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Glossary of Terms

This glossary provides definitions of key terms employed in this work:

Action: (Effect) is the response given to stimuli in a transition, and will normally

corresponds to an activity performed during the transition in the statechart.

API: (Application program interface) is a set of routines, protocols, and tools for

building software applications. An API specifies how software components

should interact.

Association: An association represents a linkage (i.e. a connection line) between

two classes in an ontology or a class diagram. An association can have a name

can be adorned with role names, ownership indicators, multiplicity, visibility,

and other properties. Bi-directional and uni-directional associations are the

most common types of associations.

Agent: An independently operating Internet program, typically one that performs

background tasks such as information retrieval or processing on behalf of a user

or other program.

Bi-directional Association: Refers to a symmetric dependency between two

classes.

Block Diagram: A SysML diagram, the represents the principal components of

a system and the structural design that connects them together.
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Cardinality: In the context of databases, cardinality refers to the uniqueness of

data values.

Class Diagram: A UML diagram, which focuses on different classes of the soft-

ware systems and their connection with respect to each other.

Constraint: A design constraint refers to some limitation on the conditions under

which a system is developed.

Controller: (Mediator) A component of MVC design pattern, that acts as a

communication channel between the model and the view.

Description logic: (DL) is a family of logic-based knowledge representation lan-

guages that can be used to represent the terminological knowledge of an ap-

plication domain in a structured way.

DogOnt: DogOnt is an ontology model designed for supporting interoperation,

integration and intelligence in domotic environments.

Domotics:(DOMus infOrmaTICS) Information technology in the home.

Event: Stimuli that may cause a transition from one state to another state in

statechart. There are four main categories of events: Signal, time, change and

call events.

Extended Markup Language (XML): The extensible Markup Language pro-

vides the fundamental layer for representation and management of data on the

Web.

viii



First-order logic (FOL): symbolized reasoning in which each sentence, or state-

ment, is broken down into a subject and a predicate. The predicate modifies

or defines the properties of the subject. In first-order logic, a predicate can

only refer to a single subject.

Individual: Is a semantic web terminology that represents an instance of a class

in the ontology.

JAXB: XML binding for Java.

Jena: Jena is an open source Java framework for building Semantic Web and

linked data applications.

Jena Rules: Jena Rules is an inference (reasoning) engine that plugs into Jena.

Listener: (Observer) A class that registers its interest to be notified for changes

in other classes (Observable) in observer design pattern.

Map: a diagrammatic representation of an area of land or sea showing physical

features, cities, roads, etc.

Mediator: In mediator pattern, a mediator, defines an object that encapsulates

how a set of objects should interact.

Mediator Pattern: A behavioral design pattern that is used to manage algo-

rithms, relationships and responsibilities between objects. It mitigates the

need for point-to-point connections between objects by defining an object
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that controls how a set of objects will interact. Loose coupling between col-

league objects is achieved by having colleagues communicate with the media-

tor, rather than with one another.

Model: A model is an approximation, representation, or idealization of selected

aspects of the structure, behavior, operation, or other characteristics of a real-

world process, concept, or system (IEEE 610.12-1990)

Model-Based Systems Engineering: Model-based systems engineering (MBSE)

is the formalized application of modeling to support system requirements, de-

sign, analysis, verification and validation activities beginning in the concep-

tual design phase and continuing throughout development and later life cycle

phases (INCOSE-TP-2004-004-02, Version 2.03, September 2007).

Model-View-Controller (MVC): Is a system design pattern that separates the

representation of information from the user’s interaction with it.

Observer Pattern: The observer pattern is applicable to problems where a mes-

sage sender (observable) needs to broadcast a message to one or more re-

ceivers (or observers), but is not interested in a response or feedback from the

observers.

Ontology: A model that describes what entities exist in a design domain, and

how such entities are related.

Ontology Class: A placeholder for an entity in the system design. An ontology

class may have some dataType or objectType properties.
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Ontology Instance: An ontology instance is a specific realization of any ontology

class object. An object may be varied in a number of ways. Each realized

variation of that object is an instance. The creation of a realized instance is

called instantiation.

DataType Property: DataType Property defines the relation between instances

of classes and literal values, i.e., String using the Protg tool.

ObjectType Property: ObjectType Property defines the relation between in-

stances (individuals) of two classes in semantic web terminology using protg

tool.

Ontology Web Language: The Web Ontology Language (OWL) is a knowledge

representation languages for defining ontologies.

OptaPlanner: OptaPlanner is a constraint satisfaction solver. It optimizes busi-

ness resource planning use cases, such as Vehicle Routing, Employee Rostering,

Cloud Optimization, Job Scheduling, Bin Packing and many more.

Point-in-polygon:In computational geometry, the point-in-polygon (PIP) prob-

lem asks whether a given point in the plane lies inside, outside, or on the

boundary of a polygon.

Reasoner (Rule Engine): A semantic reasoner, reasoning engine, rules engine,

or simply a reasoner, is a piece of software able to infer logical consequences

from a set of asserted facts or axioms.

Reasoning: To infer new statements based on set of asserted facts in the ontology.
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Resource Description Framework (RDF): a model for encoding semantic re-

lationships between items of data so that these relationships can be interpreted

computationally.

Rule Checking: A mechanism that ensures existing data in the ontology is con-

sistent with rules defined over the ontology. A rule engine often performs this

task.

Semantic Web: Refers to W3Cs vision of the Web of linked data.

Semantic Web Layer Cake: An informal term used to describe the stack of

technologies used in the implementation of the Semantic Web.

Semantic Web Technologies: Semantic Web technologies provide features to

build vocabularies, and develop rule repositories and ontologies.

Software Design Patterns: In software engineering a design pattern is a general

reusable solution description to a recurring problem.

SysML: The Systems Modeling Language (SysML) is a graphical modeling lan-

guage used to define models of systems structure and system behavior.

Transition: A transition is a set of actions to be executed when a condition is

fulfilled or when an event is received.

Transitivity: State of being or relating to a relation with the property that if the

relation holds between a first element and a second and between the second
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element and a third, it holds between the first and third elements. For example,

equality is a transitive relation.

Unified Modeling Language: UML is a graphical modeling language used to

define mainly software systems structure and behavior.

View: Visual representation of the model in MVC design architecture.

Zone: an area or stretch of land having a particular characteristic, purpose, or

use, or subject to particular restrictions.
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Chapter 1: Engineering Urban Systems with Semantic Mod-

els

1.1 Problem Statement

1.1.1 Modern Urban Infrastructure Systems

The modern way of life is enabled by remarkable advances in technology (e.g.,

the Internet, smart mobile devices, cloud computing) and the development of ur-

ban systems (e.g., transportation, electric power, wastewater facilities and water

supply networks, among others) whose operations and interactions have superior

levels of performance, extended functionality and good economics. While end-users

applaud the benefits that these technological advances afford, model-based systems

engineers are faced with a multitude of new design challenges that can be traced to

the presence of heterogeneous content (multiple disciplines), network structures that

are spatial, multi-layer, interwoven and dynamic, and behaviors that are distributed

and concurrent.

In a decentralized system structure, no decision maker knows all of the informa-

tion known to all of the other decision makers, yet as a group, they must cooperate

to achieve system-wide objectives. Communication and information exchange are

1



Services

Waterway 
Network

Transportation 
Network

Information and
Communications

Emergency 

Figure 1.1: Schematic of interdependencies among urban networks.

important to the decision makers because it establishes common knowledge among

them which, in turn, enhances their ability to make decisions appropriate to their

understanding, or situational awareness, of the system state, its goals and objectives.

While each of the participating disciplines may have a preference toward operating

their domain as independently as possible from the other disciplines, achieving tar-

get levels of performance and correctness of functionality nearly always requires that

disciplines coordinate activities at key points in the system operation.

As a case in point, modern urban infrastructure systems comprise physical,

communication and social networks that are spatially distributed, and defined by

concurrent subsystem-level behaviors, distributed control and decision making, and

interdependencies among subsystems that are not always well understood. A typical
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setup of urban networks and their dependency relationships. is shown in Figure 1.1.

Engineers keep these difficulties in check by designing subsystems that allow

for operational independence, but coordinate at key points to maintain safety and/or

handle abnormal circumstances.

Figure 1.2: Concurrent behaviors and interdependent system interactions at inter-
section of Campus Drive and Baltimore Ave, University of Maryland, College Park,
MD [15].

Figure 1.2 shows, for example, cars, pedestrians, and traffic lights at a busy

intersection near the University of Maryland. Each of the participating entities

favors operational autonomy. However, in order for the overall system to operate

efficiently and prevent accidents, drivers watch the traffic lights for instructions,

and actions are coordinated in a manner defined by sets of rules (e.g., traffic rules,

pedestrian rules).

3



1.1.2 Cascading Failures in Urban Systems

When cross-domain relationships in urban systems are only weakly linked, they

are nonetheless, still linked. When part of a system fails, there exists a possibility

that the failure will cascade across interdisciplinary boundaries to other correlative

infrastructures, and sometimes even back to the originated source, thus making

highly connected systems more fragile to various kinds of disturbances than their

independent counterparts. Such outcomes put engineering designers, disaster-relief

personnel and urban planners (i.e., decision makers who are responsible for the en-

gineering of recovery processes) in a tough spot where quantitative decision-making

regarding the adequacy of urban infrastructure is complicated by the presence of

newfound system interactions, incomplete knowledge of the system state, and break-

downs of communication among urban networks.

Experience over the past decade with major infrastructure disruptions, such

as the the 2003 Northeast blackout, Hurricane Katrina in 2005, Hurricane Irene in

2011,and 2011 San Diego blackout, has shown that the greatest losses from disrup-

tive events may be distant from where damages started. For example, Hurricane

Katrina disrupted oil terminal operations in southern Louisiana, not because of di-

rect damage to port facilities, but because workers could not reach work locations

through surface transportation routes and could not be housed locally because of

disruption to potable water supplies, housing, and food shipments [27]. To compli-

cate matters, until very recently infrastructure management systems did not allow

a manager of one system to access the operations and conditions of another sys-
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tem. Therefore, emergency managers would fail to recognize this interdependence

of infrastructures in responding to an incident, a fact recognized by The National

Strategy for the Physical Protection of Critical Infrastructures and Key Assets [36].

In such situations, where there is no information exchange between interdependent

systems, interdependencies can lead to cascading disruptions throughout the entire

system in unexpected, undesirable and costly ways.

1.1.3 Project Objectives

The long-term objectives of this project are to explore opportunities for over-

coming these limitations with a “city operating system” that monitors environmental

and urban processes, and then plans actions to either mitigate the effects of an im-

pending environmental attack and/or recover from damage caused by such events.

Figure 1.3 shows the participating entities and their interactions.

Urban

monitor

monitor

actions
Space−time terrain

interacting with 
service infrastructures

Environmental Processes

processes

Monitoring

Evaluation

Reasoning

Relief Actions

City Operating System

Figure 1.3: Schematic for a city operating system.

This study focuses on a prerequisite to creating this capability, namely, an ability to

model the behavior of city-domain processes, and interactions among the distributed

5



system behaviors within a city.

We envision such a system having an architecture along the lines shown in

Figure 1.4, with tools such as OptaPlanner [29] providing strategies for real-time

control of behaviors, assessment of domain resilience and planning of recovery ac-

tions in response to severe events. Instead of modeling the dynamic behavior of

systems with centralized control and one large catch-all network, the work explores

opportunities for modeling systems as collections of discipline-specific (or commu-

nity) networks that will dynamically evolve in response to events. Individual urban

domains will operate as concurrent processes each having their own thread of exe-

cution, and will respond to streams of incoming data from external domains. Each

community will have a graph that evolves according to a set of community-specific

rules, and subject to satisfaction of constraints. Communities will interact when

then need to in order to achieve system-level objectives. If goals are in conflict, or

resources are insufficient, then negotiation will need to take place. Ontologies and

rules in the temporal and spatial domains – relief activities need to occur in the

right place and the right time – will be integrated with domain-specific ontologies

and rules, and support reasoning for simulation and rule-based control.

Ideally this tool will also decision makers to understand how a failure in one

network will impact other networks, and what parts of a system are most vulnerable

to informed/uniformed attack. It should also allow decision makers to assess the sen-

sitivity of systems to model parameter choices, the influence of resource constraints,

and potential emergent interactions among systems.

6



Transportation System
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Metro System Routes

Bus RoutesUrban Business
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−− Planning for receovery

−− Behavior control
−− Resilience assessment
−− Planning for receovery

−− Behavior control
−− Resilience assessment
−− Planning for receovery

Utility Network

goods, energy.

Physical System Business System

Figure 1.4: Architecture for multi-domain behavior modeling with many-to-many associations. We envision tools such as
OptaPlanner [29] providing strategies for real-time control of behaviors, assessment of domain resilience and planning of recover
actions in response to severe events.
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1.2 Solution Approach

1.2.1 System of Systems Perspective

Definition. Solutions to this project objective are complicated by the fact that

cities are system of systems, and not just systems. In “The Art of Systems Ar-

chitecting” Maier and Rechtin [24] define a system of systems as one in which its

components:

1. Fulfill valid purposes in their own right, and continue to operate to fulfill those

purposes if disassembled from the overall system, and

2. Are managed (at least in part) for their own purposes rather than the purposes of

the whole; the components systems are separately acquired and integrated but

maintain a continuing operational existence independent of the collaborative

system.

Two key characteristics which derive from this definition are [33]:

1. Emergence: Properties which do not belong to any of the constituent parts

will emerge from the combined system of systems.

2. Evolution: The system of systems will change over time as constituent systems

are replaced.

System of Systems Perspective. Notions of emergence and evolution (managed

evolution) are central to city development and operation. Consider the following
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points:

1. Cities are not conceived or built by an individual organization and are not

merely a collection of buildings.

2. A city “emerges and changes over time” through the loosely coordinated and

regulated action of individuals to satisfy the needs of its citizenry.

3. City system behaviors are defined by a large, but finite, number of agents.

Various agents – people, communities, organizations – build certain parts of

cities to satisfy their respective objectives.

4. Cities “grow and flourish” based on societal and economic stimulus, and “falter

and fall” into decay when such stimulus is absent.

5. Traditional models of individual agent behavior are defined by relatively simple

(deterministic) rules that connect information and resources to action, and are

subject to satisfaction of dependency relationships (see Figure 1.1) and urban

regulations.

While each of the city subsystems may have a preference to operating as indepen-

dently as possible from the other subsystems as possible, strategic collaboration

among subsystems is often needed to either avoid cascading failures across systems

and/or recover from a loss of functionality. Collaboration among subsystems can

also result in new services – services that the participating systems cannot achieve

by themselves.
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AirportHome Taxi Airport Airplane Taxi Destination

Figure 1.5: Composition of ground and air transportation services.

These services need not be complicated. Figure 1.5 shows, for example, an airport

acting as an interface between cooperating surface and air transportation services.

The key challenge in creating an efficient system is synchronization timetables and

capacities so that passengers can transition from one mode of transportation to

another.

Evolution of City Fabric. The complexity of cities becomes apparent when

we consider the dependencies among agents, information, and resources, and the

influence that new technologies can have on the spatial and temporal properties of

city fabric. Industrial-age cities tend to be spatially compact – they aim to overcome

inefficiencies in communication and transportation by minimizing space to conquer

time constraints. Information-age cities work in exactly the opposite way – they

employ highly efficient communication networks to minimize the importance of time

constraints and relieve the need for urban congestion (relaxed space constraints).

Model-based Systems Engineering (MBSE) for Cities. We believe that the

difficulty in overcoming these challenges can be mitigated through the systematic

application of model-based systems engineering (MBSE) procedures. MBSE pro-

cedures help engineers develop models for products that typically follow a design-

build-operate-retire lifecycle [2]. At the front end of system development, use of

semi-formal languages, such as SysML [13], helps engineers systematically consider
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scenarios for required system functionality, create visual representations (diagrams)

for fragments of behavior, develop requirements (constraints) for system perfor-

mance and economics, and generate design alternatives that have the potential for

delivering good design solutions [2]. For a detailed discussion, see Appendix A.

Even though a city does not retire, over time, properties of the city will evolve

as elements of the city age and are replaced. MBSE can play a central role in the

replacement process. Where state-of-the-art MBSE procedures fall short is in the

systematic consideration of interactions among many concurrent behaviors. Visual

languages such as SysML [13] are not designed to handle this class of problems.

1.2.2 Ontologies, Rules, and Reasoning Mechanisms

Figure 1.6 presents a framework for the implementation of semantic models

using ontologies, rules, and reasoning mechanisms [9]). An ontology is “a set of

knowledge terms, including the vocabulary, the semantic interconnections, and some

simple rules of inference and logic for some particular topic [16].” To provide a formal

conceptualization within a particular domain, and thereby facilitate communication

among people and machines, ontologies need to accomplish three things:

1. Provide a semantic representation of each entity and its relationships to other

entities;

2. Provide constraints and rules that permit reasoning within the ontology, and

3. Describes behavior associated with stated or inferred facts.
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Figure 1.6: Framework for implementation of semantic models using ontologies,
rules, and reasoning mechanisms (Adapted from Delgoshaei, Austin and Nguyen
[9]).

On the left-hand side of Figure 1.6, textual requirements are defined in terms of

mathematical and logical rule expressions for design rule checking. Engineering

models of urban system structure will consist of networks and hierarchies of con-

nected components formally described in terms of geometry (e.g., position, size)

and connectivity (e.g., connected, touches, disjoint), possibly organized into lay-

ers (e.g., a hierarchy of networks). Engineering models of urban system behavior

will be combinations of discrete (e.g., statecharts) and continuous (e.g., differential

equations) behaviors. The semantic counterpart of engineering models is ontologies

(class hierarchies), individuals (graphs), and rules [10, 9], Data contained within

the engineering models will be ingested into the semantic model as data property

values.

Computation with rules provides several advantages [23, 31]:

1. Rules that represent policies are easily communicated and understood,
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2. Rules retain a higher level of independence than logic embedded in systems,

3. Rules separate knowledge from its implementation logic, and

4. Rules can be changed without changing source code or underlying model.

A rule-based approach to problem solving is particularly beneficial when the ap-

plication logic is dynamic, and where rules are imposed on the system by external

entities. Both of these conditions apply to the design and management of urban

systems.

1.2.3 Semantic Models of Urban Structure and Behavior

Figures 1.7 and 1.8 build upon Figure 1.2, and show the pathway from obser-

vation of concurrent behaviors and interdependent system interactions at a traffic

intersection to semantic analysis and event-based modeling of behaviors.

Traditional approaches to the modeling of urban structure and behavior sim-

plify the problem by organizing abstractions into layers that are mapped onto a

Cartesian – (x,y) or (latitude,longitude) – coordinate system. Each layer will show

a spatial distribution of a property of the city (e.g., land use, population density,

average house price) and will have a predefined syntax and semantics for the asso-

ciated content. Decision analysis procedures are simplified by ignoring dependency

relationships among the layers (see Figure 1.1), and by assuming that estimates of

system performance can be obtained through the summation of data extracted from

select layers.
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Figure 1.7: Annotation of structure and behaviors at intersection of Campus Drive
and Baltimore Ave, University of Maryland, College Park, MD [15].
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As cities transition from an industrial- to information-age capability, a more

appropriate view is one of networks of networks, where physical, communication,

economic, and social processes are intertwined and dynamic. Figure 1.7 builds upon

Figure 1.2 by identifying various kinds of objects that participate in the urban scene.

Each type of object – automobile, traffic light, pedestrian – will have its own goals

(purpose), structure (geometry), and behaviors that are constrained by physics and

strategies of control.

Figure 1.8 places the entities identified in Figure 1.7 in a formal setting for

analysis. Each type of domain-specific entity will have an ontology and a set of

rules (e.g., TrafficLight.owl and TrafficLight.rules), and will be represented within

the semantic model as a graph. Some phenomena, such as space, time and physical

units, cut across to all domains and are fundamental to understanding whether a

decision will take place at the right time and the right place. The actual data for

a specific type of traffic light (e.g., position, timing, phase cycle) will come from an

engineering model of the traffic light. The geometry of an actual intersection will

be imported from sources such as OpenStreetMap.

A key benefit of the proposed approach is that no constraints are placed on the

types of relationships that a semantic graph may form. While data properties store

the actual data relevant to an individual, object properties represent relationships

among individuals that might not even be in the same domain. Engineers can exploit

this freedom in the concurrent design of domain specific ontologies and rules. A

modeler might find, for example, that if a relationship exists between a traffic light

object and the road intersection model (e.g., traffic light X is located at intersection
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Y), then this knowledge will simplify the development of rules for traffic control.

1.3 Related Work

1.3.1 Glassbox Simulation Engine

Glassbox [39] is a general purpose data-driven simulation engine created for

Maxis games, the most famous being SimCity. The design goal for Glassbox is to

provide modelers with an environment where you simulate very simple objects that

can be easily composed together to do very complex things.

Every single entity in the city has a distinct simulation. Complex behaviors

emerge out of their interactions. As illustrated in Figures 1.9 and 1.10, cities are

modeled as resources + units + maps + globals, combined with collections of rules,

all packaged into a box. Resources are the basic currency of the simulation (e.g.,

oil, water, wood). Units represent things like houses and factories. The state of

a unit is defined by the collection of resources it owns. Units are also defined by

a spatial extent, which in turn, defines its simulation footprint. Maps represent

resources in the environment (e.g., coal, oil, a forest). A unit interacts with map

through its footprint. Rules are defined by nouns and verbs, and they operate on

resources. For example, a rule might move a resource from one place to another,

or convert a resource into a new form. Rules also have inputs and outputs, and

can handle dependency relationships. A rule can state, for example, that money

can be converted into wood, if a person is available. Finally, rules can operate over

a variety of target domains (e.g, locally, over a map, or globally) and they can be
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Figure 1.9: Glassbox is a data-driven simulation engine for Maxis games, the most
famous being SimCity. Cities are modeled as resources + units + maps + globals,
combined with collections of rules, all in a box.

Figure 1.10: Use of zones and agents in the Glassbox Simulation Engine.
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chained together. Simulation games are created by defining a play area (SimCity is a

game), a variety of unit and map types, and collections of rule scripts. Because units

contain their own simulation logic, behaviors can be easily swapped in and out of a

game and units can be combined to produce aggregate behavior. More sophisticated

behaviors are supported with paths, zones and agents. Paths are points connected

by segments; they are used to represent roadways, power lines, water pipes, and

flight paths. Zones cover a well-defined area. Rules can be extended to include logic

that depends on whether or not a unit is spatially located within a zone. Agents

(e.g., cars, trains, pedestrians) carry resources from one unit to another. They are

created by unit rules and have a destination (i.e., they are going somewhere to do

something). Emergent behaviors, such as traffic jams, are the result of patterns that

individual cars (agents) navigate roads (paths). The game engine provides builtin

support for basic physics (e.g, water flows downhill).

1.3.2 Urban Domain Modeling with Graphs and Cellular Automata

Numerous researchers have studied the topology of urban environments from

a graph theoretic standpoint. For example, Whiting [38] has proposed a method for

constructing large-scale graph models of three-dimensional urban content (e.g, roads,

walkways, green space) and topology (e.g, adjacency relations) from real-world ge-

ometry data. These graph data structures are the basis upon which algorithms can

be developed for route finding services.

Our approach to distributed behavior modeling is similar to studies that cap-
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ture the temporal dynamics of cities with cellular automata, agent-based models,

and fractals [5]. A cellular automata is composed of: (1) a discrete cell space, to-

gether with, (2) a set of possible cell states, and (3) a set of transition rules that

determine the state of each cell as a function of the states of all cells within, (4) a

defined cell-space neighborhood of the cell. Time is discrete and all cell states are

updated simultaneously at each iteration [37]. Cellular automata can be adapted to

provide both low- and high-resolution views of spatial dynamics and to understand

dynamic interactions among the various layered systems (e.g., population density,

land use patterns, transportation networks) and flows and consumption of resources

(e.g., energy) [6].

1.3.3 Urban Domain Modeling with Ontologies

A detailed discussion the use of ontologies in urban development projects can

be found in Falquet, Metral, Teller and Tweed [11]. Ontologies have been developed

for the geographic information sector, to model interconnections (mediators) among

urban models, and to describe urban mobility processes. Extensive studies have

been conducted on the development of ontologies for the geography markup language

(GML) and CityML, the XML markup language for cities.

As part of the recent interest in Smart Cities, researchers have proposed so-

called smart city ontologies. A close examination reveals that they contain an ex-

haustive list of things you might find in a smart city, and proposals for relationships

among things, but are otherwise not smart at all.

19



Our viewpoint is that ontologies – classes, and their associated data and object

properties – need to be developed alongside rules. A notable effort in this direction

is the DogOnt ontology and rules for statechart behavior modeling of devices in

home automation [8].

1.4 Contributions and Organization

The contributions of this study are as follows:

1. We provide a framework for modeling concurrent, directed communication

between all entities composing a system. The architecture builds upon the

framework presented by Austin et al. [3], and in particular, extends the dis-

tributed behavior modeling capability from one-to-one association relation-

ships among communities to many-to-many association relationships among

networked communities. As illustrated in Figure 1.11, one-to-one association

relationships can be modeled with exchange of messages in a point-to-point

communication setup. Many-to-many association relationship among systems

are enabled by collections of mediators. Each ontology is paired with an inter-

face for communication and information exchange with other ontologies, and

hosts a set of domain specific rules as well as the system interaction rules.

2. We employ a novel use of software design patterns. Mediator design pattern

is implemented to allow communication management in a system, and visitor

design pattern is implemented to allow for data retrieval.
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3. We explore mechanisms for incorporating notions of space and time in the

reasoning process.

Mediator

Mediator−Enabled Communication

System−to−System Communication

Figure 1.11: Framework for communication among systems of type A and B. Top:
point-to-point communication in a one-to-one association relationship between sys-
tems. Bottom: mediator enabled communication in a many-to-many association
relationship among systems.

There are a number of similarities between the abstractions proposed in our work

and those found in the Glassbox Simulation Engine. Glassbox paths and zones are

equivalent to ways and multi-polygons imported from OpenStreetMap. Glassbox

agents are analogous to messages passed between domains in our work. Experienced

gamers complain that sometimes SimCity allows for behaviors that simply would

not happen in the real world. The possibility of an under-constrained world is a

problem we will face in our work as well.

The thesis is organized as follows: Chapter 2 provides a background on on-

tologies and rules, explains their relationship to our related work in model-based

systems engineering, and explains the concept of Semantic Web. Chapter 3 de-
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scribes several aspects of distributed system behavior modeling with ontologies and

rules, including: the semantic models, the system architecture, and the use of media-

tors for behavior modeling of distributed systems having many-to-many association

relationships among connected networks. Chapter 4 provides experimental plat-

forms for assembling ensembles of community graphs and simulating their discrete,

event-based interactions, and exercise this capability with an application involving

collections of families interacting with multiple school systems. Chapter 5 provides

a summary and conclusion of the work presented, and proposes ideas for scaling

up the simulations in future work with mediators assembled from Apache Camel

technology.
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Chapter 2: The Semantic Web

2.1 Introduction to Semantic Web

This chapter introduces the Semantic Web vision, and the range of technologies

found in its implementation. Basic capabilities of the resource description framework

(RDF) and Web Ontology Language (OWL) are described. A simple case study

problem involving behavior modeling of family dynamics with ontologies (Jena)

and rules (Jena Rules) is presented. Once the family model has been manually

assembled, the graph of family individuals and relationships will evolve in response

to events.

2.1.1 Semantic Web Vision

The World Wide Web was invented in 1989 by Tim Berners-Lee, with the

initial purpose to meet the demand for automatic information-sharing among mem-

bers of scientific communities [7]. Its major breakthrough was the hyperlink, which

allows linking of documents on a network of machines. In the ”first generation”

of Web implementation, machines and Web browsers retrieve and render the docu-

ment content, and end users interpret the content. There is no effort on the part of
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machines to understand the semantic meaning of the content.

The Semantic Web is an extension of the World Wide Web that aims to pro-

duce a semantic data structure which allows machines to access and share informa-

tion, thus constituting a communication knowledge between machines, and auto-

mated discovery of new knowledge [14, 16, 32]. If that data is ever updated, some

applications, such as those that refer to a large amount of data from many different

sources, benefit enormously from this feature.

In order to accomplish its goal, the Semantic Web relies on mechanisms (i.e.,

markup languages) that enable the introduction, coordination, and sharing of the

formal semantics of data, as well as an ability to reason and draw conclusions (i.e.,

inference) from semantic data obtained by following hyperlinks to definitions of

problem domains (i.e., so-called ontologies).

2.1.2 Technical Infrastructure

Figure 2.1 illustrates the technical infrastructure that supports the Semantic

Web vision, and the foundation upon which we hope to build our system-behavior

models.

Each layer exploits and uses capabilities of the layers below. Briefly, the bot-

tom layer is constructed of Uniform Resource Identifier (URI) and Unicode. URI

and Unicode provide capability for identifying resources on the Web, linking docu-

ments, and representing multi-lingual languages. The extensible Markup Language

(XML) provides the fundamental layer for representation and management of data
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Figure 2.1: Technologies in Semantic Web Layer Cake [12].
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on the Web. XML data is organized into tree hierarchies. As already noted, Seman-

tic Web applications can gather information from a variety of sources, and in the

context of our application, merge and organize these sources for decision making.

Unfortunately, there is no easy way for tree structures to be merged. The resource

description framework (RDF) solves this problem by allowing for the representa-

tion of graphs of data on the web. Graphs can always be merged. An RDF Schema

(RDFS) provides the basic vocabulary for RDF. SPARQL is a RDF query language,

it can be used to query any RDF-based data. The web ontology language (OWL)

provides for semantic descriptions of the underlying data. Together, XML, RDF

and OWL allow for the implementation of reasoning that can prove whether or not

assertions are true or false.

2.2 Working with Semantic Web Technologies

2.2.1 Low-Level Technologies (URI and UNICODE)

At the bottom of the semantic web stack, unicode provides 16-bit support for

multiple languages, and uniform resource identifiers (URI) provide a means for the

unique identification of resources on the Web. Unicode enables the multi-language

representation and handling of texts.

2.2.2 Extensible Markup Language (XML)

XML technology has two aspects. First, it is an open standard which describes

how to declare and use simple tree-based data structures within a plain text file
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(human readable format). XML is a meta-language (or set of rules) for defining

domain- or industry-specific markup languages. Within the systems engineering

community, for example, XML is being used in the implementation of AP233, a

standard for exchange of systems engineering data among tools [26]. A second key

benefit in representing data in XML is that we can filter, sort and re-purpose the

data for different devices using the Extensible Stylesheet Language Transformation

(XSLT) [35, 40].

2.2.3 Resource Description Framework (RDF)

While XML provides support for the portable encoding of data, it is limited

to information that can be organized within hierarchical relationships. This can

be a problematic situation for XML as a synthesized object may or may not fit

into a hierarchical (tree) model. A graph, however, can, and thus we introduce the

Resource Description Framework (RDF).

RDF is a graph-based assertional data model for describing the relationships

between objects and classes (i.e., data and metadata) in a general but simple way,

and for designating at least one understanding of a schema that is sharable and

understandable. The graph-based nature of RDF means that it can resolve circular

references, an inherent problem of the hierarchical structure of XML. An assertion

is the smallest expression of useful information. RDF captures assertions made in

simple sentences by connecting a subject to an object and a verb, as shown in Figure

2.2.
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Figure 2.2: Example of RDF triple where node A is a subject, ”predicate” is a verb,
and node B is an object.

In practical terms, English statements are transformed into RDF triples consisting

of a subject (this is the entity the statement is about), a predicate (this is the named

attribute, or property, of the subject) and an object (the value of the named at-

tribute). Subjects are denoted by a URI. Each property will have a specific meaning

and may define its permitted values, the types of resources it can describe, and its

relationship with other properties. Objects are denoted by a ”string” or URI. The

latter can be web resources such as requirements documents, other Web pages or,

more generally, any resource that can be referenced using a URI (e.g., an application

program or service program).

A set of related statements constitute an RDF graph. RDF graphs can

be used to model a wide variety of relationships, including those among friends,

location data, business data, and show information about a restaurant and a movie

[32]. Figure 2.3 illustrates, for example, a graph model of relationships relevant to

The Mona Lisa.

Limitations of RDF. Unfortunately, RDF is unable to capture vital knowledge at-

tributes such as existence and cardinality or localized range and domain constraints

as well as richer properties such as transitivity, inverse or symmetrical properties

[18]. This makes it weaker to describe resources in sufficient detail and difficult in
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Figure 2.3: An RDF graph of relationships important to The Mona Lisa.

use to support reasoning. The Web Ontology Language (OWL) was developed to

address the weaknesses of RDF [19].

2.2.4 The Web Ontology Language (OWL)

The Web Ontology Language (OWL) is a DL-based knowledge representa-

tion language for constructing ontologies. OWL is based on the basic features of

RDF introduced above but it strengthens it by adding structure and vocabulary for

describing properties and classes. They enable richer property definitions(e.g.: tran-

sitivity), class property restrictions(e.g.: allValuesFrom), and relationship between

classes(e.g.: subClassOf). The additional capabilities allow ontological systems to

use reasoning structures and infrastructure to infer new facts (triples) from existing

ones with FOL as baseline mathematical, formal foundation. Below is an example

of how the Mona Lisa example presented above can be translated into OWL. See

Figure 2.4 and Figure 2.5.
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Figure 2.4: An OWL graph of relationships important to The Mona Lisa.

In the example, the class Painting, Person and Museum are defined. OWL

can also define two types of properties: object properties and datatype properties.

Object properties specify relationships between pairs of resources. Datatype prop-

erties, on the other hand, specify relation between a resource and a data type value;

they are equivalent to the notion of attributes in some formalisms. In the example

above, hasType and hasCompletionDate are defined as datatype properties, while

hasCreator and hasLocation are defines as object properties. The rdfs:domain and

rdfs:range properties are used to specify the domain and range of a property. The

rdfs:domain of a property specifies that the subject of any statement using the

property is a member of the class it specifies. Similarly, the rdfs:range of a property

specifies that the object of any statement using the property is a member of the

class or datatype it specifies.

The family of OWL encompasses three languages distinguished by their in-
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// Define Classes ...

<owl:Class rdf:about="http://example.org/monaLisa#Painting">

</owl:Class>

<owl:Class rdf:about="http://example.org/monaLisa#Person">

</owl:Class>

<owl:Class rdf:about="http://example.org/monaLisa#Museum">

</owl:Class>

// Define Datatype Properties ...

<owl:DatatypeProperty rdf:about="http://example.org/monaLisa#hasType">

<rdfs:domain rdf:resource="http://example.org/monaLisa#Painting"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="http://example.org/monaLisa#hasCompletionDate">

<rdfs:domain rdf:resource="http://example.org/monaLisa#Painting"/>

<rdfs:range rdf:resource="&xsd;date"/>

</owl:DatatypeProperty>

// Define Object Properties ...

<owl:ObjectProperty rdf:about="http://example.org/monaLisa#hasCreator">

<rdfs:domain rdf:resource="http://example.org/monaLisa#Painting"/>

<rdfs:range rdf:resource="http://example.org/monaLisa#Person"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://example.org/monaLisa#hasLocation">

<rdfs:domain rdf:resource="http://example.org/monaLisa#Painting"/>

<rdfs:range rdf:resource="http://example.org/monaLisa#Museum"/>

</owl:ObjectProperty>

Figure 2.5: Formal definition of a “Famous Painting” in OWL.
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creasing expressiveness. OWL Lite allows the expression of simple syntax and con-

straints but inferencing is more tractable using this version. OWL DL has a human-

friendly syntax, inferencing is decidable and the language is computationally com-

plete. OWL Full ensures full compatibility with RDF and RDFS languages however,

the cost is that there is no guarantee in the validity of all computed statements[30].

2.3 Working with Jena and Jena Rules

Not all technologies on the semantic web are standardized. Some are emer-

gent ones that are used mostly for horizontal and vertical integration of multiple

layers of the stack. Generally speaking, there are Application Programming Inter-

faces (API) used to complete integration tasks.

2.3.1 Jena

Apache Jena [1] is an open source Java framework for building Semantic Web

and linked data applications. Jena provides APIs (application programming in-

terfaces) for developing code that handles RDF (resource description framework),

RDFS, OWL (web ontology language) and SPARQL (support for query of RDF

graphs). Jena uses a rule-based reasoning approach, which is the classic technique

to logic-based reasoning where the knowledge-based system is developed by deduc-

tion, induction, abduction or choices from a starting set of data and rules. A unifying

logic, such as the DL, is needed for horizontal integration of top layers of stacks and

provide the rigorous, formal support needed by applications.
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2.3.2 Jena Rules

The Jena inference subsystem is designed to allow a range of inference engines

or reasoners to be plugged into Jena. Jena Rules is one such engine. Reasoners

provide a means to derive additional RDF assertions which are entailed from some

base RDF together with any optional ontology information and the axioms and rules

associated with the reasoner. Jena Rules use facts and assertions described in OWL

to infer additional facts from instance data and class descriptions. Such inferences

result in structural transformations to the semantic graph model, as shown in Figure

2.7.

2.4 Simplified Modeling of Event-Driven Family Dynamics

This case study examines the work of Austin, Delgoshaei and Nguyen [3] from

the perspective of basic ontology- and rule-based modeling of systems with Jena

and Jena rules. Ontologies (Jena) and rules (Jena Rules) are defined for simplified

behavior modeling of family dynamics. Once the family model has been manually

assembled, the graph of family individuals and relationships will evolve in response

to events.

2.4.1 Definition of the Family Ontology

Figure 2.6 shows a simplified family ontology, the relationship among classes

and properties.
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hasWeight

Boy

Male Female Child

Person

attendsPreschool

hasAge

hasBirthdate

Figure 2.6: Relationship between classes and properties in a family ontology.

The ontology class Person has properties: hasAge, hasWeight, and hasBirthDate.

They will be modeled as data types double, double and date, respectively. Male

and Female are subclasses (specializations) of class Person. Boy is a specialization

of Male. A Child is a Person who may (or may not) attend Preschool.

2.4.2 Adding Facts and Rules

To see how these ideas might work in practice, consider the following fact and

small set of rules:

Fact 1: Sam is a boy born October 1, 2007.

The following rules can be declared:

Rule 1: For a given a birthdate and a current time, a built-in function getAge()

computes a persons age.

Rule 2: A child is a person with age less than 18 .

Rule 3: Children who are age 5 attend preschool.
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Figure 2.7 shows the evolution of a graph defining the properties of Sam as a function

of time.

Sam

Oct. 1, 2007 Oct. 1, 2007 Oct. 1, 2007

7

hasAge attendsPreschool

Feb 1, 2008 Feb 1, 2015

hasAgehasAge

hasBirthdate hasBirthdate hasBirthdate

Oct. 1, 2007

hasBirthdate

Age Rule

The Facts

5

Feb 1, 2013

true
0

Sam Sam Sam

Figure 2.7: Evolution of ontology graph as a function of time.

Some of the data (e.g., Sams birthdate) remains constant over time. Other data

(e.g., such as whether or not Sam attends preschool) is dynamic and is controlled

by the family rules.

2.4.3 Definition and Organization of Ontology Classes

The abbreviated fragment of code below demonstrates the definition of the family

ontology classes, their assembly into a hierarchy, and definition of data properties

for the class Person.

// Define classes ...

person = model.createClass( ns + "Person");

male = model.createClass( ns + "MalePerson");

boy = model.createClass( ns + "Boy");

// Define relationships among classes ...

person.addSubClass ( male );

male.addSubClass ( boy );

// Create data properties for the class Person ...
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hasAge = model.createDatatypeProperty( ns + "hasAge");

hasAge.setDomain(person);

hasAge.setRange( XSD.integer );

hasBirthDate = model.createDatatypeProperty( ns + "hasBirthDate");

hasBirthDate.setDomain(person);

hasBirthDate.setRange( XSD.date );

The data property hasAge is an integer. The data property hasBirthDate is a date.

Notice that since Boy is a subclass of MalePerson, and MalePerson is a subclass

of Person, boys automatically have the properties age and birthdate through class

hierarchy inheritance.

2.4.4 Adding Individuals to the Family Model

The next step is to define family individuals, the data associated with each

individual, and the relationship of one individual to other individuals in the family.

The fragment of code below establishes a name space for the family ontology, creates

a graph model for the storage of individuals and their data and object properties,

and then creates an Individual model for Sam and a data property statement for his

date of birth.

// Namespace for the family ontology ...

String ns = "http://austin.org/family#";

// Create ontology model (a graph) ...

OntModel model = ModelFactory.createOntologyModel();

// Add "Sam" to the family graph model ...

Individual sam = boy.createIndividual( ns + "Sam" );

model.add ( sam );
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// Create statement: Sam’s birthdate is 2007-10-01.

Literal bdate = model.createTypedLiteral( "2007-10-01", XSDDatatype.XSDdate );

Statement cbd = model.createStatement( sam, hasBirthDate, bdate );

model.add ( cbd );

Jena provides very powerful facilities for querying the graph model, subject to a

wide range of search criteria.

2.4.5 Event-Driven Graph Transformations (Jena Rules)

Given the fact and three rules described above, graph transformations are

enabled. Sam is a boy born October 1, 2007. Given a birthdate and a current time,

a built-in function getAge() computes Sam’s age. Further rules can be defined for

when a person is also a child and when children attend Preschool. Figure 2.7 shows

the evolution of a graph defining the properties of Sam as a function of time. The

abbreviated fragment of code below is taken from the Jena Rules for the family

ontology.

@prefix af: <http://austin.org/family#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Propagate class hierarchy relationships ....

[ rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y) ->

[ (?a rdf:type ?y) <- (?a rdf:type ?x)] ]

// Rule 02: Compute and store the age of a person ....

[ GetAge: (?x rdf:type af:Person) (?x af:hasBirthDate ?y)

getAge(?y,?z) -> (?x af:hasAge ?z) ]

[ UpdateAge: (?a rdf:type af:Person) (?a af:hasBirthDate ?b)

(?a af:hasAge ?c) getAge(?b,?d) notEqual(?c, ?d) ->

remove(2) (?a af:hasAge ?d) ]
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The first rule propagates class hierarchy relationships. The second set of rules serves

two purposes. First, given an individual’s data of birth, the GetAge rule computes

their age and inserts it into the semantic model via the hasAge data property. When

a person has a birthday, the UpdateAge rule removes the old age from the graph and

inserts the new age.

38



Chapter 3: System Modeling and Software Architecture

This chapter describes the system modeling assumptions and prototype soft-

ware architecture for the generation and execution of semantic models and dis-

tributed system behaviors.

3.1 System Modeling Assumptions

This study takes an initial step toward creating the “city operating system”

capability described in Figures 1.3 through 1.8. The simplifying assumptions are as

follows:

1. Figure 1.11 shows a simplified view of the urban (semantic graph) domain

models, their interfaces, and mechanisms for exchange of messages. The iter-

faces serve two purposes. First, they listen for changes to the semantic graph

within the domain – these changes could triggered, for example, through the

execution of a domain-specific rule.

2. Each urban domain (semantic graph) has behavior that operates independently

from the other domains. For the purposes of this study, however, we assume

that all of the models execute under a single continuous thread of computation,
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Figure 3.1: Five approaches to system/model development: (1) object-oriented, (2)
actor-based, (3) equation-based, (4) causal modeling, and (5) acausal modeling [22].

with the only interaction among domains being exchange of messages. If we

think of these messages as “flows of data” then the model of computation can

be classified as being actor based (see Figure 3.1).

3. All of the participating domains operate under a single clock. Delays in com-

munication between domains are ignored.

4. We assume that behavior models are deterministic. Uncertainties in behavior

are ignored.

5. Support for fault-tolerant communication among domains is ignored. We do,

however, send confirmation messages back to the sender.
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3.2 Generation of Semantic Models

Figure 3.2 shows the pathway of development for generation of semantic mod-

els, consisting of ontologies, graphs of individuals (specic instances), and rules de-

rived from engineering models.

Figure 3.2: Pathway of development for generation of semantic models.

The process begins with the development of ontological descriptions of problem do-

mains in OWL (the Web Ontology Language). Each ontology consists of a creating

hierarchy of classes, and data and object properties. Next, we use the Jena Rules

formalism to describe rules and represent domain-specific constraints. The data

necessary to complete the model can be retrieved from an XML data file through a

Data Model. The Data Model reads the XML data file and imports the data. On-

tology, rules and data are all combined in the Jena Semantic Model. This semantic

model creates an instance of the OWL ontology.

Note that the data in the data model may or may not pertain to the ontology

instance in its entirety. Through the implementation of a visitor design pattern, the
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data that does pertain to the ontology instance is transferred to the Jena Semantic

Model, where the ontology and rules are applied to it.

In software engineering circles, a design pattern is a general repeatable solution

to a commonly occurring problem in software design. A design pattern is not a

complete design that can be transformed directly into code. It is a description or

template for how to solve a problem that can be used in many different applications.

Design patterns can speed up the development process by providing tested, proven

development paradigms. As a case in point, the visitor design pattern, is a way

of separating an algorithm (i.e. system functionality) from an object structure on

which it operates. This pattern should be used when distinct or unrelated operations

are to be performed across a structure of objects. In the case of the semantic model

described above, the system functionality to be separated from the semantic model

is the retrieval of data pertaining to the ontology instance.

3.3 Distributed Behavior Modeling

Figure 3.3 shows the software architecture for distributed system behavior

modeling for collections of graphs that have dynamic behavior defined by ontology

classes, relationships among ontology classes, ontology and data properties, listeners,

mediators and message passing mechanisms.

The abstract ontology model class contains concepts common to all ontologies

(e.g., the ability to receive message input). Domain-specific ontologies are extensions

of the abstract ontology classes. They add a name space and build the ontology
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message passing

Figure 3.3: Software architecture for distributed behavior modeling in the family-
school case study.

classes, relationships among classes, properties of classes for the domain. Instances

(see Figure 1.6) are semantic objects in the domain.

Ontologies provide a framework for the representation of knowledge, but by

themselves, cannot do much and really arent that interesting. This situation changes

when domain-specific rules are imported into the model and graph transformations

are enabled by formal reasoning and event-based input from external sources. Dis-

tributed behavior modeling involves multiple semantic models, multiple sets of rules,

mechanisms of communication among semantic models, and data input, possibly

from multiple sources. We provide this functionality in our distributed behavior

model by loosely coupling each semantic model to a semantic interface. Each se-

mantic interface listens for changes to the semantic domain graph and when required,

forwards the essential details of the change to other domains (interfaces) that have

registered interest in receiving notification of such changes. They also listen for in-

coming messages from external semantic models. Since changes to the graph struc-

ture are triggered by events (e.g., the addition of an individual; an update to a data
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property value; a new association relationship among objects), a central challenge

is design of the rules and ontology structure so that the interfaces will always be

notified when exchanges of data and information need to occur. Individual messages

are defined by their type (e.g., MessageType.miscellaneous), a message source and

destination, and a reference to the value of the data being exchanged. The receiving

interface will forward incoming messages to the semantic model, which, in turn, may

trigger an update to the graph model. Since end-points of the basic message passing

infrastructure are common to all semantic model interfaces, it makes sense to define

it in an abstract ontology interface model.

3.4 Message Passing Mechanism

When the number of participating applications domains is very small, point-to-

point channel communication between interfaces is practical. Otherwise, an efficient

way of handling domain communication is by delegating the task of sending and

receiving specific requests to a central object. In software engineering, a common

pattern used to solve this problem is the Mediator Pattern.

As illustrated in Figures 1.4 and 1.11, the mediator pattern defines a object

responsible for the overall communication of the system, which from here on out

will be referred as the mediator object. The mediator has the role of a router, it

centralizes the logic to send and receive messages. Components of the system send

messages to the mediator rather than to the other components; likewise, they rely

on the mediator to send change notifications to them [34]. The implementation
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of this pattern greatly simplifies the other classes in the system; components are

more generic since they no longer have to contain logic to manage communication

with other components. Because other components remain generic, the mediator

has to be application specific in order to encapsulate application-specific behavior.

One can reuse all other classes for other applications, and only need to rewrite the

mediator class for the new application.
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Chapter 4: Case Studies

To illustrate the capabilities of our experimental software architecture, this

chapter presents two case study problems. Case Study 1 describes behavior modeling

of a multiplicity of families and school, defined by ontologies, rules, and exchange of

information as messages. The decision making includes reasoning with time-driven

events. In Case Study 2, decision making capability is extended to include reasoning

with both space and time-driven events.

4.1 Case Study 1: Family-School System Dynamics

Figure 4.1 is an instantiation of the concepts introduced in Figure 3.3 and

shows the software architecture for a family-school interaction. Figure 4.2 is the net-

work setup for three families interacting with elementary, middle and high schools.

As every parent knows, the enrollment process involves the exchange of specific

information, such as the name, birth date, home address and social security number

of each child. Then, once the child is accepted the school system takes over. They

figure out what grade level is appropriate for each child, what classroom the child

will be in, the schedule of learning activities, and when school reports will be sent

home.
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enabled by a mediator.
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Communication among the family and school communities is handled by a

mediator. Every component of the system (i.e., families and schools) register with

the mediator as listeners. Once a family member reaches a certain age, the age rules

associated with the family system will trigger a school enrollment form to be sent to

the mediator in the form of a message, with source and destination properties. The

mediator logic loops through all of its registered listeners to find a match with the

message destination, and then destination listener is notified. Similarly, once the

system calendar reaches a certain date, the reporting rules associated with the school

system will trigger a school report to be sent to the mediator. The messaging design

allows the school enrollment form to be received only by the school of interest, and

not broadcasted to the entire school system. Likewise, this design allows the school

reports to be sent only to the student’s family. This mediator logic design is known

as point-to-point channel, and it ensures that only one listener consumes any given

message. The channel can have multiple listeners that consume multiple messages

concurrently, but the design ensures that only one of them can successfully consume

a particular message. Using this approach, listeners do not have to coordinate with

each other; coordination could be complex, create a lot of communication overhead,

and increase coupling between otherwise independent receivers.

4.1.1 Family and School Data Models

In this setup, the information to be exchanged between ontologies is contained

in XML datafiles. Complete descriptions of the XML data for the family and school
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system models are located in Appendix B. The abbreviated details are found below.

Family Data Model. The family data model defines the attributes of a family

(e.g, name, address) and the persons who are members of the family.

<?xml version="1.0" encoding="UTF-8"?>

<FamilyModel author="Maria Coelho" date="2017" source="UMD">

<Family>

<attribute text="FamilyName" value="Austin"/>

<attribute text="Address" value="6242 Heather Glen Way, Clarksville, MD 21029"/>

<Person>

<attribute text="Type" value="Male"/>

<attribute text="FirstName" value="Mark"/>

<attribute text="MiddleName" value="William"/>

<attribute text="LastName" value="Austin"/>

<attribute text="BirthDate" value="1704-06-10"/>

<attribute text="Weight" value="170.0"/>

<attribute text="Citizenship" value="New Zealand"/>

<attribute text="SocialSecurity" value="111"/>

</Person>

<Person>

... description of Christopher Austin ....

</Person>

<Person>

... description of Nina Austin ....

</Person>

<Person>

... description of Erin Austin ....

</Person>

</Family>

<Family>

<attribute text="FamilyName" value="Jones"/>

<attribute text="Address" value="5807 Laurel Leaves Ln, Clarksville, MD 21029"/>

<Person>

... description of Robert Jones ....

</Person>

<Person>

... description of Timothy Jones ....

</Person>

<Person>

... description of Samantha Jones ....

</Person>

</Family>

</FamilyModel>
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In the case of the family ontology, the XML datafile describes information about

the individual families and their corresponding family members. The information is

stored as key/value pairs. The key (e.g. ”first name”, ”citizenship”, etc.) identifies,

and is used to retrieve, the value (e.g. ”Mark”, ”New Zealand”, etc.). In the same

fashion, the school system XML datafile describes information about the individual

schools.

School System Data Model. The school system data model defines the grade

levels that will be taught at each school and the interval of time when reports will

be sent home.

<?xml version="1.0" encoding="UTF-8"?>

<SchoolSystemModel author="Maria Coelho" date="2017" source="UMD">

<School>

<attribute text="Type" value="High School"/>

<attribute text="Name" value="River Hill High School"/>

<attribute text="Grade" value="Grade09"/>

<attribute text="Grade" value="Grade10"/>

<attribute text="Grade" value="Grade11"/>

<attribute text="Grade" value="Grade12"/>

<attribute text="Report Period Start Time" value="2016-09-01T00:00:00"/>

<attribute text="Report Period End Time" value="2020-10-20T00:00:00"/>

</School>

<School>

... description of Clarksville Middle School ...

</School>

<School>

... description of Pointers Run Elementary School ...

</School>

</SchoolSystemModel>

Instantiating the Family and School Data Models. As they are, XML data

files are basically text. However, value is added to the information once it can

be extracted from the XML file and instantiated (i.e., text file is converted into
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class instances). Because the XML datafiles store information in a structured way,

information retrieval is facilitated. In order to perform the data retrieval, we used

a Java API called JAXB. JAXB stands for Java architecture for XML binding. It

is used to convert XML to Java object through a process called Marshalling, and

Java object to XML through a process called Unmarshelling. For our application,

we use Unmarshelling to read the XML files, and create a Data Model as shown in

Figure 3.2. Then, we create instances of the ontology classes, laden with the data

from XML files.

4.1.2 Family and School Ontology Models

Ontologies are defined by classes, data and object properties, and the relation-

ships among them. Our application employs the Web Ontology Language (OWL) to

define ontologies. Complete descriptions of the OWL files for the family and school

system models are located in Appendix C. The abbreviated details are shown Figure

4.3 and Figure 4.4.

Family Ontology. Figure 4.3 shows the relationship between classes in a family

ontology. Male, Female, Child and Student are subclasses of class Person. The class

Boy is a subclass of class Male. The class Person has properties that get inherited

by all subclasses such as hasAge, hasWeight, hasBirthdate, hasFamilyName, has-

FirstName, hasSocialSecurityNo, hasCitizenship. The class Student has properties

associated with school enrollment, such as attendsPreschool, attendsSchool, attend-

sElementarySchool, attendsMiddleSchool, attendsHighSchool, and hasReportFrom.

51



Figure 4.3: Family ontology diagram with classes, properties, and relationships among them.
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The class family has property hasFamilyName, and the class Address has proper-

ties hasLatitude and hasLongitude. Other properties such as hasFamilyMember,

belongsToFamily, hasFather, hasSon, hasDaughter, and hasAddress define relation-

ships that hold between objects.

School System Ontology. In the same fashion, an ontology can be constructed for

the school system. Figure4.4 shows the relationship between classes in a school on-

tology. Elementary School, Middle School and High School are subclasses of School.

Grades 1 through 12 are subclasses of Grade. A school has properties that get inher-

ited by all school subclasses such as hasName. A grade also has properties that get

inherited by all grade subclasses such as hasEnrollment. A student has properties

similar to the ones defined in the classes Person and Student in the family ontol-

ogy such as hasFirstName, hasFamilyName, hasBirthDate, hasAge, hasSocialSe-

curityNo, attendsElemntarySchool, attendsMiddleSchool, attendsHighSchool, and

hasReport. The class Address also follows the same pattern of the family ontology,

with properties hasLatitude and hasLongitude. The classes Calendar and Event

are included in this ontology to provide temporal behavior modeling capabilities.

The class Event has properties hasStartTime and hasEndTime. Other properties

such as hasGrade, hasStudent, isInGrade, hasStudentAddress, hasSchoolAddress

and hasEvent define relationships that can hold between objects.

Instantiating the Family and School Ontology Models. To instantiate these

ontologies with information retrieved from the XML datafiles, a visitor object is

used to visit the Data Model, retrieve the data, and create instances of ontology
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Figure 4.4: School ontology diagram with classes, properties, and relationships among them.
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Figure 4.5: Generation of family and school semantic models.

classes with the data, as described in Figure 4.5. Because the data contained in the

Data Models pertains to multiple instances of the ontologies (i.e. Family Data Model

contains information about multiple families), the Data Model design assures visiting

objects can only retrieve data pertaining to their corresponding ontology instance

through a “password” mechanism. That way privacy of the different instances is

preserved. The data retrieved by the visitor object is then used to create instances

of the ontology classes in the Jena Semantic Models.

4.1.3 Family and School Jena Rules

Ontologies by themselves provide a framework for the representation of knowl-

edge, but otherwise cannot model the dynamic evolution of objects, properties and

relationships. Consider the family ontology, some of the data remains constant

over time (e.g., birthdates), while other data is dynamic (e.g., attending preschool).

However, when coupled with a set of domain-specific rules, ontological representa-
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tions enable graph transformations by formal reasoning and event-based input from

external sources. In our application, we use Jena Rules to define domain-specific

rules. Complete descriptions of the rules for the family and school system models

can be found in the appendices – abbreviated details are presented in Figure 4.6.

Family Rules. Figure 4.6 contains an abbreviated list of Jena rules for identifying

relationships and properties within a family semantic model. The combination of on-

tologies and ontology rules is extremely powerful in scenarios where ontology graphs

are dynamic. For example, the boy Christopher was born December 10,2007. Given

a birthdate and the current year, a built-in function getAge() compute Christophers

age. An age rule defined using Jena Rules determines whether or not a person is

also a child. Therefore, the behavior modeling for the family system is defined by

the set of rules governing graph transformations. Graph transformation can occur

due to input (e.g. family graph changes because a new child is born) or time (e.g.

family graph changes because a specific member has not the age of a child anymore).

School Rules. Figure 4.7 contains an abbreviated list of Jena rules for transforma-

tion of the School Semantic Model. Rules are provides for attendance, progression

through the grades and timing of school reports.

The combination of ontologies and ontology rules is also extremely powerful in

scenarios where ontology graphs are event dependent. For example, consider the boy

Christopher again, now identified as a student from the school system perspective.

A built-in function getToday() computes the current date. A rule defined using

Jena Rules determines whether or not a student has a report by comparing the
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@prefix af: <http://austin.org/family#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Propagate class hierarchy relationships ....

[ rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y),

(?a rdf:type ?x) -> (?a rdf:type ?y)]

// Rule 02: Family rules ....

[ Family: (?x rdf:type af:Family) (?x af:hasFamilyMember ?y) ->

(?y af:belongsToFamily ?x) ]

// Rule 02: Identify a person who is also a child ...

[ Child: (?x rdf:type af:Person) (?x af:hasAge ?y)

lessThan(?y, 18) -> (?x rdf:type af:Child) ]

[ UpdateChild: (?x rdf:type af:Child) (?x af:hasBirthDate ?y)

getAge(?y,?b) ge(?b, 18) -> remove(0) ]

// Rule 03: Identify a person who is also a student ...

[ Student: (?x rdf:type af:Person) (?x af:hasAge ?y)

greaterThan(?y, 4) lessThan(?y, 18) -> (?x rdf:type af:Student) ]

[ UpdateStudent: (?x rdf:type af:Student) (?x af:hasBirthDate ?y)

getAge(?y,?b) ge(?b, 18) -> remove(0) ]

// Rule 04: Compute and store the age of a person ....

[ GetAge: (?x rdf:type af:Person) (?x af:hasBirthDate ?y)

getAge(?y,?z) -> (?x af:hasAge ?z) ]

[ UpdateAge: (?a rdf:type af:Person) (?a af:hasBirthDate ?b) (?a af:hasAge ?c)

getAge(?b,?d) notEqual(?c, ?d) -> remove(2) (?a af:hasAge ?d) ]

// Rule 05: Set father-son and father-daughter relationships ...

[ SetFather01: (?f rdf:type af:Male) (?f af:hasSon ?s)-> (?s af:hasFather ?f)]

[ SetFather02: (?f rdf:type af:Male) (?f af:hasDaughter ?s)-> (?s af:hasFather ?f)]

Figure 4.6: Abbreviated list of Jena rules for transformation of the Family Semantic
Model.
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@prefix af: <http://austin.org/school#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Propagate class hierarchy relationships ....

[ rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y),

(?a rdf:type ?x) -> (?a rdf:type ?y)]

// Rules 02: Elementary school rules ...

[ EnterElementarySchool: (?x rdf:type af:Student) (?y rdf:type af:ElementarySchool)

(?x af:hasBirthDate ?a) getAge(?a,?b) ge(?b, 6) le(?b, 10) ->

(?x af:attendsElementarySchool af:True) (?y af:hasStudent ?x)]

[ LeaveElementarySchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsElementarySchool af:True) (?y af:hasStudent ?x)

getAge(?a,?b) ge(?b, 10) -> remove(2) ]

[ GradeOne: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 6) -> (?x af:isInGrade af:Grade01) ]

[ GradeTwo: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 7) -> (?x af:isInGrade af:Grade02) ]

... Rules for Grades 3 through 5 removed ...

// Rules 03: Middle school rules ...

... Middle school rules removed ...

// Rules 04: High school rules ...

[ EnterHighSchool: (?x rdf:type af:Student) (?y rdf:type af:HighSchool)

(?x af:hasBirthDate ?a) getAge(?a,?b) ge(?b, 14) le(?b, 17) ->

(?x af:attendsHighSchool af:True) (?y af:hasStudent ?x) ]

[ LeaveHighSchool: (?x rdf:type af:Student) (?y rdf:type af:HighSchool)

(?x af:hasBirthDate ?a) (?x af:attendsHighSchool af:True)

(?y af:hasStudent ?x) getAge(?a,?b) ge(?b, 17) -> remove(2) ]

... Rules for Grades 9 through 12 removed ...

// Rules 05: If today is report period, send school report ....

[ GenerateReport: (?x rdf:type af:Event) (?y rdf:type af:Student)

(?z rdf:type af:School) (?z af:hasStudent ?y) (?x af:hasStartTime ?t1)

(?x af:hasEndTime ?t2) getToday(?t3) lessThan(?t3,?t2)

greaterThan(?t3,?t1) -> (?y af:hasReport af:True) ]

Figure 4.7: Abbreviated list of Jena rules for transformation of the School Semantic
Model.
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output of the built-in function getToday() to the start and end dates of reporting

period events. Therefore, similar to the family system, the behavior modeling for

the school system is defined by the set of rules governing graph transformations.

Graph transformation can occur due to input (e.g., school graph changes because a

student is enrolled) or time (e.g., school graph changes because a reporting period

has started).

Rules for Family-School System Interaction. So far, the family and school

rule systems have been completely decoupled and one might think that they operate

independently. In reality, a small set of rules that govern family behavior are actually

defined by the school system. When a child is old enough to attend preschool is one

example.

Figure 4.8 contains an abbreviated list of rules for family-school system inter-

actions. Three set of rules are needed. First a set of rules pertaining just to the

family model, a set of rules pertaining just to the school model, and a set of rules

pertaining to both the school and family models, which from now on will be refer-

enced as family-school rules. This family-school interface allows the school system

to distribute relevant rules to the family system. For example, consider the situation

where Christopher is now old enough to attend regular school. The family-school

set of rules will inform Christophers family that he is now old enough to attend

regular school by triggering a change to the family graph. This change, in turn, will

trigger the school enrollment process for Christopher to start.
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// ================================================================

// School-family interaction rules ...

// ================================================================

@prefix af: <http://austin.org/family#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rules 01: Children of age 4 and 5 attend preschool ...

[ EnterPreSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a) getAge(?a,?b)

ge(?b, 4) le(?b, 5) -> (?x af:attendsPreSchool af:True) ]

[ LeavePreSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsPreSchool af:True) getAge(?a,?b) ge(?b, 6) -> remove(2) ]

// Rules 02: Children aged 6 through 10 attend elementary school ....

[ EnterSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) ge(?b, 6) le(?b, 10) -> (?x af:attendsElementarySchool af:True) ]

[ LeaveSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsElementarySchool af:True) getAge(?a,?b) ge(?b, 11) -> remove(2) ]

// Rules 03: Children aged 11 through 13 attend middle school ....

... Rules for attending Middle school removed ...

// Rules 04: Children aged 14 through 17 attend high school ....

[ EnterSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) ge(?b, 14) le(?b, 17) -> (?x af:attendsHighSchool af:True) ]

[ LeaveSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsHighSchool af:True) getAge(?a,?b) ge(?b, 18) -> remove(2) ]

// Rules 05: Children aged 6 through 18 attend regular school ....

[ EnterSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a) getAge(?a,?b)

ge(?b, 6) le(?b, 17) -> (?x af:attendsSchool af:True) ]

[ LeaveSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsSchool af:True) getAge(?a,?b) ge(?b, 18) -> remove(2) ]

Figure 4.8: Abbreviated list of Jena rules for family-school system interactions.
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4.1.4 Assembly of the Family-School Simulation Model

The step-by-step procedure for assembly of the family-school simulation model is as

follows:

Step 01. Create empty semantic graph models, then load ontologies. The

fragment of code creates semantic (graph-based) models for two families and three

schools:

JenaFamilySemanticModel austin = new JenaFamilySemanticModel();

JenaFamilySemanticModel jones = new JenaFamilySemanticModel();

JenaSchoolSystemSemanticModel hs = new JenaSchoolSystemSemanticModel();

JenaSchoolSystemSemanticModel ms = new JenaSchoolSystemSemanticModel();

JenaSchoolSystemSemanticModel es = new JenaSchoolSystemSemanticModel();

Family semantic models are handled by the class JenaFamilySemanticModel. School

system semantic models are handled by the class JenaSchoolSystemSemanticModel.

Both JenaFamilySemanticModel and JenaSchoolSystemSemanticModel are exten-

sions AbstractSemanticModel. For simplicity of implementation, code for load-

ing the family and school system ontologies (e.g., umd-family.owl and umd-school-

system.owl) are embedded within the class constructors.

Step 02. Connect family and school system models. Each component of

the system (i.e., families and schools) is paired with an interface for communication

and information exchange with other components. Every component also registers

with the mediator as message listeners, as described in Section 4.1. The fragment
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of code:

// Retrieve family and school system interfaces ..

JenaFamilySemanticModelInterface austinfmi = austin.getModelInterface();

austinfmi.setType("Austin");

JenaFamilySemanticModelInterface jonesfmi = jones.getModelInterface();

jonesfmi.setType("Jones");

JenaSchoolSystemSemanticModelInterface hsi = highschool.getModelInterface();

hsi.setType("River Hill High School");

JenaSchoolSystemSemanticModelInterface msi = middleschool.getModelInterface();

msi.setType("Clarksville Middle School");

JenaSchoolSystemSemanticModelInterface esi = elementaryschool.getModelInterface();

esi.setType("Pointers Run Elementary School");

// Add message listeners to family interfaces ...

austinfmi.addMessageListener ( (MessageListener) hsi );

austinfmi.addMessageListener ( (MessageListener) msi );

austinfmi.addMessageListener ( (MessageListener) esi );

jonesfmi.addMessageListener ( (MessageListener) hsi );

jonesfmi.addMessageListener ( (MessageListener) msi );

jonesfmi.addMessageListener ( (MessageListener) esi );

// Add message listeners to school interfaces ...

hsi.addMessageListener ( (MessageListener) austinfmi );

hsi.addMessageListener ( (MessageListener) jonesfmi );

msi.addMessageListener ( (MessageListener) austinfmi );

msi.addMessageListener ( (MessageListener) jonesfmi );

esi.addMessageListener ( (MessageListener) austinfmi );

esi.addMessageListener ( (MessageListener) jonesfmi );

retrieves references to the family and school system interfaces, and then systemati-

cally adds message listeners to the family and school system interfaces. The family

interfaces listen for incoming messges from the schools. And the school interfaces

listen for incoming messages from the families. In the background, the bi-directional
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routing of messages (from source to destination) is handled by the message mediator.

Step 03. Create visitor object models. The result of Step 02 is a network of

connected semantic graphs that are populated with ontologies, but do not contain

individuals. The data for the family and school systems individuals is contained in

XML files (for details, see Appendix B). We populate the semantic models with

data on individual families and schools by creating visitor objects models that will

be given permission to visit and extract information from the family and school

system data models. This is the visitor software design pattern in action.

The fragment of code:

FamilyDataModelJenaVisitor austin_visitor = new FamilyDataModelJenaVisitor();

austin_visitor.setPassword("Austin");

austin_visitor.addSemanticModel( austin );

FamilyDataModelJenaVisitor jones_visitor = new FamilyDataModelJenaVisitor();

jones_visitor.setPassword("Jones");

jones_visitor.addSemanticModel( jones );

SchoolSystemDataModelJenaVisitor hsv = new SchoolSystemDataModelJenaVisitor();

hsv.setPassword("River Hill High School");

hsv.addSemanticModel( hs );

SchoolSystemDataModelJenaVisitor msv = new SchoolSystemDataModelJenaVisitor();

msv.setPassword("Clarksville Middle School");

msv.addSemanticModel( me );

SchoolSystemDataModelJenaVisitor esv = new SchoolSystemDataModelJenaVisitor();

esv.setPassword("Pointers Run Elementary School");

esv.addSemanticModel( es );

creates the visitor objects for the family and schools, sets the appropriate visitor

passwords, and adds to each visitor references to the appropriate semantic graph.

Notice how each visitor uses a password mechanism to retrieve only the data that
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is of interest to their semantic model.

Step 04. Get data from XML files. This step creates data models for the family

and school ontologies, and populates them with data imported from XML datafiles.

The fragment of code:

FamilyDataModel fdm = new FamilyDataModel();

fdm.getData( "data/FamilyModel.xml" );

SchoolSystemDataModel ssdm = new SchoolSystemDataModel();

ssdm.getData( "data/SchoolSystemModel.xml" );

creates FamilyDataModel and SchoolSystemDataModel objects to store the data

that will be imported from the datafiles FamilyModel.xml and SchoolSystemModel.xml,

respectively.

Step 05. Populate semantic models with individuals. The family and school

semantic graphs are populated with individuals by visiting the family and school

system data models, respectively. In the fragment of code:

fdm.accept ( austin_visitor ); //Semantic model visits the data model ...

fdm.accept ( jones_visitor );

ssdm.accept ( hsv );

ssdm.accept ( msv );

ssdm.accept ( esv );

the family data model accepts the Austin and Jones semantic models as visitors.

Similarly, the school system data model accepts semantic graph models of schools
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as visitors. The password information provided at Step 03 ensures that semantic

models for the individual families and schools are correctly matched with their data

models.

Step 06. Add rules. Then execute. Finally, we import rules into each of

the semantic models, and trigger transformations to the graph models by executing

them. The fragment of code:

// Add rules to the school models ...

hs.addRules ( "src/demo/rules/schoolRules.rules" );

ms.addRules ( "src/demo/rules/schoolRules.rules" );

es.addRules ( "src/demo/rules/schoolRules.rules" );

// Transform school system semantic graph models ...

hs.executeRules();

ms.executeRules();

es.executeRules();

// Add family and family-school interaction rules to family semantic models ...

austin.addRules ( "src/demo/rules/familyRules.rules",

"src/demo/rules/familyschoolRules.rules" );

jones.addRules ( "src/demo/rules/familyRules.rules",

"src/demo/rules/familyschoolRules.rules" );

// Transform family semantic graph models ...

austin.executeRules();

jones.executeRules();

adds the contents of schoolRules.rules to the school semantic graphs, and fami-

lyRules.rules and familyschoolRules.rules to the family semantic graph models. The

familyRules.rules are sets of rules that trigger transformations to the family semantic

model. The familyschoolRules.rules are sets of rules that a family semantic model
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needs to know in order to interact with the school system. Execution of the rules

within each semantic model occurs with the method calls jones.executeRules()

and so forth.

At the conclusion of Step 06, interfaces are listening for changes to the graphs

of semantic models to which they are attached to. Once a change is identified, the

interface will communicate that information to other interested semantic models in

the form of a message. The message will have a type, source and destination. The

mediator will match the message destination to the corresponding interface among

the registered listening interfaces, and forward the message. Once the receiving

interface receives the message, it triggers changes in the graph of the semantic

model it is attached to, and the process may start again.

4.1.5 Simulation of Family-School Interactions

In this case study, interactions between the family and school systems occur

in response to time-driven events. For example, the family-school interaction rules

define a range of ages within which child should be enrolled in elementary school.

When a child’s age falls within the acceptable range, the boolean property ”attend-

sElementarySchool” will be set to ”True”. The family’s semantic model interface

will identify the corresponding update to the semantic graph, and in response, send

an enrollment request to the elementary school in the form of a message, containing

relevant information such the childs first name, last name, social security number

and date of birth.
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Task 01. Enrolling a Child in School. The following fragment of output shows

the essential details of a school enrollment request:

*** Entering JenaFamilySemanticModelInterface.addStatement(Statement s) ...

*** =======================================================================

*** Subject: = http://www.ontologies.org/family#Christopher

*** Predicate: = http://austin.org/family#attendsElementarySchool

*** Object: = http://austin.org/family#True

*** Subject local name: s = Christopher

*** Predicate local Name: s = attendsElementarySchool

*** Object resource: s = True

*** Object value = null

*** Kid attends school: Christopher

message handlerMessage:

Type = NEW_ELEMENTARY_SCHOOL_STUDENT

Source = Austin

Destination = Pointers Run Elementary School

Subject = --- Here’s a new kid for your elementary school ...

Body = School Enrollment Form ...

==========================================

First Name = Christopher

Last Name = Austin

Date of Birth = Fri Oct 12 00:00:00 EDT 2007

Social Security No = 678

==========================================

The mediator will match the message destination, Pointers Run Elementary School,

with the elementary school’s semantic model interface and forward the message.

The school semantic model interface will identify the message type (i.e. new ele-

mentary school student), and trigger changes to the semantic model graph by adding

Christopher to the list of students.

Task 02. School Enrollment Acceptance. The elementary school’s semantic

model interface is listening for changes to the semantic model graph. Once Christo-

pher is enrolled, the interface sends a message back to the Austin family to confirm
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the enrollment. Here are the essential details:

*** Entering JenaSchoolSystemSemanticModelInterface.addStatement(Statement s) ...

*** =================================================================

*** Subject: = http://www.ontologies.org/school#Pointers Run Elementary School

*** Predicate: = http://austin.org/school#hasStudent

*** Object: = http://www.ontologies.org/school#Christopher

*** Subject local name: s = Pointers Run Elementary School

*** Predicate local Name: s = hasStudent

*** Object resource: s = Christopher

*** Object value = null

*** New student enrolled : Christopher

message handlerMessage:

Type = NEW_STUDENT_ENROLLED

Source = Pointers Run Elementary School

Destination = Austin

Subject = --- To: Austin family ...

--- Message: Christopher is now enrolled with Pointers Run Elementary School...

Body = Enrollment Confirmation Form ...

==========================================

First Name = Christopher

Last Name = Austin

School Name = Pointers Run Elementary School

==========================================

Again, the mediator will match the message destination (in this case, Austin family),

with family’s semantic model interface, and forward the message. The interface for

the family semantic model will identify the incoming message type (i.e. new student

enrolled). No further action is needed from the family side, and no changes to the

semantic model graph are triggered.

Task 03. Sending the School Reports Home. Student reports are sent home

during the school reporting period. This is a time-driven event. The school rules

establish that the school reporting period has started, and so the boolean property

”hasReport” becomes ”True”. The elementary school’s semantic model interface
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will identify such a change and send a report to all the students’ families in the form

of a message. The transmitted message contains information such as the student’s

first name, last name, and school, e.g.,

*** Entering JenaSchoolSystemSemanticModelInterface.addStatement(Statement s) ...

*** =================================================================

*** Subject: = http://www.ontologies.org/school#Christopher

*** Predicate: = http://austin.org/school#hasReport

*** Object: = http://austin.org/school#True

*** Subject local name: s = Christopher

*** Predicate local Name: s = hasReport

*** Object resource: s = True

*** Object value = null

*** New school report : Christopher

message handlerMessage:

Type = SCHOOL_REPORT

Source = Pointers Run Elementary School

Destination = Austin

Subject = --- To: Austin family ...

---Message: Here’s Christopher’s Pointers Run Elementary School report ...

Body = Report Form ...

==========================================

First Name = Christopher

Last Name = Austin

School Name = Pointers Run Elementary School

==========================================

In this case, the mediator will match the message destination, Austin family, with

the Austin family’s semantic model interface, and forward the message.

Task 04. School Report Receipt. The Austin family’s semantic model interface

will identify the message type (i.e. school report), and trigger changes to the seman-

tic model graph by adding a property ”hasReportFrom” the elementary school to

Christopher. The Austin family’s semantic model interface is listening for changes

to the semantic model graph. Once ”hasReportFrom” is added to the graph, the
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interface sends a message back to the elementary school to confirm the receipt of

the report.

*** Entering JenaFamilySemanticModelInterface.addStatement(Statement s) ...

*** =======================================================================

*** Subject: = http://www.ontologies.org/family#Christopher

*** Predicate: = http://austin.org/family#hasReportFrom

*** Object: = Pointers Run Elementary School

*** Subject local name: s = Christopher

*** Predicate local Name: s = hasReportFrom

*** Object resource: s =

*** Node (Object) value = Pointers Run Elementary School

*** Object value = Pointers Run Elementary School

*** School Report was received for: Christopher

message handlerMessage:

Type = SCHOOL_REPORT_RECEIVED

Source = Austin

Destination = Pointers Run Elementary School

Subject = --- To: Pointers Run Elementary School ...

--- Message: The Austin family has received Christopher’s

--- Pointers Run Elementary School report ...

Body = School Report Receipt Form ...

==========================================

First Name = Christopher

Last Name = Austin

School Name = Pointers Run Elementary School

==========================================

Again, the mediator will match the message destination, Pointers Run Elementary

School, with the elementary school’s semantic model interface, and forward the

message. The elementary school’s semantic model interface will identify the message

type (i.e., school report received). In this case no further action is needed from the

school side, so no changes to the semantic model graph are triggered.
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4.2 Case Study 2: Family-School-Urban-Geography System Dynam-

ics

In Case Study 1, we constructed a framework for modeling and simulating

distributed system behavior that is affected by temporal events. In the behavior

modeling of complex urban environments, however, notions of time and space are

both critical to decision making. Case Study 2 builds upon the capabilities of Case

Study 1 by capturing urban geography and introducing spatio-temporal reasoning

into the behavior model.

In the model for family-school system interactions, temporal considerations in-

clude a child’s age and events appearing on the school’s academic calendar (e.g., en-

rollment period, school report period). Spatial considerations constrain the family-

school system interactions further by only allowing enrollment of students who live

within the school zone jurisdiction, and only providing school bus service to students

who live beyond a certain distance from the school.

These determinations are done by comparing spatial entities, such as family

addresses, school addresses, and school zone boundaries. Addresses are defined by

latitude and longitude coordinates; therefore, a simple calculation using the lati-

tudes and longitudes of two addresses can determine the distance between them.

Similarly, school zones are defined by a collection of latitude and longitude coor-

dinates that compose a polygon geometric shape. Any algorithm that solves the

point-in-polygon (PIP) problem can determine if the address lies within the school

71



Clarkesville Elementary School

Clarksville Middle School

Riverhill High School

Pointers Run Elementary School

Figure 4.9: Schematic for schools in Columbia-Clarksville Area, Maryland, USA.
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Clarksville Elementary School

Riverhill High School

Poinrers Run Elementary School

Clarksville Middle School

School Zone Boundary for

Clarksville Elementary

School Zone Boundary for

Pointers Run

Figure 4.10: Elementary school zones in Columbia-Clarksville Area, Maryland, USA.
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zone boundaries. This work uses OpenStreetMap tool to retrieve the latitudes and

longitudes necessary for the these comparisons.

OpenStreetMap is a free, editable map of the whole world that is being built by

volunteers and released with an open-content license. It has an exhaustive database

of streets, cities, roads, buildings and so on, around the world. The real power

of OpenStreetMap is the possibility to actually access the data behind its map

rendering, different from others mapping providers [28].

In this case study, the urban area scenario for which an OpenstreetMap was

retrieved is the city of Columbia,MD. As illustrated in Figure 4.9, the school dis-

trict has one high school, one middle school and, in contrast to Case Study 1, two

elementary schools. The presence of a second elementary school will allow modeling

of decision making based on spatial constraints. We also introduce a third family

that lives very close to one of the elementary schools in order to model the spatial

constraint on the school bus service. Kids that live within a certain radius of the

school can walk to class and have no right to the school bus service.

Figure 4.10 is a plan view of (fictitious) school zone boundaries in the Columbia-

Clarksville Area, Maryland, USA. We assume that the middle and high schools will

accept students from the entire region – their school zones are simply the rectangu-

lar shape. School zones for the elementary schools meet along Route 32. Students

living North of Route 32 attend Clarksville Elementary. Students living South of

Route 32 enroll in Pointers Run Elementary. The school zone polygons are defined

in the OpenStreetMap input file.
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4.2.1 Accessing Spatial Data from OpenStreetMap

OpenStreetMap provides the capability to query its database in various ways.

In most cases, an XML file with descriptions of nodes (points of interest, facilities

such as toilets, benches, addresses), ways (roads, water ways, transport routes) and

areas (buildings, lakes) is available.

In our application, we have retrieved OpenStreet Map data for Columbia,MD

in XML file format. Appendix E.1 contains an abbreviated description of the file.

Schools and school zones are defined as ways, composed of a series of nodes, which

in turn contain latitude and longitude information.

Figure 4.11: Generation of family and school semantic models, with input from the
family data file, the school system data file, and data from OpenStreetMap.

In addition to the data retrieval process for the family XML datafile and school

XML datafile described in Case Study 1, the OpenStreetMap XML datafile is parsed

and imported into an OpenStreetMap Model, as shown in Figure 4.11. Then, we
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create instances of the ontology spatial classes (i.e. Address), laden with the data

from the OpenStreetMap XML file.

4.2.2 Extensions to the Family and School Ontologies

In addition to the family and school ontology definitions described in Case

Study 1 and shown in Figures 4.3 and 4.4, certain ontology properties are added to

the framework in order to allow modeling spatial behavior. The class Person in the

family ontology now has property livesInSchoolZoneOf, and the class student in the

school ontology now has properties livesInSchoolZoneOf and isElegibleForSchool-

Bus. Descriptions of the extensions to the Case Study 1 OWL files for the family

and school models are located in Appendix C.

Instantiating the Family and School Ontology Models. To instantiate these

ontologies with information retrieved from the OpenStreetMap XML datafiles, a

visitor object is used to visit the OpenStreetMap Model, retrieve the data, and

create instances of ontology spatial classes with the data, as described in Figure

4.11. Similar to Case Study 1, the OpenStreetMap design assures visiting objects

can only retrieve data pertaining to their corresponding ontology instance through

a “password” mechanism. The data retrieved by the visitor object is then used to

create instances of the ontology spatial classes in the Jena Semantic Models.
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// Rules 02: Elementary school rules ...

[ EnterElementarySchool: (?x rdf:type af:Student) (?y rdf:type af:ElementarySchool)

(?x af:livesInSchoolZoneOf ?y) (?x af:hasBirthDate ?a) getAge(?a,?b) ge(?b, 6)

le(?b, 10) -> (?x af:attendsElementarySchool af:True) (?y af:hasStudent ?x)]

[ LeaveElementarySchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsElementarySchool af:True) (?y af:hasStudent ?x)

getAge(?a,?b) ge(?b, 10) -> remove(2) ]

// Rules 03: Middle school rules ...

[ EnterMiddleSchool: (?x rdf:type af:Student) (?y rdf:type af:MiddleSchool)

(?x af:livesInSchoolZoneOf ?y) (?x af:hasBirthDate ?a) getAge(?a,?b) ge(?b, 11)

le(?b, 13) -> (?x af:attendsMiddleSchool af:True) (?y af:hasStudent ?x) ]

[ LeaveMiddleSchool: (?x rdf:type af:Student) (?y rdf:type af:MiddleSchool)

(?x af:hasBirthDate ?a) (?x af:attendsMiddleSchool af:True)

(?y af:hasStudent ?x) getAge(?a,?b) ge(?b, 13) -> remove(2) ]

// Rules 04: High school rules ...

[ EnterHighSchool: (?x rdf:type af:Student) (?y rdf:type af:HighSchool)

(?x af:livesInSchoolZoneOf ?y) (?x af:hasBirthDate ?a) getAge(?a,?b)

ge(?b, 14) le(?b, 17) -> (?x af:attendsHighSchool af:True) (?y af:hasStudent ?x) ]

[ LeaveHighSchool: (?x rdf:type af:Student) (?y rdf:type af:HighSchool)

(?x af:hasBirthDate ?a) (?x af:attendsHighSchool af:True) (?y af:hasStudent ?x)

getAge(?a,?b) ge(?b, 17) -> remove(2) ]

// Rules 06: Elementary school transporation service rules ....

[ ElementarySchoolTransportationService: (?x rdf:type af:Student)

(?y rdf:type af:ElementarySchool) (?y af:hasStudent ?x)

(?x af:hasStudentAddress ?k) (?y af:hasSchoolAddress ?z)

(?k af:hasLatitude ?l1) (?k af:hasLongitude ?l2)

(?z af:hasLatitude ?l3) (?z af:hasLongitude ?l4) getDistance(?l1,?l2,?l3,?l4,?d)

greaterThan(?d,1000)-> (?x af:isEligibleForSchoolBus af:True) ]

... Middle school transportation rule removed ...

[ HighSchoolTransportationService: (?x rdf:type af:Student)

(?y rdf:type af:HighSchool) (?y af:hasStudent ?x)

(?x af:hasStudentAddress ?k) (?y af:hasSchoolAddress ?z)

(?k af:hasLatitude ?l1) (?k af:hasLongitude ?l2) (?z af:hasLatitude ?l3)

(?z af:hasLongitude ?l4) getDistance(?l1,?l2,?l3,?l4,?d)

greaterThan(?d,2000)-> (?x af:isEligibleForSchoolBus af:True) ]

Figure 4.12: Extended Jena rules for transformation of the School Semantic Model.
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4.2.3 Extensions to the School Rules

Additional modifications and additions should be made to the school rules to

account for spatial constraints. Descriptions of the rules extension for the school

system model are presented in Figure 4.12.

School Rules. The combination of ontologies and ontology rules is also extremely

powerful in scenarios where ontology graphs are space dependent. For example,

consider the boy Christopher again, now identified as a student from the school

system perspective. A built-in function getDistance() computes the the distance

between Chistopher’s address and the school address. A rule defined using Jena

Rules determines whether or not Christopher is eligible to the school bus service by

comparing the inputs to the built-in function getDistance(). If the output of the

built-in is greater than a certain threshold distance, Christopher is entitled to the

bus service, if not he will have to walk to school. In addition, school enrollment

rules were modified to only allow students to enroll when they live within the school

zone jurisdiction. Therefore, the graph transformations in the school system model

can now occur due not only to input or time, but also space.

4.2.4 Assembly of the Family-School-Urban-Geography System

Since the step-by-step procedure for assembly and execution of the family-

school-urban geography system is very similar to that of Case Study 1 (see Section

4.1.4), in this section we only provide details on ways in which Case Study 2 differs
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from Case Study 1.

Step 01. Create semantic models; load ontologies. Case Study 2 has four

schools (Riverhill Highschool; Clarksville Middle School; Pointers Run Elemen-

tary School; Clarksville Elementary School) and three families (Austin, Jones, and

Coelho). The fragment of code:

JenaSchoolSystemSemanticModel rhs = new JenaSchoolSystemSemanticModel();

JenaSchoolSystemSemanticModel cms = new JenaSchoolSystemSemanticModel();

JenaSchoolSystemSemanticModel pes = new JenaSchoolSystemSemanticModel();

JenaSchoolSystemSemanticModel ces = new JenaSchoolSystemSemanticModel();

JenaFamilySemanticModel austin = new JenaFamilySemanticModel();

JenaFamilySemanticModel jones = new JenaFamilySemanticModel();

JenaFamilySemanticModel coelho = new JenaFamilySemanticModel();

defines the semantic models and instantiates them with the appropriate school sys-

tem and/or family ontologies.

Step 02. Connect family and school system models. The second step is to

connect family and school semantic models via interfaces, and register each com-

ponent with the mediator as message listeners for communication and information

exchange with other components. The following fragment of code shows the minor

extensions needed to include a third family (Coelho) and a second elementary school

(Clarksville Elementary):

... Details of Austin and Jones family interface definitions removed ...

JenaFamilySemanticModelInterface coelhofmi = coelho.getModelInterface();

coelhofmi.setType("Coelho");
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... School definitions removed ...

JenaSchoolSystemSemanticModelInterface cesSmi = clarksvilleElementarySchool.getModelInterface(

cesSmi.setType("Clarksville Elementary School");

// Coelho family will listen for messages from schools ...

coelhofmi.addMessageListener ( (MessageListener) rhsSmi );

coelhofmi.addMessageListener ( (MessageListener) cmsSmi );

coelhofmi.addMessageListener ( (MessageListener) pesSmi );

coelhofmi.addMessageListener ( (MessageListener) cesSmi );

// Clarksville Elementary will listen for messages from families ...

cesSmi.addMessageListener ( (MessageListener) austinfmi );

cesSmi.addMessageListener ( (MessageListener) jonesfmi );

cesSmi.addMessageListener ( (MessageListener) coelhofmi );

Step 03. Create visitor object models. Visitor objects are created for each

semantic model, and the customized with password data. In Case Study 1 these

objects visited the family and school system data models. Now, we also visit the

OpenStreetMap data model to retrieve urban data relevant to the family and school

system semantic models. The script of code:

FamilyDataModelJenaVisitor coelhoVisitor = new FamilyDataModelJenaVisitor();

coelhoVisitor.setPassword("Coelho");

coelhoVisitor.addSemanticModel( coelho );

SchoolSystemDataModelJenaVisitor cesVisitor = new SchoolSystemDataModelJenaVisitor();

cesVisitor.setPassword("Clarksville Elementary School");

cesVisitor.addSemanticModel( clarksvilleElementarySchool );

SchoolOSMJenaVisitor cesOSMvisitor = new SchoolOSMJenaVisitor();

cesOSMvisitor.setPassword("Clarksville Elementary School");

cesOSMvisitor.addSemanticModel( clarksvilleElementarySchool );
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shows the essential details of setting up the visitor object models for the new family

(Coelho) and new elementary school (Clarksville Elementary).

The following step is to create Data Models for the family and school ontolo-

gies, OpenStreetMap Models for the school ontologies, and populate them with data

imported from XML datafiles.

Step 04. Get data from XML files. Only a few lines of Java are needed to

instantiate the OpenStreetMap data model:

OpenStreetMapModel osm = new OpenStreetMapModel();

try{

osm.getData( "data/columbia-school-district.osm");

} catch(Exception e){}

Step 05. Populate semantic models with individuals. We populate the

semantic models with the data that visitors retrieve from the data models. The

fragment of code:

fdm.accept ( coelhoVisitor );

ssdm.accept ( cesSchoolVisitor );

osm.accept ( cesOSMvisitor );

achieves three things. First, the semantic model for the Coelho family is populated

with individuals, with data coming from the family data model. Next, the Clarksville
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Elementary School is populated with individuals, with data coming from the School

System Data Model. Finally, the semantic model for Clarksville Elementary School

is augmented with data from the OpenStreetMap data model.

Step 06. Add rules. Finally, we import the rules into the semantic models and

apply them.

ces.addRules ( "src/whistle/util/jena/rules/schoolRules.rules" );

ces.executeRules();

... details of adding rules to austin and jones families removed ...

coelho.addRules ( "src/whistle/util/jena/rules/familyRules.rules",

"src/whistle/util/jena/rules/familyschoolRules.rules" );

coelho.executeRules();

4.2.5 Simulation of Family-School-Urban-Geography Interactions

Task 01: Enrolling a Child in School. Just like in Case Study 1, when the

family and family-school rules are added to the Austin family’s semantic model,

the graph of the Austin family may change. For example, the rules associated

with age establish that Christopher Austin is now old enough to attend elementary

school, and so the boolean property ”attendsElementarySchool” becomes ”True”.

The Austin family’s semantic model interface will identify such a change. But

now, instead of sending an enrollment request right away, the interface will send a

request to the elementary schools in the area to check if the Austin family address is

located within the their school zones. The request is sent in the form of a message,
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containing relevant information such as Christopher’s first name, last name, and

address coordinates.

School enrollment requests are sent to two elementary schools:

[java] *** Entering JenaFamilySemanticModelInterface.addStatement(Statement s) ...

[java] *** =======================================================================

[java] *** Subject: = http://www.ontologies.org/family#Christopher

[java] *** Predicate: = http://austin.org/family#attendsElementarySchool

[java] *** Object: = http://austin.org/family#True

[java] *** Subject local name: s = Christopher

[java] *** Predicate local Name: s = attendsElementarySchool

[java] *** Object resource: s = True

[java] *** Object value = null

[java] *** Kid in school age: Christopher

[java] message handlerMessage:

[java] Type = SCHOOL_ZONE_CHECK_REQUEST

[java] Source = Austin

[java] Destination = Pointers Run Elementary School

[java] Subject = --- Request to check if this family lives in

your elementary school zone...

[java] Body = SchoolZoneCheckRequestForm ...

[java] ==========================================

[java] First Name = Christopher

[java] Last Name = Austin

[java] Family Address Latitude = 39.2013753

[java] Family Address Longitude = -76.9498448

[java] ==========================================

[java] message handlerMessage:

[java] Type = SCHOOL_ZONE_CHECK_REQUEST

[java] Source = Austin

[java] Destination = Clarksville Elementary School

[java] Subject = --- Request to check if this family lives in

your elementary school zone...

[java] Body = SchoolZoneCheckRequestForm ...

[java] ==========================================

[java] First Name = Christopher

[java] Last Name = Austin

[java] Family Address Latitude = 39.2013753

[java] Family Address Longitude = -76.9498448

[java] ==========================================

The mediator will match the messages destinations (i.e. Pointers Run and Clarksville

Elementary School) with the corresponding elementary school’s semantic model in-
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terfaces, and forward the message. The elementary school semantic models interface

will identify the message type (i.e. school zone check request), and decide whether

the student lives within their school zone boundaries by comparing Christopher’s

address coordinates to the coordinates of points composing the school zone bound-

ary. Since schools zones are unique and there is no overlap between different school

zones, Chirstopher’s address will be located inside of only one of the school zones.

If it does, then a change to the school semantic model graph will be triggered by

adding the property livesInSchoolZoneOf. The elementary school’s semantic model

interface is listening for changes to the semantic model graph. Once Christopher is

identified as a potential student, the interface sends a message back to the Austin

family to confirm his eligibility to enroll.

The process for school enrollment acceptance proceeds as follows:

*** Entering JenaSchoolSystemSemanticModelInterface.addStatement(Statement s) ...

*** =================================================================

*** Subject: = http://www.ontologies.org/school#Christopher

*** Predicate: = http://austin.org/school#livesInSchoolZoneOf

*** Object: = http://www.ontologies.org/school#Pointers Run Elementary School

*** Subject local name: s = Christopher

*** Predicate local Name: s = livesInSchoolZoneOf

*** Object resource: s = Pointers Run Elementary School

*** Object value = null

*** Please submit an enrollment form for : Christopher

message handlerMessage:

Type = SCHOOL_ZONE_CONFIRMATION

Source = Pointers Run Elementary School

Destination = Austin

Subject = --- To: Austin family ...

---Message: Pointers Run Elementary School is eligible to

enroll with Pointers Run Elementary School...

Body = SchoolZoneConfirmationForm ...

==========================================

First Name = Christopher

Last Name = Austin

School Name = Pointers Run Elementary School

==========================================
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Again, the mediator will match the message destination, Austin family, with the

Austin family’s semantic model interface, and forward the message. The Austin

family’s semantic model interface will identify the message type (i.e., school zone

confirmation). Then, a change to the family semantic model graph will be triggered

by adding the property livesInSchoolZoneOf, this time associated with the family

ontology. The Austin family semantic model interface is listening for changes to

the semantic model graph. Once such change is identified, an enrollment request

will be sent to the elementary school in the form of a message, containing relevant

information such as Christopher’s first name, last name, social security number and

birth date.

From here on forward, the process continues as described in Case Study 1.

Christopher will be registered as a student in the school. Rules associated with time

will determine if it is time to send school reports home, and if it is, changes will be

triggered in the school ontology graph. Similarly, rules associated with space will

determine is Christopher is entitled to school bus service, and generate changes to

the school ontology graph.
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Chapter 5: Conclusions and Future Work

5.1 Summary and Conclusions

This paper has focused on the design and preliminary implementation of

a message passing infrastructure needed to support communication in many-to-

many association relationships connecting domain-specific networks. The long-term

objective of this research is to build upon the family-school distributed behavior

model and create models of the distributed behavior of urban infrastructure multi-

level systems, and simulate cascading system failures that occur due to extreme

external events. And we anticipate that the end-result will look something like

Figure 1.4.

5.2 Future Work

We envision a full-scale implementation of distributed behavior modeling hav-

ing to transmit a multiplicity of message types and content, with the underlying

logic needed to deliver messages possibly being a lot more complicated than send

message A in domain B to domain C. Our present-day capability is simplified in the

sense that domain interfaces are assumed to be homogeneous and always working.
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For problems involving recovery of services in an urban area after a disaster or at-

tack, this will not always be true. This situation points to a strong need for new

approaches to the construction and operation of message passing mechanisms.

One promising approach that we will explore is Apache Camel [20, 17], is an

open source Java framework that focuses on making Enterprise Integration Patterns

(EIP) accessible through carefully designed interfaces, the base objects, commonly

needed implementations, debugging tools and a configuration system.

among Networked Domains.
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Figure 5.1: Platform infrastructure for distributed behavior modeling and intelligent
communication (message passing) among networked domains.

Figure 5.1 shows, for example, a platform infrastructure for behavior modeling of

three connected application (networked) domains. In addition to basic content-

based routing, Apache Camel provides support for filtering and transformation of
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messages.

A second important topic for future work is linkage of our simulation frame-

work to tools for optimization and tradeoff analysis. Such tools would allow decision

makers to examine the sensitivity of design outcomes to parameter choices, under-

stand the impact of resource constraints, understand system stability in the pres-

ence of fluctuations to modeling parameter values, and potentially, even understand

emergent interactions among systems.

Lastly, potential extension to the presented work, is in the development of

ontologies. As it is presented in this work, the construction of ontologies is based

on the data available from the XML datafiles, but this process is done manually.

When modeling complex urban systems, this approach may become troublesome. A

necessary step forward would be to implement natural language processing for the

semi-automated identification of knowledge provided by the datafiles.
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Appendix A: Model-Based Systems Engineering

A.1 Pathway from Operations Concept to Systems Design

Figure A.1 shows the pathway from an operations concept to simplified models

for behavior and structure, requirements, system-level design and model checking.

Because a system may not actually exist at this stage, the description will be written

in the form of design requirements and mathematical constraints. Use cases are frag-

ments of system functionality. A scenario is an example of typical system usage and

describes the intended interaction between a system and its environment to achieve

some purpose. Use cases and scenarios imply requirements, objects, and object in-

teractions and interfaces in the stories they tell. Further design requirements and

mathematical constraints can be obtained from the structure and communication

of objects in the models for system functionality (e.g., required system interfaces).

Models of behavior specify what the system will actually do. Models of structure

specify how the system will accomplish its purpose. The system structure corre-

sponds to collections of interconnected objects and subsystems, constrained by the

environment within which the system must exist. The system-level design is created

by mapping fragments of system functionality onto specific subsystems/objects in

the system structure. Therefore, the behavior-to-structure mapping defines in a
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symbolic way the functional responsibility of each subsystem/component. Perfor-

mance and characteristics of the system-level design are evaluated against the test

requirements.

A.2 Strategies for dealing with Design Complexity

State-of-the-art practice in model-based systems engineering (MBSE) is to

deal with design complexity through separation of concerns and development along

disciplinary lines, followed by procedures for systems integration and validation and

verification. While this approach eases work organization, design solutions tend to

have loosely coupled system architectures that are limited in levels of achievable

performance. Increases in system size and complexity drive the need for: (1) disci-

plined approaches to system design that involve the application of decomposition,

composition, abstraction and use of semi-formal and formal analysis [2, 4, 21, 25],

and (2) modeling formalisms that capture cause-and-effect relationships between de-

signer concerns (e.g., correctness of system functionality; adequacy of performance;

assurance of safety) and problem solutions.

In order to address these concerns, a multi-level approach to model-based sys-

tem design must be taken. Figure A.2 describes the different levels of development

to be used. The top level contains semi-formal models expressing ideas (i.e. goals

and scenarios) and preliminary designs. Preliminary designs need to be represented

by semi-formal models that have a fixed syntax and semantics, such as can be found

in the System Modeling Language (SysML) [13]. Lower level models employ formal
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languages having precisely defined semantics, and are designed to provide compu-

tational support for: (1) Detailed simulation of system behavior to evaluate levels

of performance, (2) Validation and verification of the accuracy of functionality and

control, (3) Systematic design space exploration, and (4) Trade-off analysis of design

features.
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Appendix B: Family and School System Data Models

This appendix contains complete descriptions of the family and school system

models in XML. We employ JAXB technology to import the XML data files into

the family and school system data models, respectively.

B.1 Family Data (FamilyModel.xml)

<?xml version="1.0" encoding="UTF-8"?>

<FamilyModel author="Maria Coelho" date="2017" source="UMD">

<Family>

<attribute text="FamilyName" value="Austin"/>

<attribute text="Address"

value="6242 Heather Glen Way, Clarksville, MD 21029"/>

<Person>

<attribute text="Type" value="Male"/>

<attribute text="FirstName" value="Mark"/>

<attribute text="MiddleName" value="William"/>

<attribute text="LastName" value="Austin"/>

<attribute text="BirthDate" value="1704-06-10"/>

<attribute text="Weight" value="170.0"/>

<attribute text="Citizenship" value="New Zealand"/>

<attribute text="SocialSecurity" value="111"/>

</Person>

<Person>

<attribute text="Type" value="Boy"/>

<attribute text="FirstName" value="Christopher"/>

<attribute text="MiddleName" value="William"/>

<attribute text="LastName" value="Austin"/>

<attribute text="BirthDate" value="2007-10-12"/>

<attribute text="Weight" value="40.0"/>

<attribute text="Citizenship" value="New Zealand"/>

<attribute text="SocialSecurity" value="678"/>

</Person>
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<Person>

<attribute text="Type" value="Female"/>

<attribute text="FirstName" value="Nina"/>

<attribute text="MiddleName" value="Marie"/>

<attribute text="LastName" value="Austin"/>

<attribute text="BirthDate" value="2005-12-25"/>

<attribute text="Weight" value="42.0"/>

<attribute text="Citizenship" value="New Zealand"/>

<attribute text="Citizenship" value="US"/>

<attribute text="SocialSecurity" value="345"/>

</Person>

<Person>

<attribute text="Type" value="Female"/>

<attribute text="FirstName" value="Erin"/>

<attribute text="MiddleName" value="Mirrie"/>

<attribute text="LastName" value="Austin"/>

<attribute text="BirthDate" value="2012-01-12"/>

<attribute text="Weight" value="22.0"/>

<attribute text="Citizenship" value="US"/>

<attribute text="SocialSecurity" value="123"/>

</Person>

</Family>

<Family>

<attribute text="FamilyName" value="Jones"/>

<attribute text="Address"

value="5807 Laurel Leaves Ln, Clarksville, MD 21029"/>

<Person>

<attribute text="Type" value="Male"/>

<attribute text="FirstName" value="James"/>

<attribute text="MiddleName" value="Robert"/>

<attribute text="LastName" value="Jones"/>

<attribute text="BirthDate" value="1972-06-10"/>

<attribute text="Weight" value="180.0"/>

<attribute text="Citizenship" value="England"/>

<attribute text="SocialSecurity" value="222"/>

</Person>

<Person>

<attribute text="Type" value="Boy"/>

<attribute text="FirstName" value="Timothy"/>

<attribute text="LastName" value="Jones"/>

<attribute text="BirthDate" value="2007-10-12"/>

<attribute text="Weight" value="43.0"/>

<attribute text="Citizenship" value="US"/>

<attribute text="Citizenship" value="England"/>

<attribute text="SocialSecurity" value="1234"/>

</Person>

<Person>

<attribute text="Type" value="Female"/>

<attribute text="FirstName" value="Samantha"/>

<attribute text="LastName" value="Jones"/>

<attribute text="BirthDate" value="2004-12-25"/>

<attribute text="Weight" value="41.0"/>

<attribute text="Citizenship" value="US"/>
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<attribute text="Citizenship" value="England"/>

<attribute text="SocialSecurity" value="3210"/>

</Person>

</Family>

</FamilyModel>

Extensions for Case Study 2. The family XML datafile extensions for Case

Study 2 are as follows:

<Family>

<attribute text="FamilyName" value="Coelho"/>

<Address>

<attribute text="StreetAddress"

value="6724 Walter Scott Way, Columbia, MD 21044"/>

</Address>

<Person>

<attribute text="Type" value="Male"/>

<attribute text="FirstName" value="Luiz"/>

<attribute text="MiddleName" value="Gonzaga"/>

<attribute text="LastName" value="Coelho"/>

<attribute text="BirthDate" value="1974-08-24"/>

<attribute text="Weight" value="180.0"/>

<attribute text="Citizenship" value="Brazil"/>

<attribute text="SocialSecurity" value="456"/>

</Person>

<Person>

<attribute text="Type" value="Female"/>

<attribute text="FirstName" value="Maria"/>

<attribute text="MiddleName" value="Eduarda"/>

<attribute text="LastName" value="Coelho"/>

<attribute text="BirthDate" value="2007-03-30"/>

<attribute text="Weight" value="45.0"/>

<attribute text="Citizenship" value="Brazil"/>

<attribute text="SocialSecurity" value="393"/>

</Person>

</Family>

B.2 School System Data (SchoolSystemModel.xml)
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<?xml version="1.0" encoding="UTF-8"?>

<SchoolSystemModel author="Maria Coelho" date="2017" source="UMD">

<School>

<attribute text="Type" value="High School"/>

<attribute text="Name" value="River Hill High School"/>

<attribute text="Grade" value="Grade09"/>

<attribute text="Grade" value="Grade10"/>

<attribute text="Grade" value="Grade11"/>

<attribute text="Grade" value="Grade12"/>

<attribute text="Report Period Start Time" value="2016-09-01T00:00:00"/>

<attribute text="Report Period End Time" value="2020-10-20T00:00:00"/>

</School>

<School>

<attribute text="Name" value="Clarksville Middle School"/>

<attribute text="Type" value="Middle School"/>

<attribute text="Grade" value="Grade06"/>

<attribute text="Grade" value="Grade07"/>

<attribute text="Grade" value="Grade08"/>

<attribute text="Report Period Start Time" value="2016-09-01T00:00:00"/>

<attribute text="Report Period End Time" value="2020-10-10T00:00:00"/>

</School>

<School>

<attribute text="Name" value="Pointers Run Elementary School"/>

<attribute text="Type" value="Elementary School"/>

<attribute text="Grade" value="Grade01"/>

<attribute text="Grade" value="Grade02"/>

<attribute text="Grade" value="Grade03"/>

<attribute text="Grade" value="Grade04"/>

<attribute text="Grade" value="Grade05"/>

<attribute text="Report Period Start Time" value="2016-09-01T00:00:00"/>

<attribute text="Report Period End Time" value="2020-10-20T00:00:00"/>

</School>

</SchoolSystemModel>

Extensions for Case Study 2. A second elementary school is added to the model:

<School>

<attribute text="Name" value="Clarksville Elementary School"/>

<attribute text="Type" value="Elementary School"/>

<attribute text="Grade" value="Grade01"/>

<attribute text="Grade" value="Grade02"/>

<attribute text="Grade" value="Grade03"/>

<attribute text="Grade" value="Grade04"/>

<attribute text="Grade" value="Grade05"/>

<attribute text="Report Period Start Time" value="2016-09-01T00:00:00"/>

<attribute text="Report Period End Time" value="2020-10-20T00:00:00"/>

</School>
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Appendix C: Family and School System Ontologies

This appendix contains complete descriptions of the family and school system

ontologies written in OWL. The ontologies describe the knowledge (i.e., classes,

data properties, and object properties), but not the data associated with specific

individuals within each domain.

C.1 Family Ontology (umd-family.owl)

Family Ontology for Case Study 1. The family ontology for Case Study 1 has

classes for Family, Person, Address, Male, Female, Boy, Child and Student.

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY swrl "http://www.w3.org/2003/11/swrl#" >

<!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY family_ontology "http://austin.org/family#" >

]>

<rdf:RDF xmlns="http://austin.org/family#"

xml:base="http://austin.org/family"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:swrl="http://www.w3.org/2003/11/swrl#"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:owl="http://www.w3.org/2002/07/owl#"
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xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:family_ontology="http://austin.org/family#">

<owl:Ontology rdf:about="http://austin.org/family"/>

<!--

/////////////////////////////////////////////////////////////////

//

// Object Properties for class Family

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/family#hasFamilyMember -->

<owl:ObjectProperty rdf:about="http://austin.org/family#hasFamilyMember">

<rdfs:domain rdf:resource="http://austin.org/family#Family"/>

<rdfs:range rdf:resource="http://austin.org/family#Person"/>

</owl:ObjectProperty>

<!-- http://austin.org/family#hasAddress -->

<owl:ObjectProperty rdf:about="http://austin.org/family#hasAddress">

<rdfs:domain rdf:resource="http://austin.org/family#Family"/>

<rdfs:range rdf:resource="http://austin.org/family#Address"/>

</owl:ObjectProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Object Properties for class Person

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/family#belongsToFamily -->

<owl:ObjectProperty rdf:about="http://austin.org/family#belongsToFamily">

<rdfs:domain rdf:resource="http://austin.org/family#Person"/>

<rdfs:range rdf:resource="http://austin.org/family#Family"/>

</owl:ObjectProperty>

<!-- http://austin.org/family#hasSon -->

<owl:ObjectProperty rdf:about="http://austin.org/family#hasSon">

<rdfs:range rdf:resource="http://austin.org/family#Person"/>

<rdfs:domain rdf:resource="http://austin.org/family#Male"/>

</owl:ObjectProperty>

<!-- http://austin.org/family#hasDaughter -->

<owl:ObjectProperty rdf:about="http://austin.org/family#hasDaughter">

<rdfs:range rdf:resource="http://austin.org/family#Person"/>
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<rdfs:domain rdf:resource="http://austin.org/family#Female"/>

</owl:ObjectProperty>

<!-- http://http://austin.org/family#hasFather -->

<owl:ObjectProperty rdf:about="http://austin.org/family#hasFather">

<rdfs:domain rdf:resource="http://austin.org/family#Person"/>

</owl:ObjectProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Data properties for class Family

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/family#hasFamilyName -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#hasFamilyName">

<rdfs:domain rdf:resource="http://austin.org/family#Family"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Data properties for class Person

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/family#hasFirstName -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#hasFirstName">

<rdfs:domain rdf:resource="http://austin.org/family#Person"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- http://austin.org/family#hasLastName -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#hasLastName">

<rdfs:domain rdf:resource="http://austin.org/family#Person"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- http://austin.org/family#hasSocialSecurityNo -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#hasSocialSecurityNo">

<rdfs:domain rdf:resource="http://austin.org/family#Person"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

<!-- http://austin.org/family#hasAge -->
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<owl:DatatypeProperty rdf:about="http://austin.org/family#hasAge">

<rdfs:domain rdf:resource="http://austin.org/family#Person"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

<!-- http://austin.org/family#hasWeight -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#hasWeight">

<rdfs:domain rdf:resource="http://austin.org/family#Person"/>

<rdfs:range rdf:resource="&xsd;double"/>

</owl:DatatypeProperty>

<!-- http://austin.org/family#hasBirthDate -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#hasBirthDate">

<rdfs:domain rdf:resource="http://austin.org/family#Person"/>

<rdfs:range rdf:resource="&xsd;date"/>

</owl:DatatypeProperty>

<!-- http://austin.org/family#hasCitizenship -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#hasCitizenship">

<rdfs:domain rdf:resource="http://austin.org/family#Person"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Data properties for class Student

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/family#attendsPreSchool -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#attendsPreSchool">

<rdfs:domain rdf:resource="http://austin.org/family#Student"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://austin.org/family#attendsSchool -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#attendsSchool">

<rdfs:domain rdf:resource="http://austin.org/family#Student"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://austin.org/family#attendsElementarySchool -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#attendsElementarySchool">

<rdfs:domain rdf:resource="http://austin.org/family#Student"/>

<rdfs:range rdf:resource="&xsd;boolean"/>
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</owl:DatatypeProperty>

<!-- http://austin.org/family#attendsMiddleSchool -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#attendsMiddleSchool">

<rdfs:domain rdf:resource="http://austin.org/family#Student"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://austin.org/family#attendsHighSchool -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#attendsHighSchool">

<rdfs:domain rdf:resource="http://austin.org/family#Student"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://austin.org/family#hasReportFrom -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#hasReportFrom">

<rdfs:domain rdf:resource="http://austin.org/family#Student"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Data properties for class Address

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/family#hasLatitude -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#hasLatitude">

<rdfs:domain rdf:resource="http://austin.org/family#Address"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- http://austin.org/family#hasLongitude -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#hasLongitude">

<rdfs:domain rdf:resource="http://austin.org/family#Address"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Classes

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/family#Person -->
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<owl:Class rdf:about="http://austin.org/family#Person">

</owl:Class>

<!-- http://austin.org/family#Family -->

<owl:Class rdf:about="http://austin.org/family#Family">

</owl:Class>

<!-- http://austin.org/family#Male -->

<owl:Class rdf:about="http://austin.org/family#Male">

<rdfs:subClassOf rdf:resource="http://austin.org/family#Person"/>

</owl:Class>

<!-- http://austin.org/family#Female -->

<owl:Class rdf:about="http://austin.org/family#Female">

<rdfs:subClassOf rdf:resource="http://austin.org/family#Person"/>

</owl:Class>

<!-- http://austin.org/family#Child -->

<owl:Class rdf:about="http://austin.org/family#Child">

<rdfs:subClassOf rdf:resource="http://austin.org/family#Person"/>

</owl:Class>

<!-- http://austin.org/family#Boy -->

<owl:Class rdf:about="http://austin.org/family#Boy">

<rdfs:subClassOf rdf:resource="http://austin.org/family#Male"/>

</owl:Class>

<!-- http://austin.org/family#Student -->

<owl:Class rdf:about="http://austin.org/family#Student">

<rdfs:subClassOf rdf:resource="http://austin.org/family#Person"/>

</owl:Class>

<!-- http://austin.org/family#Address -->

<owl:Class rdf:about="http://austin.org/family#Address">

</owl:Class>

</rdf:RDF>

<!-- Generated by the OWL API (version 3.5.0) http://owlapi.sourceforge.net -->

Extensions for Case Study 2. The family ontology extensions for Case Study 2

are as follows:
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<!-- http://austin.org/family#livesInSchoolZoneOf -->

<owl:DatatypeProperty rdf:about="http://austin.org/family#livesInSchoolZoneOf">

<rdfs:domain rdf:resource="http://austin.org/family#Student"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

C.2 School System Ontology (umd-school-system.owl)

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY swrl "http://www.w3.org/2003/11/swrl#" >

<!ENTITY swrlb "http://www.w3.org/2003/11/swrlb#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY owl2xml "http://www.w3.org/2006/12/owl2-xml#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

<!ENTITY schoolsystem_ontology "http://austin.org/school#" >

]>

<rdf:RDF xmlns="http://austin.org/school#"

xml:base="http://austin.org/school"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:swrl="http://www.w3.org/2003/11/swrl#"

xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:schoolsystem_ontology="http://austin.org/school#">

<owl:Ontology rdf:about="http://austin.org/school"/>

<!--

/////////////////////////////////////////////////////////////////

//

// Object Properties for class School

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/school#hasGrade -->

104



<owl:ObjectProperty rdf:about="http://austin.org/school#hasGrade">

<rdfs:domain rdf:resource="http://austin.org/school#School"/>

<rdfs:range rdf:resource="http://austin.org/school#Grade"/>

</owl:ObjectProperty>

<!-- http://austin.org/school#hasStudent -->

<owl:ObjectProperty rdf:about="http://austin.org/school#hasStudent">

<rdfs:domain rdf:resource="http://austin.org/school#School"/>

<rdfs:range rdf:resource="http://austin.org/school#Student"/>

</owl:ObjectProperty>

<!-- http://austin.org/school#hasSchoolAddress -->

<owl:ObjectProperty rdf:about="http://austin.org/school#hasSchoolAddress">

<rdfs:domain rdf:resource="http://austin.org/school#School"/>

<rdfs:range rdf:resource="http://austin.org/school#Address"/>

</owl:ObjectProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Object Properties for class Calendar

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/school#hasEvent -->

<owl:ObjectProperty rdf:about="http://austin.org/school#hasEvent">

<rdfs:range rdf:resource="http://austin.org/school#Calendar"/>

<rdfs:domain rdf:resource="http://austin.org/school#Event"/>

</owl:ObjectProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Object Properties for class Student

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/school#isInGrade -->

<owl:ObjectProperty rdf:about="http://austin.org/school#isInGrade">

<rdfs:range rdf:resource="http://austin.org/school#Student"/>

<rdfs:domain rdf:resource="http://austin.org/school#Grade"/>

</owl:ObjectProperty>

<!-- http://austin.org/school#hasStudentAddress -->

<owl:ObjectProperty rdf:about="http://austin.org/school#hasStudentAddress">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>
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<rdfs:range rdf:resource="http://austin.org/school#Address"/>

</owl:ObjectProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Data properties for class School

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/school#hasName -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasName">

<rdfs:domain rdf:resource="http://austin.org/school#School"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#hasEnrollment -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasEnrollment">

<rdfs:domain rdf:resource="http://austin.org/school#Grade"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Data properties for class Student

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/school#hasFirstName -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasFirstName">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#hasLastName -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasLastName">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#hasSocialSecurityNo -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasSocialSecurityNo">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>
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<!-- http://austin.org/school#hasAge -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasAge">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>

<rdfs:range rdf:resource="&xsd;integer"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#hasBirthDate -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasBirthDate">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>

<rdfs:range rdf:resource="&xsd;date"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#attendsElementarySchool -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#attendsElementarySchool">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#attendsMiddleSchool -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#attendsMiddleSchool">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#attendsHighSchool -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#attendsHighSchool">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#hasReport -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasReport">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Data properties for class Event

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/school#hasStartTime -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasStartTime">

<rdfs:domain rdf:resource="http://austin.org/school#Event"/>
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<rdfs:range rdf:resource="&xsd;dateTime"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#hasEndTime -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasEndTime">

<rdfs:domain rdf:resource="http://austin.org/school#Event"/>

<rdfs:range rdf:resource="&xsd;dateTime"/>

</owl:DatatypeProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Data properties for class Address

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/school#hasLatitude -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasLatitude">

<rdfs:domain rdf:resource="http://austin.org/school#Address"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#hasLongitude -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasLongitude">

<rdfs:domain rdf:resource="http://austin.org/school#Address"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<!--

/////////////////////////////////////////////////////////////////

//

// Classes

//

/////////////////////////////////////////////////////////////////

-->

<!-- http://austin.org/school#Student -->

<owl:Class rdf:about="http://austin.org/school#Student">

</owl:Class>

<!-- http://austin.org/school#School -->

<owl:Class rdf:about="http://austin.org/school#School">

</owl:Class>

<!-- http://austin.org/school#Grade -->

<owl:Class rdf:about="http://austin.org/school#Grade">

</owl:Class>
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<!-- http://austin.org/school#Calendar -->

<owl:Class rdf:about="http://austin.org/school#Calendar">

</owl:Class>

<!-- http://austin.org/school#Event -->

<owl:Class rdf:about="http://austin.org/school#Event">

</owl:Class>

<!-- http://austin.org/school#HighSchool -->

<owl:Class rdf:about="http://austin.org/school#HighSchool">

<rdfs:subClassOf rdf:resource="http://austin.org/school#School"/>

</owl:Class>

<!-- http://austin.org/school#MiddleSchool -->

<owl:Class rdf:about="http://austin.org/school#MiddleSchool">

<rdfs:subClassOf rdf:resource="http://austin.org/school#School"/>

</owl:Class>

<!-- http://austin.org/school#ElementarySchool -->

<owl:Class rdf:about="http://austin.org/school#ElementarySchool">

<rdfs:subClassOf rdf:resource="http://austin.org/school#School"/>

</owl:Class>

<!-- http://austin.org/school#Grade01 -->

<owl:Class rdf:about="http://austin.org/school#Grade01">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Grade02 -->

<owl:Class rdf:about="http://austin.org/school#Grade02">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Grade03 -->

<owl:Class rdf:about="http://austin.org/school#Grade03">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Grade04 -->

<owl:Class rdf:about="http://austin.org/school#Grade04">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Grade05 -->
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<owl:Class rdf:about="http://austin.org/school#Grade05">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Grade06 -->

<owl:Class rdf:about="http://austin.org/school#Grade06">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Grade07 -->

<owl:Class rdf:about="http://austin.org/school#Grade07">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Grade08 -->

<owl:Class rdf:about="http://austin.org/school#Grade08">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Grade09 -->

<owl:Class rdf:about="http://austin.org/school#Grade09">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Grade10 -->

<owl:Class rdf:about="http://austin.org/school#Grade10">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Grade11 -->

<owl:Class rdf:about="http://austin.org/school#Grade11">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Grade12 -->

<owl:Class rdf:about="http://austin.org/school#Grade12">

<rdfs:subClassOf rdf:resource="http://austin.org/school#Grade"/>

</owl:Class>

<!-- http://austin.org/school#Address -->

<owl:Class rdf:about="http://austin.org/school#Address">

</owl:Class>

</rdf:RDF>
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Extensions for Case Study 2. The school ontology extensions for Case Study 2

are as follows:

<!-- http://austin.org/school#livesInSchoolZoneOf -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#livesInSchoolZoneOf">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>

<rdfs:range rdf:resource="http://austin.org/school#School"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#hasSchoolZoneBoundaryPt -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#hasSchoolZoneBoundaryPt">

<rdfs:domain rdf:resource="http://austin.org/school#School"/>

<rdfs:range rdf:resource="&xsd;string[]"/>

</owl:DatatypeProperty>

<!-- http://austin.org/school#isElegibleForSchoolBus -->

<owl:DatatypeProperty rdf:about="http://austin.org/school#elegibleForSchoolBus">

<rdfs:domain rdf:resource="http://austin.org/school#Student"/>

<rdfs:range rdf:resource="&xsd;boolean"/>

</owl:DatatypeProperty>
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Appendix D: Family and School System Rules

This appendix contains complete descriptions of: (1) the family rules, (2) the

school system rules, and (3) the family-school interaction rules. After these rule files

have been imported into Jena, the Jena Reasoner transforms the Semantic Graph

in response to events (e.g., an incoming message).

D.1 Family Rules (umd-family.rules)

Family Rules for Case Study 1. This set of rules identifies relationships and

properties within a family.

@prefix af: <http://austin.org/family#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Propagate class hierarchy relationships ....

[ rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y),

(?a rdf:type ?x) -> (?a rdf:type ?y)]

// Rule 02: Family rules ....

[ Family: (?x rdf:type af:Family) (?x af:hasFamilyMember ?y) ->

(?y af:belongsToFamily ?x) ]

// Rule 02: Identify a person who is also a child ...

[ Child: (?x rdf:type af:Person) (?x af:hasAge ?y)

lessThan(?y, 18) -> (?x rdf:type af:Child) ]

[ UpdateChild: (?x rdf:type af:Child) (?x af:hasBirthDate ?y)
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getAge(?y,?b) ge(?b, 18) -> remove(0) ]

// Rule 03: Identify a person who is also a student ...

[ Student: (?x rdf:type af:Person) (?x af:hasAge ?y) greaterThan(?y, 4)

lessThan(?y, 18) -> (?x rdf:type af:Student) ]

[ UpdateStudent: (?x rdf:type af:Student) (?x af:hasBirthDate ?y)

getAge(?y,?b) ge(?b, 18) -> remove(0) ]

// Rule 04: Compute and store the age of a person ....

[ GetAge: (?x rdf:type af:Person) (?x af:hasBirthDate ?y)

getAge(?y,?z) -> (?x af:hasAge ?z) ]

[ UpdateAge: (?a rdf:type af:Person) (?a af:hasBirthDate ?b)

(?a af:hasAge ?c) getAge(?b,?d) notEqual(?c, ?d) ->

remove(2) (?a af:hasAge ?d) ]

// Rule 05: Set father-son and father-daughter relationships ...

[ SetFather01: (?f rdf:type af:Male) (?f af:hasSon ?s)-> (?s af:hasFather ?f)]

[ SetFather02: (?f rdf:type af:Male) (?f af:hasDaughter ?s)-> (?s af:hasFather ?f)]

D.2 School System Rules (umd-school-system.rules)

School System Rules for Case Study 1. Rules are provided for attendance,

progression through the grades and timing of school reports.

@prefix af: <http://austin.org/school#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rule 01: Propagate class hierarchy relationships ....

[ rdfs01: (?x rdfs:subClassOf ?y), notEqual(?x,?y),

(?a rdf:type ?x) -> (?a rdf:type ?y)]

// Rules 02: Elementary school rules ...

[ EnterElementarySchool: (?x rdf:type af:Student)

(?y rdf:type af:ElementarySchool) (?x af:hasBirthDate ?a)

getAge(?a,?b) ge(?b, 6) le(?b, 10) ->

(?x af:attendsElementarySchool af:True) (?y af:hasStudent ?x)]
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[ LeaveElementarySchool: (?x rdf:type af:Student)

(?x af:hasBirthDate ?a) (?x af:attendsElementarySchool af:True)

(?y af:hasStudent ?x) getAge(?a,?b) ge(?b, 10) -> remove(2) ]

[ GradeOne: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 6) -> (?x af:isInGrade af:Grade01) ]

[ GradeTwo: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 7) -> (?x af:isInGrade af:Grade02) ]

[ GradeThree: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 8) -> (?x af:isInGrade af:Grade03) ]

[ GradeFour: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 9) -> (?x af:isInGrade af:Grade04) ]

[ GradeFive: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 10) -> (?x af:isInGrade af:Grade05)]

// Rules 03: Middle school rules ...

[ EnterMiddleSchool: (?x rdf:type af:Student)

(?y rdf:type af:MiddleSchool) (?x af:hasBirthDate ?a)

getAge(?a,?b) ge(?b, 11) le(?b, 13) ->

(?x af:attendsMiddleSchool af:True) (?y af:hasStudent ?x) ]

[ LeaveMiddleSchool: (?x rdf:type af:Student) (?y rdf:type af:MiddleSchool)

(?x af:hasBirthDate ?a) (?x af:attendsMiddleSchool af:True)

(?y af:hasStudent ?x) getAge(?a,?b) ge(?b, 13) -> remove(2) ]

[ GradeSix: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 11) -> (?x af:isInGrade af:Grade06) ]

[ GradeSeven: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 12) -> (?x af:isInGrade af:Grade07) ]

[ GradeEight: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 13) -> (?x af:isInGrade af:Grade08) ]

// Rules 04: High school rules ...

[ EnterHighSchool: (?x rdf:type af:Student)

(?y rdf:type af:HighSchool) (?x af:hasBirthDate ?a)

getAge(?a,?b) ge(?b, 14) le(?b, 17) ->

(?x af:attendsHighSchool af:True) (?y af:hasStudent ?x) ]

[ LeaveHighSchool: (?x rdf:type af:Student) (?y rdf:type af:HighSchool)

(?x af:hasBirthDate ?a) (?x af:attendsHighSchool af:True)

(?y af:hasStudent ?x) getAge(?a,?b) ge(?b, 17) -> remove(2) ]

[ GradeNine: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 14) -> (?x af:isInGrade af:Grade09) ]

[ GradeTen: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 15) -> (?x af:isInGrade af:Grade10) ]

[ GradeEleven: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) equal(?b, 16) -> (?x af:isInGrade af:Grade11) ]

[ GradeTwelve: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)
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getAge(?a,?b) equal(?b, 17) -> (?x af:isInGrade af:Grade12) ]

// Rules 05: If today is report period, send school report ....

[ GenerateReport: (?x rdf:type af:Event) (?y rdf:type af:Student)

(?z rdf:type af:School) (?z af:hasStudent ?y) (?x af:hasStartTime ?t1)

(?x af:hasEndTime ?t2) getToday(?t3) lessThan(?t3,?t2)

greaterThan(?t3,?t1) -> (?y af:hasReport af:True) ]

Extensions for Case Study 2. The school rules are extended so that a child

will only be admitted to the school if they fall within the acceptable age range

(temporal), and their home address is within the school zone (spatial).

// Rules 02: Elementary school rules ...

[ EnterElementarySchool: (?x rdf:type af:Student)

(?y rdf:type af:ElementarySchool) (?x af:livesInSchoolZoneOf ?y)

(?x af:hasBirthDate ?a) getAge(?a,?b) ge(?b, 6) le(?b, 10) ->

(?x af:attendsElementarySchool af:True) (?y af:hasStudent ?x)]

[ LeaveElementarySchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsElementarySchool af:True) (?y af:hasStudent ?x)

getAge(?a,?b) ge(?b, 10) -> remove(2) ]

// Rules 03: Middle school rules ...

[ EnterMiddleSchool: (?x rdf:type af:Student) (?y rdf:type af:MiddleSchool)

(?x af:livesInSchoolZoneOf ?y) (?x af:hasBirthDate ?a) getAge(?a,?b)

ge(?b, 11) le(?b, 13) -> (?x af:attendsMiddleSchool af:True) (?y af:hasStudent ?x) ]

[ LeaveMiddleSchool: (?x rdf:type af:Student) (?y rdf:type af:MiddleSchool)

(?x af:hasBirthDate ?a) (?x af:attendsMiddleSchool af:True) (?y af:hasStudent ?x)

getAge(?a,?b) ge(?b, 13) -> remove(2) ]

// Rules 04: High school rules ...

[ EnterHighSchool: (?x rdf:type af:Student) (?y rdf:type af:HighSchool)

(?x af:livesInSchoolZoneOf ?y) (?x af:hasBirthDate ?a) getAge(?a,?b)

ge(?b, 14) le(?b, 17) -> (?x af:attendsHighSchool af:True) (?y af:hasStudent ?x) ]

[ LeaveHighSchool: (?x rdf:type af:Student) (?y rdf:type af:HighSchool)

(?x af:hasBirthDate ?a) (?x af:attendsHighSchool af:True)

(?y af:hasStudent ?x) getAge(?a,?b) ge(?b, 17) -> remove(2) ]

// Rules 06: School transporation service rules ....
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[ ElementarySchoolTransportationService: (?x rdf:type af:Student)

(?y rdf:type af:ElementarySchool) (?y af:hasStudent ?x)

(?x af:hasStudentAddress ?k) (?y af:hasSchoolAddress ?z)

(?k af:hasLatitude ?l1) (?k af:hasLongitude ?l2) (?z af:hasLatitude ?l3)

(?z af:hasLongitude ?l4) getDistance(?l1,?l2,?l3,?l4,?d)

greaterThan(?d,1000) -> (?x af:isElegibleForSchoolBus af:True) ]

[ MiddleSchoolTransportationService: (?x rdf:type af:Student)

(?y rdf:type af:MiddleSchool) (?y af:hasStudent ?x)

(?x af:hasStudentAddress ?k) (?y af:hasSchoolAddress ?z)

(?k af:hasLatitude ?l1) (?k af:hasLongitude ?l2) (?z af:hasLatitude ?l3)

(?z af:hasLongitude ?l4) getDistance(?l1,?l2,?l3,?l4,?d)

greaterThan(?d,1500)-> (?x af:isElegibleForSchoolBus af:True) ]

[ HighSchoolTransportationService: (?x rdf:type af:Student)

(?y rdf:type af:HighSchool) (?y af:hasStudent ?x) (?x af:hasStudentAddress ?k)

(?y af:hasSchoolAddress ?z) (?k af:hasLatitude ?l1) (?k af:hasLongitude ?l2)

(?z af:hasLatitude ?l3) (?z af:hasLongitude ?l4) getDistance(?l1,?l2,?l3,?l4,?d)

greaterThan(?d,2000)-> (?x af:isElegibleForSchoolBus af:True) ]

D.3 School-Family Interaction Rules (umd-school-family-interaction.rules)

Here’s what a family needs to know about school requirements:

// ================================================================

// School-family interaction rules ...

// ================================================================

@prefix af: <http://austin.org/family#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

// Rules 01: Children of age 4 and 5 attend preschool ...

[ EnterPreSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) ge(?b, 4) le(?b, 5) -> (?x af:attendsPreSchool af:True) ]

[ LeavePreSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsPreSchool af:True) getAge(?a,?b) ge(?b, 6) -> remove(2) ]

// Rules 02: Children aged 6 through 10 attend elementary school ....

[ EnterSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) ge(?b, 6) le(?b, 10) -> (?x af:attendsElementarySchool af:True) ]
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[ LeaveSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsElementarySchool af:True) getAge(?a,?b) ge(?b, 11) -> remove(2) ]

// Rules 03: Children aged 11 through 13 attend middle school ....

[ EnterSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) ge(?b, 11) le(?b, 13) -> (?x af:attendsMiddleSchool af:True) ]

[ LeaveSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsMiddleSchool af:True) getAge(?a,?b) ge(?b, 14) -> remove(2) ]

// Rules 04: Children aged 14 through 17 attend high school ....

[ EnterSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) ge(?b, 14) le(?b, 17) -> (?x af:attendsHighSchool af:True) ]

[ LeaveSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsHighSchool af:True) getAge(?a,?b) ge(?b, 18) -> remove(2) ]

// Rules 05: Children aged 6 through 18 attend regular school ....

[ EnterSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

getAge(?a,?b) ge(?b, 6) le(?b, 17) -> (?x af:attendsSchool af:True) ]

[ LeaveSchool: (?x rdf:type af:Student) (?x af:hasBirthDate ?a)

(?x af:attendsSchool af:True) getAge(?a,?b) ge(?b, 18) -> remove(2) ]
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Appendix E: OpenStreetMap Data for Columbia, MD

This appendix contains an abbreviated description of the OpenStreeMap (OSM)

for Columbia, Maryland. The complete data file is 79,500 lines long – not large by

OSM standards, but still more than 1,000 pages of text – so we present only the

essential details defining the public elementary, middle and high schools in the area,

and the two main highways (MD Routes 32 and 108).

E.1 OpenStreetMap Data File (columbia-school-district.osm)

<?xml version="1.0" encoding="UTF-8"?>

<osm version="0.6" copyright="OpenStreetMap and contributors"

attribution="http://www.openstreetmap.org/copyright"

license="http://opendatacommons.org/licenses/odbl/1-0/">

<bounds minlat="39.1822000" minlon="-76.9706000"

maxlat="39.2398000" maxlon="-76.9139000"/>

<node id="31843411" visible="true" version="3" changeset="7939286"

timestamp="2011-04-22T22:46:47Z" user="asciiphil" uid="247807"

lat="39.1844418" lon="-76.8964387"/>

<node id="34031823" visible="true" version="4" changeset="10355745"

timestamp="2012-01-10T21:39:40Z" user="asciiphil" uid="247807"

lat="39.2065197" lon="-76.9335257"/>

... nodes deleted ...

<node id="37016495" visible="true" version="3" changeset="12600093"

timestamp="2012-08-03T16:15:56Z" user="asciiphil" uid="247807"

lat="39.1982520" lon="-76.9659773">

<tag k="highway" v="turning_circle"/>
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</node>

... nodes deleted ...

<node id="358240259" visible="true" version="1" changeset="774950"

timestamp="2009-03-10T03:40:11Z" user="iandees" uid="4732"

lat="39.2053843" lon="-76.9433093">

<tag k="amenity" v="school"/>

<tag k="width" v="6"/>

<tag k="ele" v="156"/>

<tag k="name" v="Saint Louis School"/>

</node>

... nodes deleted ...

<node id="358255578" visible="true" version="1" changeset="774950"

timestamp="2009-03-10T04:30:26Z" user="iandees" uid="4732"

lat="39.2065147" lon="-76.9450387">

<tag k="amenity" v="school"/>

<tag k="width" v="6"/>

<tag k="ele" v="146"/>

<tag k="gnis:state_id" v="24"/>

<tag k="name" v="Brookfield Christian Elementary School"/>

</node>

... nodes deleted ...

<node id="393585189" visible="true" version="4" changeset="10421071"

timestamp="2012-01-17T19:38:10Z" user="asciiphil" uid="247807"

lat="39.2378544" lon="-76.8592826">

<tag k="highway" v="traffic_signals"/>

</node>

... nodes deleted ...

<node id="4615233124" visible="true" version="1" changeset="45258818"

timestamp="2017-01-18T00:25:00Z" user="dannykath" uid="2226712"

lat="39.2348555" lon="-76.8878940"/>

// Here are the nodes for the school zone overlay ...

<node id="111111101" lat="39.209000" lon="-76.94120"/>

<node id="111111102" lat="39.207000" lon="-76.94170"/>

<node id="111111103" lat="39.196800" lon="-76.92377"/>

<node id="111111104" lat="39.195800" lon="-76.92400"/>

<node id="111111105" lat="39.1830" lon="-76.9700"/>

<node id="111111106" lat="39.2210" lon="-76.9700"/>

<node id="111111107" lat="39.2220" lon="-76.9700"/>

<node id="111111108" lat="39.2300" lon="-76.9700"/>

<node id="111111109" lat="39.2300" lon="-76.9139"/>

<node id="111111110" lat="39.1935" lon="-76.9139"/>

<node id="111111111" lat="39.1925" lon="-76.9139"/>

<node id="111111112" lat="39.1830" lon="-76.9139"/>
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<way id="145131026" visible="true" version="2" changeset="12667899"

timestamp="2012-08-09T12:22:19Z" user="asciiphil" uid="247807">

<nd ref="358249233"/>

<nd ref="1585804331"/>

<nd ref="1585804607"/>

<nd ref="1585804738"/>

<nd ref="1858630255"/>

<nd ref="1585804903"/>

<nd ref="358249233"/>

<tag k="amenity" v="school"/>

<tag k="width" v="6"/>

<tag k="name" v="Clarksville Elementary School"/>

</way>

<way id="145131027" visible="true" version="1" changeset="10361612"

timestamp="2012-01-11T15:45:44Z" user="asciiphil" uid="247807">

<nd ref="358249235"/>

<nd ref="1585803099"/>

<nd ref="1585803102"/>

<nd ref="1585803342"/>

<nd ref="1585803515"/>

<nd ref="1585803635"/>

<nd ref="358249235"/>

<tag k="amenity" v="school"/>

<tag k="width" v="6"/>

<tag k="name" v="Clarksville Middle School"/>

</way>

<way id="145131028" visible="true" version="1" changeset="10361612"

timestamp="2012-01-11T15:45:44Z" user="asciiphil" uid="247807">

<nd ref="1585803568"/>

<nd ref="1585803623"/>

... nodes for boundary of Pointers Run removed ...

<nd ref="1585803523"/>

<nd ref="1585803568"/>

<tag k="amenity" v="school"/>

<tag k="width" v="6"/>

<tag k="name" v="Pointers Run Elementary School"/>

</way>

<way id="145131029" visible="true" version="2" changeset="12667899"

timestamp="2012-08-09T12:22:20Z" user="asciiphil" uid="247807">

<nd ref="1585804338"/>

<nd ref="1585804292"/>

... nodes for boundary of River Hill High School removed ...

<nd ref="1585804338"/>

<tag k="amenity" v="school"/>

<tag k="width" v="5"/>

<tag k="name" v="River Hill High School"/>
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</way>

// Here are the ways for the school zone boundaries ...

<way id="222222221">

<nd ref="111111102"/>

<nd ref="111111104"/>

<nd ref="111111111"/>

<nd ref="111111112"/>

<nd ref="111111105"/>

<nd ref="111111106"/>

<nd ref="111111102"/>

<tag k="name" v="Pointers Run Elementary School"/>

<tag k="amenity" v="schoolzone"/>

<tag k="width" v="8"/>

</way>

<way id="222222222">

<nd ref="111111105"/>

<nd ref="111111108"/>

<nd ref="111111109"/>

<nd ref="111111112"/>

<nd ref="111111105"/>

<tag k="name" v="Clarksville Middle School"/>

<tag k="amenity" v="schoolzone"/>

<tag k="width" v="2"/>

</way>

<way id="222222223">

<nd ref="111111105"/>

<nd ref="111111108"/>

<nd ref="111111109"/>

<nd ref="111111112"/>

<nd ref="111111105"/>

<tag k="name" v="River Hill High School"/>

<tag k="amenity" v="schoolzone"/>

<tag k="width" v="2"/>

</way>

<way id="222222224">

<nd ref="111111101"/>

<nd ref="111111107"/>

<nd ref="111111108"/>

<nd ref="111111109"/>

<nd ref="111111110"/>

<nd ref="111111103"/>

<nd ref="111111101"/>

<tag k="name" v="Clarksville Elementary School"/>

<tag k="amenity" v="schoolzone"/>

<tag k="width" v="8"/>

</way>

<relation id="936304" visible="true" version="17" changeset="43751383"

timestamp="2016-11-18T01:50:43Z" user="nyuriks" uid="339581">
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<member type="way" ref="92449187" role="outer"/>

<member type="way" ref="86310899" role="outer"/>

... ways for Howard County Boundary removed ...

<member type="way" ref="394717244" role="outer"/>

<member type="way" ref="394717252" role="outer"/>

<tag k="admin_level" v="6"/>

<tag k="attribution" v="USGS 2001 County Boundary"/>

<tag k="border_type" v="county"/>

<tag k="boundary" v="administrative"/>

<tag k="name" v="Howard County"/>

<tag k="type" v="boundary"/>

</relation>

<relation id="961626" visible="true" version="30" changeset="43016223"

timestamp="2016-10-19T19:00:10Z" user="ElliottPlack" uid="105946">

<member type="way" ref="5986058" role=""/>

<member type="way" ref="130467897" role=""/>

<member type="way" ref="5973668" role=""/>

... ways for MD Route 108 removed ...

<member type="way" ref="5269975" role="forward"/>

<member type="way" ref="137363577" role=""/>

<tag k="is_in" v="US:MD"/>

<tag k="network" v="US:MD"/>

<tag k="ref" v="108"/>

<tag k="route" v="road"/>

<tag k="type" v="route"/>

</relation>

<relation id="1354489" visible="true" version="54" changeset="43751383"

timestamp="2016-11-18T01:51:30Z" user="nyuriks" uid="339581">

<member type="way" ref="93131606" role=""/>

<member type="way" ref="110779250" role=""/>

... ways for Maryland Route 32 removed ...

<member type="way" ref="31363871" role="west"/>

<member type="way" ref="107999420" role="west"/>

<tag k="is_in" v="US:MD"/>

<tag k="network" v="US:MD"/>

<tag k="ref" v="32"/>

<tag k="route" v="road"/>

<tag k="type" v="route"/>

</relation>

<relation id="1964719" visible="true" version="1" changeset="10361612"

timestamp="2012-01-11T15:46:06Z" user="asciiphil" uid="247807">

<member type="way" ref="145131126" role="outer"/>

<member type="way" ref="145131088" role="inner"/>

<tag k="building" v="school"/>

<tag k="type" v="multipolygon"/>
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</relation>

<relation id="1964720" visible="true" version="1" changeset="10361612"

timestamp="2012-01-11T15:46:06Z" user="asciiphil" uid="247807">

<member type="way" ref="145131127" role="outer"/>

<member type="way" ref="145131118" role="inner"/>

<tag k="building" v="school"/>

<tag k="type" v="multipolygon"/>

</relation>

<relation id="1964721" visible="true" version="1" changeset="10361612"

timestamp="2012-01-11T15:46:07Z" user="asciiphil" uid="247807">

<member type="way" ref="145131104" role="outer"/>

<member type="way" ref="145131128" role="inner"/>

<member type="way" ref="145131112" role="inner"/>

<tag k="building" v="school"/>

<tag k="type" v="multipolygon"/>

</relation>

</osm>
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