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ABSTRACT
"An Analog Tracking System"”

by Andrew Hervert

This paper investigates the application of classical PID
control laws to the special case of an analog tracking system.
Through a step-by-step development of this tracking system,
several fundamental properties of general PID control are
highlighted. A broad class of circuits is shown to satisfy the
PID transfer function, which leads to a discussion of performance
objectives and error considerations. Once the design has been
completed, the performance of the tracking circuit is analyzed in
a variety of scenarios. Three examples verify the concepts

presented and illustrate the advantages of PID control.
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INTRODUCTION

The following discussion is an introduction to Proportional
Integral Derivative (PID) control as used in tracking syétems.
The forthcoming development of a tracking computer should lead to
an intuitive grasp of general PID control. The reader should be

familiar with basic systems terminology and methods.

This report was produced through a combination of three
microcomputer programs. Framework II handled all word
processing. ProDesign II generated all diagrams and equations.
Numerical computations for the examples werelperformed on MathCad

version 1.1.

This research was made possible through the Systems Research

Center of the University of Maryland at College Park.






A GENERAL TRACKING SYSTEM: DESCRIPTION AND CONSTRUCTION

The primary aim of this paper is to develop and investigate
an analog tracking system which implements the Proportional
Integral Derivative (PID) method of process control. In
developing such a system, the characteristics and properties of
general PID control should become clear. Simply stated, tracking
is a specific control application which involves matching the
output of a given system to its input. Tracking systems are
useful wherever a process or plant must adjust to changing
external conditions. These external changes may be intentional
or unintentional and may bé either abrupt or slowly time varying.

A good example of a tracking system in just this setting may
be found in the navigation system of a large ship. The Captain
wishes to change the ship's velocity from A to B. The tracking
system initiates and monitors this intentional change until the
ship's actual velpcity matches the Captain's desired velocity,

B. The ship is also subjéét to various unintentional external
influences such as ocean currents, winds and similar
unpredictable conditions. The tracking system must take these
perturbations into account and make adjustments accordingly.
Clearly intentional and unintentional inputs are fundamentally
different both in source and effect; intentional inputs must be
tracked as closely as possible while unintentional inputs
robustly overcome. This paper will consider only applied inputs

in designing the tracking circuit.



Elements of a Tracking System

No matter how simple or complex, any tracking system (less
external perturbations) can be modeled in the following general

manner:

INPUT 7 _ OUTPUT
Y P(s) H(s) | v
us)  —1 (s X(s) (s)

Figure 1: General Tracking

With system transfer function:

_ Y(s) _ PH
W) = w5~ 7 1opm

The system input function, U(s), represents any arbitrary
transformed input function, while Y(s) is the transformed output

function, also called the system output.

The "system function," H(s), is a mathematical model of the
process to be controlled. Though assﬁmed given, His) may be very
difficult if not impossible to find. For the lardge ship, even a
modest approximation to H(s) would be of high order. For ease of
calculation, Hi(s) will rémain manageably.small in the following
discussion. This is not a serious restriction as a large number
of processes can be modeled adequately through a lower order
system function.

The heart of any tracking system lies in its "compensator

function," Pl{s) (Oppenheim, 696). Operating on the error signal,

E{s), Pl(s) governs how fast and in what fashion the output tracks



the applied input. Pl(s) generates a compensated input, X(s).
X(s) may justly be considered the controller's "improved" version
of the input to the process. The succeés or failure of the
entire system rests in the design of P(s). A suitable definition
for a successful controller will be considered later.

Note that tracking as defined need not necessarily be one to
one; tracking to within a multiplicative constant is completely
acceptable. Given steady-state output of 1/K in response to a
unit step input, simply inserting an amplifier of appropriate
gain, K, at the output of the compensator returns one to one

tracking to the entire system:

INPUT _4;@9 N _. OUTPUT

us) P(s) K H(s) ¥(s)

Figure 2: Tracking with Amplifier

The system transfer function now becomes:

Y(s) PKH
U(s) 14+PKH

I

2y Us) =

Both transfer functions, (1) and {2), are of the same

functional form, hence both are trackers, the latter being one to

one.



The slightly generalized definition of tracking described
above also generalizes the region of stability in the complex

plane to include the origin.
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PID Control Description

For PID control, the compensator function, Plis), is also

called the PID control equation and represents a transfer

function (Refer to Figure 1):

As this name suggests, Pls) is of second order and
superficially resembles the differential equation describing the
classical RLC circuit. For this reason, the PID method is often

referred to as the "classical" approach.

In the time domain,

t

(4 x(t) = Pe(t) + 1 | e(T)dT + Dacite(t)



Which transforms to

(5) X(s) = PE(s) + ?IE(S) + Ds E(s)

in the frequency domain.
Therefore equation (3) may be written,

6)  pg) = —2— = P+——SI—+ sD

In the above equations, P, I, and D are control constants

associated with proportion, integration, and differentiation
respectively. These constants control various aspects of system
output and may be tuned to produce a wide variety of desired
response curves.

Notice that P(s) comprises terms which are linearly
independent; this has significant physical implications. A PID
controller may bé>considered a linear combination of simpler
controllers. For example, a full PID controller may be
considered a "P + I + D", "PI + D", or "P + ID." Thus, any
controller {and assoéiated pharacteristics, good or bad) may be

completely removed simply by setting its control constant to

zZero.



Logic Undeflying a PID Controller

The reasoning behind the PIDrcontroller is intuitive and
easily understood. The general PID and all related controllers
operate on an error signal genefated from the output. Each |
element in the controller reacts to a different characteristic of
this signal. In a well-tuned circuit, each linearly independent

component complements the others, contributing uniquely to

improve system tracking.

_— [ngut
— = - Qutput o =
. >~ ‘_’_’/
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/‘_——‘-\
— e

Figure 3: Error and its Derivative

The proportional portion of a PID controller uses the
instantaneous value of error shown in Figure 3. In the proposed
circuit of Figure 5, this error becomes a voltage sourc;.driving
the controller. Since negative feedback is used, the P
controller opposes any difference between input and output (i.e.
error) and works t§ minimize this- difference. The result is
eventual tracking:; when the errorvbecomes zero (or even merely
constant) the P controller is "satisfied" and no longer strives
to correct the output.

The integral part of the controller works very much like its
proportional counterpart except that the entire history of the

error function is used to track the input function as opposed to



'merely the instantaneous error (Figure 4). Operating on this
Weighted error signal, the I controller reacts more siowly to
higher~frequency inputs than does the P controller. 1In this
sense, an I controller might well serve to eliminate the
undesirable external perturbations affécting the large ship
mentioned earlier.

The derivative controller, modeled by an inductor, functions
guite differently than its cousin controllers. Unlike the
capacitor found in the I-controller, the inductor acts strongly
to control abrupt, high-frequency inputs. This will be evident
in the D-controller's reaction to the unit step input.

In short, the PID is a combination of quite different
controllers. The integrator performs best in a slowly time
varying setting as in the slow wearing of a gear with age. The
D-controller finds use in controlling abrupt events such as
governing a fracture of the same gear. The proportional element,
in situations it can govern, generally serves equally well for

all frequencies.

Construction of a PID Controller

Having identified P{s), the next step is to devise a circuit
which generates P(s), the PID controller's transfer function.
All of the preceding discussion would be meaningless if such a

device could not be built to suit.



As a first attempt at constructing a PID control biock,
recall the similarity of equation (4) to the series RLC
differential equation. Possibly an RLC circuit might generate
P(s) as defined above.

1
R .L 1
W—E 1S
[

E(s) R X(s)

Figure 4: Series RLC Circuit

In this case:

R+ R L 1 1
(7r~*_l___ - _Es) _ 1T 2 b og—— 4 .
P(s) X(s) R R CR_ s
2 2 2
Where,
R,+ R
(8) p = -t R R — 1 D = L
R, CR, R,

One sees immediately that this circuit won't work. Input,
E(s), and output, X(s), are reversed, and there the similarity of
P(s) to an RLC circuit ends. As it turns out, no combination
consisting solely of RLC elements (i.e. passive elements} will
work. A different kind of circuitraltogether is needed.

Recall the basic transfer function of an inverting

operational amplifier:

za- >
E(s) X(s)

Figure 5: Inverting Amplifier



This is very promising. Taking this idea a step further, a

series of n operational amplifiers in series might appear so:

yA VA . Z.
rz—l fz—l—@ﬁéﬁ
x(

1] L 3] L

s)

Figure 6: n Inverting Operational Amplifiers in Series
This construction generates the transfer function:

From here, any number of configurations may be assembled
which satisfy the compensator function, Pl(s). Any P, PI, PD, ID,

or higher order controller may similarly be built.

A simple examplelis the following:

R sL sc RO

Ry [,

B(s) A > Wh———> X(s)
' L 1

_ R _ -
¥here: P = }21 I = IQI D R.C

1

A more complicated circuit might likewise appear:

1
R, sC, R. sL,

iwwh s, M-I —
s>




Note that the control constants P, I, and D can never be
negative as this would require negative-valued circuit elements.
This is not inconvenient; for fracking applications considered
below, only positive constants are useful.

It is worth mentioning that the above and all similar
considerations which involve securing "real" components do not
exist in the digital/discrete domain. Negative and purely
imaginary components are available in digital form. There are
many advantages in using a computer to solve control problems if

one is willing to work in discrete time.

An Analog Computer

Circuits like those described above now make possible a
programmable analog computer implementing P(s), the sole function

of which is to track input functions.

P I D
PN & Removeable Process
¥(s) EEEE Compensat or ———% - !}1( ) F—“——
Us) | Block [}_ {] Y(s)

Figure 7: Analog Computer

This computer is programméble in the sense that the values
of P, I, and D are at any instant the "program" contained in the
computer's memory. The values of these control constants may be
changed depending on the particular process attached to the

compensator block.



Testing Considerations and Obijectives

Because the elements comprising a PID controller are
linearly independent, it make sense to test and compare the
responses of each constituent controller building up to andr
including a full PID controller (that is: P, I, D, PD, PI, ID,
PID). 1In this way, higher order controllers may be
quantitatively compared to lower order controllers.

To evaluate each controller, a unit step input will be
applied. Two important reasons make the unit step function a
sensible choice. First, the unit step response completely
defines any linear system's response to an arbitrary input.
Secondly, the resulting system output immediately reveals a
particular controller's ability (or inability) to track a given
input, something its unit impulse response does not provide quite
so readily. On the flip side, the unit step is an idealization
and not physically'attainable. The unit step input will produce
some unexpected effects in the output, especially at time t=0.
{See Appendix 2.)

In order to rate and compare the success of different
controllers as well as to compare the same controller operating
under varying controller settinés, a "good" fesponse must be
-defined. Such a definition would ideally be applicable to any

controller governing any process.



To begin, one broad requirement for a good respohse is that
it converge to within a multiplicative constant ofjthe applied
input. This precludes any possibility of instability. As shown
earlier, an amplifier could be attached to the output of the
compensator to provide one to one convergence, if needed.

There are many ways by which to evaluate the system output
of a given controller. Ahstraightforward approach is simply to
evaluate the absolute value of the error in system response.
Earlier the error function, E(s), was defined as the difference
between the applied input, Ul(s), and the resulting output, Y(s).
A definition for a good response may be based on this error. Let

an Error Criterion, FE, be defined,

o
(11)  E = f!e(t) |dt

0

Intuitively, a value of zero for Eysignifies a perfect
response. Conversely, if E tends toward infinity, the response
is not stable. Evidently this definition incorporates the
aforementioned convergence requirement. The lower the value of
E, the better the response.

There are undoubted;y many, more sophisticated possibilities
for rating a given response curvé; however, for the purposes of
this discussion, the above definition will suffice.

As a last general restriction, assume all controller "knobs"
to be set at time t=0 and not allowed to vary thereafter. Here

simplification is the main motive, though one could easily



imagine intelligently time-varying control conétants as a
tremendous aid in controlling a process (i.e. P = P(t), I = I(t),

etc.).

Controller Analysis

Having arrived at an appropriate input function, the unit
step, and having defined a rating system by which to compare
various response curves, E, the time has arrived to thoughtfully
investigate a series of related controllers, ranging from no
control to a full PID controller. For each controller, several
important results will be tabﬁlated. These results include the
frequency and time responses as well as deneral system response
characteristics. In this way one might quickly note similarities
and differences betﬁeen the successive controllers.

The three examples which follow use fairly representative
lower—order processes and should give a good indication of the
typical response curves associated with each controller.
Solutions for the first two examples are given in general form,
that is, no specific values are assigned to the control
constants, P; I, and D. In . the third example, the control
constants are set equal to 6ne and then solutions are obtained.
In general, the error function is a function of the control
constants and may well be written: el{t) = el(t,P,I,D). For this
reason, the specific values for the error criteria will be given

only for the third example where P, I, and D are assigned actual

values (P=I=D=1).



Example 1: Zeroth order process.

X(s) Y(s) H(s)= 1

Input: Unit Step Function.

Steady State Response”

Controller Amplifier
Type ] Stable I Final Value | Required

| | |

Open Loop | Yes | 1 | No
| | l
| l P [

P | Yes | ————— | Yes
| I P+1 |
I I |

I I Yes | 1 | No
| I |

D | No | )] | N/A
| | |
| | P |

PD | Yes | ———— | Yes
| ] P+ 1 I
l | |

ID - Over Damped | Yes | 1 | No
| | I

ID - Critically Damped| Yes | i | No
- | |

ID - Under Damped | Yes | 1 | No
I | |

PID - Over Damped | Yes | 1 | No
| | |

PID — Critically Damped] Yes | 1 | No
I | |

PID - Under Damped | Yes | | No

Frequency and time responses for this example follow.



Example 1 - Frequency and Time Responses 1 of ¢

ctrl | Y(s) | y(t)
| 1 I
Open | - | u(t)
t S l
l P 1 I p
p l ....................... ] L.l(t) .......................
| P+ 1s I P o+ 1
! I i -(I t)
I | | ult) i1 - e

l 1 ‘ -
b | i

| 1 | b

! s+ | u(t) e

| D |

| | S(pe1y

| P + sD T £
PD | l 1 D f

| s (sD + (P + 1)) | (L) == ip + e

‘ | P+ 1

| p + e I ................ t’
PL | S | 1 P+l

| ] U(t)' 1 m e e

| l P+ 1

| |



Example 1 - Frequency and Time Responses 2 of
Ctri | Y(s) l y(t)

| |
l P
: I | : 1 a t bt
! + D s I out) i1 4 e e - e where:
I s i D (a - b) :
ID | e 1
a Ds + s+ I | -1 11 41 -1 101 4 1
[ I R g ....... C I ——— I
| | 2D 2 12 D 2D 2 2 D
| | iD D
| I Case: ID = .25, Critically Damped.
I | B - _
ID | " 1 ; 1 at; D1
I | ou(t) i1 - t e E where a = - =
| l D 2D
1 | Case: ID > .25, Under Damped.
| |
| | 1 at ;
D | | u(t) i1 - e ‘sin(b t) ! where:
l [ Db :
{ I e
I | 1 I 1
| | a = =, e b = [,
! 1 2 D D 74
| | %



Example 1 - Freqguency and Time Responses 3 of

Ctrl | Y{(s) | y(t)

| | : 2

I | (P + 1) .

I | Case: ID < SR , Over Damped.

I | 4

I I

I | : 1 at bt

| ou(t)y l Bl f‘e - e’ Co where:
PID | ' I : D (a - b)

| 1 |

| P+ - +Ds [ -

1 s [

I T | P+l 1 1 4 1

| 2 | a = - - -

| Ds +s + I | 2D 2 .2 D

I I

| | P+ 1 1 4 1

| ! H o= [ S - ........ R

| | 2D 2 02 D

| I 4D

| I

I I 2

I I (P + 1)

I | Case: ID = - , Critically Damped.
PID | v | 4

I |

| | 1 at. P o+ 1

[ | u(t) 1 - t e : where a = -

I I D i 2D

I | 2

I | (P + 1)

| | Case: ID > - - = , Under Damped.

I I 4

I I

| I 1 a t :
PID | | uty 1 - - e sin(b t) . where:

I | ; Db ,

I I

! I 1 I 1

| | a = - b = : -

I | 2'D. D 2

I I



Some Typical PID Response Curves For Example 1

Over damped: P=1, D=1, I=.5

L s |
oft) = e ; § 1 - oft)i dt = 1.933

Critically damped: P=1, D=1, I

1

1.25 : Error:

; e g =15
c(t) ?a e : : i1 —clt): dt = 1

Under damped: P=1, D=1, I=2

1.25 : Error:

) - L T T ettt s+ e e - - 1 5 : .
ult) * ’ : ' : | 1 — ult)! dt = ©.545



1)

3)

4)

Example 1 - Sumnmary

The most obvious result from this simple,example is that the
open loop response is perfectlyrmatched to the input. At
once this leads one to conclude that there are at least some
processes better left alone. Simply setting P, I, and D

equal to zero accomplishes this. The P controller can also

P+ 1
produce perfect tracking if an amplifier of gain -—-=—————- is
P
present in the feed forward path.
The D contrcller can not stand alone as a tracker. Only in

tandem with a P or I controller or in combination with both
the P and I can the D controller prove useful as a tracking

controller.

The PD and PI controllers are both first order and produce
exponentially rising response curves which converge
uniformly to 1. The time constant in each case is a

function of the control constants, P, I, and D.

The ID and PID controllers are both second order and contain
three types of response curves depending on the settings of
the control constants: over damped, critically damped, and
under damped. ‘The error criterion, as defined, dces not
penalize a reséonse curve for alternating sign as do some
other methods for evaluating a given response. One
consequence of this is that of the three types, the

under damped response usually {though not always] rates the

highest.



Example 2: First order process.

1
1 __I__ : R 1
Input: Unit Step Function. i
Steady State Response
Controller Amplifier
Type | Stable | Final Value | Required
| | I
Open Loop | Yes ] 1 | No
I | |
| | P I
P | Yes | ——— | Yes
| | P+1 I
| | | ‘
I — Over Damped | Yes | 1 | No
| | I
I - Critically Damped| Yes | 1 | No
| I |
I — Under Damped | Yes | 1 ] No
| | |
D | No | ] | N/A
| | |
| | P I
PD | Yes | —m——— | Yes
| I P+1 b
| - | |
PI - Over Damped | Yes | 1 | No
| | |
PI - Critically Damped| Yes | 1 | No
| | |
PI - Under Damped | Yes | 1 | No
| | |
ID - Over Damped- ] Yes | 1 i No
: I | |
ID - Critically Damped| Yes | 1 | No
| ' | |
ID - Under Damped | Yes | 1 | No
| I |
PID - Over Damped | Yes | 1 | No
| | |
PID — Critically Damped| Yes | 1 ! No
I [ |
PID - Under Damped | Yes | i ! - No

Frequency and time responses for this example follow.



Example 2 - Freguency and Time Responses 1 of

Ctrl | Y(s) | y(t)
l 1 |
Open | R | -t
I s (s + 1) [ u(t) 1 - e
| P | P ~(P+1) t
P S 1 u(t)y T 1~ e
! s (s + (P + 1)) | P+ 1
I [
| D | D -(D+1) t
D | u(t) e
| (D + 1) s + 1 | D + 1

l l
l |
| I | 1 at bt
| | ou(e) i1 - (a+1)e - (b+1)e
I | S ! a-»>ob
[ s .8 + 5 + I f
! | where
I ' ...l l ....................................................... ...l J
| J a = + Tl o~ (4°1) b = - - 1 - (4°1)
| | 2 2 2 2

T e R e SRR A

u(t) il - e ~ .5e
I | Case: I < .25 , Under Damped.
i b
| | -5t 1 ‘
I Iou(t) 1 - e cos(b t) + . sin(b t) ..
| | : 2b ;
| I
| I Wher‘e .......................................
! ! b = I ~ .25
; I e
| P + sD | =] :
PD | e | _ .
| 5 ((D + 1) s + (P + 1)) p D p D+1
l [ou(t) + - e
| !

B T e e e T T 2+



Example 2 - Frequency and Time Responses 2 of
ctrl | Y(s) | y(t)

N

: 1 ca't bt 7
ult) l e e s 8 - e ‘ where -
P+ 5D ; D (a - b)
P [ - o e ——— |
| 5 (D + 1)s + (P + 1))] P o+ 1 1
| | P e — + (P + 1) - 4 I
| I 2 2
| |
I | P+ 1 1 s i
| | S T R er— - (P + 1) - 4 1
I I 2 2
I | 2
| | Case: (P + 1) = 41 , Critically Damped.
I I ~
| | at a't:
PI | | u(t) i1 - e -~ (a+1)te
| I
I | P+ 1
| [ where a = =~
I I 2
I I 2
l | Case: (P + 1) < 4 I , Under Damped.
| |
] | % at | a + 1 s
| Iou(t) i1 - e cos(b t) + - - sin(b t) . .
PI " I 3 b »
| 1
| | P+ 1 : . 2.
| | a= - b = (P + 1)
| | 2 T -
I I |
| |



Example 2 - Frequency and Time Responses 3 of

Ctrl | Y(s) | y(t)
I I 1 ]
| | Case: -~ > 4 1 , Over Damped.
| I D+ 1
1 I : 1 at bt -
| | uct)y 1 - (a4 1) = (b + 1)e .
I I (D + 1)(a ~ b)
| T |
| iy o+ 5D |  where:
I 8 I .
ID | ¢ e eereeen ot evvetos rmneeeases s Spressn sesstpenees 4 srensn & e | l ‘ l
| > | a = - iwmmmmwmwﬂwmé R
| (D +1)s +s+ 1 | 2(D + 1), 2
I I
| |
| I N
| I ! !
| ! b o= - -
| | 2(D + 1) 2
I I
I I 1
| f Case: o = 41 , Critically Damped.
I I D + 1
| |
I | ; 1 at at
ID | " | W(EY (1 - e e +(a+ 1)t e
I ! D + 1
| I
I I : 1 :
| I Where: @ = = -m—— ;
! I 2 (D + 1))
I |
I [ 1
] ! Case: 7 < 4 1 , Under Damped
| I D + 1
| |
I I ; at
I I e 1
ID ] | u(t)‘ll - ioos(b t) + sin(b t):-
| | : D+ 1 . b .
I I
| | where: o
| | ? 1 I 1
| | a=- . b= -
| I 2 (D + 1) D + 1 2
I I



Example 2 - Freqguency and Time Responses ' 4 of
Ctrl | Y{(s) | y(t)

Case: -~ = > 4.1 , Over Damped.

U(t)l o i e s i e e (a + e - (b + 1)e

PID where:

(P + 1) s + 1

R

| |

| |

| |

| I

| |

| |

| |

| |

| |

| |

| |

I (D + 1)s I !
L |

| |

| |

| |

| |

| |

| | 2(D + 1)
| |

C a Se : s it 4 . I s C r l t i Ca. l l y Damp e (j .

I

I

|

I

I
PID |

[ u(t) 1 = e e .+ (a+ 1) te

| :

|

I

|

I

I
I
|
I
| : 1 pa‘t at..
I
|
I
I
I
I

Case: s o <40 T , Under Damped.

I I

I I

I I

| |

I I

I |

I | | .

PID | | u(t) ¥ o~ e cos(b t) + sin(b t)

| | “ D + 1 b '
I I

I I

I I

I I

I |

I |



Some Typical PID Response Curves For Example 2

Over damped: P=2, I=1, D=1

1.25 Error:

Critically damped: P=3, I=2, D=1

1.25 § Error:

Under damped: P=1, I=1, D=1

1.25 E Error:

: T : »15
wit) © 1 -ult)

dt

dat

0.804



1)

2)

3)

Example 2 - Summary

This example serves to reinforce the fact that the best
response curve (minimum E) is strongly dependent on the

values given the control constants.

The error criterion for the open loop response is 1. One
would expect there to be some values of P, I, and D for which
E would be less than 1. These values do exist and are

illustrated below.

An interesting observation is that the second order
controllers, the ID and PID, dgenerate response curves which
are discontinuous at time t = 0. 1In the real world, this is
not possible, but then the unit step is not a physically
realizable input function. A continuous input function will

always produce a feasible output function (see Appendix 2).



Example 3:VSecond order process,

o i
s) - R

1
X( —— Y(s) H(s)= —
S ,
s +s+1
Steady State Response
Controller Amplifier Error
Type | Stable | Final Value | Required | Criterion
| I I I
Open Loop | Yes | 1 | No | 1.713
| I | |
I | 1 I |
P | Yes | —— | Yes | 1.481
| | 2 | I
| | I |
I ] No | - - | N/A | - -
| | | . |
| | 1 I I
PD | Yes | - | Yes | 1.140
I I 2 f |
| | I |
! _ | I |
PI | Yes | 1 | No ] 2.479
I I I I
ID | Yes | 1 | No | 3.004
I | I I
| | I I
PID | | 1 ] No | 1.000

Yes--

Frequency and time responses for this example follow.



Example 3 - Freguency and Time Responses ' 40T

Ctrl | Y(s)
| 1
Open | - e
2
' s s + s + 1
| 1
|
P 2
| s is + s + 2
!
| 1
[ — -
I L3 2 :
| s Es + 5 + g5 + 1
|
| 1l + s
!
PD | P2
| s s 4+ 28 + 2
|
| 1
| 1 o+ -
PI | =
I
| 3 2
| s + s + 2's + 1
[ 1
P - + s
ID | =
||
{3 2
| 8 + 2 s + 5 + 1
| 1
| 1+ 7 +os
| S
;PID | A
’ |
I

y(t)
- e te + sin t
2 3 2
-5t T 7 T
1 - e lcos Tt o+ sin ot
’ 2 L7 2 '
. ?lmt ii
- e+ cos(t) + sin(t).:
2
....t :
1 - e -(cos(t) + sin(t))j
-.57 ¢t
— .4‘8 _—
-.22t
e (.6 cos(1.3't) + .37 sin(l1.3°t))
~-1.8 t
— -7'8 Py
-.13 t
(.3 cos(.74 t) + .4 sin(.74 t))
”tt



B

pid (t)

Some Typical Response

0 t 10
0 t 1o
o t 10
) t 19

)

Curves For Example 3

" Open loop

Error:

~20 |
; ‘1 - of(t): dat = 1.715

0

PD response
(with amplifier of gain 2)

Error:
~20 :
i ‘1 - pd(t)! dt = 1.14

PI response
Error:

=20 ,
? i1 - pif{t). dt = 2.457

PID response

Error:

;“‘ 2 Q '

; 1 - pid(t) dt = 1
]



1)

3)

Example 3 - Summary

Unlike the previous tho examples, the cbntrol constants were
given. Numerical values for E can be obtained and compared.

The full PID controller generated the lowest value for E,

followed in turn by the PD and P controllers.

A surprising result is the instability of the I controller.

Apparently the inductor in the compensator block and the

capacitor in the process send energy back and forth with no
attenuation to slow the exchange. The effect is also evident
in the large oscillations and the resulting high value of E

in the PI controller's response.

One final point of interest, the open loop response of
Example 2 and the PID response of Example 3 are identical.

In effect, the introduction of PID control allows the process
to assume an additional order (i.e. include an inductor) with

no loss of response gquality.



CONCLUSIONS

The preceding work hopefully shed some light on the many
properties and characteristics of a simple class of analog
tracking systems. The design and teéting of PID and related
controlling structures proved useful in illustrating a few of the
advantages found in employing a programmable tracking computer to
open loop processes.

As well as answering basic questions concerning tracking and
control, the foregoing discussion revealed many areas deserving

of further consideration:

1) The introduction of intelligently time-varying control
"constants" to further improve system performance.

2) The analysis of controllers of higher order than the
PID. For example, using conventional notation, a PIDD:
would include the second derivative of e (t) and thus
could be considered a third order controller.

3} The analysis of the control of nth order processes as
well as the important consideration of time varying
processes.

4) The investigation of discrete time tracking systems,
particularly computer—aided control.

5) The use of a microcomputer to develop an "expert"
control system which could recognize often encountered
processes and instantly change control settings to
generate the best possible response curves from memory.

Each of the above topics is a logical extension of the

concepts and results presented in this paper. The pursuit of any

one is certain to lead to many interesting and novel results.
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APPENDIX 1
A METHOD FOR EVALUATING OSCILLATING .ERROR FUNCTIONS

. Often in calculating the value of E for a particular
controller's resﬁonse, the érror function, e(t), is identical
to the absolute value of the error function. In these cases,
the determination of E reduces to the evaluation of elementary
integrals. Unfortﬁnately, not all error functions have this
property; the underdamped responses in particular contain error
functions which vary in sign. Using the properties of the
exponentially—decaying sinusoid, a simple algorithm facilitates

the process of determining the Error Criterion, E.

In each example, all oscillating error functions assumed
the form

; ct :
(1) e(t) = e (Acos(bt) + Bsin(bt))  ul(t)

Or equivalently,

ct

(2) e (t) Fe  (cos(bt + a)): u(t)

"
1N
N
o]
o]
fo}
o
n
+J
o
o]

where F

If one considers the integral of e(t) to be a series of
areas of alternating sign, the integral of the absolute
value of e (t) is simply the sum of the absolute values of

all areas.

Only



Denote each successive area A , whereby:

(3) . e(t) dt= A + (-1)

The zeroes of equation (2) represent the end-points of

each area and are located at n - .5 » — a

In this light, the integral of equation (1) is found to be:

ct

(4) e
""""""""""""""""""""" " (A{c cos(bt) + b sin(bt)) + B(c sin(bt) - b cos(bt)))
2 2
c +b
o a
Area A is equation (4) evaluated fromt =0 to t = - -
0 1 2 2b b

Area A is similarly determined by evaluating (4} from
n B

(n - .5) =« a n + .5) =% a

Using this method, the error in the P-controller's response of

Example 3 is found to be:

n
n t t Egn (4) {-1) Error
1 2
) 0.00 1.46 .839 .839
1 1.46 3.84 ~.444 .444
2 3.84 6.22 .175 .135
3 6.22 8.60 -.041 .041
4 8.60 10.98 .012 .012

Error for n = 4: 1.471



APPENDIX 2
REAL VS. IDEAL INPUT FUNCTIONS

As noted earlier, the unit step function is an idealized
input. While?simplé'and quite révealing és a test input,
the ideai nature of this function leads to some unexpected
system responses. An illustration of this may be found in
Ekample 2. In the real world, the vdltage across a capacitor
nmust Qe continuous; however, En the cases of the PD, ID, and
PID controllers, there exists a discontinuity at time
t = 8. This discontinuity is due to the unit step input.

If a physically realizable input function is applied, the
system output will certainly be well behaved.

For instance, if a continuous input function, U(s), is
applied to the ID-controller of Example 2, the voltage output
across the capacitor will also be continuous.

1 1

Let Uls) = I

s s + 1

The system response, y(t}, will be:

: -t -.75t g
y{t) = ult)- 1 - .5e -e (.5 cos(t) — .125 sin(t)):

From a graph of input and output, both are seen to be continuous:

1.25

U(t) — Input : L
v {t) - Output

Ult),y(t)
Error:
15
| ‘U(t) - y(t) dt = 0.243
w o 0



