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Abstract

The time-delay neural network (TTDNN) and the adaptive time-delay neural net-
work (AT'NN) are effective tools for signal production and trajectory generation. Pre-
vious studies have shown production of circular and figure-eight trajectories to be
robust after training. We show here the effects of different sampling rates on the
production of trajectories by the ATNN neural network, including the influence of
sampling rate on the robustness and noise-resilience of the resulting system. Although
fast training occurred with few samples per trajectory, and the trajectory was learned

successfully, more resilience to noise was observed when there were higher numbers of
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samples per trajectory. The effects of changing the initial segments that begin the tra-
jectory generation were evaluated, and a minimum length of initial segment is required
but the location of that segment does not influence the trajectory generation, even
when different initial segments are used during training and recall. A major conclusion
from these results is that the network learns the inherent features of the trajectory
rather than memorizing each point. When a recurrent loop was added from the output
to the input of the ATNN, the the training was shown to result in an attractor of the
network for a figure-eight trajectory, which involves more complexity due to crossover
compared with previous attractor training of a circular trajectory. Furthermore, when
the trajectory length was not a multiple of the sampling interval, the trained network
generated intervening points on subsequent repetitions of the trajectory, a feature of
limit cycle attractors observed in dynamic networks. Thus an effective method of train-
ing an individual dynamic attractor into a neural network is extended to more complex

trajectories and to show the properties of a limit cycle attractor.

1 Introduction

Sampling rate has the effect of speeding up or slowing down the movement of the pattern
along its trajectory in R™ and of translating forward or backward in time [6]. The pattern
will still traverse the same spatial trajectory when a different sampling rate is applied. One
of the basic requirements for digital computation in signal or image processing is that the
signal be available in digital or binary form. Sampling theory states that a bandlimited
signal sampled above its Nyquist rates can be recovered without error by low-pass filtering

the sampled signal. Sampling rate effects in neural network models are not well studied as of



yet. In this paper, we study the effect of sampling rate on the training speed and recognition
performance for the specific problem of circlar pattern production.

We use an algorithm with modifiable time-delays [8, 2] which is a powerful tool for the
dynamic learning of a temporal network and we call this resulting network an Adaptive
Time-Delay Neural Network (ATNN). The ATNN model employs adjustable time delays
along the interconnections between two processing units, and both time delays and weights
are adjusted according to system dynamics in an attempt to achieve the desired optimization.

The system is schematically illustrated in Figure 1. Assume the task is to emulate
the embedding linear or nonlinear function of a plant at time 7' due to the temporally
changing input signals £(t). During the training phase, switch SW1 is on (closed) and input
signals are fed into a three layered network constructed by delay blocks. The inputs are
pre-processed if necessary. After inputs are fed forward through the network, the outputs
are obtained from the last terminal and compared with the desired outputs of the plant.
An error vector E is propagated backwards through the previous layers and used to adjust
the weights and delay variables in the intermediate delay blocks. Switch SW2 remains off
(open) during training. The adaptation of the delays and weights are derived based on the
gradient descent method to minimize the energy or cost function during training. Weight
modification is based on error back-propagation ([12]) and the mathematical derivation of the
time-delay modifications is done with a gradient descent approach [1, 2, 8, 7]. The weights
and time-delays are updated step by step proportional to the opposite direction of the error
gradient respectively. Processing units do not receive data through a fixed time window, but
gather important information from various time delays which are adapted via the learning

procedure. With these mechanisms, the network implements the dynamic delays along the
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Figure 1: Schematic block diagram of system adaptation.

interconnections of the ATNN.

In some experiments, a production or recall phase is used, in which switch SW1 is
turned off and SW2 is on and the outputs are recurrently fed back to the input terminal.
The network can then generate a pre-trained trajectory or signal, and can thereby produce
a good prediction of a series as complex as chaos. The feedback loop also allows for} dynamic
self-sustained activity and enables us to train attractors and trajectories into the network.
The ATNN has been trained to distinguish the temporal properties and spatiotemporal
correlations of various input patterns, and to perform predictions and signal generation [8, 9,
11, 10]. The network architecture is simple and efficient, and can achieve good generalization

on applications problems.

2 Sampling Rate vs. Training Speed and Performance

The AT NN was trained on different sampling data: 64 points per circle, 32 points per circle,

21 and 16 points per circle, all well above the Nyquist rate. The simulation results show
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Figure 2: RMSE of various sampling rate during training phase.

(Figure 2) that the network converges faster when the lower sampling rate data is employed.
All cases could converge to similar RM SE values shown in Table 1 and 2. The performance
of the pattern retrieval during learning progress are shown in Figure 3 to Figure 6 for various
sampling rates and iterations of training. Thus the network converges with different speed
for different sampling rates. There were also different time delay requirements, as shown in
Table 3. In the case with training sequence of 16 points per circle, the maximum time delay
of the whole network was 34. The total time delay needed using 64 points per circle was only
17; the network trained on 16 points per circle required twice as much delay. Low sampling
rate upgrades the training speed but requires a longer initial segment to recall the patterns.

Notice that the training series has a possibly infinite number of non-repeat points on the
circle. Since the training pattern is constructed from sin27m and cos2m with 0.1 increment and
7 is an irrational number, each cycle has different points. This corresponds to the property

of a limit cycle attractor where successive points generated by a system form a densely filled

closed figure [5, 3].



points # of circle trained
per circle 1 5 10 25 50
63 2.4437e-01 | 2.2277e-01 | 2.0087e-01 | 1.2952¢-01 | 8.3963e-02
32 2.2863e-01 | 1.2957e-01 | 1.1439e-01 | 7.8265e-02 | 4.3829¢-02
21 2.1029e-01 | 3.5844e-02 | 3.1620e-02 | 2.7754e-02 | 2.1786e-02
16 1.6010e-01 | 2.4175e-02 | 2.2379e-02 | 2.0574e-02 | 1.6028e-02

Table 1: RMSE comparison of various sampling rate during training phase

points # of circle trained
per circle 100 150 200 250 300
63 5.2819e-02 | 2.7747e-02 | 1.3743e-02 | 7.4201e-03 | 5.6071e-03
32 1.5177e-02 | 9.6177e-03 | 6.8922e-03 | 5.4706e-03 | 4.9016e-03
21 1.2701e-02 | 8.4610e-03 | 5.6143e-03 | 4.4714e-03 | 4.4062¢-03
16 1.0880e-02 | 7.3349e-03 | 5.7197e-03 | 4.2824e-03 | 3.3434e-03

Table 2: RMSE comparison of various sampling rate during training phase

# of points per circle
63 |32 |21 16
maz(Ty) | 3 | 8 |13 8
maz(T) || 14 | 22 | 16 26
Totnn 17130 | 29 34

Table 3: The resulting time-delay variables after training is complete, where T} and T,
denote the time-delay matrix on layer one and two respectively, and Ty, is the total delay
of trained network where Tyin, = maz(T1) + maz(Ty).
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points/circle || different starting position
trained (a) (b) (c) average
64 0.0113 | 0.0162 | 0.0114 | 0.0130
32 0.0827 | 0.0170 | 0.0190 | 0.0395
21 0.2215 | 0.1036 | 0.0729 | 0.1326
16 0.1741 | 0.0776 | 0.0313 | 0.0943

Table 4: RMSE of reproduced figure under different starting positions when various training
sampling rates were employed.
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Figure 7: The results of circle reproduced by ATNN start from different initial position (a)
RMSE = 0.0827 (b) RMSE = 0.1700 (¢) RMSE = 0.0190 when trained on 32 points per
circle pattern.

3 Reproduction From Different Starting Positions

Production capability of AT/NN’s trained on various sampling rates were tested by giving
at random different starting positions for each run. The numerical data is summarized in
Table 4. The results are plotted in Figure 7, 8 and 9. We can conclude from this table that
the performance of networks trained from 64 and 32 point sampling rates are similar but the

performance from networks trained on 21 and 16 points are not as good.
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Figure 9: The results of circle reproduced by ATNN start from different initial position (a)
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circle pattern.
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Figure 10: Noise tolerance of network trained from various sampling rate pattern.

4 Noise Tolerance

The noise tolerance is tested by adding different amounts of white noise to patterns and
measuring the RMSE of output and desired target. The RMSE curves of each trained
network under different sampling rate training patterns with noise variance of 0.001 to 0.1
are plotted in Figure 10. The noise resilience of lower sampling rate training patterns are
not as good as that of network trained on 64 points per circle. The lower the sampling rate

that is employed, the worse the outcome.

5 Noise Removal as Patterns with Different Sampling

Rate are Trained

The noise removal capability was further examined to see if the network can clean up noise
even if a low sampling rate is applied. Various amounts of noise were added to the original

signal and we provided the network sufficient length of data to evaluate the new position;
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order of circle reproduced

02 e Ist 2nd 3rd 4th 5th 6th 7th

0.0001 || 0.0018 | 0.0124 | 0.1280 | 0.7236 | 0.9886 | 0.9928 | 0.9928
0.001 || 0.0020 | 0.0123 | 0.1270 | 0.7216 | 0.9885 | 0.9928 | 0.9928
0.01 0.0102 | 0.0220 | 0.2656 | 0.8670 | 0.9794 | 0.9808 | 0.9808
0.1 0.0939 | 0.1433 | 0.7683 | 0.9767 | 0.9809 | 0.9808 | 0.9808
0.3 0.3140 | 0.6989 | 0.9872 | 0.9926 | 0.9928 | 0.9928 | 0.9928
0.5 0.5697 | 0.4375 | 0.9275 | 0.9805 | 0.9809 | 0.9808 | 0.9808

Table 5: RMSE of successively generated circles from noisy initial data. The amount of
noise was varied: o2, = 0.0001 to 0.5, and 32 points per circle is trained.

the newly generated signal was used to compose further data. The average RMSE of each
successive generated circle from the networks trained on 32, 21 and 16 points sampling rate
are shown in Table 5, 6 and 7. To show the performance of each network intuitively, the
generated patterns along each circle pass are selectively presented in Figures 12 to 17. When
a small amount of initial noise was added to test the trajectory, the network could barely
maintain reproduction at the second circle (see Figure 12(b), 14(b), and 16(b)), but it can no
longer perform well beyond this stage (e.g. in Figure 12(c), 14(c), or 16(c)). When a larger
amount of noise was applied, the network could no longer clean up any noise. Examples
are shown in Figure 13, 15 and 17. To give a better view of the noise removal capability
of various trained networks, the RMSFE variation along successive circles generated from
different networks is shown in Figure 11. We can conclude that the network trained on lower
sampling rates could no longer maintain noise removal since the neighboring points are too

far apart from each other and the correlation information is insufficient.
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order of circle reproduced
02 e Lst 2nd 3rd 4th 5th 6th 7th
0.0001 | 0.0001 | 0.0071 | 0.0221 | 0.1812 | 0.8355 | 1.0516 | 1.0547
0.001 | 0.0001 | 0.0072 | 0.0239 | 0.2009 | 0.8624 | 1.0523 | 1.0548
0.01 || 0.0110 | 0.0097 | 0.0312 | 0.2596 | 0.8608 | 1.0520 | 1.0562
0.1 0.0930 | 0.0682 | 0.3088 | 0.9046 | 1.0535 | 1.0562 | 1.0562
0.3 0.2722 | 0.1852 | 0.6787 | 1.0453 | 1.0547 | 1.0548 | 1.0548
0.5 0.6003 | 0.5221 | 0.9934 | 1.0542 | 1.0548 | 1.0548 | 1.0548

Table 6: RMSE of successively generated circles from noisy initial data. The amount of

noise was varied: o2 ;.. = 0.0001 to 0.5, and 21 points per circle is trained.

order of circle reproduced
02 ise 1st 2nd 3rd 4th 5th 6th 7th
0.0001 || 0.0001 | 0.0001 | 0.0058 | 0.0101 | 0.0447 | 0.2267 | 0.7596
0.001 || 0.0001 | 0.0012 | 0.0060 | 0.0093 | 0.0387 | 0.1985 | 0.7111
0.01 |} 0.0086 | 0.0103 | 0.0121 | 0.0533 | 0.2647 | 0.8100 | 1.0474
0.1 0.1067 | 0.0902 | 0.0578 | 0.2317 | 0.7526 | 1.0395 | 1.0611
0.3 0.2872 | 0.2972 | 0.2615 | 0.7463 | 1.0412 | 1.0611 | 1.0618
0.5 0.4830 | 0.4662 | 0.2583 | 0.3490 | 0.8685 | 1.0418 | 1.0493

Table 7: RMSE of successively generated circles from noisy initial data. The amount of

noise was varied: o2,;,, = 0.0001 to 0.5, and 16 points per circle is trained.
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6 Conclusion

We have studied sampling rate vs. training speed and performance, reproduction from
different starting positions, and noise removal as patterns of different sampling rates were
trained. Sampling rates are important in determining signal recovery or production, and
in determining training speed. Superior performance for trajectory reproduction and noise
removal were found at high sampling rates.

This work is consistent to Doya’s work in the study of the adaptive neural oscillator
using continuous time back-propagation learning [4]. Through their extensive experiments,
the network has difficulty to learn and regenerate the input wave form if the period T of the
external input is larger. In other words, the net can not catch the dynamics efficiently when

the the input oscillates up and down too quickly.
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