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An offline algorithm is one that knows the entire input in advance. An online algo-

rithm, however, processes its input in a serial fashion. In contrast to offline algorithms, an

online algorithm works in a local fashion and has to make irrevocable decisions without

having the entire input. Online algorithms are often not optimal since their irrevocable

decisions may turn out to be inefficient after receiving the rest of the input. For a given

online problem, the goal is to design algorithms which are competitive against the offline

optimal solutions.

In a classical offline scenario, it is often common to see a dual analysis of problems

that can be formulated as a linear or convex program. Primal-dual and dual-fitting tech-

niques have been successfully applied to many such problems. Unfortunately, the usual

tricks come short in an online setting since an online algorithm should make decisions



without knowing even the whole program. In this thesis, we study the competitive analy-

sis of fundamental problems in the literature such as different variants of online matching

and online Steiner connectivity, via online dual techniques.

Although there are many generic tools for solving an optimization problem in the

offline paradigm, in comparison, much less is known for tackling online problems. The

main focus of this work is to design generic techniques for solving integral linear opti-

mization problems where the solution space is restricted via a set of linear constraints. A

general family of these problems are online packing/covering problems. Our work shows

that for several seemingly unrelated problems, primal-dual techniques can be success-

fully applied as a unifying approach for analyzing these problems. We believe this leads

to generic algorithmic frameworks for solving online problems.

In the first part of the thesis, we show the effectiveness of our techniques in the

stochastic settings and their applications in Bayesian mechanism design. In particular, we

introduce new techniques for solving a fundamental linear optimization problem, namely,

the stochastic generalized assignment problem (GAP). This packing problem generalizes

various problems such as online matching, ad allocation, bin packing, etc. We further-

more show applications of such results in the mechanism design by introducing Prophet

Secretary, a novel Bayesian model for online auctions.

In the second part of the thesis, we focus on the covering problems. We develop

the framework of Disk Painting for a general class of network design problems that can

be characterized by proper functions. This class generalizes the node-weighted and edge-



weighted variants of several well-known Steiner connectivity problems. We furthermore

design a generic technique for solving the prize-collecting variants of these problems

when there exists a dual analysis for the non-prize-collecting counterparts. Hence, we

solve the online prize-collecting variants of several network design problems for the first

time.

Finally we focus on designing techniques for online problems with mixed pack-

ing/covering constraints. We initiate the study of degree-bounded graph optimization

problems in the online setting by designing an online algorithm with a tight competitive

ratio for the degree-bounded Steiner forest problem. We hope these techniques estab-

lishes a starting point for the analysis of the important class of online degree-bounded

optimization on graphs.
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CHAPTER 1

Overview

1.1 Introduction

In the real world algorithmic problems, it often happens that at each step we only

have the knowledge of a part of the input. For example consider a physical or virtual

server which can provide a service to a set of clients while the goal is to optimize a global

objective. The clients send the requests one by one and the server does not have the time

to wait for the rest of requests, thus the server faces an online problem. Indeed in re-

cent decades applications of online problems have been expanded as rapid as the use of

World Wide Web. In this thesis, we design competitive algorithms for fundamental prob-

lems in the literature such as online Steiner connectivity problems and online generalized

assignment problem.

It is well known that in offline settings, heuristic algorithms often do much bet-

ter in practice than sophisticated algorithms with theoretical guarantees. However, for

1



many heuristic approaches such as genetic algorithms, no suitable generalization to on-

line settings is known. Thus even in practice, the most efficient algorithms are often

those guaranteed by a competitive analysis. On the other hand, the unpredictable nature

of online problems leads to strong lower bounds for the worst-case analysis. Indeed the

competitive ratio obtained from the worst case analysis is simply not acceptable in many

applications. The real world inputs contain a lot of structure and are hardly adversarial.

In an online setting, this can be modeled by assuming stochastic information about the ar-

riving input. In recent years the effectiveness of stochastic algorithms has been shown in

a few problems, a major one being the ad allocation problems in search engines. Despite

their applications in the industry, for many fundamental problems such as k-server and

Steiner connectivity, the theoretical guarantees for stochastic settings are still not better

than that of the worst case analysis. This has been the main motivation for me to consider

stochastic settings as well in various problems.

Advertising on search engines is a famous example of the category of online

stochastic optimization problems. Motivated by this framework, we consider different

models for various online problems: the adversarial model, i.i.d models, and the prophet

inequality model. In the adversarial model the input is fed to the algorithm by an adver-

sary while in the two latter models the input is coming from independent distributions.

In i.i.d models the distributions are identical though in the prophet inequality model they

may change over time. We consider different models for the aforementioned problems

and develop dual-based techniques for designing competitive algorithms.
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One major obstacle in applying (theoretical) algorithms on the real world problems

is that many algorithms are not flexible: the analysis may fail by adding a simple extra de-

tail or constraint. Thus finding solutions for different problems using the same framework

is much more desirable than a set of (even stronger) independent solutions. For example

the problems mentioned at the beginning are drastically different. An ambitious question

is ”Can we design a framework which leads to a uniform solution for all of these prob-

lems”? In this thesis, we take one step towards this goal under stochastic assumptions.

Packing/Covering Linear Programming.

Linear programming (LP) is the well-studied problem of minimizing or maximizing

a linear objective function over a feasible space described by a set of linear inequalities.

It is well-known that any LP can be formulated as follows.

Min.
n∑
i=1

cixi (P)

∀j ∈ [m]
n∑
i=1

aijxi ≥ 1

xi ≥ 0

where ci, aij ∈ R for every i ∈ [n]1 and j ∈ [m]. We refer to P as the primal problem. For

every primal LP one can derive a dual problem formulated as the following maximization

problem.

1For an integer α, let [α] denote the set of integers 1, . . . , α.

3



Max.
m∑
j=1

yj (D)

∀i ∈ [n]
m∑
j=1

aijyj ≤ ci

yj ≥ 0

A well-studied class of LP problems are those in which all coefficients are non-

negative ci, bj, aij ≥ 0. In this case, intuitively, a feasible solution of the primal problem

covers a requirement for every j ∈ [m]. On the other hand, a feasible solution of the dual

problem does not violate the limit ci for every i ∈ [n]. Therefore the primal problem is

called a covering problem while the dual problem is called a packing problem.

In the online variant of a covering problem, the objective function is known in

advance. However, the constrains (with their corresponding coefficients) arrive online.

After receiving a new constraint, the online algorithm may only increase the values of

variables to satisfy the new constraint. In an online packing problem, the linear objective

function and all the linear constraints are known, but only partially. The packing limits

(i.e., ci’s) are known in advance while the variables with their corresponding coefficients

arrive online. The online algorithm has one shot to set the value of a variable at the time

of its arrival.

Among the problems which fall in this general framework are the generalized as-

signment problem, the problem of allocating ad-auctions, weighted caching problem, gen-

eralized catching, the set cover problem, Steiner connectivity problems, routing, and load
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balancing. Indeed in a series of papers, primal-dual approaches have been developed for

solving online packing/covering LPs fractionally (e.g. see a survey in [BN07]). In these

papers, the primal-dual method is extended to the setting of online algorithms, and its

applications to a wide variety of problems are shown. As pointed out by Buchbinder

and Naor in their survey, the primal-dual method has many advantages over the existing

methods. Primal-dual algorithms are often clean and efficient, and the competitive ratio

analysis is often direct without a problem-specific potential function. Unfortunately, it is

(provably) impossible to solve the general problem when restricted to integral solutions.

In this thesis, our work shows that by assuming stochastic information, achieving

online competitive integral solutions is still possible. Indeed when a framework captures

various different problems, it embeds barriers of different flavors. Thus to push our un-

derstanding of the problem, an important step is to analyze the special cases of the general

framework which are seemingly different, and try to come up with uniform solutions for

those problems. We describe the techniques we have designed for each set of problems

separately. The first set can be considered as maximization problems related to packing

LPs, while the second set can be considered minimization problems related to covering

LPs. In the next section, we begin by showing the application of primal-dual methods in

solving fractional variants of the problems.

5



1.2 Background on Packing/Covering Linear Programs

In this section we consider the general framework of packing-covering linear for-

mulations. Buchbinder and Naor [BN07] give an extensive survey of the primal-dual

approaches for solving related problems. To see a taste of how a primal-dual framework

helps in tackling online variants of the problem, we briefly present the two algorithms

solving fractional covering and packing linear programs online. Indeed even online fac-

tional solutions have several applications in tackling real-world problems, see for exam-

ple [LLZ+13].

1.2.1 The Online Fractional Packing Problem

Buchbinder and Naor [BN09b] give an online scheme for computing a near-optimal

fractional solution for an online packing problem. For a given value B > 0, the scheme

returns a solution within a factor of B of optimal solution while violating the packing

constraint by a factor of roughly O( logm
B

) which also depends on other input factors (to

be defined precisely). Recall that in a packing problem, given a set of m variables yj’s, a

linear objective function
∑m

j=1 yj is to be maximized where the feasible space is defined

by a set of n constraints in the form
∑m

j=1 aijyj ≤ ci for every i ∈ [n] (see D). In the

online variant of the problem, at a time j, the coefficients of yj in the packing constraints

are revealed. Next, the online algorithm outputs a (fractional) value for yj which cannot

be changed in the future.

6



Algorithm.

The algorithm simultaneously maintains a primal (covering) and a dual (packing)

solution as defined in P and D. The primal variables are initializes to zero. At round

j, the coefficients aij’s are revealed for every i ∈ [n]. Thus in the primal instance, the

constraint
∑n

i=1 aijx(i) ≥ 1 is introduced. The algorithm increases the value of the new

variable y(j) and the primal variables xi’s until the new primal constraint is satisfied.

The primal variables are augmented via a monotonically increasing function of y(j). See

Algorithm 1 for the precise function.

Algorithm 1 Online Fractional Packing Problem
Input: The packing limit ci for every i ∈ [n] and an online stream of the coefficients.
Output: A feasible primal vector x and a dual vector y.
Offline Process:

1: For every i ∈ [n] initialize x(i) = 0.
Online Scheme; assuming for a j ∈ [m] the coefficients aij are arrived for every
i ∈ [n]:

1: Set y(j) = 0.
2: while

∑n
i=1 aijx(i) < 1 do

3: Increase y(j) continuously 2.
4: For every i ∈ [n], increase x(i) to the following

max

{
x(i),

exp
(

B
2ci

∑j
k=1 aiky(k)

)
−1

n·maxj
k=1{aik}

}
.

Buchbinder and Naor [BN09b] show that the objective value of the output of the

algorithm is within a factor B of that of the optimum. More formally,

7



Theorem 1.1 (Theorem 3.1 of [BN09b]). Algorithm 1 is a B-

competitive algorithm for the online packing problem where the ith

constraint is violated by at most

2 log(1 + n · ai(max)
ai(min)

)

B

where ai(max) = maxmj=1{aij} and ai(min) = minmj=1{aij|aij >

0}.

Observe that Theorem 1.1 gives aO(log(n))-competitive fractional algorithm when

the coefficients are either zero or one (or more generally when the ratio between the

maximum and minimum non-zero coefficient is constant).

1.2.2 The Online Fractional Covering Problem

In the online covering problem, the objective function of the primal problem is

known in advance. At iteration j, the jth constraint is revealed. The online algorithm can

only increase the value of primal variables. Buchbinder and Naor [BN09b] give an online

algorithm with a logarithmic competitive ratio which is tight up to a constant factor.

Theorem 1.2 (Theorem 4.1 of [BN09b]). For any given B > 0,

there exists an O
(

log(n)
B

)
-competitive fractional algorithm (see Al-

8



gorithm 2) for the online covering problem where a primal con-

straint may be violated by a factor of at most B.

Algorithm.

Similar to the previous section, the algorithm simultaneously maintains a primal

(covering) and a dual (packing) solution. First, we assume that the value of the optimal

solution OPT is known within a two factor. This is without loss of generality: one can

guess OPT using a standard doubling technique and lose at most a constant factor in the

competitive ratio. The algorithm initializes the primal variables to zero. Similar to Algo-

rithm 1, we continuously increase the value of the dual variable y(j) corresponding to the

new constraint while increasing the primal variables correspondingly. See Algorithm 2

for the formal description.

Algorithm 2 Online Fractional Covering Problem
Input: The objective function (i.e., ci’s) and an online stream of the primal constraints.
Output: A primal vector x and a feasible dual vector y.
Offline Process:

1: For every i ∈ [n] initialize x(i) = 0.
Online Scheme; assuming for a j ∈ [m] the jth constraint is arrived:

1: Set y(j) = 0.
2: while

∑n
i=1 aijx(i) < 1

B
do

3: Increase y(j) continuously.

4: For every i ∈ [n], set x(i) = OPT
2n·ci exp

(
log(2n)
ci

∑j
k=1 aiky(k)

)
.

9



1.3 Online Maximization Problems

We first give a brief description of our techniques for the following family of pack-

ing problems. Next, we will introduce Prophet Secretary as a new Bayesian auction set-

ting and we demonstrate the applications of online optimization techniques in developing

near-optimal mechanisms.

1.3.1 From Matching to Online Packing

As noted by Lovasz and Plummer in their classic book [LP86], ”[Matching Theory]

is a central part of graph theory, not only because of its applications, but also because it is

the source of important ideas developed during the rapid growth of combinatorics during

the last several decades”. Hence, we begin by considering online matching. Online bi-

partite matching problem first was introduced by Karp, Vazirani, and Vazirani [KVV90].

They proved that a simple randomized online algorithm achieves a (1-1/e)-competitive ra-

tio and this factor is the best possible in the adversarial model. Online bipartite matching

has been considered under stochastic assumptions in [GM08,FMMM09,MOS11], where

most recent of them is the work of Manshadi et al. [MOS11] that presents an online al-

gorithm with a competitive ratio of 0.702. They also show that no online algorithm can

achieve a competitive ratio better than 0.823.

An important generalization of online matching is the Google AdWord problem.

Online advertising alongside search results is a multi-billion dollar business [Lah06] and

10



is a major source of revenue for search engines like Google, Yahoo and Bing. A related

ad allocation problem is the AdWords assignment problem [MSVV07] that was moti-

vated by sponsored search auctions. When modeled as an online bipartite assignment

problem, each edge has a weight, and there is a budget on each advertiser representing

the upper bound on the total weight of edges that might be assigned to it. In the online

setting, it is typical to assume that edge weights (i.e., bids) are much smaller than the

budgets. Devanur and Hayes [DH09] provide an algorithm with competitive ratio (1-1/e)

in the stochastic setting where the sequence of arrivals is a random permutation. In most

of the previous work it is assumed that the arriving requests are drawn from identical

distributions. However, by studying the data obtained from search engines of Yellow

Pages of AT&T, we showed this assumption is not quite true. Indeed the distribution

of search terms observed by a search engine is highly dependent on the time and date.

Thus in our paper [AHL+11], we used a prophet inequality model for the first time in

an online matching setting which generalizes several previous advertising models such as

online secretary problem and Google adword. In contrast to i.i.d. model, this allows us

to model the change in the distribution of items throughout the time. We call this setting

the Prophet-Inequality Matching because of the possibility of having a different distribu-

tion for each time. In our paper [AHL12] we generalize the classic prophet inequality

by presenting an algorithm with asymptotically optimum approximation ratio. We have

recently generalized our methods to the stochastic generalized assignment problem which

provides a uniform solution for several fundamental optimization problems including the

11



online variants of multiple knapsack, bin packing, Google adword, and banner advertise-

ment. The proposed algorithm initially computes an optimal solution for a linear program

corresponding to a fractional expected instance. By using this solution as a guideline, we

use a novel randomized technique for assigning arriving requests without violating the

problem constraints. This potentially provides us with a tool for attacking other online

problems. We believe our methods are robust enough to be adopted for more generalized

constraints, hoping to give efficient algorithms applicable to real world problems.

1.3.2 Prophet Secretary

Optimal stopping theory is a powerful tool for analyzing scenarios such as online

auctions in which we generally require optimizing an objective function over the space

of stopping rules for an allocation process under uncertainty. Perhaps the most classic

problems of stopping theory are the prophet inequality problem (first studied in TCS by

Hajiaghayi, Kleinberg, and Sandholm [HKS07]) and the secretary problem (Hajiaghayi,

Kleinberg and Parkes [HKP04]); both instances of packing problems when formulated

as optimization problems. The classical prophet inequality states that by choosing the

same threshold OPT/2 for every step, one can achieve the tight competitive ratio of 0.5.

On the other hand, for the basic secretary problem, the optimal strategy is to ignore the

first n
e

elements of the sequence while using the maximum of the first n
e

elements as the

threshold for the rest of sequence. This strategy achieves the optimal competitive ratio of

1/e = 0.36.
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In this thesis, we introduce prophet secretary, a natural combination of the prophet

inequality problem and the secretary problem. An example of motivations for our problem

is as follows. Consider a seller that has an item to sell on the market to a set of arriving

customers. The seller knows the types of customers that may be interested in the item

and he has a price distribution for each type: the price offered by a customer of a type

is anticipated to be drawn from the corresponding distribution. However, the customers

arrive in a random order. Upon the arrival of a customer, the seller makes an irrevocable

decision to whether sell the item at the offered price. We address the question of finding

a strategy for selling the item at a high price.

We show that by using a single uniform threshold one cannot break the 0.5 barrier

of the prophet inequality for the prophet secretary problem. However, we show that

• using n distinct non-adaptive thresholds one can indeed obtain the competitive ratio

of (1− 1/e ≈ 0.63); and

• no online algorithm can achieve a competitive ratio better than 0.73.

Our results improve the approximation guarantee of single-item sequential posted pric-

ing mechanisms from 0.5 to (1 − 1/e) when the order of agents (customers) are chosen

randomly.

We also consider the minimization variants of the prophet inequality problem. In

particular, we show that, even for the simple case in which numbers are drawn from

identical and independent distributions (i.i.d.), there is no constant competitive online

algorithm for the minimization variants of the prophet inequality and prophet secretary
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problems. We refer the reader to Section 2.2 for a detailed description of our model and

techniques.

1.4 Online Minimization Problems

We now give a brief description of our framework for solving a major family of

Steiner Connectivity problems.

1.4.1 From Steiner Connectivity to Online Covering

Network design problems deal with settings where the goal is to design a network

(i.e., find a subgraph of a given graph) that satisfies certain connectivity requirements.

Edges of the given graph describe the possible links the network may have, and each

requirement is in the form of connecting a pair of vertices of the graph. The Steiner

tree problem is among the most fundamental problems in the literature; given a set of

vertices called terminals, the goal is to connect them with the minimum cost to a special

vertex root (see recent achievements on the offline topic in [BHL13] and the references

therein). In the online variant of the problem where the terminals are revealed in an

online manner, sophisticated primal-dual methods are known for the problem when only

the edges have costs. However, no primal-dual competitive algorithm is known for the

more general version where the vertices (nodes) have costs. One obstacle is that the

node-weighted variant has set cover as a special case which makes the problem inherently

more difficult. Indeed the node-weighted variant has many applications; especially with
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the growth in the usage of wireless systems, an edge-weighted graph cannot be a proper

model in many applications. In our recent work [BHL13], we have given a simple and

efficient algorithm for the offline node-weighted (prize-collecting) Steiner forest problem.

In the Steiner forest (SF) problem each terminal is requested to be connected to a different

root. In another work, we have shown the applications of our primal-dual framework by

giving the first algorithm with poly-logarithmic competitive ratio for the online variant

of Steiner forest problem (and more generally network-design problems characterized

by proper functions). We also design the first node-weighted Steiner forest algorithm

for planar graphs with asymptotically tight competitive ratio. This is indeed the first

instance of an online graph optimization problem in which the structure of planar graphs

are successfully exploited to achieve better results. All our solutions can be interpreted as

instances of a single primal-dual framework. We call this framework Disk painting which

we will describe in the next chapters.

1.4.2 Prize-collecting Variants

Over the last two decades, network design problems have been a cornerstone of

algorithmic research. The Steiner tree problem and its various generalizations have been

central to this research effort. One branch of Steiner problems that has attracted substan-

tial attraction are the so called prize-collecting problems, where the algorithm is permit-

ted to violate one or more connection constraints but must pay corresponding penalties

in the objective function. Prize collecting (PC) Steiner problems were originally moti-
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vated by applications in network planning for service providers (see e.g., [JMP00]). They

have since become a well-studied branch of approximation algorithms (see the work of

Archer et al [ABHK11] and Goemans and Williamson [GW95] ). In this thesis, we fo-

cus on the online model, where the connectivity demands appear over time and must be

immediately satisfied. The study of online prize-collecting network design was initiated

recently by Qian and Williamson [QW11]. This is somewhat surprising on two counts:

first, online versions of Steiner problems appear prominently in the algorithmic literature

and prize-collecting variants are a natural generalization; and second, the online model is

well-motivated in the context of prize-collecting Steiner problems since in practice, new

customers appear over time and network providers must upgrade their networks according

to the new demands or lose these customers, thereby paying the corresponding penalty in

the revenue.

We provide a simple generic approach to online prize-collecting Steiner problems

that reduces these problems to their fractional non-prize-collecting counterparts losing

a logarithmic factor in the competitive ratio. Using known results for the online edge-

weighted (EW) and node-weighted (NW) Steiner tree problems, this reduction yields al-

gorithms with competitive ratios of O(log2 n) and O(log4 n) respectively for their prize-

collecting variants. Exploring further, we give improved algorithms for both these prob-

lems: for the EW problem, we match the competitive ratio of O(log n) obtained by Qian

and Williamson [QW11], whereas for the NW problem, we obtain a competitive ratio

of O(log3 n). Both these results are obtained by employing a novel online dual-fitting
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approach. Our result represents the first algorithm for online NW-PCST that achieves a

poly-logarithmic competitive ratio.

1.5 Mixed Packing/Covering: Online Degree-bounded SF

The problem of satisfying connectivity demands on a graph while re-

specting given constraints has been a pillar of the area of network design

since the early seventies [Chv73, CGM80, CG82, PY82]. The problem of

DEGREE-BOUNDED SPANNING TREE, introduced in Garey and Johnson’s Black Book of

NP-Completeness [MD79], was first investigated in the pioneering work of Fürer and

Raghavachari [FR90] (Allerton’90). In the DEGREE-BOUNDED SPANNING TREE prob-

lem, the goal is to construct a spanning tree for a graph G = (V,E) with n vertices

whose maximal degree is the smallest among all spanning trees. Let b∗ denote the max-

imal degree of an optimal spanning tree. Fürer and Raghavachari [FR90] give a parallel

approximation algorithm which produces a spanning tree of degree at most O(log(n)b∗).

Agrawal, Klein, and Ravi ( [AKR91]) consider the following generaliza-

tions of the problem. In the DEGREE-BOUNDED STEINER TREE problem we are

only required to connect a given subset T ⊆ V . In the even more general

DEGREE-BOUNDED STEINER FOREST problem the demands consist of vertex pairs, and

the goal is to output a subgraph in which for every demand there is a path connecting

the pair. They design an algorithm that obtains a multiplicative approximation factor of

O(log(n)). Their main technique is to reduce the problem to minimizing congestion under
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integral concurrent flow restrictions and to then use the randomized rounding approach

due to Raghavan and Thompson ( [RT85], STOC’85).

Shortly after the work of Agrawal et al., in an independent work in SODA’92 and

later J. of Algorithms’94, Fürer and Raghavachari [FR94] significantly improved the re-

sult for DEGREE-BOUNDED STEINER FOREST by presenting an algorithm which pro-

duces a Steiner forest with maximum degree at most b∗ + 1. They show that the same

guarantee carries over to the directed variant of the problem as well. Their result is based

on reducing the problem to that of computing a sequence of maximal matchings on cer-

tain auxiliary graphs. This result settles the approximability of the problem, as computing

an optimal solution is NP-hard even in the spanning tree case.

We initiate the study of degree-bounded network design problems in an online set-

ting, where connectivity demands appear over time and must be immediately satisfied. We

first design a deterministic algorithm for ONLINE DEGREE-BOUNDED STEINER FOREST

with a logarithmic competitive ratio. Then we show that this competitive ratio is asymp-

totically best possible by proving a matching lower bound for randomized algorithms that

already holds for the Steiner tree variant of the problem.

1.6 Outline

In the first part of the thesis, we develop techniques for solving a major family

of online packing problems. In Section 2.1, we apply these techniques to the online

stochastic generalized assignment problem. In Section 2.2, we introduce the applications
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of online techniques in designing mechanisms for our novel Bayesian model, Prophet

Secretary.

In the second part of the thesis, we first introduce the Disk Painting framework in

Section 3.1. We continue by demonstrating the applications of this framework for solving

various Steiner connectivity problems in Sections 3.5.3 and 3.5.

Finally in the last part of thesis, we solve the first degree-bounded connectivity

problem via a dual analysis in Section 4.1. This is indeed one of the very few problems

with both packing and covering constraints that have been efficiently solved in an online

setting.
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CHAPTER 2

Packing Problems

2.1 The Generalized Assignment Problem (GAP)

We start by considering a general subclass of packing problems. Here for simplicity

we describe our analytic tools as a randomized process. However, a dual interpretation of

these methods can be found in [AHL+11, AHL12].

Online Generalized Assignment Problem

The generalized assignment problem (GAP) and its special cases multiple knap-

sack1 and bin packing2 capture several fundamental optimization problems and have many

1In the multiple knapsack problem, we are given a set of items and a set of bins (knapsacks) such that

each item j has a profit vj and a size sj , and each bin i has a capacity Ci. The goal is to find a subset of

items of maximum profit such that they have a feasible packing in the bins.
2In the bin packing problem, given a set of items with different sizes, the goal is to find a packing of

items into unit-sized bins that minimizes the number of bins used.
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practical applications in computer science, operations research, and related disciplines.

The (offline) GAP is defined as follows:

Definition 2.1 (Generalized Assignment Problem). There is a set of n items and m bins.

Each bin has a hard capacity where the total size of items placed in a bin cannot exceed

its capacity. Each item has a value and a size if placed in a bin; both might depend on the

bin. The goal is to find a maximum valued assignment of items to the bins which respects

the capacities of the bins.

For example GAP can be viewed as a scheduling problem on parallel machines,

where each machine has a capacity (or a maximum load) and each job has a size (or a

processing time) and a profit, each possibly dependent on the machine to which it is as-

signed, and the objective is to find a feasible scheduling which maximizes the total profit.

Though multiple knapsack and bin packing have a fully polynomial-time approximation

scheme (asymptotic for bin packing) in the offline setting [CK00], GAP is APX-hard and

the best known approximation ratio is 1 − 1/e + ε where ε ≈ 10−180 [FV06], which

improves on a previous (1− 1/e)-approximation [FGMS06].

In this section we consider the online stochastic variant of the problem:

Definition 2.2 (Online Stochastic Generalized Assignment Problem). There are n items

arriving in an online manner which can be of different types. There are m (static) bins

each with a capacity limit on the total size of items that can be placed in it. A type of

an item is associated with a value and a size distribution which may depend on the bin

to which the item is placed. Stochastic information is known about the type of an item
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and sizes/values of the types. Upon arrival of an item, the type of that item is revealed.

However the realization of the size of the item is revealed only after it has been placed in

a bin. The goal is to find a maximum valued assignment of items to the bins. We consider

a large-capacity assumption: no item takes up more than 1
k

fraction of the capacity of any

bin.

We emphasize that there are two sources of uncertainty in our model: the type of

an item and the size of the item. The type of an item (which contains a size-distribution)

is revealed before making the assignment, however the actual size of an item is revealed

after the assignment.

2.1.1 Previous Work

To the best of our knowledge, Feldman et al. [FKM+09] were the first to consider

the generalized assignment problem in an online setting, albeit with deterministic sizes. In

the adversarial model where the items and the order of arrivals are chosen by an adversary,

there is no competitive algorithm. Consider the simple case of one bin with capacity one

and two arriving items each with size one. The value of the first item is 1. The value of

the second item would be either 1
ε

or 0 based on whether we place the first item in the

bin. Thus the online profit cannot be more than ε factor of the offline profit. Indeed one

can show a much stronger hardness result for the adversarial model: no algorithm can
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be competitive for the two special cases of GAP, namely the adword problem3 and the

display ad problem4 even under the large-capacity assumption [FKM+09, MSVV07].

Since no algorithm is competitive for online GAP in the adversarial model, Feld-

man et al. consider this model with free disposal. In the free disposal model, the total

size of items placed in a bin may exceed its capacity, however, the profit of the bin is the

maximum-valued subset of the items in the bin which does not violate the capacity. Feld-

man et al. give a (1 − 1
e
− ε)-competitive primal-dual algorithm for GAP under the free

disposal assumption and the additional large-capacity assumption by which the capacity

of each bin is at leastO(1
ε
) times larger than the maximum size of a single item. Although

the free disposal assumption might be counter-intuitive in time-sensitive applications such

as job scheduling where the machine may start doing a job right after the job assignment,

it is a very natural assumption in many applications including applications in economics

like ad allocation – a buyer does not mind receiving more items.

Dean, Goemans, and Vondrak [DGV04] consider the (offline) stochastic knapsack

problem which is closely related to GAP. In their model, there is only one bin and the

value of each item is known. However, the size of each item is drawn from a known

distribution only after it is placed in the knapsack. We note that this is an offline setting

in the sense that we may choose any order of items for allocation. This model is moti-

vated by job scheduling on a single machine where the actual processing time required

3The adword problem is a special case of GAP where the size and the value of placing an item in a bin

is the same.
4The display ad problem is a special case of GAP where all sizes are uniform.
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for a job is learned only after the completion of the job. Dean et al. give various adaptive

and non-adaptive algorithms for their model where the best one has a competitive ratio

1
3
− ε. Recently Bhalgat improved the competitive ratio to 1

2
− ε [Bha12]. Other varia-

tions, such as soft capacity constraints, have also been considered for which we refer the

reader to [BGK11, GI99, KRT97]. Dean et al. [DGV04] also introduce an ordered model

where items must be considered in a specific order, which can be seen as a version of

the the online model with a known order. Dean et al. [DGV04] present a 1
9.5

-competitive

algorithm. In general, the online model can be considered as a more challenging variation

of the models proposed by Dean et al, and we show that the large-capacity assumption is

enough to overcome this challenge.

To the best of our knowledge, the current variation of the online stochastic GAP

has not been considered before. We note that since the distributions are not necessary

i.i.d., this model generalizes the well-known prophet inequalities. 5 Even with stochastic

information about the arriving queries, no online algorithm can achieve a competitive ratio

better than 1
2

[Ala11, HKS07, KS77, KS78]. Consider the simple example from before

where the value of the first item is 1 with probability one and the value of the second item

is 1
ε

with probability ε, and 0 with probability 1 − ε. The algorithm can only select one

item. No online (randomized) algorithm can achieve a profit more than max{1, ε(1
ε
)} = 1

in expectation. However, the expected profit of the optimum offline assignment is (1 −
5In the classic prophet inequality problem, given the distribution of a sequence of random variables, an

onlooker has to choose from the succession of these values. The onlooker can only choose a certain number

of values and cannot choose a past value. The goal is to maximize the total sum of selected numbers.
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ε)1 + ε(1
ε
) = 2 − ε. Therefore without any additional assumption one cannot get a

competitive ratio better than 1/2. We overcome this difficulty by considering the natural

large-capacity assumption which arises in many applications such as online advertising.

There has been various 1
2
-approximation algorithms for offline GAP [CK00,

FNW78, ST93]. Fleischer et al. [FGMS06] developed the first (1 − 1/e)-approximation

algorithm for GAP. It has been observed for more general packing constraints, improving

over the ratio 1 − 1/e is not possible unless NP ⊆ DTIME(nO(log logn)) [FGMS06].

However, for GAP with simple knapsack constraints, Feige and Vondrak [FV06] improve

the approximation ratio to 1 − 1/e + ε where ε ≈ 10−180. GAP is a special case of

the problem of maximizing a monotone submodular function subject to a matroid con-

straint [FNW78]. Vondrak [Von08] improves the approximation ratio for this problem

from 1/2 to 1− 1/e and thus solves a long-standing open problem.

Recently special cases of online GAP have been extensively studied, mostly moti-

vated by ad allocation frameworks. In the most basic setting, namely online matching, all

the sizes, values, and capacities are one. In the worst case model, the celebrated result of

Karp et al. [KVV90] gives a (1− 1
e
)-approximation algorithm. In the stochastic random ar-

rival model, a sequence of papers [FMMM09,KMT11,MY11] improve this ratio to 0.696.

In the full-information model, the best known approximation ratio is 0.703 [MZO12] im-

proving on a previous ratio 0.702 [MOS11].

A generalization of online matching is the display ad problem where the values are

arbitrary but all item sizes are one. In the worst case analysis by assuming free disposal,
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Feldman et al. [FKM+09] give a tight (1 − 1
e
)-approximation algorithm. In the stochas-

tic full-information setting, Haeupler et al. [HMZ11] give a 0.66-approximation algo-

rithm. Under the large-capacity assumption, Feldman et al. [FHK+10] give a (1− o(1))-

approximation algorithm where the contribution of any single item is at most roughly

O( ε
m logn

). Devanur et al. [DJSW11] give a (1 − ε)-algorithm for the case of unknown

i.i.d. distribution where the profit contributed by a single item is at most O( ε2

log(n/ε)
) of

the total profit. Recently Alaei et al. [AHL12] give a (1 − ε)-approximation for a more

general Prophet Inequality setting where the capacity of each bin is Ω( 1
ε2

).

Another generalization of online matching is the adword problem [MSVV07]

which can be considered as a special case of GAP where the values and sizes are

equal. In the worst case analysis, by assuming large capacities one can obtain a

(1− 1
e
)-approximation algorithm [BJN07,MSVV07]. Devanur and Hayes [DH09] give a

(1−O( 1√
k
))-approximation algorithm in the random order model which depends on other

input variables too. Here k is the ratio of a bidder’s budget to his maximum bid. Alaei et

al. [AHL12] give a O(1− 1√
2πk

)-competitive algorithm for the Prophet Inequality setting.

Recently Devanur et al. [DSA12] give an algorithm with the same competitive ratio for

the unknown distribution model.

GAP generalizes adword, display ad, and stochastic knapsack problems. For

the case of full-information, we give a natural algorithm which achieves a (1 − 1√
k
)-

competitive algorithm where the size of each item is at most 1
k

of a bin capacity. The

closest work to this result may be that of [FHK+10] where Feldman et al. give a (1−o(1))-
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approximation algorithm for a more general setting and under the random order model

(though the size of an item is known before the allocation). However, the capacity to

the item size ratio also depends on the input variables. More precisely, the ratio of the

maximum value of a single item to OPT should be at most O( ε
m logn

) and the ratio of the

maximum size of a single item to a bin capacity should be at most O( ε3

m logn
). A summary

of the latest results is shown in Table 2.1.

2.1.2 Current Achievements for Stochastic GAP

The loss factor of an online algorithm is the ratio α such that the profit of the

algorithm is at least 1 − α fraction of the optimal offline profit. The main result of this

section can be summarized in the following theorem [AHL13].

Theorem 2.1. For the stochastic generalized assignment problem,

there exists a randomized online algorithm (see 2.6) with the loss

factor at most 1√
k

in expectation.

The proposed algorithm initially computes an optimal solution for a linear program

corresponding to a fractional expected instance. In the online stage, the algorithm ten-

tatively assigns each item upon arrival to one of the bins at random with probabilities

proportional to the fractional LP solution. This ensures that the expected total size of

items assigned tentatively to each bin does not exceed its capacity. However, once a bin

becomes full, any item which gets tentatively assigned to that bin will have to be dis-
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carded. In general, a straightforward randomized assignment based on the LP solution

could be arbitrarily far from optimal; that is because the probability of an item being

discarded due to a bin being full could be arbitrarily close to 1 for items that arrive to-

wards the end. To overcome this problem, we incorporate an adaptive threshold based

strategy for each bin so that an item tentatively assigned to a bin is only placed in the

bin if the remaining capacity of the bin is more than a certain threshold. This ensures the

online algorithm discards a tentatively assigned item with a probability at most 1√
k

of the

fractional LP assignment. The thresholds are computed adaptively based on previously

observed items.

Indeed by using the fractional solution as a guideline, it is possible to achieve a

non-adoptive competitive algorithm. One may scale down the fractional solution by a

factor 1 − O( log k√
k

) and assign the items with the modified probabilities, thus achieving

a loss factor O( log k√
k

). By using the Chernoff bound it can be shown that the probability

of exceeding bin capacities is very small. This simple algorithm gives an asymptotically

optimum solution, however there are two drawbacks. The first issue is that the constants

in various implementations of this idea are large. Thus unless the value k is very large,

this algorithm cannot guarantee a reasonable competitive ratio; in contrast, the loss factor

of our algorithm is exactly 1√
k
. On the other hand, in the applications of online GAP such

as the Adword problem, the factor O( log k√
k

) is the loss factor of the millions of dollars.

Therefore our algorithm saves a logarithmic factor in the loss of revenue. Indeed these

drawbacks were also the motivation for improving the loss factor in the special cases of
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online GAP in previous papers [AHL12, AHL+11].

The threshold based strategy of the online algorithm is presented in Section 2.1.4

in the form of a generalization of the magician’s problem of [Ala11]. The original magi-

cian’s problem can be interpreted as a stochastic knapsack problem with unit size items

and a knapsack of size k and such that each item arrives in one of two possible states (e.g.

good/bad) with known probabilities; the objective being to maximize – simultaneously

for all items – the probability of picking every item that is good. On the other hand, in

the generalized variant presented here, the size of each item can vary according to an ar-

bitrary (but known) distribution; in this version k is an integer lower bound on the ratio

of the total size of the knapsack to the maximum possible size of a single item. Although

the bound we obtain for the generalized magician is similar to that of [Ala11], they are

incomparable for small k; in particular for k = 1, one can easily achieve a 1
2
-competitive

algorithm for the magician’s problem with fixed size items, whereas for the generalized

version with variable size items, no constant competitive algorithm is possible for k = 1 .

Recently, Alaei et al. [AHL+11,AHL12]6 use a combination of expected linear pro-

gramming approach and dynamic programming to achieve a 1− ε-competitive algorithm

for adword and display ad. They use a relatively simple dynamic programming in com-

bination with the LP solution to check whether they should assign an item to a bidder or

discard it. Using an approach similar to “dual fitting” [JMM+03], they demonstrate an

analysis of the combination of a dynamic programming approach with an online LP-based

6In an independent work, Devanur et al. [DJSW11] also consider the expected linear program of a

similar problem.
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algorithm and prove a loss factor 1√
k+3

for the display ad problem. They use the sand the-

orem of [Ala11] as a black-box in their analysis to derive proper dual variables in their

dual fitting analysis of the algorithm. A dynamic programming approach needs to know

the stochastic information about the remaining items, while a threshold-based approach

needs to know the past, i.e., they are complements of each other. However, analysis of the

dynamic programming even with uniform sizes is involved. Furthermore, it is not easy to

generalize the approach of [AHL12] to the model of Goemans et al. [DGV04] where the

given sizes show only the expected size of an item.

It is worthwhile to compare our stochastic model against other popular models, i.e.,

random order model7 and unknown distribution model8. While both the random order and

the unknown distribution models require less stochastic information, they both treat items

uniformly; hence they are more suitable for applications where items are more symmet-

ric9. The model considered in this chapter is more suitable when there is a high degree

of distribution asymmetry across the items. In particular, the extra stochastic information

allows us to obtain practical bounds even for small values of k whereas in other stochastic

models the obtained bounds often become meaningful only asymptotically in k.

7In the random arrival model items are chosen by an adversary, however they arrive in a random order.
8In the unknown distribution model the items are chosen i.i.d. from a fixed but unknown distribution.
9At a first glance, the random order model may appear to allow for asymmetry, however note that for

any i and j, the ith arriving item and the jth arriving item have the same ex ante distribution in the random

order model.
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The all-or-nothing model

The online algorithm of this section can be applied to a slightly different model

in which each item should still be either fully assigned or discarded, however in case of

assignment, unlike GAP, an item can be fractionally split across multiple bins (i.e., the

all-or-nothing assignment model). Note that the LP for the expected instance is still the

same for the all-or-nothing model, therefore our online algorithm still obtains the same

bound in expectation compared to the optimal offline solution. The all-or-nothing model

is suitable for subscription-based advertisement and banner advertisement.

The subscription-based advertisement problem is an example of an offline ad allo-

cation setting motivated by the banner advertisement. In this problem, there is a set of

contracts proposed by the advertisers and the goal is to accept the contracts of a subset

of the advertisers which maximizes the revenue. The contract proposed by an advertiser

specifies a collection of webpages which are relevant to his product, a desired total quan-

tity of impressions on these pages, and a price. Each webpage has an ad inventory with

a certain number of banner ads. The problem of selecting a feasible subset of advertisers

with the maximum total value does not have any non-trivial approximation. This can be

shown by a reduction from the Independent Set problem on a graph; advertisers represent

the vertices of the graph and webpages represent the edges of the graph. Advertisers de-

sire all the impressions of the relevant webpages. Thus any feasible subset of advertisers

would denote an independent set in the graph. This shows maximizing the total value

does not have a non-trivial approximation. Different pricing models have also been intro-

31



duced by Feige et al. [FIMN08]. The proof of the following corollary is by a reduction

from the all-or-nothing model.

Corollary 2.1. There exists a randomized algorithm for the subscription-based advertise-

ment problem which obtains a loss factor 1√
k

in expectation where the number of available

impressions on each website is at least k times the required impressions of each relevant

advertiser.

Proof. One can show that this is an offline version of the all-or-nothing model where

bins denote the webpages and items denote the advertisers. The size of an item is the

required number of ads of an advertiser and the value of an item is the proposed price. By

Theorem 2.5, we can achieve at least 1− 1√
k

fraction of the optimal profit in expectation.

2.1.3 Preliminaries

Model

We consider the problem of assigning n items to m bins; items arrive online and

stochastic information is known about the size/value of each item; the objective is to

maximize the total value of the assignment. The item i ∈ [n] (arriving at time i) has ri

possible types with each type t ∈ [ri] having a probability of pit, a value of vitj ∈ R+,

and a size of Sitj ∈ [0, 1] if placed in bin j (for each j ∈ [m]); Sitj is a random variable

which is drawn from a distribution with a CDF of Fitj if the item is placed in bin j. Each

bin j ∈ [n] has a capacity of cj ∈ N0 which limits the total size of the items placed in that
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bin10. The type of each item is revealed upon arrival and the item must be either placed in

a bin or discarded; this decision cannot be changed later. The size of an item is revealed

only after it has been placed in a bin, furthermore an item can be placed in a bin only if

the bin has at least one unit of capacity left. We assume that n, m, cj , vitj and Fitj are

known in advance.

Benchmark

Consider the following linear program in which s̃itj = ESitj∼Fitj [Sitj]
11.

maximize
∑
i

∑
t

∑
j

vitjxitj (OPT )

subject to
∑
i

∑
t

s̃itjxitj ≤ cj, ∀j ∈ [m]

∑
j

xitj ≤ pit, ∀i ∈ [n] ,∀t ∈ [ri]

xitj ∈ [0, 1] ,

The optimal value of this linear program, which corresponds to the expected in-

stance, is an upper bound on the expected value of the optimal offline assignment.

10Our results hold for non-integer capacitates, however we assume integer capacities to simplify the

exposition.
11Throughout the rest of this chapter, we often omit the range of the sums whenever the range is clear

from the context (e.g.,
∑

i means
∑

i∈[n], and
∑

j means
∑

j∈[m], etc).
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Theorem 2.2. The optimal value of the linear program (OPT ) is

an upper bound on the expected value of the offline optimal assign-

ment.

Proof. Let x∗itj denote the ex ante probability that item i is of type t and is assigned to bin

j in the optimal offline assignment. It is easy to see that x∗itj is a feasible assignment for

the linear program. Furthermore, the expected value of the optimal offline assignment is

exactly
∑

i

∑
t

∑
j vitjx

∗
itj which is equal to the value of the linear program for x∗itj which

is itself no more than the optimal value of the linear program. Note that the optimal value

of the linear program may be strictly higher since a feasible assignment of the linear

program does not necessarily correspond to a feasible offline assignment policy.

Section 2.1.5 presents an online adaptive algorithm which obtains a loss factor 1√
k

w.r.t. the optimal value of the above linear program, where k = minj cj . We emphasize

that our adaptive algorithm saves a logarithmic factor in the loss of the outcome com-

pared to the non-adaptive methods. Next section presents a stochastic toy problem and its

solution which is used in our online algorithm.

2.1.4 The Generalized Magician’s Problem

We present a generalization of the magician’s problem, which was originally intro-

duced in [Ala11]; we also present a near-optimal solution for this generalization.

Definition 2.3 (The Generalized Magician’s Problem). A magician is presented with a
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series of boxes one by one, in an online fashion. There is a prize hidden in one of the

boxes. The magician has a magic wand that can be used to open the boxes. The wand

has k units of mana [Wik12]. If the wand is used on box i and has at least 1 unit of mana,

the box opens, but the wand loses a random amount of mana Xi ∈ [0, 1] drawn from

a distribution specified on the box by its cumulative distribution function FXi
(i.e., the

magician learns FXi
upon seeing box i). The magician wishes to maximize the probability

of obtaining the prize, but unfortunately the sequence of boxes, the distributions written on

the boxes, and the box containing the prize have been arranged by a villain; the magician

has no prior information (not even the number of the boxes); however, it is guaranteed

that
∑

iE[Xi] ≤ k, and that the villain has to prepare the sequence of boxes in advance

(i.e., cannot make any changes once the process has started).

The magician could fail to open a box either because (a) he might choose to skip

the box, or (b) his wand might run out of mana before getting to the box. Note that once

the magician fixes his strategy, the best strategy for the villain is to put the prize in the

box which, based on the magician’s strategy, has the lowest ex ante probability of being

opened. Therefore, in order for the magician to obtain the prize with a probability of at

least γ, he has to devise a strategy that guarantees an ex ante probability of at least γ for

opening each box. Notice that allowing the prize to be split among multiple boxes does

not affect the problem. We present an algorithm parameterized by a probability γ ∈ [0, 1]

which guarantees a minimum ex-ante probability of γ for opening each box while trying

to minimize the mana used. We show that for γ ≤ 1 − 1√
k

this algorithm never requires
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more than k units of mana.

Definition 2.4 (γ-Conservative Magician). The magician adaptively computes a se-

quence of thresholds θ1, θ2, . . . ∈ R+ and makes a decision about each box as follows:

let Wi denote the amount of mana lost prior to seeing the ith box; the magician makes

a decision about box i by comparing Wi against θi; if Wi < θi, it opens the box; if

Wi > θi, it does not open the box; and if Wi = θi, it randomizes and opens the box

with some probability (to be defined). The magician chooses the smallest threshold θi for

which Pr[Wi ≤ θi] ≥ γ where the probability is computed ex ante (i.e., not conditioned

on X1, . . . ,Xi−1). Note that γ is a parameter that is given. Let FWi
(w) = Pr[Wi ≤ w]

denote the ex ante CDF of random variable Wi, and let Yi be the indicator random vari-

able which is 1 iff the magician opens the box i. Formally, the probability with which the

magician should open box i condition on Wi is computed as follows12.

Pr [Yi = 1|Wi] =



1 Wi < θi

(γ − F−Wi
(θi))/(FWi

(θi)− F−Wi
(θi)) Wi = θi

0 Wi > θi

(Y )

θi = inf{w|FWi
(w) ≥ γ} (θ)

In the above definition, F−Wi
is the left limit of FWi

, i.e., F−Wi
(w) = Pr[Wi < w].

Note that FWi+1
and F−Wi+1

are fully determined by FWi
and FXi

and the choice of γ

(see Theorem 2.4). Observe that θi is in fact computed before seeing box i itself.
12Assume W0 = 0
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A γ-conservative magician may fail for a choice of γ unless all thresholds θi are

less than or equal to k−1. The following theorem states a condition on γ that is sufficient

to guarantee that θi ≤ k − 1 for all i.

Theorem 2.3 (γ-Conservative Magician). For any γ ≤ 1 − 1√
k
, a

γ-conservative magician with k units of mana opens each box with

an ex ante probability of γ exactly.

Proof. See Section 2.1.6.

Definition 2.5 (γk). We define γk to be the largest probability such that for any k′ ≥ k and

any instance of the magician’s problem with k′ units of mana, the thresholds computed

by a γk-conservative magician are no more than k′ − 1. In other words, γk is the optimal

choice of γ which works for all instances with k′ ≥ k units of mana. By Theorem 2.3, we

know that γk must be13 at least 1− 1√
k
.

Observe that γk is a non-decreasing function in k and approaches 1 as k → ∞.

However γ1 = 0 which is in contrast to the bound of 1
2

obtained for k = 1 in [Ala11] in

which all Xi are Bernoulli random variables. It turns out that when Xi are arbitrary ran-

dom variables in [0, 1], no algorithm exists for the magician that can guarantee a constant

non-zero probability for opening each box.

Proposition 2.1. For the generalized magician’s problem for k = 1, no algorithm for the

magician (online or offline) can guarantee a constant non-zero probability for opening
13Because for any k′ ≥ k obviously 1− 1√

k
≤ 1− 1√

k′ .
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each box.

Proof. Suppose there is an algorithm for the magician that is guaranteed to open each box

with a probability of at least γ ∈ (0, 1]. We construct an instance in which the algorithm

fails. Let n = d 1
γ
e + 1. Suppose all Xi are (independently) drawn from the distribution

specified below.

Xi =


1

2n
with prob. 1− 1

2n

1 with prob. 1
2n

, ∀i ∈ [n]

As soon as the magician opens a box, the remaining mana will be less than 1, so he will

not be able to open any other box, i.e., the magician can open only one box at every

instance. Let Yi denote the indicator random variable which is 1 iff the magician opens

box i. Since
∑

iYi ≤ 1, it must be
∑

iE[Yi] ≤ 1. On the other hand, E[Yi] ≥ γ because

the magician has guaranteed to open each box with a probability of at least γ. However∑
iE[Yi] ≥ nγ > 1 which is a contradiction. Note that

∑
iE[Xi] < 1 so it satisfies the

requirement of 2.3.

Computation of FWi
(·)

For every i ∈ [n], the equation Wi+1 = Wi + YiXi relates the distribution of Wi+1

to those of Wi and Xi
14. The following lemma shows that the distribution of Wi+1 is

fully determined by the information available to the magician before seeing box i+ 1.

14Note that the distribution of Yi is dependent on/determined by Wi.
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Theorem 2.4. In the algorithm of γ-conservative magician (2.4),

the choice of γ and the distributions of X1, . . . ,Xi fully determine

the distribution of Wi+1, for every i ∈ [n]. In particular, FWi+1
can

be recursively defined as follows.

FWi+1
(w) = FWi

(w)−Gi(w)

+ EXi∼FXi
[Gi(w − Xi)] ∀i ∈ [n] ,∀w ∈ R+ (FW)

Gi(w) = min(FWi
(w), γ) ∀i ∈ [n] ,∀w ∈ R+ (G)

Proof. See Section 2.1.6.

As a corollary of Theorem 2.4, we show how FWi
can be computed using dynamic

programming, assuming Xi can only take discrete values that are proper multiples of some

minimum value.

Corollary 2.2. If all Xi are proper multiple of 1
D

for some D ∈ N, then FWi
(·) can be

computed using the following dynamic program.

FWi+1
(w) =



FWi
(w)−Gi(w) +

∑
`Pr[Xi = `

D
]Gi(w − `

D
) i ≥ 1, w ≥ 0

1 i = 0, w ≥ 0

0 otherwise.

,

∀i ∈ [n] , ∀w ∈ R+

In particular, the γ-conservative magician makes a decision for each box in time

O(D).
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Note that it is enough to compute FWi
only for proper multiples of 1

D
because

FWi
(w) = FWi

( bDwc
D

) for any w ∈ R+.

2.1.5 An Algorithm for Stochastic GAP

We present an online algorithm which obtains at least 1− 1√
k
-fraction of the optimal

value of the linear program (OPT ). The algorithm uses, as a black box, the solution of

the generalized magician’s problem.

Definition 2.6 (Online Stochastic GAP Algorithm).

1. Solve the linear program (OPT ) and let x be an optimal assignment.

2. For each j ∈ [m], create a γ-conservative magician (2.4) with cj units of mana for

bin j. γ is a parameter that is given.

3. Upon arrival of each item i ∈ [n], do the following:

(a) Let t denote the type of item i.

(b) Choose a bin at random such that each bin j ∈ [m] is chosen with probability

xitj
pit

. Let j∗ denote the chosen bin.

(c) For each j ∈ [m], define the random variable Xij as Xij ← Sitj if j∗ = j,

and Xij ← 0 otherwise15. For each j ∈ [m], write the CDF of Xij on a

15Note that Sitj is learned only after item i is placed in bin j which implies that Xij may not be known

at this point, however the algorithm does not use Xij until after it is learned.
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box and present it to the magician of bin j. The CDF of Xij is FXij
(s) =

(1−
∑

t′ xit′j) +
∑

t′ xit′jFit′j(s).

(d) If the magician for bin j∗ opened his box in step 3c, then assign item i to

bin j∗, otherwise discard the item. For each j ∈ [m], if the magician of bin

j opened his box in step 3c, decrease the mana of that magician by Xij . In

particular, Xij = 0 for all j 6= j∗, and Xij∗ = Sitj∗ .

Theorem 2.5. For any γ ≤ γk, the online algorithm of 2.6 obtains

in expectation at least a γ-fraction of the expected value of the op-

timal offline assignment (recall that γk ≥ 1− 1√
k
).

Proof. By Theorem 2.2, it is enough to show that the online algorithm obtains in expec-

tation at least a γ-fraction of the optimal value of the linear program (OPT ). Let x be

an optimal assignment for the LP. The contribution of each item i ∈ [n] to the value of

bin j ∈ [m] in the LP is exactly
∑

t vitjxitj . We show that the online algorithm obtains in

expectation γ
∑

t vitjxitj from each item i and each bin j.

Consider an arbitrary item i ∈ [n] and an arbitrary bin j ∈ [m]. WLOG, suppose

the items are indexed in the order in which they arrive. Observe that

E [Xij] =
∑
t

pit
xitj
pit

E [Sitj] =
∑
t

xitj s̃itj.

Consequently,
∑

iE[Xij] =
∑

i

∑
t xitj s̃itj ≤ cj .

The last inequality follows from the first set of constraints in the LP of (OPT ).
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Given that
∑

iE[Xij] ≤ cj and γ ≤ γk ≤ γcj , Theorem 2.3 implies that the magician of

bin j opens each box with a probability of γ. Therefore, the expected contribution of item

i to bin j is exactly
∑

t γpit
xitj
pit
vitj = γ

∑
t xitjvitj . Consequently, the online algorithm

obtains γ
∑

i

∑
j

∑
t xitjvitj in expectation which is at least a γ-fraction of the expected

value of the optimal offline assignment. Furthermore, each magician guarantees that the

total size of the items assigned to each bin does not exceed the capacity of that bin.

2.1.6 Analysis of Generalized γ-Conservative Magician

We present the proof of Theorem 2.3. We prove the theorem in two parts. In the

first part, we show that the thresholds computed by the γ-conservative magician indeed

guarantee that each box is opened with an ex-ante probability of γ, assuming there is

enough mana. In the second part, we show that for any γ ≤ 1− 1√
k
, the thresholds θi are

less than or equal to k − 1, for all i, which implies that the magician never requires more

than k units of mana. Below, we repeat the formulation of the threshold based strategy of

the magician.

Pr [Yi = 1|Wi] =



1 Wi < θi

(γ − F−Wi
(θi))/(FWi

(θi)− F−Wi
(θi)) Wi = θi

0 Wi > θi

(Y )

θi = inf{w|FWi
(w) ≥ γ} (θ)
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Part 1

We show that the thresholds computed by a γ-conservative magician guarantee that

each box is opened with an ex ante probability of γ (i.e., Pr[Yi = 1] = γ), assuming

there is enough mana.

Pr [Yi ≤ w] = Pr [Yi = 1 ∩Wi < θi] + Pr [Yi = 1 ∩Wi = θi]

+ Pr [Yi = 1 ∩Wi > θi]

= Pr [Wi < θi] +
γ − F−Wi

(θi)

FWi
(θi)− F−Wi

(θi)
Pr [Wi = θi] = γ

Part 2

Assuming γ ≤ 1− 1√
k
, we show that the thresholds computed by a γ-conservative

magician are no more than k − 1 (i.e., θi ≤ k − 1 for all i). First, we present an interpre-

tation of how FWi
(·) evolves in i in terms of a sand displacement process.

Definition 2.7 (Sand Displacement Process). Consider one unit of infinitely divisible sand

which is initially at position 0 on the real line. The sand is gradually moved to the right

and distributed over the real line in n rounds. Let FWi
(w) denote the total amount of sand

in the interval [0, w] at the beginning of round i ∈ [n]. At each round i the following

happens.

(I) The leftmost γ-fraction of the sand is selected by first identifying the smallest

threshold θi ∈ R+ such that FWi
(θi) ≥ γ and then selecting all the sand in
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the interval [0, θi) and selecting a fraction of the sand at position θi itself such

that the total amount of selected sand is equal to γ. Formally, if Gi(w) denotes

the total amount of sand selected from [0, w], the selection of sand is such that

Gi(w) = min(FWi
(w), γ), for every w ∈ R+. In particular, this implies that only a

fraction of the sand at position θi itself might be selected, however all the sand to

the left of position θi is selected.

(II) The selected sand is moved to the right as follows. Consider the given random

variable Xi ∈ [0, 1] and let FXi
(·) denote its CDF. For every point w ∈ [0, θi] and

every distance δ ∈ [0, 1], take a fraction proportional to Pr[Xi = δ] out of the sand

which was selected from position w and move it to position w + δ.

It is easy to see that θi and FWi
(w) resulting from the above process are exactly the

same as those computed by the γ-conservative magician.

Lemma 2.1. At the end of the ith round of the sand displacement process, the total amount

of sand in the interval [0, w] is given by the following equation.

FWi+1
(w) = FWi

(w)−Gi(w) + EXi∼FXi
[Gi(w − Xi)] ∀i ∈ [n] , ∀w ∈ R+ (FW)

Proof. According to definition of the sand displacement process, FWi+1
(w) can be defined
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as follows.

FWi+1
(w) = (FWi

(w)−Gi(w)) +

∫∫
ω+δ≤w

dGi(ω) dFXi
(δ)

= FWi
(w)−Gi(w) +

∫
Gi(ω − δ) dFXi

(δ)

= FWi
(w)−Gi(w) + EXi∼FXi

[Gi(w − Xi)]

Proof of Theorem 2.4. The claim follows directly from 2.1

Consider a conceptual barrier which is at position θi + 1 at the beginning of round

i and is moved to position θi+1 + 1 for the next round, for each i ∈ [n]. It is easy to

verify (i.e., by induction) that the sand never crosses to the right side of the barrier (i.e.,

FWi+1
(θi + 1) = 1). In what follows, the sand theorem implies that the sand remains

concentrated near the barrier throughout the process. The barrier theorem implies that the

barrier never passes k.

Theorem 2.6 (Sand). Throughout the sand displacement process

(2.7), at the beginning of round i ∈ [n], the following inequality

holds.

FWi
(w) < γFWi

(w + 1), ∀i ∈ [n] ,∀w ∈ [0, θi) (FW-ineq)

Furthermore, at the beginning of round i ∈ [n], the average distance

of the sand from the barrier, denoted by di, is upper bounded by the
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following inequalities in which the first inequality is strict except for

i = 1.

di ≤ (1− {θi})
1− γbθic+1

1− γ
+ {θi}

1− γdθie+1

1− γ

≤ 1− γdθie+1

1− γ
<

1

1− γ
, ∀i ∈ [n] (d)

Proof. We start by proving the inequality (FW-ineq). The proof is by induction on i. The

case of i = 1 is trivial because all the sand is at position 0 and so θ1 = 0. Suppose the

inequality holds at the beginning of round i for all w ∈ [0, θi); we show that it holds at

the beginning of round i + 1 for all w ∈ [0, θi+1). Note that θi ≤ θi+1 ≤ θi + 1, so there

are two possible cases:

Case 1. w ∈ [0, θi). Observe that Gi(w) = FWi
(w) in this interval, so:

FWi+1
(w) = FWi

(w)−Gi(w) + EXi
[Gi(w − Xi)] by (FW).

= EXi

[
FWi

(w − Xi)
]

by Gi(w) = FWi
(w), for w ∈ [0, θi).

< EXi

[
γFWi

(w − Xi + 1)
]

by induction hypothesis.

= γEXi

[
FWi

(w − Xi + 1)−Gi(w − Xi + 1) +Gi(w − Xi + 1)
]

≤ γ
(
FWi

(w + 1)−Gi(w + 1) + EXi
[Gi(w − Xi + 1)]

)
by monotonicity of FWi

(·)−Gi(·).

= γFWi+1
(w + 1) by (FW).
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Case 2. w ∈ [θi, θi+1]. We prove the claim by showing that FWi+1
(w) < γ and

FWi+1
(w + 1) = 1. Observe that FWi+1

(w) < γ because w < θi+1 and because of the

definition of θi+1 in (θ). Furthermore, observe that FWi+1
(w + 1) ≥ FWi+1

(θi + 1) = 1

both before and after round i all the sand is still contained in the interval [0, θi + 1].

Next, we prove inequality (d) which upper bounds the average distance of the sand

from the barrier at the beginning of round i ∈ [n].

di =

∫ θi+1

0

(θi + 1− w) dFWi
(w)

=

∫ θi+1

0

FWi
(w) dw by integration by part.

=

dθie∑
`=0

∫ θi+1−`

θi−`
FWi

(w) dw

≤
bθic∑
`=0

∫ θi+1

θi

γ`FWi
(w) dw +

∫ θi+1

bθic+1

γdθieFWi
(w) dw by (FW-ineq).

≤
bθic∑
`=0

γ` + {θi} γdθie by FWi
(w) ≤ 1.

= (1− {θi})
bθic∑
`=0

γ` + {θi}
dθie∑
`=0

γ`

= (1− {θi})
1− γbθic+1

1− γ
+ {θi}

1− γdθie+1

1− γ
≤ 1− γdθie+1

1− γ

The last inequality follows because (1− β)L+ βH ≤ H for any β ∈ [0, 1] and any L,H

with L ≤ H . Note that at least one of the first two inequalities is strict except for i = 1

which proves the claim.

47



Theorem 2.7 (Barrier). If
∑n

i=1 EXi∼FXi
[Xi] ≤ k for some k ∈ N,

and γ ≤ 1 − 1√
k
, then the distance of the barrier from the origin

is no more than k throughout the process, i.e., θi ≤ k − 1 for all

i ∈ [n].

Proof. At the beginning of round i, let di and d′i denote the average distance of the sand

from the barrier and from the origin respectively. Recall that the barrier is defined to be

at position θi + 1 at the beginning of round i. Observe that di + d′i = θi + 1. Furthermore,

d′i+1 = d′i + γE[Xi], i.e., the average distance of the sand from the origin is increased

exactly by γE[Xi] during round i (because the amount of selected sand is exactly γ and

the sand selected from every position w ∈ [0, θi] is moved to the right by an expected

distance of E[Xi]). By applying Theorem 2.6 we get the following inequality for all

i ∈ [n].

θi + 1 = d′i + di < γ
i−1∑
r=1

E [Xi] + di

≤ γk + (1− {θi})
1− γbθic+1

1− γ
+ {θi}

1− γdθie+1

1− γ

In order to show that distance of the barrier from the origin is no more than k

throughout the process, it is enough to show that the above inequality cannot hold for

θi > k−1. In fact it is just enough to show that it cannot hold for θi = k−1; alternatively,

it is enough to show that the complement of the above inequality holds for θi = k−1, i.e.,

k ≥ γk+ 1−γk
1−γ . To complete the proof, consider the the stronger inequality k ≥ γk+ 1

1−γ

which is quadratic in γ and can be solved to get a bound of γ ≤ 1− 1√
k
.
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Theorem 2.7 implies that a γ-conservative magician requires no more than k units

of mana, assuming that γ ≤ 1− 1√
k
. That completes the proof of Theorem 2.3.
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2.2 Applications to Mechanism Design: Prophet Secretary

Optimal stopping theory is a powerful tool for analyzing scenarios in which we

generally require optimizing an objective function over the space of stopping rules for

an allocation process under uncertainty. One such a scenario is the online auction which

is the essence of many modern markets, particularly networked markets where informa-

tion about goods, agents, and outcomes is revealed over a period of time and the agents

must make irrevocable decisions without knowing future information. Combining opti-

mal stopping theory with game theory allows us to model the actions of rational agents

applying competing stopping rules in an online market.

Perhaps the most classic problems of stopping theory are the prophet inequality

and the secretary problem. Research investigating the relation between online auction

mechanisms and prophet inequalities was initiated by Hajiaghayi, Kleinberg, and Sand-

holm [HKS07]. They observed that algorithms used in the derivation of prophet inequali-

ties, owing to their monotonicity properties, could be interpreted as truthful online auction

mechanisms and that the prophet inequality in turn could be interpreted as the mecha-

nism’s approximation guarantee. Later Chawla, Hartline, Malec, and Sivan [CHMS10]

showed the applications of prophet inequalities in Bayesian optimal mechansim design

problems. The connection between the secretary problem and online auction mechanisms

has been explored by Hajiaghayi, Kleinberg and Parkes [HKP04] and initiated several

follow-up papers (see e.g. [BIKK07, BIKK08, BIK07, IKM06, Kle05]).
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Prophet Inequality.

The classical prophet inequality has been studied in the optimal stopping theory

since the 1970s when introduced by Krengel and Sucheston [Ken78, KS77, KS78] and

more recently in computer science Hajiaghayi, Kleinberg and Sandholm [HKS07]. In the

prophet inequality setting, given (not necessarily identical) distributions {D1, . . . , Dn},

an online sequence of values X1, · · · , Xn where Xi is drawn from Di, an onlooker has

to choose one item from the succession of the values, where Xk is revealed at step k.

The onlooker can choose a value only at the time of arrival. The onlooker’s goal is to

maximize her revenue. The inequality has been interpreted as meaning that a prophet

with complete foresight has only a bounded advantage over an onlooker who observes

the random variables one by one, and this explains the name prophet inequality.

An algorithm for the prophet inequality problem can be described by setting a

threshold for every step: we stop at the first step that the arriving value is higher than

the threshold of that step. The classical prophet inequality states that by choosing the

same threshold OPT/2 for every step, one achieves the competitive ratio of 1/2. Here the

optimal solution OPT is defined as E [maxXi]. Naturally, the first question is whether

one can beat 1/2. Unfortunately, this is not possible: let q = 1
ε
, and q′ = 0. The first

value X1 is always 1. The second value X2 is either q with probability ε or q′ with prob-

ability 1− ε. Observe that the expected revenue of any (randomized) online algorithm is

max(1, ε(1
ε
)) = 1. However the prophet, i.e., the optimal offline solution would choose

q′ if it arrives, and he would choose the first value otherwise. Hence, the optimal offline
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revenue is (1 − ε) × 1 + ε(1
ε
) ≈ 2. Therefore we cannot hope to break the 1/2 barrier

using any online algorithm.

Secretary Problem.

Imagine that you manage a company, and you want to hire a secretary from a pool

of n applicants. You are very keen on hiring only the best and brightest. Unfortunately,

you cannot tell how good a secretary is until you interview him, and you must make

an irrevocable decision whether or not to make an offer at the time of the interview.

The problem is to design a strategy which maximizes the probability of hiring the most

qualified secretary. It is well-known since 1963 by Dynkin in [Dyn63] that the optimal

policy is to interview the first t − 1 applicants, then hire the next one whose quality

exceeds that of the first t − 1 applicants, where t is defined by
∑n

j=t+1
1
j−1
≤ 1 <∑n

j=t
1
j−1

. As n → ∞, the probability of hiring the best applicant approaches 1/e ≈

0.36, as does the ratio t/n. Note that a solution to the secretary problem immediately

yields an algorithm for a slightly different objective function optimizing the expected

value of the chosen element. Subsequent papers have extended the problem by varying

the objective function, varying the information available to the decision-maker, and so on,

see e.g., [AMW01, GHB83, Van80, Wil91].

52



2.2.1 Further Related Work

Prophet Inequality.

The first generalization of the basic prophet inequality introduced by Krengel and

Sucheston [Ken78, KS77, KS78] is the multiple-choices prophet inequality [AGSc01] in

which both the onlooker and the prophet have k > 1 choices. Currently, the best algorithm

for this setting is due to Alaei [Ala11], who gave an online algorithm with (1 − 1√
k+3

)-

competitive ratio for k-choice optimal stopping. Besides this, we have two generalizations

for the (multiple-choices) prophet inequality that are matroid prophet inequality [KW12]

and matching prophet inequality [AHL12].

In the matroid prophet inequality, we are given a matroid whose elements have ran-

dom weights sampled independently from (not necessarily identical) probability distribu-

tions on R+. We then run an online algorithm with knowledge of the matroid structure

and of the distribution of each element’s weight. The online algorithm must then choose

irrevocably an independent subset of the matroid by observing the sampled value of each

element (in a fixed, prespecified order). The online algorithm’s payoff is defined to be

the sum of the weights of the selected elements. Kleinberg and Weinberg [KW12] show

that for every matroid, there is an online algorithm whose expected payoff is at least half

of the expected weight of the maximum-weight basis. Observe that the original prophet

inequality introduced by Krengel and Sucheston [Ken78,KS77,KS78] corresponds to the

special case of rank-one matroids.
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The matching prophet inequality is due to Alaei, Hajiaghayi, and Liaghat [AHL12].

Indeed, they study the problem of online prophet-inequality matching in bipartite graphs.

There is a static set of bidders and an online stream of items. The interest of bidders

in items is represented by a weighted bipartite graph. Each bidder has a capacity, i.e.,

an upper bound on the number of items that can be allocated to him. The weight of a

matching is the total weight of edges matched to the bidders. Upon the arrival of an item,

the online algorithm should either allocate it to a bidder or discard it. The objective is to

maximize the weight of the resulting matching. Here we assume we know the distribution

of the incoming items in advance and we may assume that the tth item is drawn from dis-

tribution Dt. They generalize the 1
2
-competitive ratio of Krengel and Sucheston [KS77]

by presenting an algorithm with an approximation ratio of 1− 1√
k+3

where k is the mini-

mum capacity. Oberve that the classical prophet inequality is a special case of this model

where we have only one bidder with capacity one, i.e., k = 1 for which they get the same

1
2
-competitive ratio.

Secretary Problem.

The first generalization of the basic secretary problem [Dyn63] is the multiple-

choice secretary problem [BIKK08] (see a survey by Babaioff et al. [BIKK08])) in which

the interviewer is allowed to hire up to k ≥ 1 applicants in order to maximize per-

formance of the secretarial group based on their overlapping skills (or the joint util-

ity of selected items in a more general setting). More formally, assuming applicants
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of a set S = {a1, a2, · · · , an} (applicant pool) arriving in a uniformly random order,

the goal is to select a set of at most k applicants in order to maximize a non-negative

profit function f : 2S 7→ R≥0. For example, when f(T ) is the maximum individual

value [Fre83, GM66], or when f(T ) is the sum of the individual values in T [Kle05],

the problem has been considered thoroughly in the literature. Beside this, two general-

izations for the (multiple-choices) secretary problem are submodular secretary [BHZ13]

and matroid secretary [BIK07].

The submodular secretary problem is introduced by Bateni, Hajiaghayi, and Zadi-

moghaddam [BHZ13]. Indeed, both of the maximum individual value [Fre83, GM66]

and the sum of the individual values [Kle05] aforementioned are special monotone non-

negative submodular functions. Bateni, Hajiaghayi, and Zadimoghaddam [BHZ13] give

an online algorithm with ( 7
1−1/e

)-competitive ratio for the submodular secretary problem.

We should mention that there are more recent results with better constant competitive

ratio (See for example the references in [BHZ13]).

In the matroid secretary problem considered by Babaioff et al. [BIK07], we are

given a matroid with a ground set U of elements and a collection of independent (feasible)

subsets I ⊆ 2U describing the sets of elements which can be simultaneously accepted.

The goal is to design online algorithms in which the structure of U and I is known at

the outset (assume we have an oracle to answer whether a subset of U belongs to I or

not), while the elements and their values are revealed one at a time in a random order.

As each element is presented, the algorithm must make an irrevocable decision to select
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or reject it such that the set of selected elements belongs to I at all times. Babaioff

et al. [BIK07] present an O(log r)-competitive algorithm for general matroids, where r

is the rank of the matroid. However, they leave as a main open question the existence

of constant-competitive algorithms for general matroids. On the other hand, there are

several follow-up works including the recent FOCS 2014 paper due to Lachish [Lac14]

which gives O(log log rank)-competitive algorithm.

2.2.2 Our Contributions

In this paper, we introduce prophet secretary as a natural combination of the prophet

inequality problem and the secretary problem with applications to the Bayesian optimal

mechanism design. Consider a seller that has an item to sell on the market to a set of

arriving customers. The seller knows the types of customers that may be interested in

the item and he has a price distribution for each type: the price offered by a customer

of a type is anticipated to be drawn from the corresponding distribution. However, the

customers arrive in a random order. Upon the arrival of a customer, the seller makes an

irrevocable decision to whether sell the item at the offered price. We address the question

of maximizing the seller’s gain.

More formally, in the prophet secretary problem we are given a set {D1, . . . , Dn} of

(not necessarily identical) distributions. A number Xi is drawn from each distribution Di

and then, after applying a random permutation π1, . . . , πn, the numbers are given to us in

an online fashion, i.e., at step k, πk and Xπk are revealed. We are allowed to choose only
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one number, which can be done only upon receiving that number. The goal is to maximize

the expectation of the chosen value, compared to the expectation of the optimum offline

solution that knows the drawn values in advance (i.e., OPT = E [maxiXi]). For the ease

of notation, in what follows the index i iterates over the distributions while the index k

iterates over the arrival steps.

An algorithm for the prophet secretary problem can be described by a sequence

of (possibly adaptive) thresholds 〈τ1, . . . , τn〉: we stop at the first step k that Xπk ≥

τk. In particular, if the thresholds are non-adaptive, meaning that they are decided in

advance, the following is a generic description of an algorithm. The competitive ratio of

the following algorithm is defined as E[Y ]
OPT .
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Algorithm Prophet Secretary

Input: A set of distributions {D1, . . . , Dn}; a randomly permuted stream

of numbers (Xπ1 , . . . , Xπn) drawn from the corresponding distributions.

Output: A number Y .

1. Let 〈τ1, . . . , τn〉 be a sequence of thresholds.

2. For k ← 1 to n

(a) If Xπk ≥ τk then let Y = Xπk and exit the For loop.

3. Output Y as the solution.

Recall that when the arrival order is adversarial, the classical prophet inequality

states that by choosing the same threshold OPT/2 for every step, one achieves the tight

competitive ratio of 1/2. On the other hand, for the basic secretary problem where the

distributions are not known, the optimal strategy is to let τ1 = · · · = τn
e

= ∞ and

τn
e

+1 = · · · = τn = max(Xπ1 , . . . , Xπn
e
). This leads to the optimal competitive ratio of

1
e
' 0.36. Hence, our goal in the prophet secretary problem is to beat the 1/2 barrier.

We first show that unlike the prophet inequality setting, one cannot obtain the op-

timal competitive ratio by using a single uniform threshold. Indeed, Theorem 2.11 in

Section2.2.4 shows that 1/2 is the best competitive ratio one can achieve with uniform
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thresholds. To beat the 1
2

barrier, as a warm up we first show that by using two thresholds

one can achieve the competitive ratio of 5/9 ' 0.55. This can be achieved by choosing

the threshold 5
9
·OPT for the first half of the steps and then decreasing the threshold to OPT

3

for the second half of the steps. Later in Section 2.2.6, we show that by setting n distinct

thresholds one can obtain almost-tight (1− 1/e ≈ 0.63)-competitive ratio for the prophet

secretary problem.

Theorem 2.8. Let 〈τ1, . . . , τn〉 be a non-increasing sequence of n

thresholds, such that (i) τk = αk · OPT for every k ∈ [n]; (ii)

αn = 1
n+1

; and (iii) αk = nαk+1+1

n+1
for k ∈ [n− 1]. The competitive

ratio of Algorithm Prophet Secretary invoked by thresholds τk’s

is at least α1. When n goes to infinity, α1 quickly converges to

1− 1/e ≈ 0.63.

The crux of the analysis of our algorithm is to compute the probability of picking a

value x at a step of the algorithm with respect to the threshold factors αk’s. Indeed one

source of difficulty arises from the fundamental dependency between the steps: for any

step k, the fact that the algorithm has not stopped in the previous steps leads to various

restrictions on what we expect to see at the step k. For example, consider the scenario that

D1 is 1 with probability one and D2 is either 2 or 0 with equal probabilities. Now if the

algorithm chooses τ1 = 1, then it would never happen that the algorithm reaches step two

and receives a number drawn from D2! That would mean we have received a value from
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D1 at the first step which is a contradiction since we would have picked that number. In

fact, the optimal strategy for this example is to shoot for D2! We set τ1 = 2 so that we

can ignore the first value in the event that it is drawn from D1. Then we set τ2 = 1 so

that we can always pick the second value. Therefore in expectation we get 5/4 which is

slightly less than OPT = 6/4.

To handle the dependencies between the steps, we first distinguish between the

events for k ∈ [n] that we pick a value between τk+1 and τk. We show that the expected

value we pick at such events is indeed highly dependent on θ(k), the probability of pass-

ing the first k elements. We then use this observation to analyze competitive ratio with

respect to θ(k)’s and the thresholds factors αk’s. We finally show that the competitive

ratio is indeed maximized by choosing the threshold factors described in Theorem 2.8. In

Section 2.2.5, we first prove the theorem for the simple case of n = 2. This enables us

to demonstrate our techniques without going into the more complicated dependencies for

general n. We then present the full proof of Theorem 2.8 in Section 2.2.6.

As mentioned before, Bayesian optimal mechanism design problems provide a

compelling application of prophet inequalities in economics. In such a Bayesian mar-

ket, we have a set of n agents with private types sampled from (not necessary identical)

known distributions. Upon receiving the reported types, a seller has to allocate resources

and charge prices to the agents. The goal is to maximize the seller’s revenue in equi-

librium. Chawla et al. [CHMS10] pioneered the study the approximability of a special

class of such mechanisms, sequential posted pricing (SPM): the seller makes a sequence
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of take-it-or-leave-it offers to agents, offering an item for a specific price. They show al-

though simple, SPMs approximate the optimal revenue in many different settings. There-

fore prophet inequalities directly translate to approximation factors for the seller’s revenue

in these settings through standard machineries. Indeed one can analyze the so-called vir-

tual values of winning bids introduced by Roger Myerson [Mye79], to prove via prophet

inequalities that the expected virtual value obtained by the SPM mechanism approximates

an offline optimum that is with respect to the exact types. Chawla et al. [CHMS10] pro-

vide a type of prophet inequality in which one can choose the ordering of agents. They

show that under matroid feasibility constraints, one can achieve a competitive ratio of

0.5 in this model, and no algorithm can achieve a ratio better 0.8. Kleinberg and Wein-

berg [KW12] later improved there result by giving an algorithm with the tight competitive

ratio of 0.5 for an adversarial ordering. Our result can be seen as improving their approx-

imation guarantees to 0.63 for the case of single-item SPMs when the order of agents are

chosen randomly.

On the other hand, from the negative side we prove in Section 2.2.7 that no online

algorithm for the prophet secretary problem can achieve a competitive ratio 0.73.

Theorem 2.9. For any arbitrary small positive number ε, there is no

online algorithm for the prophet secretary problem with competitive

ratio 11
15

+ ε ≈ 0.73 + ε.

We also consider the minimization variants of the prophet inequality problem. In
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particular, in Section 2.2.8.1 we show that, even for the simple case in which numbers are

drawn from identical and independent distributions (i.i.d.), there is no constant competi-

tive online algorithm for the minimization variants of the prophet inequality and prophet

secretary problems.

Theorem 2.10. The competitive ratio of any online algorithm for

the minimization prophet inequality with n identical and indepen-

dent distribution is bounded by (1.11)n

6
.

2.2.3 Preliminaries

We first define a few notations. For every k ∈ [n], let zk denote the random variable

that shows the value we pick at the kth step. Observe that for a fixed sequence of drawn

values and a fixed permutation, at most one of zk’s is non-zero since we only pick one

number. Let z denote the value chosen by the algorithm. By definition, z =
∑n

k=1 zk. In

fact, since all but one of zk’s are zero, we have the following proposition. We note that

since the thresholds are deterministic, the randomness comes from the permutation π and

the distributions.

Proposition 2.2. Pr [z ≥ x] =
∑

k∈[n] Pr [zk ≥ x].

For every k ∈ [n], let θ(k) denote the probability that Algorithm Prophet Secre-

tary does not choose a value from the first k steps. For every i ∈ n and k ∈ [n − 1], let

q−i(k) denote the probability that the following two events concurrently happen:
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1. Algorithm Prophet Secretary does not choose a value from the first k elements.

2. None of the first k values are drawn from Di.

Proposition 2.3. If the thresholds of Algorithm Prophet Secretary are non-increasing,

then for every i ∈ [n] and k ∈ [n− 1], we have θ(k + 1) ≤ q−i(k).

Proof. In what fallows, let i ∈ [n] be a fixed value. The claim is in fact very intuitive:

q−i(k) is the probability of the event that the algorithm passes k values chosen from

all distributions but Di. On the other hand, θ(k + 1) corresponds to the event that the

algorithm passes k + 1 values chosen from all distributions. Intuitively, in the latter we

have surely passed k values chosen from all but Di. Therefore θ(k + 1) cannot be more

than q−i(k).

Formalizing the intuition above, however, requires an exact formulation of the prob-

abilities. For a permutation s of size k of [n], let s(j), for j ∈ [k], denote the number at

position j of s. For k ∈ [n], let S(k) denote the set of permutations of size k of [n].

Similarly, let S−i(k) denote the set of permutations of size k of [n]\{i}. Observe that

|S(k)| = n!

(n− k)!
|S−i(k)| = (n− 1)!

(n− 1− k)!

In particular, we note that |S(k + 1)| = n|S−i(k)|. We can now write down the exact

formula for q−i(k) and θ(k + 1).

θ(k + 1) =
1

|S(k + 1)|
∑

s∈S(k+1)

∏
j∈[k+1]

Pr
[
Xs(j) < τj

]
(2.1)

q−i(k) =
1

|S−i(k)|
∑

s∈S−i(k)

∏
j∈[k]

Pr
[
Xs(j) < τj

]
(2.2)
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We now show that θ(k + 1) can be written down as a convex combination of terms that

are less than q−i(k). For every ` ∈ [k], let S(k + 1, `) = {s ∈ S(k + 1)|s(`) = i}. We

have:

∑
s:S(k+1,`)

∏
j∈[k+1]

Pr
[
Xs(j) ≤ τj

]
≤

∑
s:S(k+1,`)

∏
j∈[k+1]\{`}

Pr
[
Xs(j) ≤ τj

]
Pr [Xi < τ`] ≤ 1

≤
∑

s:S(k+1,`)

∏
j∈[k]\{`}

Pr
[
Xs(j) ≤ τj

]
× Pr

[
Xs(k+1) ≤ τ`

]
Pr
[
Xs(k+1) ≤ τk+1

]
≤ Pr

[
Xs(k+1) ≤ τ`

]
since τk+1 ≤ τ`

=
∑

s:S−i(k)

∏
j∈[k]

Pr
[
Xs(j) ≤ τj

]
= |S−i(k)|q−i(k) (2.3)

By Eq. 2.2

Eq. 2.3 establishes the relation to q−i(k) for members of S(k + 1) that contain i in

one of the first k positions.
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Let S(k + 1) = S(k + 1)\
⋃
`∈[k] S(k + 1, `).

∑
s:S(k+1)

∏
j∈[k+1]\{`}

Pr
[
Xs(j) ≤ τj

]
=

∑
s:S(k+1)

∏
j∈[k]\{`}

Pr
[
Xs(j) ≤ τj

]
× Pr

[
Xs(k+1) ≤ τk+1

]
≤ (n− k)

∑
s:S−i(k+1)

∏
j∈[k]\{`}

Pr
[
Xs(j) ≤ τj

]
Pr
[
Xs(k+1) ≤ τk+1

]
≤ 1

= (n− k)|S−i(k)|q−i(k) (2.4)

Finally by Eq. 2.1 we have

θ(k + 1) =
1

|S(k + 1)|
∑

s∈S(k+1)

∏
j∈[k+1]

Pr
[
Xs(j) < τj

]

=
1

|S(k + 1)|

∑
`∈[k]

∑
s∈S(k+1,`)

∏
j∈[k+1]

Pr
[
Xs(j) < τj

]

+
∑

s∈S(k+1)

∏
j∈[k+1]

Pr
[
Xs(j) < τj

]
≤ 1

|S(k + 1)|
(k|S−i(k)|q−i(k) + (n− k)|S−i(k)|q−i(k)) By Eq. 2.3 and 2.4

= q−i(k) |S(k + 1)| = n|S−i(k)|

2.2.4 One Threshold Cannot Break 1
2 Barrier for Prophet Secretary

To illustrate that considering at least 2 thresholds is necessary to beat 1
2

barrier for

the prophet secretary problem, we first give an example that shows achieving better than

65



1
2
-competitive ratio for any online algorithm that uses only one threshold for the prophet

secretary problem is not possible.

Theorem 2.11. There is no online algorithm for the prophet secre-

tary problem that uses one threshold and can achieve competitive

ratio better than 0.5 + 1
2n

.

Proof. Suppose we have n + 1 distributions where the first n distributions always gives

1
1−1/n

and the (n+1)th distribution gives nwith probability 1
n

and gives 0 with probability

1− 1
n

. Therefore, with probability 1
n

, the maximum is n, and with probability 1− 1
n

, the

maximum is 1
1−1/n

. Thus, the expected outcome of the offline optimum algorithm is

1
n
× n+ (1− 1

n
)× 1

1−1/n
= 2.

Now, suppose we have an online algorithm that uses one threshold, say T for a

number T , that is the online algorithm accepts the first number greater or equal to a

threshold T . We consider two cases for T . The first case is if T > 1
1−1/n

for which the

algorithm does not accept 1
1−1/n

and thus, the expected outcome of such an algorithm is

1
n
× n = 1.

The second case is if T ≤ 1
1−1/n

. Observe that, with probability n
n+1

, the first

number is 1
1−1/n

and the online algorithm accepts it. And, with probability 1
n+1

, the dis-

tribution that gives n with probability 1
n

will be the first and the outcome of the algorithm

is 1. Thus, the expected outcome of the online algorithm is

n

n+ 1
× 1

1− 1/n
+

1

n+ 1
× 1 =

n2

n2 − 1
+

1

n+ 1
≤ 1 +

1

n
.
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Therefore, the competitive ratio of the online algorithms that uses only one thresh-

old is bounded by 1+1/n
2

= 0.5 + 1
2n

.

2.2.5 Two Thresholds Breaks 1
2 Barrier

Since using one threshold is hopeless, we now try using two thresholds. More

formally, for the first half of steps, we use a certain threshold, and then we use a different

threshold for the rest of steps. We note that similar to the one-threshold algorithm, both

thresholds should be proportional to OPT. Furthermore, at the beginning we should be

optimistic and try to have a higher threshold, but if we cannot pick a value in the first

half, we may need to lower the bar! We show that by using two thresholds one can indeed

achieve the competitive ratio of 5
9
' 0.55. In fact, this improvement beyond 1/2 happens

even at n = 2. Thus as a warm up before analyzing the main algorithm with n thresholds,

we focus on the case of n = 2.

Let τ1 = α1OPT and τ2 = α2OPT for some 1 ≥ α1 ≥ α2 ≥ 0 to be optimized

later. Recall that z1 and z2 are the random variables showing the values picked up by the

algorithm at step one and two, respectively. We are interested in comparing E [z] with

OPT. By Proposition 2.2 we have

E [z] =

∫ ∞
0

Pr [z ≥ x] dx =

∫ ∞
0

Pr [z1 ≥ x] dx+

∫ ∞
0

Pr [z2 ≥ x] dx

Observe that z1 (resp. z2) is either zero or has a value more than τ1 (resp. τ2). In

fact, since τ1 ≥ τ2, z is either zero or has a value more than τ2. Recall that θ(1) is the

probability of z1 = 0 while θ(2) is the probability of z1 = z2 = 0. This observation leads

67



to the following simplification:

E [z] =

∫ τ2

0

Pr [z1 ≥ x] dx+

∫ τ1

τ2

Pr [z1 ≥ x] dx+

∫ ∞
τ1

Pr [z1 ≥ x] dx

+

∫ τ2

0

Pr [z2 ≥ x] dx+

∫ ∞
τ2

Pr [z2 ≥ x] dx

=

∫ τ2

0

Pr [z ≥ x] dx+

∫ τ1

τ2

Pr [z1 ≥ x] dx

+

∫ ∞
τ1

Pr [z1 ≥ x] dx+

∫ ∞
τ2

Pr [z2 ≥ x] dx

= τ2(1− θ(2)) + (τ1 − τ2)(1− θ(1)) +

∫ ∞
τ1

Pr [z1 ≥ x] dx+

∫ ∞
τ2

Pr [z2 ≥ x] dx

Let us first focus on Pr [z1 ≥ x]. The first value may come from any of the two

distributions, thus we have

Pr [z1 ≥ x] =
1

2
Pr [X1 ≥ x] +

1

2
Pr [X2 ≥ x]

On the other hand, z2 is non-zero only if we do not pick anything at the first step.

For i ∈ {1, 2}, we pick a value of at least x drawn from Di at step two, if and only if: (i)

the value drawn from Di is at least x; and (ii) our algorithm does not pick a value from

the previous step which is drawn from the other distribution. By definitions, the former

happens with probability Pr [Xi ≥ x], while the latter happens with probability q−i(1).

Since these two events are independent we have

Pr [z2 ≥ x] =
1

2

∑
i∈{1,2}

q−i(1) Pr [Xi ≥ x] ≥ θ(2)

2

∑
i

Pr [Xi ≥ x]

where the last inequality follows from Proposition 2.3, although the proposition is trivial
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for n = 2. We can now continue analyzing E [z] from before:

E [z] = τ2(1− θ(2)) + (τ1 − τ2)(1− θ(1)) +

∫ ∞
τ1

Pr [z1 ≥ x] dx+

∫ ∞
τ2

Pr [z2 ≥ x] dx

≥ τ2(1− θ(2)) + (τ1 − τ2)(1− θ(1))

+
θ(1)

2

∫ ∞
τ1

∑
i

Pr [Xi ≥ x] dx+
θ(2)

2

∫ ∞
τ2

∑
i

Pr [Xi ≥ x] dx

We note that although the θ(1) factor is not required in the third term of the last inequality,

we include it so that the formulas can have the same formation as in the general formula

of the next sections.

It remains to bound
∫∞
τk

∑
i Pr [Xi ≥ x] for k ∈ {1, 2}. Recall that OPT =

E [maxiXi]. Hence for every k ∈ {1, 2} we have

OPT =

∫ τk

0

Pr [maxXi ≥ x] dx+

∫ ∞
τk

Pr [maxXi ≥ x]

≤ τk +

∫ ∞
τk

Pr [maxXi ≥ x] Pr [maxXi ≥ x] ≤ 1

(1− αk)OPT ≤
∫ ∞
τk

Pr [maxXi ≥ x] τk = αkOPT

≤
∫ ∞
τk

∑
i

Pr [Xi ≥ x] dx Pr [maxXi ≥ x] ≤
∑
i

Pr [Xi ≥ x] dx
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Therefore we get

E [z] ≥ τ2(1− θ(2)) + (τ1 − τ2)(1− θ(1))

+
θ(1)

2

∫ ∞
τ1

∑
i

Pr [Xi ≥ x] dx+
θ(2)

2

∫ ∞
τ2

∑
i

Pr [Xi ≥ x] dx

≥ (α2OPT)(1− θ(2)) + (α1 − α2)OPT(1− θ(1))

+
θ(1)

2
(1− α1)OPT +

θ(2)

2
(1− α2)OPT

= OPT
(
α1 + θ1(

1 + 2α2 − 3α1

2
) + θ2(

1− 3α2

2
)

)

Therefore by choosing α2 = 1/3 and α1 = 5/9, the coefficients of θ1 and θ2 become

zero, leading to the competitive ratio of 5/9 ' 0.55. In the next section, we show how

one can generalize the arguments to the case of n thresholds for arbitrary n.

2.2.6 (1− 1
e ≈ 0.63)-Competitive Ratio Using n Thresholds

In this section we prove our main theorem. In particular, we invoke Algorithm

Prophet Secretary with n distinct thresholds τ1, . . . , τn. The thresholds τ1, . . . , τn that

we consider are non-adaptive (i.e., Algorithm Prophet Secretary is oblivious to the

history) and non-increasing. Intuitively, this is because as we move to the end of stream

we should be more pessimistic and use lower thresholds to catch remaining higher values.

Formally, for every k ∈ [n], we consider threshold τk = αk · OPT where the

sequence α1, . . . , αn is non-increasing that is, α1 ≥ α1 ≥ . . . ≥ αn. We invoke Algorithm

Prophet Secretary with these thresholds and analyze the competitive ratio of Algorithm

Prophet Secretary with respect to coefficients αk. Theorem 2.8 shows that there exists
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a sequence of coefficients αk that leads to the competitive ratio of (1− 1/e) ≈ 0.63.

Proof of Theorem 2.8.

We prove the theorem in two steps: First, we find a lower bound on E [z] in terms

of OPT and coefficients αi. Second, we set coefficients αk so that (1) α1 becomes the

competitive ratio of Algorithm Prophet Secretary and (2) α1 converges to 1−1/e, when

n goes to infinity.

Next we give the proof of the theorem in details. Here we first prove few auxiliary

lemmas.

In the first lemma, we find a lower bound for
∫∞
τk

Pr [maxXi ≥ x] dx based on

OPT = E [maxiXi].

Lemma 2.2.
∫∞
τk

Pr [maxXi ≥ x] dx ≥ (1− αk)OPT.

Proof. For an arbitrary k ∈ [n] and since Pr [maxXi ≥ x] ≤ 1, we have

OPT = E
[
max
i
Xi

]
=

∫ ∞
0

Pr [maxXi ≥ x] dx

=

∫ τk

0

Pr [maxXi ≥ x] dx+

∫ ∞
τk

Pr [maxXi ≥ x] dx

≤ τk +

∫ ∞
τk

Pr [maxXi ≥ x] dx.

Since, by definition τk = αk · OPT, we have (1 − αk) · OPT ≤∫∞
τk

Pr [maxXi ≥ x] dx.

In the next lemma we split E [z] into two terms. Later, we find lower bounds for

each one of these terms based on OPT = E [maxiXi] separately.
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Lemma 2.3. Let z =
∑n

k=1 zk denote the value chosen by Algorithm Prophet Secretary.

For z we have

E [z] =
n∑
k=1

∫ τk

0

Pr [zk ≥ x] dx+
n∑
k=1

∫ ∞
τk

Pr [zk ≥ x] dx.

Proof. By Proposition 2.2 we have

E [z] =

∫ ∞
0

Pr [z ≥ x] dx =
n∑
k=1

∫ ∞
0

Pr [zk ≥ x] dx

=
n∑
k=1

∫ τk

0

Pr [zk ≥ x] dx+
n∑
k=1

∫ ∞
τk

Pr [zk ≥ x] dx,

where we use this fact that z =
∑n

k=1 zk because we only pick one number for a fixed

sequence of drawn values and a fixed permutation and therefore, at most one of zk’s is

non-zero.

Now, we find a lower bound for the first term of E [z] in Lemma 2.3.

Lemma 2.4.
∑n

k=1

∫ τk
0

Pr [zk ≥ x] dx ≥ OPT
∑n

k=1(1− θ(k))(αk − αk+1).

Proof. Suppose x ≤ τk. Observe that event zk ≥ x occurs when Algorithm Prophet

Secretary chooses a value at step k. In fact, since the thresholds are non-increasing,

whatever we pick at the first k steps would be at least x. Recall that for every k ∈ [n],

θ(k) is the probability that Algorithm Prophet Secretary does not choose a value from

the first k steps. Hence, for every k ∈ [n] and x ≤ τk we have

∑
j≤k

Pr [zj ≥ x] = 1− θ(k). (2.5)
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To simplify the notation, we assume that α0 =∞ which means τ0 =∞ and we let

αn+1 = 0 which means τn+1 = 0. Therefore we have

n∑
k=1

∫ τk

0

Pr [zk ≥ x] dx =
n∑
k=1

∫ τk

τn+1

Pr [zk ≥ x] dx.

Next, we use Equation (2.5) to prove the lemma as follows.

n∑
k=1

∫ τk

0

Pr [zk ≥ x] dx =
n∑
k=1

∫ τk

τn+1

Pr [zk ≥ x] dx =
n∑
k=1

n∑
r=k

∫ τr

τr+1

Pr [zk ≥ x] dx

=
n∑
r=1

∫ τr

τr+1

r∑
k=1

Pr [zk ≥ x] dx ≥
n∑
r=1

∫ τr

τr+1

(1− θ(r))dx

=
n∑
r=1

(1− θ(r))(τr − τr+1) = OPT ·
n∑
k=1

(1− θ(k))(αk − αk+1)

Then, we find a lower bound for the second term of E [z] in Lemma 2.3.

Lemma 2.5.
∑n

k=1

∫∞
τk

Pr [zk ≥ x] dx ≥ OPT
∑

k
θ(k)
n

(1− αk).

Proof. Recall that for every distribution Di we draw a number Xi. Later, we randomly

permute numbers X1, · · · , Xn. Let the sequence of indices after random permutation be

π1, . . . , πn that is, at step k, number Xπk for πk ∈ [n] is revealed.

Suppose x ≥ τk. We break the event zk > 0 to n different scenarios depending on

which index of the distributions D1, · · · , Dn is mapped to index πk in the random per-

mutation. Let us consider the scenario in which Algorithm Prophet Secretary chooses

the value drawn from a distribution i at step k. Such a scenario happens if (i) Algorithm
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Prophet Secretary does not choose a value from the first k−1 steps which are not drawn

from i, and (ii)Xi ≥ τk. Observe that the two events are independent. Therefore, we have

Pr [zk ≥ x] =
∑

i Pr [πk = i] ·Pr [Xi ≥ x] · q−i(k− 1), where q−i(k) for every i ∈ n and

k ∈ [n−1] is the probability that the following two events concurrently happen: (i) Algo-

rithm Prophet Secretary does not choose a value from the first k elements, and (ii) none

of the first k values are drawn from Di. Since πk is an index in the random permutation

we obtain

Pr [zk ≥ x] =
∑
i

Pr [πk = i] · Pr [Xi ≥ x] · q−i(k − 1)

=
1

n
·
∑
i

Pr [Xi ≥ x] · q−i(k − 1)

Using Proposition 2.3 and an application of the union bound we then have

Pr [zk ≥ x] =
∑
i

Pr [πk = i] · Pr [Xi ≥ x] · q−i(k − 1)

=
1

n

∑
i

Pr [Xi ≥ x] · q−i(k − 1)

≥ θ(k)

n
·
∑
i

Pr [Xi ≥ x]

≥ θ(k)

n
· Pr

[
max
i
Xi ≥ x

]
Therefore, we obtain the following lower bound on

∑n
k=1

∫∞
τk

Pr [zk ≥ x] dx.
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n∑
k=1

∫ ∞
τk

Pr [zk ≥ x] dx ≥
∑
k

∫ ∞
τk

θ(k)

n
Pr [maxXi ≥ x] dx

=
∑
k

θ(k)

n

∫ ∞
τk

Pr [maxXi ≥ x] dx

Finally, we use the lower bound of Lemma 2.2 for
∫∞
τk

Pr [maxXi ≥ x] dx to prove

the lemma.

n∑
k=1

∫ ∞
τk

Pr [zk ≥ x] dx ≥
∑
k

θ(k)

n

∫ ∞
τk

Pr [maxXi ≥ x] dx

≥
∑
k

θ(k)

n
· (1− αk) · OPT

= OPT ·
∑
k

θ(k)

n
· (1− αk)

We use the lower bounds of Lemmas 2.4 and 2.5 in Lemma 2.3 to obtain a lower

bound for E [z].

Lemma 2.6. Let z =
∑n

k=1 zk denote the value chosen by Algorithm Prophet Secretary.

For z we have

E [z] ≥ OPT · (α1 +
n∑
k=1

θ(k)(
1

n
− αk

n
− αk + αk+1)).

Proof. By using the lower bounds of Lemmas 2.4 and 2.5 for the terms of Lemma 2.3 we
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have

E [z] ≥ OPT
n∑
k=1

((1− θ(k))(αk − αk+1) +
θ(k)

n
(1− αk))

= OPT(α1 +
n∑
k=1

θ(k)(
1

n
− αk

n
− αk + αk+1)).

We finish the theorem by proving the following claim.

Lemma 2.7. The competitive ratio of Algorithm Prophet Secretary is α1 which quickly

converges to 1− 1/e ≈ 0.63 when n goes to infinity.

Proof. Using Lemma 2.6, for z we have

E [z] ≥ OPT

(
α1 +

n∑
k=1

θ(k)

(
1

n
− αk

n
− αk + αk+1

))

which means that the competitive ratio depends on the probabilities θ(k)’s. However,

we can easily get rid of the probabilities θ(k)’s by choosing αk’s such that for every k,(
1
n
− αk

n
− αk + αk+1

)
= 0.

More formally, by starting from αn+1 = 0 and choosing αk = 1+nαk+1

1+n
for k ≤ n,

the competitive ratio of the algorithm would be α1. In below, we show that when n goes

to infinity, α1 quickly goes to 1−1/ewhich means that the competitive ratio of Algorithm

Prophet Secretary converges to 1− 1/e ≈ 0.63.

First, by the induction we show that αk =
∑n+1−k

i=0
ni

(1+n)i+1 . For the base case we

have

76



αn =
1 + nαn+1

1 + n
=

1 + n× 0

1 + n
=

n0

(1 + n)1
.

Given αk+1 =
∑n+1−(k+1)

i=0
ni

(1+n)i+1 we show the equality for αk as follows.

αk =
1 + nαk+1

1 + n
=

1 + n× αk+1

1 + n
=

1 + n(
∑n+1−(k+1)

i=0
ni

(1+n)i+1 )

1 + n

=
n0

(1 + n)1
+

n+1−(k+1)∑
i=0

ni+1

(1 + n)i+2
=

n+1−k∑
i=0

ni

(1 + n)i+1
.

Now we are ready to show α0 ≥ 1− 1/e when n goes to infinity.

lim
n→∞

α0 = lim
n→∞

n+1∑
i=0

ni

(n+ 1)i+1
= lim

n→∞

1

n+ 1

n+1∑
i=0

(1− 1

n+ 1
)i

≈ lim
n→∞

1

n+ 1

n+1∑
i=0

e−i/n ≈
∫ 1

0

e−xdx = 1− 1/e.

2.2.7 Lower Bounds for Prophet Secretary and Minimization Variants of

Classical Stopping Theory Problems

In this section we give our lower bounds for the prophet secretary problem and the

minimization variants of the prophet inequality and prophet secretary problems. First,

in Section 2.2.8 we show that no online algorithm for the prophet secretary problem can

achieve a competitive ratio of 0.73. Later, in Section 2.2.8.1 we consider the minimization

variant of the prophet inequality problem. We show that, even for the simple case in
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which numbers are drawn from identical and independent distributions (i.i.d.), there is

no constant competitive online algorithm for the minimization variants of the prophet

inequality and prophet secretary problems.

2.2.8 0.73-Lower Bound of Prophet Secretary Problem

Here we first give a simple example which shows that no algorithm for the prophet

secretary problem can achieve competitive ratio 0.75. Later, we improve this lower bound

by giving an example for which no online algorithm for the prophet secretary problem can

achieve a competitive ratio 0.73.

Lemma 2.8. There is no online algorithm for the prophet secretary problem with com-

petitive ratio 0.75 + ε, where ε is an arbitrary small positive number less than 1.

Proof. It is known that no algorithm can guarantee a competitive ratio better than 0.5 + ε,

where ε is an arbitrary small positive number less than 1. A hard example that shows this

upper bound is as follow. We have two distributions. The first distribution always gives

1, and the second distribution gives 1
ε

with probability ε and 0 with probability 1 − ε.

Observe that if we either accept the first number or reject it our expected outcome is 1.

On the other hand, the offline optimum algorithm takes 1
ε

with probability ε and 1 with

probability 1 − ε. Therefore, the expected outcome of the offline optimum algorithm is

ε · 1
ε

+ 1 · (1− ε) = 2− ε, and the competitive ratio is at most 1
2−ε ≤ 0.5 + ε.

The above example contains exactly two distributions. Thus, if the drawn numbers

from these distributions arrive in a random order, with probability 0.5 the arrival order
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is the worst case order. This means that in the prophet secretary, with probability 0.5

the expected outcome of any algorithm on this example is at most 1, while the offline

optimum algorithm is always 2 − ε. Therefore, there is no algorithm for the prophet

secretary problem with competitive ratio better than 0.5×1+0.5×(2−ε)
2−ε ≤ 0.75 + ε.

Now we prove Theorem 2.9 that improves the above lower bound by showing that

there is no algorithm for the prophet secretary problem with competitive ratio 11
15

+ ε ≈

0.73 + ε.

Proof of Theorem 2.9.

Suppose we have three distributions as follows. The first distribution always gives

1. The second distribution gives 2 with probability 0.5, and 2 with probability 0.5. The

third distribution gives 1
ε

with probability ε and 0 with probability 1− ε.

We observe that with probability ε the maximum is 1
ε
, with probability (1−ε)

2
the

maximum is 2 and with probability (1−ε)
2

the maximum is 1. Thus, the expected outcome

of the offline optimum algorithm is

ε× 1

ε
+

(1− ε)
2

× 2 +
(1− ε)

2
× 1 = 2.5− 1.5ε.

Next we analyze the expected outcome of an online algorithm for the secretary

problem. We have 6 permutations for three distributions 1, 2, and 3. Figure 2.1 shows the

expected outcome of an online algorithm for the secretary problem for each permutation.

Permutation ijk means that the draw from the i-th distribution appears the first, the draw

from the j-th distribution appears after that, and draw from the k-th distribution appears
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permutation exp. outcome (expanded) exp. outcome (closed)

123 0.5× 2 + 0.5× ε× 1
ε

1.5

132 ε× 1
ε

+ (1− ε)× 0.5× 2 2− ε

213 0.5× 2 + 0.5× 1 1.5

231 0.5× 2 + 0.5× ε× 1
ε

+ 0.5× (1− ε)× 1 2− ε
2

312 ε× 1
ε

+ (1− ε)× 1 2− ε

321 ε× 1
ε

+ (1− ε)× 0.5× 2 2− ε

Figure 2.1: Outcomes of an online algorithm for the secretary problem.

at the end. As we see in Figure 2.1, the expected outcome of any online algorithm for

our example is at most 11+3.5ε
6

. Thus, the competitive ratio of any online algorithm for the

prophet secretary problem for 0 ≤ ε < 2.5
9

is bounded by

11 + 3.5ε

6× (2.5− 1.5ε)
=

11 + 3.5ε

15− 9ε
=

11− 9ε

15− 9ε
+

12.5ε

15− 9ε
<

11

15
+ ε.

2.2.8.1 Lower Bounds for Minimization Variants of Classical Stopping

Theory Problems

In this section, we consider the minimization variant of the prophet inequality set-

ting. First, we consider the simple case that numbers are drawn from identical and in-
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dependent distributions. In particular, we prove Theorem 2.10 that shows, even for the

simple case of identical and independent distributions, there is no constant competitive

online algorithm for the minimization variant of the prophet inequality problem. Later,

we give more power to the online algorithm and let it to change its decision once; we call

this model online algorithm with one exchange. We show in Lemma 2.12 that there is no

constant competitive online algorithm with one exchange for the minimization variants of

the prophet inequality and prophet secretary problems.

Proof of Theorem 2.10.

Suppose we have n identical distributions, each gives 0 with probability 1
3
, 1 with

probability 1
3

and 2n with probability 1
3
. One can see that with probability (1

3
)n, all of the

numbers are 2n and thus the minimum number is 2n. Also, with probability (2
3
)n − (1

3
)n,

there is no 0 and there is at least one 1, and thus, the minimum is 1. In all the other cases,

the minimum is 0. Therefore, the expected outcome of the offline optimum algorithm is

(1
3
)n × 2n + (2

3
)n − (1

3
)n < 2n+1

3n
.

For this example, without loss of generality we can assume that any online algo-

rithm accept 0 as soon as it appears, and also it does not accept 2n except for the last item.

Assume i+1 is the first time that the algorithm is willing to accept 1. The probability that

we arrive in this point is (2
3
)i and the probability that we see 1 at that point is 1

3
. On the

other hand, the probability that such an algorithm does not accept anything up to the last

number and sees that the last number is 2n is at least (2
3
)i(1

3
)n−i. Therefore, the expected
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outcome of the online algorithm is at least (2
3
)i 1

3
× 1 + (2

3
)i(1

3
)n−i × 2n = 2i3n−i−1+3i

3n
.

Thus, the competitive ratio is at least

2i3n−i−1 + 3i

2n+1
=

1

6
(
3n−i

2n−i
+

3i+1

2n
).

If i ≤ 0.73n, the left term is at least (1.11)n

6
; otherwise, the right term is at least (1.11)n

6
.

Theorem 2.12. For any large positive number C, there is no C-

competitive algorithm for minimization prophet inequality with one

exchange.

Proof. Suppose we have three distributions as follows. The first distribution always gives

1. The second distribution gives 1
ε

with probability ε and gives ε
1−ε with probability 1− ε.

The third distribution gives 1
ε

with probability ε and gives 0 with probability 1− ε. We set

ε later.

We observe that the minimum number is 0 with probability 1− ε, is ε
1−ε with prob-

ability ε(1− ε) and is 1 with probability ε2. Thus, the expected outcome of the optimum

algorithm is

(1− ε)× 0 + ε(1− ε)× ε

1− ε
+ ε2 × 1 = 2ε2.

Now, we show that the outcome of any online algorithm with one exchange for

this input is at least ε. In fact, this means that, the competitive ratio can not be less than

ε
2ε2

= 1
2ε

. If we set ε = 1
2C

, this means that there is no C-competitive algorithm for the

minimization prophet inequality with one exchange.
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Recall that there is no uncertainty in the first number. If an algorithm withdraw

the first number, it can take the outcome of either the second distribution or the third

distribution. However, if we do this, with probability ε2 the outcome is 1
ε
. Thus, the

expected outcome is at least ε as desired.

Now, we just need to show that if an algorithm does not select the first number, its

expected outcome is at least ε. Observe that if this happens, then the algorithm has only

the option of choosing either the second and the third distribution. We consider two cases.

The first case is if the algorithm does not select the second number, then it must select

the third number. Therefore, with probability ε, the outcome of the algorithm is 1 and

thus, the expected outcome is at least ε. The second case occurs if the algorithm selects

the second number and that is ε
1−ε . Therefore, with probability 1− ε, the outcome of the

algorithm is ε
1−ε and again the expected outcome is ε

1−ε × (1− ε) = ε.

Finally, we show that even for the minimization variant of the prophet secretary

there is no hope to get a constant competitive ratio.

Corollary 2.3. For any large number C, there is no C-competitive algorithm for mini-

mization prophet secretary with one exchange.

Proof. In Theorem 2.12, we have three distributions. Thus, in the prophet secretary

model the worst case order happen with probability 1
6
. Thus, the competitive ratio can

not be more than
1
6
·ε

2ε2
= 1

12ε
. If we set ε = 1

12C
, this essentially means that there is no

C-competitive algorithm for the minimization prophet secretary with one exchange.
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Corollary 2.4. For any large number C there is no C-competitive algorithm for the min-

imization secretary problem with one exchange.

Proof. Suppose for the sake of contradiction that there exists an algorithm Alg for the

minimization secretary problem which is C-competitive. Consider all possible realiza-

tions of the example in Theorem 2.12. Algorithm Alg is C-competitive when each

of the these realizations comes in a random order. Therefore, Algorithm Alg is C-

competitive when the input is a distribution over these realizations. This says that Alg

is a C-competitive algorithm for the minimization prophet secretary, which contradicts

Corollary 2.3 and completes the proof.
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CHAPTER 3

Covering Problems

3.1 Node-weighted Network Design Problems

Steiner problems, where the goal is to find the minimum weight subgraph of a given

(undirected) graph that satisfies a given set of connectivity requirements, form a funda-

mental class of optimization problems that have attracted substantial attention over the

last few decades. The Steiner tree (ST) problem—which asks for the minimum weight

subgraph connecting a given set of vertices called terminals—is perhaps the most rep-

resentative problem in this class. This chapter deals with its well-studied generalization

called the the Steiner forest (SF) problem where the connectivity requirement is repre-

sented by a set of vertex pairs called terminal pairs that need to be individually connected

in the classical online model, i.e., the input graph is given offline but the terminal pairs ar-

rive sequentially in online steps. The selected subgraph starts off as the empty subgraph,

but has to be augmented to satisfy the new connectivity constraint in each online step.
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We measure the performance of our algorithms using the classical notion of competitive

ratio, i.e., the maximum ratio (over all input sequences) of the weight1 of the algorithmic

solution to that of the offline optimum.

Steiner problems have typically been studied in two weight models: the edge-

weighted (EW) model and the node-weighted (NW) model, depending on whether the

weight function is defined on the edges or the vertices respectively. The NW model is

more general since an edge of weight w in the EW model can be replaced in the NW

model by two edges connected by a node of weight w; therefore, algorithmic results in

the NW model also apply to the EW model (see recent achievements on the offline topic

in [BHL13] and the references therein).

The online ST problem was originally considered in the EW model, where Imase

and Waxman [IW91] showed that the greedy strategy of adding the minimum cost subset

of edges in each online step obtains a competitive ratio of O(log k), which is optimal up

to constants. (Throughout this chapter, m and n will represent the number of edges and

vertices in the input graph respectively, while k will represent the number of terminals.)

This result was generalized to online EW SF by Awerbuch et al [AAB04], who showed

a competitive ratio of O(log2 n) for the greedy algorithm. This result was later improved

by Berman and Coulston [BC97] who proposed an online algorithm based on the primal

dual framework [AKR95, GW95] that achieves a competitive ratio of O(log n).

However, much less progress has been reported for NW versions of these problems.

1expected weight, if the algorithm is randomized
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Unlike in the EW model, the NW ST problem generalizes the set cover problem. The first

algorithm with a poly-logarithmic competitive ratio for the online set cover problem was

proposed by Alon et al [AAA+09] who introduced an online adaptation of the classi-

cal LP relaxation technique to solve this problem. Recently, Naor et al [NPS11] used

this technique in conjunction with structural properties of the NW ST problem to give

an O(log n log2 k)-competitive algorithm for the online NW ST problem. They also pre-

sented a poly-logarithmic competitive algorithm for the online NW SF problem, but the

running time of the algorithm is quasi-polynomial. It is important to note that there is

a qualitative difference between quasi-polynomial time algorithms and polynomial time

algorithms for NW graphs. NW undirected graphs can be reduced to EW directed graphs,

which allows for the application of known techniques for obtaining a poly-logarithmic

approximation for the directed Steiner tree problem (see, e.g., Charikar et al [CCC+99])

in quasi-polynomial time. In fact, the algorithm of Naor et al for the online NW SF

problem implicitly uses this transformation. In contrast, obtaining a poly-logarithmic

approximation for the directed Steiner tree problem in polynomial time is a major open

question. Therefore, polynomial-time algorithms for NW Steiner problems must develop

novel techniques that successfully bypass this reduction to directed graphs. Naor et al de-

veloped such a set of techniques for the online NW ST problem, and posed the more gen-

eral NW SF problem as their main open question. We resolve this question by introducing

a new generic technique that we call disk paintings and using it in conjunction with a con-

nection between the NW ST problem and the non-metric facility location problem previ-
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ously observed by Naor et al. The competitive ratio of our algorithm is O(log n log2 k),

which matches the competitive ratio for the NW ST problem [NPS11] and is optimal up

to a logarithmic factor due to a lower bound of Ω(log n log k) [AAA+09, NPS11]. An

interesting observation is that our algorithm yields a distinct algorithm for the online NW

ST problem from that of Naor et al when applied to NW ST instances.

We show that in addition to solving the online NW SF problem on arbitrary graphs,

disk paintings can be used to exploit combinatorial properties of graphs with an excluded

constant-sized minor (such as planar graphs and more generally, graphs that can be em-

bedded in surfaces of bounded genus) in online Steiner problems. We obtain an O(log n)

competitive algorithm (optimal up to constants) for the online NW SF problem, which

improves upon the online NW SF algorithm for general graphs described above. To the

best of our knowledge, this is the first instance of an online network design problem where

planarity (or more generally, exclusion of a fixed minor) has been successfully exploited

to obtain an improved competitive ratio compared to the best known (in this case, also the

best achievable) result for arbitrary graphs. We hope that disk paintings will be useful for

other online network design problems in the future.

We also extend our results (both for general graphs and for graphs with an excluded

fixed minor) to all {0, 1}-proper functions [GW95], which includes the SF problem as

a special case but also includes other problems such as T -join, point-to-point connec-

tion problems, lower capacitated partitioning, and location-design/location-routing prob-

lems. We will formally describe a few examples of such problems later; for a detailed
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description of problems that can be represented by proper functions, the reader is referred

to [GW95].

Before describing our results and techniques in detail, we remark that offline NW

Steiner problems have been studied previously. Klein and Ravi [KR95] introduced the no-

tion of spider decompositions to give anO(log k)-approximation for the NW ST problem,

which is optimal up to constants. (The constant in the approximation ratio was improved

later [GK99].) The Klein-Ravi result also extends to the SF problem, and more gener-

ally, to all proper functions. Recently, Demaine et al [DHK09] gave an O(1)-competitive

algorithm for the NW SF problem in planar graphs, where the constant was further im-

proved by Moldenhauer [Mol13] and the algorithm generalized to higher connectivity

by Chekuri et al [CEV12a]. In fact, our online algorithm for planar graphs employs the

disk painting technique in conjunction with structural ideas developed in [DHK09] for the

corresponding offline problem. Several other offline NW network design problems have

been considered in the literature (see, e.g., [GMNS99, MR07, Nut10]).

3.1.1 Problem Formulation

We are now ready to formally define the SF problem (from now on, the problems

we refer to are online and NW, unless otherwise stated). Let G = (V,E) be an undirected

graph containing n vertices (|V | = n) and m edges (|E| = m), and let w : V → R≥0 be

the node weight function. The subgraph induced onG by a subset of vertices S is denoted

by G[S], and has weight w(S) =
∑

v∈S w(v). The graph G and the weight function w are
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given offline.

In the SF problem, we are given a new pair of terminals (also called a demand)

sh, th ∈ V (sh and th are called the endpoints of the demand) in online step h. The

algorithm maintains a subset of vertices X such that G[X] connects all pairs of terminals

that have arrived thus far. In response to the arrival of a new terminal pair, the vertex set

X can be augmented to ensure this property. The goal is to minimize the weight of X ,

i.e., w(X). We note that the ST problem is a special case of the SF problem where one

terminal in each terminal pair is a fixed vertex.

We also consider the more general class of Steiner problems that can be repre-

sented by {0, 1}-proper functions [GW95]. We adapt an approach due to Goemans and

Williamson [GW95] and Demaine, Hajiaghayi, and Klein [DHK09] to define a general

family of node-weighted network-design problems. LetG = (V,E) be a connected graph

with a node-weight function w. Following Demaine et al. [DHK09], a {0, 1}-function

f : 2V → {0, 1} is proper for node-weighted problems if the following properties hold:

1. Symmetry f(S) = f(V \S) for every S ⊆ V .

2. Disjointness If S1 and S2 are disjoint, then f(S1) = f(S2) = 0 implies f(S1 ∪

S2) = 0.

3. Nullity f(φ) = f(V ) = 0.

4. Terminality Every vertex v with f({v}) = 1 has weight w(v) = 0.

5. Efficiency For any subset S, the value f(S) is computable in polynomial time.
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A proper function defines a family of cuts on the graph and the network design

problem asks for a minimum-cost subgraph X which covers all the cuts, i.e., G[X] must

contain an edge of the cut (S, V \S) for every set S with f(S) = 1. For a subset of

vertices X ⊆ V , we may use the set X and the subgraph G[X] interchangeably, when it

is clear from the context. A set X satisfies a proper function f , if X covers all the cuts

defined by f . Equivalently, we say X is feasible if it satisfies f .

Following [QW11], we extend the notion of proper functions to the online setting

where in each online step h, a proper function qh on the vertices is presented. Let fh

denote the cumulative function of the step, i.e., fh(S) = maxj≤h qj(S) for every S ⊆ V .

The following shows that a cumulative function is proper too.

Proposition 3.1. Let q1 and q2 be proper functions for a set of vertices V with node

weights w. Let f(S) := max{q1(S), q2(S)} for every S ⊆ V . The function f is proper.

Proof. For any S ⊆ V , f(S) = 1 if and only if either q1(S) = 1 or q2(S) = 1. Thus

Terminality and Nullity of f follows. On the other hand by applying Symmetry for q1 and

q2, if f(S) = 1 then either q1(V \S) = 1 or q2(V \S) = 1 which leads to f(V \S) = 1.

Finally to see the Disjointness of f , consider two arbitrary disjoint sets S1 and S2 such

that f(S1) = f(S2) = 0. This implies q1(S1) = q1(S2) = 0 and q2(S1) = q2(S2) = 0.

Thus q1(S1 ∪ S2) = q2(S1 ∪ S2) = 0 leading to f(S1 ∪ S2) = 0.

In the online variant of the problem, the solution produced at the end of online step

h must satisfy fh.

Note that the SF problem can be represented by the following proper function: in
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online step h with terminal pair (sh, th), for any subset S ⊆ V ,

qh(S) =


1, if |{sh, th} ∩ S| = 1

0, otherwise.

These functions qh satisfy properties 1-4 of proper functions by definition. For terminality,

all terminals must have zero cost. We show later that this property can be ensured w.l.o.g.

As examples of other problems that can be represented by proper functions, let

us now define the point-to-point connection problem [LMSL92] and the T -join prob-

lem [EJ01]. In the (offline) point-to-point connection problem, we are given a set of

terminal pairs (sh, th) (as in SF) but instead of pairing them, they are represented as a set

of sources X and sinks Y such that |X| = |Y |. The goal is to find a minimum cost sub-

graph such that the number of sources in any connected component equals the number of

sinks in the component. In the online version of the problem, every online step comprises

a set of sources Xh and a set of sink Yh such that |Xh| = |Yh|. The corresponding proper

function is given by: for any subset S ⊆ V ,

qh(S) =


1, if |Xh ∩ S| 6= |Yh ∩ S|

0, otherwise.

Note that if |Xh| = |Yh| = 1, then the problem is identical to online SF.

In the (offline) T -join problem, we are given an even set of terminals T and the goal

is to find a minimum cost subgraph of the input graph that contains at least one edge for

every cut that has an odd number of terminals on both sides. In the online version, each

online step adds an even set of vertices Th to T . The corresponding proper function is
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given by: for any subset S ⊆ V ,

qh(S) =


1, if |Th ∩ S| is odd

0, otherwise.

Finally, we need to define H-minor-free graphs. A graph H is a minor of graph

G if H can be realized from G by the following set of operations: contracting an edge,

deleting an edge, or deleting a vertex. As mentioned above, some of the results in this

section will apply to classes of input graphs where a fixed graph H of constant size is not

a minor of any graph in the class.

Assumptions. In the rest of the chapter, w.l.o.g., we assume the terminals are distinct and

have weight 0. This can be ensured in the Steiner forest problem by attaching a proxy

vertex of weight 0 to every vertex of the graph. In every online step, we interpret the

corresponding proxy vertices as the terminal pair. Let T denote the set of vertices with

weight 0, i.e., the possible terminals and let k denote the number of terminals that have

arrived.

3.1.2 Our Results

We show the following result for proper functions.

Theorem 3.1. There is a randomized online algorithm with com-

petitive ratio O(log2 k log n) for network design problems charac-

terized by proper functions.

93



When applied to the SF problem, we obtain the following corollary.

Corollary 3.1. There is a randomized polynomial-time algorithm for the online node-

weighted Steiner forest problem that has a competitive ratio of O(log n log2 k).

This result:

• improves upon the result of Naor et al [NPS11] for SF in two ways: their running

time was quasi-polynomial and competitive ratio was O(log3 n log7 k).

• matches the competitive ratio of Naor et al for ST up to constants.

• is optimal up to O(log n) since online set cover (which SF generalizes) has a ran-

domized lower bound of Ω(log n log k) [AAA+09, Kor05].

Next, we obtain the following result for graphs with an excluded fixed minor.

Theorem 3.2. There is a deterministic polynomial-time algo-

rithm with a competitive ratio of O(log k) for H-minor-free node-

weighted input graphs, where H is a fixed graph of constant size,

for network design problems characterized by proper functions.

When applied to the SF problem, we obtain the following corollary.

Corollary 3.2. There is a deterministic polynomial-time algorithm for the online node-

weighted Steiner forest problem that has a competitive ratio of O(log k) for H-minor-free

input graphs, where H is a fixed graph of constant size.

For H-minor-free graphs, this result:
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• improves upon Theorem 3.1 for SF and upon [NPS11] for ST. (We note the lower

bound of O(log n log k) does not apply in the H-minor-free case.)

• is optimal up to a constant since there is an Ω(log k) lower bound for the online

EW ST problem. (This lower bound can be demonstrated by using a diamond

graph, which is planar. We omit the details for brevity.)

3.1.3 Our Techniques: Disk Paintings

The principle of weak duality in minimization problems asserts that the optimal

solution to a primal linear program (LP) is lower bounded by any feasible solution to

the dual LP. This has inspired the classical (offline) primal-dual method [AKR95,GW95]

where a progressively constructed dual solution guides the choices made by the algorithm

in the primal solution. For Steiner problems, the dual solution is constructed by growing

moats around every terminal. When two moats collide, they are merged by buying the

path connecting the corresponding terminals and the merged moat continues growing.

Thus, the sets with positive dual variables form a laminar family. The crux of the analysis

is to charge the cost of purchased paths to the sum of the radii of the moats, and highly

relies on the fact that when two growing moats collide, they have roughly the same radii.

However, in online settings, this property cannot be ensured since the terminals are

identified sequentially in online steps. In fact, in any online step, there is only one moat

that is growing, namely the one containing the new terminal. In spite of this difficulty,

the primal-dual framework has recently been utilized for online algorithms in two distinct
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lines of work: either a dual solution is used to guide the construction of a fractional

solution to the primal LP, which is then been rounded online to produce an integer solution

(see, e.g., the survey by Buchbinder and Naor [BN09a]) or the algorithm maintains a

multi-layered collection of laminar families of moats (see, e.g., [QW11]).

While our technique of disk paintings also utilizes the broad framework of using a

dual solution to guide the algorithmic choices, we deviate significantly from these previ-

ous approaches in the structure of the dual solution that we construct, which we describe

below. A disk painting is simply a set of disjoint disks centered at terminals. Since we

have NW graphs, disks intersect at vertices rather than edges. In fact, unlike in the EW

case, more than two disks can cumulatively cause an intersection at a vertex. To visualize

these disks, let us assign a distinct color to every disk and an area equal to its weight to

every vertex. Then, a disk may color a vertex either wholly or partially. For example if

x, y, z are three vertices of weight 2w each connected by edges (x, y) and (y, z), and we

add a disk of radius 5w centered at x, then the disk colors y fully (i.e. its entire weight)

but z only partially (half its weight). An intersection is caused at a vertex when the sum

of weights colored by disks containing the vertex (either fully or partially) exceeds the

total weight of the vertex.

To formally define disk paintings, we first need to define distances between vertices.

For any pair of vertices u, v, let dw(u, v) denote the weight of the shortest path between

u and v (including u, v) w.r.t. a node weight function w. For a set S of vertices, let

dw(S, v) = minu∈S d
w(u, v). A painting is a function p : V × Θ → R≥0, where Θ is a
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set of colors. Let p(v) denote the total colored area of vertex v, i.e., p(v) =
∑

θ∈Θ p(v, θ).

A painting p is feasible if the colored area of a vertex does not exceed its weight, i.e.,

p(v) ≤ w(v) for every vertex v. The union of a set of paintings p1, p2, . . . is the painting

p =
∑

i pi (i.e., p(v, θ) =
∑

i pi(v, θ) for every vertex v and color θ). Further, p1, p2, . . .

are said to be non-overlapping if their union is feasible.

A disk of radius r centered at vertex v is a painting p in which the area within a

radius r of v is colored by some unique color θv, i.e., for every vertex u,

p(u, θv) =


w(u) if d(v, u) ≤ r

0 if d(v, u)− w(u) ≥ r

r − (d(v, u)− w(u)) otherwise

A painting that comprises a union of disks centered at terminals is called a disk

painting. This is the only kind of painting that we will use in this section; hence, we will

often simply call it a painting. A vertex u is inside the disk if d(v, u) is strictly less than

r, and on the boundary if it is not inside but has a neighbor that is inside. The continent

of a disk is the set of vertices inside the disk.

Having described some of the key concepts of disk paintings, let us now give a

high-level description of our algorithmic technique based on disk paintings. We will

formally describe our algorithm later for all proper functions, but for the purpose of this

informal discussion, let us focus on the SF problem. Our algorithms can be thought

of as augmented greedy algorithms. In every online step, we initially perform a greedy

augmentation of the primal solution that satisfies the new constraint, i.e., buy the cheapest
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path in the SF problem between the terminal pair after reducing the cost of all nodes in

the current solution to 0. To account for the resulting increase in the cost of the primal

solution, we aim to add a disk of radius equal to (or a constant factor of) the increase in

the primal cost. If we are able to place such a disk centered at either of the two terminals

in the new pair without violating feasibility of the disk painting, then we terminate the

online step. The more challenging scenario is when such disks cause infeasibility of the

painting. In this case, the algorithm augments the primal solution with a graph element

that depends on the problem. For example, in the case of SF in general graphs, the

algorithm connects the two terminals to a vertex on which the infeasibility occurred. On

the other hand, for SF in graphs with an excluded minor, the algorithm connects all the

centers of the intersecting disks via a spider. A spider is a tree with at most one vertex of

degree greater than two, which is called the center of the spider. The paths connecting the

center to the leaves are called the legs of the spider. The crux of the analysis is to show

that the total primal cost in these instances where we are unable to add a new disk to the

disk painting can be amortized to the existing disks by charging the disks that caused the

infeasibility.

3.2 Preliminaries

Before we describe the algorithms for the network design problem, we need to

introduce a few notations. Consider a graph G with a vertex-weight function w and a

proper function f defined over 2V (G). Let T denote the set of vertices with zero weight.
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A vertex t is a terminal of a proper function f , if f({t}) = 1. Note that by Terminality,

t ∈ T . For a set S ⊆ V , let δ(S) ⊆ V \S denote the neighbors of S.

3.2.1 Properties of Proper Functions

The following is the direct result of the disjointness of a proper function.

Proposition 3.2. If a set S does not contain a terminal, then f(S) = 0.

Proof. Assume by contradiction that f(S) = 1. Consider the smallest subset U ⊆ S

whose f(U) = 1. Since S does not contain a terminal, |U | ≥ 2. Let u be an arbitrary

vertex in U . Both {u} and U\{u} are strict subsets of U , thus f({u}) = f(U\{u}) = 0

which contradicts by Disjointness.

A proper function is trivial if for every S ⊆ V , f(S) = 0. Observe that if for a set

S, f(S) = 1, then f(V \S) = 1. Thus by Proposition 3.2, both S and V \S contain at

least one terminal. This leads to the next proposition.

Proposition 3.3. Any non-trivial proper function has at least two terminals.

For a subset X ⊆ V , let CC(X) denote the collection of connected components of

G[X]. The following lemma (formally proved in [DHK09]) gives a polynomial-time test

for whether a set X is feasible. The lemma easily follows from applying the properties of

proper functions on the connected components of G[X].

Lemma 3.1 (Lemma 7 in [DHK09]). A subset X is feasible if and only if X contains all

the terminals and f(C) = 0 for every C ∈ CC(X).
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Lemma 3.1, together with the Efficiency property, guarantee that given a subset

X ⊆ V , in polynomial time we can either (i) find a set S such that f(S) = 1 and

δ(S) ∩ X = φ; or (ii) verify that X is a feasible solution. Indeed the following lemma

provides a more refined structural property of a feasible solution.

Lemma 3.2. Let S ⊆ T ⊆ V and let X be a feasible solution. If f(S) = 1 and there

are no terminals in T\S, then G[X] contains a path from a terminal τ ∈ S to a vertex

v ∈ δ(T ).

Proof. First, we claim f(T ) = 1. Since f(S) = 1, by Symmetry, f(V \S) = 1. However,

f(T\S) = 0, thus by Disjointness, f(V \T ) must be one. Now by Symmetry, f(T ) = 1

too.

Consider the subgraph G[X]. Let Q denote the set of vertices reachable (in G[X])

from a terminal in S. We show that Q∩δ(T ) 6= φ. Assume by contradiction, that Q ⊆ T .

The set Q is a collection of several connected components of G[X]. By Lemma 3.1 and

Disjointness, f(Q) = 0. Since f(T ) = 1, by Disjointness, f(T\Q) = 1. However, there

is no terminal in T\Q which contradicts with Proposition 3.2.

Lemma 3.2 is particularly interesting when T is the continent of a disk centered at a

terminal. If the other terminals are not inside the disk, then any feasible solution connects

the center to a vertex on the boundary.

Given a graphG, contracting a connected set of vertices S denotes replacing S by a

super-vertex adjacent to δ(S). A contraction of a graph G (denoted by G) is obtained by

contracting connected subsets of vertices in G. For a vertex v in G, let γ(v) denote the set
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of vertices ofG that have been contracted to form v. If a vertex v is not part of a contracted

set, then it retains its label, i.e., γ(v) = {v}. We note that by definition, for every v in

V (G), γ(v) is connected in G. We extend the notation by defining γ(S) =
⋃
v∈S γ(v) for

any set S ⊆ V (G). For simplicity, we consider G to be a contraction of itself. We refer

to the original vertices in G as simple vertices.

Let V (G) denote the set of vertices of G, and let wG be a node weight function over

V (G). For a contraction G, we derive a corresponding weight function by reducing the

cost of super-vertices to zero, i.e., for every vertex v ∈ V (G),

wG(v) =


wG(v) if γ(v) = {v}

0 otherwise

Let H be an induced subgraph of G. Let G be a contraction. The contracted

subgraph H is obtained from H by contracting V (H) ∩ γ(v) to v for every v ∈ G. Note

that H ⊆ G. When there is no ambiguity, a contracted subgraph may retain the label of

the original subgraph, i.e., we may refer to H by H as well.

Let f be a proper function w.r.t. the graph G. Given a contraction G, a contracted

function fG is obtained by setting fG(S) = f(
⋃
v∈S γ(v)) for every set S ⊆ V (G). In

other words, the cuts retain their f -value. Indeed, fG is proper too.

Proposition 3.4. The contracted function fG is proper w.r.t. to G and wG.

Proof. Let f be the original proper function for G. Note that the weight of a super-vertex

is zero, thus if a super-vertex becomes a terminal, the Terminality property still holds.

Efficiency and Nullity also carries over from f . To verify Symmetry, note that for every
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set S ⊆ V (G)

fG(S) = f(
⋃
v∈S

γ(v))

= f(V (G)\
⋃
v∈S

γ(v)) by Symmetry of f

= f

(
V (G) ∩ (

⋃
v∈S

γ(v))c

)

= f

(
V (G) ∩

⋂
v∈S

(γ(v))c

)
De Morgan’s law

= f (u ∈ V (G)|∀v∈Su /∈ γ(v))

= f (u ∈ V (G)|∃v/∈Su ∈ γ(v))

= fG(V (G)\S)

Finally to verify Disjointness, let S1, S2 ⊆ V (G) be disjoint sets.

fG(S1 ∪ S2) = f(
⋃

v∈{S1∪S2}

γ(v))

= f

(
(
⋃
v∈S1

γ(v)) ∪ (
⋃
v∈S2

γ(v))

)

≤ f(
⋃
v∈S1

γ(v)) + f(
⋃
v∈S2

γ(v)) By Disjointness of f and S1 ∩ S2 = φ

= fG(S1) + fG(S2)
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3.2.2 Properties of Disk Paintings

The following propositions hold for a set of non-overlapping disks.

Proposition 3.5. If u is on the boundary of a disk centered at v, then p(u, θv) is strictly

positive.

Proof. Let r be the radius of the disk. For a vertex u on the boundary, by definition

d(v, u) − w(u) < r. On the other hand if u is not inside, then p(u, θv) ≥ r − (d(v, u) −

w(u)) > 0.

Proposition 3.6. A vertex inside a disk cannot be on the boundary of another disk.

Proof. Assume by contradiction, that a vertex u is inside a disk centered at v1 while at

the same time it is on the boundary of a disk centered at v2. By definition, a vertex inside

a disk is fully covered, i.e., p(u, θv1) = w(u). On the other hand, by Proposition 3.5,

p(u, θv2) > 0. Thus in the union of the two disks,

p(u) ≥ p(u, θv1) + p(u, θv2) > w(u)

which is a contradiction.

Fact 3.1. Since the weight of a terminal is zero, the center of a disk is inside the disk.

We emphasize that by Proposition 3.6, the disks may share a vertex only on their

boundaries. This is indeed a crucial observation which ultimately leads to our algorithm

for the network design problem. Fact 3.1 is implicitly used in our analysis since we
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assume the center of a disk is inside the disk no matter how small is the radius. The next

lemma shows the relationship between a painting and the optimal offline solution for SF.

This lemma is also not used explicitly in our analysis; however, we exploit it to design

our algorithms. This is the key property of disk paintings which might be of independent

interest.

Lemma 3.3. Let L be a painting comprising disks centered at a subset of terminals S

such that for any terminal pair (s, t), s (resp., t) is not inside a disk centered at t (resp.,

s). If T be any subgraph of G connecting all terminal pairs with at least one terminal in

S, then w(T ) is at least the sum of the radii of the disks.

Proof. For a terminal v ∈ S, let rv denote the radius of the disk centered at v. Con-

sider an arbitrary terminal v ∈ S at the center of a disk. It is sufficient to show that∑
u∈V (T ) L(u, θv) ≥ rv because then one can argue

∑
v∈S

rv ≤
∑
v∈S

∑
u∈V (T )

L(u, θv) =
∑

u∈V (T )

∑
v∈S

L(u, θv)

=
∑

u∈V (T )

L(u) ≤
∑

u∈V (T )

w(u)

where the last inequality follows from the feasibility of L. Now consider the painting

induced to T . Every demand with an endpoint in S is satisfied. Thus for every v ∈ S, T

enters the disk from outside of it and passes through its center v, hence staying for at least

rv units of distance in the disk.

We prove this more formally by induction. Let v′ be the other endpoint of the

demand concerning v. Since T satisfies the demand (v, v′), there is a path from v to
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v′ in T . Let u denote the first vertex in this path which is on the boundary of the disk

centered at v. The vertex u exists since v′ is not inside the disk. Let P be the part of

the path between v and u. Note that all vertices except v′ are inside the disk. Suppose

P = (v0 = v, v1, v2, . . . , vk = u) for some k ≥ 1. We use induction to show for every i,

0 ≤ i ≤ k − 1,
∑

j≤i L(vi, θ
v) ≥ d(v, vi). The base of induction is trivial. To prove the

inductive step for arbitrary i > 0, observe that d(v, vi)−w(vi) ≤ d(v, vi−1). On the other

hand, since vi is inside, L(vi, θ
v) = w(vi). Thus by induction hypothesis

∑
j≤i

L(vj, θ
v) ≥ d(v, vi−1) + L(vi, θ

v)

≥ (d(v, vi)− w(vi)) + w(vi) ≥ d(v, vi)

Finally since L(u, θv) = rv − (d(v, u)− w(u)), we get

∑
0≤i≤k

L(vi, θ
v) ≥ d(v, vk−1) + L(u, θv)

= d(v, vk−1) + rv − (d(v, u)− w(u)) ≥ rv

which completes the proof.

3.3 Online Node-weighted Network Design

We start by describing a special variant of the well-studied facility location problem.

The input comprises a set of facilities each with a setup cost, and a set of clients each with

a connection cost to every facility, and a set of connectivity demands. The group non-

metric facility location problem (GNFL) asks for a mapping of clients to facilities that
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minimizes the sum of setup costs and connection costs while satisfying demands defined

below.

Let Λ and Ψ denote the set of facilities and clients, respectively. For a facility

λ ∈ Λ, let ω(λ) ∈ R≥0 denote the setup cost of λ. For a client ψ ∈ Ψ and a facility

λ ∈ Λ, let d(ψ, λ) ∈ R≥0 denote the cost of connecting ψ to λ.

A mappingM : Ψ→ Λ assigns clients to facilities. A mapping is a partial function,

i.e., some of the clients may not be connected to a facility. A facility λ is open if for some

client ψ, M(ψ) = λ. The cost c(M) of a mapping M is the sum of setup costs of open

facilities and connection costs used in the mapping, i.e.,

c(M) =
∑

λ|∃ψ,M(ψ)=λ

ω(λ) +
∑

ψ,λ|M(ψ)=λ

d(ψ, λ)

In the GNFL problem, the demands are in the form of groups of clients D = 〈g1, g2, . . .〉

where gi ⊆ Ψ. A mapping M satisfies D if for every group gi ∈ D at least one client

λ ∈ gi is mapped to a facility. Given a set of demands, the goal is to find a mapping

of minimum cost that satisfies all demands. In the online variant of the problem, the set

of facilities and setup costs are known in advance but the demands arrive online one at a

time, revealing the connection costs of a client if it was not present in previous demands.

Upon receiving a new demand, we need to augment the mapping to cover at least one

client of the new demand.

Bounded Group Non-metric Facility Location. Given a graph G = (V,E) with node

weights w, the bounded group non-metric facility location problem w.r.t a real value r

(r-BFL) is an instance of the GNFL problem as follows. Recall that T ⊆ V is the set of
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zero-weight vertices.

• For every vertex v ∈ V we have a facility (with the same label);

• The setup cost function is identical to the node-weight function;

• For every zero-weight vertex t ∈ T we have a client (with the same label); and

• For a client t ∈ T , consider a disk of radius r centered at t in G. For every vertex

v on the boundary of the disk, the connection cost between t and v is d(t, v) =

dw(t, v) − w(v). For every other client-facility pair (t, v) the connection cost is

infinity. Note that this includes the facilities that are too far (dw(t, v) − w(v) ≥ r)

as well as those that are too close (dw(t, v) < r).

In other words, a client can be mapped only to the facilities on the boundary of the disk,

the cost of which is the distance for touching the facility in G.

For a pair of groups of vertices g1 and g2, let dw(g1, g2) = minu∈g1,v∈g2 d
w(u, v) be

the distance between the groups in G. Let D denote the set of demands. We restrict the

input of r-BFL by adding the following assumption.

• Every pair of demands g1, g2 ∈ D should be at least 2r far from each other in G,

i.e., dw(g1, g2) ≥ 2r.

At any time in the algorithm, we say a client is active if it has appeared in a demand

so far. When the exact radius is not a concern, we may refer to r-BFL as BFL. Given a

mapping M , the graph H(M) is the subgraph of G induced by the vertices of shortest

paths connecting t to v for every client t and facility v such that M(t) = v. Observe that

w (H(M)) ≤ c(M).
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We note that since the demands are disjoint in BFL, we may collapse every group

to a single client and thus it reduces to the non-metric facility location problem (NFL)

[Hoc82,AAA+06]. In other words, we replace clients in a demand g by a special client cg

such that for every facility v, d(cg, v) = mint∈g d(t, v). Let BFLALG be an online algo-

rithm for the BFL problem with competitive ratio αBFL. We use BFLALG as a black-box

to show that the network design problem admits a competitive ratio of O(log(k) · αBFL).

In fact, Alon et al. [AAA+06] give an online randomized algorithm for the NFL problem

with competitive ratio O(log(k) log(n)), i.e., αBFL = O(log(k) log(n)). (Here n is the

number of facilities and k is the number of active clients). Therefore our competitive ratio

is O(log2 k log n).

Algorithm for Online Network Design. We are now ready to describe algorithm

NDALG For every integer i ∈ Z, the algorithm keeps a 2i-BFL instance Li. We aug-

ment the mapping of the instances using BFLALG . Let Di and Mi denote the demands

and the current mapping for the instance Li, respectively. Our algorithm maintains a par-

tial solution X guaranteeing that for every i, the solution for Li is included in X , i.e.,

H(Mi) ⊆ X . Let I denote the number of BFL instances with at least one demand. In-

deed using standard techniques one can modify the algorithm so that I = O(log(k)), the

details are presented at the end of the section.

The algorithm maintains the invariant that for any demand in Li (corresponding to a

group of clients g) the following neighborhood clearance (NC) holds at the time of arrival

of the demand in Li.
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Definition 3.1 (NC(g,i)). The neighborhood of a group g ⊆ T is clear in Li if both the

following conditions hold:

• The group g is at least 2 · 2i far in G from any previous demand in Di; and

• For every (currently) open facility v in Mi, the connection cost d(t, v) is infinite for

every t ∈ g.

If one of the conditions fails, NC(g, i) does not hold and an active client of Li or an open

facility of Li closest to g is the witness of the failure.

The algorithm starts by initializing X and Mi’s to empty. At any time step h, let

fh be the cumulative function. Let Th denote the set of terminals of fh. We augment

the solution X iteratively until it satisfies fh. At each iteration, the following process is

executed.

LetX be the current partial solution. LetG denote a contraction ofG by contracting

every connected component of G[X]. Let f denote the contracted function of fh w.r.t. G.

Recall that by Proposition 3.3, f has at least two terminals. Let (τ1, τ2) denote the closest

pair of terminals of f w.r.t. wG. Let D be the distance between them. We first buy the

shortest path between τ1 and τ2 (thus incurring a cost of D). Note that this shortest path

may contain super-vertices. Adding a super-vertex u to X implies setting X as the union

of X and γ(u). Recall that γ(u) is the set of simple vertices contracted to u. Since γ(u)

denotes a connected component of X , adding a super-vertex u to X does not change X

in this step of the algorithm.

Consider the integer i such that 4 · 2i ≤ D < 4 · 2i+1. Let g(τ1) = γ(τ1) ∩ Th
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(resp. g(τ2) = γ(τ2) ∩ Th) be the group of terminals of fh contracted to τ1 (resp. τ2).

If the neighborhood of either g(τ1) or g(τ2) is clear, we give the corresponding group as

a new demand to BFLALG for Li. We mimic the solution of BFLALG , i.e., if Mi is

augmented by mapping a client t ∈ T to a facility v ∈ V , we buy the shortest path in G

connecting t to v. However, if none of the neighborhoods is clear, let z1 and z2 denote the

witnesses of failure corresponding to NC(g(τ1), i) and NC(g(τ2), i). We then connect τ1

to z1 and τ2 to z2 by buying shortest paths w.r.t. w.
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Algorithm 3 Online Network Design
Input: A node-weighted graph G and an online stream of proper functions q1, q2, . . ..

Output: A set X such that G[X] satisfies the connectivity demands.

Offline Process:

1: For every i ∈ Z initialize Li, a 2i-BFL instance.

2: Initialize X to an empty set.

Online Scheme; assuming a proper function qh is arrived:

1: Let fh be the cumulative function and let Th denote the set of terminals of fh.

2: while X does not satisfy fh do

3: Form G from G by contracting CC(X). Let f denote the contracted function.

4: Let D denote the distance between the closest pair of terminals τ1 and τ2 in G.

5: Buy the shortest path between τ1 and τ2.

6: Consider the integer i that 4 · 2i ≤ D < 4 · 2i+1.

7: Let g(τ1) = γ(τ1) ∩ Th and g(τ2) = γ(τ2) ∩ Th.

8: if NC(g(τ1), i) holds then

9: Give g(τ1) to BFLALG as a new demand for Li. Set X = X ∪H(Mi).

10: else if NC(g(τ2), i) holds then

11: Give g(τ2) to BFLALG as a new demand for Li. Set X = X ∪H(Mi).

12: else

13: Let z1 and z2 denote the witnesses w.r.t. NC(g(τ1), i) and NC(g(τ2), i).

14: Buy the shortest paths inG connecting a terminal t1 ∈ γ(τ1) to z1 and a terminal

t2 ∈ γ(τ2) to z2.
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Analysis. We distinguish between two types of costs incurred by the algorithm. The

simulation cost is the total weight of vertices being purchased for covering the augmen-

tations of mappings in every iteration, i.e., the simulation cost is at most
∑

iw(H(Mi)).

The cost due to the weight of other vertices in X is called the connectivity cost. Note

that we may incur a connectivity cost in two places in the algorithm: (i) when buying

the shortest path; or (ii) when buying the paths connecting terminals to the corresponding

witnesses of failure.

Recall that I denotes the number of BFL instances with at least one demand. Let

OPT denote the weight of an optimal (offline) solution of the network design problem.

We show that both simulation and connectivity costs are at most O(I · αBFL) · OPT. For

every i ∈ Z, let OPTi denote the cost of an optimal (offline) solution for Li. First we

show that OPTi is a lower bound for OPT. Intuitively, by applying Lemma 3.2 in every

iteration, one can show that for every demand g ∈ Di, the optimal solution contains a

path from a terminal t ∈ g to a vertex at the boundary of a disk of radius 2i centered at t.

Indeed such a path connects t to a facility in Li. Thus we can get a feasible solution for

Li by opening a facility at the intersection of the optimal solution with the boundaries of

the disks centered at the active terminals and then connecting every demand to the closest

open facility (see Figure 3.1).

Lemma 3.4. For every i ∈ Z, OPTi ≤ OPT.

Proof. Let X∗ denote the optimal (offline) solution of the network design problem, i.e.,

OPT = w(X∗). Let D = 〈g1, . . . , gκ〉 denote the set of demands for Li. Suppose for
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Figure 3.1: Depiction of an optimal solution

The black lines show the optimal solution for the network design problem. Suppose t1, t2, t3 are

the active clients. The orange lines represent a mapping for Li based on the optimal solution.

j < l ≤ κ, the demand gj is given to Li before gl. Claim 3.1 below, shows that for

every l ∈ [κ], there exists a path pl in X∗ connecting a terminal t ∈ gl to a facility in the

boundary of a disk of radius 2i centered at t in G. Let el denote the facility at the endpoint

of pl.

Since we have neighborhood clearance for every new demand, the distance between

every pair of demands is at least 2 · 2i. Thus for two different demands gj and gl, the cor-

responding paths pj and pl may intersect only at the endpoints (i.e., ej and el), otherwise

gj and gl will be closer than 2 · 2i. We can get a feasible solution for Li by opening a

facility at every el and connecting the closest terminal t ∈ gl to el. Since the paths may

share only at the endpoints, the cost of such a mapping is a lower bound for w(X∗), thus

proving the lemma. Therefore proving the following claim completes the proof.

Claim 3.1. For every l ∈ [κ], X∗ contains a path from a terminal t ∈ gl to a vertex on
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the boundary of a disk of radius 2i centered at t in G.

Proof. Consider the iteration in which we have given the demand gl to Li. Suppose

we have received h online proper functions so far and let fh be the cumulative function.

Let G be the contraction obtained by contracting the connected components of the partial

solution at that iteration. Let f denote the corresponding contracted function. Recall that

for a terminal τ of f , gl ⊆ γ(τ) (Line 7 of Algorithm 3). Furthermore, there should be a

terminal τ ′ such that (τ, τ ′) is the closest pair of terminals. Let D be the distance between

τ and τ ′ in G. Let i be the index such that 4 · 2i ≤ D < 4 · 2i+1. Consider a disk of radius

2i centered at τ in G. At this iteration, τ and τ ′ are the closest pair of terminals and are at

least 4 · 2i far from each other. Thus there is no terminal inside the disk except τ . Let Q

be the continent of the disk.

We now define a slightly different contraction with its own set of contracted func-

tion and terminals. Let G
′

be the contraction obtained by contracting every connected

component of the partial solution, except γ(τ). In other words,G can be obtained fromG
′

by contracting γ(τ) to τ . Let f ′ denote the contracted function w.r.t. G
′
. Let Q′ ⊆ V (G

′
)

denote the same cut as Q, i.e., Q′ = (Q\{τ}) ∪ γ(τ).

Recall that in a contraction, the cuts retain their f -value. Since τ is a terminal of

f , f ′(γ(τ)) = 1. Since Q\{τ} has no terminal and G and G
′

differ only in γ(τ) and τ ,

there is no terminal of f ′ in Q′\γ(τ) either. By Lemma 3.2, any feasible solution contains

a path from a terminal t ∈ γ(τ) to a vertex in δ(Q). Therefore X∗ has a path from a

terminal t ∈ gl to a vertex at least 2i far from t. Therefore such a path intersects with a
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vertex on the boundary of a disk of radius 2i centered at t in G.

We are now ready to prove the bound on the cost of the algorithm.

Lemma 3.5. The total cost incurred by the algorithm is withinO(I ·αBFL) factor of OPT.

Proof. Lemma 3.4 directly leads to the desired bound for the simulation cost:

∑
i

w(H(Mi)) ≤
∑
i

c(Mi) ≤ αBFL
∑
i

OPTi ≤ αBFLI · OPT

We show a similar upper bound for the connectivity cost. For every i, let Di denote

the set of demands so far for Li. First we claim that BFLALG incurs the cost of at least

2i for satisfying each demand.

Claim 3.2. For every i, c(Mi) ≥ |Di| · 2i.

Proof. We prove this by induction. Let Li be one of the BFL instances. Suppose the

claim holds just before the arrival of a new demand g. Note that neighborhood clearance

holds for g. By the second condition of Definition 3.1, the distance for touching any open

facility is at least 2i, i.e., for every open facility v in Mi, d(g, {v}) − w(v) ≥ 2i. Such a

facility cannot be on the boundary of a disk of radius 2i centered at any terminal t ∈ g

(recall that a vertex v is on the boundary if d(g, {v}) − w(v) < 2i). Thus the cost of

assigning a terminal t ∈ g to any facility that is already open is infinite. Hence, BFLALG

has to open a new facility on the boundary of a disk of radius 2i centered at a terminal

t ∈ g. By definition, a vertex on the boundary is at least 2i far from the center (including

the cost of the endpoints). Thus BFLALG incurs the cost at least 2i for satisfying a new

demand.
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Consider an arbitrary iteration of the algorithm. Suppose h demands have arrived so

far and let fh denote the cumulative function. Let Th ⊆ V (G) denote the terminals of fh.

Let X be the partial solution at the start of iteration and let G be the contraction obtained

from G by contracting the connected components of X . Let f denote the corresponding

contracted function. In the algorithm, we find the closest pair of terminals (τ1, τ2) that

are D far from each other. We buy the shortest path between τ1 and τ2, thus incurring a

connectivity cost D.

We partition the iterations into different classes. Class i comprises iterations for

which i satisfies 4 · 2i ≤ D < 4 · 2i+1. We show at any time in the algorithm, the total

connection cost incurred for Class i iterations is bounded by O(1) · c(Mi) which, together

with Claim 3.2, completes the proof of the lemma. In the rest of proof, we only consider

Class i iterations for an arbitrary i ∈ [I].

We distinguish between two types of iterations.

• Type I: At Line 7 of Algorithm 3, the neighborhood is clear for either τ1 or τ2. In

such iteration, the connectivity cost we incur is at most D ≤ 8 · 2i. Let Λ denote

the number of iterations of Type I. For every Type I iteration, we add a new demand

to Li. Therefore Λ ≤ |Di|. Hence the total connectivity cost of our algorithm in

iterations of Type I is at most Λ · 8 · 2i < |Di| · 8 · 2i. By Claim 3.2, this is upper

bounded by 8c(Mi).

• Type II: None of the neighborhoods is clear at Line 7. Let z1 and z2 denote the

corresponding witnesses for NC(g(τ1), i) and NC(g(τ2), i). Since z1 and z2 are
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failure witnesses, we have dw(τ1, {z1}), dw(τ2, {z2}) < 2 ·2i. Thus the connectivity

cost we incur at a Type II iteration is less than D + dw(τ1, {z1}) + dw(τ2, {z2}) <

12·2i. On the other hand, z1 and z2 cannot belong to the same connected component

of X . Otherwise dwG(z1, z2) = 0 leading to

dwG(τ1, τ2) ≤ dwG(τ1, z1) + dwG(z1, z2) + dwG(z2, τ2)

< 2 · 2i + 0 + 2 · 2i = 4 · 2i ≤ D

⇒ dwG(τ1, τ2) < D a contradiction.

which contradicts the fact that dwG(τ1, τ2) = D. Now consider the connected com-

ponent C of G[X] that contains the witness z1. The component C contains at least

one active client of Li, because either z1 is an active client, or if z1 is an open facil-

ity, it is connected to an active client. On the other hand, observe that at Line 7, the

vertices of a new demand are connected in G[X]. Thus, since C contains an active

client, it also contains a demand of Li containing that client. The same argument

holds for the connected component that contains z2. Note that after the iteration,

z1 and z2 become connected in the partial solution through τ1 and τ2. Therefore

the number of connected components of X having a demand of Li, decreases by

at least one. Such iterations can happen at most |Di| − 1 times. Hence the total

connectivity cost of Type II iterations is at most |Di| · 12 · 2i. By Claim 3.2, this is

upper bounded by 12c(Mi); which completes the proof.

117



3.3.1 Bounding the Number of BFL Instances

Let I denote the number of BFL instances with at least one demand. A guessing

argument shows that we may modify the algorithm such that I = O(log k), losing at most

an extra constant factor in the competitive ratio. For an instance σ of the online network

design problem, let OPTσ denote the cost of an (offline) optimal solution for σ.

First observe that one may assume the value of OPTσ is known within a two factor,

if one is willing to lose a constant factor in the competitive ratio. More formally, consider

the opt-aware variant of the problem in which a guess Φ ∈ R>0 is a part of the offline in-

put. An algorithm is β-competitive for this problem, if the cost of output of the algorithm

is at most β · OPTσ for instances σ where Φ ≤ OPTσ < 2Φ.

Lemma 3.6. Given a β-competitive algorithm ALG for the opt-aware variant, one can

derive a (3β)-competitive algorithm ALG′ for the general variant of the problem.

Proof. The algorithm ALG′ runs as follows. Let σ be an instance of the problem and

suppose the minimum weight of a vertex is one. The algorithm guesses OPTσ iteratively,

doubling the guess anytime the cost exceeds a β factor of the guess. Starting from i = 0,

in iteration i we set Φ = 2i. We initialize an opt-aware instance σ′ by giving Φ as the

guess, and giving the part of online input seen so far to ALG. We continue forwarding the

arriving online input to ALG. In any step, if the cost of the (partial) solution of ALG was

exceeding β ·2Φ, we terminate the iteration and we continue to iteration i+1 by doubling

the guess.
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Let i be the index of the last iteration. Since ALG is β-competitive, we have

OPTσ ≥ 2i; otherwise we would have finished processing the online input in previous

iterations. Observe that in the last iteration, the cost of ALG is at most β ·OPTσ. The cost

we incur in an iteration j < i is at most β · 2j+1. Thus the total cost of algorithm ALG′ is

at most

β · OPTσ +
∑

0≤j<i

β · 2j+1 ≤ β · OPTσ + β · 2i+1 ≤ 3β · OPTσ

By Lemma 3.6, we may assume that the cost of an optimal solution is known within

a two factor. Let Φ denote the guess. Now consider Line 5 in Algorithm 3. By Lemma 3.2,

any feasible solution contains a path of length at least D
2

attached to τ1. Thus D ≤

2OPT ≤ 4Φ. Therefore

For any i > log2(4Φ), we never give a demand to Li. (I)

Consider a counter J initialized to zero at the beginning of Algorithm 3. We incre-

ment J anytime we enter the “while” loop at Line 3. Thus at the end of the algorithm, J

shows the total number of iterations of the algorithm. We first claim that the final value

of J is at most k − 1. Recall that at Line 5, γ(τ1) and γ(τ2) are connected components of

the partial solution X . By buying the path between τ1 and τ2, we reduce the number of

connected components of the partial solution X by one. Every connected component has

at least one terminal, thus the total number of iterations of Algorithm 3 is at most k − 1.

We now modify the algorithm such that in every iteration, after Line 5, we stop the
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iteration if D ≤ Φ
J

. Such an iteration is said to be clipped. Thus we now add a demand to

a BFL instance only in non-clipped iterations. Since the maximum possible value of J is

k − 1, we have

For any i < log2(
Φ

k
)−O(1), we never give a demand to Li. (I)

Finally, we have the ingredients for proving the first main theorem.

of Theorem 3.1. By Equations I and I , in the modified algorithm, the number of BFL in-

stances with at least one demand is at most I ≤ O(log2(4Φ)− log2(Φ
k

)) = O(log k). By

Lemma 3.5, the total cost of non-clipped iterations is at mostO(I)αBFL = O(log k)αBFL

where αBFL = O(log(k) log(n))OPT ( [AAA+06]). This leads to Theorem 3.1 since

the total cost we incur in all clipped iterations is at most
∑k−1

J=1
Φ
J
≤ O(log k)Φ ≤

O(log k)OPT.

3.4 Online Network Design in Graphs Excluding a Fixed Minor

Before we describe the deterministic algorithm forH-minor-free graphs, we need to

introduce some notation. In the rest of the section, unless specified otherwise, all graphs

are H-minor-free for a fixed graph H .

A painting is said to be r-uniform if it is a union of disks whose radii are r. When

the exact radius is not important, we may refer to an r-uniform painting as a uniform

painting.

Disk Fitting. We use a disk fitting process called DISKFIT (pseudocode in Process 1)
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repeatedly to construct a painting. Recall that a vertex v is simple, if v ∈ V (G). Let

L be a painting of a contraction G. Given a connected set S of simple vertices and a

radius r, the DISKFIT process tries to contract S and add a disk of radius r centered at

the resulting super-vertex in L. We call this a trial. The trial might either be successful,

or fail for multiple reasons that we describe below.

If for any reason the trial finishes unsuccessfully, L and G will remain unchanged

and the process returns a vertex called a witness. Let us now describe a trial. If for a vertex

v ∈ S, v is already contracted in G or L(v) > 0, the trial fails and the corresponding

witness is defined as the (super-)vertex u ∈ V (G) for which v ∈ γ(u). Otherwise, the

trial contracts S to a vertex s. LetG
′
denote the resulting graph. Note that L is still a valid

painting for G
′
. Let p be a disk of radius r centered at s in G

′
. If the union of p and L

is feasible in G
′
, we augment L to L+ p (after changing the underlying graph to G

′
) and

the trial terminates successfully. Otherwise, p and L are said to intersect at the vertices

where L + p is infeasible. The trial terminates unsuccessfully by reporting an infeasible

vertex in L+ p as the witness, breaking ties arbitrarily.

Process 1. [Disk Fitting]

Input: A painting L of a contraction G, a set of simple vertices S connected in G, and a

radius r.

1: if a vertex v ∈ S is contracted in G or is (partially) painted in L then

2: Report the vertex u ∈ V (G) whose γ(u) contains v. Terminate unsuccessfully.

3: else

4: Contract S. Let p be a disk of radius r centered at the resulting super-vertex.
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5: if L+ p is feasible then

6: Set L = L+ p. Terminate successfully.

7: else

8: Report a vertex u for which L(u) + p(u) > w(u). Terminate unsuccessfully.

Binding Spiders. Let L be the union of a set of disks on a contraction G. Suppose v is

a witness reported by the DISKFIT process in an unsuccessful trial for adding a disk over

a set of simple (and connected) vertices S. Let Lv denote the centers of the disks whose

boundary or continent contains v. (Note that if a vertex of S is already contracted in G,

then the witness may be inside a disk.) A binding spider w.r.t. to the witness v reported

by DISKFIT process is a spider in G centered at v and connected with shortest paths w.r.t.

wG to (i) every vertex in Lv, and (ii) the vertex u ∈ V (G) with γ(u) ∩ S 6= φ that is

closest to v. The following shows that the cost of buying a binding spider depends only

on the degree of the center.

Lemma 3.7. Let Υ be a binding spider w.r.t. an unsuccessful trial for putting a disk of

radius r, centered at a set S, in an r-uniform painting. If the center of spider has degree

d, then wG(Υ) ≤ d · r + w(S ∩ γ(Υ)).

Proof. Let v be the center of Υ. Recall that v is a witness of failure reported by Process 1.

If v is in the continent of a disk, then v is in S and Υ is simply a path between v and the

center of the disk. In this scenario d is one. Note that d cannot be zero since we assume

the terminals are distinct. The distance between the center of a disk and a vertex in its

continent is at most the radius of the disk. Thus in this scenario the weight of Υ is bounded
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by r, as desired.

Now suppose Lv is the set of centers of disks whose boundary contains v. For a

center u ∈ Lv, let mu denote the closest neighbor of v to u (the distance is w.r.t. to the

underlying contraction of the painting). Recall that mu is inside the disk centered on u.

In the rest of proof assume v /∈ S; the argument when v ∈ S is similar. Let p be a shortest

path connecting v to a vertex s ∈ S. Let mS denote the neighbor of v in p. The binding

spider connects v to every u ∈ Lv and to s through p. Let us denote the vertex weights of

the underlying graph by w. The weight of the binding spider comprises of w(v), d(u,mu)

for every u ∈ Lv, and d(s,mS). Note that d(u,mu) ≤ r for every u ∈ Lv since mu is

inside the disk centered at u. On the other hand, after contracting S, putting a disk of

radius r causes an infeasibility at v. Thus d(s,mS) ≤ r + w(s).

The degree of the center of the spider is d = |Lv| + 1. Since v is on the boundary

of the disks, for every u ∈ Lv, L(v, θu) = r − (d(u, v) − w(v)) = r − d(u,mu). Now

suppose we contract S to s∗. Let D be a disk of radius r centered at s∗. The painting

D +L is infeasible such that w(v) < L(v) +D(v). Thus, v is either inside the disk D or

is on its boundary. Thus D(v) ≤ r − d(s∗,mS) = r − d(s,mS) + w(s). Therefore,

w(Υ) ≤ w(v) +
∑
u∈Lv

d(u,mu) + d(s,mS)

≤ (L(v) +D(v)) +
∑
u∈Lv

d(u,mu) + d(s,mS)

≤

(∑
u∈Lv

(r − d(u,mu)) + (r − d(s,mS) + w(s))

)
+
∑
u∈Lv

d(u,mu) + d(s,mS)

= (|Lv|+ 1)r + w(s) ≤ d · r + w(S ∩Υ)
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In the algorithm, we only call the DISKFIT process for a set S if S is already in

the output X . Therefore Lemma 3.7 implies that the cost of buying a binding spider is at

most w(γ(Υ)\X) ≤ wG(Υ)− w(S ∩ γ(Υ)) ≤ d · r.

Recall that for a fixed graph H , the average degree of an H-minor-free graph is

bounded by some constant cH . (It is shown in [Mad67, Kos84] that cH = O(h
√

log h)

where h = |V (H)|.) For simplicity of notation, we introduce two constants α =

max{cH , 3} and µ = 2α. The following lemma together with Lemma 3.7 provides a

means to charge the cost of spiders with sufficiently large number of legs to (the radii of)

disks in our analysis. Note that if a binding spider has more than two leaves, its center

has to be on the boundary of multiple disks.

Lemma 3.8. Let L be the union of N disks on an H-minor-free graph. For a vertex v, let

η(v) denote the number of disks whose boundary contains v. Then,

∑
v|η(v)≥α

η(v) ≤ α ·N.

Proof. For every disk, contract the continent of the disk to its center. Observe that if a

vertex v is on the boundary of a disk, by Proposition 3.6, it is not contracted. The center

of a disk is adjacent to a vertex v if and only if v is on the boundary of the original disk.

Remove all the edges but those between a center of a disk and a vertex on the boundary.

Now the degree of a vertex v which is not the center of a disk is exactly η(v). Remove a

vertex v if η(v) < α and it is not the center of a disk. The resulting graph is a bipartite
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graph with centers of the disks at one side and the vertices at the boundaries on the other

side. The number of edges of the resulting graph is the left hand side of the inequality,

i.e.,
∑

v|η(v)≥α η(v). On the other hand, the graph is still an H-minor-free graph, thus the

average degree of vertices is at most α. The minimum degree of a vertex which is not the

center of a disk is α. Therefore the average degree of the centers of the disks is at most α,

leading to
∑

v|η(v)≥α η(v) ≤ α ·N .

3.4.1 Algorithm for H-Minor-Free Graphs.

We are now ready to describe algorithm MFSFALG . For every i ∈ Z, the algorithm

keeps a painting Li on a contraction of G. Throughout the algorithm, the changes to

the painting Li are made only by adding disks of radius 2i using the DISKFIT process.

Therefore, Li is a 2i-uniform painting comprising non-overlapping disks of radius 2i.

Initially, Li’s are empty paintings on G. At a time step h, let fh denote the cumula-

tive function. We iteratively augment the solution until fh is satisfied. In every iteration,

let X denote the current partial solution and let G denote a contraction obtained by con-

tracting every connected component of G[X]. Let f be the corresponding contracted

function. By Proposition 3.3, there are at least two terminals in G. Let (τ1, τ2) denote the

closest pair of terminals of f . Let D = dwG(τ1, τ2). We first buy the shortest path in G

connecting τ1 to τ2. Now consider the integer i such that µ · 2i < D ≤ µ · 2i+1. Using the

DISKFIT process, we try putting a disk of radius 2i centered at γ(τ1) in Li. If the trial is

unsuccessful, we do the same process for γ(τ2). If both trials are unsuccessful, let c1 and

125



c2 denote the corresponding witnesses of failure. We buy the binding spiders w.r.t. c1 and

c2. A pseudo-code for the algorithm fallows.
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Algorithm 4 Online Network Design in Graphs with an Excluded Minor
Input: An H-minor-free graph G, a node-weight function w, and an online stream of

proper functions q1, q2, . . ..

Output: A set X such that G[X] contains an edge of the cut (S, V \S) for every S ⊂ V

with qj(S) = 1 for some j.

Offline Process:

1: For every integer i, initialize a painting Li on G.

2: Initialize X to an empty set. Set µ = 2α.

Online Scheme; assuming a proper function qh is arrived:

1: Let fh be the cumulative function.

2: while X does not satisfy fh do

3: FormG fromG by contracting components ofCC(X). Let f denote the contracted

function.

4: Let (τ1, τ2) denote the closest pair of terminals of f . Let D = dwG(τ1, τ2).

5: Buy the shortest path in G connecting τ1 and τ2.

6: Consider the integer i such that µ2i < D ≤ µ2i+1.

7: Try putting a disk of size 2i centered at γ(τ1) in Li using Process 1. If it was

unsuccessful call Process 1 for a disk centered at γ(τ2).

8: if both trials were unsuccessful then

9: Buy two binding spiders w.r.t. the corresponding witnesses of failure.
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3.4.2 Analysis.

Let I denote the number of paintings with at least one disk. We will now show

that the competitive ratio of MFSFALG is O(I). Indeed, the same argument as that of

Section 3.3, shows that the algorithm can be slightly modified such that I = O(log k),

thereby proving Theorem 3.2. Let OPT denote the weight of an optimal solution to the

network design problem. Let Ci denote the centers of disks in Li. First, we show the

relationship between the paintings and OPT.

Lemma 3.9. For every i, the total radii of disks in Li is a lower bound for the optimal

solution.

Proof. Let Ci denote the centers of disks in Li. Observe that when a disk is placed in

Li, the DISKFIT process never contracts the vertices inside or on the boundary of the

disk in future. Let X∗ denote the optimal solution for the network-design problem, i.e.,

w(X∗) = OPT. We prove the lemma by showing that for every τ ∈ Ci, X∗ contains a

path from τ to a vertex on the boundary of the disk centered at τ . This completes the

proof since for every τ ∈ Ci, at least r units of the total weight of vertices of X∗ will be

colored by the color θτ . Thus w(X∗) is at least the total radii of disks in Li.

Now consider an arbitrary τ ∈ Ci. Consider the iteration in which the disk cen-

tered at τ is placed in Li. Let X and fh respectively denote the partial solution and the

cumulative function at the start of the iteration. Let G denote the contraction obtained

by contracting connected components of G[X]. Let f be the contracted function. Since
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in this iteration a disk is placed centered at τ in Li, then for a terminal τ ′ of f , τ and τ ′

are the closest pair of terminals of f (see Line 4 in Algorithm 4). Let D be the distance

between τ and τ ′. Recall that µ2i ≤ D < µ2i+1.

Now consider a disk of radius 2i centered at τ in G. Let Q be the continent of the

disk. At this iteration, there are no terminals in Q\{τ} in G since the closest terminal to

τ is the terminal τ ′ which is at least µ2i far from τ . Thus by Lemma 3.2, X∗ contains a

path from τ to a vertex in δ(Q), which completes the proof.

We are now ready to prove the main lemma.

Lemma 3.10. The total cost incurred by the algorithm is at most O(I) · OPT.

Proof. Let X denote the partial solution at an iteration of the algorithm. For every v ∈

V (G), let w̃(v) denote the cost of buying a vertex v w.r.t. X , i.e., in w̃(v) = w(v) if

v /∈ X and let w̃(v) = 0 if x ∈ V . Let (τ1, τ2) denote the closest pair of terminals. An

iteration is of Type i if µ2i < D ≤ µ2i+1 where D = dwG(τ1, τ2) is the length of the

shortest path between τ1 and τ2. We show that the cost of the vertices purchased in all

iterations of Type i is bounded by O(|Ci| · 2i) = O(OPT). In the rest of proof, we only

consider Type i iterations for an arbitrary i.

Recall that in every iteration, we buy a path connecting τ1 and τ2 and we may

additionally buy two binding spiders. A binding spider Υ is said to be expensive if w̃(Υ),

the cost of buying it, is strictly more than α · 2i. 2 We classify iterations as follows. For

2Recall that the constant α is roughly the average degree of graphs that belong to the class of the H-

minor free graphs.
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each of the cases, we can show that the increase in the weight of X can be charged to the

radii of the disks in Li.

1. Process DISKFIT successfully adds a disk of radius 2i centered at either τ1 or τ2.

2. Process DISKFIT is unsuccessful and neither of the binding spiders is expensive.

3. Process DISKFIT is unsuccessful and at least one binding spider is expensive.

Case 1

The first case is the simplest since we explicitly add a disk of radius 2i =

Ω(dw̃(τ1, τ2)) to Li. We charge the cost of the iteration, which is at most

dwG(τ1, τ2) ≤ µ · 2i+1,

to the new disk. A disk is charged in the first case only once at the time of creation. Thus

the total cost of iterations of Case 1 is at most 2µ · |Ci| · 2i = O(OPT).

Case 2

In the second case, the total cost of buying the shortest path and the two spiders is

at most

dwG(τ1, τ2) + w(γ(Υ1)\X) + w(γ(Υ2)\X)

≤ dwG(τ1, τ2) + α · 2i + α · 2i

≤ µ · 2i+1 + 2α · 2i = O(1) · 2i, (3.1)
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i.e., O(1) times the radius of a single disk in Li. We will now show that by adding the two

binding spiders, we decrease the number of connected components of G[X] containing at

least one terminal of Ci by at least one (see Figure 3.3). Then, we can conclude that there

are at most |Ci| iterations of Case 2. By Eqn. 3.1, the total cost of the iterations of Case 2

is then bounded by O(|Ci|) · 2i = O(OPT).

Let X1 and X2 respectively denote the set of nodes in the output set X before and

after a single Case 2 iteration. Both Υ1 and Υ2 have at least one leaf which is the center of

a disk; let c1 and c2 be such leaves. Since we buy the spiders and the path between τ1 and

τ2, the two terminals c1 and c2 become connected in G[X2]. So, we need to show that c1

and c2 are not connected in G[X]. Suppose not; then dwG(c1, c2) = 0. Now consider the

shortest path P1 between τ1 and c1 w.r.t. wG. Clearly wG(P1) ≤ w(γ(Υ1)\X). Further,

since Υ1 is cheap, wG(P1) ≤ α ·2i. We can define a similar (τ2, c2)-path P2 with the same

bound. Therefore we have a (τ1, τ2)-path of length

dwG(τ1, τ2) ≤ dwG(τ1, c1) + dwG(c1, c2) + dw̃(c2, τ2)

= wG(P1) + 0 + wG(P2) ≤ µ · 2i,

which contradicts the initial assumption dwG(τ1, τ2) > µ · 2i.

Case 3

The most complicated case is the third scenario involving expensive spiders. This

case requires us to use the properties ofH-minor-free graphs, in particular that the average
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𝑑 𝜏1, 𝜏2 ≥ 𝜇 2𝑖 

𝜏1 𝜏2 

𝑐1 𝑐2 

Figure 3.3: Binding Spiders

In this figure the disk fitting process is unsuccessful for both τ1 and τ2, reporting witnesses c1 and

c2. The three straight lines to the left form the first binding spider Υ1 centered at c1. The two

straight lines to the right form the second binding spider Υ2 centered at c2.

degree of vertices in G is α, to amortize the cost of the spiders to the radii of the disks3.

Before giving a formal proof, let us sketch the main ideas involved. If a binding spider is

expensive, Lemma 3.7 implies that the degree of the center of the spider is greater than

the average degree of graph G. We charge the weight of the spider to the degree of its

center. We will see that a vertex can be the center of at most one purchased expensive

spider; thus the total charge is proportional to the total degree of the centers of spiders

with degree at least α. By Lemma 3.8, the total degree of such vertices is bounded by the

number of disks up to a constant factor. Therefore the cost of expensive spiders purchased

at each painting is at most a constant factor of the total radii of the disks in the painting.

We now give a formal proof for the third case. Assume w.l.o.g. that the cost of Υ1

is at least that of Υ2. Let v be the center of Υ1. Let L denote the centers c of disks such
3Caveat: If the average degree is less than 3, α = 3
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that (i) c is a leaf of Υ1, and (ii) we have not purchased the shortest path between v and c

in previous iterations. Note that Υ1 is expensive, i.e., wG(Υ1) > α · 2i. By Lemma 3.7,

Υ1 should have at least α + 1 legs that have not been purchased yet. Since τ1 is one of

the leaves, it follows that |L| ≥ α. We say Υ1 is the primal spider of this iteration. By

Lemma 3.7, the cost of buying Υ1 (and so that of Υ2) is bounded by (|L| + 1) · 2i. The

total cost of the iteration is

dwG(τ1, τ2) + w(γ(Υ1)\X) + w(γ(Υ2)\X)

≤ µ · 2i+1 + 2(|L|+ 1) · 2i

≤ (2|L|+ 2µ+ 2) · 2i ≤ 7|L| · 2i, (3.2)

where the last inequality follows from |L| ≥ α ≥ 3 (recall µ = 2α).

For a vertex v, let η(v) denote the number of disks in Li whose boundary contains

v. Eqn. 3.2 shows that we can charge the cost of a Case 3 iteration to the number of new

legs attached to v (by a factor of 7 · 2i). In other words, the total cost of Case 3 iterations

for which v is the center of the primal spider, is bounded by 7η(v) · 2i. Hence, we charge

the cost of such iterations to η(v). Therefore the total cost of iterations of Case 3 is at

most 7 · 2i
∑

v|η(v)≥α η(v). By Lemma 3.8, it is bounded by 7α · |Ci| · 2i = O(OPT).
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3.5 Online Prize Collecting Network Design

Prize collecting Steiner problems have been extensively considered in the offline

model. In the EW variant, the current best approximation ratio for offline PCST is 1.9672

by Archer et al [ABHK11] improving upon a primal-dual (2 − 1
n−1

)-approximation al-

gorithm of Goemans and Williamson [GW95]. In the more generalized variant of the

problem, prize-collecting Steiner forest (PCSF)4, the best approximation ratio is 2.54 by

Hajiaghayi and Jain [HJ06]. More generalized variants of the problem, including the

higher connectivity demands, has been also studied (see e.g. [SSW07, HKKN12]). In the

NW variant, Chekuri et al [CEV12b] give a general O(log(n))-approximation algorithm

for prize-collecting Steiner problems with higher connectivity demands. Various primal-

dual techniques have been also developed for solving the more special cases, PCST and

PCSF (see e.g. [GMNS99, MR07, BHL13, KSS13]).

The online Steiner tree (ST) problem was originally considered in the EW model,

where Imase and Waxman [IW91] showed that a natural greedy algorithm has a compet-

itive ratio of O(log n), which is optimal up to constants. This result was generalized to

the online EW Steiner forest (SF) problem by Awerbuch et al [AAB04], who showed that

the greedy algorithm has a competitive ratio of O(log2 n). This result was later improved

by Berman and Coulston [BC97] to O(log n). All the above results can be reproduced

using dual-fitting techniques (though the original expositions relied on combinatorial ar-

4In prize-collecting Steiner forest problem, given a set of pair of vertices each with a penalty, for each

pair one needs to either connect the pair or pay the corresponding penalty.
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guments). This immediately shows that the competitive ratios hold against the respective

fractional optimums as well. Very recently, Qian and Williamson [QW11] initiated the

study of online PC Steiner problems by providing an O(log n)-competitive algorithm for

the online EW-PCST problem. The analysis of this algorithm is quite complicated and

uses a dual moat growing approach that is typical in offline primal dual algorithms pio-

neered by Agrawal et al [AKR95] of Goemans and Williamson [GW95] and an amortized

accounting scheme due to Berman and Coulston [BC97].

In contrast to EW problems, progress in online NW Steiner problems has been rela-

tively slow. Note that edge weights can be represented by node weights but not vice-versa;

so, NW problems are strictly more general. In fact, the NW-ST problem generalizes the

set cover problem, for which the first online algorithm with a poly-logarithmic compet-

itive ratio was obtained by Alon et al [AAA+09]. They introduced an online adaptation

of the classical LP relaxation technique, which has since been used extensively in online

optimization (see, e.g., the survey by Buchbinder and Naor [BN09a]). In particular, Naor

et al [NPS11] used this technique in conjunction with structural properties of the NW-ST

problem to give anO(log3 n)-competitive algorithm for the online NW-ST problem. They

left the online NW-SF problem open, which was resolved very recently by Hajiaghayi et

al [HLP13] who obtained an identical competitive ratio of O(log3 n) for the SF problem.

However, there is a crucial difference between these two results. Whereas Hajiaghayi et al

use a dual-fitting approach, which shows that the competitive ratio holds for the fractional

optimum as well, Naor et al use structural properties of integral Steiner trees. Therefore,
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their results do not hold for the fractional optimum. As described below, this distinction

turns out to be important in our work.

Techniques and Contributions.

Our first contribution is a simple but subtle reduction of online prize-collecting

Steiner problems to their respective non-prize-collecting fractional variants losing a fac-

tor ofO(log n) in the competitive ratio. This reduction is quite generic and can be applied

for more general problems than ST and SF. Indeed, this approach can be applied to any

problem which demands {0, 1}-connectivity on a family of cuts. This setting includes

the T-join problem and group Steiner tree (GST)/ group Steiner forest (GSF) problems as

special cases (see Theorem 3.5 for a formal description). All these problems are instances

of covering problems. In our reduction, we run the algorithm of Buchbinder et al [BN09a]

for solving covering problems in parallel with an algorithm for the non-prize-collecting

variant (as a black box). At each online step, we first generate an online competitive

fractional solution. Then we use the fractional solution to reveal a modified demand to

the non-prize-collecting black box and finally output an integral solution for the prize-

collecting problem. This reduction is oblivious of the cost model of the input graph, and

hence can be applied to both EW and NW problems, thereby yielding online algorithms

for various prize-collecting Steiner connectivity problems with poly-logarithmic compet-

itive ratios. Indeed one main obstacle to solving the online prize-collecting variants of

these problems is that the known rounding techniques do not seem to be effective for
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rounding the standard linear relaxation of the problems. For example for the online NW

prize-collecting ST, it is not known whether one can solve the fractional LP for PCST and

then round it online. This may have been the reason that the only PC result known before

this work, i.e, the Qian-Williamson algorithm [QW11] for online EW PCST, is quite so-

phisticated. A summary of results that follow from our reduction are shown in Table 3.1.

Next, we focus on the online EW-PCST and NW-PCST problems. For these prob-

lems, the generic reduction yields competitive ratios of O(log2 n) and O(log4 n) respec-

tively. We improve both these competitive ratios by a logarithmic factor. For the EW

problem, this matches the competitive ratio of the Qian-Williamson algorithm [QW11]

and is optimal up to constants. Further, our analysis is extremely simple and uses a natu-

ral dual-fitting approach (see Section 3.5.4).

Theorem 3.3 (also in [QW11]). The online edge-weighted prize-

collecting Steiner tree problem admits anO(log(n))-competitive al-

gorithm.

For the online NW-PCST problem, we use the generic reduction, but give an online

algorithm for the NW-ST problem that has the optimal competitive ratio of O(log2 n)

against the fractional objective. While it is relatively straightforward to use a re-

scaling argument for improving the integral competitive ratio of the algorithm of Naor et

al [NPS11] by a logarithmic factor, a similar improvement for the (fractionally compet-
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itive) algorithm of Hajiaghayi et al [HLP13] has fundamental difficulties. So, we first

design a novel dual-fitting analysis of the algorithm of Naor et al, thereby proving that

the competitive ratio of the algorithm now holds against the fractional optimum. How-

ever, using this new analysis, we can no longer use the re-scaling argument that improved

a logarithmic factor for the integral algorithm. To overcome this difficulty, we introduce

a new concept that we call dual averaging.

The celebrated moat-growing method of Agrawal, Klein, and Ravi [AKR95] and

Goemans and Williamson [GW95] has been extensively studied for various Steiner con-

nectivity problems. A general pattern in different variants of this method is as follows.

We start by growing a moat over every terminal. When two moats collide, this signi-

fies an opportunity for connecting the terminals at the center of the moats thus merging

the moats. Since the moats have a dual vector interpretation, by weak duality one can

charge the cost of an algorithm to the growth of the moats. When used in a dual-fitting

argument, the crux of the analysis is to show that the dual moats do not intersect. In the

NW setting, this turns out to be even more difficult since the next terminal that arrives

might quickly collide with polynomially many disks at the same vertex thereby making

merges of the moats infeasible. We circumvent this problem by introducing a thinness

factor for the moats. For τ ∈ (0, 1], a τ -thin dual moat is obtained by scaling the dual

variables corresponding to a moat by the factor τ . This allows us to have several overlap-

ping moats; this is in contrast to standard dual-fitting methods in which the dual moats are

disjoint. The strength of this natural modification is that one can exploit it to show that
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certain structural properties may hold on average, although they may not hold for every

dual moat independently. For example, consider the feasibility of a dual vector. A reader

familiar with the standard dual program for ST may recall that every moat has a load on

vertices inside or on the boundary of a moat. It often happens that for every vertex, a few

moats have a high load on the vertex while the load of the rest of the moats is negligible.

However, for different vertices, the moats with a high load might be different. By con-

sidering the proper thinness for the moats, one can balance the loads simultaneously for

every vertex to ensure feasibility of the dual moats. We refer the reader to Section 3.5.3

for a formal discussion of this approach.

Theorem 3.4. The online node-weighted Steiner tree problem ad-

mits an O(log2(n))-competitive algorithm. Moreover, the competi-

tive ratio holds with respect to the optimal fractional solution.

Note that the above algorithm is optimal in its competitive ratio since there is a

known lower bound of Ω(log2 n) [AAA+09, Kor05] for the online set cover problem,

which is a special case of the online NW-ST (and thus online NW-PCST) problem.

Applying the reduction in Theorem 3.5 to the algorithm in Theorem 3.4, we ob-

tain an improved competitive ratio for the online NW-PCST problem. Furthermore, very

recently, Hajiaghayi et al [HLP13] gave an algorithm with a tight competitive ratio of

O(log(n)) for the NW ST problem for planar graphs and more generally graphs exclud-

ing a fixed graph as a minor. Their results are based on a primal-dual technique and thus
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the competitive ratio is w.r.t. the fractional optimum. Therefore we get the following

results for the prize-collecting counterparts of these problems.

Corollary 3.3. The online NW prize-collecting ST problem admits an O(log3(n))-

competitive algorithm in general graphs. When restricted to graphs excluding a fixed

graph as a minor, the problem admits an O(log2(n))-competitive algorithm.

In the offline paradigm, algorithms for prize-collecting problems are used at the

heart of algorithms for other connectivity problems. An important branch of such prob-

lems are budgeted5 and quota6 problems. The key to solving these problems is to design

Lagrangian multiplier preserving (LMP) approximation algorithms for PCST. Indeed very

recently, Konemann et al. [KSS13] gave an LMP O(log(n))-approximation algorithm for

offline NW PCST. Therefore, a natural question is whether one can hope for LMP online

algorithms with poly-logarithmic competitive ratio. We show this is impossible even for

the case of online edge-weighted Steiner tree. In Section 3.5.4.1, we show a lower bound

of Ω(n) for the LMP competitive ratio of (randomized) algorithms for online EW-PCST.

3.5.1 Problem Formulation

Let G = (V,E) be an undirected graph. For a set S ⊆ V , let δ(S) ⊆ V \S denote

the neighbors of S. Given a {0, 1}-function f : 2V → {0, 1}, a demand system with

respect to f is defined as the following system of inequalities over a set of variables x(v)

5Given an upper limit on the weight, the goal is to maximize the prize of the connected vertices.
6We want the minimum-weight subgraph that gathers at least a given amount of prize.
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for every v ∈ V .

∑
v∈δ(S)

x(v) ≥ f(S) for every S ⊂ V, S 6= φ

x(v) ∈ [0, 1]

We say a {0, 1}-function f is efficient if the following properties hold: (i) f(φ) = f(V ) =

0; (ii) for every S ⊆ V , f(S) can be computed in polynomial time; and (iii) there ex-

ists a separation oracle such that for any vector x ∈ [0, 1]V , it outputs a set S with∑
v∈δ(S) x(v) < f(S) iff there is a violated constraint. The oracle should run in poly-

nomial time w.r.t. |V |.

As we will see, the last two properties are required so that our reduction runs in

polynomial time. Although the first property is not necessary, it makes the demand system

well defined even if we consider the constraints corresponding to S = φ and S = V in

the system. In the rest of the section, we use F to refer to a family of efficient functions.

Furthermore, we use G to refer to a family of node-weighted graphs G = (V,E,w) where

for v ∈ V , wv ∈ R≥0.

Problem.

A network design problem (ND) with respect to F and G is defined as follows. Let

G = (V,E,w) be a node-weighted graph in G. Given a sequence of functions f1, . . . , fk ∈

F , the goal is to find a minimum-weight vector x ∈ {0, 1}V that simultaneously satisfies

the demand systems for every function fi. The ND problem can be formulated as the

following integer program (IP). Throughout the section, for an integer k, let [k] denote
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{1, . . . , k}.

minimize
∑
v∈V

wvx(v) (ND)

∀S ⊆ V, i ∈ [k]
∑
v∈δ(S)

x(v) ≥ fi(S)

x(v) ∈ {0, 1}

Given a feasible solution x, we define cost(x) as the total weight of x, i.e,
∑

v∈V wvx(v).

In a prize-collecting network design problem (PCND) w.r.t. F and G, we are given

G = (V,E,w) ∈ G and a sequence of demands (f1, π1), . . . , (fk, πk) where fi ∈ F and

πi ∈ R≥0. For every demand (fi, πi), we need to either satisfy the demand system w.r.t. fi

or pay the penalty πi. In other words, we need to find an optimal solution to the following

IP.

minimize
∑
v∈V

wvx(v) +
∑
i∈[k]

πiz(i) (PCND)

∀S ⊆ V, i ∈ [k]
∑
v∈δ(S)

x(v) ≥ fi(S)(1− z(i))

x(v), z(i) ∈ {0, 1}

Given a feasible solution (x, z) to the IP, we define cost(x, z) as the weight of x plus the

total penalty
∑

i∈[k] πiz(i).

In what follows, we denote the cost of optimal solutions to the programs ND and

PCND by OPTND and OPTPCND. One can also relax the integrality constraints in both

IPs to get corresponding linear relaxations. We denote the cost of the optimal fractional

solutions of the corresponding linear programs (LP) by OPT∗ND and OPT∗PCND.
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3.5.2 A Generic Algorithm for Online Prize-Collecting Problems

In the online variants of network design problems and their prize-collecting coun-

terparts, demands arrive sequentially. However, we assume that the node-weighted graph

G = (V,E,w) is known in advance. More precisely, in an online prize-collecting net-

work design problem (OPCND), at time t ∈ [k], a new demand (ft, πt) arrives and we

need to output a feasible solution (xt, zt) for the integer program PCND. The decisions

are online in the sense that an online algorithm may only increase the values of the vari-

ables, i.e., for every t′ < t, xt′(v) ≤ xt(v) and zt
′
(i) ≤ zt

′
(i), for every v ∈ V and

i ∈ [k].

Consider an algorithm ALG for OPCND and a sequence of demands ρ =

(f1, π1), . . . , (fk, πk). Let ALG(ρ) denote the cost of the output of ALG on the on-

line input ρ, i.e., ALG(ρ) = cost(xk, zk). ALG is α-competitive w.r.t. G and F , if

for every G ∈ G and every sequence of demands ρ = (f1, π1), . . . , (fk, πk) where

fi ∈ F , we have ALG(ρ) ≤ αOPTPCND. ALG is strongly α-competitive, if for ev-

ery ρ, ALG(ρ) ≤ αOPT∗PCND. One can define similar notations for online network

design (OND) problems by dropping penalties and replacing PCND indices by ND. The

main result of this section is the following reduction.

Theorem 3.5. Let G and F respectively denote a family of graphs

and a family of feasible functions. Given a strongly α-competitive
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algorithm for an online network design problem (OND) w.r.t. G and

F , one can derive a strongly competitive algorithm for the corre-

sponding OPCND with a competitive ratio of αO(log(|V |)).

Before we prove Theorem 3.5, we need to recall the following theorem by Buchbinder et

al [BN09b] (later improved by Gupta and Nagarajan [GN12]7). Consider a minimization

LP in the form that given a vector c and a matrix A, minimizes c · x subject to Ax ≥ 1.8

A covering LP is a special case where all the entries of A are non-negative. In an online

covering problem, the vector c is known in advance, however, the covering constraints

arrive online. After the arrival of a new constraint, the online algorithm needs to output a

(fractional) feasible solution without decreasing the previous values of variables.

Theorem 3.6 (Theorem 4.2 of [BN09b]). Let n be the number of

variables. There exists an algorithm for the online covering prob-

lem which finds a fractional solution with the cost within O(log(n))

factor of the optimal fractional solution. Furthermore, the algo-

rithm only increases a variable if it has a positive coefficient in the

new constraint.

Consider a non-trivial constraint9 of the program PCND corresponding to a func-

7The competitive ratio in [GN12] is improved to O(log(k)) where k is the maximum number of non-

zero entries in a row.
8Let 1 and 0 denote the vectors where all the entries are one and zero, respectively.
9We say a constraint is trivial if fi(S) = 0
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tion fi and a subset S. It can be re-written in the following standard format:

z(i) +
∑
v∈δ(S)

x(v) ≥ 1

Thus all the constraints are covering constraints. Suppose we want to solve OPCND

fractionally. We note that OPCND is not formally a special case of the online covering

problem in two aspects. First, the objective function is not fully known, i.e., the prizes

are revealed online. Second, in OPCND all constraints corresponding to fi are revealed

at the same time while in an online covering problem, we assume that the constraints are

revealed one by one. The former is easy to handle since by Theorem 3.6, the algorithm

of Buchbinder et al [BN09a] only changes a variable when it has a positive coefficient in

a newly arrived constraint. Thus the variable z(i) changes only in step i after receiving

the demand (fi, πi). The second discrepancy can be handled by using the efficiency of

function fi. At any step, let (x∗, z∗) denote the current fractional solution. While the so-

lution is not feasible, we find an infeasible constraint and reveal it to the online covering

algorithm. This can be done in polynomial time since fi is efficient. We continue this

process until all the constraints are feasible.

Therefore the algorithm of Buchbinder and Naor can be applied to OPCND to

obtain a fractional solution (x∗, z∗) such that by Theorem 3.6, cost(x∗, z∗) ≤

OPT∗PCNDO(log(|V |)). Note that although the algorithm may increase the value of a

variable beyond one, this can be ignored since feasibility is maintained even if we de-

crease such variables to one.
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Algorithm.

Let ALGOND be a strongly α-competitive algorithm for OND. The following al-

gorithm for OPCND realizes Theorem 3.5. Let ρ = (f1, π1), . . . , (fk, πk) denote the

online input. We run the online fractional algorithm of Buchbinder et al and an instance

of ALGOND in parallel. At any time step, let (x∗, z∗) denote the (partial) output of the

fractional algorithm and let x denote the (partial) output of ALGOND, respectively. We

also maintain an integral vector z which shows the integral decisions of our algorithm for

paying the penalties of demands that have arrived.

At step i, we receive the new demand (fi, πi). We reveal the new demand to the

online fraction algorithm which in return updates the values of (x∗, z∗). In particular, it

sets the first and final value of z∗(i). Now if z∗(i) ≥ 1/2, we pay the penalty of the new

demand and set z(i) = 1. Otherwise, we set z(i) = 0, and we reveal the function fi to

the instance of ALGOND. At the end of iteration, we report (x, z) as the output of our

algorithm.

3.5.2.1 Proof of Theorem 3.5

We prove the theorem for the aforementioned algorithm. Observe that at the end of

the algorithm, by Theorem 3.6, cost(x∗, z∗) ≤ β ·OPT∗PCND(ρ), where β = O(log(|V |)).
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We pay the penalty of a demand i, only if z∗(i) ≥ 1
2
. Thus z(i) ≤ 2z∗(i) and we have

∑
i

πiz(i) ≤
∑
i

πi(2z
∗(i)) = 2

∑
i

πiz
∗(i) ≤ 2cost(x∗, z∗) ≤ 2β · OPT∗PCND(ρ)

(3.3)

Recall that the total cost of our algorithm is cost(x, z) =
∑

v wvx(v) +
∑

i πiz(i). Thus

it only remains to bound the weight of x. Consider the instance of the OND problem

ρ′ = 〈fi|z(i) = 0〉. Observe that our algorithm indeed reveals only ρ′ to ALGOND. Let

x′(v) = min{1, 2x∗(v)} for every vertex v ∈ V . We claim that x′ is a feasible solution.

Claim 3.3. The vector x′ is feasible for the instance ρ′.

Proof. Recall that (x∗, z∗) is a feasible solution for the linear program corresponding to

PCND. Now consider a function fi in ρ′ and an arbitrary set S ⊂ V . By definition,

z(i) = 0 and thus z∗(i) < 1
2
. If for a v ∈ δ(S), x′(v) = 1, then the constraint for fi and S

is clearly satisfied. Otherwise, for every v ∈ δ(S), x′(v) = 2x∗(v). We have

∑
v∈δ(S)

x′(v) = 2
∑
v∈δ(S)

x∗(v)

≥ 2 (fi(S)(1− z∗(i))) by feasibility of (x∗, z∗)

≥ fi(S) z∗(i) <
1

2

which proves the claim.

Now since x′ is a feasible solution, the optimum fractional solution may only have
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less weight, i.e.,

OPT∗ND(ρ′) ≤
∑
v

wvx
′(v) ≤ 2

∑
v

wvx
∗(v) ≤ 2cost(x∗, z∗) ≤ 2β · OPT∗PCND(ρ)

(3.4)

Since ALGOND is strongly α-competitive, we get

cost(x, z) =
∑
v

wvx(v) +
∑
i

πiz(i)

≤
∑
v

wvx(v) + 2β · OPT∗PCND(ρ) by (3.3)

≤ αOPT∗ND(ρ′) + 2β · OPT∗PCND(ρ) by competitiveness of ALGOND

≤ α (2β · OPT∗PCND(ρ)) + 2β · OPT∗PCND(ρ) by (3.4)

= 2β(α + 1)OPT∗PCND = O(log(|V |))α · OPT∗PCND

which completes the proof.

3.5.3 An Asymptotically Optimal Algorithm for Online NW ST

The online node-weighted Steiner tree (NW-ST) problem is a fundamental OND

problem: given a vertex root, every input function fi characterizes the cuts that separate

a vertex ti from the root.

The Online Node-weighted Steiner Tree problem.

We are given an undirected connected graph G = (V,E) where wv is the weight

of vertex v ∈ V . Let n = |V |. The online input comprises a sequence of vertices
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t0, t1, t2, . . . , tk where ti ∈ V . The output comprises a sequence H0, H1, H2, . . . , Hk,

where (i) Hi is a connected subgraph of G; (ii) the terminals {t0, t1, t2, . . . , ti} are con-

nected in Hi; and (iii) Hi is a subgraph of Hi+1. The objective is to minimize the total

weight of vertices in Hk. Without loss of generality, we assume that the weight of every

terminal is zero10. For simplicity, we will assume that the cost of the optimal solution is

n and for every vertex v, wv ∈ (0, n]. This is wlog up to a constant factor loss in the

competitive ratio11.

Naor et al [NPS11] solve the online NW ST for the first time via a reduction to

an instance of a facility location problem12. They use an interesting combinatorial fact,

namely the generalized spider decomposition, to show that the cost of the output of the

algorithm is within O(log3(n)) factor of the optimal integral solution. Our algorithm

follows the approach of Naor et al for solving the problem via an instance of a facility

location problem. Although our algorithm is very similar to that of Naor et al, our analysis

is quite different; while they use a combinatorial fact to prove the competitive ratio of the

algorithm, we use the technique of dual averaging that we alluded to in the introduction.

10For every vertex v, attach a dummy vertex ρv with weight zero to v. Upon receiving a terminal t, we

virtually assume that the terminal is ρt.
11By an online doubling strategy, we may assume that we know the objective value α of an optimal

solution. We multiply all vertex weights by n/α so that the cost of the optimal solution is n. All vertices v

with wv > n are discarded, while we set xv = 1 for those satisfying wv ≤ 1.
12In a facility location problem, given a set of facilities with setup cost and an online sequence of clients

with their connection costs to the facilities, the objective is to map the clients to facilities such that the

connection costs used in the mapping plus the setup cost of the matched facilities is minimized.
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This allows us to establish the tight competitive ratio of O(log2(n)) with respect to the

fractional solution.

An Auxiliary Linear Program.

Let Γ denote the set of compound indices V ∪ (V × [k]), i.e., for every v ∈ V and

i ∈ [k], both v ∈ Γ and (v, i) ∈ Γ. A set S ⊆ Γ is an auxiliary cut for a terminal ti, if for

every vertex v, S contains exactly one of v and (v, i). Let Si denote the collection of all

auxiliary cuts for ti, i.e., for i ∈ [k], Si = {S ⊆ Γ|∀v∈V |S ∩ {v, (v, i)}| = 1}. For every

v ∈ V and i ∈ [k], let P(v,i) denote a minimum-weight path between ti and any previous

terminal tj (i.e. 0 ≤ j < i) which goes through v. For every (compound) index γ ∈ Γ

we define a weight wγ as follows. For every v ∈ V , let wv = wv. For every v ∈ V and

i ∈ [k], w(v,i) is the weight of P(v,i) minus the weight of v.

Consider the auxiliary linear program ALP (given below) with a variable xγ for

every index γ ∈ Γ. Let x be a feasible solution to the Program ALP. Observe that for

every v ∈ V and i ∈ [k], we may assume x(v,i) ≤ xv; otherwise by reducing x(v,i) to xv

we can decrease the objective value while keeping the solution feasible13. Therefore in

the rest of section, wlog, we assume that for every feasible solution, x(v,i) ≤ xv.

13Recall that for every auxiliary cut S that contains (v, i), there exists a cut S′ that replaces (v, i) with v.

Thus if constraint P1 is feasible for S′, by reducing x(v,i) to xv , the constraint corresponding to S remains

feasible.
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minimize
∑
γ∈Γ

wγxγ (ALP)

∀ i ∈ [k], S ∈ Si
∑
γ∈S

xγ ≥ 1 (P1)

xγ ∈ [0, 1]

minimize
∑
γ∈Γ

w̃γxγ (SALP)

∀ i ∈ [k], S ∈ Si
∑
γ∈S

xγ ≥ 1 (P2)

xγ ∈ [0, 1]

We claim that for every integral feasible solution x for Program ALP, there exists an

integral solution for the Steiner tree instance having cost at most the same as the objective

value of the program. We construct the subgraph H ⊆ G as follows. We initialize the set

of vertices VH to the set of vertices v where xv = 1. Now for every v ∈ V and i ∈ [k]

that x(v,i) = 1, we add the vertices of P(v,i) to VH . Observe that adding the path P(v,i) may

increase the weight of VH by at most w(v,i) since vertex v is already in VH . Therefore the

total weight of VH is at most the objective value of Program ALP for x. Furthermore, in

the subgraph H induced by VH , every terminal ti for i ∈ [k] is connected to a previous

terminal tj for a j ∈ [0, . . . , i− 1], leading to that H is a solution for ST.

A main obstacle in solving the online ST problem is that the known rounding meth-

ods are not effective in rounding a fractional solution of the linear relaxation of standard

programs for ST. Indeed an important property of the auxiliary LP is that a standard

rounding method similar to the Set Cover problem can be used to round the solution by

losing (roughly) a logarithmic factor. However, although one can obtain an integral so-

lution for ST with the same cost as that for Program ALP, the converse does not hold.

Naor et al [NPS11] use a combinatorial decomposition of an integral solution for ST to

show that the converse holds if one is willing to incur a factor of O(log2(n)) in the cost.
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This combinatorial fact does not have a fractional counterpart which is crucial to our re-

duction in solving PCST. Furthermore, using Program ALP leads to a competitive ratio

of O(log3(n)) after applying the rounding method, which is off by a logarithmic factor

from the known lower bound. We overcome both obstacles by using a dual averaging

argument to show a similar relationship between fractional solution for ST and that for a

scaled auxiliary LP.

We define a scaled weight w̃ over the set of compound indices Γ as follows. For

every v ∈ V and i ∈ [k], let w̃(v,i) = w(v,i), while for every v ∈ V , let w̃v = wv log(n).14

The scaled auxiliary program SALP is given above. We split the objective function of this

LP into two parts. For a feasible vector x for SALP, let the facility cost, FacCost(x) =∑
v∈V w̃vxv and let the connection cost, ConCost(x) =

∑
v∈V,i∈[k] w̃(v,i)x(v,i). We may

drop x from the notation when the vector is clear from the context. Observe that a feasible

solution for SALP yields a feasible solution for NW ST with total cost at most FacCost
log(n)

+

ConCost.

Algorithm.

We first find an online15 fractional solution for SALP using the method of multi-

plicative updates. We then show the objective value of this fractional solution is within

14In the rest of the section, the base of all logarithmic terms is 2.
15In the online setting, at time step i ∈ [k], the constraints for sets S ∈ Si are revealed and the algorithm

should output a feasible solution. However, the online algorithm may only increase the previous values of

variables in each time step.
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O(log2(n)) factor of the optimal fractional solution for ST. Note that the objective func-

tion of the program uses the scaled weights for vertices. A feasible solution for the scaled

program can be rounded online with an additional loss of a constant factor using the stan-

dard rounding techniques. We will not describe this rounding procedure here; we refer

the reader to Section 2 of [NPS11].

We now describe the process of finding a competitive fractional solution in more

details. For every index γ ∈ Γ that w̃γ is zero, we initialize xγ to one. For the rest of

variables, we initialize the value of xγ to 1/n3. When a new terminal ti (together with

the constraints corresponding to sets in Si) arrives online, we update the current solution

in a sequence of multiplicative steps until the solution is feasible. In each multiplicative

step, we identify an auxiliary cut S corresponding to an infeasible constraint and for each

index γ ∈ S, we increase the value of xγ to xγ(1 + 1
w̃γ

).

Analysis.

For a subset of vertices S ⊂ V , let δ(S) ⊆ V \S denote the neighbors of S. Let

S denote the collection of subsets of vertices that separate a subset of terminals from the

terminal t0, i.e, S ∈ S if and only if S ∩ {t1, . . . tk} 6= φ and t0 /∈ S. Consider the natural

LP relaxation for the NW ST problem in which there is a flow of one going out of every
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set in S. The primal dual pair for this LP is as follows.

minimize
∑
v∈V

wvxv

∀S ∈ S
∑
v∈δ(S)

xv ≥ 1

xv ≥ 0

maximize
∑
S∈S

y(S)

∀v
∑

S∈S:v∈δ(S)

y(S) ≤ wv (D1)

y(S) ≥ 0

For two vertices u and v, let d(u, v) denote the weight of shortest path between u

and v excluding the weight of the endpoints. We borrow the notation of Hajiaghayi et

al [HLP13] for disks. A painting is a function p : V → R≥0. A painting is valid if

p(v) ≤ wv for every vertex v. Intuitively, every vertex has an area equal to its weight and

a painting is a (partial) coloring of these areas. The union of a set of paintings p1, . . . , p`

is the painting p with p(v) =
∑

i∈[`] pi(v) for every v ∈ V .

Recall that the weight of a terminal is zero. A disk of radius r centered at terminal

t, is a painting in which the area within a radius r of t is colored, i.e.,

p(v) =


wv if d(t, v) + wv ≤ r

r − d(t, v) if d(t, v) + wv > r but d(t, v) ≤ r

0 if d(t, v) ≥ r

A disk p centered at a terminal ti for i ∈ [k] is feasible if p(t0) = 0.
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A disk vector corresponding to a disk p of radius r centered at a terminal t is a dual

vector y generated by the following deterministic process:

1: Initialize y = 0 and U = {t}.

2: while the total dual objective
∑

S∈S y(S) is less than r do

3: Continuously increase y(U) until
∑

S∈S y(S) reaches r, or for a vertex v the dual

constraint D1 becomes tight.

4: If the latter happens, add v to U .

For a dual vector y, define the load of y on a vertex v as
∑

S∈S:v∈δ(S) y(S). The construc-

tion of a disk vector directly yields the following lemma .

Lemma 3.11. Let y be a disk vector corresponding to a disk p. For every v ∈ V , the load

of y on v is exactly p(v).

Proof of Lemma 3.11. Consider the process of generating the disk vector y. We first use

induction to show that a vertex v enters the set U in the process when the total growth of

dual variables is exactly d(t, v) + wv. The claim clearly holds at the start of the process.

Now consider an arbitrary vertex v and let u be the closest neighbor of v to the center t,

i.e., d(t, v) = d(t, u) + wu. Observe that the load on v remains zero as long as none of

its neighbors is in U . By the induction hypothesis, the first neighbor of v enters U when

the the total growth is exactly d(t, v). After that step, increasing the dual variables also

increases the load on v until the constraint D1 becomes tight for v, at which point the

vertex v is added to U . Therefore v enters U when the total growth is exactly d(t, v)+wv;

proving the claim.
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The aforementioned claim shows that for every vertex v in U , the load on v is

exactly wv which is equal to p(v) since d(t, v) + wv ≤ r. Now it only remains to show

that the load on a vertex v outside U is also equal to p(v). The argument is similar as

before. Let u be the closest neighbor of v to the center t. The load on v is zero until the

vertex u enters U , which happens when the total growth is exactly d(t, u) +wu = d(t, v).

If d(t, v) ≥ r, the load on v remains zero until the end. Otherwise, at the end the total

load on v is exactly r − d(t, v), which completes the proof.

Corollary 3.4. Let y be a disk vector corresponding to a disk of radius r centered at t.

For every vertex v ∈ V on which the load of y is strictly positive, we have r ≥ d(t, v).

Furthermore, y is a feasible dual vector if and only if the disk is feasible, i.e., r ≤ d(t, t0).

For an arbitrary thinness factor τ ∈ (0, 1], a τ -thin disk vector is a dual vector y′

obtained by scaling the disk vector y by a factor of τ , i.e., y′(S) = τy(S) for every S ∈ S.

When the thinness factor is clear from the context, we may refer to y′ as simply a thin

disk vector. We note that a τ -thin disk vector is feasible if and only if the corresponding

(1-thin) disk vector is feasible. Observe that the total dual objective value of a τ -thin disk

vector with radius r is exactly r×τ . Similar to paintings, the union of a set of disk-vectors

y1, . . . , y` is the dual vector y where y(S) =
∑

i∈[`] yi(S) for every S ⊆ S.

Multiplicative Updates Method.

Consider the cost of the fractional solution generated by the multiplicative steps.

In what follows, let opt denote the cost of the optimal fractional solution for the NW-ST
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problem. Recall that we assume opt = n. 16 In our algorithm, for every γ ∈ Γ, we

initialize xγ to 1
n3 (or to one if w̃γ = 0). Furthermore, for v ∈ V and i ∈ [k], w̃(v,i) ≤ n2

since we have assumed that the weight of a single vertex is at most n and a simple path

may contain at most n vertices. SALP has at most n2 + n variables. Thus the objective

cost of the initialization is at most (n2 + n)(n2) 1
n3 ≤ 2n = 2opt. Hence the cost of

initialization adds a constant factor to the competitive ratio; we will ignore this factor in

the remaining analysis.

The next two lemmas are standard in analyzing the multiplicative steps. The first

lemma follows immediately from the fact that the sum of variables in each auxiliary cut

that participates in a multiplicative update step is at most one.

Lemma 3.12. The increase in the value of the objective function (also called the cost) of

a single multiplicative update step is at most 1.

Proof of Lemma 3.12. Consider an arbitrary multiplicative step. Let S be the selected

auxiliary cut. For every variable γ ∈ S, we increase the value of xγ to xγ(1 + 1/w̃γ).

Hence, the increase in the objective function is

∑
γ∈S

w̃γxγ(
1

w̃γ

) =
∑
γ∈S

xγ < 1

Lemma 3.12 directly implies that to bound the cost of the algorithm, it is sufficient

16Though in fact, in an actual implementation we only know that n ≤ opt ≤ 2n. However, as mentioned

before, for simplicity we ignore this constant factor in the analysis.
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to bound the number of multiplicative steps. The key for bounding the number of steps is

the following observation.

Lemma 3.13. An index γ ∈ Γ can participate in at most w̃γ log(n3) multiplicative steps.

Proof of Lemma 3.13. The initial value of a variable is at least 1
n3 . At every step we only

choose an auxiliary cut if the total value of variables participating in the cut is less than

one. Thus γ cannot participate in a multiplicative step when xγ exceeds one. On the other

hand, we increase the value of xγ by a factor of (1 + 1
w̃γ

). Therefore if γ participates in

m steps, at the beginning of the last step we have

1

n3

(
1 +

1

w̃γ

)(m−1)

< 1 =⇒ 2
m−1
w̃γ < n3 =⇒ m < w̃γ log(n3)

Using the notion of thin disks, we will now establish the competitive ratio of the

algorithm. Therefore we use a union of a set of disks to account for the number of the

multiplicative updates and thus by Lemma 3.12 bound the total cost of the algorithm.

Lemma 3.14. Let FacCost and ConCost respectively denote the facility cost and the con-

nection cost of the output of the algorithm. Then FacCost + ConCost ≤ O(log2(n))opt.

For i ∈ [k], let si denote the number of multiplicative steps done for terminal ti. We

assume wlog that si ≥ 1. Let τ = 1
4 log(n)

. For every i ∈ [k], consider a τ -thin disk vector

yi corresponding to a disk of radius ri = si
5 log(n3)

centered at terminal ti. We first show

for every i ∈ [k], the thin disk vector yi is indeed feasible. Note that for terminal ti and
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in every auxiliary cut we should have either t0 or (t0, i). However, the cost of a terminal,

in particular that of t0, is zero. Hence, xt0 is initialized to one and thus only (t0, i) can

participate in a multiplicative step. Therefore by Lemma 3.13, si ≤ w̃(t0,i) log(n3). Recall

that w̃(t0,i) is the weight of shortest path between ti and a terminal tj for j < i, which

passes through t0. Hence by choosing j = 0, w̃(t0,i) ≤ d(ti, t0). Thus the radius of the

disk is at most ri = si
5 log(n3)

≤ d(t0,ti)
5

, which by Corollary 3.4 verifies that yi is feasible.

Let y denote the union of yi’s for every i ∈ [k]. We prove Lemma 3.14 by showing

that :

Lemma 3.15. The dual vector y is feasible.

Proof of Lemma 3.15. Let v be an arbitrary vertex. We show that the dual constraint D1

is feasible for v. Consider the sequence of indices of terminals 1 ≤ a1 < a2 < . . . <

am ≤ k such that for every i ∈ [m], the load of yai on v is strictly positive. Note that by

Corollary 3.4, rai ≥ d(tai , v).

Consider the smallest index q ∈ [m − 1] that raq ≤ 2ra(q+1)
. In the special case

that no such index exists, let q = m. Observe that for every i < q, rai > 2ra(i+1)
, i.e.,

the radii drop by a ratio less than 1/2. However, the minimum radius is 1
5 log(n3)

while the

maximum radius of a feasible disk is n2. Thus q ≤ 3 log(n) since the gap between the

maximum and minimum radius is less than n3.

For every i ∈ [q + 1, k] and v ∈ V , either v or (v, ai) participates in ev-

ery multiplicative step for tai . Note that w̃(v,ai) ≤ minj∈[0..i−1] d(tai , v) + d(taj , v) ≤

d(tai , v) + d(tai−1
, v). We first prove the following inequality.
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Claim 3.4. wv ≥ 1
log(n)

∑k
i=q+1 rai

Proof. Suppose, by contradiction, that wv < 1
log(n)

∑k
i=q+1 rai . Consider the multiplica-

tive steps for terminals tq+1, . . . , tk. The total number of such steps is at most the number

of steps one can update xv and x(v,ai) for every i ∈ [q+ 1, k], since at least one of them is

present in an auxiliary cut for a terminal tai .

k∑
i=q+1

sai ≤ w̃v log3(n) +
k∑

i=q+1

w̃(v,ai) log3(n) by Lemma 3.13

≤ (wv log(n)) log3(n)

+ log3(n)
k∑

i=q+1

(d(tai , v) + d(tai−1
, v)) w̃(v,ai) ≤ d(tai , v) + d(tai−1

, v)

< (
k∑

i=q+1

rai) log3(n)

+ log3(n)
k∑

i=q+1

(d(tai , v) + d(tai−1
, v)) wv <

1

log(n)

k∑
i=q+1

rai

≤ (
k∑

i=q+1

rai) log3(n) + 2 log3(n)
k∑

i=q+1

d(tai , v) + log3(n)d(taq , v)

≤ (
k∑

i=q+1

rai) log3(n) + 2 log3(n)
k∑

i=q+1

rai + log3(n)raq ∀i ∈ [m], d(tai , v) ≤ rai

≤ (
k∑

i=q+1

rai) log3(n) + 2 log3(n)
k∑

i=q+1

rai + 2 log3(n)raq+1 raq ≤ 2raq+1

≤ (
k∑

i=q+1

rai) log3(n) + 4 log3(n)
k∑

i=q+1

rai

= (5 log3(n))
k∑

i=q+1

rai
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However, the last inequality is a contradiction since by definition sai = (5 log3(n))rai and

thus
∑k

i=q+1 sai cannot be strictly less than (5 log3(n))
∑k

i=q+1 rai .

Now recall that a thin disk vector is feasible if and only if the corresponding 1-thin

disk vector is feasible. Hence, for every i ∈ [k], the constraint D1 is feasible even with

thinness one:

∑
S∈S:v∈δ(S)

yai(S)

τ
≤ wv =⇒

∑
S∈S:v∈δ(S)

yai(S) ≤ τwv (3.5)

Now we have all the ingredients to prove the Lemma. For every i ≤ q, we bound the load

of yai on v using Equation (3.5). Since q = O(log3(n)), this adds up to only a constant

fraction of wv. On the other hand, by Claim 3.4, for all i > q, the total load of yai’s is

at most a constant fraction of wv. Therefore the total load of y on v does not exceed wv

which completes the proof. More formally, we show the dual constraint D1 holds for v

by adding all the dual variables together:

∑
S∈S:v∈δ(S)

y(S) =
∑
i∈[m]

∑
S∈S:v∈δ(S)

yai(S)

=

q∑
i=1

∑
S∈S:v∈δ(S)

yai(S) +
k∑

i=q+1

∑
S∈S:v∈δ(S)

yai(S)

≤
q∑
i=1

∑
S∈S:v∈δ(S)

yai(S) +
k∑

i=q+1

(τ × rai)
∑

S:v∈δ(S)

yai(S) ≤
∑
S

yai(S) ≤ τ × rai

≤
q∑
i=1

τwv +
k∑

i=q+1

(τ × rai) by constraint D1 for yi with thinness one

≤ q(τ · wv) + τ

k∑
i=q+1

rai
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≤ wv(
3 log(n)

4 log(n)
) + τ(wv log(n)) q ≤ 3 log(n) and Claim 3.4

≤ wv(3/4 + 1/4) = wv

Now one can use Lemma 3.15 and the weak duality to prove Lemma 3.14.

Proof of Lemma 3.14. It follows from the weak duality and Lemma 3.15 that the total

dual objective value of disks is upper bounded by opt. Therefore it follows from the

definitions that

opt ≥
∑
i∈[k]

(ri × τ) =
1

20 log(n3) log(n)

∑
i∈[k]

si ≥
1

O(log2(n))
(FacCost + ConCost)

where the last inequality follows from Lemma 3.12.

Finally as mentioned before, by using a standard rounding method, Theorem 3.4

follows.

Proof of Theorem 3.4. Let x′ be a feasible solution for the (non-scaled) auxil-

iary program ALP. One can find an integral solution with total cost at most

O(log(n))
∑

v∈V wvx
′
v+O(1)

∑
v∈V,i∈[k] w(v,i)x

′
(v,i) using the rounding method of Naor et

al [NPS11]. On the other hand, both Program ALP and Program SALP have the same

set of constraints. Let x be the fractional solution of our algorithm. The total cost our

integral solution is at most

O(log(n))
∑
v∈V

wvxv +O(1)
∑

v∈V,i∈[k]

w(v,i)x(v,i)
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= O(1)
∑
v∈V

w̃vxv +O(1)
∑

v∈V,i∈[k]

w(v,i)x(v,i) w̃v = log(n)wv

= O(1)
∑
v∈V

w̃vxv +O(1)
∑

v∈V,i∈[k]

w̃(v,i)x(v,i) w̃(v,i) = w(v,i)

= O(1)(FacCost(x) + ConCost(x))

Therefore by Lemma 3.14, the cost of our algorithm is within O(log2(n)) factor of the

cost of fractional optimal solution.

3.5.4 An Asymptotically Optimal Algorithm for Online EW PCST

The online edge-weighted PCST problem can be considered a special instance of

OPCND as follows:

• The problem is defined on the family of edge-weighted graphs.17

• The input contains a vertex r ∈ V (also called root).

• For every i ∈ [k], the function fi is represented in the input by a single vertex ti.

For every S ⊆ V , fi(S) = 1 if S contains ti but does not contain the root; otherwise

fi(S) = 0.

17This is equivalent to the family of node-weighted graphs G where for every G = (V,E,w) ∈ G, the

weight of a vertex is positive only if its degree is two.
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Preliminaries.

For simplicity, in this section we introduce a few notations specific for the edge-

weighted PCST. We are given a graph G = (V,E) with edge lengths `e and a root vertex

r. We add edges between all pairs of vertices in the graph of length equal their respective

distances. The online input comprises a sequence of terminals T = t1, t2, . . . , tk and

corresponding penalties p1, p2, . . . , pk. We round up all edge lengths and penalties to

powers of 2. Observe that rounding up the edge lengths and penalties may only increase

the competitive ratio by factor two. We ignore this factor in the rest of section.

We denote the output graphH ⊆ G. Initially, H only contains the root vertex r. On

the arrival of ti, we either pay the penalty pi or augment H such that ti is connected to r

in H . The goal is to minimize the sum of the lengths of edges in H and the total penalty

paid by the algorithm.

The primal-dual LP pair for this problem that we will use in the analysis is given in

Figure 3.5. Here, for any subset of vertices S ⊆ V \ {r},

x(S) =
∑

e∈(S,S)

xe and J(S) = {j ∈ [k] : tj ∈ S ∩ T}.

Given an integral solution (x, z) to the primal LP, one can obtain a solution to PCST as

follows. We buy the edges e that xe = 1. Furthermore, we pay the penalty of every

terminal t such that for a set J ⊆ [k] containing t, zJ = 1. On the other hand, let

H = (VH , EH) denote a solution for PCST. The corresponding LP solution (x, z) is as

follows: for every e ∈ EH , we set xe = 1; and we set zT\VH = 1.
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Primal: Minimize
∑

e∈E `exe +
∑

J :J⊆[k] zJ
∑

j∈J πj subject to

x(S) +
∑

J⊆[k]:J(S)⊆J

zJ ≥ 1, ∀ S ⊆ V \ {r} (3.6)

xe ≥ 0, ∀ e ∈ E (3.7)

zJ ≥ 0, ∀ J ∈ [k] (3.8)

Dual: Maximize
∑

S⊆V \{r} yS subject to

∑
S:e∈(S,S)

yS ≤ `e, ∀ e ∈ E (3.9)

∑
S:J(S)⊆J

yS ≤
∑
j∈J

πj, ∀ J ⊆ [k] (3.10)

yS ≥ 0, ∀ S ⊆ V \ {r} (3.11)

Figure 3.5: The primal-dual LP pair used in the analysis.

Algorithm.

We maintain two sets of logarithmic numbers of duals that we call penalty duals

P0, P1, . . . and connection duals C0, C1, . . ..

Let πi denote the virtual penalty of a terminal ti. When ti arrives, πi is initialized to

its (real) penalty pi. Let `i denote the length of the shortest edge from ti to r or a terminal

connected to r in H . Now, we repeat the following:

1. Define j = lg πi and k = lg `i.

2. If `i ≤ πi, we add the edge of length `i connecting ti to r in H . We also place a
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disk(-vector)18 of radius `i/2 centered at ti in the connection dual Ck.

3. If `i > πi, we try to place a disk of radius πi/2 in the penalty dual Pj . If this

disk does not intersect with any existing disk in Pj , we pay the penalty for ti and

add the dual disk to Pj . If this disk intersects with an existing disk centered at some

terminal t` in Pj , then we remove the disk centered at t`, increase the virtual penalty

of terminal ti to πi = 2j+1 and repeat from Step 1.

Analysis.

We introduce a function ψ that represents a partition of the terminals. For any

subset in the partition, there is a chosen terminal that specifies the cluster head, and for

any terminal tj , ψ(tj) denotes the cluster head of the subset in the partition that tj belongs

to. The cluster heads are exactly the terminals that have disks centered at them in the

duals, including the new terminal. The new terminal is initially placed in a singleton

subset in the partition, i.e. ψ(ti) = ti, and the partition is updated by the algorithm as

follows. If Step 3 is executed by the algorithm and there is an intersection between disks

centered at ti and t`, then we merge the subsets represented by ti and t` and choose ti as the

cluster head of the new subset, i.e. the new values of ψ−1(ti) and ψ−1(t`) are respectively

ψ−1(ti) ∪ ψ−1(t`) and ∅. In all other steps of the above algorithm, the partition remains

unchanged.

18For the EW problem, a painting can be thought of as coloring the edges instead of vertices. One can

define a disk-vector similarly, mutatis mutandis. Thus for simplicity, in this section we denote a disk-vector

as simply a disk.
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We now describe the key invariants maintained by the algorithm. Suppose a dual

disk of radius R is centered at a terminal tj . We have three cases.

• Case 1: The dual disk centered at tj is in the penalty duals.

• Case 2: The dual disk centered at tj is in the connection duals.

• Case 3: tj is the current terminal (i.e. j = i).

The invariants are:

1. All terminals in ψ−1(tj) other than tj itself paid their respective penalties. For tj ,

there are three possibilities: tj paid its penalty in Case 1, tj got connected to r in H

and did not pay its penalty in Case 2, and tj has neither paid its penalty nor gotten

connected to r yet in Case 3.

2. R ≥
∑

tk∈ψ−1(tj)
pk/2 unless ψ−1(ti) = {ti} in Case 2. Further, in Case 2, R ≥

`j/2.

3. For any R∗ ≤ 2R, the sum of penalties of all terminals in ψ−1(tj) that are at a

distance of at most R∗ from tj is at least R∗.

We now show that these invariants are maintained by the algorithm.

Lemma 3.16. The algorithm above preserves the three invariants given above.

Proof. The first invariant follows immediately from the definition of the algorithm.

For the second invariant, note that R ≥ `j/2 in Case 2 holds from the definition of

the algorithm. For the first part of the second invariant, we will use induction on time.
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Note that the only point where the invariant can be violated is in Step 3 if the disk centered

at the new terminal ti intersects with that centered at some terminal t` leading to merger

of their respective subsets of the partition. Assume inductively that the invariant holds for

the new terminal ti and the center of the intersecting disk t`. Thus,

∑
tk∈ψ−1(ti)

pk/2 ≤ R

∑
tk∈ψ−1(t`)

pk/2 ≤ R.

Thus, ∑
tk∈ψ−1(ti)∪ψ−1(t`)

pk/2 ≤ 2R,

and hence the property holds after merging the subsets ψ−1(ti) and ψ−1(t`) and doubling

the radius of the disk centered at ti.

Similar to the second invariant, we will prove the third invariant also by induction

over time. Again, the only point where the invariant can be violated is in Step 3 if the disk

centered at the new terminal ti intersects with that centered at some terminal t` leading

to merger of their respective subsets of the partition. By the inductive hypothesis for ti,

for any R∗ ≤ 2R, the sum of penalties of all terminals in ψ−1(ti) (and therefore, also for

all terminals in ψ−1(ti) ∪ ψ−1(t`)) that are at a distance of at most R∗ from ti is at least

R∗. Now, we consider any R∗ ∈ (2R, 4R]. Recall that since disks of radius R centered

at ti and t` intersect, these two centers are at a distance of at most 2R. Combining this

with the inductive hypothesis for t`, for any R∗ ∈ (2R, 4R], the sum of penalties of all

terminals in ψ−1(t`) that are at a distance of at most R∗ from ti is at least R∗ − 2R. Now,

we can combine this with the inductive hypothesis for ti at R∗ = 2R since ψ−1(ti) is
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disjoint from ψ−1(t`), and conclude that for any R∗ ∈ (2R, 4R], the sum of penalties of

all terminals in ψ−1(ti) ∪ ψ−1(t`) that are at a distance of at most R∗ from ti is at least

R∗. Hence, the third invariant holds after merging ψ−1(ti) and ψ−1(t`).

Next, we claim that the dual disks are non-intersecting.

Lemma 3.17. The dual disks are non-intersecting.

Proof. The lemma holds for penalty duals by definition of the algorithm. For connection

duals, consider the first violation of the lemma if any. Let dual disks of radius R centered

at the new terminal ti and that centered at some previous terminal tj intersect in a con-

nection dual. Then, the distance between ti and tj is less than 2R. By the first invariant,

tj must be connected to the root r in H . Thus, `i < 2R, which contradicts the fact that

we are trying to place a dual disk of radius R centered at ti in the connection dual.

Next, we obtain the key properties of the algorithm as corollaries of the two lemmas

given above.

Corollary 3.5. The total cost of the primal solution is at most twice the sum of radii of

the disks in the duals.

Proof. This follows immediately from the second invariant.

Corollary 3.6. Each individual connection dual and penalty dual is feasible.

Proof. This follows immediately from the third invariant and Lemma 3.17.

The above two corollaries immediately lead to Theorem 3.3 since there are a loga-

rithmic number of duals.
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3.5.4.1 Hardness of Designing Online LMP Competitive Algorithms

In this section, we show that generalizing the competitive results of the previous

section to LMP results is not possible. Consider the EW prize-collecting Steiner tree

problem. For an online algorithm ALG and a sequence of demands ρ, let ALGw(ρ) and

ALGπ(ρ) respectively denote the weight and the penalty induced by the final solution of

the algorithm. An algorithm ALG is LMP α-competitive if for every sequence of demands

ρ,

ALGw(ρ) + α · ALGπ(ρ) ≤ α · OPTPCST

We design an example for which no online algorithm can guarantee an LMP com-

petitive ratio better than Ω(n). For an arbitrary integer m > 1, consider a star with m+ 1

leaves t0, t1, . . . , tm (thus n = m + 2). Let v denote the center of the star. All the edges

have weight zero except the edge connecting t0 to v; the weight of which is m − 1. The

leaf t0 is the root.

At the online step i, the adversary asks for connecting ti to the root t0. If the online algo-

rithm choose not to connect ti, it will incur a penalty cost of 1. The adversary stops the

input sequence as soon as the algorithm buys the expensive edge (t0, v). If the algorithm

never buys the expensive edge, the adversary stops after requesting the connectivity of tm.

We distinguish between three scenarios; we show that in all three, the LMP competitive

ratio is Ω(m) = Ω(n).

I) The online algorithm never buys the expensive edge. In this case, the optimum

170



solution is to connect all the leaves to the root, i.e., OPTPCST = m − 1. However,

the online algorithm pays the penalty of all terminals, i.e., ALGπ = m. Thus in this

case the algorithm is not LMP competitive at all.

II) The online algorithm buys the expensive edge at the end of step x for an x ≤ m− 1.

Since there are at most m− 1 terminals in this case, the optimum solution is to pay

the penalty of every terminal, i.e., OPTPCST = x. On the other hand, the online

algorithm pays the penalty of all the previous terminals and then connects the last

terminal, thus if the algorithm is LMP α-competitive, we have

ALGw(ρ) + α · ALGπ(ρ) ≤ α · OPTPCST =⇒

(m− 1) + α(x− 1) ≤ α · x =⇒

m− 1 ≤ α

III) The online algorithm buys the expensive edge at the end of step m. In this case the

optimum solution is to connect all the terminals, thus OPTPCST = m − 1. Similar

to Case II, we have

ALGw(ρ) + α · ALGπ(ρ) ≤ α · OPTPCST =⇒

(m− 1) + α(m− 1) ≤ α · (m− 1)

Therefore in this case, the algorithm is not LMP competitive at all.
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CHAPTER 4

Mixed Packing/Covering Problems

4.1 Online Degree-Bounded Steiner Connectivity

In the offline scenario, the results of Fürer, Raghavachari [FR90, FR94] and

Agrawal, Klein, Ravi [AKR91] were the starting point of a very popular line of

work on various degree-bounded network design problems [MRS+98, Goe06, Nut12,

LS13, KKN13, EV14]. We refer the reader to the next sections for a brief sum-

mary. One particular variant that has been extensively studied is the edge-weighted

DEGREE-BOUNDED SPANNING TREE. Initiated by Ravi et al. [MRS+98], in this version,

we are given a weight function over the edges and a bound b on the maximum degree of a

vertex. The goal is to find a minimum-weight spanning tree with maximum degree at most

b. The groundbreaking results obtained by Goemans [Goe06] and Singh and Lau [SL07]

settle the problem by giving an algorithm that computes a minimum-weight spanning tree

with degree at most b+ 1. Slightly worse result are obtained by Singh and Lau [LS13] for
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the Steiner tree variant. Unfortunately, in the online setting it is not possible to obtain a

comparable result. We show that for any (randomized) algorithm A there exists a request

sequence such thatA outputs a sub-graph that either has weight Ω(n)·OPTb or maximum

degree Ω(n) · b.

4.1.1 Contributions

In the online variant of DEGREE-BOUNDED STEINER FOREST, we are given the

graph G in advance, however, demands arrive in an online fashion. At online step i, a

new demand (si, ti) arrives. Starting from an empty subgraph, at each step the online

algorithm should augment its solution so that the endpoints of the new demand si and ti

are connected. The goal is to minimize the maximum degree of the solution subgraph.

In the non-uniform variant of the problem, a degree bound bv ∈ R+ is given for every

vertex v. For a subgraph H and a vertex v, let degH(v) denote the degree of v in H .

The load of a vertex is defined as the ratio degH(v)/bv. In the non-uniform variant of

ONLINE DEGREE-BOUNDED STEINER FOREST, the goal is to find a subgraph satisfying

the demands while minimizing the maximum load of a vertex.

Our algorithm is a simple and intuitive greedy algorithm. Upon the arrival of a new

demand (si, ti), the greedy algorithm (GA) satisfies the demand by choosing an (si, ti)-

path Pi such that after augmenting the solution with Pi, the maximum load of a vertex in

Pi is minimum. One of our main results is to prove that the maximum load of a vertex in

the output of GA is within a logarithmic factor of OPT, the maximum load of a vertex in
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an optimal offline solution which knows all the demands in advance.

Theorem 4.1. The algorithm GA produces an output with maximum

load at most O(log n) · OPT.

The crux of our analysis is establishing several structural properties of the solution

subgraph. First we group the demands according to the maximum load of the bottleneck

vertex at the time of arrival of the demand. We then show that for every threshold r > 0,

vertices with load at least r at the end of the run of GA, form a cut set that well separates

the group of demands with load at least r at their bottleneck vertex. Since the threshold

value can be chosen arbitrarily, this leads to a series of cuts that form a chain. The greedy

nature of the algorithm indicates that each cut highly disconnects the demands. Intuitively,

a cut that highly disconnects the graph (or the demands) implies a lower bound on the

number of branches of every feasible solution.

We use a natural dual-fitting argument to show that for every cut set, the ratio be-

tween the number of demands in the corresponding group, over the total degree bound of

the cut, is a lower bound for OPT. Hence, the problem comes down to showing that one

of the cuts in the series has ratio at least 1/O(log n) fraction of the maximum load h of the

output of GA. To this end, we first partition the range of r ∈ (0, h] into O(log n) layers

based on the total degree bound of the corresponding cut. We then show that the required

cut can be found in an interval with maximum range of r. We analyze GA formally in

Section 4.1.4.1.
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We complement our first theorem by giving an example for a special case of DB

ST in which no online (randomized) algorithm can achieve a competitive ratio better than

Ω(log n).

Theorem 4.2. Any (randomized) online algorithm for the degree

bounded online Steiner tree problem has (multiplicative) competi-

tive ratio Ω(log n). This already holds when bv = 1 for every node.

We further investigate the following extensions of the online degree bounded

Steiner tree problem. First, we consider the edge-weighted variant of the degree-bounded

Steiner tree problem. Second, we consider the group Steiner tree version in which each

demand consists of a subset of vertices, and the goal is to find a tree that covers at least

one vertex of each demand group. The following theorems show that one cannot obtain a

non-trivial competitive ratio for these versions in their general form.1

Theorem 4.3. Consider the edge weighted variant of Online De-

gree Bounded Steiner Tree. For any (randomized) online algorithm

A, there exists an instance and a request sequence such that either

E [maxdegree(A)] ≥ Ω(n) · b or E [weight(A)] ≥ Ω(n) · OPTb,

1Our lower bound results imply that one needs to restrict the input in order to achieve competitiveness.

In particular for the edge-weighted variant, our proof does not rule out the existence of a competitive

algorithm when the edge weights are polynomially bounded.
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where OPTb denotes the minimum weight of a Steiner tree with max-

imum degree b.

Theorem 4.4. There is no deterministic algorithm with competi-

tive ratio o(n) for the DEGREE-BOUNDED GROUP STEINER TREE

problem.

4.1.2 Related Degree-Bounded Connectivity Problems

The classical family of degree-bounded network design problems have various ap-

plications in broadcasting information, package distribution, decentralized communica-

tion networks, etc. (see e.g. [GMK88, HGM03]). Ravi et al. ( [MRS+98], J. Algo-

rithms’98), first considered the general edge-weighted variant of the problem. They give

a bi-criteria (O(log n), O(log n) · b)-approximation algorithm, i.e., the degree of every

node in the output tree is O(log n) · b while its total weight is O(log n) times the opti-

mal weight. A long line of work (see e.g. [KR00], STOC’00 and [KR05], SIAM J. C.)

was focused on this problem until a groundbreaking breakthrough was obtained by Goe-

mans ( [Goe06], FOCS’06); his algorithm computes a minimum-weight spanning tree

with degree at most b + 2. Later on, Singh and Lau ( [SL07], STOC’07) improved the

degree approximation factor by designing an algorithm that outputs a tree with optimal

cost while the maximum degree is at most b+ 1.

In the degree-bounded survivable network design problem, a number di is associ-
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ated with each demand (si, ti). The solution subgraph should contain at least di edge-

disjoint paths between si and ti. Indeed this problem has been shown to admit bi-criteria

approximation algorithms with constant approximation factors (e.g. [LS13], STOC’08).

We refer the reader to a recent survey in [LRS11]. This problem has been recently consid-

ered in the node-weighted variant too (see e.g. [Nut12,EV14]). The degree-bounded vari-

ant of several other problems such as k-MST and k-arborescence has also been considered

in the offline setting for which we refer the reader to [KKN13, BKN09] and references

therein.

4.1.3 Related Online Problems

Online network design problems have attracted substantial attention in the last

decades. The online edge-weighted Steiner tree problem, in which the goal is to find a

minimum-weight subgraph connecting the demand nodes, was first considered by Imase

and Waxman ( [IW91], SIAM J. D. M.’91). They showed that a natural greedy algo-

rithm has a competitive ratio of O(log n), which is optimal up to constants. This re-

sult was generalized to the online edge-weighted Steiner forest problem by Awerbuch et

al. ( [AAB96], SODA’96) and Berman and Coulston ( [BC97], STOC’97). Later on, Naor,

Panigrahi, and Singh ( [NPS11]), FOCS’11) and Hajiaghayi, Liaghat, and Panigrahi (

[HLP13], FOCS’13), designed poly-logarithmic competitive algorithms for the more gen-

eral node-weighted variant of Steiner connectivity problems. This line of work has been

further investigated in the prize-collecting version of the problem, in which one can ig-

177



nore a demand by paying its given penalty. Qian and Williamson ( [QW11], ICALP’11)

and Hajiaghayi, Liaghat, and Panigrahi ( [HLP14], ICALP’14) develop algorithms with a

poly-logarithmic competitive algorithms for these variants.

The online b-matching problem is another related problem in which vertices have

degree bounds but the objective is to maximize the size of the solution subgraph. In

the worst case model, the celebrated result of Karp et al. ( [KVV90], STOC’90) gives a

(1−1/e)-competitive algorithm. Different variants of this problem have been extensively

studied in the past decade, e.g., for the random arrival model see [FMMM09, KMT11,

MY11, MSVV07], for the full information model see [MOGS12, MOGZ12], and for the

prophet-inequality model see [AHL+11,AHL12,AHL13]. We also refer the reader to the

comprehensive survey by Mehta [Meh12].

Many of the problems mentioned above can be described with an online packing

or covering linear program. Initiated by work of Alon et al. [AAA+09] on the online

set cover problem, Buchbinder and Naor developed a strong framework for solving pack-

ing/covering LPs fractionally online. For the applications of their general framework in

solving numerous online problems, we refer the reader to the survey in [BN09a]. Azar et

al. [ABFP13] generalize this method for the fractional mixed packing and covering LPs.

In particular, they show an application of their method for integrally solving a general-

ization of capacitated set cover. Their result is a bi-criteria competitive algorithm that

violates the capacities by at most an O(log2 n) factor while the cost of the ouput is within

O(log2 n) factor of optimal. We note that although the fractional variant of our problem
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is a special case of online mixed packing/covering LPs, we do not know of any online

rounding method for Steiner connectivity problems.

4.1.4 Preliminaries

Let G = (V,E) denote an undirected graph of size n (|V | = n). For

every vertex v ∈ V , let bv ∈ R+ denote the degree bound of v. In the

DEGREE-BOUNDED STEINER FOREST problem, we are given a sequence of connectiv-

ity demands. The ith demand is a pair of vertices (si, ti) which we call the endpoints of

the demand. An algorithm outputs a subgraph H ⊆ G in which for every demand its end-

points are connected. The load of a vertex v w.r.t. H is defined as `H(v) = degH(v)/bv.

We may drop the subscript H when it is clear from the context. The goal is to find a sub-

graph H that minimizes the maximum load of a vertex. Observe that one can always find

an optimal solution without a cycle, hence the name Steiner forest. Furthermore, without

loss of generality2, we assume that the endpoints of the demands are distinct vertices with

degree one in G and degree bound infinity. We denote the maximum load of a vertex in

an optimal subgraph by OPT = minH maxv `H(v).

The following mixed packing/covering linear program (P) is a relaxation for the

natural integer program for DEGREE-BOUNDED STEINER FOREST. Let S denote the col-

2One can add a dummy vertex for every vertex v ∈ V connected to v. We then interpret a demand

between two vertices as a demand between the corresponding dummy vertices. The degree bound of a

dummy vertex can be set to infinity. This transformation can increase the degree of any node by at most a

factor of 2, which does not affect our asymptotic results.
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lection of subsets of vertices that separate the endpoints of at least one demand. For a set

of vertices S, let δ(S) denote the set of edges with exactly one endpoint in S. In P, for

an edge e, x(e) = 1 indicates that we include e in the solution while x(e) = 0 indicates

otherwise. The variable α indicates an upper bound on the load of every vertex. The first

set of constraints ensures that the endpoints of every demand is connected. The second

set of constraints ensures that the load of a vertex is upper bounded by α. The program D

is the dual of the LP relaxation P.

minimize α (P)

∀S ⊆ S
∑
e∈δ(S)

x(e) ≥ 1 (y(S))

∀v ∈ V
∑

e∈δ({v})

x(e) ≤ α · bv (z(v))

x(e), α ∈ R≥0

maximize
∑
S∈S

y(S) (D)

∀e = (u, v)
∑

S:e∈δ(S)

y(S) ≤ z(u) + z(v)

(x(e))∑
v

z(v)bv ≤ 1 (α)

z(v),y(S) ∈ R≥0

In the online variant of the problem, G and the degree bounds are known in advance,

however, the demands are given one by one. Upon the arrival of the ith demand, the

online algorithm needs to output a subgraph Hi that satisfies all the demands seen so

far. The output subgraph can only be augmented, i.e., for every j < i, Hj ⊆ Hi.

The competitive ratio of an online algorithm is then defined as the worst case ratio of

maxv `H(v)/OPT over all possible demand sequences where H is the final output of the

algorithm.
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4.1.4.1 Online Degree-Bounded Steiner Forest

Consider an arbitrary online step where a new demand (s, t) arrived. Let H denote

the online output of the previous step. In order to augment H for connecting s and t,

one can shortcut through the connected components of H . We say an edge e = (u, v) is

an extension edge w.r.t. H , if u and v are not connected in H . Let P denote an (s, t)-

path in G. The extension part P ∗ of P is defined as the set of extension edges of P .

Observe that augmenting H with P ∗ satisfies the demand (s, t). For a vertex v, we define

`+
H(v) = `H(v) + 2/bv to be the uptick load of v. We slightly misuse the notation by

defining `+
H(P ∗) = maxv∈V (P ∗) `

+
H(v) as the uptick load of P ∗, where V (P ∗) is the set of

endpoints of edges in P ∗.

The greedy algorithm (GA) starts with an empty subset H . Upon arrival of the

i-th demand (si, ti), we find a path Pi with smallest uptick load `+
H(P ∗i ) where P ∗i is the

extension part of Pi. We break ties in favor of the path with a smaller number of edges.

Note that the path Pi can be found efficiently using Dijkstra-like algorithms. We define

τi = `+
H(P ∗i ) to be the arrival threshold of the i-th demand. We satisfy the new demand

by adding P ∗i to the edge set of H (see Algorithm 5).

4.1.5 Analysis

We now use a dual-fitting approach to show that GA has an asymptotically tight

competitive ratio of O(log(n)). In the following we use GA to also refer to the final
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output of our greedy algorithm. We first show several structural properties of GA. We

then use these combinatorial properties to construct a family of feasible dual vectors for

D. We finally show that there always exists a member of this family with an objective

value of at least a 1/O(log(n)) fraction of the maximum load of a vertex in GA. This in

turn proves the desired competitive ratio by using weak duality.

For a real value r ≥ 0, let Γ(r) denote the set of vertices with `+
GA(v) ≥ r. Let

D(r) denote the indices of demands i for which the arrival threshold τi is at least r. For a

subgraph X , let CC(X) denote the collection of connected components of X . For ease of

notation, we may use the name of a subgraph to denote the set of vertices of that subgraph

as well. Furthermore, for a graph X and a subgraph Y ⊆ X , let X \ Y denote the graph

obtained from X by removing the vertices of Y .

Recall that S is the collection of subsets that separate the endpoints of at least one

demand. The following lemma, intuitively speaking, implies that Γ(r) well-separates the

endpoints of D(r).

Lemma 4.1. For any threshold r > 0, we have |CC(G \ Γ(r)) ∩ S| ≥ |D(r)|+ 1.

Proof. For a vertex v ∈ G \ Γ(r) we use CC(v) to denote its connected component.

Observe that, since the endpoints of demands are nodes with infinite degree bound, the

endpoints are not contained in Γ(r), and, hence, are in G \ Γ(r).

We construct a graph F that has one node for every connected component inG\Γ(r)

that contains an endpoint of a demand in D(r). Edges in F are defined as follows. For

every demand i ∈ D(r) between si and ti, we add an edge that connects the components
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CC(si) and CC(ti). In the following we argue that F does not contain cycles. This gives

the lemma since in a forest |D(r)|+ 1 = |EF |+ 1 ≤ |VF | ≤ |CC(G \ Γ(r)) ∩ S|.

Assume for contradiction that the sequence (ei0 , . . . , eik−1
), k ≥ 2 forms a (mini-

mal) cycle in F , where eij corresponds to the demand between vertices sij and tij (see

Figure 4.1). Assume wlog. that eik−1
is the edge of the cycle for which the corresponding

demand appears last, i.e., ik−1 ≥ ij for every j < k. Let H denote the online solution at

the time of arrival of the demand ik−1. We can augmentH to connect each tij to sij+1 mod k
,

0 ≤ j ≤ k− 1 without using any node from Γ(r), since these nodes are in the same com-

ponent in G \ Γ(r). But then we have a path P between sik−1
and tik−1

and the extension

part P ∗ does not contain any vertex from Γ(r). This is a contradiction since the arrival

threshold for the demand ik−1 is at least r.

Lemma 4.1 shows that cutting Γ(r) highly disconnects the demands in D(r). In-

deed this implies a bound on the toughness of the graph. Toughness, first defined by

Chvátal [Chv73] and later generalized by Agrawal et al. [AKR95], is a measure of how

easy it is to disconnect a graph into many components by removing a few vertices. More

formally, the toughness of a graph is defined as minX⊆V
|X|

|CC(G\X)| . For the spanning tree

variant of the problem, it is not hard to see that OPT is at least the reciprocal of toughness.

Although it is more involved, we can still establish a similar relation for the non-uniform

Steiner forest problem (see Lemma 4.3). However, first we need to show a lower bound

on the number of demands separated by Γ(r).

We establish a lower bound for |D(r)| with respect to the load of vertices in Γ(r).
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For any r, b > 0 we define Γb(r) := {`+
GA(v) ≥ r ∧ bv ≥ b}, as the set of nodes with

degree bound at least b that have uptick load at least r in the final online solution. We

further define

excess(r, b) =
∑

v∈Γb(r)

(
degGA(v)− drbve+ 2

)
,

which sums the (absolute) load that nodes in Γb(r) receive after their uptick load became

r or larger. The following lemma relates |D(r)| to excess(r, b).

Lemma 4.2. For any r, b > 0, excess(r, b) ≤ 2|D(r)|+ 3|Γb(v)|.

Proof. Consider some online step i. Let H denote the output of the previous step. Let

P ∗i be the extension part of the path selected by GA and let V (P ∗i ) denote the endpoints

of edges of P ∗i . Since in GA we break ties in favor of the path with the smaller number

of edges, we can assume that the path does not go through a connected component of H

more than once, i.e., for every C ∈ CC(H), |V (P ∗i ) ∩ C| ≤ 2.

Consider the variable quantity δ(r, b) :=
∑

v:`+H(v)≥r∧bv≥b(degH(v) − drbve + 2)

throughout the steps of GA where H denotes the output of the algorithm at every step.

Intuitively, at each step δ(r, b) denotes the total increment in degrees of those vertices

in Γb(r) that already reached uptick load r. In particular, at the end of the run of GA,

δ(r, b) = excess(r, b).

Now suppose at step i adding the edges P ∗i to H increases δ(r, b) by qi. There are

two reasons for such an increase. On the one hand, if the demand i is from D(r) it may

simply increase degH(v) for some node with uptick load at least r. On the other hand

also if the demand is not from D(r) it may cause a node to increase its uptick load to r
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in which case it could contribute to the above sum with at most 1 (in a step the degree

may increase by 2; the first increase by 1 could get the uptick load to ≥ r and the second

increase contributes to the sum).

Clearly increases of the second type can accumulate to at most |Γb(r)|. In order

to derive a bound on the first type of increases recall that we assume that endpoints of

demands are distinct vertices with degree one and thus si and ti are outside any connected

component of H . Since V (P ∗i ) contains at most two vertices of a connected component

of H , we can assert that the path selected by GA is passing through at least qi/2 compo-

nents of H that contain some vertices of Γb(r). Hence, after adding P ∗i to the solution,

the number of connected components of the solution that contain some vertices of Γb(r)

decreases by at least (qi − 2)/2. However, throughout all the steps, the total amount of

such decrements cannot be more than the number of vertices in Γb(r). Therefore

excess(r, b) =
∑
i∈D(r)

qi +
∑
i/∈D(r)

qi

= 2|D(r)|+
∑
i∈D(r)

(qi − 2) + |Γb(r)|

≤ 2|D(r)|+ 3|Γb(r)| ,

and the lemma follows.

Let ∆ > 0 denote the minimum degree bound of a vertex with non-zero degree in an

optimal solution. Note that this definition implies that OPT ≥ 1/∆. For a set of vertices

Γ, let b(Γ) =
∑

v∈Γ bv. We now describe the main dual-fitting argument for bounding the

maximum load in GA.
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Lemma 4.3. For any r > 0, |D(r)|/b(Γ∆(r)) ≤ OPT.

Proof. LetG∆ denote the graph obtained fromG by removing vertices with degree bound

below ∆. Similarly, let S∆ denote the collection of sets that separate a demand in G∆.

Consider a slightly modified dual program D∆ defined on G∆ and S∆, i.e., we obtain D∆

from the original dual program by removing all vertices with degree bound below ∆. We

note that the objective value of a dual feasible solution for D∆ is still a lower bound for

OPT. In the remainder of the proof, we may refer to D∆ as the dual program. Recall that

in a feasible dual solution, we need to define a dual value y(S) for every cut S ∈ S∆

such that for every edge e = (u, v) the total value of cuts that contain e does not exceed

z(u) + z(v). On the other hand,
∑

v z(v)bv cannot be more than one.

For a real value r > 0, we construct a dual vector (yr, zr) as follows. For every v ∈

Γ∆(r), set zr(v) = 1/b(Γ∆(r)); for other vertices set zr(v) = 0. For every component

S ∈ CC(G∆ \ Γ∆(r)) ∩ S∆, set yr(S) = 1/b(Γ∆(r)); for all other sets set yr(S) = 0.

We prove the lemma by showing the feasibility of the dual vector (yr, zr) for D∆.

Consider an arbitrary component C ∈ CC(G \ Γ(r)). By definition, C separates

at least one demand. Let i be such a demand and let ti ∈ C denote an endpoint of it.

Removing vertices with degree bound below 1/∆ from C may break C into multiple

smaller components. However, an endpoint of a demand has degree bound infinity, and,

hence, the component that contains ti belongs to S∆. Therefore |CC(G \ Γ(r)) ∩ S| ≤

|CC(G∆ \ Γ∆(r)) ∩ S∆|; which by Lemma 4.1 leads to |CC(G∆ \ Γ∆(r)) ∩ S∆| ≥

|D(r)|+ 1. Therefore the dual objective for the vector (yr, zr) is at least
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∑
S∈S∆

yr(S) =
∑

S∈CC(G∆\Γ∆(r))∩S∆

1

b(Γ∆(r))
≥ |D(r)|+ 1

b(Γ∆(r))
.

Thus we only need to show that (yr, zr) is feasible for Program D∆. First, by construction

we have ∑
v

zr(v)bv =
∑

v∈Γ∆(r)

1

b(Γ∆(r))
· bv = 1 .

Now consider an arbitrary edge e = (u, v). If e does not cross any of the compo-

nents in CC(G∆ \ Γ∆(r)), then
∑

S:e∈δ(S) yr(S) = 0 and we are done. Otherwise,∑
S:e∈δ(S) yr(S) = 1/b(Γ∆(r)). However, exactly one endpoint of e is in Γ∆(r). Thus

zr(u) + zr(v) = 1/b(Γ∆(r)), which implies that the dual vector is feasible.

We now have all the ingredients to prove the main theorem.

of Theorem 4.1. Let GA denote the final output of the greedy algorithm. Let h denote

the maximum load of a vertex in GA, i.e., h = maxv `GA(v). Furthermore, let h∆ =

maxv:bv≥∆ `GA(v). In the following we first show that h∆ ≤ O(log n) · OPT. For this we

use the folowing claim.

Claim 4.1. There exists an r > 0 such that

excess(r,∆) ≥ h∆ − 1/∆

4 log2 n+ 6
· b(Γ∆(r))− |Γ∆(r)| .

Proof. Recall that Γ∆(r) is the set of vertices with uptick load at least r in GA and degree

bound at least ∆. The function b(Γ∆(r)) is non-increasing with r since for every r1 < r2,

Γ∆(r2) ⊆ Γ∆(r1). For r = 1/∆, b(Γ∆(r)) ≤ n(n + 1)∆ as a node with degree bound
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bv > (n + 1)∆ will have uptick load at most (n + 1)/bv < 1/∆, and, hence, will not be

in Γ∆(r). Also, r < h∆ implies that b(Γ∆(r)) ≥ ∆ as there exists a node with load h∆ in

Γ∆(r) and this node has degree bound at least ∆.

We now partition the range of r (from 1/∆ to h∆) into logarithmically many inter-

vals. We define the q-th interval by

U(q) =
{
r | 1/∆ ≤ r < h∆ ∧ 2q/∆ ≤ b(Γ∆(r)) < 2q+1/∆

}
,

for q ∈ {0, . . . , dlog2((n+1)n)e}. We further set r(q) = maxU(q) and r(q) = minU(q),

and call r(q)−r(q) the length of the q-th interval. Since there are only 2 log2 n+3 possible

choices for q there must exist an interval of length at least (h∆ − 1/∆)/(2 log2 n+ 3).

Consider a node v that is contained in Γ∆(r) and, hence, also in Γ∆(r). This node

starts contributing to excess(r,∆), once its uptick load reached r and contributes at least

until its uptick load reaches r. Hence, the total contribution is at least deg(r) − deg(r),

where deg(r) and deg(r) denotes the degree of node v when reaching uptick load r and

r, respectively. We have,

deg(r)− deg(r) = (drbve − 2)− (drbve − 2)

≥ (r − r)bv − 1 .

Summing this over all nodes in Γ∆(r) gives

excess(r,∆) ≥ (r − r) · b(Γ∆(r))− |Γ∆(r)|

≥ 1

2
(r − r) · b(Γ∆(r))− |Γ∆(r)|

≥ h∆ − 1/∆

4 log2 n+ 6
· b(Γ∆(r))− |Γ∆(r)| ,

where the second inequality uses the fact that |Γ∆(r)| ≤ |Γ∆(r)| ≤ |Γ∆(r)|/2.
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Claim 4.2. h∆ ≤ (24 log2 n+ 37)OPT.

Proof. If we use the r from the previous claim and solve for h∆ we obtain

h∆ ≤ (4 log2 n+ 6) · excess(r,∆) + Γ∆(r)

b(Γ∆(r))
+

1

∆

≤ (4 log2 n+ 6) · 2D(r) + 4Γ∆(r)

b(Γ∆(r))
+

1

∆

≤ (4 log2 n+ 6) ·
(

2OPT + 4
1

∆

)
+

1

∆

≤ (24 log2 n+ 37) · OPT .

Here the second inequality is due to Lemma 4.2, the third uses Lemma 4.3 and the fact

that b(Γ∆(r)) ≥ ∆|Γ∆(r)|. The last inequality uses OPT ≥ 1/∆.

We now bound the maximum load h in terms of the restricted maximum load h∆. Con-

sider a vertex v∗ with maximum load `GA(v∗) = h. If bv∗ ≥ ∆ then h∆ = h and we are

done. Otherwise consider the last iteration i in which the degree of v∗ is increased in the

solution. Let H denote the output of the algorithm at the end of the previous iteration

i − 1. The degree of v∗ in the online solution is increased by at most two at iteration i.

Hence

h ≤ `+
H(v∗) ≤ τi .

Recall that in our greedy algorithm, τi is the minimum uptick load of a path that satisfies

the new demand. Let P denote a path that connects si and ti in an optimal solution. Recall
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that by the definition, bv ≥ ∆ for every vertex v of P . For every vertex v in P we have

τi ≤ `+
H(v)

≤ h∆ +
2

bv
`H(v) ≤ `GA(v) ≤ h∆

≤ h∆ +
2

∆
bv ≥ ∆

≤ h∆ + 2OPT OPT ≥ 1/∆

≤ O(log n) · OPT by the above claim

Therefore leading to h ≤ O(log n) · OPT.

4.1.5.1 An Asymptotically Tight Lower Bound

In the following we show a lower bound for

ONLINE DEGREE-BOUNDED STEINER TREE. Consider a graph G = (X ] Z,E),

with |Z| = 2` and |X| =
(

2`

2

)
. For every pair {z1, z2} of nodes from Z there exists an

edge {z1, z2} ∈ E and a node x ∈ X that is connected to z1 and z2. An arbitrary node

from Z acts as root for the Steiner tree problem.

For a node z ∈ Z, an algorithm A, and a request sequence σ (consisting of nodes

fromX) we use degA,σ(z) to denote the number of neighbors of z among all nodes from X

in the Steiner tree obtained when running algorithm A on request sequence σ. Similarly,

we use deg′A,σ(z) to denote the number of those neighbors of z that also appear in σ.

Note that deg(·) and deg′(·) ignore edges between nodes from Z as an algorithm (online

or offline) can simply connect all nodes in Z in a cycle which increases the degree of any
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node by only 2.

Lemma 4.4. Fix a possibly randomized online algorithm A. For any subset S ⊆ Z,

|S| = 2s, 0 ≤ s ≤ ` there exists a request sequence σS consisting of terminals from X s.t.

• for a node x ∈ σS both its neighbors in G are from set S;

• there exists a node z∗ ∈ S with E[deg′A,σ(z∗)] ≥ s/2;

• there exists an offline algorithm OFF for servicing requests in σ with

maxz∈S{degOFF,σ(z)} ≤ 1, and degOFF,σ(z) = 0 for z ∈ (Z \ S) ∪ {z∗}.

Proof. We prove the lemma by induction over s. The base case s = 0 holds trivially when

choosing the empty request sequence. For the induction step consider an arbitrary subset

S ⊆ Z with |S| = 2s+1. Partition S into two disjoint subsets S1 and S2 of cardinality 2s

each.

Let σ1 be the request sequence that exists due to induction hypothesis for set S1.

Hence, there is a node z∗1 ∈ S1 with E[deg′A,σ1
(z∗1)] ≥ s/2. Now, let Ã behave like

algorithm A after it already received a request sequence σ1 (hence, it starts with all edges

that are chosen when running A on σ1; note, however, that deg′
Ã,σ2

(·) only takes into

account edges incident to nodes from σ2). Due to induction hypothesis for Ã and set S2

there exists a request sequence σ2 such that E[deg′
Ã,σ2

(z∗2)] ≥ s/2 for a node z∗2 ∈ S2.

Hence, the request sequence σ = σ1◦σ2 fulfills E[deg′A,σ(z∗1)] ≥ s/2 and E[deg′A,σ(z∗2)] ≥

s/2.

We extend the request sequence by appending the node x that is connected to z∗1 and

z∗2 in G. After serving the request one of the edges {x, z1} or {x, z2}must be chosen with
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probability at least 1/2 by A. Hence, afterwards either E[deg′A,σ(z∗1)] or E[deg′ δA,σ(z∗2)]

must be at least (s+ 1)/2.

It remains to argue that there exists a good offline algorithm. Combining the offline

algorithms OFF1 and OFF2 for σ1 and σ2 gives an offline algorithm for σ1 ◦ σ2 that

has maxz{degOFF,σ1◦σ2
(z)} ≤ 1 and degOFF,σ1◦σ2

(z)} = 0 for z /∈ S1 ∪ S2 and for

z ∈ {z∗1 , z∗2}. Now, when the node x connected to z∗1 and z∗2 is appended to the request

sequence the offline algorithm can serve this request by either buying edge {x, z1} or

{x, z2}, and can therefore gurantee that z∗ (either z1 or z2) has degree 0.

of Theorem 4.2. Choosing s = log n in the above lemma gives our lower bound.

4.1.5.2 Figures

4.1.6 Lower Bounds for Other Degree-Bounded Steiner Connectivity

Problems

In this section we consider strong lower bounds for the general form of two variants

of degree-bounded network design problems.
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Algorithm 5 Online Degree-Bounded Steiner Forest
Input: A graph G, and an online stream of demands (s1, t1), (s2, t2), . . ..

Output: A set H of edges such that every given demand (si, ti) is connected via H .

Offline Process:

1: Initialize H = ∅.

Online Scheme; assuming a demand (si, ti) is arrived:

1: Compute Pi, a (si, ti)-path with the smallest uptick load `+
H(P ∗i ) in its extension part.

• Shortcut the connected components of H by replacing the edges of a compo-

nent with that of a clique.

• In the resulting graph, define the distance of a vertex v from si as the minimum

uptick load of a (si, v)-path.

• Find Pi by evoking a Dijkstra-like algorithm according to this notion of dis-

tance.

2: Set H = H ∪ P ∗i .

4.1.6.1 ONLINE DEGREE-BOUNDED EDGE-WEIGHTED STEINER

TREE

Below we present a graph instance G = (V,E) for online bounded-degree edge-

weighted Steiner tree in which for any (randomized) online algorithm A there exists a

demand sequence for which A either violates the degree bound by a large factor or gen-
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Figure 4.1: Existence of a cycle implies that of a path with low uptick load in its extension

part.

erates a much larger weight than the optimum.

Consider a graph G as shown in Figure 4.2a, which has n = 2k + 1 nodes and 3k

edges. Every node i (1 ≤ i ≤ k) is connected to the root with a zero-weight edge and to

node k + i with weight ni. In addition, there exist zero-weight edges connecting node i

(k + 1 ≤ i < 2k) to node i + 1, and there exists a zero-weight edge that connects node

2k to the root. We assume that all node weights bv are equal to one and the degree bound

b for OPT is equal to 3.

of Theorem 4.3. The adversary consecutively presents terminals starting from node 1. At

each step i the algorithm A adds some edges to its current solution such that the ith
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(b) The highlighted subtree represents an

optimum solution OPT3.

Figure 4.2: The hard example for edge-weighted Steiner tree

terminal ti = i gets connected to the root .

We use Xi to denote the subset of edges chosen by A after step i. We also use

0 ≤ pij ≤ 1 and 0 ≤ qij ≤ 1 to denote the probability that the edges {i, root} and

{i, k + i}, respectively, are in Xj . After each step j, all terminals ti (i ≤ j) must be

connected to the root by at least one of {i, root} or {i, k+ i}. Therefore pij + qij ≥ 1. In

addition, for every j1 ≤ j2 we have qij1 ≤ qij2 and pij1 ≤ pij2 , because Xj1 ⊆ Xj2 . The

adversary stops the sequence at the first step r for which qrr > 1/2. If this never happens

the sequence is stopped after requesting k nodes.

We use OPTb to denote the weight of a minimum Steiner tree with maximum degree

b = 3. In order to find an upper bound for OPTb, consider the following tree T :

T = {{i, k + i}|1 ≤ i ≤ r − 1} ∪ {{i, i+ 1}|k ≤ i < 2k} ∪ {{2k, root}, {r, root}} .

As we can observe in Figure 4.2b, T meets the degree bounds and connects the first r
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terminals to the root, so forms a valid solution. We have

w(OPT) ≤ w(T ) =
r−1∑
i=1

ni ∈ O(nr−1) .

Back to algorithm A, the adversary causes one of the following two cases:

1. The process stops at step r with qrr > 1
2
. Then

E[w(Xr)] =
r∑
i=1

qir · ni ≥ qrr · nr ≥
nr

2
.

Hence, E[w(X)] ≥ Ω(n) · w(OPT).

2. The process continues until step k, i.e., for every i ≤ k, qii ≤ 1
2
.

E[deg(root)] ≥
k∑
i=1

pik ≥
k∑
i=1

pii ≥
k∑
i=1

(1− qii) ≥
k

2
=
n− 1

4
.

Hence, E[deg(root)] ≥ Ω(n) · b.

This shows that for any online algorithm A there is a demand sequence on which A either

generates a large weight or violates the degree bound by a large factor.

4.1.6.2 ONLINE DEGREE-BOUNDED GROUP STEINER TREE

In this section, presenting an adversary scenario, we show there is no deterministic

algorithm for ONLINE DEGREE-BOUNDED GROUP STEINER TREE with competitive ratio

o(n) even if G is a star graph.

of Theorem 4.4. For any integer n > 1, we provide a graph instance G of size n and an

online scenario, in which no deterministic algorithm can obtain a competitive ratio better
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than n− 1. Let G be a star with n− 1 leaves v2 to vn, and v1 be the internal node. For an

algorithm A, we describe the adversary scenario as follows.

Let v1 be the root. Let the first demand group be the set of all leaves. Whenever

A connects a node vi to v1 in H , adversary removes the selected nodes vi from the next

demand groups, until all leaves are connected to v1 inH . In particular let C denote the set

of all nodes connected to v1 in H so far. Let the demand group be the set of all leaves in

{v2, v3, . . . , vn} \C. We do this until {v2, v3, . . . , vn} \C = ∅, which means every leaf is

connected to v1 in H . G is a star, thus a leaf vi is connected to v1 in H iff H includes the

edge between vi and v1. Thus after all demands A has added all edges in G to H . Hence

deg(v1) = n− 1.

Now consider the optimal offline algorithm. Let gi denote the i-th demand group.

Assume we have k demand groups. By construction of the demand groups gk ⊂ gk−1 ⊂

. . . ⊂ g1. Thus there is a single node that exists in all group demands. Hence the optimal

offline algorithms only needs to connect that node to the root in H . Therefore, the degree

of each node is at most 1 and the competitive ratio is n− 1.
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bursty connections. In STOC, 1997. 24

[KS77] U. Krengel and L Sucheston. Semiamarts and finite values. In Bull. Am.
Math. Soc. 1977. 24, 51, 53, 54

[KS78] U. Krengel and L Sucheston. On semiamarts, amarts, and processes with
finite value. In In Kuelbs, J., ed., Probability on Banach Spaces. 1978. 24,
51, 53

[KSS13] Jochen Könemann, Sina Sadeghian Sadeghabad, and Laura Sanità. An
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Worst Case Random Arrival Stochastic

Matching 1− 1/e 0.696 0.703

[KVV90] [MY11] [MZO12]

Display Ad FD: 1− 1/e FD: 1− 1/e UnD-LCD: 1−O(ε)

[FKM+09] [DJSW11]

0.66 [HMZ11]

PI-LC: 1− ε

[AHL12]

Adword LC: 1− 1/e LCD: 1−O(ε) PI-LC: 1− ε

[MSVV07] [DH09] [AHL12]

UnD-LC: 1− ε

[DSA12]

Stoch. Knapsack 1
9.5

[DGV04]

GAP FD: 1− 1/e− ε LCD: 1− o(1) LC: 1− ε

[FKM+09] [FHK+10] [AHL13]

Table 2.1: Summary of results for GAP and its special instances

Here “FD” stands for Free Disposal, “UnD” stands for Unknown Distribution, “PI” stands for

Prophet Inequality setting, “LC” stands for the Large-Capacity assumption where the ratio de-

pends solely on ε, and “LCD” stands for the Large-Capacity assumption where the ratio also

Depends on the number of bins and items.
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PC ST PC SF PC SF in Planar graphs PC GSF

EW O(log(n)) O(log(n)) O(log(n)) O(log7(n))

[QW11] Simplified here [QW11] [QW11]

NW O(log3(n)) O(log4(n)) O(log2(n)) O(log11(n))

(quasi-polynomial)

Table 3.1: The competitive ratio for online prize-collecting (PC) Steiner problems

Note that the algorithm for NW Group Steiner Forest runs in quasi-polynomial time.
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