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Abstract

A regularized set operation on two solids can be separated into four steps: partition the faces
of the boundaries of the two solids to impose respect, obtain an eight-way classification of
the faces, create a solid according to the set operation, and reduce the representation to its
minimal form. Of these four steps, the first step is the most difficult. This paper presents and
proves correct a general approach for imposing respect on two boundary representations. The

approach is based on a data-driven, binary form of decomposition.
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Introduction

To date, many representations have been devised for modeling solids. Of these, the boundary

representation technique is most widely used. A boundary representation (BRep) models a

solid by explicitly encoding the bounding surfaces of the solid as a collection of vertices, edges

and faces. Such BReps are frequently modified using regularized union, U*, intersection, Nn*,

and difference, —*. The operators provide a conceptually simple method to construct complex

solids by combining simpler ones.

The basic approach for performing regularized set operations on two boundary representa-

tions can be separated into four distinct steps:

1.

4.

Impose respect on the faces; that is, partition every face of one solid, A, by the boundary
of the other solid, B, so that each of the resulting faces in its entirety is either inside,

outside or on the boundary of B.

. Classify the faces; that is, identify which faces of one solid are inside the other solid,

which faces are outside the other solid, and which faces lie on the boundary of the other

solid.

. Assemble the appropriate faces to produce the result of the desired set operation.

Topologically reduce the result to a minimal boundary representation.

Of the above four steps, the first step—imposing respect—is the most difficult. In this paper,

we present a divide-and-conquer method for imposing respect, based on the use of recursive

spatial decomposition. We also prove the correctness of this method. The presented solution

has several appealing properties:

e It directly manipulates boundary representation models without requiring intermediate

hierarchical data structures.

The approach is purely face-based, so an implementation needs only to keep track of the
partitions of the faces. This greatly simplifies or entirely eliminates the use of intermediate

data structures.
The approach handles all solids uniformly, without making non-manifolds the exceptions.

The classification sets produced by the method allow the simultaneous creation of the
union, the intersection and the difference without the need to copy and reclassify the

original boundaries for each operation in turn.

The approach allows space to be decomposed either in a regular or in a non-regular

manner. A hybrid method that utilizes both decomposition methods improves efficiency.



Presently, spatial decomposition methods are used by various hierarchical data structures
for representing solids and for manipulating solids by set operations. These data structures in-
clude polytrees[Car87], binary space partition trees|TN87, NT86], and extended octrees| ABN85,
Nav86, Nav87, NFB87]. Although similar, our approach utilizes spatial decomposition methods
to manipulate boundary representation models directly.

Section 2 defines solids and their boundaries. Section 3 gives a detailed outline of the four
steps for performing the set operations. The first step and its algorithm are then given in
detail in Section 4. Section 5 discusses the performance of an implementation of the algorithm.

Section 6 contains concluding remarks.

2 The Modeling Domain

A commonly used class of solids is the class of compact 3-D manifolds whose boundaries are
planar polyhedra. Solids in this class are three-dimensional objects that have a finite interior
and a boundary that is a closed two-manifold[Req80]. This class of solids is not closed under
regularized Boolean operations because performing a set operation on two solids with two-
manifold boundaries may not result in a solid with a two-manifold boundary[Req77, RV77,
TR80]. Therefore, we work with a domain which also includes nonmanifolds. We call this
larger class of solids the modeling domain M (see Definition 1). Let H be the class of all
half-spaces bounded by a plane. That is, each half-space H is defined as the point set

H={(z,y,2) €R® | az + by +cz+d < 0}

for some numbers a, b, ¢, d. We consider all finite intersections of half-spaces in X such that the
resulting point set is compact. Then define the class C of simple convex polyhedra. The class
M is now defined as the set of polyhedra obtained from convex polyhedra by a finite number
of regularized Boolean operations, U*, N*, and —*. Note that this class includes nonmanifold
objects as considered by Weiler [Wei86] and by Hoffman, Hopcroft and Karasick [HHK87].

Definition 1 The class of solids M is defined as follows:
1. If SEC then S € M.

2. If S; and Sy are in M and (op)* is one of the regularized Boolean operations U™, N*,
and —*, then S;{op)*S; € M.

8. Nothing else is in M.

The boundary of any solid in M can be partitioned into a set of faces, edges and vertices.
The faces can be defined in terms of maximal faces which are uniquely given by the half-spaces
of H that form the solids of M:
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Figure 1: The maximal face determined by the half-space H is fmax = fi U f2 U f3. Face f4 is
the maximal face for half-space ¢*H.

Definition 2 A maximal face of S at H, where SE M and H € H, is
fmox(H,8) =i (r((S 0" H) NS)),

where r° and i® are the reqularization and the tnlerior operators in the relative topology of bH,

and bS is the boundary of S.

Each maximal face consists of one or more connected components called the mazimally con-
necled faces. A mintmal boundary description is a triple om;, consisting of a set of vertices
V(0 min), a set of maximally connected edges E(om;n), and a set of maximally connected faces

F(0min), defined as follows:

Definition 3 Let S € M. Then the minimal boundary description of S s the iriple 6,in =
(V, E, F) such that:

F = {femax | (3H € H) (fomax C frmex(H, 5))

and femax 15 mazimally connected}; 4)
E = l{eamax | 3f1,f2 € F(0min)) €cmax C °(r°fi N 1°f3)

and ecmax 15 mazimally connected}; (5)
V = {v] (3¢ € E(0min))v € §%]}. (6)

The maximal faces and the maximally connected faces have definitions similar to the defi-
nitions of C-faces and M-faces given by Silva[Sil81]. The difference is that Silva assumes faces
that are closed sets, but for us the faces of F(omin), as well as the edges of E(0min ), are open
sets. Therefore, the faces, edges and vertices are pairwise disjoint point sets. As an illustration,
Figure 1 shows a closed half-space H whose boundary contains the four faces f,..., fs. Of
these four faces in dH, only fi, f2 and f3 have the same orientation as H, and so the maximal
face fmax in H is fy U f2U f3. Within this maximal face there exist three maximally connected

and open faces, namely f1, f; and fs.
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Figure 2: Several different arrangements of faces, edges and vertices of a tetrahedral solid.

Definition 7 Let S € M. Then 0 = (V, E, F) is a valid boundary description for S if:

1. for every face f € F, there is a marimally connected face fonax € Omin such that either

f = femax or [ is the snterior of the intersection of femax with a conver region;
2. for every edge e € E, there are fy, fo € F such that e C°(r°fi Nrofy);
3. for every vertez v € V, there is an ¢ € E such that v € b°;
4. F, E and V are finile sels;
5. the members of F', E, and V are pairwise disjoint;

6. the union of all the faces, edges and vertices is the boundary of S, t.e.,
bs=Vvul JEUVF.

B(S) is the set of all valid boundary descriptions for S. If & € B(S) is a valid boundary
description, then V(¢), E(c), and F(c) are the vertices, edges, and faces of o, respectively.

Consider the various boundary descriptions of a specific tetrahedral solid T'. Figure 2 shows
graphically four different descriptions of the boundary of T. Each face set, along with the

corresponding edges and the vertices, is one of the valid boundary descriptions in
B(T) = {7min, 7', 7", 7", .. .}.

In the following, lower case Greek letters, with exceptions to V, E, and F, denote the ac-
tual solids. Furthermore, lower case Roman letters are arbitrary variables, which are defined

appropriately.

3 Outline of the Algorithm for the Boolean Operations

Consider the spatial locations occupied by two solids S and T, where S = T is allowed. Given
o € B(S) and 7 € B(T), we ask whether the boundaries described by ¢ and T penetrate or
touch each other, and if so, where? If they do, the penetrating faces are subdivided so that
they do not penetrate each other. In consequence, the construction of the result is simplified.

Recall the four basic steps needed for computing the set operations given on Page 1.
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Figure 3: All allowed singularities: vertex-on-edge, vertex-on-face, edge-on-face, edge-on-edge

o We will say that a boundary description respects a solid if each face of the boundary
description is homogeneous in relation to the other solid. A face of F(o) is homogeneous
in relation to solid T if the face is entirely inside T, outside T, or on the boundary of T

That is, no face of F(o) is both inside and outside, or partially on T

In the first step, & and 7 are used to derive new boundary descriptions ¢’ € B(S) and
7' € B(T) that respect each other’s solids. The function that performs this is

Respect(o,7) — [0, 7'].

When o respects T, for example, the faces and the edges of o are homogeneous almost
everywhere in relation to T. Here “almost everywhere” means that singularities such as
those shown in Figure 3 are allowed. Thus, a face or an edge is homogeneous with a few

allowed exceptions.

The following property establishes one of the four conditions necessary for a face to be

homogeneous (almost everywhere) in relation to another solid:

Property 8 Let 0 € B(S), and Tmin € B(T) where S,T € M. Then a face f € F(o)
is homogeneous (almost everywhere) in relation 1o T if one and only one of the following

relaltons holds true:

SINT if fcC (T - UF(Tmin))
fourT if fC (c"T—UF(Tmsn))
fWITHT iff (3f' € F(tmin)) (f C ¥°F) and (Yp € (f N 1)) (N5(p) = Nr(p))
SANTIT iff (3f' € F(tmin)) (f C k°f) and (Vp € (f N f")) (Ne=s(p) = Nr(p));

Nx (p) is the regularized neighborhood of point p with resbeci 1o the solid X; it describes

the local region around p.

Relation fINT holds when the face is inside T' with the exception of some boundary

points of T—namely, some vertices or some edges. Relation foUTT holds when the face



(a) (b)
Figure 4: (a) shows two solid touching. (b) shows two solids overlapping.

f is outside T with the exception of some boundary points of T. If only manifolds were
being considered, then the conditions could simply be stated as f C iT and f C cT.
Since however, nonmanifolds are part of the modeling domain M, the singularities are

tolerated.

Relations fWITHT or fANTIT hold when the face lies completely on the boundary of
T—with some exceptions. The two relations distinguish between the two solids touching

along the face, or overlapping each other along the face. Refer to Figure 3.

So, if exactly one of the relations hold for each face of a boundary description and some
solid, then the boundary description is said to respect the solid. Given that ¢ respects
T does not imply that T respects S. From Property 8, we can say that o € B(S) and
T € B(T) respect each otherif and only if o respects T and 7 respects S.

In the second step of the Boolean operation, the faces of one boundary description are
classified in relation to the other solid. The face classification process partitions the
faces F(x) of each boundary description z, in relation to solid y. This produces four
classification sets Fey(z), Fiy(z), Fuy(z), and Fay(z). The notation Fg(z) is chosen to
resemble the notation used for a fragment (defined later) where R is a region containing
a subset of F(z).

In the first step, Respect returned o’ and 7/. Because o’ respects T and 7’ respects S, each
face of one solid along with the other solid belongs to exactly one of the four relations of
Property 8. Specifically, the Relations (1)-(4) of Property 8 correspond to the relations
that hold for faces of the four classification sets. That is, the eight-way classification of &

and 7—that respect each other’s solids—is given by

Classify([o,7]) = [Fer(0), Fir(o), Fur(o), Far(o),
Fes(r), Fis(7), Fus(t), Fas(7)],

where
Fir(c) = {f€F(s) | finT} Fis(r)y = {feF(r)| fins}
Fer(e) = {f€F(o) | fourT} Fes(r)y = {fe€F(r)| fours}
Fyr(e) = {f€F(o) | fwituT} Fus(t) = {fe€F(r)] fwirns}
Far(0) = {f€F(o) | faNTIT} Fes(r) = {fe€F(r)| fanmis}.
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Figure 5: (a) shows the union of two boxes, o and 7. The faces of the classification sets Fs(r),
F.r(c), Fys(r) and Fyr(0) needed for the union are shown in (b).

Thus,
F(eo")
F(r)

For(ce'YU Fir(e')U Fyr(o') U Far(o'),
ch(T’) U] F,'s(T') U Fys(thU F,,s(‘r').

]

These sets roughly correspond to Tilove’s classification sets XouTS, and XINS, and the
two cases for XONS. They can be thought of as the in, out, with and anti sets.

As an example of face classification, Figure 5 shows the union of two cubes, and face
classification of each face. The six faces of each cube are made to respect the other cube
by splitting the top, the front, the right, and the back faces of the lower cube, and splitting
the left, the bottom, the front and the back faces of the upper cube. In consequence, each
cube will have ten homogeneous faces. Of these, six faces are outside, two faces are on,

and two faces are inside the other cube. The two on faces belong to Fy, sets.

e Once the eight-way face classification is done, we construct a boundary description of the

result of a regularized Boolean operation {op)*, { = ¢/{op)*7’, namely,

Create ((op), [Fer(o"),. '-,Fas(T')]) -,

where, ¢ € B(C) of some solid C = S{op)*T. ¢ describes the boundary of C and consists
of the faces in either F(o') or F(7'). The faces of F({) are all the faces of exactly three
of the eight classification sets of Classify([c’,7']). Which three depends only on the set
operation, as shown in Table 1. The appropriate face sets are indicated by the symbols
@ and ©.

When constructing the BRep (, the face normals of certain faces must be complemented.
For the difference operation, { = o —* 7, the faces comprise the set Fis(r') or Fir(c').
A complemented face covers the same area, but the solid which is on one side of the face
is on the other side of its complement. In the table, the sets with faces that need to be

complemented are indicated by the symbol .



Table 1: The relevant sets of faces for each set operation are indicated by @ and ©. © signifies
faces that should be complemented.

o T
Fer | Fir | For | Far || Fes | Fis | Fus | Fas

oUT || & @ @

on*r o & &

o-"1{ & & O

T-"0 o @ @

o The created boundary description ( resulting from Create is fragmented. That is,  is not
necessarily minimal. In the fourth step of the set operation algorithm, function Reduce

maps { to a minimal boundary description (min:
Reduce(¢) — {min.

This mapping is called topological reduction. Coplanar faces that have at least one
common edge are merged into a single maximally connected face, and adjacent collinear

edges are merged into a single maximally connected edge.

It is now possible to express the composition of functions to compute a set operation. Given
o € B(S) and 7 € B(T), along with a binary set operation {op), the result of applying the set

operation to o and 7 is

o{op)*T = Reduce (Create ({op), Classify (Respect (o, ‘r))))

4 Obtaining Boundaries with Respect

Establishing respect requires the partitioning of existing faces and edges, and the introduc-
tion of new edges and vertices. Whenever a face does not satisfy one of the four relations of
Property 8, the face must be subdivided into two or more faces, so that each face does satisfy
one of the four relations. Instead of viewing the problem as one of partitioning two boundary
descriptions in relation to each other, it can be viewed differently as a problem of partitioning
two boundary descriptions in relation to common regions of space. This way, a face of one
boundary description is compared only to some common region of space and is not directly
compared to the other solid.

Regions, as used here, are point sets that have an interior, a boundary and an exterior,
however, unlike solids, regions need not be closed sets. A region, R, is the intersection of a
finite number of open or closed half-spaces with planar boundaries. The boundary of R is

bR = rR — iR, and so, portions of the boundary of R do not necessarily belong to R.



If, for some ¢ € B(S) and some region R, each face of F(o) is either completely in the

region or completely outside the region, then ¢ respects R.
Definition 9 o respects a region R if (Vf € F(c)) (f C R or f C ¢R).
If o respects R, a fragment is the set of all faces of F(¢) that lie in R, written Fr(c), where
Fr(0) € Fes(0) = F(o).

Observe that a face of F(o) lying on bR may or may not be in the fragment Fr(0), since R need
be neither open nor closed. Similarly, since a face is an open set, the edges and the vertices of

a face lying in R may or may not be in R. Formally, we define fragments as follows:

Definition 10 For a nonemply region R and a o thal respects R, the fragment of ¢ in R is

Fp(o)={f€F(o) | fCR}.

It is not hard to see that the faces of Fr(s) and the faces of F(r) — Fp(7) are pairwise
disjoint. That is, the faces of F/(¢) within R cannot intersect any of the faces of F(7) that are
not in R, and vice-versa. In consequence, an algorithm for imposing respect can be based on
the divide-and-conquer paradigm {Ben80]. A partitioning of space into the two regions R and
¢R, divides the problem into two smaller subproblems.

Consider a finite set of n convex regions R = {Ry,..., R,}, that are pairwise disjoint and
together cover E® along with some o and 7 that both respect each of the n regions. The n

regions of R partition the faces into n fragments,
F(I) = FRI(I)UFRQ(z)U Y FRn(z)l

for z either & or 7. The problem of imposing respect on o and 7 consists of n subproblems of
imposing respect on each of the two fragments of the n regions independently.
We wish to specify an algorithm that obtains respect by splitting regions and fragments. In

particular, the algorithm should produce a sequence

(alelakl)’ (0’2,T2,R2),. . .,(0’", THJRY\)9 ‘e (11)

in which the nth triple is known to contain o, and 7, that respect each other, and where the
ith triple, for 1 < i < n, does not. To map the ith triple to the (i + 1) triple, three operations
are needed:

1. Select some region R € R; for decomposition,
2. select some splitting plane P that intersects R, and
3. partition R and subdivide the faces of Fr(0;) and Fr(7) by P, producing o;4; and 7;4;.

The operations are now as follows:



e First, we select a region. Any region of R; which contains a nonhomogeneous face needs
to be further decomposed and must be eventually selected. The order in which such

regions are selected is arbitrary.

The ideal action is to select a region that has nonhomogeneous faces and not to select
a region that has homogeneous faces. However, distinguishing between such regions is
computationally expensive, and so it is not done. Instead, a region is selected unless it
is plainly obvious that all the faces it contains are homogeneous. The following function
checks four different conditions to determine the existence of respect within a given region

R: )

if Fr(c) =@ and Fr(r) =@

if FH(U) =@ and FR(T) # 1]

if Fr(7) = @ and Fr(o) # O

if Fr(o) = {f}, Fr(r) = {f'} and
k°f = k°f = k°R

L 0 otherwise

FRel(Fgr(0), Fr(1)) = {

L7 A

FRel checks the number of faces of both fragments in the region. Conditions one through
three hold when R is nonplanar and one or both of the fragments is empty. Condition
four holds when R is planar and contains two coplanar and equal faces, one face from
each solid. A zero value indicates that based on the four conditions, the two fragments

are not known to contain homogeneous faces.

o Next, we select a splitting plane for the chosen region. Any violations of respect occur
along the boundaries of either solid. Subdividing the faces of one solid by a plane that
contains a face of the other solid is a step in the right direction, and suggests a selection

strategy in which a face of either solid determines the splitting plane.

Because regions can be either planar or nonplanar, the selection strategy must account
for the region planarity. For a nonplanar region, a splitting plane should contain one of
the faces. For a planar region, a splitting plane should be perpendicular to one of the
faces and pass through one of the edges. This in effect is analogous to cutting polygons
in 2D by splitting lines.

To achieve respect with a finite number of cuts requires a careful selection of a face. Some
faces in a region take priority over other faces. For example, faces that lie on the boundary
of a nonplanar region should not be chosen as long as other faces exist in the interior of
the region. Doing so would result in ill-formed regions that violate the correctness of this
method (this will be demonstrated). This shows that only a subset of the faces constitutes
a set of candidate faces from which a single candidate face can be chosen. Consequently,

four issues have to be considered in devising a splitting plane selection strategy:

1. Given a fragment, what are its candidate faces?

10



Table 2: The face-region and edge-region relations.

fAR | The face is inside the nonplanar region R—although the edges of the face
lying on the convex hull of the face may lie on the boundary of the region.

fA2R | The face lies on the border of the region, and the region is below the face.

FA3R | The face lies on the border of the region, and the region is above the face.

fA4R | The face is in but not equal to the planar region; i.e., f C R.

fAsR | The face is equal to the planar region;i.e., k¥°f = k°R.

eA; R | The edge is inside the region; i.e., e C tR.

eA2R | The edge lies on the boundary of R; i.e., e C b°R. Note that fAsR if and
only if Ve € E(f)eAzR, where E(f) are the edges adjacent to f.

2. Given that both fragments have nonempty sets of candidate faces, which fragment

should contribute a candidate face?
3. Given all the candidate faces, which is the most desirable face?

4. How should the splitting plane be oriented in relation to the candidate face?

To address these issues, we must first establish the relationship between a face and its
containing region, and an edge and its containing region. We define five face-region
relations A; through As, and two edge-region relations A; and A;. The relations are
defined in Table 2. The five face-region relations are pairwise disjoint, and so for any
region R and any face f in R, fA;R and fA; R imply that ¢ = j. The same holds for
the two edge-region relations. Let the face-region indez and the edge-region indez be the
subscripts of A; and A; respectively. Using the face-region indices, the faces in a region
can be grouped into five sets. Similarly, the edges can be grouped into two sets based
on the edge-region indices. The value of Ig(o, 7) is then the smallest face-region index of

any face in that region, where
Ir(o,7) =min{i | fAR for f E(FR(U)UFR(T))}.

The subset of all the faces in R having the smallest face-region index is called the set of
candidate faces, Cp(o,7), defined as:

{1 € (Fr@) U Fr(r)) | fA1aon RY. (12

With the set of candidate faces, the splitting plane selection function can now be stated.

The oriented splitting plane selected to split a region R containing the fragments Fr(o)

11



and Fgr(7), not both empty, is

Plane(f) if fAjRor fAR
Choose(Fr(0), Fr(r)) = { ~Plane(f) if fAsR (13)
Perp(f,e) if fA4R and eA, R, for e € E(f),

where

1. f € Cr(o, ) is the candidate face,

2. Plane(f) is the plane containing f, and oriented so that the plane’s normal vector

points away from the solid, and
3. Perp(f,e) is a plane perpendicular to Plane(f) where
(a) e is some edge of E(f), the set of edges adjacent to face f, and

(b) e does not lie on a boundary of R.

The orientation of the plane Perp(f,e) is arbitrary.

This finishes the discussion on two of the four issues, namely, what are the candidate faces
and how should the splitting plane be oriented in relation to the selected candidate face.
These two issues address correctness. The other two issues, namely, what fragment to
choose a face from and what is the best candidate face, address efficiency. In this paper,
only the correctness issue is dealt with. Details pertaining to efficiency can be found in
Vanecek’s thesis[Van89b).

Finally, we partition the selected region and subdivide the faces of the region by the
selected splitting plane.

Given the plane P as the tuple (a,b,¢,d), where the components are real,
p> = {(Iiy)z) € R3 I az+by+cz+d> 0}

is the open half-space above P, and P¢ is the open half-space below P. Analogously

’

P> = P5 UP and P< = P, UP are the appropriate closed half-spaces.

A plane P that intersects a region R can partition R into regions RN Py, and RN P,
referred to as the region on or above, and the region below P, and labeled Ry and R¢

respectively.

The subdividing is performed by a function
Cut(z,R,P) — 2, (14)

where z is a boundary description that respect the region R, and P is the selected split-
ting plane intersecting R. z' is the resulting boundary description that in addition to
respecting R also respects the regions R¢ = RN P¢ and Ry = RNP>. That is,

FR(Z') = FR< (z') U FRZ(Z').

12



The faces of F(z') are those of F(z), except for the faces of R which are cut by P (a face
f of R that crosses P transversely is indicated by f&@P = (f NP and f ¢ P)), namely:

(F(z) - Fr(z))u

{feFr(z) | fnP=0}u

{fG Fr(z) I fcPlu

{f c(f-"P) | f € Fr(z), f@P, and f' is maximally connected } .

(15)

In the fragment Fr(z'), none of the faces cross P. The three sets indicated in Eq. (15)
are the faces of Fr(z) that do not cross P, the faces that lie in P, and the faces that
result from subdividing the faces that cross P. Each face that crosses P results in two or
more new subfaces in Fp(z’).

In addition to changing the face set of z, the edge and the vertex sets are also changed.
The edges that cross P and that are adjacent to the subdivided faces get cut and new
edges are created from the portions of the faces that lie on P. Let Eg(z) be the subset
of the edge set E(z) with edges that are adjacent to the faces of F(z). The new edge set

E(z') is

(E(z) - Er(z)) U

{e € Er(z) | eNP=@oreCP}u

{¢ C(e—P) | e€Er(z),ENP#@,e¢ P and ¢ is maximally connected } U
{eC(fnP) | f € Fr(z), fBP, and e is maximally connected }

The vertices of V(z') consist of the original vertices of V(z) and the vertices created by

subdividing the edges of Egr(z), namely,

V(z)u{enP | e C Er(z) and eRP}.

With the three operations, the ith triple of Sequence (11) can be mapped to the (i + 1)

triple by a function h, as follows:

(e, 7, R) if (VR € R) (FRel(Fr(0), Fr(7) # 0)

16
(¢',7",R') otherwise (16)

h((a, 7,R)) = {
where

R € {R €R | FRel(Fr(o), Fr(r)) =0},

P = Choose(Fr(c), Fr(T)),

o = Cut(o,R,P),

' = Cut(r,R,P), and
R' = (R-{R})U{R¢,Ry}, st. R¢ = RNP, and Ry = RNPy.

13
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Figure 6: An example of an ill constructed region. (a) shows two solids A and B in a region
marked by dashes and cut by a plane P. (b) shows the region on and above P. (c) shows a
planar region lying both inside and outside B and containing the right face of solid A.

In term of the Function h, Respect is defined as the pair [o,, 7,] corresponding to the triple
(0n, Tn, Ry), with the smallest integer n for which all regions of R, contain fragments that

have a nonzero FRel value. That is,

(On,Tn,Rp) = h"'((a', T, {ES})) and
(VR € Ry) (FRel(Fr(0n), Fr(ta)) > o)},

R t =mi {
espect(o, 7) min [on, ™)

where h"(y) denotes n — 1 compositions of h.
We will now show that for all o and 7 there is an n at which o, and 7, respect each other.
What needs to be shown first is that for any R € R; constructed by h, Fr(c) = @ implies
that R C iS or R C ¢S almost everywhere. Given any region R that is not necessarily

constructed by h,
(Fr(e) =9) = (Vf € F(e)) (fNR = 0),

namely, an empty fragment means that none of the faces of F(¢) lie in R. However, Fr(o) = O
implies nothing about the relation of R and iS. One can contrive an R such that o respects
R, Fr(c) = @, and yet R lies both inside and outside S (recall that the faces are open sets).
Such an ill-formed region is constructed in Figure 6. The figure shows the projections of two
blocks A and B, and two cuts necessary to create the desired region (shown in Figure 6(c)).
The ill-formed region is a planar region that resulted from choosing splitting planes other than

those given by Choose.
Theorem 17 If b*({o, 7, {E*})) = (04,7, R:) for any i > 1, then for any R € R;,

Frlo)=0 = (RCS—UF(a.-)) or (RCc‘S—UF(a;)), and
Fr(n)=0 = (RCT-—UF(T.-)) or (RCc‘T——UF(Tg)).
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Figure 7: A child region R’ that contains more faces than the parent region R.

Theorem 17 states that a region of R that is constructed by h cannot be both inside and
outside a given solid if the solid’s fragment in the region is empty. Once it is clear that an
empty fragment indicates that the region is entirely inside or outside a given solid, it is easy to

show the relation of the faces to the solids.

Corollary 18 If k*((c, 7, {E®})) = (0i, 7, R;) for any i > 1, then for any R € R;,
1. if Fp() = @ and Fgr(o) # O then (Vf € Fr(c)) fINT or (Vf € Fr(o)) fourT,
2. if Fr(o) = O and Fr(r) # @ then (Vf € Fr(r)) fINS or (Vf € Fr(7)) fouTS.

For solids with coplanar and touching faces, a region containing the touching faces cannot
be completely decomposed into regions satisfying Corollary 18. Instead, h produces a planar

and convex region that contains two of the touching faces.

Lemma 19 If k*((o, 7, {E®})) = (0,7, R) for any i > 1, then for any R € R;, if Fr(o) =
{f}, Fr(r) = {f'} and k°f = k°f' then

(fwW1THT and f'WITHS) or (fANTIT and f'ANTIS).
It remains to be shown that h converges, namely that,
(3n > 0) (Vi > n) (hi(z) = Rt (2)).

At first thought, it appears that the size of a candidate-face set Cgr/(0+1,Ti+1) can be
larger than the candidate-face set Cgr(o;, ;) of its parent region R O R'. This suggests that
the child region R’ can have more choices of splitting planes that the parent region R, and
that fragmentation increases not only the total number of faces but also the number of possible
splitting planes. However, this is not the case. Cr/(0i41,7i+1) may contain several faces that
belong to the same maximal face. The number of candidate splitting planes obtainable from
R’ is bounded by the number of maximal faces that cross R’ and not by the number of faces
in the region. The actual number of the unique planes obtainable from the candidate face set
is the same as the number of maximal faces that intersect the region, and is

Ng(o,7) = Z { 1 if(3f € F)f C fmar and fAlR(a,f)R

for 0 otherwise,

15



Figure 8: Fragmentation of a face f,, where f3C fo C fi.

where F = Fg(o) U Fg(7) and the sum is over all maximal faces fpnq, of S and T that also
intersect R.

In the case that R is a planar region, the splitting planes are taken to be perpendicular to
the region and are determined from the edges in the region rather than from the faces. As such
every face is a candidate face. The actual number of splitting planes is the number of maximal

edges that intersect the interior of the region. Thus, for planar regions,

{ 1 if(Je€ E)e C emar and e Ci°R

0 otherwise,

Ng(o,7) = Z

€ma

where £ = Er(¢) U Er(7) and the sum is over all maximal edges emqr of S and T that also
intersect the interior of R.

It is important to note that a face with a face-region index i resulting from the subdivision
of a face with a face-region index j implies that j < i. This is portrayed in Figure 8 which
shows three regions R;, R,, and R3, such that R3 C Ry C R;, and three faces f;, fo, fa. Given
that that faces have fiA; Ry, foA; Ry, and f3Ag Rs, their face-region indices are nondecreasing,
i<j<k

Lemma 20 Let f € Fr(oi) and f' € Fri(ok4+1) where RO R and f D f', and where fA;R
and fA;R'. Theni<j.

We can now show that as more and more regions are created, the amount of work reduces

in that the face-region indices increase, as the number of possible splitting planes decreases.

Theorem 21 Given the sequence {0y, 71,R;),(02,72,R2),... then for all i > 1 and for all
R € R;, one of the following two conditions hold:

1. R € Ri4y, Ir(0i,7) = IR(0i41, Ti41), and Ng(oi, i) = NRr(0i41,Tit1); or
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2. R¢ Riy1 and 3R, Ry € Riy1 where R = Ry U Ry, such that for x = 1,2 ezactly one of
the following conditions hold:

(a) Fr.(0i41) = @ and Fg (1i41) = &;
(t) (Ir(oi, %) = IR, (0i41,Ti41) and Nr(0i,7) > Nr_(0i41,Tis1)); or
(c) Ir(0i,7i) < IR, (0i41,Tiga1)-

Each region in R; either appears in R;4; in which case nothing changed (condition (1)), or is
split (condition (2)). If the region R is split into R; and R, three possibilities arise for each

R, where z =1,2:
2a) R contains no faces. Thus, R, € R;, for all subsequent j.

2b) The smallest face-region index in R, remains the same as in R. In this case, the number

of possible splitting planes diminished from that of R.
2c¢) The smallest face-region index in the R, is higher than in the R,.

This suggests that at some point, the splitting of regions must stop as the decomposition process
runs out of splitting planes and all regions become homogeneous. It follows, then, that from

any o and 7, we can derive some o, and 7, that respect each other.
Theorem 22 Given o € B(S) and 7 € B(T) for S,T € M,
(3n > 0) ((an, T, Rp) = h"*((0,7,{E?})) and (VR € R,,) (FRel(Fr(0,), Fr(7s)) > 0))

The proof follows directly from Theorem 21.

5 Implementation and Testing

The algorithm described in this paper has been implemented in Protosolid, a solid modeler
written in Common Lisp, which runs on TI/Explorer and Symbolics Lisp machines. A descrip-
tion of the details of this implementation is beyond the scope of this paper, but this section
briefly discusses the performance of the implemented algorithm.

Protosolid is a BRep modeler which uses the fedge-based data structure[Van89b, Van89a] to
represent the boundaries of solids. Protosolid’s user interface allows the user to build complex
solids as combinations of parameterized primitives, using set operations. These set operations
were implemented using the non-regular decomposition method described in this paper.

In the implementation, we found that the most efficient performance was obtained by a
hybrid approach which combines the non-regular decomposition strategy described in the pre-
ceding sections with the regular decomposition strategy described below. The hybrid approach
uses regular decomposition for the first few levels of the divide-and-conquer algorithm, with

non-regular decomposition at all subsequent levels.
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The regular decomposition strategy simply partitions an axis-aligned parallelepiped region
into two equal-sized parallelepiped subregions, irrespective of the locations of faces within a
region. The initial region is taken to be the smallest such parallelepiped that encloses both
solids (i.e., easily determined from their extents). For a region R = [Zmin, Zmax] X [Ymin, ¥max] X
[#min, Zmax) baving the dimensions (6z,8y,62) = (Zmax — Zmin, Ymax — Ymin, Zmax — Zmin), and
the center point ¢ = (min + max)/2, the splitting plane selection function based on regular

decomposition can be defined as

(1,0,0,~z.) if 6z > max(éy,éz)
Choosez(R) = ¢ (0,1,0,—y.) if 6y > 6z ' (23)
(0,0,1,—2.) otherwise.

The hybrid decomposition method is controlled by two parameters, ¢; and ¢5. ¢; controls
the maximum depth that regular decomposition may proceed to, and ¢, controls the minimum
size of the fragment pairs that can be decomposed by regular decomposition. The overall
performance can be tuned by setting these parameters globally. The hybrid selection strategy

can be expressed as the following function:

Choose,(R) if depth(R) < ¢; and
Choose(FR(a'),FR(r)) = €2 < max(IFR(a)l, |FR(T)|)
Choose, (F r(o), FR(T)) otherwise,

where Choose, is the function defined in Eq. (13), and Choose, is the function defined in
Eq. (23). In practice, ¢; = 15 and ¢, = 20 were found to give good overall performance. That
is, it worked well to use regular decomposition on regions that contained more than 20 faces
and were a result of at most 14 such previous cuts, and non-regular decomposition on all other

regions.

5.1 Robustness

To examine the robustness of the algorithm, we ran it on an example proposed in [HHKS87).
The following steps were performed repeatedly, starting with n = 0 and with a unit cube S,

centered at the origin:

1. Increment n. Let'S, = S,_; N* S!,_,, where S, _; is a copy of S,_; which has been

rotated 45° around the z-axis.

2. Increment n. Let S, = S,_; N* S/, _,, where S, _y is a copy of S,_;1 which has been

rotated 45° around the y-axis.

3. Increment n. Let S, = S, N* S),_,, where S.,_, is a copy of S,_; which has been

rotated 45° around the 2-axis.
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Figure 9: An approximation of a sphere, generated by twelve successive rotations and intersec-
tions of a unit cube. The solid has 3034 faces, 8236 edges and 5204 vertices.

These steps were performed repeatedly for a total of 12 intersections, resulting in successively
closer approximations of a sphere.

Figure 9 shows the BRep of the solid S;; resulting from 12 intersections. To appreciate
the size of this example, the amount of storage used to create Sy, included S itself along
with two fragmented copies of Syj, for a total of 24,500 faces, 55,066 edges, 109,912 directed
edges, and 30,523 vertices. In addition, 16,135 points and 3,065 planes were needed. This is
a total of 239,201 topological and geometrical entities. Although our Explorer 11 could handle
Sy through S;; without problems, it thrashed during the creation of S)2, taking about half its
time swapping. For this reason, we did not attempt to compute S;3.

The results of the 12th intersection matched those produced by Karasick’s robust algorithm
[HHK87]. The good performance of our algorithm on this problem was due to careful imple-
mentation and the inherent properties of the decomposition process, not through enumerating
the singularities as was done in [HHK87]. For example, we used the standard techniques of
rounding and epsilon comparison, and in addition we separated the geometry from the topology
so that all the solids shared a common, consistent global geometry. We are currently involved
in further research on the issue of robustness.

5.2 - Efficiency

There is no agreed-upon method for testing the efficiency of geometric algorithms dealing
with three-dimensional solids. This is partly due to the lack of a good notion of how to generate

random polyhedra for average-case performance measurements. Worst-case performance mea-
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Table 3: Computation of the solids S; through S,.
decomposition with ¢; = 15 and ¢z = 20. The table gives the sizes of the solids, and the times
(in seconds) for the classification, reconstruction and topological reduction steps.

Classification was done using hybrid

Time to After classification: Time to Time to Resulting solid (S,)

classify | Faces Edges Vertices | reconstruct reduce Faces Edges Vertices

0 <01 6 12 8

1 0.5 22 44 24 < 0.1 < 0.1 10 24 16
22 44 24

2 0.5 38 70 34 < 0.1 < 0.1 18 36 20
35 67 34

3 1.7 82 158 78 0.2 < 0.1 34 84 52
74 146 74

4 3.8 150 303 155 0.4 6.1 58 144 88
162 322 162

5 5.9 222 450 230 0.8 0.2 98 226 130
244 484 242

6 9.8 365 749 386 1.3 0.3 162 406 246
381 787 408

7 19.7 674 1390 718 2.7 0.5 266 676 412
670 1389 721

8 334 | 1182 2428 1248 48 0.9 434 1076 644
1068 2252 1186

9 62 1797 3838 2043 9.6 1.5 710 1778 1070
1771 3796 2027

10 116 3312 7175 3865 19.5 2.7 | 1150 2088 1840
3317 7151 3836

11 208 5550 12096 6548 53 11.6 | 1866 4880 3016

5449 11907 * 6460

12 826 9553 20983 11432 832 11 3034 8236 5204
9217 20352 11137
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Figure 10: The top faces of two fragmented 4-fingered fans after boundary classification. Fan
(a) resulted from the use of non-regular decomposition, and Fan (b) resulted from hybrid
decomposition with ¢; = 15 and ¢ = 20.

surements are generally easier to obtain. Below, we examine the performance of our method
on problems which present two different kinds of worst cases.

The first example is the problem of computing the solids S;, S5, . ..S;12 described in Section
5.1. This is a worst-case problem for non-regular decomposition, because the problem decom-
position produced by splitting along the faces of these solids results in unbalanced subproblems.

Table 3 shows how much time the hybrid algorithm took to produce each solid Sy, along
with the number of faces, edges, and vertices of S,,. These numbers do not include the time
required to perform the rotation, nor the time required to delete and garbage-collect the old
solids. All time values indicate real time.

The second example is a case where the union of two solids contains a quadratic number of
faces—so0 that achieving respect requires at least quadratic time regardless of what algorithm
is used. The solids used were two n-fingered fans, positioned in the z = 0 plane in such a way
that every the finger of one fan intersected every finger of the other. Pairs of n-fingered fans
were generated and unioned using both the non-regular decomposition method (i.e., ¢; = 0 and
¢z = 0o0) and the bybrid decomposition method with ¢; = 6 and ¢; = 15. To see how differently
the two methods fragment the faces, Figure 10 shows the top faces of two 4-fingered fans after
boundary classification. Fan (a) resulted from the non-regular decomposition method, while
Fan (b) resulted from the hybrid decomposition method.

The performance measurements for this problem are given in Tables 4 and 5. In this case,
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Table 4: Computation of the union of two n-fingered fans. Classification was done using non-
regular decomposition (i.e., ¢; = 0 and ¢z = o0). The table gives the sizes of the solids, and
the times (in seconds) for the classification step.

Before classification: Time to After classification: Result of union:

n | Faces Edges Vertices | classify | Faces KEdges Vertices | Faces Edges Vertices

2 6 12 8 0.75 41 82 43 26 78 48
6 12 8 39 165 86

3 8 18 12 1.87 85 172 89 50 160 96
8 18 12 81 165 86

4 10 24 16 2.98 146 297 153 82 270 160
10 24 16 139 283 146

5 12 30 20 4.67 221 448 229 122 408 240
12 30 20 213 433 222

6 14 36 24 6.96 314 637 325 170 574 170
14 36 24 304 618 316

7 16 42 28 9.55 421 852 433 226 768 448
16 42 28 409 829 422

8 18 48 32 13.10 546 1105 561 290 990 576
18 48 32 531 1075 546

9 20 54 36 16.80 687 1389 704 362 1240 720
20 54 36 669 1353 686

10 22 60 40 21.61 843 1703 862 442 1520 882
22 60 40 824 1666 844

11 24 66 44 26.94 | 1013 2044 1033 530 1825 1056
24 66 44 993 2005 1014

12 26 72 48 33.78 | 1202 2424 1224 626 2160 1250
26 72 48 1179 2379 1202

22




Table 5: Computation of the union of two n-fingered fans. Classification was done using hybrid
decomposition with ¢; = 6 and ez = 15. The table gives the sizes of the solids, and the times
(in seconds) for the classification step.

Before classification: Time to After classification: Result of union:

Faces Edges Vertices | classify | Faces Edges Vertices | Faces Edges Vertices

2 6 12 8 0.79 41 82 43 26 78 48
6 12 8 39 79 42

3 8 18 12 4.05 150 304 156 50 168 104
8 18 12 153 311 160

4 10 24 16 6.22 231 472 243 82 278 168
10 24 16 233 475 244

5 12 30 20 16.50 539 1106 569 122 437 269
12 30 20 608 1248 642

6 14 36 24 22.00 687 1389 704 170 599 361
14 36 24 767 1556 791

straight non-regular decomposition has no difficulty producing balanced subproblems, so it

performs better than the hybrid decomposition method. However, this is a worst case for both

decomposition methods, because the subproblems have to be decomposed all the way down

to the bottom in order to produce the quadratic number of faces in the resulting solid. Both

methods do better in cases where the resulting solid has fewer faces.

6 Conclusion

Regularized set operations as can be thought of as involving four basic steps, of which the first

(and most difficult) is to impose respect. In this paper we have presented a divide-and-conquer

method for achieving respect, based on non-regular decomposition of space. This method has

the following major features:

1. The method is purely face-based. Only face sets need to be manipulated. This is a direct

consequence of partitioning a region into two subregions, called a two-way decomposition

method, rather than into three regions, called a three-way decomposition method.

For non-manifold objects, the use of the two-way decomposition method provides respect

almost everywhere, in the sense that the obtained boundary descriptions contain faces

that are homogeneous in relation to the other solid except possibly at finitely many points.

At such points, it cannot be consistently determined if an edge or a vertex that touches

the other solid is going to be incorporated into the touching face or not. This is illustrated
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Figure 11: Both figures show a cone and a block. In (a), the left face of the block is merged
with the apex of the cone. In (b}, it is not. '
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Figure 12: Solid circles indicate where a vertex is merged into a face. An open circle indicates
where a vertex is not merged.

graphically in Figure 11. This figure shows two examples of a cone touching a block. In
the first example, the splitting plane causes the left face of the block to lie in the same
region as the cone, and so the left face of the block is subsequently made homogeneous
in relation to the cone. But the second example shows that a split can cause the block
and the cone to separate so that the left face of the block does not merge with the apex

of the cone.

The example of Figure 11 suggests that a more informed splitting plane selection strategy
that properly chooses a splitting plane might be capable of producing respect everywhere.
However, this is not possible. Consider a similar example shown in Figure 12. Both
orientations of the splitting plane prevent one of the two faces lying in the splitting plane
from merging with the touching vertex. The open circles mark the vertices that are not

merged into the touching face.

As a consequence, for non-manifolds the two-way decomposition method provides respect

everywhere except at finitely many points, and requires a post-processing step to merge
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Figure 13: The first four cuts performed by a regular decomposition method,

the four singular cases illustrated in Figure 3. This post-processing step can be done
efficiently by using the plane-sweep method[PS85).

. With the use of a nonmanifold boundary representation such as the fedge-based data

structure [Van89b), all solids are handled uniformly.

. The eight-way classification allows the nondestructive construction of A U* B, AN* B,

A -" B, and B —* A simultaneously without reclassifying for each operation.

. As discussed in Section 5, the splitting plane selection strategy used in Choose can be
augmented with a simple regular-decomposition method. Initial cuts can be selected so
that a minimal rectilinear region enclosing both solids is successively cut in half without
affecting the correctness of the method. This is illustrated in Figure 13. Note that by
itself, regular-decomposition is not sufficient for imposing respect. Nevertheless, mixing
regular-decomposition with the input-directed method in general reduces the number
of generated regions. Paterson and Yao demonstrated that while a binary partition that
restricts every splitting plane to contain a face can be quadratic in size, a binary partition

without the restriction may exist that is only linear in size [PY89, Example II].

Appendix: Proofs

Proof: [of Theorem 17] The proof is given only for o; since the proof for the second

implication (i.e., 7;} is identical.

Suppose by way of contradiction that the implication is false, and let F = |j F(s,).
Then

~(Fr(0;)=@ = (RCS-F)V(RCc'S-F))
~(Fr(oi) #@V(RCS-F)V(RCc"S - F))
Fr(e:)=@A(R¢S-F)A(RZ c"S—F)
FNR=OA(RN(cSUF))#BA(RN(GSUF))#0
FNR=OA(RNS)#ODA(RNIS)# 0.

8 4 4 4
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That is, R does not contain any of the faces, but it is simultaneously inside and
outside S. This can hold only if R crosses the boundary of S (i.e., RNbS # O).
However, since FN R = @, R can cross bS only through edges or vertices. Now,
since R is a convex region, it can only cross bS at only one vertex or at only one
edge. If R crosses bS at a vertex, R must be a subset of a line passing through the
point coincident with the vertex. If R crosses bS at an edge, R must be a subset of

a plane passing through the line containing that edge.

So suppose without loss of generality that R ¢ R;_;1. Then there must exist some
region R’ € R;_; for which

o FRel(Fri(0i-1), Fri(7i-1)) = 0; and
e R=R' NP, or R= R'NP», where P = Choose([Fr:(ci-1), Fr(ri-1)]).

Now consider the two possible ways that R can cross bS:

1. R is a subset of a line. Clearly, R’ is a subset of a plane (i.e., a planar region)
since R’ contains faces. Furthermore, at least one face in R’ contains an edge e
for which eA; R', since otherwise, every face f would be fAsR’, and R’ would
no longer be a candidate for decomposition. Since R’ is planar, to get R to be
a subset of a line means that R = R' N SP5, and P = Perp(f,¢), where € lies
on the border of R’, namely, eA; R’. But this is contradicts the condition of
Choose, and so R cannot be a subset of a line.

2. Ris planar. Without loss of generality, assume that R’ is non-planar. Clearly,
R is the result of R’ NP>, and since R’ is non-planar than the face
-region index of each face in R’ is less than four. To get the desired region
R, the candidate face f in R’ must have the face-region index equal to two
or three, and there must be other faces lying in the interior of R’ (i.e., with
a face-region index of one). However, this contradicts the definition of Choose
which uses a candidate face from the candidate face set consisting of faces with

the minimal face-region index.

The above two cases (based on the premise that the implication of the theorem is
false) derive contradictions thereby showing that the implications of the theorem

are true. O
Proof: [of Corollary 18] From Theorem 17,
Fr(r)=0= (RcT-|JF()) or (RCcT- UFm).

Since Fp(o) # O, then all its faces must be contained entirely in R. So using

Property 8, consider in turn, the two disjuncts of the above consequent:

VfE€Fr(e)f CR) = VfeFa(o)(fcT-|JF(r)
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= Vf € Fr(o)fINT, or
Vf € Fr(c)(f CR) = Vf € Fr(c) (f ceT-J F(r))
= Vf € Fr(e)fOUTT,

which completes the proof. (n}

Proof: [of Lemma 19] Assume the antecedent. Since k°f = k°f’, then f C k°f’, and
f! C k°f, which means that

Vp € £ f'(Ns(p) = Nr(p)), or (24)
Vp € £ 0 f'(Nees(p) = Nx(p))- (25)
Now, if Eq. (24) holds, then fwiTHT and f'WiTHo. Otherwise, if Eq. (25) holds,
then fANTIT and f'ANTIo. D

Proof: [of Lemma 20} Since 24 = Cut(zi, R,P), Fri(zk41) is either Fr(zi41) NP
or Fr(zg41)N P>.

Assume the former. From Eq. (14), the region on or above P consists of the faces
of three sets, that are correspondingly the faces that do not cross P, that lie in P,
and that result from faces crossing P. Of these, only the faces lying on P change
their face-region index when they become part of R>. The others, not lying on P
are not affected, and so their face-region index does not change. Therefore, i = j.
For the faces that do lie on P, they migrated from the interior to the boundary.
Therefore, i < j.

Assume the latter. The same line of reasoning follows as the former case with the
exception that there are no faces on P. Therefore, each face of the region below P

maintains the same face-region index. =]

Proof: [of Theorem 21] Proof by strong induction on the regions of R;.

Base Case: Fori =1, Ry = {Es}. So, E® ¢ R, and E® = R, U R for some
R<,R> € Ry. Now, the candidate face f € Cgs(01,71) has fA1E3 and lies on
P. This means that f, as well as all the other faces lying on P, fall in Ry. Now
assume, without loss of generality, that the candidate face f is in F(02). It needs

to be shown that condition two holds for both regions R¢ and R». °*

First, consider R¢. Since S is a solid (with finite volume), SNR¢ # @, which means
that Fr (02) # @. According to Lemma 20 Igs(o1,11) = Ir (02, 72). However,
f is in R>, so the candidate-face set for R¢ is smaller by at least one choice of

splitting plane. Therefore, condition two holds for R¢.

Second, consider R . Since fAzR;, then according to Lemma 20, either Igs(oy,71) =

IR, (02,72) = 1 and so there are some faces that are not contained in P which
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means that the candidate-face set for Ry is smaller by at least one choice of split-
ting plane, or the face f (or other faces on P) is the only face in Ry and so
Igs(o,n)=1< InZ (02, 72) = 3. Therefore, condition two holds for R .

Induction Hypothesis: Assume that for some k, £ > 1, and for all j, 1 < j < k, the
two conditions of the theorem hold.

Induction Step: Given the sequence of triples { (0%, 1';,,72;;)}:__1,
sequence is defined by choosing some region R € R; for which FRel (Fg(m,), Fr(n )) =

the next triple in the

0, selecting some splitting plane P by Choose, and creating the regions R = RNP,
and R> = RN P, along with the appropriate fragments.

If there is no region R for which FRel is zero, nothing changes. That is, Re41 = Ry,
and by the induction hypothesis condition one holds for all R € R;.

So suppose that there is some region R € Ry for which FRel is zero.

All the other regions R’ € (Rx — R) appear unchanged in R4, so condition one
holds for each region R'.

Since Ris split into R¢ and Ry, R € Ry 41, so it remains to be shown that condition
two holds for R.

First, consider the region below P, namely R, and take each of the three conditions

in turn:

(a) Since the candidate face lies on P, it belongs to Ry and not R¢. If there all

other faces lie in Ry, the region R is void of any faces.

(b) Given that the region R contains some faces, Lemma 20 states that each
face must have the same face-region index as its parent face in R. Thus,
Ip(oi,7) = Ir (0i+1, Ti41). Furthermore, since all the faces of R that lie on
P belong to Ry, the maximally connected faces on P do not intersect Rc.

Thus, Ng(o;, T.') > NR< (U.'.H, Ti+1)~

(c) Lemma 20 shows that this condition cannot occur.

Second, consider the region on and above P, namely R, and take each of the three

conditions in turn:

(a) Since the candidate face of R lies on P, the face belongs to R», and so the

region contains at least one face. Therefore, this condition cannot occur.

(b) For this condition to hold, not all the faces with the smallest face—regionb index
(i.e., faces of Cr(o+, 7)) can be coplanar. Since if not, than no matter what

face is selected,

CRr,(0141,Te41) C Cr(ok, 7) and Cr, (0141, Te41) # O.
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(c) For this condition to hold, all the faces in R with the smallest face-region index

(i.e., faces of Cr(oi,7:)) are coplanar and lie on P. All the other faces (i.e.,
those not in Cr(o+, 7¢)) must have a larger face-region index. The faces lying
on P all increase their face-region index in Ry. Therefore, all the faces of R

have a face-region index larger than Ig(o%, 7i).

This proves that the two conditions hold for all { > 1 and for all R € R;. u]
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