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Functional magnetic resonance imaging (fMRI) is a non-invasive tech-

nique for studying brain activity. It uses the amount of blood flowing through

a brain, referred to as the blood oxygenation level dependent (BOLD) signal.

However analyzing the fMRI signals is challenging because of its complicated

spatio-temporal correlation structure and its massive amount of data.

There are several brain atlases available but researchers observe that

fMRI signals are not coherent even within the same area in a brain atlas.

Therefore providing parcellation of a brain, especially based on its functional

connectivity, is necessary to understand brain activities.

One of the techniques that are used for a brain parcellation is spec-

tral clustering. It is a well-used technique in many areas of studies, such as

physics and engineering. However, its asymptotic behavior, whether spectral

clustering will produce consistent clustering as samples grow large, is not fully



clarified. In addition, there has previously been no available mathematical jus-

tification of the large-sample properties of spectral clustering when the data

are dependent.

Von Luxburg et al. (2008) showed the consistency of eigenfunctions of

spectral clustering under the assumption that data are independent and identi-

cally distributed. Because fMRI signals are spatially dependent, applying her

results to fMRI data analysis is not appropriate. In this thesis, we extend von

Luxburg’s work to 3-dimensional spatially dependent data satisfying strong

mixing conditions, which will be the case for fMRI data.

We applied the spectral clustering algorithm to simulated data to see how

the algorithm can be affected by perturbation in a similarity matrix. There

are two simulated data experiments. The first type of simulated data is similar

to the stochastic block model, and the second is sampled independently from

a Gaussian random field distribution with correlation.

We applied spectral clustering to various regions of interest (ROIs) both

for a single subject and for multiple subjects. We also provided methods to

analyze data from multiple subjects using spectral clustering and compared

these methods using several criteria.
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Chapter 1: fMRI Data and Preprocessing

1.1 Background

Functional magnetic resonance imaging (fMRI) is a well-used technique

in biomedical research since its discovery in 1991. One of its uses was for

studying brain activity. When neurons become active in some area of the

brain, the amount of blood flowing through that area is increased, yielding a

relative surplus in local blood oxygen. Thus, fMRI scanner uses this fact to

produce a fMRI image. The signal measured in fMRI depends on this change

in oxygenation, and it is called the blood oxygenation level dependent (BOLD)

signal.

Data from fMRI is huge because there are millions of observations for

each time of the scan. Usually, the scan is repeatedly taken between 100 and

200 time-intervals, therefore the size of data is over 100 million. Not only the

amount of data is large, but also data has dependency structures in time and

space. Therefore the analysis of fMRI data is exceedingly complex, requiring

sophisticated techniques from signal and image processing and statistics.
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Figure 1.1: This is an example of an fMRI signal from one location in the brain over

the time.

Research using fMRI has been continuously growing, as can be seen by

plotting the number of papers that mention the fMRI technique from the

PubMed database of biomedical literature. The following figure (Figure 1.2)

is quoted from an internet published article from

https://www.frontiersin.org/articles/10.3389/fnhum.2014.00462/full#h12. As

shown in the graph, the number of publications increased rapidly after 2002.
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Figure 1.2: “The usage of fMRI gets increasingly popular. We depict the number

of publications for each year that incorporate fMRI on human subjects.

The data is based on a pubmed.org search string.”

Source: https://www.frontiersin.org/articles/10.3389

/fnhum.2014.00462/full#h12

1.2 Data Acquisition

When a brain is scanned by a scanner, it can be done in one long scan

which might take up to 30 minutes to finish or it can be split into two or

three shorter scans. In the case of several scans, brief rests might be provided.

Depending on the strength of the magnetic field of a scanner, we can have a

different resolution of an image. Tesla (T) is a unit measuring the strength of

magnetic field of a scanner. A higher number of Tesla means that the scanner

can produce a higher resolution of an image. Most standard MRI scanners

produce 1.5 or 3T.
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Most standard fMRI scanners produce an image with voxels of about

1 cubic millimeter in size which summarizes the activity of around 100,000

neurons. This is called the spatial resolution and one cube of the grids assigned

by the scanner is called a voxel. Since a human brain is around 1200cm3, the

total number of voxels in a high-resolution brain scan would be around 1

million. There is no standard voxel for a brain, which means that there is

no set size. Voxel dimensions can range from 0.1mm x 0.1mm x 0.1mm to

2mm x 2mm x 2mm or larger, depending on the scanner’s resolution and the

parameters of the scan. However, the term “voxel” can be understood as a 3-

dimensional extension of a pixel of MRI scanning. Therefore, each pixel in an

MRI image actually corresponds to a three-dimensional (3D) voxel within the

brain. The scanner typically produces these images around every 1-3 seconds,

and this can be controlled by a researcher.
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Among many parameters that a researcher can set with a scanner, there

are two most important ones. One is to decide how often the image of the

whole brain will be scanned, and the other is the spatial resolution. The time

between successive whole brain scan is called Repetition time (TR). Most

standard scanners have TR ranging from 2 to 3 seconds, and higher resolution

scanners have TR of 1 second. The lower resolution of scanner produces larger

size voxels, and a typical voxel size is about 2mm3. Once the scan is completed,

a fMRI signal will go through several processes before it is ready for analysis.

This is called preprocessing, and it will be described in the next section.
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1.3 Preprocessing

Preprocessing is the necessary sequence of steps, in order to control other

variations in brain scans that are not needed for our research goal, or to correct

for incomplete measurements due to features of the hardware. Each researcher

can decide what is preprocessing steps to include and what the order of these

steps. There are many available programs to do preprocessing and most of

them are free. Here I want to provide brief descriptions of the most commonly

used steps of preprocessing. We are following the presentations of Poldrack

(2012) and Ashby (2011) in describing each preprocessing step.

1.3.1 Slice Timing Correction

Suppose TR is T seconds, then for any slice, the time between successive

complete acquisitions is T seconds. Therefore, slices consisting a whole brain

image are not taken at the same. Hence if the slice-timing differences are not

corrected during preprocessing, then they should be accounted for when the

statistical analysis is performed. The most common preprocessing approach

for correcting differences in the timing of slice acquisition is to use interpolation

with respect to time. The idea is to take the values of observations we have, and

to make a guess about how they might change over short time intervals, and

then use this guess to estimate what the BOLD response was at the beginning

of the TR. The most popular forms of interpolation are linear, spline, and

6



sinc.

sinc(t) =
sin(πt)

πt
, for all t,−∞ < t < ∞

1.3.2 Head Motion Correction

During the course of the complete scan, a subject can move his head

even though a researcher tried to prevent the movement at the time of the

scan. This must be corrected to combine the slices to create a 3-dimensional

whole brain image.

We apply mathematical methods to correct head movement under the

assumption that the brain does not change its shape or size when a subject

moves his or her head. This is actually not true because head movement can

change head shaping slightly such as flattening its shape, but since it is a

minor change, we can ignore this. If the brain does not change its size or

shape, it can be treated as a rigid body. Therefore head movement correction

is a problem of rigid body registration.

Suppose that a person lies inside a scanner. Then this subject can be

considered as a rigid body. We can describe any movement of a rigid body by

six parameters at each time. For the center of any voxel in his or her head, we

can identify it with a point in 3-dimensional space. We denote its coordinate

values as (x, y, z). By convention, the z axis runs from the feet through the

top of the head of a subject. The x axis runs through the subject’s ears (i.e.,

from left to right), and the y axis runs through the back of the head and exits

7



the forehead.

Using this coordinate system (x, y, z), we can translate head movement

as rigid body movements by combining following rigid body motions.

• Translation along the x axis,

• Translation along the y axis,

• Translation along the z axis,

• Rotation about the x axis,

• Rotation about the y axis,

• Rotation about z axis.

Each translation is parameterized by the distance moved along that axis, and

each rotation is a single rotation and parameterized by the angle of rotation.

One of the standard ways of correcting head motions using rigid body

movement is as follows. First, take the data from the first TR as a standard

reference image. Then take the other TR data and perform rigid body move-

ments on the data from the other TR until BOLD responses from the other

TR’s datasets agree as closely as possible with the data from the standard

TR at each (x, y, z) coordinate point. This process is called rigid body regis-

tration and the most common standard method of head motion correction in

preprocessing.
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Suppose that a subject moved bx along the x axis, by along the y axis,

bz along the z axis, rotated θx about the x axis, θy about the y axis, θz about

z axis in the other TR’s data from the standard one. Then the equation for

the the rigid body registration is.


Ux

Uy

Uz

 =


1 0 0

0 cos(θx) sin(θx)

0 − sin(θx) cos(θx)




cos(θy) 0 − sin(θy)

0 1 0

sin(θy) 0 cos(θy)



×


cos(θz) sin(θz) 0

− sin(θz) cos(θz) 0

0 0 1




wx

wy

wz

+


bx

by

bz


The way to find the values of the six parameters of rigid body registration

equation (1.3.2) is to find the minimizer of a certain loss function. Usually,

a loss function is the sum of the squared difference in BOLD responses from

two datasets because we want to align the two datasets as closely as possible.

Finding this minimization is usually involved with some sort of optimization

algorithm about which we do not give further details.

1.3.3 Coregistering the Functional and Structural Data

When an fMRI scanner takes both functional and structural data, we call

these resulting datasets the functional and structural run. Since the spatial

resolution of the functional data is poor, coregistering of the functional and

structural data is necessary to find out where each voxel belongs in the brain

9



map.

This is a matter of speed-accuracy trade-off. During a functional run,

the whole brain usually gets scanned every 2-3 seconds. However, a single

structural scan takes 8 or 10 minutes for the whole brain. A voxel size of

functional data is usually (2− 3mm)3 but for the structural images, the voxel

size is much smaller, less than (1mm)3. Therefore the structural one has the

much higher resolution.

After coregistration preprocessing, high resolution of the structural data

can be used to improve spatial localization of the functional data. Since the

resolution of fMRI data is so poor, it might be difficult to tell the location of the

activated area from functional data alone. For example, when a certain task-

related activation occurs, it might be hard to tell if it is from the supplementary

motor area (SMA) or the pre-SMA because they are very small adjacent areas

in the brain.

Distinguishing these areas functionally can be an important issue because

the pre-SMA projects primarily to the prefrontal cortex, whereas the SMA

projects primarily to motor cortex and other premotor areas. However, this

issue can be easily resolved by using the structural data since we can map the

functional activation onto the structural image.
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1.3.4 Normalization

Since there are differences in the size and shape of individual brains, it

is difficult for a researcher to assign an activated area of the brain, which is

a cluster of some voxels, to a specific neuroanatomical brain structure. To

resolve this issue, during the preprocessing, researchers register the structural

scan of each subject separately to some standard brain. After this is done

we can assume that the coordinates of all major brain structures have already

been identified and published in an atlas. This process, registering a structural

scan to the structural scan from some standard brain, is called normalization.

There are several brain atlases, but the earliest one is still the most

widely used brain atlas, called the Talairach atlas. This atlas is based on the

detailed dissection of one hemisphere of the brain of a single subject, a 60-

year-old French woman. However, there has been an issue in using this atlas

regarding whether this atlas can represent the human brain in general because

it is based on a single subject’s brain. For this reason, recently, an atlas

produced by the Montreal Neurological Institute (MNI) has become popular

among researchers.

The MNI atlas was created from 152 different subjects and it used high-

resolution structural scans and averaged the results. It used the same axes and

origin for its coordinate system to match with the Talairach system. Usually,

normalization is much more complicated than rigid body motions because it
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involves a linear and a non-linear transformation.

1.3.5 Spatial Smoothing

In this step, we blur the images by removing high-frequency information.

It seems illogical to blur the images after trying to acquire the best possible

resolution. However, there is a very important benefit of spatial smoothing,

which is reducing noise. The amount of noise versus signal is measured by

their ratio, called signal-to-noise ratio (SNR). Therefore, by this step, we can

increase the signal-to-noise ratio. The reason why spatial smoothing is needed

is because of the following. fMRI data is very noisy in general and changes

in signals corresponding to a certain task can be very small. Thus, this pre-

processing step, increasing the signal-to-noise ratio, can greatly increase the

chances of success in an fMRI experiment.

In this preprocessing, each voxel is replaced by a weighted average of

the BOLD responses in neighboring voxels. The voxel being smoothed has

the greatest weight and the weight decreases with distance. Thus voxels far

from the smoothed voxel contribute very little, and nearby voxels contribute

the most. A researcher can set the parameter for the rate of decrease of the

weight as a function of distance, and this determines the amount of smoothing.
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1.3.6 Temporal filtering

Spatial filtering smoothes the signals from each voxel by averaging neigh-

borhood voxels at each TR. However, temporal filtering smoothes the signals

at each voxel by neighboring TRs. Therefore, in spatial filtering, the data

lies on three-dimensional spatial maps but in temporal filtering, the data are

one-dimensional time series.

The purpose of both types of filtering is to reduce noise so that a re-

searcher can easily identify the signal. However, the type of noise that the

two types of preprocessing are focusing on is different. The most common

temporal filtering is called high-pass filtering. Spatial smoothing mainly re-

duces high-frequency noise but temporal filtering cuts off frequencies below a

certain threshold. This removes signal drift that is caused by the scanner and

increases SNR.

1.4 Software

A wide variety of software packages are available for fMRI data analysis

and many of them are free. They are frequently updated. The most widely

used package is Statistical Parametric Mapping (SPM), which is a collection of

MATLAB functions. SPM is written and maintained by the Wellcome Trust

Center for Neuroimaging at University College London. Another widely used

software is FSL (FMRIB Software Library). FSL is produced and maintained

by the FMRIB Analysis Group at the University of Oxford in England. ANFI
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is a software package created and maintained by neuroimaging researcher at

the National Institute of Mental Health (NIMH) in Bethesda. SPM, FSL,

and ANFI are free software. There is also a commercial software called Brain

Voyager.

1.5 What can we assume after preprocessing?

After preprocessing mentioned previously, we can assume that there is

no effect on fMRI data due to the individual’s brain size and shape, head

movement of subject during the scan, and difference in time of scanning. Also,

through spatial and temporal smoothing, we have increased signal-to-noise

ratio. So in analyzing fMRI data, which is a time series at each voxel, we only

need to consider the effect from the experiment in experimental design or its

natural functional connectivities in a resting state fMRI scan.

Here is the data structure of fMRI we can assume after preprocessing.

• Data is dependent across TR and space. (The fMRI data is neither

independent nor identically distributed.)

• Data consisting one time of a whole brain scan is taken concurrently.

• Subject did not move his head during the scanning.

• All brain size is the same and registered to one brain atlas.

• Data we obtain has high SNR.
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Since we are standardizing brain size and anatomical structure using same

atlas, we can also assume independence and identical distribution across sub-

jects.

1.6 Motivation of research

There can be multiple goals in the statistical analysis of fMRI data. The

goal can be

• localizing brain areas activated by the task;

• determining networks corresponding to brain function; and

• making predictions about psychological or disease states.

The first goal is shown in the media a lot. A researcher designs a study

by asking patients to perform a certain task and seeing which areas of the

brain get activated. Investigations can highlight the areas of activation. Often

a researcher compares two groups of patients in order to examine if there is

any difference in the locations of activated brain areas.

The second goal is related to connectivity analysis. Functional connec-

tivity refers to the functionally integrated relationship between spatially sep-

arated brain regions. Functional connectivity is typically analyzed in terms of

correlation, coherence, and spatial grouping based on temporal similarities. In

my research I measure similarity using correlation.

To understand the brain’s activity, dividing the brain region into smaller
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pieces than the anatomical region is necessary so that small regions can be

used as a unit of further analysis. The reason why anatomical region is not

appropriate as the unit for further analysis is that the voxel time series have

different patterns even within one small anatomical region. Examples can be

shown after we define what metric we use to measure similarity.

Dividing the brain’s, spatial domain into a set of non-overlapping regions

or modules that show some homogeneity with respect to information is called

brain parcellation. One of the most popular methods of brain parcellation is

spectral clustering.
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Chapter 2: Spectral Clustering

After the scans of brain volume and preprocessing, time series data can

be obtained from each voxel. If two voxels’ time series from fMRI are highly

correlated, then we say that these two voxels are functionally connected. Using

the information on how voxels are functionally correlated, we want to divide

a brain area into smaller regions. We call this process clustering and these

smaller regions clusters.

In graph theory, clustering is the operation of partitioning the graph into

groups in such a way that the edges between different groups have very low

weights (which means that points in different groups are dissimilar from each

other) and the edges within a group have high weights (which means that

points within the same cluster are similar to each other). Since our goal is to

find a partition of the set of voxels such that voxels in different clusters are

functionally dissimilar from each other and voxels within the same cluster are

functionally similar to each other, we can adapt graph theory to our data.

Consider voxels as points in 3-dimensional space which are connected

with measurable strength. The measurable strength is the correlation between

the time series generated for the pair of voxels.
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2.1 Notation

Let N be a number of voxels, which can vary depending on the resolution

of the MRI scanner. Let i = 1, . . . , N be the index of voxels. Suppose that

the ith voxel vi has 3- dimensional coordinate si = (si1, si2, si3) ∈ N3. (By

convention, these dimensions are called X, Y, and Z. X represents the left-right

dimension, Y represents the anterior-posterior dimension, and Z represents the

inferior-superior dimension.) Let j be the index of subjects and J be the total

number of subjects. For multiple subjects, we denote ith voxel of jth subject as

vji and its coordinate sji = (sji1, s
j
i2, s

j
i3) ∈ N3. In case of single subject analysis,

with J = 1, the j superscript can be omitted. Let t be the index of duration

of brain scans and T be the total number of brain scans, t = 1, . . . , T .

Then let {Xj
i (t)} be the observed time series at the ith voxel vi at the

time of t for the subject j. In vector notation, we denote the time series by

the time series Xj
i = (Xj

i (1), . . . X
j
i (T ))

′ ∈ RT . In a single subject analysis,

we denote it by Xi.

To measure how closely two time series from voxel vi and vi′ are related,

we use sample Pearson’s correlation to estimate correlation between the time

series. For a subject j, Pearson’s correlation (corr) between two time series

Xj
i and Xj

i′ is

corr(Xj
i ,X

j
i′) =

1

T − 1

T∑
t=1

(Xj
i (t)− X̄j

i )(X
j
i′(t)− X̄j

i′)

sdjisd
j
i′

, i, i′ = 1, . . . N

(2.1)
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where

sdji =

√√√√ T∑
t=1

(Xj
i (t)− X̄j

i )
2, sdji′ =

√√√√ T∑
t=1

(Xj
i′(t)− X̄j

i′)
2.

While attempting to use correlation as a similarity measure, we found

that there are voxels with no signal. (That is, there are some voxels with

Xi = 0.) These may come as a result of smoothing in preprocessing or from

some minimum resolution of the measuring machinery. Therefore on these

voxels, correlations are undefined. To resolve this, we can choose to omit

those voxels in an analysis but omitting data that we already have may not be

a good decision since we are losing some information by doing so. Therefore

we can use the following definition.

Let sdx be a sample standard deviation of x. For a small δ ≥ 0, define a

modified correlation c̃δ(x, y) between x and y:

c̃δ(x, y) = cov(
x

max(sdx, δ)
,

y

max(sdy, δ)
). (2.2)

We will always use this modified correlation (2.2) when we compute

correlation as a similarity measure. In this definition, time-lags are not taken

into account in computing correlation because the time-scale of fMRI (defined

by a parameter TR, usually 2-3 seconds) is much longer than the time-scale on

which neurons transfer signals. Also, through a form of preprocessing, called

slice timing correction, we assume that fMRI data have no time difference in

scanning.

In many analyses, researchers often ignore any correlation that is less
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than 0.5. Also, we can apply a physical constraint enforcing similarities to

have a fixed small value beyond a fixed inter-voxel distance. Each voxel has

26 neighbor voxels around it. If we only measure similarities between neigh-

borhood voxels within certain distance α, we can define similarity function

as follows. For example, if we want to include only 26 voxels then α =
√
2.

Therefore for certain distance apart, we will assign very small similarity value

to meet the requirement that the similarity function is bounded away from 0.

We will discuss further in Chapter 3.

wδ,α,η(x, y) = gα,η(c̃δ(x, y)) =


c̃δ(x, y) if c̃δ(x, y) ≥ 0.5 and d(x, y) ≤ α

η otherwise

(2.3)

where d(x, y) is a Euclidean distance between x and y and η is a very small

positive number.

Since the equation (2.3) consists of two continuous functions enforcing

similarities to have a fixed small value beyond a fixed inter-voxel distance, the

similarity function wδ,α,η is piecewise continuous and this property is required

later to show that the set of functions w(x, ·) indexed by x ∈ [−M,M ]T is a

Glivenko-Class. These will be discussed in Chapter 3. Also w(x, y) is bounded

above and below and symmetric.

Let W j be the similarity matrix for the jth subject with elements wj
i,i′ =

w(Xi,Xi′) defined equal to the similarity measure of time series between voxel

vi and v′i. For now, assume single subject analysis for convenience since we
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can apply the same principle when we want to calculate W j. A later section

will discuss multiple subjects analysis.

To distinguish W from the finite matrix obtained from N time series, we

can denote the similarity matrix from the sample X1, . . . ,XN by WN . Then

let DN be a degree matrix, which is a diagonal matrix with diagonal entries

di =
∑N

l=1wi,l.

Then we can define graph Laplacian as below.

L = D −W

LN = Dn −WN

We can also define two versions of normalized graph Laplacians as follows.

L′ = D−1/2LD−1/2 = I −D−1/2WD−1/2 = I −H ′

L′
N = D

−1/2
N LND

−1/2
N = I −D

−1/2
N WND

−1/2
N = I −H ′

N

L′′ = D−1L = I −D−1W = I −H ′′

L′′
N = D−1

N LN = I −D−1
N WN = I −H ′′

N

There is a close relationship between eigenvalues and eigenvectors of four

matrices L′
N , L

′′
N , H

′
N , and H ′′

N . Thus properties about the spectrum of one of

four matrices can be reformulated for the three other matrices as well. In

particular, for studying convergence properties of spectral clustering it will

make no difference whether we work with the normalization L′
N or L′′

N . In the

following, we will call both L′
N and L′′

N normalized graph Laplacian.
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2.2 Properties of graph Laplacian

Here are some properties of the spectrum of normalized and unnormal-

ized Laplacians. Here we make the assumption that w in non-negative and

symmetric, as these are the standard assumptions in spectral clustering. More

properties of graph Laplacian can be found in von Luxburg (2007).

Proposition 1. (Properties of LN)

The matrix LN satisfies the following properties:

1. For every vector f ∈ RN we have

f ′LNf =
1

2

N∑
i,i′=1

wi,i′(fi − fi′)
2. (2.4)

2. LN is symmetric and positive semi-definite.

3. The smallest eigenvalue of LN is 0, the corresponding eigenvector is the

constant one vector 1.

4. LN has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λN .

Proof Part (1): By the definition of di,

f ′LNf = f ′DNf − f ′WNf =
N∑
i=1

difi
2 −

N∑
i,i′=1

fifi′wii′

=
1

2

(
N∑
i=1

difi
2 − 2

N∑
i,i′=1

fifi′wii′ +
N∑

i′=1

di′fi′
2

)
=

1

2

N∑
i,i′=1

wii′(fi − fi′)
2.

Part (2): From the symmetry of WN and DN , LN is also symmetric. Since

wii′ ≥ 0, f ′LNf ≥ 0 for all f ∈ RN .

Part (3): Since LN is positive semi-definite, the smallest eigenvalue of LN is
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0, and the corresponding eigenvector is the constant one vector 1.

Part (4): (4) is a direct consequence of the parts (1)-(3).

Then similar properties can be shown for L′ and L′′. There is a very

close relationship between the spectra of two different forms of normalized

graph Laplacians: v is an eigenvector of L′′ with eigenvalue λ if and only if

= D1/2v is an eigenvector of L′ with eigenvalue λ. So from a spectral point

of view, the two normalized graph Laplacians are equivalent. A discussion of

various other properties of graph Laplacians can be found in the literature;

see, for example, Chung A.2 for the normalized and Mohar A.2 for the unnor-

malized case.

2.3 Spectral clustering algorithm

Two different versions of graph Laplacian yield two versions of spectral

clustering, which are called ”normalized” or ”unnormalized” spectral cluster-

ing, respectively. The basics of algorithms can be summarized as follows. They

both use k-means algorithm to assign points to k-clusters. k-means clustering

aims to partition n observations into k clusters in which each observation be-

longs to the cluster with the nearest mean.
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Unnormalized spectral clustering

Input: Similarity matrix W ∈ RN×N , number k of clusters to construct.

• Construct similarity matrix.

• Compute the unnormalized Laplacian L.

• Compute the first k eigenvectors u1, ..., uk of L.

• Let U ∈ RNxk be the matrix containing the vectors u1, ..., uk as

columns.

• For i = 1, ..., n, let yi ∈ Rk be the i-th row of U , as a column vector.

• Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into

clusters C1, . . . , Ck.

Output: Clusters X∗
1 , . . . , X

∗
k with X∗

i = {j|yj ∈ Ci}.

Alternatively, using normalized Laplacian, we can also perform spectral

clustering. Here is summarized algorithm of normalized spectral clustering.
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Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix W ∈ RN×N , number k of clusters to construct.

• Construct similarity matrix.

• Compute the unnormalized Laplacian L.

• Compute the first k eigenvectors u1, ..., uk of the generalized eigen-

problem Lu = λDu.

• Let U ∈ RN×k be the matrix containing the vectors u1, ..., uk as

columns.

• For i = 1, . . . , N , let yi ∈ Rk be the i-th row of U , as a column

vector.

• Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into

clusters C ′
1, . . . , C

′
k.

Output: Clusters X∗
1 , . . . , X

∗
k with X∗

i = {j|yj ∈ C ′
i}.

After X∗
1 , . . . , X

∗
k are computed, we can transfer the information into a

different format of matrix, called adjacency matrix A : Adjacency matrix is

defined to have {0, 1} entries, with Ai,i′ equal to 1 if voxels i, i′ are in the same

cluster Cj, and equal to 0 otherwise.

Note that the spectral clustering algorithms presented above contain ba-

sic principles. However, the implementations used in practice can differ in

25



various details. We used the spectral clustering algorithm for multiple clusters

that is suggested by Yu and Shi (2003).

2.4 Goal of spectral clustering in fMRI analysis

What we want to achieve is to find a partition of the brain regions such

that the similarities between different clusters are very low (which means that

voxels in different clusters are dissimilar from each other) and the similarities

within a group are high (which means that voxels within the same cluster are

similar to each other).

Figure 2.1: The 236-region functional parcellation used to define network nodes in

the ADHD-200 dataset. From A neuromarker of sustained attention

from whole-brain functional connectivity, M. Rosenberg et al., Nature

Neuroscience 19, 165171 (2016)
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For example, the superior temporal gyrus is one of three (sometimes

two) gyri in the temporal lobe of the human brain, which is located laterally

to the head, situated somewhat above the external ear. The superior temporal

gyrus contains the primary auditory cortex, which is responsible for processing

sounds.

Figure 2.2: Superior temporal gyrus, from Wikipedia

When plotting the correlations corr as defined in the earlier section, we

observed clusters of correlations even within one brain region, the superior

temporal gyrus. This implies that there is a group of voxels in the same brain

region that is functionally similar to voxels in the same group but dissimilar

with the voxels in another group. Therefore, using the spectral clustering

techinque, we want to divide brain regions into much smaller regions than the

regions in brain map but larger than individual voxel. This is called brain

parcellation.
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Figure 2.3: Plots of correlation in one region of interest (ROI), superior temporal

gyrus. The number of voxels in this ROI is 2278. There are several

clusters of correlations within one ROI. This suggests the need of brain

parcellation.

2.5 Success of parcellation

Then how can we determine the success of parcellation when we deal

with real brain data? One way to measure the success is to compare corre-

lations between clusters and within clusters. We can use the idea of Fisher’s

discriminant to quantify this measure. Below we define Fisher’s discriminant

(F ) in the context of spectral clustering in fMRI analysis.

Let F be the Fisher’s discriminant. Suppose that in the kth cluster,

there are nk. Then these yield nk(nk + 1)/2 correlations. Let {rks}nk(nk+1)/2
s=1

be the correlation within the cluster k. Let µk be a mean correlation within
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cluster and the overall mean of correlations is µ̄. Then we can define Fisher’s

discriminant (F ) as

F =
Sw

Sb

, where

Sb =
1

N

K∑
k=1

nk(µk − µ̄)2, N =
K∑
k=1

nk,

µk =
1

nk

nk(nk+1)/2∑
s=1

rks, µ̄ =
1

N

K∑
k=1

nkµk,

Sw =
1

N

K∑
k=1

nk(nk+1)/2∑
s=1

nk(rks − µk)
2.

Then we can expect that a better clustering will yield a smaller F.

To examine compactness of clusters, we can measure diameters of clusters

and compare them. However, we are going to apply the physical constraint

when we apply spectral clustering to fMRI data, thus this would not be an

appropriate measure for a success of clustering.

2.6 Multiple subjects analysis

2.6.1 Methods

Based on a belief that there is a general parcellation of brain regions

that we can apply to multiple subjects, we can perform a multi-subject anal-

ysis. In the case of multiple subjects analysis, we can suggest several ways in

formulating W s. Especially, two methods are suggested dealing with multiple

subjects in Craddock (2012). Each one has benefit and drawback in achieving
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clusterings.

The first method suggested in Craddock (2012) is to take an average of

the simularity matrices over the subjects. Suppose that we have W jJ
j=1. Then

the averaged similarity matrix is W̄ = 1
J

∑J
j=1 W

j. Next perform spectral

clustering in the same way we did for a single subject analysis. This method is

much faster than the other method introduced later since spectral clustering is

applied only once. Then the resulting clustering can be converted to an n×K

dimensional adjacency matrix A as defined in the previous section.

The second method suggested in Craddock (2012) is to apply J times

of spectral clustering for each individual similarity matrices. Suppose that

we have J similarity matrices W j. Then apply clustering method for each

W j. Then the resulting clustering can be converted to J adjacency matrices

Aj. Thus we have J many Ajs. Then take an average of Ajs to obtain

Ā = 1
J

∑J
j=1W

j. As a second level analysis, apply the spectral clustering to

Ā. Then we can have final adjacency matrix A. One might suggest applying

a threshold to Ā to get the final adjacency matrix A. However, this method

can yield a voxel that does not belong to any of the clusters. The rationale

for the second clustering is to assign all the voxels to one of the clusters.

2.6.2 Evaluation

In this section, I want to summarize the methods that were suggested in

Craddock (2012). In Craddock, the resulting clustering solutions were com-
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pared using two commonly applied strategies: leave-one-out cross-validation

(LOOCV) and silhouette width (SI).

To perform LOOCV, we will exclude a subject at a time and perform

clustering. Next we will compare to the clustering from the single subject who

is excluded. Suppose that we have an adjacency matrix generated from the

clustering with themth subject excluded. Let’s denote as A−m. Then compare

A−m to the adjacency matrix calculated by clustering the data from the mth

subject only, denoted as Am. To measure how the group and the individual

level clustering solutions are different, we can use Dice’s coefficient. Then the

averaged value of Dice’s coefficients across all possible ways to exclude one

subject will give a metric to tell how similarly the multiple subject analysis is

performed compared to a single subject analysis.

Dice’s coefficient measures the similarity between two adjacency matri-

ces. It is the ratio of twice the number of connections common to both matri-

ces, divided by the total number of connections present in both matrices.

Suppose that we have two adjacency matrices A and B and they have

same dimension N × N . Then we define entries of A ∩ B as follows. For

i, j = 1, . . . , N ,

(A ∩B)i,j =


1

0, otherwise

Also, | · | denotes the number of non-zero entries. Then we can define Dice’s
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coefficient to perform LOOCV.

dice =
2 · |A−m ∩ Am|
|A−m|+ |Am|

, (2.5)

Dice’s coefficient results in numbers between zero and one, where one corre-

sponds to perfect correspondence between matrices, and zero corresponds to

no similarity.

On the other hand, the silhouette width was chosen to quantify the func-

tional homogeneity of region of interest(ROI). SI measures cluster compactness

compared to cluster separation. SI has been defined in terms of both similarity

and distance metrics but the similarity formulation is used here.

Let’s define the average similarity, ak, between every pair of voxels as-

signed to cluster Ck of clustering. Suppose that there are nk number of voxels

that is assigned to the cluster Ck. Then the average similarity, ak is :

ak =
1

nk(nk − 1)

∑
i,i′∈Ck,i ̸=i′

w(vi, vi′) (2.6)

In Craddock (2012), SI was modified from the original definition to use

the average similarity between in-cluster and out-of-cluster voxels. Let’s define

the average similarity between in-cluster and out-of-cluster voxels bk:

bk =
1

nk(N − nk)

∑
i∈Ck

∑
i′ /∈Ck

w(vi, vi′) (2.7)

The silhouette width for the clustering can then be calculated from:

si =
1

K

K∑
k=1

ak − bk
max{ak, bk}

(2.8)

Negative SI values indicate an incorrect clustering and values near 1

indicate a good solution. SI was calculated for each clustering solution from
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each subjects data. Therefore averaged SI across subjects will give a metric

for multiple subject analysis.

Besides these two measures, in literature other methods were used to

evaluate the performance of clustering. For example, Thirion (2014) A.2

used the goodness of fit to measure accuracy and also showed reproducibil-

ity of the parcellation across bootstrap samples. Many other indices, such as

Rand/adjusted Rand index, Hubert index, Silhouette index, Davies-Bouldin

index, Calinski-Harabasz index, Hartigan index, Weighted inter-intra index,

Krzanowski-Lai index, Homogeneity, and separation index were used in So-

mashekara (2014) A.2. However, some of the indices require knowledge of the

ground truth information which is almost never available in practice. In addi-

tion, other measures such as clustering error, the variation of information, and

the Wallace Index were used to evaluate the performance of spectral clustering

in Verma (2005) A.2.

In this paper, we will present LOOCV (only for multiple subjects anal-

ysis), SI and Fisher’s discriminant defined in the section 2.5.
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Chapter 3: Consistency of Spectral Clustering

Even though spectral clustering is frequently used in many applications,

its consistency has barely been studied. Proving consistency of spectral clus-

tering itself is not achievable. Instead, consistency of spectral clustering means

actually asymptotic behavior of spectral clustering that uses eigenfunctions of

Laplacian to cluster data. However since its asymptotic behavior for large

N has not been fully examined, it is worthy of research. Therefore we are

not trying to demonstrate consistency of spectral clustering itself. We are go-

ing to address the consistency of estimation of eigenfunctions that drive the

clustering.

Von Luxburg et al. (2008) showed the consistency of spectral cluster-

ing under the setting of independent identically distributed (iid) data sample.

Even though her paper’s title is consistency of spectral clustering, she actually

proved only that the consistency of eigenfunctions of Laplacian. Lei and Ri-

naldo (2015) showed the consistency under stochastic block models for nodes

grouped into ”communities”, but this cannot be directly applied to fMRI data

analysis.

As is true also for other spatial data, the time series from fMRI voxels are
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not spatially independent of each other. The closer the voxels are physically,

the higher the correlation between their corresponding time series tends to be.

Therefore we cannot assume that fMRI data in general are independent and

identically distributed. In this chapter, we will extend von Luxburg’s work

under assumptions of weak dependence and possibly of stationarity. Thus

the consistency of spectral clustering in this thesis means the consistency of

eigenfunctions of Laplacian as it is in von Luxburg.

3.1 Asymptotics for Spatial Data

When the number of voxels grows to infinity, in our notation as N → ∞,

we can think of two frameworks of asymptotics for spatial data. The two ways

N could tend to infinity are explained in Cressie (1993). One is called infill

asymptotics and the other is called increasing window asymptotics. We will

summarize these in a general setting first and then describe which asymptotic

situation we have for fMRI analysis when the number of voxels increases.

Suppose that we have observations Y = (Ys1 , . . . , YsN )
′, of spatial data

located at {s1 . . . , sN , si = (si1, si2, si3) ∈ R3}. Let U be the closure of an open

region in R3 that contains at least all location vectors {si}.

U = [min
i

si1,max
i

si1]× [min
i

si2,max
i

si2]× [min
i

si3,max
i

si3]

Suppose we have a domain U ⊂ R3. The first asymptotic framework is to

allow more and more observations to be taken from a stationary random field,

or a random field whose averages over large windows converge in the sense of
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the Law of Large Numbers by increasing the domain of observation. Suppose

we have inf{∥si − sj∥ : 1 ≤ i < j ≤ N} > ∆ > 0, then N → ∞ implies

|U| → ∞, where |U| denotes the volume of the domain U . Such asymptotics

are called increasing window asymptotics, and they are the spatial analogue

of the usual asymptotics seen in time series analysis.

On the other hand, when the spatial index ranges continuously over a

fixed subset U ⊂ Rd, one may view U as a bounded domain. Then an obvious

way to increase n is to take observations at locations between the existing ones.

This is called infill asymptotics, where N → ∞, but 0 < |U| < ∞ remains

fixed.

Considering fMRI data, the domain U is limited to the volume of a brain.

Thus, it appears to be described better by infill asymptotics at a glance. How-

ever, there is a different phenomenon from geostatistical data with infill asymp-

totics. In geostatistical data with infill asymptotics, as more observations are

taken, the data are more closely related. In other words, their correlations are

increased as N → ∞. However, in fMRI data, as the number of observations

is large, which are time series at voxels, we may not have the situation that

the correlations between the time series continuously get increased.

As the number of voxels is huge, neighboring voxels are nearly perfectly

correlated. Even though the physical brain volume is constrained and there

is no actual increase of N , since the number of observation is large, we can

consider this situation as N → ∞. Moreover, when N → ∞, correlation can

die off within very small distances, yielding different parcels. Even though the
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parcels are close in the brain, they can be sufficiently far apart in terms of

correlation distances. In other words, even though physical distance is small

between two voxels, their correlation distance is not as N → ∞. Thus we can

view this as increasing window asymptotics and it is still meaningful to talk

about a large sample of only weakly dependent clusters. Since we have more

and more statistical information as N → ∞, we can assume increasing window

asymptotics. In the context of observations from a large class of Gaussian

random field models, it is known that Fisher’s information grows infinitely as

N → ∞ when correlation distance is bounded below, so that we can apply

increasing window asymptotics. To calculate the Fisher’s information, we will

assume a parametric model for covariances of fMRI data.

Mardia and Marshall (1984) showed that for a Gaussian random field, the

Fisher’s information goes to infinity as N → ∞ under parametric assumptions.

Suppose that the fMRI is a real valued Gaussian process {Yt : t ∈ T ⊂ Z3}

where T is an index set. Mardia and Marshall proved a result for general index

set T ⊂ Zd, but we will refer to their result for the case of d = 3.

Suppose that for all t ∈ T , E{Yt} = z(t)′β, where z(t) = {z(t), ..., zq(t)}′

is a q× 1 vector of nonrandom regressors and β ∈ B is a parameter vector, B

being an open subset of Rq. Also let the covariance be defined by a parametric

model cov{Yt, Ys} = σ(t, s; θ), for all t, s ∈ T , where θ ∈ Θ is a p×1 parameter

vector, Θ being an open subset of Rp. We assume that σ(t, s; θ) is twice

differentiable with respect to θ at all points on T 2 × Θ, and positive-definite

in the sense that for every finite subset T = {t1, . . . , tN} of T the covariance
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matrix VN = {σ(ti, tj; θ)} is positive-definite. Suppose that Yt is observed at

each point to give the sample vector YN = {Yt1 , . . . , YtN}′. We denote the

combined (q+p)×1 parameter vector by ϕ = (β′, θ′)′. From the formula (2.1)

in Mardia and Marshall (1984), the log likelihood for ϕ is

LN(ϕ;YN) = −1

2
log |VN | −

1

2
(YN − ZNβ)

′V −1
N (YN − ZNβ)

where ZN is an n×q regressor matrix with jth column zj = {zj(t1), . . . , zj(tN)}′.

We assume ZN to be rank q. The equation (2.5) in Mardia and Marshall (1984)

gives the Fisher’s information matrix.

−E(
∂2LN

∂ϕ2
) = diag(Bβ, Bθ),

where Bβ = Z ′V Z, Bθ = tr(V V iV V j), V i = ∂V −1

∂θi
, and V j = ∂V −1

∂θj
.

Mardia and Marshall (1984) proved that MLE’s in their parametric spa-

tial models with increasing-window asymptotics were consistent and asymptot-

ically normal. As part of their proof, they show that the Fisher Information

(the inverse of which gives the asymptotic variance matrix for parameters)

behaves in the following way.

limB−1
θ = 0 limB−1

β = 0, as N → ∞.

This means that the parametric Fisher’s information increases to infinity as

N → ∞.
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3.2 Assumptions and Definitions Needed for the Proof of Con-

sistency

Here we want to provide assumptions and definitions that are needed

to show the consistency of eigenfunctions that drive spectral clustering. We

will start out with general assumptions regarding the similarity function for

the case of fMRI data, and later we will introduce additional assumptions and

definitions that in order to demonstrate asymptotic behavior of eigenfunctions

that derive spectral clustering. Our approach is similar to that of von Luxburg

et al. (2008).

3.2.1 General Assumptions

Suppose we have a probability space (Ω,F , P ) and a real valued random

field {Xs : s ∈ S ⊂ N3} = {Xsi : si = (si1, si2, si3) ∈ S ⊂ N3}. Since fMRI

data consists of time series from all voxels, we can consider it as a random field

indexed by a three dimensional index set. In addition, fMRI signals are always

bounded i.e. there exist a M such that |Xs| ≤ M . Let χ be [−M,M ]T ⊂ RT .

Let χ = [−M,M ]T ⊂ RT be a compact metric space and {Xs} be a

random field, indexed by s ∈ S. Here are the assumptions that we impose

throughout this chapter.

A1 w(x, y) : χ× χ → [a, b] ⊂ R, is symmetric, where a > 0.

A2 There is a partition {Br}Rr=1 such that ∪R
r=1Br = χ×χ and Br ⊂ int(Br).
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Also, there exist Lipschitz continuous functions wr on the compact sets

Br (denoting the closure of Br) such that w coincides with wr on Br.

Note that w is bounded above since it is a piecewise Lipschitz function on a

finite union of compact domains. (Thus, the finite upper bound b in A1 is a

consequence of A2.)

The consistency of spectral clustering was shown under the assumption

of independent identically distributed data by von Luxburg et al. (2008). Even

though fMRI data are dependent spatially, if we can assume dependence dies

off at some specified rate, measured through φ- or ρ′-metrics of strong mixing,

we can still show similar results as von Luxburg et al. In the following sections

we will summarize some definitions of mixing conditions for random fields as

well as some other definitions that are needed for the proof of consistency.

3.2.2 Mixing Rates

Here are some definitions of mixing rate from Bradley (2005) and Deo

(1975). Let (Ω,F , P ) be a probability space and consider two σ-fields A,B ⊆

F . Consider a random field {Xs} indexed by s ∈ S ⊂ N3.

Definition 3.2.1. (φ-mixing rate of 3-d random field from Deo (1975))

For a given r, suppose that S = S(r) and T = T (r) are index sets in R3 linked

to r which satisfy the property that

max
k=1,2,3

(inf
t∈T

tk − sup
s∈S

sk) ≥ r (3.1)
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for s = (s1, s2, s3) and t = (t1, t2, t3), then B ∈ B(r) = σ(Xt, t ∈ T (r)) and

A ∈ A(r) = σ(Xs, s ∈ S(r)). Then we define

φ(r) = sup
S(r),T (r) subject to (3.1)

|P (B|A)− P (B)|. (3.2)

Then φ(0) = 1 and clearly {φ(r)} is a decreasing sequence of real num-

bers. If φ(r) → 0 then we say that the random field {Xs} is φ-mixing. This

definition will be recalled when we discuss the strict stationarity assumption.

From the definition 3.2.1, for any event A ∈ σ(Xs, s ∈ S(r)) and B ∈

σ(Xt, t ∈ T (r)) where S(r) and T (r) satisfy (3.1), we have

|P (B|A)− P (B)| ≤ φ(r).

Now we want to show that the φ-mixing assumption for the random field

Xs implies the same assumption for the random field g(Xs) for a function g.

Suppose there is a function g : R → R, and that we define a random field

Ys = g(Xs).

Corollary 3.2.1. If Xs is φ-mixing random field with rate φ(r) then so is Ys.

Proof. For any event A∗ ∈ σ(Ys, s ∈ S(r)) and B∗ ∈ σ(Yt, t ∈ T (r)),

since Ys = g(Xs), σ(Ys, s ∈ S(r)) ⊆ A(r) and σ(Yt, t ∈ T (r)) ⊆ B(r). The

equality holds in these relations ⊆ if g is a one-to-one function. Since Xs

is a φ-mixing random field, |P (B∗|A∗) − P (B∗)| ≤ φ(r). Therefore, Ys is a

φ-mixing random field.2

Definition 3.2.2. (ρ′-mixing rate from Bradley (2015))

For a given r, suppose that S = S(r) and T = T (r) are index sets in R3 linked
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to r which satisfy the property that

max
k=1,2,3

(inf
t∈T

tk − sup
s∈S

sk) ≥ r (3.1)

for s = (s1, s2, s3) and t = (t1, t2, t3). Suppose that we have two σ-fields

A(r) = σ(Xs, s ∈ S(r)) and B(r) = (Xt, t ∈ T (r)). Then ∀f1, f2, define the

maximal coefficient of correlation

ρ(A(r),B(r)) = sup
f1∈L2(A(r)),f2∈L2(B(r))

|Corr(f1, f2)|.

Then we can define

ρ′(r) = sup
S(r),T (r) subject to (3.1)

ρ(A(r),B(r))

If ρ′(r) → 0 as r → 0 then we say that random field {Xs} is ρ′-mixing.

Bradley (2015) showed central limit theorem for a nonstationary random field

with ρ′-mixing. We will recall this when we show the consistency of spectral

clustering.

From the definition 3.2.2, for any event f1 ∈ L2(A(r)) and f2 ∈ L2(B(r)),

we have

|Corr(f1, f2)| ≤ ρ′(r).

Now we want to show that the ρ′-mixing assumption for the random field

Xs implies the same assumption for the random field h(Xs) for a function h.

Suppose there is a function h : R → R then we have a random field Ys = h(Xs).

Corollary 3.2.2. If Xs is ρ
′-mixing random field with rate ρ′(r) then so is Ys.

Proof. For any event f ∗
1 ∈ L2(σ(Ys, s ∈ S(r))) and f ∗

2 ∈ L2(σ(Yt, t ∈

T (r))), since Ys = h(Xs), L2(σ(Ys, s ∈ S(r))) ⊆ A(r) and L2(σ(Yt, t ∈
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T (r))) ⊆ B(r). The equality holds if h is a one-to-one function. Since Xs is

a ρ′-mixing random field, |Corr(f ∗
1 , f

∗
2 )| ≤ ρ′(r). Therefore, Ys is a ρ′-mixing

random field.2

3.3 Consistency Results of von Luxburg et al. (2008) under

Dependent Data Structure

Here we are going to discuss some cases in which we can establish the

weak law of large numbers (WLLN) that we need to follow the proof of von

Luxburg et al. (2008). Theorems are similar to what von Luxburg has pre-

sented, but we cannot apply exactly the same proofs since we have different

assumptions, also resulting in the different type of convergence. Some of the

definitions in the empirical process have been changed. Steps in the proof

needed to be re-examined because we showed the convergence in probability

whereas von Luxburg showed a.s. convergence of operators. In each case,

we will list out the assumptions and these will be used together with general

assumptions from A1-A2 to have WLLN.

Definition 3.3.1. (Weak Law of Large Number)

Suppose thatXs is a random field indexed by multi-index s ∈ S ⊂ R3, 1 ≤ s ≤

n and g is a real-valued measurable function on χ such that sups∈S Eg(Xs)
2 <

∞. If

1

|n|
∑

1≤s≤n

g(Xs)
p−→ µg (3.3)

43



for all such g : χ → R, where µg is a finite constant depending on g and the

probability law of the Xs random field, then we say that we have the Weak

Law of Large Numbers (for {Xs} with respect to P ).

For a stationary random field, we have µg = E(g(X1)).

3.3.1 Strict Stationarity Case

Here we want to provide assumptions under which the weak law of large

numbers (WLLN) holds in the stationary case. Suppose {Xs} is a strictly

stationary random field satisfying the additional conditions.

A3 {Xs} is a φ-mixing strictly stationary random field with mixing rate∑∞
r=1 r

2φ(r)
1
2 < ∞

A4 EX1 = µ and E(X2
1 ) < ∞

The property of φ-mixing at a rapid rate is highly plausible in the fMRI

setting. The 3-dimensional index is associated with location in 3-dimensional

grid and can be used to calculate distance between voxels. As the distance

between two voxels gets bigger, the dependence between two fMRI signals from

two locations quickly dies off as shown in the figures in Chapter 4. Therefore

we can apply the lemma and theorem from Deo (1975) with a specific value of

q = 3.

Lemma 1. Suppose that we have assumption A1-A4 hold, then

|n|−1E(S2
n) →

∑
i∈Z3

r(i) = σ2 as n → ∞ (3.4)

44



holds where r(i) = E(X1Xsi) and Sn =
∑

1≤i≤nXsi .

The proof can be found in Deo (1975). This theorem tells in particular

that variance of the partial sum of Xs is finite of order |n|, which is o(|n|2).

Therefore we have the weak law of large numbers by Chebyshev’s inequality.

Proposition 2. Suppose {Xs} is a strictly stationary random field satisfying

A1-A4 and sups Eg(Xs)
2 < ∞. Then we have the weak law of large numbers.

1

|n|
∑

1≤s≤n

g(Xs)
p−→ µg

for all g : χ → R.

Proof. By Chebyshev’s inequality, we have

P

(∣∣∣∣∣ 1|n| ∑
1≤s≤n

g(Xs)− µg

∣∣∣∣∣ ≥ ϵ

)
≤

V ar(
∑

1≤s≤n g(Xs))

|n|2ϵ2
.

By the lemma 1, the right-hand side of the last inequality tends to 0 as |n| →

∞.

3.3.2 Non-stationary Case

Here we want to provide assumptions ensuring the weak law of large

number (WLLN) for the non-stationary case. Suppose that {Xs} is a random

field, not necessarily stationary. Suppose that we have following assumptions.

B3 {Xs} is a ρ′-mixing random field

B4 ρ′(j) < 1 for some j ∈ N.
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B5 1
N

∑
si
EXsi → µ and supsE(X2

s ) < ∞

Then we can apply the theorem in Bradley which is the consequence of The-

orem 28.9 and Theorem 28.10(I) with a specific value of d = 3 in Bradley

(2007).

Theorem 1. Suppose that we have A1-A2— and B3-B5. Suppose s ∈ S ⊂ N3,

and {Xs} is a (not necessarily strictly stationary) random field such that for

each s ∈ S, the random variable Xs has mean zero and finite second moments.

Suppose ρ′(j) < 1 for some j ∈ N. Then for any nonempty finite set Q ⊆ S,

E|
∑
s∈Q

Xs|2 ≤ C
∑
s∈Q

E(Xs)
2

where C := j3(1 + ρ′(j))3/(1− ρ′(j))3.

The proof can be found in Bradley (2007, 2015). Since the variance of

the partial sum of Xs is of order |n| which is o(|n|2), we have the weak law of

large numbers by Chebyshev’s inequality.

Both in strict stationary and in nonstationary cases, under assumptions

A1-A4 and assumptions A1-A2, B3-B5 respectively, we have WLLN.

3.4 Glivenko-Cantelli Theorem

Here we will discuss Glivenko-Cantelli (GC) function classes and related

definitions such as bracketing under our general assumptions A1-A2. Recall

the definition of the weak law of large numbers in definition 3.3.1.
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Definition 3.4.1. (Glivenko-Cantelli Class)

Let G be a class of real-valued measurable functions on Rd for which each of

the WLLN limits (3.3) exist, with convergence in probability to a constant µg.

If

sup
g∈G

∣∣∣∣∣ 1|n| ∑
1≤s≤n

g(Xs)− µg

∣∣∣∣∣ p−→ 0, (3.5)

then we say that G is a Glivenko-Cantelli Class

Consider a function w(x, ·) : χ → R, especially the particular case

w(x, ·) : χ → [a, b], a > 0, b < ∞ from A2. Let S = {1, . . . , n1}×{1, . . . , n2}×

{1, . . . , n3} be the locations of Xs, where
∏3

i ni = |n|. If Xs is a strictly sta-

tionary random field satisfying the assumptions A3 and A4 or if Xs is a non

stationary random field satisfying the assumptions B3 to B5 , then by the law

of large numbers of definition 3.3.1, for each x ∈ χ we have∣∣∣∣∣ 1|n|∑
s∈S

w(x,Xs)− E(w(x,Xs))

∣∣∣∣∣ p−→ 0.

For W to be a Glivenko-Cantelli class, there must hold for all x ∈ χ

sup
w∈W

∣∣∣∣∣ 1|n|∑
s∈S

w(x,Xs)− E(w(x,Xs))

∣∣∣∣∣ p−→ 0. (3.6)

Now we will introduce the definition of ϵ-bracket and bracketing number to

prove (3.6).

Definition 3.4.2. (Bracketing number)

Suppose F is a class of measurable functions. Given two functions l and u,

the bracket [l, u] is the set of all functions f with l ≤ f ≤ u. An ϵ-bracket is
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a bracket l ≤ f ≤ u with ∥u − l∥ < ϵ. The bracketing number N[ ](ϵ, F, ∥·∥)

is the minimum number of ϵ-brackets needed to cover F . The upper and

lower bounds u and l of the brackets need not belong to F themselves but are

assumed to have finite norms.

The definition 3.4.2 can be applied to any norm but we will be using L2

norm when we refer to this definition.

Now we define a class of function W and we want to show that W is a

Glivenko-Cantelli class, a proposition that is analogous to the proposition 11

in Luxburg (2008).

Proposition 3. Let w : χ × χ → [a, b], a > 0, b < ∞ be a similarity

function satisfying A1-A2, and h : χ × χ → R be the corresponding nor-

malized similarity function defined as h(x, y) = w(x, y)/
√
d(x)d(y), where

d(x) =
∫
w(x, y)dP (y), and g ∈ C(χ) an arbitrary function. Then we define

the following:

W := {w(x, ·);x ∈ χ}, H := {h(x, ·);x ∈ χ},

g · H := {g(·)h(x, ·);x ∈ χ}, H · H := {h(x, ·)h(y, ·);x, y ∈ χ}.

Under the general assumptions A1-A2, and stationary assumption A3-A4 (B3-

B5 for non-stationary), the classesW ,H and g·H are Glivenko-Cantelli classes.

Proof. Since w(x, ·) is a piecewise Lipschitz function with finitely many

pieces, it has piecewise bounded variation. Piecewise bounded variation on

finitely many compact domains implies that it has bounded variation. There-

fore, the class of these functions indexed over all x ∈ χ has finitely many

48



ϵ-brackets by the example 19.11 on page 273 of van der Vaart (1998). There-

fore taking a supremum of (3.5) over χ will also converge to zero in probability:

sup
w∈W

∣∣∣∣∣ 1|n|∑
s∈S

w(x,Xs)− E(w(x,Xs))

∣∣∣∣∣ p−→ 0.

Therefore W is Glivenko-Cantelli class. By similar argument, H and g · H are

Glivenko-Cantelli classes. 2

Now consider empirical probability PN . It is a linear operator mapping

functions f to random variables expressed as normalized sum of the random

variables f(Xsi), over i = 1, . . . , N .

Definition 3.4.3. Let f be a function. The we can define PN as follows.

PNf =
1

|n|
∑

1≤s≤n

f(Xs) =
1

|N |
∑

1≤i≤N

f(Xsi).

Now we have established the WLLN and GC theorems that we need

to show the result analogous to that of von Luxberg (2008) did under our

assumptions A1-A4 or B3-B5 together with A1-A2. Let us state the conclusion

similar to Theorem 15 in von Luxburg (2008). Since our similarity function is

a piecewise continuous function on compact domain, we can define a space of

piecewise continuous functions Cp(χ).

Definition 3.4.4. Let {B}Kk=1 be a partition of χ such that

1. Bk ∩Bl = ∅ for k ̸= l

2. ∪K
k=1Bk = χ

Then Cp({B1, . . . , Bk}) is the space of piecewise continuous functions f :

χ → R all with the same partition, defined as follows. We will denote
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Cp({B1, . . . , Bk}) = CP (χ) for convenience. For any function f ∈ Cp(χ), if

we restrict a domain of f to Bj, f|Bj
, then f is a continuous on Br.

Cp(χ) = Cp({B1, . . . , Bk})

= {f : χ → R| ∀j = 1, . . . , K ∃gj ∈ C(Br) : gj = f onBj}

where Br is the closure of Bk.

Definition 3.4.5. We define norm ∥f∥ = maxj=1,...,K∥f|Bj
∥∞ on the space

Cp(X ).

Remark: ∥f|Bj
∥∞ = ∥gj∥∞ where f = gj on Bj as in the definition of Cp(χ)

functions f .

3.5 Construction of the Operators on Cp(χ) = Cp({B1, . . . , Bk})

As we explained earlier, demonstrating the consistency of spectral clus-

tering is not yet achievable because it depends on properties of clustering

algorithms operating on general classes of discretized spectral-operator eigen-

functions that have not yet been established by any authors. However, since

spectral clustering is done by Laplacian matrix, consistency of Laplacian is

the consistency of spectral clustering that von Luxburg presented. To study

the convergence of normalized or unnormalized spectral clustering, we have to

investigate whether the eigenvectors of the normalized or unnormalized Lapla-

cians constructed on N sample points converge to eigenvectors defined on the

underlying data space as N → ∞. Since the size of the Laplacian matrix (both
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normalized and unnormalized) is N×N , it grows if N increases. Similarly, the

dimension fo the space of eigenvectors gets larger and larger. By constructing

operators on functions of a single domain, with data location points filling

out that domain, we can convert the problem of spectra into the problem of

convergence of operators on functions of a fixed domain. The problem is now

to define convergence of operators, defined on the same space, which we do

through the following construction.

First, we will introduce several linear operators on Cp(χ) corresponding

to the matrices, such as Laplacian and degree matrices. For a random vector

(v1, ..., vN) ∈ RN , we consider a random function f ∈ Cp(χ) such that f(Xsi) =

vsi for fixed Xsi , i = 1, . . . , N , and extend linear operators on RN to deal

with such functions rather than vectors.

Let us start with the unnormalized Laplacian. Recall that LN is defined

as DN −WN where DN is the random diagonal matrix containing the degrees

di =
∑N

i′=1w(Xsi , Xsi′
) as diagonal elements and WN is the random similarity

matrix. First we want to relate the random degree vector (d1, ..., dN) to some

functions in Cp(χ). We want to find an operator acting on Cp(χ) which behaves

similarly to the random diagonal matrix DN on RN .

We can define the true and the empirical degree functions

dN(x) :=

∫
w(x, y)dPN(y) ∈ Cp(χ), (3.7)

d(x) :=

∫
w(x, y)dP (y) ∈ Cp(χ). (3.8)
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Let us analyze how the matrix DN operates on a random vector f =

(f1, ..., fN)
′ ∈ RN . For each i we have (DNf)i = difi, that is the value of the

vector f at coordinate i is multiplied by the value of di. If we now identify 1
N
di

with dN(Xsi) and fi with f(Xsi), then
1
N
DN can be interpreted as a random

multiplication operator. The linear operator on Cp(χ) corresponding to the

random matrix 1
N
DN will be the empirical operator and true multiplication

operator is defined as follows.

MdN : Cp(χ) → Cp(χ), MdNf(x) := dN(x)f(x), (3.9)

Md : Cp(χ) → Cp(χ), Mdf(x) := d(x)f(x) (3.10)

Next we can take look at the similarity matrix WN . Applying it to a

random vector f ∈ RN yields (WNf)i =
∑N

i′=1w(Xsi , Xsi′
)fi′ . This will be

represented by the empirical random and true integral operator

SN : Cp(χ) → Cp(χ), SNf(x) :=

∫
w(x, y)f(y)dPN(y), (3.11)

S : Cp(χ) → Cp(χ), Sf(x) :=

∫
w(x, y)f(y)dP (y). (3.12)

With these definitions, the operator corresponding to the unnormalized

graph Laplacian 1
N
LN is the difference between two random operators, the

empirical and multiplication operators:

UN : Cp(χ) → Cp(χ), (3.13)

UNf(x) := MdNf(x)− SNf(x) =

∫
w(x, y)(f(x)− f(y))dPN(y),(3.14)

U : Cp(χ) → Cp(χ) (3.15)

Uf(x) := Mdf(x)− Sf(x) =

∫
w(x, y)(f(x)− f(y))dP (y). (3.16)
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For the case of the normalized Laplacian, we only need to work with

the symmetric normalization L′
N because from a spectral point of view, the

two normalized graph Laplacians are equivalent. We define the random op-

erator H ′
N = D

−1/2
N WND

−1/2
N that operates on some vector f = (f1, ..., fN)

′

by (H ′
Nf)i =

∑
i′

w(Xsi
,Xsi′ )√

didi′
fi′ . Then the eigenvalues and eigenvectors of L′

N

can be computed from those of H ′
N . That is, v is an eigenvector of L′

N with

eigenvalue λ if and only if v is eigenvector of H ′
N with eigenvalue 1−λ. There-

fore, no harm will be done by studying the convergence of the eigenvalues and

eigenvectors of H ′
N instead of L′

N .

We can see that this is very similar to the behavior of the unnormalized

similarity matrix WN , the difference being that w(Xsi , Xsi′
) is replaced by

w(Xsi , Xsi′
)/
√
didi′ . So we will define the following normalized empirical

random and true similarity functions

hN(x, y) : Cp(χ) → Cp(χ), hN(x, y) := w(x, y)/
√
dN(x)dN(y), (3.17)

h(x, y) : Cp(χ) → Cp(χ), h(x, y) := w(x, y)/
√
d(x)d(y), (3.18)

and introduce the following two random empirical and one true operators:

TN : Cp(χ) → Cp(χ), TNf(x) =

∫
h(x, y)f(y)dPN(y), (3.19)

T ′
N : Cp(χ) → Cp(χ), T ′

Nf(x) =

∫
hN(x, y)f(y)dPN(y), (3.20)

T : Cp(χ) → Cp(χ), T f(x) =

∫
h(x, y)f(y)dP (y). (3.21)
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The differences are

U ′
N = I − T ′

N , (3.22)

U ′ = I − T. (3.23)

Note that in the definition of these operators, the scaling factors 1
N

which

are hidden in PN and dN cancel each other. (In other words, the matrix H ′
N

already contains a 1
N

scaling factor, contrary to the case of the matrix WN in

the unnormalized case.) Therefore, contrary to the unnormalized case we do

not have to scale the matrices H ′
N and HN with a factor 1

N
. So the operator

T ′
N corresponds directly to the matrix H ′

N , while the operator TN corresponds

to the matrix HN := (h(Xsi , Xsi′
))i.i′=1,...,N . The reason why we introduce TN

and HN is technical. It will be easier to prove that T ′
N converges to T in two

steps using the operator TN in between. We will show that TN and T ′
N get

close and that TN converges to T .

3.5.1 Convergence of Operators

Now we want to prove that the sequence of random operators T ′
N con-

verges compactly to T in probability. First we will prove pointwise conver-

gence. Then we will prove collectively compact convergence. Combining these

two, we will conclude compact covergence. Since unnormalized Laplacian and

normalized Laplacian are closely related, we will present the proof for normal-

ized case in this section.

All operators here act on (Cp(χ), ∥ · ∥∞). Let L(Cp(χ)) be the set of
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closed operators and we can define several types of convergence for operators.

The Following definition is adapted from Chatelin (1983, Chapter 3).

Definition 3.5.1. Let TN be a sequence of operators in L(Cp(χ)) converging

to T ∈ L(Cp(χ)) according to one of the following definitions:

(a) TN converges to T in the sense of pointwise, denoted by TN
p̃−→ T , iff for

all f in Cp(χ), TNf → Tf as N → ∞.

(b) TN converges to T in the sense of operator norm to T , iff ∥TN − T∥ → 0

as N → ∞.

(c) TN converges to T in the sense of collectively compact, denoted by TN
cc−→

T , iff

(i) TN
p̃−→ T and

(ii) the following condition is satisfied:

the set ∪∞
N=1(T − Tn)B is relatively compact in Cp(χ), where B =

{f ∈ Cp(χ); ∥f∥ ≤ 1}.

(d) TN converges to T in the sense of compact convergence, denoted by

TN
c−→ T , iff

(i) TN
p̃−→ T and

(ii) the following condition is satisfied:

for any sequence fN in B, the sequence (T − TN)fN is relatively

compact in Cp(χ), where B is defined in the same way as in (d).
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Proposition 4. (Proposition 3.3 from Chatelin (1983))

The following are equivalent:

(i) T − TN is compact for any integer N and TN
c−→ T and

(ii) T
cc−→ T .

To be able to extend these convergence properties to convergence in

probability on random operators sequences, we want to define a metric on a

space of operators.

Definition 3.5.2. (Metric defined on L(Cp(χ)))

γ(T ′
N , T ) =

∞∑
m=1

sup
∥x−x′∥≤1/m

sup
∥f∥≤1

2−m|T ′
Nf(x)− Tf(x)|

Then we can say that random linear operators T ′
N converges w.r.t. each of the

convergences in in probability to T if

γ(T ′
N , T )

P→ .0

This is a convergence metrized by a weighted sum of seminorms.

Remark: Convergence under this metric implies all three convergences, point-

wise, collectively compact, compact convergence, defined in definition 3.5.1. So

saying that this type of convergence holds in probability for a sequence of op-

erators on Cp(X ) is the same as saying that the metric measuring the distance

between T ′
N and T converges to 0 in probability. Thus, we can say that random

linear operators T ′
N in probability to T in the compact-convergence topology

if γ(T ′
N , T )

P→ 0. This will appear later in the section.
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Proposition 5. T ′
N converges pointwise to T .

T ′
N

p̃−→ T

For all f ∈ Cp(χ), T
′
Nf → Tf converges in probability.

Proof. For arbitrary f ∈ Cp(χ), we have

∥ T ′
Nf − Tf ∥∞≤∥ T ′

Nf − TNf ∥∞ + ∥ TNf − Tf ∥∞ .

Recall hN(x, y) = w(x, y)/
√

dN(x)dN(y) from (3.17) and h(x, y) = w(x, y)/
√

d(x)d(y)

from equation (3.18). Then the second term can be written as

∥ TNf − Tf ∥∞ = sup
x∈χ

|PN(h(x, ·)f(·))− P (h(x, ·)f(·))|

= sup
g∈f ·H

|PNg − Pg| → 0

by Proposition 3. Recall that w is bounded below by a > 0 in general assump-

tion A1, i.e. w(x, y) > a > 0 and therefore dN(x) > a and d(x) > a for all

x ∈ χ. The first term can be bounded by

∥T ′
Nf − TNf∥∞ ≤ ∥f∥∞∥w∥∞ sup

x,y∈χ
| 1√

dN(x)dN(y)
− 1√

d(x)d(y)
|

= ∥f∥∞∥w∥∞ sup
x,y∈χ

|dN(x)dN(y)− d(x)d(y)|√
dN(x)dN(y) +

√
d(x)d(y)

(
1√

dN(x)dN(y)
√

d(x)d(y)
)

≤ ∥f∥∞
∥w∥∞
a2

sup
x,y∈χ

|dN(x)dN(y)− d(x)d(y)|√
dN(x)dN(y) +

√
d(x)d(y)

≤ ∥f∥∞
∥w∥∞
2a3

sup
x,y∈χ

|dN(x)dN(y)− d(x)d(y)|

≤ ∥f∥∞
∥w∥2∞
2a3

|dN(x)− d(x))|

≤ ∥f∥∞
∥w∥2∞
a3

sup
g∈W

|PNg − Pg|.

Together with proposition 3, T ′
N

p̃→ T in probability.2
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Proposition 6. T ′
N

cc−→ T in probability.

Proof. We want to prove that, for some N0 ∈ N, the sequence of operators

(T ′
N −T )N>N0 is collective compact. Since T is compact operator, it is enough

to show that (T ′
N)N>N0 is relatively compact with respect to the norm defined

in definition 3.4.5. This will be done by using an extended version of the

Arzela-Ascoli theorem (e.g., Section I.6 of Reed and Simon (1980)). The same

Arzela-Ascoli criterion for relative compactness is easily seen to hold for the

space Cp(χ) under the norm ∥ · ∥.

First, we fix the random sequence fN then the random operators T ′
N . By

Proposition 8 in von Luxburg (2008), we know that the operator norm of T ′
N

is bounded. That is ∥T ′
N∥ ≤ ∥w∥∞/a for all N ∈ N. Recall that B is a unit

ball in Cp(χ), B = {f ∈ Cp(χ); ∥f∥ ≤ 1} ⊂ Cp(χ). Hence, the functions in

∪NT
′
NB are uniformly bounded by supN∈N,f∈B∥T ′

Nf∥∞ ≤ ∥w∥∞/a. To prove

that the functions in ∪N>N0T
′
NB are equicontinuous, we have to bound the

expression |g(x)−g(x′)| in terms of the distance between x and x′, uniformly in

g ∈ ∪NT
′
NB. Since B ⊂ Cp(χ) is a subspace of piecewise continuous functions,

we need to show that ∀j = 1, . . . , K, {g|Bj : g ∈ B} is equicontinuous,

sup
f∈B,N∈N

|T ′
Nf(x)− T ′

Nf(x
′)| = sup

f∈B,N∈N
|
∫
(hN(x, y)− hN(x

′, y))f(y)dPN(y)|

≤ sup
f∈B,N∈N

∥f∥∞|
∫
(hN(x, y)− hN(x

′, y))dPN(y)|

≤ ∥hN(x, ·)− hN(x
′, ·)∥∞

Now we have to prove that the right-hand side gets small whenever the
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distance between x and x′ gets small:

sup
y

|hN(x, y)− hN(x
′, y)|

≤ 1

a3/2
(∥
√

dN∥∞∥w(x, ·)− w(x′, ·)∥∞ + ∥w∥∞|
√

dN(x)−
√
dN(x′)|)

≤ 1

a3/2
(∥w∥1/2∞ ∥w(x, ·)− w(x′, ·)∥∞ +

∥w∥∞
2a1/2

|dN(x)− dN(x
′)|)

≤ C1∥w(x, ·)− w(x′, ·)∥∞ + C2|d(x)− d(x′)|+ C3∥dN − d∥∞.

As χ is a compact space, the piecewise continuous functions w (on the

compact space χ× χ ) and d are in fact uniformly piecewise continuous (with

finitely many pieces). Thus, the first two terms ∥w(x, ·)− w(x′, ·)∥∞, and

|d(x)− d(x′)| can be made arbitrarily small for all x, x′ whenever the distance

between x and x′ is small. For the third term ∥dN − d∥∞, which is a random

term, we know by the Glivenko Cantelli properties of Proposition 3 that it

converges to 0 in probability. This means that for each given ϵ > 0 there

exists some N0 ∈ N such that, for all N > N0 , we have ∥dN − d∥∞ ≤ ϵ in

probability. Together, these arguments show that ∪N>N0T
′
NB is equicontinu-

ous in probability. By the extended Arzela-Ascoli theorem, we then know that

∪N>N0T
′
NB is relatively compact in probability, which concludes the proof.2

Proposition 7. T ′
N

c→ T ′ in probability.

Proof. Since collectively compact convergence implies compact convergence,

T ′
N

c→ T . Therefore U ′
N

c→ U .

Proposition 6 and proposition 7 can be proved by using the metric defined

in definition 3.5.2. What we have examined in two inequalities in proposition
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6 can be expressed as follows.

sup
∥x−x′∥≤r,∥f∥≤1,N≥1

|T ′
Nf(x)− T ′

Nf(x
′)| ≤ C1 · sup

∥x−x′∥≤r

∥w(x, ·)− w(x′, ·)∥∞

+ C2 · sup
∥x−x′∥≤r

|d(x)− d(x′)|

+ C3 · ∥dN − d∥∞ (3.24)

Since equation (3.24) converges to 0 in probability, and the following sequence

converges.

∞∑
m=1

sup
∥x−x′∥≤1/m

sup
f∈Cp(χ)

2−m|T ′
Nf(x)− Tf(x)| P→ 0

2 Therefore we can say that random linear operators T ′
N in probability to T

in the compact-convergence topology.

Since the rest of the set of results needed for our conclusions are the

same as those in von Luxburg (2008), we omit them.

3.6 Clustering from the Laplacian Matrix L

Von Luxburg et al. (2008) showed the consistency of spectral clustering

in terms of operators and eigenfunctions of the Laplacians. However, how the

consistency of operators is related to the consistency of clustering, especially

when there are more than 2 clusters, needs to be explained.

First, consider the random operators UN and T ′
N defined in section 3.5.

Suppose that f ∈ C(χ) is the eigenfunction of UN with arbitrary eigenvalue

λ, then the vector v ∈ RN with vi = f(Xsi) is an eigenvector of the matrix
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1
N
LN with eigenvalue λ. Similarly if, f ∈ C(χ) is an eigenfunction of T ′

N

with arbitrary eigenvalue µ, then the vector v ∈ RN with vi = f(Xsi) is an

eigenvector of the matrix H ′
N with eigenvalue µ. Therefore it is sufficient to

explain how the clustering is defined in terms of eigenvectors of LN and T ′
N .

When K = 2, the clustering can be directly obtained by the eigen-

function of the smallest non-zero eigenvalue. Suppose that f ∈ C(χ) is the

eigenfunction of UN or T ′
N . Then we can define a partition by following rule.

If sign(f(Xsi)) > 0 then si ∈ C1.

If sign(f(Xsi)) < 0 then si ∈ C2.

Suppose K > 2 and f1, . . . , fK are the eigenfunctions of the Laplacian.

Then we have k eigenvectors vki = fk(Xsi). Let us create a matrix with the

columns {vk}Kk=1 and denote it by V . Then consider the rows yi of V as

points in RK and apply the k-means algorithm to assign rows to the partition

elements C1, . . . , Ck.

The k-means algorithm is a popular machine learning technique for clas-

sification. Given a set of observations (s1, s2, . . . , sN), where each observation

is a d-dimensional real vector, k-means clustering aims to partition the N

observations into K(≤ N) sets C = {C1, C2, . . . , CK} so as to minimize the

within-cluster sum of squares (WCSS) (i.e. variance).

We will show next how we obtain clustering from the eigenvectors of the

Laplacian when K > 2. Now consider the ideal case when there are completely

separatedK clusters. Then the similarity matrixW has a block diagonal form,
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and the same is true for the matrix L:



L
(1)
N

L
(2)
N

. . .

L
(K)
N


(3.25)

Even though this similarity matrix of block diagonal is not obtainable

in the real fMRI data analysis, it is still helpful to understand the relation

between the eigenvalues of Laplacian and spectral clustering. In the real fMRI

data analysis, we can assume there is a very small positive off diagonal entry

η > 0 after re-ordering the entries of Laplacian.

In chapter 2, Proposition 1 showed that the smallest eigenvalue is always

0 and its corresponding eigenvector is 1. Furthermore, the tutorial on spectral

clustering by von Luxburg (2007) showed the following proposition on page 4.

Proposition 8. (Number of connected components and the spectrum of L)

Let G be an undirected graph with non-negative weights. Then the multiplicity

k of the eigenvalue 0 of L equals the number of connected componentsA1, ..., Ak

in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors

1A1 , . . . ,1Ak
of those components.

Each of the blocks Lk is a proper graph Laplacian on its own, namely the

Laplacian corresponding to the subgraph of the k-th connected component. As

it is the case for all block diagonal matrices, we know that the spectrum of L

is given by the union of the spectra of Lk, and the corresponding eigenvectors
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of L are the eigenvectors of Lk, filled with 0 at the positions of the other

blocks. As each Lk is a graph Laplacian of a connected graph, we know

that every Lk has eigenvalue 0 with multiplicity 1, and the corresponding

eigenvector is the constant one vector on the i-th connected component. Thus,

the matrix L has as many eigenvalues 0 as there are connected components,

and the corresponding eigenvectors are the indicator vectors of the connected

components.

This is an extended result from the theorem in Mohar (1991, p.5).

Theorem 2. Let G be a graph and W be a graph similarity matrix with its

entries non-negative. Then:

(a) Laplacian L = D −W has only real eigenvalues,

(b) L is positive semidefinite, its smallest eigenvalue is λ1 = 0 and a corre-

sponding eigenvector is (1, 1, ..., 1)t . The multiplicity of 0 as an eigenvalue of

L is equal to the number of components of G .

Therefore, in the ideal case when there are completely separated K clus-

ters, we know that the eigenvectors of L and L′′ are piecewise constant. There-

fore if si and si′ are in the same cluster Cj, then they are mapped to exactly

the sample point yi. Since the clustering algorithm is applied to set of the

points yi ∈ RK , it will be able to extract the correct clusters.
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3.7 Approximating RatioCut and Ncut for Arbitrary k

The Laplacian contains information about how many clusters are in the

given sets of nodes. However, spectral clustering algorithm uses the k small-

est eigenvalues (counting multiplicity) and their corresponding eigenvectors to

assign N points into k clusters. In this section, we want to explore why clus-

tering can be achieved by the k smallest eigenvalues and their corresponding

eigenvectors. Since the clustering problem can be viewed as an optimization

problem of a certain objective function such as RatioCut or Ncut defined be-

low, the solution can be achieved by the eigenvalues and eigenvectors of the

Laplacian as a consequence of the RayleighRitz theorem.

First, let us explain how clustering is related to the solution of an eigen-

value problem of the Laplacian. Given a similarity matrix W , we can denote

sum of similarity between two sets A and B as W (A,B) =
∑

i∈A,i′∈B wii′ .

Let us introduce objective functions Cut and Ratio Cut (RatioCut). Suppose

there are clusters C1, . . . , CK . Let vol(A) =
∑

i∈A di. Then define cut and

RatioCut as follows:

cut(C1, . . . , Ck) =
1

2

K∑
k=1

W (Ck, Ck)

RatioCut(C1, . . . , Ck) =
1

2

K∑
k=1

W (Ck, Ck)

|Ck|
=

1

2

K∑
k=1

cut(Ck, Ck)

|Ck|

Ncut(C1, . . . , Ck) =
1

2

K∑
k=1

W (Ck, Ck)

vol(Ck)
=

1

2

K∑
k=1

cut(Ck, Ck)

vol(Ck)
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Given a partition of V (the set of N nodes of the graph) into C1, . . . , Ck, we

define k indicator vectors hk = (hk1, . . . , hkn)
′ by

hki =


1√
|Ck|

if vi ∈ Ck

0 otherwise

i = 1, . . . , n; k = 1, . . . , K

Then we define the matrix H ∈ Rn×K as the matrix containing those k indi-

cator vectors as columns. Observe that the columns in H are orthogonal to

each other, that is H ′H = I. Then we can see that

h′
kLhk =

cut(Ck, Ck)

|Ck|
= (H ′LH)kk.

Thus

RatioCut(C1, . . . , Ck) =
K∑
k=1

h′
kLhk =

K∑
k=1

(H ′LH)kk = tr(H ′LH).

Therefore the problem of minimizing RatioCut(C1, . . . , Ck) can be rewritten

as

min
C1,...,Ck

tr(H ′LH) subject to H ′H=I.

We can relax the problem by allowing the entries of the matrix H to take

arbitrary real values. Then the relaxed problem becomes:

min
H∈Rn×K

tr(H ′LH) subject to H ′H=I.

This is a trace minimization problem and by the Rayleigh-Ritz theorem in the

Section 5.2.2.(6) of Lütkepohl (1997), the solution is given by choosing H as

the matrix which contains the first K eigenvectors of L as columns.
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Proposition 9. (Rayleigh-Ritz Theorem) If A is a symmetric n × n matrix

with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and if (u1, · · · , un) is any orthonormal

basis of eigenvectors of A, where ui is a unit eigenvector associated with λi,

then

min
x ̸=0

xTAx

xTx
= λ1

(with the minimum attained for x = u1), and

min
x ̸=0,x∈{ui,...,ui−1}⊥

xTAx

xTx
= λi

(with the minimum attained for x = ui), where 2 ≤ i ≤ n.

Equivalently, if Wk = V ⊥
k−1 is the subspace spanned by (uk, ..., un), (with

V0 = (0)) then

λk = min
x̸=0,x∈Wk

xTAx

xTx
= min

x ̸=0,x∈V ⊥
k−1

xTAx

xTx
for k = 1, . . . , n.

Using the fact that
∑

hk
TLhk = tr(HTLH) and λi > 0 for all i, we can

get following

In order to obtain a partition of the graph, we need to re-transform the

real-valued eigenvectors into a discrete indicator vector. The standard way is

to use the k-means algorithms on the rows of H. Consider the entries of ith

row of H as points in RK and apply k-means algorithm to assign these points

to the partition C1, . . . , Ck.

66



Chapter 4: Data Analysis

4.1 Algorithm of Spectral Clustering

There are many different variations in performing spectral clustering.

In this chapter, we will use the algorithm suggested by Yu and Shi (2003)

which uses unnormalized Laplacian. For the computation software, we used

MATLAB version R2016b.

Our goal is to parcellate a brain area into K smaller clusters. The idea

of spectral clustering is to separate points in different groups, called clusters,

according to their similarities. What we want to achieve is to have large

similarities within the same cluster and much smaller similarities across the

clusters. We have shown that the spectral clustering can be restated as the

minimization problem of a certain objective function and minimizer can be

obtained by solving for the eigenvectors of Laplacian, corresponding to the K

smallest eigenvalues.

The algorithm suggested by Yu and Shi (2003) used the normalized ver-

sion of Laplacian, L′′ = I − D−1W . Instead of finding eigenvectors of L′′, it

finds eigenvectors of D−1W . Thus instead of K eigenvectors corresponding to

the K smallest eigenvalues, it finds K eigenvectors corresponding to the K
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largest eigenvalues.

4.1.1 Summary of algorithm

First, Steps 1 to 2 find eigenvectors of the normalized Laplacian, D−1W .

Then the algorithm normalizes the eigenvectors so that they lie on the unit

hypersphere centered at the origin in Step 3. Since we have the continuous

optimum, we transform to a discrete solution. Therefore, Steps 4 to 7 find

a discrete solution that satisfies the binary constraints, yet is closest to the

continuous optimum using K-means clustering.

4.1.2 Algorithm in Steps

Here is the algorithm detail step by step from Yu and Shi (2003). Given

weight matrix W and a number of classes K:

1. Compute the degree matrix D.

2. Find the optimal eigensolution Z∗ by:

D− 1
2WD− 1

2 V̄[K] = V̄[K]Diag(s), V̄[K]
T
V̄[K] = I,

Z∗ = D− 1
2 V̄ .

3. Normalize Z∗ by: X̃∗ = Diag(diag−
1
2 (Z∗Z∗T ))Z∗

4. Initialize X∗ by computing R∗ as:

R∗
1 = [X̃∗(i, 1), . . . X̃∗(i,K)]T , random i ∈ [n]

c = 0n×1
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For k = 2, . . . , K, do: c = c+ abs(X̃∗R∗
k−1)

R∗
k = [X̃∗(i, 1), . . . , X̃∗(i,K)]T , i = argmin c

5. Initialize convergence monitoring parameter ϕ̄∗ = 0.

6. Find the optimal discrete solution X∗ by:

X̃ = X̃∗R∗

X∗(i, l) = ⟨l = argmaxk∈[K] X̃(i, k)⟩, i ∈ V, l ∈ [K].

7. Find the optimal orthonormal matrix R∗ by:

X∗T X̃∗ = UΩŨT ,Ω = Diag(ω)

ϕ = tr(Ω)

If |ϕ̄− ϕ̄∗| <machine precision, then stop and output X∗ϕ̄∗ = ϕ̄

R∗ = ŨUT

8. Go to Step 6.

We applied the algorithm to simulated data and real fMRI data from

Autism Brain Imaging Data Exchange (ABIDE) group. Several criteria de-

fined in section 2.5 were presented to measure the quality of clusterings, such

as Fisher’s discriminant, silhouette (SI), and Dice’s coefficient. We provided

average Dice’s coefficient for the simulated data, provided Fisher’s discrimi-

nant and silhouette for the single subject data analysis and provided Fisher’s

discriminant, silhouette and Dice’s coefficient from LOOCV for the multiple

subject data analysis.
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4.2 Simulated Data Analysis

In this section, we applied the algorithm in Yu and Shi (2003) to two

simulated data. The two simulated datasets do not reflect realistic characteris-

tics of fMRI data because the correlation matrix from fMRI data cannot have

such a block-diagonal structure, rather it will have strips of non zero blocks

in the similarity matrix. However, since we know the ground truth of clus-

tering for the simulated data, we can compare the clustering result with the

ground truth. As a way of comparison, after we get the adjacency matrix from

clustering algorithm, we compare with the ground truth adjacency matrix.

Dice’s coefficient was introduced as a measurement of multiple subject

analysis in Chapter 2. Originally Dice’s coefficient can be calculated as long as

there are two matrices to compare. In the Chapter 2, we provided the equation

2.5 to compare how many common entries A−m and Am have. We can have

slightly different definition of Dice’s coefficient to compare two matrices from

clustering result from simulated data and ground truth.

Notations ∩ and | · | in the definition of following Dice’s coefficient are

same as the ones in Chapter 2. Suppose that we have two adjacency matrices

A and B and they have same dimension N × N . Then we define entries of

A ∩B as follows. For i, j = 1, . . . , N ,

(A ∩B)i,j =


1 if Ai,j = Bi,j

0 otherwise.
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Also, |· | denotes the number of non-zero entries. Then we can define Dice’s co-

efficient to compare two adjacency matrices from clustering result of simulated

data and ground truth.

Dice =
2 · |Aground truth ∩ Asimulation|
|Agroud truth|+ |Asimulation|

. (4.1)

The average Dice’s coefficient between ground truth adjacency matrix and

adjacency matrix from simulated data was provided to measure how close

these two matrices are.

4.2.1 Simulation 1

Since the algorithm takes a similarity matrix as an input, we do not

need to simulate the fMRI time series to see the performance of the algorithm.

We only need to create a similarity matrix. We will consider one of the most

simple similarity matrices with block diagonal structure. Suppose that we have

320 voxels from 10 well-separated clusters. Each cluster will have 32 voxels.

Assume that the voxels within the clusters have the correlation greater than

zero and the voxels between the clusters have a very small positive correlation

almost close to zero. The idea is very similar to the stochastic block model. See

Lei and Rinaldo (2014). That is we assign certain numbers as the similarities

between voxels in the same cluster and assign zero as the similarities between

voxels from different clusters.

Consider r1, . . . , rq to be random numbers sampled from standard normal
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distribution. We sampled q = 31 ∗ (31 + 1)/2 + 32 random numbers for the

correlations within clusters. For the rest of the correlation we assigned a very

small positive number η.

Then we added blurred areas at the borders of clusters. Let β be the

size of a blurred area. For every 32th voxels, neighborhood voxels within

a distance
√
2β−1

2
will have correlation that is not equal to η. Let BB =

{v32, v64, . . . , v320} be the set of 32th voxels. Then we generated random num-

bers from standard normal distribution for the correlations between voxels

within the distance of
√
2β−1

2
from voxels in BB.

wi,i′ =



r ∼ N(0,1) iid, if vi and vi′ are from the same cluster

r′ ∼ N(0,1) iid, if vi and vi′ are not from the same cluster,

vi ∈ BB and |vi − vi′| ≤
√
2β−1

2

η > 0, otherwise

(4.2)

The Figure 4.1 illustrates the simulated data and the ground truth we

want to recover is shown Figure 4.2.
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Figure 4.1: Simulated data using the equation 4.2 with 320 points with 10 clusters

when β = 9

Figure 4.2: Ground truth

We repeatedly generated data 1000 times and performed clustering. The

following figure shows the averaged result of clustering. (Figure 4.3).
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Figure 4.3: Average of resulting spectral clustering after 1000 repeats

Also we compared the adjacency matrix from the clustered results of 1000

simulated data and adjacency matrix from ground truth by Dice’s coefficient

using equation 4.1. Figure 4.4 is the histogram of the Dice’s coefficient for

1000 simulations, and the average of Dice’s coefficients is 0.726 and standard

deviation is 0.057.

Figure 4.4: Histogram of Dice’s coefficient for 1000 repeats
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We are also interested is whether the algorithm will give the ground truth

clusters as the blurred areas get large. As shown in the Figure 4.1 through

Figure 4.4, when the blurred area gets larger, clustering results become worse.
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Figure 4.5: Clustering results and histograms of Dice’s coefficient by β values.

Clustering results, β=9 (Left, Top row)

Dice’s coefficient, β=9 (Right, Top row)

Clustering results, β=19 (Left, Middle row)

Dice’s coefficient, β=19 (Right, Middle row)

Clustering results, β=33 (Left, Bottom row)

Dice’s coefficient, β=33 (Right, Bottom row)

Dice’s coefficient is defined in equation (4.1).

Average Dice’s coefficient by different sizes of blurred area (β) and its
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standard deviation are given in the table 4.1

β Mean SD

9 0.727 0.058

19 0.672 0.064

33 0.601 0.074

Table 4.1: Dice’s coefficient in equation (4.1) by different sizes of blurred area, β.

From this simulation, we can conclude that clustering algorithm recov-

ered ground truth adjacency matrix successfully until the size of blurred area

is not greater than half of the block diagonal size. However, when the size of

blurred area becomes greater than the half size of block diagonal, clustering

algorithm did not recover ground truth matrix.

4.2.2 Simulation 2

Differently from simulation 1, now we generate a realization of a 3D

Gaussian random field at a sequence of locations, i = 1, . . . , 320, broken into

10 blocks. First we will generate the random variables, then generate iid

sequence of 10 for time t = 1, . . . , 10.

Then the generated dataXi(t), where i = 1, . . . , 320, t = 1, . . . , 10 would

be Gaussian mean 0 and iid across t and have a block-wise correlation structure

as follows.

77



Cov(Xi(t), Xi′(t)) =



σ2 if i = i′

ρ2 ∗ σ2 if i and i′ are distinct within

the same block

η > 0 otherwise

(4.3)

In the equation 4.3, η is always much less than ρ2. If η = 0.0001, then

the similarity matrix is close to a block diagonal matrix because there are very

small positive entries for outside of blocks, and the average Dice’s coefficient

in equation (4.1) was 0.474 (SD 0.119) when σ = 1, ρ = .2.

We also examined how the clustering result is affected by different values

of η. As expected as η increase, clustering result became worse in terms of

average Dice’s coefficient. The table 4.2 is showing the results by different η

values.
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η Mean SD

0.0001 0.474 0.119

0.001 0.419 0.096

0.01 0.282 0.042

0.05 0.246 0.014

0.1 0.241 0.013

Table 4.2: Dice’s coefficient in equation (4.1) by different η values

4.3 Real Data Analysis

4.3.1 Data Description

The Preprocessed Connectomes Project (PCP) released preprocessed

neuroimaging data for public use and opened for sharing. The preprocessed

neuroimaging data from the Autism Brain Imaging Data Exchange (ABIDE)

are now available for public use. From 2013 to 2017, about 34 publications used

the data from ABIDE. Background and data description is available in online.

Also, the data is available for download in http://preprocessed-connectomes-

project.org/abide/index.html.

“Autism, or autism spectrum disorder (ASD), refers to a range of condi-

tions characterized by challenges with social skills, repetitive behaviors, speech
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and nonverbal communication, as well as by unique strengths and differ-

ences.” (https://www.autismspeaks.org/what-autism) Previously it was con-

sidered rare, but ASD is now recognized to occur in more than 1% of children.

ABIDE is a collaboration of 16 international imaging sites that have

aggregated and are openly sharing neuroimaging data from 539 individuals

suffering from ASD and 573 typical controls. Data were preprocessed by

five different teams using their preferred tools. For our analysis, we chose a

dataset from one site and that is processed with the Configurable Pipeline for

the Analysis of Connectomes (CPAC), which included options of skull strip-

ping, template-based registration, automatic tissue segmentation, anatomi-

cal/functional coregistration, volume realignment, slice timing correction, in-

tensity normalization, temporal filtering, nuisance signal correction, median

angle correction, spatial smoothing, and motion scrubbing.

Here is a summary of demographic information of data. There are 110

subjects in total. Autism group has 55 subjects with average age of 12.7 years

old. Control group has 55 subjects with average age of 14.1 years old at the

time of the scan. Autism group has 46 male and 9 female, and the control

group has 40 male and 15 female. In next two sections, we will perform spectral

clustering for single subject data and multiple subjects data.
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4.3.2 Single Subject Analysis

Here we provide a single subject fMRI data analysis using spectral clus-

tering. This is a male subject who was 16.8 years old at the time of the scan.

He is a subject from the Autism group. Due to the computational burden, we

have chosen a single area for spectral clustering, and the area is labeled as su-

perior occipital gyrus from the right hemisphere, based on AAL Single-Subject

Atlas. The occipital lobe is one of the four major lobes of the cerebral cortex

in the brain of mammals. It is the visual processing center of the mammalian

brain containing most of the anatomical region of the visual cortex.

We use the modified correlation defined in the Chapter 2, the equation

(2.2) and (2.3).

c̃δ(x, y) = cov(
x

max(sdx, δ)
,

y

max(sdy, δ)
).

wδ,α,η(x, y) = gα,η(c̃δ(x, y)) =


c̃δ(x, y) if c̃δ(x, y) ≥ 0.5 and d(x, y) ≤ α

η otherwise
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Figure 4.6: Plots of correlation equation 2.2

The δ is a positive number, required to ensure the continuity of the

similarity function w. Also, η was a positive number to meet the bounded

below requirement for the proof. Since we believe that neighborhood voxels

have the most correlations, we only consider the correlations of voxels within

a certain rage of distance that is parametrized as α. To check this, we can

plot correlations with α = ∞ first.

Figure 4.6 is the plot of the correlations defined in the equation 2.2 when

δ = 0.001. These are the correlations of all pairs of voxels with α = ∞. For

this particular subject, we observed high correlations between voxels within

certain range.

In finding adjacency matrix, similarities between neighborhood voxels

play important role. For each voxel, there are 26 neighborhood voxels around
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it. If we include only these 26 neighborhood voxels then we can set α =
√
2.

In addition. if we only compute the correlations within certain distance α, we

can set α to be different numbers. By setting smaller α, we can have a much

simpler similarity matrix. Simpler matrix means a matrix with fewer non-zero

elements. When α = 1.7, if we choose correlation greater than equal to 0.5 as

defined in the equation 2.3, we obtain the following similarity matrix.

Figure 4.7: Plots of correlation defined as 2.3 with α = 1.7. There are strips of

non-zero elements.

After using the modified correlation as defined in the equation 2.3, we

applied the spectral clustering algorithm by Yu and Shi (2003). Resulting

clusters are shown in below when K = 5.
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Figure 4.8: Plots of resulting clusters

The Fisher’s discriminant was 0.1001 and silhouette was 1.0000 as a

result of clustering. Sizes of clusters are (460 14 0 45 3). Even though we set

the parameter K, the number of clusters, equal to 5, we obtained 4 cluster.

Since Yu and Shi (2003) algorithm seeks the clustering differently from K-

means algorithm, it does not give the same number of clusters as defined

parameter. This coincide with what the Figure 4.7 showed. Many of voxels at

the right bottom seem to be highly correlated and there are about 3-4 different

clusters in the figure.

Following three figures (Figure 4.9 to Figure 4.11) are resulting clusters

mapped with brain.
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Figure 4.9: Clustering results, sagittal

Figure 4.10: Clustering results, coronal
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Figure 4.11: Clustering results, axial

Here we want to discuss about the choice of α. As α gets larger, the

similarity matrix includes correlations from more pairs of voxels. Therefore,

it is expected to include wider band of correlations. In other words, if we

increase α, we will have wider band in the correlation matrix based on the

definition of the equation 2.3. Although we cannot display in details, we were

actually able to see wider band when we increased α with major depressive

disorder (MDD) data.

However, for this particular subject, we did not see huge difference of

similarity matrices as α grows because there were high correlations between

voxels within certain range and very small correlations when two voxels are

outside of the certain range based on 4.6. Therefore for this subject, the cor-

relations within occipital lobe area dies fairly quickly as the distance between

86



two voxels grows. Thus the impact of changes in value of α might be different

by each dataset.

Figure 4.12: Plots of correlation by different number of clusters α, α=1.7 (Top,

Left), 2.2 (Top, Right), 3 (Bottom, Left), 4.5 (Bottom, Right)

Here are the Fisher’s discriminant and silhouette by different value of

α. Dice’s coefficient is not applicable because it is to compare two adjacency

matrix. Based on Silhouette and Fisher’s discriminant we can conclude that

smaller α yields better clustering.
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α Fisher’s discriminant Silhouette Dice’s coefficient

1.7 0.1001 1 NA

2.2 0.0983 1 NA

3 0.1075 1 NA

4.5 0.2007 0.9896 NA

Table 4.3: Silhouette and Fisher’s discriminant by α

As shown in the table, the smaller α yielded better clustering as expected.

Now we will fix α = 1.7 and see how the clustering results are changed as the

number of clusters K increases.
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Figure 4.13: Similarity matrices by with different α values, α=1.7 (Top, Left), 2.2

(Top, Right), 3 (Bottom, Left), 4.5 (Bottom, Right)
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Number of cluster (K) Fisher’s discriminant Silhouette Dice’s coefficient

5 0.1001 1.0000 NA

10 0.0940 0.9893 NA

20 0.0989 0.9790 NA

30 0.0894 0.9702 NA

Table 4.4: Silhouette and Fisher’s discriminant by K

Figure 4.14: Clustering result by different number of clusters K, K=5 (Top, Left),

10 (Top, Right), 20 (Bottom, Left), 30 (Bottom, Right)
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Increasing the number of clusters does not guarantee good clustering.

There seems to be an optimal number of clusters for each of the brain area.

For occipital robe of the right hemisphere, the optimal number of clusters K

seems to be 4. However, the number of cluster K really depends on the choice

of area.

To see how the spectral clustering works, we applied Yu and Shi (2003)

algorithm to several other areas with parameter K = 10, α = 1.7, δ = 0.001.

Name of areas from AAL atlas Fisher’s discriminant Silhouette Dice’s coefficient

Postcentral gyrus (L) 0.1461 0.0014 NA

Hippocampus (R) 0.0560 0.9915 NA

Cerebellum Crust 1 (L) 0.1247 0.9955 NA

Thalamus (R) 0.0573 0.9818 NA

Table 4.5: Results of clustering applied to several regions,

(L): Left Hemisphere, (R): Right Hemisphere

4.3.3 Multiple Subjects Analysis

For the multiple subjects analysis, there are two ways we discussed in

the Chapter 2. We will apply Method 1 and Method 2 from the Chapter 2 to

the identical datasets and will see which performs better in terms of Fisher’s

discriminant, silhouette, and Dice’s coefficient. Just for our convenience we
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chose single area, Postcentral gyrus from left hemisphere.

4.3.3.1 The Method 1

The first approach of handing multiple subjects is following. Once we

obtain W j, we take the average of W j. Then we apply the spectral clustering

algorithm. Here is the summary of the resulting clustering assuming that we

want to have 10 clusters.

If we choose δ = 0.001, α = 1.7 and choose correlations greater than

equal to 0.5 as defined in 2.3, then we obtain following average similarity

matrix.

Figure 4.15: Plots of averaged similarity matrix

And we can apply the spectral clustering algorithm by Yu and Shi (2003).

Then the resulting clusters are shown in the Figure 4.16.
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Figure 4.16: Clustering results

The Fisher’s discriminant is 0.149 and silhouette is 0.8985. Also averaged

Dice’s coefficient is 0.601. Following three Figure 4.17 to 4.19 are resulting

clusters mapped with brain. Size of clusters are following: 257 1 0 246 156 3

307 78 230 69.
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Figure 4.17: Clustering results, sagittal

Figure 4.18: Clustering results, coronal
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Figure 4.19: Clustering results, axial

By taking average similarity matrix of multiple subjects and perform

spectral clustering, we have obtained Fisher’s discriminant = 0.149 and SI =

0.8985. After the method 2 is applied we will compare two methods to see

which method provides better spectral clustering results in terms of Fisher’s

discriminant and SI.

4.3.3.2 The Method 2

The second approach of handling multiple subjects is following. Once

we obtain W j, we applied the spectral clustering to each of W j. Then we get

the adjacency matrices Aj from each clustering results for J subjects. Then

we take the average of Aj. Since the averaged adjacency matrix does not

have binary entries any more, we apply the spectral clustering once more to
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cluster averaged adjacency matrix. This will give a final clustering for multiple

subjects analysis.

Suppose that we want to have 10 clusters. If we choose δ = 0.001 and

α = 1.7 and choose correlations greater than equal to 0.5 as defined in equation

2.3, then we obtain J similarity matrices and Figure 4.20 is a plot of one of

them as an example.

Figure 4.20: Plots of correlation defined as 2.3

We repeats this process for J times, so that we can obtain J similar-

ity matrices. Then we apply the spectral clustering algorithm by Yu and Shi

(2003) to each of J similarity matrices. Then we compute the average adja-

cency matrix from J adjacency matrices. The we apply second time of cluster-

ing to get the final adjacency matrix for multiple subjects analysis. Resulting

clusters are shown in Figure 4.21 .
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Figure 4.21: Plots of resulting clusters

Its Fisher’s discriminant is 1.101 and silhouette is 0.676. Also averaged

Dice’s coefficient is 0.551. Size of clusters is following: 200 341 146 265 234 2

0 4 132 23. Following three Figure 4.17 to 4.19 are resulting clusters mapped

with brain.
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Figure 4.22: Clustering results, sagittal

Figure 4.23: Clustering results, coronal
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Figure 4.24: Clustering results, axial

For Postcentral gyrus area in the left hemisphere, method 1 performed

better based on Fisher’s discriminant and silhouette. However, this results

may change by selecting different regions of brain and by selecting different

numbers of clustering. From what we observed, there seem to be a optial

choice of K, the number of clusters, for each regions of brain area although

we are not displaying details in this paper. Therefore, we pefromed the same

comparison using different areas of brain fixing the number of cluster to be

eqal to 10, K = 10.

The table 4.6 is the result of clustering using Method 1 for several dif-

ferent regions and the table 4.7 is the one using Method 2.
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Name of areas from AAL atlas Fisher’s discriminant Silhouette Dice’s coefficient

Postcentral gyrus (L) 3.371 0.938 0.837

Hippocampus (R) 5.537 0.885 0.855

Cerebellum Crust 1 (L) 2.946 0.916 0.890

Thalamus (R) 3.507 0.877 0.834

Table 4.6: Results of clustering for several regions by Method 1

Name of areas from AAL atlas Fisher’s discriminant Silhouette Dice’s coefficient

Postcentral gyrus (L) 0.412 0.073 0.953

Hippocampus (R) 0.914 0.162 0.852

Cerebellum Crust 1 (L) 1.614 0.042 0.863

Thalamus (R) 2.177 0.142 0.842

Table 4.7: Results of clustering for several regions by Method 2

Comparing two approaches for multiple subjects analysis, the method 1

yielded a better clustering in most case than the method 2, in terms of three

criteria. However, this can be changed if we use different variations of spectral

clustering algorithm.
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4.4 Summary of Results

In previous section in Chapter 4, we explored two simulated datasets to

see the effect of sized of blurred areas. As the β increases, the size of blurred

areas grows larger. Until the beta = 33 that makes the size of blurred area

to be the half size of clusters, spectral clustering algorithm still gave clear

algorithm. Form this experiment, we observed that the spectral clustering

algorithm can fail if the datasets dont have large enough size of cluster.

In the real data analysis, equations (2.2) and (2.3) define a similarity

between two voxels. In equations (2.2) and (2.3), there are three parameters

delta, α, and η. The α decides how many neighborhood voxels are included

in creating a similarity matrix, δ decides what is the threshold for meaningful

correlation. η is a very small positive number to ensure convergence of spectral

clustering. Reason why we do not want to have a large η is that the spectral

clustering can fail if η is too big. Recall that the algorithm failed in simulated

datasets when there are larger blurred areas. If η is too big, then correlations

between voxels can be close to or even smaller than η because fMRI signals

can be very weak. The best case is to have η is zero, but with η = 0 we violate

the assumptions of similarity matrix that we need to prove consistency.
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4.5 Further Research

There are more to explore in data analysis. First, we can see how clus-

tering is changed as we choose different parameters and what is the scientific

meaning of different parameters. We can choose different numbers for each

parameter and compare clustering results.

The second possible further research is to choose different similarity func-

tions. We can choose many different similarity functions and compare cluster-

ing results. Since many different scientific areas are using spectral clustering,

we can choose similarity functions from literatures and modify for fMRI data

structure. However, to ensure the consistency of spectral clustering, we need

to examine if similarly functions satisfy the assumption.

The third feasible research is to see if spectral clustering can be used as

diagnosis tool or classification tool. For example, patients with mental diseases

can have different connectivity between voxels and having different connectives

can yield different results of clustering. Therefore, using clustering results, we

may be able to determine which group a patient belongs to between disease

and healthy groups.
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Chapter 5: Conclusion

Through this thesis, we provided mathematical justification for consis-

tency of spectral clustering. We used the results from von Luxburg (2008) and

extended her proof to dependent data. This extension is a useful contribu-

tion because in many cases the nature of data set cannot satisfy independent

assumption that von Luxburg (2008) assumed. For example, when we ap-

ply spectral clustering to a two-dimensional (2D) photo, we cannot assume

that all data from each pixel are independent because characteristics of data

such as brightness and shades from a pixel are affected by neighborhood data.

Therefore, mathematical examination under dependent data assumptions are

our contribution in spectral clustering.

We started exploratory data analysis that can lead further researches.

Using different similarity functions and choosing different parameters in a sim-

ilarity functions can be the next research. We can also extend research to see

if spectral clustering can be used as an aid of diagnosis tool. Even though

what has been done in this thesis was explanatory, the work in this thesis

connected mathematical justification and real data analysis that can lead to

further research.
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Appendix A: Propositions from von Luxburg (2008)

Here we want to provide additional propositions from von Luxburg (2008).

A.1 Relations between the spectra of the operators

The main point about all the constructions above is that they enable

us to transfer the problem of convergence of the Laplacian matrices to the

problem of convergence of a sequence of operators on C(χ). Now we want to

establish the connections between the spectra of operators defined in Chapter

3.

Proposition 10. (Spectrum of U ′
N , Propostion 9 from von Luxburg (2008))

(1) If f ∈ C(χ) is an eigenfunction of U ′
N with eigenvalue λ, then the vector

v = ρNf ∈ RN is an eigenvector of the matrix L′
N with eigenvalue λ.

(2) Let λ ̸= 1 be an eigenvalue of U ′
N with eigenfunction f ∈ C(χ), and

vi := (v1, . . . , vN) := ρNf ∈ RN . Then f is of the form

f(x) =
1/n

∑
i′ w(x,Xi′)vi′

1− λ
. (A.1)

(3) If v is an eigenvector of the matrix L′
N with eigenvalue λ ̸= 1, then f

defined in by (A.1) is an eigenfunction of U ′
N with eigenvalue λ.
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This proposition establishes a one-to-one correspondence between the

eigenvalues and eigenvectors of L′
N and U ′

N , provided that they satisfy λ ̸= 1.

The condition λ ̸= 1 needed to ensure that the denominator of equation (A.1)

does not vanish. As a side remark, note that the set {1} is the essential

spectrum of U ′
N . Thus, the condition λ ̸= 1 can also be written as λ /∈

σess(U
′
N), which will be analogous to the condition on the eigenvalues in the

unnormalized case. This condition ensures that λ is isolated in the spectrum.

A.2 Convergence in the unnormalized case

We can apply similar approach to prove the convergence for unnormalized

Laplacian LN . The first step is relating the eigenvectors of 1
N
LN to those of

UN . Next step is to prove that UN converges to U compactly. By considering

the multiplication operator part MdN and the integral operator part SN of UN

separately. It will turn out that the multiplication operator MdN converge to

Md in operator norm, and the integral operators SN converge to S collectively

compactly.

Proposition 11. (Spectrum of UN)

1.The spectrum of UN consists of the compact integral rg(dN), plus eventually

some isolated eigenvalues with finite multiplicity. The same holds for U and

rg(dN).

2.If f ∈ C(χ) is an eigenfunction of UN with arbitrary eigenvalue λ, then the

vector v ∈ Rn with vi = f(Xi) is an eigenvector of the matrix 1
N
LN with
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eigenvalue λ.

3. Let λ /∈ rg(dN) be an eigenvalue of the matrix UN with eigenfunction

f ∈ C(χ), and vj = f(Xi). Then f is the form

f(x) =
1
N

∑
j w(x,Xj)vj

dN(x)− λ
. (A.2)

4.If v is an eigenvector of the matrix 1
N
LN wth eigenvalue λ /∈ rg(dN).

This proposition establishes a one-to-one correspondence between the

eigenvalues and eigenvectors of 1
N
LN and UN , provided they satisfy λ /∈ rg(dN).

The condition λ /∈ rg(dN) is needed to ensure that the denominator of equation

(A.2) does not equal 0.

Proposition 12. UN
c−→ U .

Proof. We consider the multiplication and integral operator parts of

UN separately. Similarly to Proposition 6, we can prove that the integral

operators SN converge collectively compactly to S in probability, and, as a

consequence, also SN
p−→ S. For the multiplication operators, we have operator

norm convergence

∥MdN −Md∥ = sup
∥f∥∞≤1

∥dNf − df∥∞ ≤ ∥dN − d∥∞
p−→ 0.

by the Glivenko-Cantelli Proposition 3. As operator norm convergence implies

compact convergence, we also have MdN

p−→ Md. Finally, it is easy to see that

the sum of two compactly converging operators also converges compactly.2
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