ(0))Qx̂
, (2.25)

51



and it is clearly one. Consider now the case when ξ 6= ξ(0). For case 1, when the

diffusion coefficient is defined by the KL expansion, this quantity can be bound

using [58, Lemma 3.4]. We discuss the case where ak(~x), the eigenfunctions of the

covariance operators, are uniformly positive. The stiffness matrix is

A(ξ) = A0 +
m∑
k=1

ξkAk

where (i, j) entry of A0 is

A0(i, j) = µ

∫
D

∇φi(~x)∇φj(~x)d~x

and the (i, j) entry of Ak is

Ak(i, j) = σ
√
λk

∫
D

ak(~x)∇φi(~x)∇φj(~x)d~x ,

where µ, σ, λk, and ak(~x) are from equation (2.19). Next define

amink = inf~x∈D ak(~x)
amaxk = sup~x∈D ak(~x) .

Define v ∈ Xh
0 , so v =

∑
i xiφi(~x) and

xTA(ξ)x = xTA0x+
∑
k

ξkσ
√
λk

∫
D

ak(~x)∇v ·∇v ≤ xTA0x+
∑
k

ξk
σ

µ

√
λka

max
k xTA0x

xTA(ξ)x = xTA0x+
∑
k

ξkσ
√
λk

∫
D

ak(~x)∇v·∇v ≥ xTA0x+
∑
k

ξk
σ

µ

√
λka

min
k xTA0x .

Thus,

1 +
∑
k

ξk
σ

µ

√
λka

min
k ≤ xTA(ξ)x

xTA(ξ(0))x
≤ 1 +

∑
k

ξk
σ

µ

√
λka

max
k . (2.26)

Since this holds for all x, it holds for x = Qx̂, yielding bounds for the exact Schur

preconditioner

1 +
∑
k

ξk
σ

µ

√
λka

min
k ≤ x̂TQTA(ξ)Qx̂

x̂TQTA(ξ(0))Qx̂
≤ 1 +

∑
k

ξk
σ

µ

√
λka

max
k . (2.27)
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For case 2, the definition of ξ is piecewise constant and each component of ξ,

ξk, is independent and uniform on Γk = [a, b] where a = 0.01 and b = 1, with mean

µ = 0.505. The stiffness matrix is A(ξ) =
∑

k ξkAk where Ak corresponding to the

subdomain Dk is

Ak(i, j) =

∫
Dk

∇φi(~x)∇φj(~x)d~x .

Therefore for the mean parameter A(ξ(0)) = µ
∑

k Ak. Then,

xTA(ξ)x = xT

(∑
k

ξkAk

)
x ≤ b

µ
xTA0x

xTA(ξ)x = xT

(∑
k

ξkAk

)
x ≥ a

µ
xTA0x .

Therefore, the exact Schur preconditioner has the following bounds

0.0198 =
a

µ
≤ x̂TQTA(ξ)Qx̂

x̂TQTA(ξ(0))Qx̂
≤ b

µ
= 1.9802 . (2.28)

For a general preconditioner P (ξ(0)),

x̂TQTA(ξ)Qx̂

x̂TP (ξ(0))x̂
=

x̂TQTA(ξ)Qx̂

x̂TQTA(ξ(0))Qx̂

x̂TQTA(ξ(0))Qx̂

x̂TP (ξ(0))x̂
. (2.29)

The first quotient is the Rayleigh for the exact Schur preconditioner, and thus it

can be bounded as described above. The second quotient is the Rayleigh quotient

associated with the mean parameter. Therefore, for the remainder of the section

we restrict our discussion of the bounds for the exact LSC and approximate LSC

preconditioners to the Rayleigh quotient for the mean parameter, and for simplicity

of notation we denote A(ξ(0)) = A.

For the exact LSC preconditioner the Rayleigh quotient is

x̂TQTAQx̂

x̂T (QTA−1Q)−1x̂
. (2.30)
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For the approximate LSC preconditioner, the Rayleigh quotient is written as a

product of two quotients

x̂TQTAQx̂

x̂T (QTP−1
A Q)−1x̂

=
x̂TQTAQx̂

x̂T (QTA−1Q)−1x̂

x̂T (QTA−1Q)−1x̂

x̂T (QTP−1
A Q)−1x̂

. (2.31)

The first quotient is the Rayleigh quotient associated with the exact LSC precon-

ditioner. Let us consider the second quotient on the right side of (2.31). We have

assumed in equation (2.13) that PA is spectrally equivalent to A. When A and P

are symmetric positive definite, an analogous bound also holds for the inverses [73],

σ0 ≤
xTP−1

A x

xTA−1x
≤ σ1 ∀x ∈ RN .

We have assumed that this bound holds for all y, so specifically it holds for y on the

range of Q (i.e. x = x̂). Using this fact and applying inverses yields

σ0 ≤
x̂T (QTA−1Q)−1x̂

x̂T (QTP−1
A Q)−1x̂

≤ σ1 . (2.32)

Therefore the second quotient in (2.31) is bounded by σ0 and σ1.

We can obtain insight into the Rayleigh quotient of the exact LSC precon-

ditioner and the first quotient of equation (2.31) by experimentally examining the

eigenvalues of

QTA(ξ(0))−1QQTA(ξ(0))Q

using the benchmark problem from the previous section, case 2 of the diffusion equa-

tion. Figure 2.2 illustrates the eigenvalues for four values of m considered for this

problem. All eigenvalues are bounded below by 1 and the largest eigenvalues grow

only slightly with spatial dimension for the three cases where m > 4. This suggests
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Figure 2.2: Eigenvalues of QTA(ξ(0))−1QQTA(ξ(0))Q

that the condition number of the preconditioned reduced matrix is independent of

the spatial mesh.

2.4.4 Convection-diffusion-reaction equation

The convection-diffusion-reaction equation (2.16) has applications in modeling

fluid flow and chemical reactions. It can be used to model the transportation of

contaminants in a flow subject to diffusive effects and/or chemical reactions [43].

Such models depend on parameters for the diffusion coefficient, the velocity, and

the reaction coefficient. Any of these parameters could be uncertain [71]; here we
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consider the case where the reaction rate is taken to be a random field depending

linearly on a random vector. The weak formulation is

ν(∇u,∇v) + (~w · ∇u, v) + (rξu, v) = (f, v) ∀v ∈ H1
0 (D) . (2.33)

We present results for the steady-state model posed on domain D = [−1, 1]× [−1, 1]

with Dirichlet boundary conditions

gD(~x) =


0 for [−1, y]

⋃
[x, 1]

⋃
[−1 ≤ x ≤ 0,−1]

1 for [1, y]
⋃

[0 ≤ x ≤ 1,−1]

(2.34)

and an inflow boundary condition on the boundaries, [x,−1] and [1, y]. We use

source term f(~x) = 0 and a constant velocity ~w = (− sin π
6
, cos π

6
). The diffusion

coefficient is ν = 0.005. The reaction rate, r(x, ξ), is represented by a truncated

Karhunen-Loève expansion as in equation (2.19), with ξi independent and uniformly

distributed on Γi = [−1, 1], with mean, µ = 1, and standard deviation, σ = 0.5. As

in case 1 of the diffusion equation, the value of the correlation coefficient c is varied,

and the number of parameters m is chosen to capture 95% of the variance of the

random field.

We again discretize using bilinear finite elements, which yields operators A,

B, and R(ξ) in which A represents the diffusion term, B, the convective term, and

R(ξ) the reaction term. We include stabilization by the streamline-diffusion method

in the convection-dominated case when the mesh Peclet number,

Ph =
he||~w||

2ν
> 1 , (2.35)

where he is a measure of the element length in the direction of the wind. This

method produces matrices Scd and Sr, defined in terms of the finite element basis
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(a) Without streamline-diffusion method (b) With streamline-diffusion method

Figure 2.3: Solution of the convection-diffusion-reaction problem for N = 332, ξ =
ξ(0), c = 2, m = 36, Ph = 7.2 with and without streamline-diffusion stabilization.

functions {φi}nei=1 as

[Scd]ij =
ne∑
e=1

∫
Ωe

δe(~w · ∇φi)(−∇ · (ν∇φj) + ~w · ∇φj)

and

[Sr(ξ)]ij =
ne∑
e=1

∫
Ωe

δe(~w · ∇φi)r(~x, ξ)φj ,

where [31, p. 247]

δe =
he

2||~w||

(
1− 1

Ph

)
.

The resulting linear system has the form

F (ξ)uξ = f , (2.36)

where F (ξ) = A+B+R(ξ)+Scd+Sr(ξ). As is well known [4,31,54], this stabilization

enhances the quality of solutions with steep gradients obtained using inadequately

fine grids, limiting the presence of nonphysical oscillations in discrete solutions; see

Figure 2.4.4. As the discretization is refined, the stabilization becomes unnecessary.
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We now consider solving the reduced problem

QTF (ξ)Qur = QTf (2.37)

(This formulation corresponds to a stabilized version of the reduced model referred

to as an “offline-online” stabilized method in [54]. Cf. also [21] for alternative ways

to handle models containing convection terms.) As above, we use iterative methods

where Q is constructed using Algorithm 1 with M = 2000 and τ = 10−8. Since

the system is not symmetric, we use the stabilized biconjugate gradient method

(BICGSTAB) in conjunction with the approximate LSC preconditioner QTP−1
F Q,

where P−1
F is constructed using one of two methods:

1. Offline: P−1
F is a multigrid preconditioner of F (ξ(0)) where ξ(0) is the mean of

the parameter space, E[ξ].

2. Online: P−1
F is a multigrid preconditioner of F (ξ).

As with the diffusion equation, the multigrid preconditioners are constructed using

a smoothed aggregation algebraic multigrid routine from PyAMG [8]. The examples

with N ≤ 1292 required streamline-diffusion stabilization; for N = 2572, this was

not needed. However, in this case AMG required a different smoothing operator, the

normed residual Gauss-Seidel smoother where Gauss-Seidel is applied to the normal

equations instead of the standard Gauss-Seidel smoother [8, 64]. We attribute this

to instability of the coarse grid operators.

Table 2.8 contains the average iterations for BICGSTAB to solve the reduced

model for 100 randomly selected parameters. We observe that the offline precon-

ditioner is also effective for this problem. In terms of iterations counts, the offline
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preconditioner performs nearly as well as the online preconditioner as in case 1 of the

diffusion equation. The times for offline preconditioned BICGSTAB, reduced direct,

and full multigrid methods are shown in Table 2.9. The reduced iterative method

is faster than the direct method for m = 785. Since decreasing N has the effect

of decreasing k for this problem, the iterative methods perform best for m = 145,

N = 332, 652, corresponding to k = 372 and greater.

N
c 2 1 0.5
m 36 145 785

332

k 210 421 798
None 49.5 45.9 41.7
Single 8.2 7.0 6.1
Online 8.3 7.0 6.0

652

k 178 372 952
None 84.5 87.4 86.5
Single 12.0 10.0 9.0
Online 12.0 10.0 9.0

1292

k 138 265 749
None 122.8 153.0 176.2
Single 12.9 13.1 13.0
Online 12.7 13.5 13.0

2572

k 99 197 686
None 126.8 234.0 293.8
Single 14.2 14.4 15.1
Online 13.9 14.5 15.0

Table 2.8: Average iteration counts for the reduced problem solved using
BICGSTAB for the convection-diffusion-reaction problem, τ = 10−8.

2.5 Conclusion

Reduced basis methods are an efficient way to obtain the solution to parame-

terized partial differential equations for many parameter values. The effectiveness of

reduced basis methods depends on the relatively cheap cost of solving the reduced
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N
c 2 1 0.5
m 36 145 785

332

k 210 421 798
Full AMG 0.0419 0.0428 0.0440
Reduced Direct 0.0011 0.0067 0.0400
Reduced Iterative 0.0009 0.0019 0.0066

652

k 178 372 952
Full AMG 0.2188 0.2258 0.2311
Reduced Direct 0.0009 0.0046 0.0679
Reduced Iterative 0.0013 0.0022 0.0148

1292

k 138 265 749
Full AMG 0.3228 0.3284 0.3271
Reduced Direct 0.0007 0.0020 0.0323
Reduced Iterative 0.0012 0.0020 0.0132

2572

k 99 197 686
Full AMG 1.5330 1.5468 1.5396
Reduced Direct 0.0003 0.0010 0.0234
Reduced Iterative 0.0010 0.0016 0.0140

Table 2.9: Comparison of time of the BICGSTAB algorithm with full model solved
using multigrid and reduced model solved using direct method for the convection-
diffusion-reaction problem, τ = 10−8.
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problem. This cost depends on the rank of the reduced basis, which depends on

quantities such as the number of parameters, m, and the accuracy desired for the

reduced solution, τ . We have shown, using two examples, the steady-state diffusion

equation and the convection-diffusion-reaction equation, that this cost can be re-

duced for larger k when iterative methods are used and we have identified the regime

of k where, for these problems, iterative methods for the reduced problem become

the most effective choice. This has been shown for several preconditioners that are

computed offline, and thus do not increase the online cost of solving the reduced

model. The exact Schur preconditioner is illustrated to be the most effective pre-

conditioner, while the approximate LSC preconditioner is shown to be an effective

preconditioner as well and, in addition, it may be more effective when offline costs

matter or when the preconditioner needs to be updated online.
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Chapter 3

The discrete empirical interpolation method for the steady-state

Navier-Stokes equations

3.1 Introduction

In this chapter, we consider a method of reduced-order modeling for nonlinear

problems. A straightforward implementation of the reduced-basis method is only

possible for linear problems that have affine dependence on the parameters. Such

problems, like those discussed in the previous chapter, have the form G(u) = 0

where

G(u) = A(ξ)u− b =

(
l∑

i=1

ϕi(ξ)Ai

)
u− b (3.1)

and {Ai}li=1 are parameter-independent matrices. Let Q be a matrix of dimension

N × k representing the reduced basis. With this decomposition, the reduced model

obtained from a Galerkin condition is Gr(û) = 0 where

Gr(û) = QTA(ξ)Qû−QT b =

(
l∑

i=1

ϕi(ξ)(Q
TAiQ)

)
û−QT b . (3.2)

Computation of the matrices {QTAiQ} can be included as part of the offline step.

With this precomputation, the online step requires only the summation of the terms

in equation (3.2), an O(lk2) operation, and then the solution of the system of order

k. Clearly, this online computation is independent of N , the dimension of the full

model.
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However, when this approach is applied to a nonlinear problem, the reduced

model is not independent of the dimension of the full model. Consider a problem

with a nonlinear component F (u(ξ)), so the full model is

G(u(ξ)) = Au(ξ) + F (u(ξ))− b = 0 . (3.3)

The reduced model obtained from the Galerkin projection is

Gr(û(ξ)) = QTAQû(ξ) +QTF (Qû(ξ))−QT b = 0 (3.4)

Although the reduced operator QTF (Qû(ξ)) is a mapping from Rk → Rk, any

nonlinear solution algorithm (e.g. Picard iteration), requires the evaluation of the

operator F (Qû(ξ)) as well as the multiplication by QT . Both computations have

costs that depend on N , the dimension of the full model.

The empirical interpolation method [6,36] and its discrete variant, the discrete

empirical interpolation method (DEIM) [19] use interpolation to reduce the cost of

the online construction in the case of nonlinear operators and/or nonaffine parameter

dependence. The premise of these methods is to interpolate the nonlinear operator

using a subset of indices from the full model. The interpolation depends on an

empirically derived basis that can also be constructed as part of an offline procedure.

This ensures that F (Qû(ξ)) is evaluated only at a relatively small number (ndeim)

of indices. These values are used in conjunction with a separate basis constructed

to approximate the nonlinear operator. The efficiency of this approach also depends

on the fact that for all i, Fi(u(ξ)) depends on a relatively small, O(1), number of

components of u.

64



Computing the solution of the reduced model for a nonlinear operator, requires

a nonlinear iteration based on a linearization strategy, which requires the solution

of a reduced linear system at each step. Thus, each iteration has two primary costs,

the computation of the Jacobian corresponding to QTF (u(ξ)) and the solution of

the linear system at each step of the nonlinear iteration. The DEIM addresses the

first cost, by using an approximation of QTF (u(ξ)). To address the second cost, one

option is to use direct methods to solve the reduced linear systems. In Chapter 2,

however, we have seen that iterative methods are effective for solving reduced models

of linear operators of a certain size. In this chapter, we extend this approach, using

preconditioners that are precomputed in the offline stage, to nonlinear problems

solved using the DEIM. We explore this approach using a Picard iteration for the

linearization strategy.

We will demonstrate the efficiency of combining the DEIM with an iterative

linear solver by computing solutions of the steady-state incompressible Navier-Stokes

equations with random viscosity coefficient:

−∇ · ν(·, ξ)∇u(·, ξ) + u(·, ξ) · ∇u(·, ξ) +∇p(·, ξ) = f(·, ξ) in D × Γ
∇ · u(·, ξ) = 0 in D × Γ

u(·, ξ) = b(·, ξ) on ∂D × Γ ,

where u(·, ξ) is the flow velocity, p(·, ξ) is the scalar pressure, and b(·, ξ) is the Dirich-

let boundary condition, and the viscosity coefficient satisfies ν(·, ξ) > 0. Models of

this type have been used to model the viscosity in multiphase flows [40,53,69]. The

boundary data b(·, ξ) could also contain uncertainty (although we will not consider

such examples here).

An outline of this chapter is as follows. In Section 3.2 we review the details of
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the discrete empirical interpolation method. In Section 3.3 we introduce the steady-

state Navier-Stokes equations with an uncertain viscosity coefficient and describe

the full, reduced, and DEIM models for this problem. We present numerical results

in Section 3.4 including a comparison of snapshot selection methods for DEIM, a

discussion of accuracy of the DEIM. In addition, we discuss a generalization of this

approach known as a gappy-POD method [18,32]. Finally, in Section 3.5, we discuss

preconditioners and iterative methods for the reduced model generated using DEIM.

3.2 The discrete empirical interpolation method

The discrete empirical interpolation method utilizes an approximation F̄ (u) of

a nonlinear function F (u) [19]. The key to the accuracy of this method is to select

the indices of the discrete PDE that are most important to produce an accurate

representation of the nonlinear component of the solution projected on the reduced

space; as observed above, the key to efficiency in this algorithm is that each compo-

nent of the nonlinear function depends only on a few indices of the input variable.

The latter requirement is clearly satisfied when the nonlinear function is a PDE

discretized using the finite element method [4].

Given the full model defined in equation (3.3), let

JG(u) = A+ JF (u)

denote the Jacobian matrix. The Jacobian of the reduced model equation (3.4) is

then

JGr(û) = QTJG(Qû)Q = QTAQ+QTJF (Qû)Q .
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Let u(ξ1), ..., u(ξk) denote a set of snapshots obtained from the full model. The

reduced basis is constructed to span these snapshots. DEIM requires a separate

basis to represent the nonlinear component of the solution. The basis is constructed

using snapshots S = [F (u(ξ1)), F (u(ξ2)), ..., F (u(ξs))] where s ≥ k. Then, using

methods similar to finding the reduced basis, a basis is chosen to approximately

span the space spanned by these snapshots. One approach for doing this is to use a

proper orthogonal decomposition (POD) of the snapshot matrix S

S = V̄ ΣW T

where the singular values in Σ are sorted in order of decreasing magnitude and V̄

and W are orthogonal. For computational efficiency, only the important components

are retained so the first ndeim columns of V̄ define V .

Given the nonlinear basis from V , the DEIM selects indices of F so the in-

terpolated nonlinear component on the range of V in some sense represents a good

approximation to the complete set of values of F (u(ξ)). Thus, the approximation

of the nonlinear operator is

F̄ (u(ξ)) = V (P TV )−1P TF (u(ξ))

where P T extracts rows of F (u) corresponding to the interpolation points from the

spatial grid. This approximation satisfies P T F̄ = P TF . To construct P , a greedy

procedure is used to minimize the error compared with the full representation of

F (u) [19, Algorithm 1]. For each column of V , vi, the algorithm selects the row

index with maximum difference between the column vi and the approximation of

vi obtained using the DEIM model with nonlinear basis and indices from the first
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i− 1 columns left of V, i.e. r = vi− V̂ (P T V̂ )−1P Tvi where V̂ denotes the first i− 1

columns of V . We present this in Algorithm 2.

Algorithm 2 DEIM [19]

Input: V = [v1, ..., vndeim ], an N × ndeim matrix with columns made up of the left
singular vectors from the POD of the nonlinear snapshot matrix S.
Output: P , extracts the indices used for the interpolation.1

1: ρ = argmax(|v1|)
2: V̂ = [v1], P = [eρ]
3: for i = 2 : ndeim do
4: Solve (P T V̂ )c = P Tvi for c

5: r = vi − V̂ c
6: ρ = argmax(|r|)
7: V̂ = [V̂ , vi], P = [P, eρ]
8: end for

Incorporating this approximation into the reduced model, equation (3.4), yields

F̄ r = QT F̄ (ũ) = QTV (P TV )−1P TF (Qû) . (3.5)

The Jacobian of F̄ r(û) is

JF̄ r(û) = QTJF̄ (Qû)Q = QTV (P TV )−1P TJF (u)Q .

The construction of nonlinear basis matrix V and the interpolation points are part

of the offline computation. Since LT = QTV (P TV )−1 is parameter independent,

it too can be computed offline. Therefore, the online computations required are

to compute P TJF (u) and assemble LT (P TJF (u))Q. For P TJF (u), we need only to

compute the components of JF (u) that are nonzero at the interpolation points. This

is where the assumption that each component of F (u) (and thus JF (u)) depends on

1Note that in the implementation of DEIM, the matrix P is not constructed. Instead an index

list is used to extract the relevant entries of V .
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only a few entries of u is utilized. With a finite element discretization, a component

Fi(u) depends on the components uj for which the intersection of the support of the

basis functions have measure that is nonzero. See [4] for additional discussion of this

point. The elements that must be tracked in the DEIM computations are referred

to as the sample mesh. When the sample mesh is small, the computational cost of

assembling LT (P TJF (u))Q scales not with N but with the number of interpolation

points. Therefore, DEIM will decrease the online cost associated with assembling

the nonlinear component of the solution.

For the Navier-Stokes equations, the nonlinear component is a function of

the velocity. We will discretize the velocity space using biquadratic (Q2) elements.

In this case, an entry in Fi(u) depends on at most nine entries of u. Thus this

nonlinearity is amenable to using DEIM. We can use an existing finite element

routine for the assembly of the Jacobian using the sample mesh, a subset of the

original mesh, as the input.

The accuracy of this approximation is determined primarily by the quality of

the nonlinear basis V . This can be seen by considering the error bound

||F − F̄ ||2 ≤ ||(P TV )−1||2||(I − V V T )F ||2

which is derived and discussed in more detail in [19, Section 3.2]. There it is shown

that the greedy selection of indices in Algorithm 2 limits the growth of ||(P TV )−1||2

as the dimension of V grows. The second term ||(I −V V T )F ||2 is the quantity that

is determined by the quality of V . Note that if V is taken from the truncated POD

of S, the matrix of nonlinear snapshots, then ||(I−V V T )S||2F is minimized [4] where
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|| · ||F is the Frobenius norm (||X||2F =
∑

i

∑
j |xij|2). So the accuracy of the DEIM

approximation depends on two factors. First the number, ndeim, of singular vectors

kept in the POD. The truncated matrix V ΣdeimW
T
deim is the optimal rank-ndeim

approximation of S, but a higher rank approximation will improve accuracy of the

DEIM model. In fact the error ||(I − V V T )F ||2 approaches 0 in the limit as ndeim

approaches N . The second factor is the quality of the nonlinear snapshots in S. The

nonlinear component should be sampled well enough to capture the variations of the

nonlinear component throughout the solution space. A comparison of methods for

selecting the snapshot set is included in Section 3.4.1.

3.3 Steady-state Navier-Stokes equations

A discrete formulation of the steady-state Navier-Stokes equations (3.5) is to

find ~uh ∈ Xh
E and ph ∈Mh such that

(ν(·, ξ)∇~uh,∇~vh) + (~uh · ∇~uh, ~vh)− (ph,∇ · ~vh) = (f,~vh) ∀~vh ∈ Xh
0

(∇ · ~uh, qh) = 0 ∀qh ∈Mh

where Xh
E and Mh are finite-dimensional subspaces of the Sobolev spaces; see [30]

for details. We will use div-stable Q2-P−1 finite element (biquadratic velocities,

piecewise constant discontinuous pressure). Let {φ1, ..., φnu} represent a basis of Q2

and {ψ1, ..., ψnp} represent a basis of P−1.

We define the following vectors and matrices where ~u and p are vectors of the

velocity and pressure coefficients, respectively.

z =

[
~u
p

]
(3.6)

[A(ξ)]ij =

∫
ν(ξ)∇φi : ∇φj (3.7)
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[B]ij = −
∫
ψi(∇ · φj) (3.8)

[N(~u)]ij =

∫
(~uh · ∇φj) · φi (3.9)

[f]i = (f, φi) (3.10)

[g(~u)]i = −(∇ · ~uh, ψi) . (3.11)

b(ξ) =

[
f− A(ξ)~ubc
g(~ubc)

]
(3.12)

where ~ubc is a vector which interpolates the Dirichlet boundary data b(·, ξ) and is

zero everywhere on the interior of the mesh. We denote the velocity solution on

the interior of the mesh, ~uin, so that ~u = ~ubc + ~uin and ~uin satisfies homogenous

Dirichlet boundary conditions. The reduced basis is constructed using snapshots of

~uin so the approximation of the velocity solution generated by the reduced model

is of the form ũ = ~ubc + Quû where Qu is a basis spanning velocity snapshots with

homogeneous Dirichlet boundary conditions.

3.3.1 Full model

Using this notation, the full model for the Navier-Stokes problem is to find

z(ξ) such that G(z(ξ)) = 0 where

G(z(ξ)) =

[
A(ξ) BT

B 0

] [
~u
p

]
+

[
N(~u) 0

0 0

] [
~u
p

]
−
[
f
0

]
. (3.13)

We utilize a Picard iteration to solve the full model, monitoring the norm of the

nonlinear residual G(zn(ξ)) for convergence. The nonlinear Picard iteration to solve

this model is described in Algorithm 3.
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Algorithm 3 Picard iteration for solving the discrete steady-state Navier-Stokes
equation

1: The nonlinear iteration is initialized with the solution to a Stokes problem[
A(1) BT

B 0

] [
~uin,0
p0

]
= b(1) . (3.14)

2: Incorporate the boundary conditions

~u0 = ~ubc + ~uin,0 .

3: Solve ([
A(ξ) BT

B 0

]
+

[
N(~un) 0

0 0

])[
δ~u
δp

]
= −G(zn) . (3.15)

4: Update the solutions

~un+1 = ~un + δ~u

pn+1 = pn + δp .

5: Exit when
||G(zn+1)||2 < δ ||b(ξ)||2 .
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3.3.2 Reduced model

Offline we compute a reduced basis

Q =

[
Qu 0
0 Qp

]
,

where Qu represents the reduced basis of the velocity space and Qp the reduced

basis for the pressure space. We defer the details of this offline construction to

Section 3.4.1. For a given Q, the Galerkin reduced model is

Gr(z) = QTG(z)

=

(
QT

[
A(ξ) BT

B 0

]
Q

)[
û
p̂

]
+

(
QT

[
N(ũ) 0

0 0

]
Q

)[
û
p̂

]
−QT

[
f
0

]
.

Using the nonlinear Picard iteration, the reduced model is described in Algorithm 4.

After the convergence of the Picard iteration determined by Gr(z̃n+1), we

compute the “full” residual: G(z̃n). Note that this residual is computed only once:

it is not monitored during the course of the iteration. The full residual indicates

how well the reduced model approximates the full solution, so it is used to measure

the quality of the reduced model via the error indicator:

ηξ = ||G(z̃n(ξ))||2/ ||b(ξ)||2 . (3.16)

3.3.3 DEIM model

The DEIM model has the structure of the reduced model but with the non-

linear component F replaced by the approximation F̄ . First in the offline step, we

compute V , P , and LT = QT
uV (P TV )−1. The DEIM model is

Gdeim(z) =

(
QT

[
A(ξ) BT

B 0

]
Q

)[
û
p̂

]
+

[
LTP TN(ũ)Qu 0

0 0

] [
û
p̂

]
−QT

[
f
0

]
. (3.17)
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Algorithm 4 Picard iteration for solving the reduced steady-state Navier-Stokes
equations

1: Initialize the Picard iteration by solving the reduced Stokes problem

QT

[
A(ξ) BT

B 0

]
Q

[
û0

p̂0

]
= QTb(ξ) .

2: Solve the reduced problem for the Picard iteration(
QT

[
A(ξ) BT

B 0

]
Q+QT

[
N(ũn) 0

0 0

]
Q

)[
δû
δp̂

]
= −Gr(z̃n) .

Note that the when the dependence on the parameters is affine, the first term
in the left hand side can be computed primarily offline as in equation (3.2).

3: Update the reduced solutions

ûn+1 = ûn + δû

p̂n+1 = p̂n + δp̂ .

4: Update the approximation to the full solution

ũn+1 = ~ubc +Quûn+1

p̃n+1 = Qpp̂n+1 .

5: Compute N(ũn+1).
6: Compute Gr(z̃n+1).
7: Exit when

||Gr(z̃n+1)||2 < δ
∣∣∣∣QTb(ξ)

∣∣∣∣
2
.
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The model is described in Algorithm 5. Recall from the earlier discussion of DEIM

that P TN(u) is not computed by forming the matrix N(u). Instead, N(u) is as-

sembled only for elements of the sample mesh so that P TN(u) is accurate. Note

that error indicator ηξ in equation (3.16) depends on G(z̃). This quantity contains

N(ũn) and not P TN(ũn). Therefore, we must assemble N(ũn) on the entire mesh

in order to compute the error indicator. Like the reduced model, this computation

is performed only once after the convergence of the nonlinear iteration.

Algorithm 5 DEIM model for the steady-state Navier-Stokes equations

1: Initialize the Picard iteration by solving the reduced Stokes problem

QT

[
A(ξ) BT

B 0

]
Q

[
û0

p̂0

]
= QTb(ξ) . (3.18)

2: Solve the reduced problem for the Picard iteration(
QT

[
A(ξ) BT

B 0

]
Q+

[
LT (P TN(ũn))Qu 0

0 0

])[
δû
δp̂

]
= −Gdeim(z̃n) . (3.19)

Note that the term on the left can be computed cheaply as in equation (3.2)
so we only need to update the upper left corner of the matrix as the Picard
iteration proceeds.

3: Update the reduced solutions

ûn+1 = ûn + δû

p̂n+1 = p̂n + δp̂ .

4: Update the approximation to the full solution

ũn+1 = ubc +Quûn+1

p̃n+1 = Qpp̂n+1 .

5: Compute P TN(ũn+1).
6: Compute Gdeim(z̃n+1).
7: Exit when

||Gdeim(z̃n+1)||2 < δ
∣∣∣∣QTb(ξ)

∣∣∣∣
2
.
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3.3.4 Inf-sup condition

We turn now to the construction of the reduced basis

Q =

[
Qu 0
0 Qp

]
.

Given ks snapshots of the full model, a natural choice is to have the following spaces

generated by these snapshots,

span(Qu) = span{~uin(ξ(1)), ..., ~uin(ξ(ks))}
span(Qp) = span{p(ξ(1)), ..., p(ξ(ks))} . (3.20)

However, this choice of basis does not satisfy an inf-sup condition

γR := min
06=qR∈span(Qp)

max
06=~vR∈span(Qu)

(qR,∇ · ~vR)

|~vR|1||qR||0
≥ γ∗ > 0 (3.21)

where γ∗ is independent of Qu and Qp [63]. To address this issue, we follow the

enrichment procedure of [60]. For i = 1, ..., ks, let ~rh(·, ξ(i)) be the solution to the

Poisson problem

(∇~rh(·, ξ(i)),∇~vh) = (ph(·, ξ(i)),∇ · ~vh) ∀~vh ∈ Xh
0 , (3.22)

and let Qu of equation (3.20) be augmented by the corresponding discrete solutions

{~r(ξ(i))}, giving the enriched space

span(Qu) = span{~uin(ξ(1)), ..., ~uin(ξ(ks)), ~r(ξ(1)), ..., ~r(ξ(ks))} .

This choice of enriching functions satisfy [60]

~rh(·, ξ(i)) = arg sup
~vh∈Xh

0

(ph(·, ξ(i)),∇ · ~vh)
|~vh|1

, (3.23)

and thus γR defined for the enriched velocity space, span(Qu), together with span(Qp),

satisfies the inf-sup condition

γR ≥ γh := min
06=qh∈Mh

max
06=~vh∈Xh

0

(qh,∇ · ~vh)
|~vh|1||qh||0

. (3.24)
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3.4 Experiments

We consider the steady-state Navier-Stokes equations (3.5) for driven cavity

flow posed on a square domain D = (−1, 1) × (−1, 1). The lid, the top boundary

(y = 1), has velocity profile

ux = 1− x4, uy = 0 ,

whereas the remaining boundaries have no-slip boundary conditions ~u = (0, 0)T .

We use source term f(ξ) = 0. The n by n discretization of the domain D leads to

nu = (n + 1)2 points in the velocity discretization and np = 3(n/2)2 points in the

pressure discretization.

To define the uncertain viscosity, divide the domain D into m = nd × nd

subdomains as seen in Figure 3.1. The viscosity is taken to be constant and random

on each subdomain, ν(ξ) = ξi. The random parameter vector, ξ = [ξ1, ..., ξm]T ∈ Γ,

is comprised of uniform random variables such that ξi ∈ Γi = [0.01, 1] for each i.

Therefore, the Reynolds number, R = 2/ν, will vary between 2 and 200 for this

problem and within the stable regime for the steady problem [30].

D11 D1nd

DndndDnd1

Figure 3.1: Flow domain with piecewise random coefficients for viscosity.

The implementation uses IFISS to generate the finite element matrices for the
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full model [68]. The matrices are then imported into Python and the full, reduced,

and DEIM models are constructed and solved using a Python implementation run

on an Intel 2.7 GHz i5 processor and 8 GB of RAM. The full model is solved using

the method described in equation (3.25) using sparse direct methods implemented

in the UMFPACK suite [22].

For the driven cavity flow, the linear systems in the full model equations (3.14)

and (3.15) are singular [10]. This issue is addressed by augmenting the matrix in

(3.14), as A(1) BT 0
B 0 0
0 p̄ 0

~uinp
z

 =

b(1)

0

 , (3.25)

where p̄ is a vector corresponding to the element areas of the pressure elements.

This removes the singularity by adding a constraint via a Lagrange multiplier that

the average pressure of the solution is zero [67]. The solutions ~uin and p satisfy

the solution of the Stokes system. The same constraint is added to the systems in

equation (3.15).

3.4.1 Construction of Q and V

We now describe the methodology used to compute the reduced bases, Qu and

Qp, and the nonlinear basis V . The description of the construction of Qu and Qp

is presented in Algorithm 6. The reduced bases Qu and Qp are constructed using

random sampling of ntrial samples of Γ, denoted Γtrial. The bases are constructed

so that all samples ξ ∈ Γtrial have a residual indicator, ηξ, less than a tolerance,

τ . The procedure begins with single snapshot z(ξ(0)) where ξ(0) = E(ξ). The
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Algorithm 6 Construction of reduced basis Q via random sampling, construction
of nonlinear basis V
Cost: ntrial reduced problems and k full problems.

1: . Compute the reduced basis and the nonlinear snapshots
2: Solve the full problem G(z(ξ(0))) = 0 to tolerance δ for zn(ξ(0)).
3: Compute the enriched velocity, ~r(ξ(0)).
4: Initialize Qu = [~uin,n(ξ(0)), ~r(ξ(0))] and Qp = [pn(ξ(0))].
5: Save the nonlinear component of the solution S = [N(~un)~un].
6: for i = 1 : ntrial do
7: Randomly select ξ(i).
8: Solve reduced model Gr(z̃(ξ(i))) = 0 to tolerance δ and compute the residual

indicator ηξ(i) .
9: if ηξ(i) > τ then

10: Solve full model G(z(ξ(i))) = 0.
11: Compute the enriched velocity, ~r(ξ(i)).
12: Add ~uin,n(ξ(i)) and ~r(ξ(i)) to Qu and pn(ξ(i)) to Qp using modified Gram-

Schmidt.
13: Add the nonlinear component of the solution to the matrix of nonlinear

snapshots, S = [S,N(~un)~un].
14: end if
15: end for
16: . Compute the nonlinear basis
17: Compute the POD of the nonlinear snapshot matrix:

S = V̄

σ1

. . .

σks

W T .

18: Choose ndeim so that the singular values to satisfy∑ndeim
i=1 σ2

i∑ks
i=1 σ

2
i

> ε (3.26)

where ks is the number of columns in S.
19: Define V = V̄ [:, 1 : ndeim].
20: Compute P using Algorithm 2, with input V .
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bases are initialized using this snapshot, such that Qu = [~uin,n(ξ(0)), ~r(ξ(0))] and

Qp = [pn(ξ(0))]. Then for each sample of Γtrial, the reduced-order model is solved

with the current bases Qu and Qp. The quality of the reduced solution produced

by this reduced-order model can be evaluated using the error indicator ηξ defined in

equation (3.16). If ηξ is smaller than the tolerance τ , the computation proceeds to

the next sample. When the error indicator exceeds the tolerance, we solve the full

model and the new snapshots, uin,n(ξ) and pn(ξ), and the enriched velocity ~r(ξ) are

used to augment Qu and Qp. The experiments in this chapter use τ = 10−4 and in

most cases use ntrial = 2000 parameters to produce bases Qu and Qp.

An alternative method to random sampling is greedy sampling which produces

a basis of quasi-optimal dimension [9, 13]. This means that for a basis constructed

using greedy sampling the maximum error differs from the best error by an expo-

nential factor, where the best possible error is defined by the Kolmogorov n-width.

In a comparison described in [28], the random sampling strategy produced a re-

duced basis that was never more than 10% larger than that produced by a greedy

algorithm for several benchmark problems. The two algorithms both use a tolerance

to construct the reduced basis, so the resulting reduced models have similar accu-

racy. The computational cost (in CPU time) of the random sampling strategy is

significantly lower. Since our concern in this study is online strategies for reducing

the cost of the reduced model, we use the random sampling strategy for the offline

computation and remark that the online solution strategies of this study can be

used for a reduced basis computed using any method.

We turn now to the methodology for determining the nonlinear basis V . In
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Section 3.2, it was shown that that the choice of the nonlinear basis, V , is impor-

tant to the accuracy of the DEIM model. The DEIM uses a POD approach for

constructing the nonlinear basis. This POD has a two inputs, S, the set of non-

linear snapshots and ndeim, the number of vectors after truncation. Algorithm 6

describes one method for choosing the snapshots S that are input to the POD. We

will compare three strategies for sampling S.

1. Full(ntrial). This method is most similar to the method used to generate the

nonlinear basis in [19]. The matrix of nonlinear snapshots, S, is computed

from the full solution at every random sample (i.e. {N(~u(ξ(i)))~u(ξ(i))}ntriali=1 ).

Even though this is part of the offline step, the cost of this method, solving

ntrial full problems, can be quite high.

2. Full(ks). This is the sampling strategy included in Algorithm 6. It saves the

nonlinear component only when the full model is solved for augmenting the

reduced basis, Q. Therefore the snapshot set S contains ks snapshots.

3. Mixed(ntrial). The final approach aims to mimic the Full(ntrial) method with

less offline work. This method generates a nonlinear snapshot for each of the

ntrial random samples using full solutions when they are available (from full

solution used for augmenting the reduced basis) and reduced solutions when

they are not. As the reduced basis is constructed, when the solution to the

full problem is not needed (i.e. when ηξ(i) < τ) for the reduced basis, use the

reduced solution ũ(ξ(i)) to generate the nonlinear snapshot N(ũ(ξ(i)))ũ(ξ(i)),

where ũ(ξ(i)) = ~ubc + Quû(ξ(i)) and Qu is the basis at this value of i. Thus S
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contains ntrial snapshots, but it is constructed using only ks full model solves.

Figure 3.2 compares the performance of the three methods for generating S

when Algorithm 6 is used to generate Qu and Qp. For each S, we take the SVD

and truncate with varying number of vectors, ndeim, and plot the average of the

residuals of the DEIM solution for 100 samples. The average residual for the reduced

model without DEIM is also shown. We see that as ndeim increases, the residual of

the DEIM models approach the residual that is obtained without using DEIM. In

addition we see that all three methods perform similarly. Thus, the Mixed(ntrial)

approach provides accurate nonlinear snapshots with fewer full solutions than the

Full(ntrial) method. For smaller ndeim, the Full(ks) method performs similarly to the

other methods. The disadvantage of this method is that the maximum number of

DEIM vectors corresponds to the number, ks, of full solutions needed to generate Qu

and Qp, while the maximum number of DEIM vectors for the other methods is ntrial.

Thus, the best residual obtained with this method (when ndeim = ks) is higher than

the best residual obtained with the other two methods. However, for simplicity we

use Full(ks) for the remainder of this study, and remark that since the Mixed(ntrial)

has similar offline costs it can be used to improve accuracy, if necessary.

3.4.2 Online component - DEIM model versus reduced model

In Section 3.2, we presented analytic bounds for how accurately the DEIM ap-

proximates the nonlinear component of the model. To examine how the approxima-

tion affects the accuracy of the reduced model, we will compare the error indicators
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Figure 3.2: A comparison of methods to generate nonlinear snapshots for the DEIM
method. DEIM residual versus ndeim averaged for ns = 100 samples. n = 32, m = 4,
τ = 10−4, k = 306, ndeim varies. Qu, Qp are generated using the Algorithm 6.

of DEIM and the reduced model without DEIM. We perform the following offline

and online computations.

1. Offline: Use Algorithm 6 with input τ = 10−4 and ntrial = 2000 and ε = 0.99

to generate the reduced bases Qu, Qp, V and the indices P .

2. Online: Solve the problem using the full model, reduced model without DEIM,

and the reduced model with DEIM for ns = 10 parameters.

Table 3.1 presents the result of this study where the three models are solved using

direct methods. The method with the lowest online computational time is in bold.

The times presented for the reduced and DEIM models are the CPU time spent in

the online computation for the nonlinear iteration only and do not include assembly

time or residual computation time. The condition δ = 10−8 is used to determine

convergence of the nonlinear iteration.
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The results demonstrate the tradeoff between accuracy and time for the three

models. For example, the case of m = 16 and n = 65, the spatial dimension

and parameter dimension are large enough that the DEIM model is fastest. If

lower residuals are needed, we can improve accuracy in the DEIM model by either

increasing ε (which has the effect of increasing ndeim) or improving the accuracy of

the reduced model. The accuracy of the reduced model is improved by choosing a

stricter tolerance τ during the offline computation. It is important to note that the

accuracy of the DEIM solution is limited by the accuracy of the reduced solution.

Past a certain point, increasing ndeim will provide little improvement in the residual.

Thus, the best way to improve accuracy in the DEIM model is to reduce τ . By

choosing a stricter tolerance for the reduced model, the size of the reduced basis

k increases, but the reduced and DEIM solutions are significantly more accurate.

These two ways to improve accuracy will both increase online time. Increasing ndeim

increases the assembly cost and increasing k increases the solution cost of the linear

systems. Depending on the problem at hand, the benefit of each approach may

change. For this problem, we have found that the solution time is less costly than

the assembly time and so decreasing τ in Algorithm 6 is the most efficient way to

improve the accuracy of the DEIM model.

In Table 3.1, the results for n = 32 and m ≥ 25 are not shown. For these

problems, the number of snapshots required to construct the reduced model, ks

exceeds the size of the pressure space np = 3(n/2)2 = 768. This means that the

number of snapshots required for the accuracy of the velocity is higher than the

number of degrees of freedom in the full discretized pressure space. Therefore, the
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spatial discretization is not fine enough for reduced-order modeling to be necessary.

For n = 32, m = 16 the full solution is not much slower than the DEIM model. We

would expect the full solution to be faster for m ≥ 25.

For the case where n = 128, the cost of the offline construction is significant.

First, the full solutions require over 2 minutes of CPU time. For m = 36, 1013

full solutions and 2000 reduced solutions were required. The cost of each full solve

is 132 seconds and the costs of the reduced solves are as high as 98.1 seconds.

The computation time for the assembly of the reduced models are not presented

in Table 3.1 and are also high. Since Q is changing during the offline stage, the

assembly process cannot be made independent of N . The offline computation for

m = 49 took approximately five days.

n m 4 9 16 25 36 49

32

k 306 942 1485
ndeim 4 8 9

time res time res time res time res time res time res
Full 1.11 1.16 1.06
Reduced 0.18 1.00E-05 1.21 3.81E-05 3.00 4.25E-05
DEIM 0.05 4.18E-04 0.37 6.97E-04 1.02 6.78E-04

64

k 273 825 1503 2394 3339 4455
ndeim 4 7 12 16 21 25

time res time res time res time res time res time res
Full 11.0 10.8 10.2 11.3 10.1 10.3
Reduced 0.48 8.11E-06 2.53 2.93E-05 7.33 4.10E-05 20.5 6.50E-05 39.5 4.96E-05 76.2 8.99E-05
DEIM 0.07 1.41E-04 0.27 3.30E-04 1.08 2.92E-04 4.40 3.26E-04 9.54 2.78E-04 20.7 3.47E-04

128

k 237 732 1383 2109 3039 4083
ndeim 4 9 14 17 23 30

time res time res time res time res time res time res
Full 135 141 147 155 132 148
Reduced 1.62 1.13E-05 7.25 1.47E-05 23.8 2.85E-05 56.7 5.735E-05 98.1 5.142E-05 191 7.159E-05
DEIM 0.09 8.27E-05 0.39 7.71E-05 1.12 1.02E-04 3.59 1.772E-04 7.11 1.553E-04 15.7 1.559E-04

Table 3.1: Accuracy and time for Full, Reduced, and DEIM models for τ = 10−4

and ε = 0.99.

Figure 3.3 illustrates the tradeoff between accuracy and time for the DEIM.

The top plot compares the error indicators for an average ns = 10 parameters and

the bottom plot shows the CPU time for the two methods. While the cost of the
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DEIM does increase with the number of vectors ndeim, we reach similar accuracy as

for the reduced model at a much lower cost. We also see that the cost of increasing

ndeim is small since the maximum considered here (ndeim = 96) is significantly smaller

than N = 1089.
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Figure 3.3: Top: Error indicator for DEIM model versus ndeim. Bottom: CPU time
to solve using DEIM direct versus ndeim. For n = 32, m = 4, τ = 10−4, k = 306.
Averaged over ns = 10 samples.

3.4.2.1 Gappy POD

Another way to increase the accuracy of the reduced model is to increase the

number of interpolation points in the approximation, while keeping the number of

basis vectors fixed. This alternative to DEIM for selecting the indices is the so-called

gappy POD method [32]. This method allows the number or rows selected by P T

to exceed the number of columns of V .

The approximation of the function using gappy POD looks similar to DEIM,

but replaces the inverse of P TV with the Moore-Penrose pseudoinverse denoted
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(P TV )† [18]

F̂ (u) = V (P TV )†P TF (u) . (3.27)

To apply this inverse we compute P TF (u) and solve the least squares problem

α = arg min
α̂
||P TV α̂− P TF (u)||2 ,

which leads to the approximation F̂ (u) = V α. Like (P TV )−1, the pseudoinverse

can be precomputed, in this case using the SVD of (P TV ) = UΣW T ,

(P TV )† = WΣ†UT

where Σ† is the transpose of Σ with the (nonzero) diagonal elements inverted [52].

With this approximation, we turn to the index selection method, which is de-

scribed in Algorithm 7. Given V where the number of columns is chosen so that the

condition (3.26) is satisfied, we require a method to determine the selection of the

row indices that will lead to an accurate representation of the nonlinear component.

The approach in [18] is an extension of the greedy algorithm used for DEIM (Al-

gorithm 2). The gappy version of algorithm takes as an input the number of grid

points and the basis vectors. It simply chooses additional indices per basis vector

where the indices correspond to the maximum index of the difference of the basis

vector and its projection via the gappy POD model. Recall that in DEIM, the index

associated with vector vi is chosen to maximize |vi − V (P TV )−1P Tvi|. This exten-

sion of the algorithm takes additional indices which maximize |vi − V (P TV )†P Tvi|

(where P and the projection of vi are updated between selections of the indices).

To compare the accuracy of this method with DEIM, we use Algorithm 6 to

compute DEIM and modify line 20 to use Algorithm 7 with ng = 2ndeim for a range
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Algorithm 7 Index selection using gappy POD [18]

Input: ng number of indices to choose, V = [v1, ..., vnv ], an N × nv matrix with
columns made up of the left singular vectors from the POD of the nonlinear snapshot
matrix S.
Output: P , extracts the indices used for the interpolation.

1: nb = 1, nit = min(nv, ng) nc,min =
⌊
nv
nit

⌋
na,min =

⌊
ng
nv

⌋
2: for i = 1, ..., nit do
3: nc = nc,min, na = na,min

4: if i <= (nv mod nit) then nc = nc + 1
5: end if
6: if i <= (ng mod nv) then na = na + 1
7: end if
8: if i == 1 then
9: r =

∑nc
q=1 v

2
q

10: for j = 1, ..., na do ρj = argmax(r), r[ρj] = 0
11: end for
12: P = [eρ1 , ..., eρna ], V̂ = [v1, ..., vnc ]
13: else
14: for q = 1, ..., nc do
15: α = minα̂ ||P T V̂ α̂− P Tvnb+q||2
16: Rq = vnb+q − V̂ α
17: end for
18: r =

∑nc
q=1R

2
q

19: for j = 1, .., na do
20: ρj = argmax(r), P = [P, eρj ]
21: for q = 1, ..., nc do
22: α = minα̂ ||P T V̂ α̂− P Tvnb+q||2
23: Rq = vnb+q − V̂ α
24: end for
25: r =

∑nc
q=1R

2
q

26: end for
27: V̂ = [V̂ , vnb+1, ..., vnb+nc ], nb = nb + nc
28: end if
29: end for
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of values of ndeim. We use both methods to approximate the nonlinear component

and solve the resulting models. We present the error indicators for both methods

as a function of ndeim in Figure 3.4. It is evident that for smaller number of basis

vectors the gappy POD provides additional accuracy. Since S is generated using

the Full(ks) described in Section 3.4.1, no additional accuracy is gained for the

DEIM method when ndeim > 102. However, for larger number of basis vectors, the

additional accuracy provided by gappy POD is small. Thus, the gappy POD method

can be used to improve the accuracy when the number of basis vectors is limited.
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Figure 3.4: Average error indicator as a function of basis vectors for reduced, DEIM,
and gappy POD methods. For n = 32, m = 4, τ = 10−4, k = 306, ndeim varies, and
ng = 2ndeim. Averaged over ns = 100 samples.

3.5 Iterative methods

We have seen that the DEIM and gappy POD method generate reduced-order

models that produce solutions as accurate as the reduced solution for the steady-

state Navier-Stokes system. In addition, Table 3.1 and Figure 3.3 illustrate that as
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expected, the DEIM model significantly decreases the online time spent constructing

the nonlinear component of the reduced model. Since QT
uN(~u)Qu has been replaced

by a cheap approximation, LTP TN(~u)Qu, the remaining cost of the nonlinear iter-

ation in the DEIM is the linear system solve in line 2 of Algorithm 5. The cost of

this computation depends on the rank of the reduced basis k. Note the order of the

Jacobian matrix is k = 3ks where ks is the number of snapshots used to construct

the reduced basis. The size of the reduced basis depends on the properties of the

problem, for example the number of parameters or the desired level of accuracy.

Solving the assembled linear systems in the DEIM and reduced models using direct

methods costs O(k3). The cost of solving the full model could be as small as O(N)

for sparse systems where multigrid methods can be utilized. So it can happen that

k is much less than N , but k3 is larger than N . A motivating example is the case of

n = 64, m = 49 in Table 3.1, where the cost (in CPU time) of solving the full model

is half the cost of solving the DEIM model using direct methods. Thus, we could

consider as an alternative iterative linear methods. Since iterative methods cost

O(k2p) where p is the number of iterations required for convergence of the iterative

method, there are values of k where, if p is small enough, iterative methods will be

preferable to direct methods. In this section, we discuss the use of iterative methods

based on preconditioned Krylov subspace methods to improve the efficiency of the

DEIM model.

For iterative methods to be efficient for such problems, effective precondition-

ers are needed. The construction of preconditioners can be a nontrivial cost. One

reason that iterative solution methods are appealing to use within the offline-online
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paradigm is that the construction cost of the preconditioner can be moved to the

offline component of the computation. Since the preconditioners may depend on the

parameter, ξ, the parameter used to construct the preconditioner will impact the

performance of the preconditioner. We consider two approaches for choosing this

parameter.

• Offline: Use the mean of the parameter space, ξ(0), to generate the precondi-

tioner.

• Online: Construct the preconditioner with the same parameter ξ as the prob-

lem we are currently solving. This is not meant to be used in practice since

the cost of constructing the preconditioner is high, but it provides insight con-

cerning a lower bound on the iteration count that can be achieved using the

offline preconditioner.

There is a third blended option which we do not consider for this problem, where a

small number of preconditioners can be computed offline and selected online. This

approach may be effective for certain types of problems for example in combination

with domain decomposition methods [5]. Similar preconditioners have been consid-

ered in the context of stochastic Galerkin methods where preconditioners based on

the mean parameter were effective for the steady-state Navier-Stokes equations with

uncertainty [59].

We consider two preconditioners of the DEIM model, the exact Stokes precon-

ditioner and the exact preconditioner.

1. The exact Stokes preconditioner is the inverse of the matrix used for the re-
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duced Stokes solve in equation (3.18),

Mr = QT

[
A(ξ) BT

B 0

]
Q . (3.28)

Clearly for the online parameter, the reduced Stokes solve will converge in one

iteration.

2. The exact preconditioner uses the converged solution of the full model ~un as

the input for P TN(~un) and uses the linear system from the DEIM model from

equation 3.19

Mr = QT

[
A(ξ) BT

B 0

]
Q+

[
LTP TN(~un)Qu 0

0 0

]
. (3.29)

3.5.1 Results

For these experiments, we solve the steady-state Navier-Stokes equations for

the driven cavity flow problem using the full model, reduced model, and the DEIM

model. For the DEIM model the linear systems are solved using both direct and

iterative methods.

The offline step construction is described in Algorithm 6; we use τ = 10−4 and

ntrial = 2000. The algorithm chooses ks snapshots and produces Qu of rank 2ks and

Qp of rank ks yielding reduced models of rank k = 3ks. The online experiments are

run for ns = 10 random parameters. The average number of iterations required for

the convergence of the linear systems is presented in Table 3.2 and the average time

for the entire nonlinear solve of each model is presented in Table 3.3. The nonlinear

solve time includes the time to compute N or P TN , but not the time for assembly

of the linear component of the model nor the computation time for ηξ in the case of
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n m 4 9 16 25 36 49

32

k 306 942 1485
ndeim 4 8 9

Offline Exact Stokes 11.3 16.2 19.8
Online Exact Stokes 2.0 2.3 2.3
Offline Exact 11.5 16.1 20.5
Online Exact 1.8 1.9 1.9

64

k 273 825 1503 2394 3339 4455
ndeim 4 7 12 16 21 25

Offline Exact Stokes 10.3 13.9 16.9 17.6 19.9 23.3
Online Exact Stokes 2.1 2.1 2.3 2.4 2.2 2.4
Offline Exact 10.5 13.6 16.5 17.3 19.9 24.0
Online Exact 1.7 1.8 1.9 2.0 1.9 2.0

128

k 237 732 1383 2109 3039 4083
ndeim 4 9 14 17 23 30

Offline Exact Stokes 8.8 16.4 21.0 17.8 19.9 25.4
Online Exact Stokes 1.9 2.2 2.5 2.3 2.2 2.4
Offline Exact 8.9 16.5 20.5 17.9 20.1 25.1
Online Exact 1.8 1.8 2.1 2.1 1.9 2.1

Table 3.2: Average iteration count of preconditioned bicgstab for solving equa-
tion (3.19) for ns = 10 parameters. For these experiments, ndeim is chosen such that
ε = 0.99 in equation (3.26).

the reduced and DEIM problems. The iterative methods presented in this table use

offline preconditioners. The method with the lowest online CPU time is boldface.

The nonlinear iterations are run to tolerance δ = 10−8 and the bicgstab method

for a reduced matrix, QTAQ, stops when the solution x(i) satisfies

||r −QTAQx(i)||
||r|| < 10−9 .

Table 3.2 illustrates that the offline preconditioners using the mean parameter

perform well compared to the versions that use the exact parameter. In Table 3.3

we compare these offline parameters with the direct DEIM method and determine

that for large enough k the iterative methods are faster than direct methods. We

note for the m = 9 problems the direct methods are slightly faster while for m = 16
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n m 4 9 16 25 36 49

32

k 306 942 1485
ndeim 4 8 9

Full Direct 1.11 1.16 1.06
Reduced Direct 0.18 1.21 3.00
DEIM Direct 0.05 0.37 1.02
DEIM Exact stokes 0.05 0.42 0.95
DEIM Exact 0.05 0.44 1.03

64

k 273 825 1503 2394 3339 4455
ndeim 4 7 12 16 21 25

Full Direct 11.0 10.8 10.2 11.3 10.1 10.3
Reduced Direct 0.48 2.53 7.33 20.5 39.5 76.2
DEIM Direct 0.07 0.27 1.08 4.40 9.54 20.7
DEIM Exact stokes 0.07 0.29 0.86 2.29 4.62 9.04
DEIM Exact 0.08 0.30 0.87 2.27 4.39 8.98

128

k 237 732 1383 2109 3039 4083
ndeim 4 9 14 17 23 30

Full Direct 135 141 147 155 132 148
Reduced Direct 1.62 7.25 23.8 56.7 98.1 191
DEIM Direct 0.09 0.39 1.12 3.59 7.11 15.7
DEIM Exact stokes 0.09 0.45 1.10 2.40 3.89 8.74
DEIM Exact 0.09 0.45 1.08 2.45 3.91 8.62

Table 3.3: Average time for the entire nonlinear solve ns = 10 parameters with
ε = 0.99.

n m 4 9 16 25 36 49

32

k 306 942 1485
ndeim 4 8 9

DEIM Exact stokes 0.04 0.36 1.02
DEIM Exact 1.01 1.42 2.06

64

k 273 825 1503 2394 3339 4455
ndeim 4 7 12 16 21 25

DEIM Exact stokes 0.10 0.85 2.38 6.51 13.7 26.7
DEIM Exact 8.96 10.0 12.6 15.7 22.8 35.7

128

k 237 732 1383 2109 3039 4083
ndeim 4 9 14 17 23 30

DEIM Exact stokes 0.29 1.96 6.84 17.9 33.0 68.2
DEIM Exact 116 132 129 143 147 193

Table 3.4: CPU time to construct the (offline) preconditioner
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the iterative methods are faster for all values of n. We also note that the fastest

DEIM method is faster than the full model for all cases. Returning to the motivating

example of n = 64 and m = 49, the DEIM iterative method is faster than the full

model, whereas the DEIM direct method performs twice as slowly as the full model.

Thus, utilizing iterative methods has increase the range of k, where reduced-order

modeling is practical. Recall that n = 32, m ≥ 25 have more snapshots than the size

of the pressure discretization. Preconditioners derived from variants for the saddle

point matrices (like those discussed in Chapter 2) were less effective than the exact

Stokes and exact preconditioner for this problem.

Table 3.4 presents the (offline) cost of constructing the preconditioners. Since

the costs of the exact preconditioner uses the full solution, the cost of constructing

that preconditioner scales with the costs of the full solution. However, the cost the

exact Stokes preconditioner is significantly smaller and performs similarly in the

online computations. Thus, the exact Stokes preconditioner is an efficient option

for both offline and online components of this problem.

3.6 Conclusion

We have shown that the discrete interpolation method is effective for solving

the steady-state Navier-Stokes equations. This approach produces a reduced-order

model that is essentially as accurate as a naive implementation of a reduced basis

method without incurring online costs of order N . In cases where the dimension

of the reduced basis is larger, performance of the DEIM is improved through the
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use of preconditioned iterative methods to solve the linear systems arising at each

nonlinear Picard iteration. This is achieved using the mean parameter to construct

preconditioners. These preconditioners are effective for preconditioning the reduced

model in the entire parameter space.
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Chapter 4

Krylov subspace recycling via reduced-order modeling

4.1 Introduction

There are applications of parameterized PDEs where the offline-online paradigm

may not be suitable, for example when offline costs matter or when linear systems

must be solved sequentially. For example, in the case of fatigue and fracture mod-

eling, implicit solvers are required and therefore the solution to a previous system

is needed to generate the next linear system and right-hand side [55]. Another ex-

ample requiring sequential solves is the sequence of linear systems produced with

Newton-type methods for nonlinear and optimization problems. In addition, there

may be problems where the offline costs are so high that performing more than a

few evaluations of the full model is infeasible.

In these situations, either the parameter space cannot be sampled or there are

too few snapshots of the solution for the resulting reduced models to meet the re-

quired accuracy requirements. In these settings, reduced models can be constructed

from information available from previous solves and used to accelerate the solution of

the full models. One way to construct reduced models is through Krylov subspace

recycling. The premise of Krylov subspace recycling is, in order to solve a (full)

model using a Krylov iterative solver, information from all previous linear system

solves can be used to accelerate the solution of the current system. Methods of this
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type were originally developed to restart solution algorithms applied to systems with

multiple right-hand sides and a common matrix [46, 47] (e.g. restarted GMRES);

they have since been adapted to accelerate the solution of multiple systems in cases

where the matrices vary, where the Krylov vectors generated during the course of

a given iterative solve are saved to accelerate the solution of the subsequent sys-

tems [55,62,66].

For memory and cost reasons, it tends to be too expensive to save all Krylov

vectors from all previous solves, and thus some form of compression or truncation

is required. One common method, known as deflation, retains approximate eigen-

vectors corresponding to eigenvalues that most inhibit the convergence rate of the

iterative method [66]. Our contention is that other strategies for reduced-order

modeling can be used in this context, where the reduced-order model is constructed

to approximate the recycled space (which contains the solution space of all previ-

ous solutions). The POD-augmented Krylov method [16] uses a weighted proper

orthogonal decomposition (POD) to construct the reduced basis. The basis is used

to solve a small reduced problem (using a mix of direct and iterative methods) and

then an augmented conjugate gradient method is used to solve the full problem

iteratively to the desired accuracy. The augmented conjugate gradient method con-

structs search directions orthogonal to the augmenting space, which in this case is

the reduced-order model [66]. One advantage of the POD approach to compression

is that the reduced space can be tailored for convergence in a goal-oriented norm,

when the quantity of interest is a linear function of the output.

The goal of this chapter is to develop efficient methods for solving an ordered
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sequence of linear systems

Ajx̄j = bj, j = 1, ..., ns , (4.1)

where Aj is symmetric positive definite (SPD) and sparse. Krylov-subspace methods

are efficient iterative methods for solving such systems. When each system is solved

using the preconditioned conjugate gradient method to a tolerance δ i.e.,

||bj − Ajxj||2
||bj||2

< δ ,

and the approximate solution xj can be written as

xj =

nj∑
i=1

αipi

where the vectors, pi, referred to as search directions, are Aj-orthogonal to each

other (meaning pTi Ajpk = 0 for i 6= k). Denote

Vj = [p0, ..., pnj ] (4.2)

whose columns are known to constitute a basis of the Krylov space Knj(Aj, bj) [64].

In the sequence of linear systems, Aj is changing from step to step. However,

we anticipate that Aj is not significantly different from Aj+1, especially when such

matrices are coming from nonlinear solvers or are parameterized by time. The jth

computed solution, xj, lies in the range of Vj. Therefore, it is reasonable to assume

that xj+1, a solution for the (j+ 1)st system, can be well approximated in the range

of Vj. A recycling algorithm has two main components: an approximation of the

solution on a recycled space (which, in the simplest case, is the space spanned by
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the columns of Vj), and a Krylov method to search for a correction to the approxi-

mation in the space that is orthogonal, in some sense, to the recycled space. Various

recycling methods are defined by the choice of recycle space.

In this chapter, we study the POD-augmented Krylov method for solving

sequences of positive semi-definite systems coming from a nonlinear iteration and

we compare its performance with deflation for two examples. First, we review

Krylov subspace recycling methods in Section 4.2. In Section 4.3, we outline the

three-stage framework used for Krylov-subspace recycling, and in Section 4.4 we

present a comparison of the compression methods for two examples.

4.2 Krylov subspace recycling

A Krylov subspace recycling method is defined by a recycle space and a Krylov

method which constructs a Krylov subspace orthogonal to the recycle space. The

first component of the method is to find an approximate solution on the recycle

space, which provides an initial guess of the solution for the Krylov solver. Many

methods utilize a recycle space spanning the vectors generating from solving a pre-

vious system in the sequence. We could recycle all vectors or some subset of these

vectors. We will refer to methods to choose this subset of vectors as compression

methods. Initially, Krylov subspace recycling was used to improve a method known

as restarted GMRES where the number of vectors that can be stored in a Krylov

basis is limited. We will begin this discussion of Krylov subspace recycling with a

review of GMRES, a description of the process of restarting, and a review of the
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recycling methods that came about to improve this method. We describe newer

methods which adapt these techniques for solving sequences of linear systems. We

conclude with a presentation of the augmented conjugate gradient method, a Krylov

subspace recycling method for symmetric positive-definite systems.

4.2.1 Generalized minimum residual method

The generalized minimum residual method (GMRES) [65] constructs a Krylov

subspace using an Arnoldi iteration and finds the solution which minimizes the 2-

norm of the residual over the Krylov space. The Arnoldi iteration generates Krylov

vectors Vm = [v1, ..., vm] which satisfy

AVm = Vm+1H̄m (4.3)

where H̄m is an (m+ 1)×m upper-Hessenberg matrix. In this iteration, the Krylov

vectors are orthogonalized with respect to the 2-norm so this relation satisfies

V T
mAVm = Hm

where Hm is the submatrix of H̄m+1 with the last row deleted. GMRES requires the

solution of a least squares problem to find the solution of the form xm = x0 + Vmym

where

ym = arg min
y
||βe1 − H̄my||2 (4.4)

and β = ||r0||2. The solution of this problem is obtained using Givens rotation

matrices to transform Hm into an upper triangular matrix, R [64]. Denote

PH̄m = R (4.5)
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where P is a product of orthogonal matrices representing Givens rotations

P = Q1Q2...Qm .

Then the solution ym = arg miny ||βPe1 − Ry||2 can be found by solving the upper

triangular system obtained by deleting the last row from the right hand side βPe1

and matrix R [64].

The computational cost of a GMRES iteration grows with m since each new

vector vm+1 must be orthogonalized against all previous vectors, the columns of Vm.

Thus it may happen that because of restrictions of memory or computational cost,

the iteration count cannot exceed a particular value of m. When this is the case,

restarted GMRES [65] is used. This method performs m iterations of GMRES and

then takes xm as an initial approximation for a new, restarted version of the GMRES

algorithm. The term for the m iterations between restarts is a cycle. Using restarted

GMRES ensures that storage requirements and the cost of orthogonalization remain

low. However, this approach may lead to poor convergence and can even stagnate

[46]. One choice of Krylov subspace recycling method selects a subset of the current

Krylov basis vectors to retain at the next restart. These vectors are chosen to

improve the rate of convergence over that obtained using restarted GMRES and

with smaller computational cost than GMRES without restarting.

For certain classes of matrices, the convergence of GMRES is dependent on

the distribution of eigenvalues of the coefficient matrix [46]. If the recycled vector

was an exact eigenvector of A, then the corresponding eigenvalue can be eliminated

from the spectrum and the convergence of the system now depends on this “de-
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flated” spectrum. This is the idea of deflation. While the eigenvectors of A are

unavailable during the Arnoldi iteration, an approximation of the eigenvectors is

available. This approximation is discussed in the next section. Particularly, keeping

the approximate eigenvectors corresponding to the smallest eigenvalues has been

shown to improve convergence [46,47].

4.2.2 Deflation

One way to approximate the eigenvectors of a matrix A is to use the Ritz

vectors. For any subspace S, we define the Ritz value θ and Ritz vector y ∈ S of A

with respect to a subspace S such that [55]

Ay − θy ⊥ w ∀w ∈ S . (4.6)

Given a basis S of S, the Ritz vector y = Sŷ satisfies

ST (ASŷ − θSTSŷ) = 0

Therefore the Ritz values and vectors can be obtained by solving the generalized

eigenvalue problem

STASŷ = θSTSŷ . (4.7)

When S = K(m)(A, r), a Krylov subspace, the Ritz values are available cheaply.

For example, in the case of the Arnoldi iteration S = Vm so that equation (4.7) is

V T
mAVmŷ = θV T

mVmŷ

Hmŷ = θŷ .
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So the Ritz values of A correspond to the eigenvalues of Hm and the Ritz vectors

are y = Vmŷ.

The Ritz values with respect to a Krylov space are known to be good ap-

proximations for the eigenvalues of large magnitude [45]. This suggests that the

reciprocals of the Ritz values of A−1 would be good approximations for the eigenval-

ues of small magnitude of A. A widely-used technique for obtaining Ritz values of

A−1 using information obtained from the Krylov space of A is to consider the Ritz

values of A−1 with respect to the space AS

A−1ỹ − 1

θ̃
ỹ ⊥ w ∀w ∈ AS . (4.8)

These Ritz values, θ̃, are known as the harmonic Ritz values of A. The corresponding

Ritz vector of A−1 is ỹ ∈ AS. However, the harmonic Ritz vectors are instead defined

to be y ∈ S. This choice is made because y is both available and known to be a

better approximation of the corresponding eigenvector than ỹ [45]. It is a better

approximation because y is obtained from ỹ with one application of an inverse

iteration. Computation of harmonic Ritz vectors corresponding to the smallest

harmonic Ritz values of A, from equation (4.8) entails solving the eigenvalue problem

STATASŷ = θ̃STATSŷ (4.9)

where S is a matrix whose columns span S. Keeping the harmonic Ritz vectors

Sŷ corresponding to the smallest harmonic Ritz values, θ̃, is known as deflation.

Deflation is a popular technique for Krylov subspace recycling and is used to choose

the recycled space in methods such as GMRES with deflated restarting (GMRES-

DR) [47], generalized conjugate residual (GCR) method with orthogonalization and
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deflated restarting (GCRO-DR) [55], and the deflated conjugate gradient method

[66].

For the Arnoldi iteration, the matrix on the left-hand side of equation (4.9) is

V T
mA

TAVm = H̄T
mV

T
m+1Vm+1H̄m

= H̄T
mH̄m

= RTR

where R is defined in equation (4.5). The matrix on the right-hand side of equa-

tion (4.9) corresponds HT
m [46]. Therefore, the computation of the harmonic Ritz

vectors during an Arnoldi iteration requires the solution of an O(m) generalized

eigenvalue problem where the matrices R and Hm have been computed during the

course of the Arnoldi iteration.

4.2.3 Modification for sequences of linear systems

Now consider a sequence of systems in equation (4.1). The GCRO-DR method

uses deflated restarting within the framework of the method GCRO (generalized

conjugate residual method with orthogonalization) [23]. In the case where the matrix

does not vary from step to step (i.e., only the right-hand side changes), GCRO-DR

and GMRES-DR are algebraically equivalent [55]. GCRO-DR was introduced as

an alternative to GMRES-DR because it can be used for Krylov subspace recycling

in the case where the matrix is changing. GMRES-DR cannot be adapted since

the harmonic Ritz vectors in GMRES-DR do not generate a Krylov subspace for

another matrix.
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In contrast, the harmonic Ritz vectors of GCRO-DR can be adapted when

the matrix changes. The GCRO-DR method [55] maintains two bases Um and Ck

which satisfy AUk = Ck and C∗kCk = I. It maintains orthogonality by performing

the Arnoldi iteration (I − CkC∗k)AVm−k = Vm−k+1H̄m−k. The solution is found on

the range of Uk such that xm = x0 +UkC
∗
kr0. At the end of each cycle, the solution

is found by solving a least squares problem and the recycled space is determined by

solving a generalized eigenvalue problem for the harmonic Ritz vectors.

GCRO-DR typically uses several cycles for a given Aj, updating Uk and Ck

every m iterations. Once the solution to the jth system is obtained, the current

bases Uk and Ck can be modified for a new matrix Aj+1 such that

[Q,R] = qr(AjU
old
k )

Cnew
k = Q

Unew
k = U old

k R−1 .

It is easy to check that Aj+1U
new
k = Cnew

k and Cnew∗
k Cnew

k = I [55]. This approach

to updating the recycled space for Aj+1 can also be used for the GCROT method

(GCR with optimal truncation). GCROT chooses a recycle space to minimize the

difference of the 2-norm of the residual obtained with the truncated space and the

residual obtained by keeping full space [24].

Rey and Risler [62] use a different technique for Krylov subspace recycling for

sequences of linear systems with varying coefficient matrices. The methods acceler-

ate the solution for symmetric positive definite systems solved using the conjugate

gradient method. Here the recycled vectors are the columns of Vj from the previ-

ous system in the sequence as defined in equation (4.2) and are weighted using the

components of the solution. For a system with conjugate gradient solution we have
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xj =
∑nj

i=1 αipi where pi are the columns of Vj. The recycled vectors are VjΛ
−1/2
j

where Λj = diag(α1, ..., αnj). The subsequent solution method solves the following

reduced model iteratively:

Λ
−1/2
j V T

j Aj+1VjΛ
−1/2
j x̂ = Λ

−1/2
j V T

j bj+1 . (4.10)

The weights Λj ensure that this reduced problem is well conditioned. After the

reduced solve, the augmented CG method is used to obtain the solution to the

desired accuracy. Note that the methodology uses the previous system (iterative

reuse of Krylov subspaces, known as IRKS) or keeps all previous systems (generalized

iterative reuse of Krylov subspaces, known as GIRKS). Therefore this method uses

recycling between systems with no compression.

4.2.4 Orthogonalization methods

The review above has mostly focused on the choice of recycling space. The

other aspect of Krylov-subspace recycling is how to use the space to accelerate

convergence for the solution of the next system. This is done by ensuring that

the new directions are orthogonal to these recycled vectors, where “orthogonality”

depends on the algorithm used. In GMRES-DR, the Arnoldi algorithm maintains

orthogonality to the recycled space with respect to the 2-norm. For symmetric

positive-definite systems, a good choice is the augmented conjugate gradient method.

This method ensures that the new directions are orthogonal in the A-norm to the

recycling space. This method is employed in this chapter and is discussed in more

detail in the following section.
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4.2.4.1 Augmented conjugate gradient method

For SPD systems, we can use the augmented conjugate gradient method for

Krylov recycling. For now let us denote a general recycled space by P which spans

the columns of a matrix P . The augmented CG method first finds the solution in

the range of P , then uses a conjugate gradient iteration to find the solution where

the new search directions are A-orthogonal to the recycled space P . Sometimes this

method is referred to in the literature as the deflated conjugate gradient method [66]

(though we restrict that usage to the case with a specific choice of P– discussed in

Section 4.3.1.1). The augmented CG method is presented in Algorithm 8 with the

subscripts j removed for neatness.

This method is a variant of preconditioned CG, modified so that the new

directions are constructed to be orthogonal to the old space. It is easy to check

that P TAV = 0. Note the initial solve in step 5 contains the same system as the

Galerkin projection of a reduced model for a linear operator seen in Chapter 2. In

the case where P contains the Krylov vectors from all previous solutions, the recycle

space contains the snapshot space used in the reduced basis method. (The solution

snapshots for each already-solved system can be obtained as a linear combination of

Krylov vectors.) Since the approach in this chapter is to use as much information as

possible from a few systems, we will use a recycle space of Krylov vectors from all

previous solutions. Obviously this would generate a space of much larger dimension

than a snapshot space. When this is the case, it becomes necessary to compress

this space and retain only the important components. We will now describe this

108



Algorithm 8 Augmented conjugate gradient method [66]

1: Inputs: Linear system A, b
2: M : preconditioner of A
3: P : the augmenting space
4: δ: tolerance such that the solution satisfies

||b− Ax||
||b|| < δ

5: Solve P TAPx̂ = P T b for x̂. . Reduced problem
6: Compute r0 = b− APx̂.
7: Compute z0 = M−1r0.
8: Solve P TAPµ0 = P TAz0 for µ0. . Same matrix as step 5
9: Set p0 = z0 − Pµ0.

10: for k = 1, 2, ..., do

11: αk−1 =
rTk−1zk−1

pTk−1Apk−1

12: xk = xk−1 + αk−1pk−1

13: rk = rk−1 − αk−1Apk−1

14: if ||rk||/||b|| < δ then
15: Exit.
16: end if
17: zk = M−1rk
18: Solve P TAPµk = P TAzk for µk. . Same matrix as step 5

19: βk−1 =
rTk zk

rTk−1zk−1

20: pk = βk−1pk−1 + zk − Pµk
21: end for
22: Outputs: x, V = [p0, p1, ..., pn]
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framework in more detail.

4.3 Three-stage framework

The three-stage framework for solving a sequence of symmetric positive-definite

linear systems is outlined in Algorithm 9. It is a variation of the augmented conju-

gate gradient method where the “reduced” problem P TAPx̂ = P T b is solved with a

hybrid of direct and iterative solution methods. It is an extension of the framework

developed for sequences of related linear systems in [16].

The algorithm uses the following ingredients:

1. A stage-1 partial basis of the augmenting subspace Wj with rank k1. These

vectors should be the most important recycled vectors.

2. A stage-2 basis of augmenting subspace Yj = [Wj, Zj] with rank k = k1 + k2.

This is a basis for the full recycled subspace and contains the vectors from

stage 1.

Stage 1 uses a direct solve to obtain the solution on a subspace of the reduced space

range(Wj). The idea is that this space will contain the most important components

in the reduced space. This space should be chosen so that a good approximation

to the solution is obtained, but the space should also be small enough so that this

computation is inexpensive. Note that using a direct solve requires the construction

of W T
j AjWj, so Wj should have only a few columns. Since we have already com-

puted the solution on a subspace of the reduced space, in stage 2 we solve over the

remaining space range(Zj) using augmented CG to maintaining orthogonality to the
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stage-1 space Wj. We outline this method in Algorithm 10. We save the search di-

rections from the reduced iterative solve Ŷj = [p̂0, ..., p̂nj ]. The final stage solves the

full problem Ajxj = bj using augmented CG with augmenting space Ỹ = [Wj, YjŶj],

where the solution of the reduced problem (bj −Wjw− YjŶjy) is a starting iterate.

Essentially this framework replaces line 5 of Algorithm 8 with stages 1 and 2.

At the end of stage 3 we have a solution for the jth system that meets the

required tolerance δ. We save the search directions generated during stage 3, Vj to

Yj. There is an option to compress the search directions. Usually this compression

is done when the number of vectors in Yj exceeds some threshold, nmax. There are

many choices for compression method. In the next section, we will consider two

compression techniques, deflation and POD.

Note that the traditional augmented conjugate gradient algorithm is recovered

in the case without stage 2. This framework is related to the algorithms of [62] in

the case that stage 1 and compression are ignored.

Remark : The stage-2 solve is an iterative method, suggesting that a precon-

ditioner may be required. However, when Wj and Zj come from CG directions,

we have V T
j AjVj = Dj where Dj is a diagonal matrix diag(α1, ..., αnj) with {αj}

defined on line 11 of Algorithm 8. As suggested by [62], recycling VjD
−1/2
j ensures

that the stage-2 solve is of the form D
−1/2
j V T

j AjVjD
−1/2
j = I when the matrix, Aj, is

invariant. Since the next solve uses Aj+1, if Aj+1 is close to Aj, then V T
j Aj+1Vj ≈ I

and the system is naturally well conditioned.
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Algorithm 9 A three-stage framework for Krylov subspace recycling

1: Inputs: Sequence of linear systems Aj, bj for j = 1, ..., ns
2: Mj: preconditioner for the jth full model
3: δ: tolerance such that the final solution xj satisfies

||bj − Ajxj||
||bj||

< δ

4: nmax: the maximum size of the augmenting space
5: Solve the j = 1 system using preconditioned conjugate gradient method.
6: Save search directions V1 = [p0, ..., pnit ] to generate subspaces W2, Y2.
7: for j = 2 : ns do
8: Stage 1: Solve the reduced modelW T

j AjWjwj = W T
j bj using a direct method.

9: Stage 2: Solve the reduced model Y T
j AjYjyj = Y T

j (bj −Wjwj) using aug-
mented conjugate gradient method (maintaining orthogonality to space Wj) to

tolerance ε. Save the search directions generated Ŷj = [p̂0, p̂1, ..., p̂nred ]. See
Algorithm 10.

10: Stage 3: Solve the full model Ajxj = bj − Wjwj − YjŶjyj iteratively to
tolerance δ using preconditioned augmented conjugate gradient method with
augmenting space Ỹj = [Wj, YjŶj]. Save the search directions generated Vj =
[p0, ..., pnit ] and coefficients D = diag(α1, ..., αnit).

11: Add new search directions VjD
−1/2
j to Wj+1 and/or Zj+1.

12: if rank(Wj+1) + rank(Zj+1) ≥ nmax then
13: Compress keeping k1 vectors in Wj+1 = Φ1 and k2 vectors in Zj+1 = Φ2.
14: end if
15: end for
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Algorithm 10 Stage 2: Iterative solve of reduced problem [16, Algorithm 3]

1: Goal: Solve [W,Z]TA[W,Z]y = [W,Z]T (b − AWw). Note that Y = [W,Z].
Vectors with hats lie on the reduced space, range(Y ), and vectors without hats
lie on the full space.

2: Inputs:
3: x0 = Ww: Approximation to the full solution from stage 1
4: W , Z, precomputed AW from stage 1
5: R: a Cholesky factor such that RTR = W TAW from stage 1
6: ε: tolerance such that the output y satisfies

||Y T (b− AY y)||
||Y T b|| < ε

7: r0 = b− Ax0

8: r̂
(0)
2 = ZT r0

9: k = 0
10: while ||r̂(k)

2 ||2/||Y T b||2 > ε do

11: p̂
(k)
2 = r̂

(k)
2

12: Solve RTRp̂
(k)
1 = −(AW )TZp̂

(k)
2 .

13: p̂(k) =

[
p̂

(k)
1

p̂
(k)
2

]
14: for j = 0, ..., k − 1 do
15: p̂(k) = p̂(k) − p̂(j)(σ(j)z(j)T p̂

(k)
2 )

16: end for
17: p(k) = [W,Z]p̂(k), v(k) = Ap(k)

18: σ(k) = 1/(p(k)Tv(k)), z(k) = ZTv(k), α(k) = σ(r̂(k)T p̂(k))

19: xk+1 = xk + α(k)p(k), r̂
(k+1)
2 = r̂

(k)
2 − α(k)z(k)

20: k = k + 1
21: end while
22: Outputs: nred = k, xnred , Ỹ = [W,Z]Ŷ = [p(1), ..., p(nred)], AỸ = [v(1), ..., v(nred)],

Σ = diag(σ(1), ..., σ(nred))
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4.3.1 Compression methods

One important component in this framework is compression. Two different

compression methods are considered: (1) deflation using the harmonic Ritz vectors,

and (2) weighted proper orthogonal decomposition (POD), a method that finds

the key components of the Krylov subspace. These methods will be compared

to the method that uses no compression, i.e., where all vectors are kept (Yj =

[V1, V2, ..., Vj−1]).

4.3.1.1 Deflation

As discussed in Section 4.2, the deflation method [47] approximates the eigen-

vectors corresponding to the eigenvalues of smallest magnitude. When using this

method to solve a sequence of linear systems, there is an assumption that the

spectra of the matrices do not vary greatly. Several methods that use deflation

were discussed in Section 4.2. These methods can be viewed through the lens of

the three-stage framework discussed in Section 4.3; the only difference is that the

deflation-based methods compress during the course of a single system solve whereas

the methodology used here compresses only every few systems.

Compression via deflation is performed with respect to a space, S = range(S),

where S is a matrix consisting of search directions and previously compressed vec-

tors. Deflation retains the harmonic Ritz vectors Sψi where ψi are the eigenvectors

of a generalized eigenvalue problem originally defined in equation (4.9) and simpli-
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fied here for a symmetric positive definite matrix

STATj AjSψi = λiS
TAjSψi . (4.11)

If the first k eigenvectors in Ψ = [ψ1, ψ2, ..., ψk] are used, then the compressed space

is Φ = SΨ. Note that this method depends on Aj, the matrix from the most recently

solved system.

In the literature [47, 55], deflation is performed in cycles on a single prob-

lem, and the final space at the end is deflated and then adapted somehow (de-

pending on the method) for the next system. This mimics the style of restarted

GMRES where the matrix is not changing. We adapt deflation to this frame-

work where S = [V1, V2, ..., Vj−1] with {Vi} containing the Krylov directions from

the stage-3 solves. When we return to the compression step again we may have

S = [Φk, Vs+1, Vs+2, ..., Vj−1] where Φk is the n × k matrix generated from the last

compression via deflation.

4.3.1.2 Weighted proper orthogonal decomposition

This approach is similar to techniques of standard reduced-order modeling.

Given a subspace, S = range(S) where S is a rank-nw matrix of Krylov vectors,

the goal is to compress without losing important information. We use a proper

orthogonal decomposition (POD) to identify the essential components of the space.

Often POD uses the 2-norm to measure the importance of a component; in this case,

the POD is equivalent to taking the singular value decomposition of S. However,

in the three-stage framework it is advantageous to instead measure the importance
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of a vector using the A-norm. The proper orthogonal decomposition with respect

to the A-norm is equivalent to the eigendecomposition of STAS with corresponding

eigenvalue problem

STASψi = λiψi .

We consider a weighted POD with weights Γ = diag(γ1, ..., γnw), that convey the

importance of the vectors of S. This adds flexibility to the POD and emphasizes

the important search directions as inputs into the POD. Given S and corresponding

weights Γ, compute the POD with the A-norm by solving the eigenvalue problem

ΓTSTAjSΓψi = λiψi . (4.12)

The POD produces the recycled space, Φ = SΓΨΛ−1/2 where the columns of

Ψ = [ψ1, .., ψk] are the eigenvectors corresponding to the largest eigenvalues Λ =

diag(λ1, ..., λk). Define Φ1 and Φ2 such that Φ = [Φ1,Φ2] where

Φ1 = SΓ[ψ1, .., ψk1 ]

λ
−1/2
1

. . .

λ
−1/2
k1


Φ2 = SΓ[ψk1+1, ..., ψk1+k2 ]

λ
−1/2
k1+1

. . .

λ
−1/2
k1+k2

 .

We refer to the range space of Φ as P(k, SΓ, A) where k = k1 +k2, SΓ are the input

vectors, and A defines the norm to compute the POD.

The use of the A-norm in this framework is a good choice because the reduced

problem with the compressed space leads to a naturally well-conditioned iterative

solve in stage 2. Note that

ΦTAΦ = Λ−1/2ΨT (ΓTSTASΓ)ΨΛ−1/2 = Λ−1/2ΨTΨΛΨTΨΛ−1/2 = I .
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Since the compression is performed with Aj, ΦTAj+1Φ will be approximately I.

POD is a good choice for compression in this framework [16]. The subspace

generated by a POD,

P(k, [s1, ...., snw ], A) ,

is optimal in the sense that

P(k, [s1, ...., snw ], A) = arg min
Y∈G(k,N)

√√√√ nw∑
i=1

||(I − PA
Y )si||2A (4.13)

where the Grassman manifold, G(k,N) is the set of all k-dimensional linear sub-

spaces of RN [2]. Given an augmenting space Y with basis defined by the columns

of Y , the error in the reduced solution is

eAY(x) = ||(I − PA
Y )x||A (4.14)

where PA
Y is the projector such that x̃ = PA

Y x is the approximation of the full

solution from the Galerkin reduced model (i.e. x̃ = Y x̂ where x̂ is the solution of

Y TAY x̂ = Y T b).

Clearly the ideal choice is Y = span(x) where x is the exact solution. Instead

consider an estimate of the solution as a linear combination of the recycled directions

S = [s1, ..., snw ]

xest =
nw∑
i=1

γisi .

Thus the error is approximately

eAY(xest) = ||(I − PA
Y )

nw∑
i=1

γisi||A .

The error can be bounded [16] first using the triangle inequality

eAY(xest) ≤
nw∑
i=1

||(I − PA
Y )γisi||A
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and using the norm equivalence relation ||x||1 ≤ n1/2||x||2

eAY(xest) ≤ n1/2
w

√√√√ nw∑
i=1

||(I − PA
Y )γisi||2A . (4.15)

From equation (4.13), the choice of P(k, SΓ, A) minimizes the upper bound of the

error in equation (4.15) [16].

The weights should be chosen so that xest expressed as a linear combination of

the search directions in S is as close to the actual solution as possible. The specific

choice of weights used is discussed further in Section 4.4.4. Those weights assume

the systems are sequenced so that the most relevant information for the (j + 1)st

system is the information from the jth system.

4.3.1.3 Goal-oriented proper orthogonal decomposition

In some applications the quantity of interest may be a linear function of the

output of the form z = Cx. In this case the weighted proper orthogonal decom-

position can be tailored to ensure fast convergence of this quantity. Given some

C ∈ RN×d we define the goal-oriented norm, ||x||CTC =
√

(Cx,Cx). By replacing

the A-norm in the POD with the CTC-norm, we obtain the following eigenvalue

problem

ΓTSTCTCSΓψi = λiψi . (4.16)

The recycled spaces Φ1 and Φ2 are defined using {ψi} and {λi} as for the A-norm.

Similar analysis of the POD suggests that the output z would converge quickly using

these recycled spaces [17].
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4.3.2 Inner iterative variation of the augmented conjugate gradient

method

Consider the orthogonalization steps in stage 3 (lines 8 and 18) of Algorithm

8. Note that such a step is efficient for the stage-1 component because the Cholesky

decomposition of W TAW is computed in stage 1 and thus only triangular solves are

needed for orthogonalization. Even cheaper is the stage-2 component Y Ŷ , where

the diagonal matrix for (Ŷ TY TAY Ŷ )−1 is computed during the course of the re-

duced augmented CG solve. Thus, in the standard version of the framework these

orthogonalization steps are cheap.

Unfortunately, orthogonalization is only done with respect to Ỹ = [W,Y Ŷ ]; it

might be preferable to orthogonalize against the entire recycle space determined by

Y since stage 3 will converge more quickly in that case. We introduce a modification

to stage 3 that allows near-orthogonalization against all columns of Y even when

starting with Ỹ .

This takes the form of an inner iterative method described in Algorithm 11,

which replaces the two orthogonalization steps in stage 3. It orthogonalizes each new

search direction against the entire space span(Y ), and not just the space span(Ỹ )

on which the reduced solution lies. When stage 2 is not present this method is not

needed since in that case Y = Ỹ .

The inner iteration is like stage 2, Algorithm 10, but with a few differences.

One difference is that the righthand side here is Y TAr as opposed to Y T r as it was

in stage 2. The second difference is that stage 2 could obtain the solution on the
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Algorithm 11 Inner iteration of stage 3

1: Goal: To solve Y TAY x = Y TAb, where Y = [Ỹ , Z̃] where Z̃ is unknown. We
assume that systems with Ỹ TAỸ can be solved efficiently.1

2: In general, r lies on the full space and r̂ on the reduced space. These vectors
satisfy r̂ = Y T r and p = Y p̂.

3: Inputs: Y, Ỹ , A, b and Ỹ TAỸ , ε̄ tolerance
4: Solve Ỹ TAỸ ŷ = Ỹ TAb efficiently.
5: x0 = Ỹ ŷ
6: Define r0 = Ab− AỸ ŷ.
7: Note that r0 satisfies Ỹ T r0 = 0.
8: r̂0 = Y T r0

9: Solve Ỹ TAỸ µ̂0 = Ỹ TAY r̂0 efficiently.

10: p0 = Y r̂0 − Ỹ µ̂0 and p̂0 = r̂0 −
[
µ̂0

0

]
11: for j = 0, 1, ... do
12: αj :=

(rj ,rj)

(Apj ,pj)

13: xj+1 := xj + αjpj and x̂j+1 = x̂j + αj p̂j
14: rj+1 := rj − αjApj and r̂j+1 = Y T rj+1

15: Solve Ỹ TAỸ µ̂j = Ỹ TAY r̂j+1 efficiently.
16: pj+1 = Y r̂j+1 − Ỹ µ̂j
17: p̂j+1 = r̂j+1 −

[
µ̂j
0

]
18: for k = 1 : j do
19: βk =

(rj+1,rj+1)

(rk,rk)

20: pj+1 = pj+1 + βkpk
21: p̂j+1 = p̂j+1 + βkp̂k
22: end for
23: if

(r̂j+1,r̂j+1)

(r̂0,r̂0)
≤ ε̄2 then

24: Exit.
25: end if
26: end for

range of Y using Z and ZT instead of the larger Y . This is only possible when

Z is known. In the case of the inner iteration, Y = [Ỹ , Z̃] but Z̃ is not actually

computed. Therefore the full orthogonalization is performed on the range of Y .

Algorithm 11 describes computations with vectors p̂, but in reality these quantities

1Efficiently means there are Cholesky factors from stage 1 and/or a diagonal matrix from stage

2 (Ŷ TY TAY Ŷ )−1.
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are also not computed. Instead the algorithm keeps track of the full vectors, p. Note

that the loop beginning line 18 uses a full orthogonalization method. However, in

our experiments, the number of inner iterations tends to be small so the additional

overhead of this choice over CG is not high. Directions generated here can be added

to Ỹ throughout stage 3, i.e. at the end of the above algorithm Ỹ can be replaced

by [Ỹ , p0, p1, ...] for the next stage-3 iteration. In this case we would also save the

inverse diagonal and A[p0, p1, ...], and Ỹ would more closely approximate Y as stage

3 progresses.

An assumption built into the augmented CG method is that the initial residual

satisfies P T r0 = 0. For the inner iteration, this condition is satisfied within numerical

roundoff when P = Ỹ . However, it is not the case when P = Y . Consider the

solution of the form x = Ỹ ỹ + V v̂. When we orthogonalize against Ỹ , we have

searched range(Ỹ ) in the reduced problem (stage 1 and 2) and the space orthogonal

to Ỹ in stage 3. With the iterative modification the solution is first considered on

the range of Ỹ and then on the range of V where V is orthogonal to Y = [Ỹ , Z̃].

Therefore, there is a space range(Z̃) that is not searched. For stage 3 to converge

with this modification, this component of the solution Z̃ must be smaller than δ.

In stage 2 the iterative computation produced a solution such that

||Y T (b− AY y)||2
||Y T b||2

< ε .

Since Y T (b−AY y) = Y T r0, we have ||Y T r0||2 < ε||Y T b||2. Since Y T r0 = [Ỹ , Z̃]T r0 =

Ỹ T r0 + Z̃T r0 = Z̃T r0 (because Ỹ T r0 = 0 in exact arithmetic), then ||Z̃T r0||2 <

ε||Y T b||2 and the component of the exact solution that lies on the range of Z̃ must
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be small. Therefore, for a given δ the choice of ε must be sufficiently small to ensure

the convergence of the stage-3 algorithm when using the inner iterative method.

4.4 Numerical results

4.4.1 Background of problems

To test this framework we utilize sample problems from the Adagio code [44], a

package used to analyze the deformation of solids. The sequence of linear systems is

defined by seeking a quasi-static equilibrium which requires the solution of collection

of a nonlinear problems for a series of time steps. For a nonlinear iteration l and

time step i, solving for the quasi-static equilibrium requires the solution of a problem

of the form

minimize
z∈RN

gli(z) . (4.17)

Define rli := ∇gli(z). The solution of the optimization problem requires the solution

of a linear system

M l(ui)x = rli (4.18)

where M l(ui) is a symmetric positive definite matrix at each l and i and ui is the

displacement from equilibrium at time step i. This results in a sequence of linear

systems of the form in equation (4.1). Thus we loop over the time steps i = 1, . . . , nt,

then at each time step take nonlinear iterations l = 1, . . . , nl, and save Aj = M l(ui)

and bj = rli where j = (i− 1)nl + l.

The data is generated by following this solution process to find the quasi-static

equilibrium in the deformation of a solid object subjected to a change in temperature
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and pressure over time. The first problem we consider is the solid in the shape of

“pancake” domain pictured in Figure 4.1.

The x-, y-, and z-displacements of the rightmost surface in Figure 4.1(b) are

zero. The x- and y- displacements of the leftmost surface are also zero. The leftmost

surface is also subjected to the time-dependent pressure load depicted in Figure 4.2.

The time-dependent thermal load depicted in Figure 4.3 is applied to the bolts

(green components in Figure 4.1(b)). The contact surfaces are shown in blue in

Figure 4.1(b).

(a) Finite-element mesh. N = 27324 (b) Pressure-loaded surface (red), contact sur-
faces (blue), prescribed temperature (green),
dirichlet boundary condition (gray).

Figure 4.1: Pancake domain.
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Figure 4.2: Time-dependent pressure load applied to leftmost surface (extrema are
±3.94× 104 kg

mm·s2 ).

The problem is discretized by the finite-element method using a mesh gen-
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Figure 4.3: Time-dependent temperature load applied to bolts.

erated by the SIERRA toolkit [26]. The mesh consists of 9108 nodes and 4719

hexahedral elements. At each node, there are three degrees of freedom (the x-, y-,

and z-displacements), which leads to a total of 27, 324 degrees of freedom. The sec-

ond problem uses the I-beam domain depicted in Figure 4.4 with a mesh containing

N = 39411 degrees of freedom.

Figure 4.4: I-beam domain with mesh with N = 39411 degrees of freedom.

4.4.2 Comparison of recycling methods for problem 1

Given the sequence from the Adagio code described in Section 4.4.1, for the

first domain we have a set of 47 linear systems from equation (4.18) each with order
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N = 27324. The three-stage framework was implemented using Matlab. Each of

the methods described in Section 4.3.1 (two compression methods, deflation and

POD, and a solver that does not use compression) was used to solve the sequence.

We present the average number of matvecs, number of stage-3 iterations (which

is equivalent to the number of preconditioner applications), and CPU time per

system to solve each of the 47 systems to within a specified tolerance δ. For solvers

that use compression, the system is compressed after the augmenting space reaches

nmax = 200 vectors. The resulting compressed space keeps k = 100 vectors.

For this data it is necessary to use an augmented full-orthogonalization (FOM)

method in stage 3 in place of the augmented CG method. This method replaces

line 16 of Algorithm 8 with the following [64]:

pk = zk − Pµk
for i = 1 : k − 1 do

βi =
rTk zk
rTi zi

pk = pk + βipi
end for

In exact arithmetic for symmetric positive-definite systems, these methods are equiv-

alent. However, this modification is necessary for this problem because the aug-

mented FOM ensures that the new directions generated (the columns of Vj in equa-

tion 4.2) are numerically full rank. While augmented CG reaches the solution with

less work per iteration, it produces numerically rank-deficient search directions that

cause problems during the stage-1 solve of the subsequent systems. In addition, in

the absence of recycling the number of iterations needed for FOM to converge is

smaller than for CG, so with an expensive preconditioner (as is the case for this

problem), FOM is more efficient.
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One detail left open in the discussion of the framework is whether to add

the new directions to the stage-1 subspace Wj or the stage-2 subspace Zj. Unless

otherwise stated we add the directions to the stage-1 subspace. We also considered

an alternative, referred to as mixed, where we add the new search directions to both

stage 1 and stage 2 based on a given direction’s relative importance to the other

vectors. A search direction vk is added to the stage-1 subspace if

vTkAjvk∑
i v

T
i Ajvi

> 0.001 , (4.19)

is satisfied. Otherwise, it is added to the stage-2 subspace.

For preconditioning, we use a three-level algebraic multigrid (AMG) precon-

ditioner with incomplete Cholesky smoothing for both pre-smoothing and post-

smoothing. This preconditioner tends to be expensive to apply, especially when

compared with the cost of a matvec for this system. Therefore, the results pre-

sented in this section show faster times for methods that minimize the number of

applications of the preconditioning operator. The results also show the number of

matvecs required for convergence, since for different data and/or preconditioners

the costs of matvecs and applications of the preconditioner may differ. The results

presented are averages over the ns systems.

Figure 4.5 contains the results for the following methods.

1. No recycling. Each of the 47 systems is solved without recycling using pre-

conditioned FOM.

2. No compression. All search directions are used, so the augmenting space is

S = [V1, V2, .., Vj−1]. This method requires the fewest stage-3 iterations and
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Figure 4.5: Results for problem 1. Average number of matvecs, applications of
the preconditioner, and CPU time to compute solutions within tolerances δ = 10−1

through δ = 10−6. Compares FOM without recycling with a variety of recycling
methods. See Figure 4.6 for a comparison of only the recycling methods.

thus, the smallest number of applications of the preconditioner.

3. Deflation. When the augmenting space exceeds 200 vectors, the deflation

method described in Section 4.3.1.1 is used for compression. No stage-2 com-

putations are done in conjunction with deflation, since the system is not nat-

urally well-conditioned. Therefore, all new directions are added to Wj.

4. POD compression, denoted POD(k1, k2).

• Stage 1 only, with k1 = 100. After compression Wj = Φ, Zj is empty,

and all new search directions are added to Wj.

• POD(5,95) iterative stage 1. After compression, Wj has 5 vectors and Zj
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Figure 4.6: Comparison of recycling methods for the problem 1. Average number
of matvecs, applications of the preconditioner, and CPU time to compute solutions
within tolerances δ = 10−1 through δ = 10−6.

has 95 vectors. For this method all new directions are added to Wj. Note

that ε = 10−4δ for δ ≥ 10−3, and ε = 10−5δ otherwise and ε̄ = 10−2δ for

all tolerances.

• POD(5,95) iterative mixed. Same as POD(5,95) iterative stage 1 for the

system immediately after compression, but instead of adding all direc-

tions to Wj, they are added to Wj and Zj according to the condition in

equation (4.19). Note ε = 10−4δ for δ ≥ 10−2, and ε = 10−6δ otherwise

and ε̄ = 10−2δ for all δ.

First of all, Figure 4.5 demonstrates that recycling provides a huge benefit, since

FOM without recycling is the slowest method for all tolerances (seen in the bottom
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plot). To see the differences between recycling methods more clearly, Figure 4.6

contains the same results without FOM. The no compression case is the fastest

method for all tolerances. This means that not only is recycling necessary, there is

a benefit to using all the directions and minimizing the number of applications of

the preconditioner since that is the most significant cost for this data.

We also note that the POD methods (especially the POD(100,0) method) per-

form similarly to the no compression method, suggesting that the POD is effectively

capturing the important directions. Note that the inner iterative method used in

the two POD(5,95) methods produces the same number of preconditioner applica-

tions (seen in the middle plot) as POD(100,0). This is exactly what the iterative

modification is intended to do. This comes at some additional cost of matvecs and

other overhead so POD(100,0) is fastest with respect to time, but the fact that the

same behavior is exhibited is important. We might expect this overhead to to be

amortized in the case where the recycle space is much larger.

4.4.3 Comparison of recycling methods for problem 2

The I-beam domain produces a total of 49 linear systems with N = 39411

degrees of freedom. For this domain, we use the same AMG preconditioner with in-

complete Cholesky smoothing. Since the matrices are larger, four levels of multigrid

are used.

The same methods are considered for this data with one additional method,

POD(5,95) iterative stage 2 where new directions are added to Zj. All POD(5,95)
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Figure 4.7: Results for the sequence generated for problem 2.

methods for this problem use parameters ε = 10−4δ, ε̄ = 10−2δ.

Figure 4.7 again strongly demonstrates the utility of recycling, as the FOM

method is the slowest and requires the most applications of the preconditioner.

In addition, the results without FOM, shown in Figure 4.8 illustrate the need for

compression. While no compression still minimizes the number of preconditioner

applications, the lower matvec cost and lower overhead in the orthogonalization

steps of stage 3 lead to lower overall costs for some compression methods. Figure 4.8

illustrates the benefit of using a direct and iterative approach for solving the reduced

model, since the iterative method POD(5,95) adding directions to stage 2 is best for

all tolerances.
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Figure 4.8: Comparison of recycling methods for problem 2.

4.4.4 POD-weight experiments

The discussion of the POD method in Section 4.3.1.2 indicated that the

weights, {γi}, should be chosen such that

xest =
nw∑
i=1

γisi

where si are the vectors being compressed and xest is a good estimate of the solution.

Recall that a solution obtained using this framework can be written

x = Ww + Y Ŷ y + V v . (4.20)
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Therefore, the exact weights to produce x correspond to w, y, and v. To see this,

rewrite equation (4.20) in terms of the set of directions S = [W,Z, V ]

x =
[
W,Z, V

] w + Ŷ1y

Ŷ2y
v

 = Sγ

where

Ŷ =

[
Ŷ1

Ŷ2

]
and the number of rows in Ŷ1 is k1 and the number of rows in Ŷ2 is k2. Note w

is obtained directly in stage 1, while y and v correspond to the parameters {α(k)}

generated during the course of the stage 2 and stage 3 respectively.

We compare several weighting schemes using the matrices generated for prob-

lem 1. After the solution of the first 10 systems, a weighted POD compression is

performed. The following three choices are considered.

1. Ideal weights are computed by solving the 11th system without compression.

The ideal weights are stage-1 and stage-2 vectors (w and y) from the 11th

system

γideal =

[
w11 + Ŷ1y11

Ŷ2y11

]
. (4.21)

This weighting scheme is not practical when solving the entire sequence of

systems but is meant to illustrate the best possible choice.

2. Recent weights are obtained from the solution of the previous system. The

weights are

γ10 =

w10 + Ŷ1y10

Ŷ2y10

v10

 , (4.22)
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where w10, y10, v10 are taken from the solution of the 10th system as defined

in equation (4.20). These weights are easily obtained from the information

computed during the solution process for the 10th system.

3. All weights uses the weights from all previous systems (since the last com-

pression). They are combined as γ = γ10 + 1
2
γ9 + 1

22
γ8 + ...+ 1

29
γ1 where {γi} are

the weights for a particular system, as in equation (4.22), with the appropriate

number of zeros appended to the bottom to make the vectors the same length.

These weights are also easily computed and can be updated at the end of each

solve. These weights are used for all other results with the POD method.
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Figure 4.9: The residual norm before stage 3 as a function of number of vectors in
the POD for system 11, compressed after system 10 for problem 1.

Figure 4.9 illustrates that the ideal weights minimize the residual after the

reduced system is solved. This means the ideal weights lead to a better estimate
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Figure 4.10: Number of stage-3 iterations taken after reduced solve as a function of
the number of vectors in the POD with a stage-3 tolerance of δ = 10−6 for system
11, compressed after system 10 for problem 1.

of the solution in the reduced problem. Note that the “all weights” choice (what is

used for all POD results) is close to the ideal case. In Figure 4.10, the ideal weights

also minimize the number of stage-3 iterations performed in the augmented FOM as

expected. In addition, the two other methods produce a similar number of stage-3

iterations as the ideal weights. This suggests that the all weights scheme is a good

approximation of the ideal weights for both producing an accurate reduced solution

and at providing similar convergence in stage 3.
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4.4.5 Goal-oriented proper orthogonal decomposition

As discussed in Section 4.3.1.3, when the quantity of interest, zj, for the linear

sequence is a linear function of the output, i.e.

zj = Cxj

where C ∈ RN×d, the weighted POD can be tailored to improve the convergence of

the output zj. The convergence of z
(i)
j to the solution zj is directly connected to the

convergence of the solution x
(i)
j in the goal-oriented norm

||x||CTC = (Cx,Cx)1/2 . (4.23)

We consider compressing the directions using the weighted POD using the goal-

oriented norm.

We design an experiment to demonstrate the advantage of using the goal-

oriented POD approach to ensure fast convergence of the solution in the goal-

oriented norm. We will use the three-stage framework as before and track the

error of the solution in the goal-oriented norm

||e(i)
j ||CTC = ||x̄j − x(i)

j ||CTC (4.24)

where x̄j is the exact solution obtained using a direct method. For this experiment,

we randomly generate C ∈ RN×100. Then the matrix, C, is fixed and we assume the

quantity of interest is zj = Cxj for all j = 1, ..., ns. We proceed with Algorithm 9

using δ = 10−6 for problem 1 and δ = 10−3 for problem 2. For both problems,

we use nmax = 200. During this algorithm, we track the goal-oriented error in
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equation (4.24). Then we measure the average number of matvecs, applications of

the preconditioner, and CPU time for the error to satisfy ||e(i)
j ||CTC < τ for a variety

of tolerances τ . With τ on the x-axis, Figures 4.11 - 4.14 compare the performance

in these metrics of goal-oriented POD with no compression, POD using the A-norm,

and deflation.
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Figure 4.11: Stage 1 POD methods for problem 1 with convergence to the tolerance
on the x-axis measured in the goal-oriented norm.

The POD methods using the A-norm and the CTC-norm are best for inexact

tolerances in Figure 4.11 and Figure 4.12. These plots also illustrate the benefit of

goal-oriented norm over the A-norm, shown in Figure 4.11 where for tolerances in

the middle ranges (between τ = 10−4 and 10−7). In Figure 4.12 we see that the

POD(5,95) methods without the iterative modification described in Section 4.3.2

are faster for the inexact tolerances. This occurs because very few stage-3 iterations
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Figure 4.12: Stage 1/2 POD methods for problem 1 with convergence to the toler-
ance on the x-axis measured in the goal-oriented norm.

are required for convergence in the goal-oriented norm to this level. For τ ≤ 10−6,

we see that the iterative modification (or no compression) is preferable.

For problem 2, the goal-oriented comparison is presented in Figures 4.13 and

4.14. The results illustrate that there is an advantage to using the goal-oriented

norm over the A-norm for most values of τ , since POD-CTC(100,0) is fastest in

Figure 4.13 and POD-CTC(5,95)it method is fastest for τ ≤ 10−3.

We repeat the experiments discussed in Section 4.4.4 and compare the three

weighting methods for the goal-oriented POD for problem 1. The experiments mea-

sure the number of stage-3 iterations required to converge to a goal-oriented error

of τ = 10−6 as a function of the number of vectors in the POD was varied. The

experiments used a stage-3 tolerance of δ = 10−8 to accrue the search directions
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Figure 4.13: POD methods stage 1 only with convergence to tolerance measured in
the goal-oriented norm for problem 2.

for 10 systems and compressed using the goal-oriented norm. The resulting stage-3

iterations are for the j = 11th system. As was the case for the POD weights for the

A-norm, the results of Figure 4.15 show that the ideal weights perform best by mini-

mizing the number of stage-3 iterations required for convergence in the goal-oriented

norm. The other two weighting schemes closely follow the ideal weights.

4.4.6 Improvements for deflation methods

For these two problems, the POD method of compression is preferable to defla-

tion. In addition, the results for problem 2 illustrate that using direct and iterative

methods with the POD method for the reduced problem can be advantageous. These

methods of POD compression give rise to a way to modify the deflation method that
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Figure 4.14: POD methods using stage 1 and 2 with convergence measured in goal-
oriented norm for problem 2.
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Figure 4.15: Comparison of weighting schemes for the number of stage-3 iterations
required for convergence of the goal-oriented error for problem 1.
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may permit it to perform successfully in the three-stage framework.

First, the results for deflation presented above entail solution of the general-

ized eigenvalue problem in equation (4.11) without normalization of the eigenvec-

tors. This causes some numerical difficulties. Consider the case where there is some

compressed space Φk and the stage-3 search directions come from the next three

systems Vk+1, Vk+2, Vk+3. In this situation S = [Φk, Vk+1, Vk+2, Vk+3]. Since each

set of search directions is produced by augmenting against the previous space (i.e.,

each vector in Vk+2 is orthogonal to the columns of [Φk, Vk+1]), the matrix S is full

rank in exact arithmetic. However, Φk from the deflation algorithm is not normal-

ized as in the POD compression causing (numerical) rank-deficiencies in S. Such

deficiencies eventually cause problems in both the generalized eigenvalue problem

in the compression step and stage 1 where a symmetric positive definite matrix is

required for the Cholesky factorization.

These rank deficiencies can be corrected:

1. After truncation when Φ = SΨ, compute the eigenvalues of ΦTAΦ. If any

of these eigenvalues are less than 10−12, the associated eigenvectors can be

discarded. Note in this case the recycle space will have dimension less than k.

2. Stage 1 is modified to use pivoted Cholesky factorization [38]. This shows

when W TAW is rank deficient and provides a Cholesky factor of dimension

corresponding to the numerical rank of the reduced problem. In this case the

dimension of the reduced space, k1, is updated accordingly.

Recall that the reason that the reduced problem in the POD method is a good
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match for a reduced iterative method is that both the added directions, {ViD−1/2
i }

and the compressed space, Φ = SΓΨΛ−1/2, produce a well-conditioned reduced

system. If such a well-conditioned recycled space can be generated for compression

via deflation, this would ensure that stage 2 is well conditioned. It has the added

benefit that it fixes the rank-deficiency issues, since the recycle space and the search

directions are both A-orthogonalized.

Since the systems Aj are symmetric positive-definite matrices, the systems

STAjS are also symmetric positive definite. Therefore, the eigenvectors of the gen-

eralized eigenvalue problem in equation (4.11)

STATj AjSψi = λiS
TAjSψi (4.25)

can be normalized using the STAjS-norm such that Ψ = [ψ1, ψ2, ...ψk] satisfies

ΨTSTAjSΨ = I. Then the reduced problem using the recycled space Φ = SΨ will

also be perfectly conditioned with the exact Aj and well conditioned for a matrix

Aj+1 that is close to Aj. Therefore, the stage-2 iterative solves after compression

via deflation now converge in just a few iterations.

Figures 4.16 and 4.17 illustrate that normalizing the deflation vectors improves

the performance of deflation for the tighter tolerances. Furthermore, Figure 4.17

illustrates that a stage-1/2 approach can be used with deflation more effectively than

just a stage-1 approach. This is consistent with the results for POD, where the stage-

1 methods performed best for the first set of data and the hybrid approach is better

suited to the data generated from problem 2. Finally, we illustrate (Figure 4.18)

the condition number of the reduced matrix (Y TAY ) for problem 1 for all systems
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Figure 4.16: Comparison of deflation methods for problem 1.
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using POD compression and deflation. Note the plot is constructed using the same

Aj used for construction of the reduced basis, so we would expect small deviations

from these results when the framework is applied. We see in the first plot that the

condition number of the deflation method blows up and the normalization ensures

that the reduced condition number is close to one.

4.5 Conclusion

We have shown that Krylov-subspace recycling can be an effective technique for

solving multiple related linear systems by leveraging results of some (initial) system

solves to produce faster computation times for later system solves, especially when

an offline-online paradigm is not available. Augmenting against previous search

directions is always helpful when compared to solving the full systems individually.

Also, compression is often needed.

We showed that the weighted POD is an alternative to deflation to perform

compression and we devised an effective weighting scheme for this method. Weighted

POD compression is also useful for efficient computation of a linear function of the

output. Finally, we offered several techniques for improving deflation, including

incorporating an iterative solve the reduced model.

As reduced-order modeling moves away from a strictly-offline strictly online-

approach, the techniques presented in this framework illustrate that reduced-order

models can reduce cost as early as the second step of a nonlinear iteration. While

this chapter limited its attention to problems coming from iterative solution of
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nonlinear problems, the framework is adaptable to other settings, for example, un-

certainty quantification used in conjunction with parameter-ordering methods like

those described in [70].
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Chapter 5

Conclusion

Reduced-order models constitute an effective method for efficiently solving

parameterized PDEs in the many-query context. Given a reduced-order model of

a particular dimension, we have shown that Krylov iterative solvers can be used

to increase efficiency of the reduced-order model. Specifically, we have shown for

the case of linear operators with affine dependence on the parameters that itera-

tive methods with mean-based preconditioners can be used to improve efficiency in

reduced-order models of moderate size. We presented examples where the utility of

certain reduced-order models was lower when direct methods were used to solve the

reduced problem, but utility improved when iterative methods are used. Thus, this

work illustrates that the reduction in dimension required for reduced-order models to

be effective can be increased when iterative methods are used. For the offline-online

approach, this requires moving the cost of constructing preconditioners offline

Iterative methods have a similar benefit in the case of nonlinear operators

with affine dependence. The iterative methods have shown speedups for reduced-

order models used in conjunction with hyper-reduction techniques, in particular

DEIM. The DEIM provides a significant speedup in assembling the system and the

preconditioned iterative methods improve this further.

In addition, to address reduced-order modeling without the offline-online ap-
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proach, we considered Krylov-subspace recycling methods, using a blended direct

and iterative approach for solving the reduced problems. We showed that a weighted

POD can be used to generate an effective reduced-order model for Krylov-subspace

recycling and illustrated the effectiveness of the direct and iterative approach. Fi-

nally, we demonstrated several improvements to the deflation method. The iterative

methods for the reduced problem in this setting avoid the need for preconditioners,

because the reduced models were selected to be naturally well-conditioned. These

results were demonstrated for a sequence of linear systems. These ideas represent

an alternative to constructing reduced-order models for nonlinear operators based

on DEIM since, Krylov subspace recycling methods can be used to treat the linear

systems arising from the nonlinear iteration.
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