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 Problems which originate in early development stages can have a lasting 

influence on the reliability, safety, and cost of a software system. The requirements 

document, which is usually available at the requirements analysis stage, must be 

correct, unambiguous, and complete if the rest of the development effort is to 

succeed. The ability to identify faults in requirements and predict the reliability of a 

software system early in its development can help organizations make informative 

decisions about corrective actions and improve the system’s quality in a cost-effective 

manner. A review of the literature reveals that existing approaches are unsuited to 

provide trustworthy reliability prediction either due to the ignorance of the 

requirements documents, or because of the informal and fairly sketchy way in 

detecting faults in requirements. 



  

 This study explores the use of a preselected software reliability measurement for 

early software faults detection and reliability prediction. This measurement, originally 

a black-box testing technique, was broadly recognized for its ability to detect 

incomplete and ambiguous requirements, although no information was found in the 

literature about how to take advantage of its power. This study mathematically 

formalized the measurement to enhance its rigidity, repeatability and scalability and 

further extended it as an effective requirements faults detection technique. An 

automation-oriented algorithm was developed for quantifying the impact of the 

detected requirements faults on software reliability. The feasibility and scalability of 

the proposed approach for early faults detection and reliability prediction were 

examined using two real applications. The results clearly confirmed its feasibility and 

usefulness, particularly when no failure data is available and other methods are not 

applicable. The scalability barriers were also spotted in the approach.  An empirical 

study was thus conducted to gain insight into the nature of the technical barriers. As 

an attempt to overcome the barrier, a set of rules was proposed based on the observed 

patterns. Finally, a preliminarily controlled experiment was conducted to evaluate the 

usability of the proposed rules. 

 This study will enable software project stakeholders to effectively detect 

requirements faults and assess the quality of requirements early in development, and 

ultimately lead to improved software reliability if the identified faults are removed in 

time. Software project practitioners, regulators, and policy makers involved in the 

certification of software systems can benefit most from the techniques proposed in 

this study.  
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Chapter 1:  Introduction 

1.1 Research Statement 

 Initiating software reliability prediction earlier in the software development 

lifecycle is critical in the success of implementing high quality software systems in 

today’s fast-paced development environment, because early prediction of software 

reliability can help organizations make informed decisions about corrective actions in 

a cost-effective manner.  

 Early estimations and predictions of software quality attributes are essential for 

control of software development and delivery of software products. In fact, the 

literature reveals that the use of early-stage software reliability models may well 

contribute to project success, as it enables the early detection and addressing of risks 

and issues of concern in an early stage of the project. Especially, time spent early on 

making sure that requirements are correct and has been observed saving much time 

and effort later. It has been shown many times that a bug found in the early stages of 

the product lifecycle is cheaper, in terms of money, effort and time, to fix than the 

same bug found later on in the process. As programming and test techniques have 

improved, the bugs have shifted closer to the process front end, to requirements and 

their specifications. Because they are first-in and last-out, faults originating in 

requirements are the costliest of all. These faults, like wrong, incomplete, and 

inconsistent requirements, cause costly development cycles, delay time to market, and 

lower product quality. Inspection of a requirements document can detect faults in an 

early stage of development, improve software quality, and prevents effort for 



 

2 
 

unnecessary rework. However, existing methods for requirements faults detection are 

mostly informal and fairly sketchy. Therefore, any research aiming at a systematic 

derivation or even an automatic detection of requirements faults is of great practical 

importance. 

 Studies describe what has been the industry reality for decades: the majority of 

software projects fail to achieve schedule and budget goals. As a result, there is an 

ever-increasing need for an affordable early predictor for software projects in 

academia, industry, and government. The purpose of such a predictor is to identify 

projects that were likely to be at high risk of failure in a very early stage. This would 

enable the project stakeholders to take corrective actions before significant resources 

have been expended in accordance with problematic requirements. Most of the 

existing software reliability models are applicable only in the testing phase when 

failure data are available. This is too late for affordably guiding corrective action to 

improve the quality of the software. Although some approaches have been proposed 

for early reliability prediction, common problems prevent these approaches from 

being practicable. These problems are: lack of generic applicability and scalability, 

over-dependence on industry-average data, such as faults content per function point, 

and/or ignorance of product documents. In particular, Software Requirements 

Specifications documents (SRS), the most significant documents usually available at 

the end of requirements analysis phase, are neglected by these approaches due to 

difficulties in linking requirements-based measurement(s) to reliability. Therefore, 

they are inevitably inadequate to provide trustworthy results. 
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 Apparently, a new approach is required to bridge the gap between requirements-

based measurement(s) and reliability quantification. This probabilistic-reliability 

prediction approach should also enable software professionals to identify problematic 

requirements to reduce the risks of projects. 

1.2 Research Objective 

 The objective of the study is to develop an approach that would allow the project 

stakeholders to determine at a very early development stage the problematic areas in 

the requirements and whether or not the project is at high risk of failure. The results 

of the study should be of value to the organization and project managers as they can 

assess the risks of a project at an earlier stage and either mitigate the risks before it is 

too late to do so or cancel the project. More specifically, this study is to investigate 

how to detect problematic requirements specifications and how software reliability 

assessment can be achieved at requirements analysis phase while limited information 

about the software project is available. 

 To achieve this, the following critical questions need to be answered: 

 Are there quantifiable features that can be extracted from information 

available in early stages that can be used to help predict software reliability? 

 What should be measured for software reliability prediction at early 

development stages? What is the right data to collect and what is the right way 

to process the collected data? 

 What are the limitations of the approach? Is the approach feasible and scalable? 
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1.3 Approach 

 This study deals with software reliability prediction on the basis of assessing the 

quality of the plain-text requirements specifications, which are usually available at the 

end of the requirements analysis phase, a very early stage of development. 

 Our approach begins with selecting the right one out of 40 ranked software 

reliability measurements according to several predefined criteria, such as the 

applicability at early stages, repeatability, potential in usability and scalability, and so 

on. These measurements were ranked with respect to its ability at predicting software 

reliability through an expert opinion elicitation process and the ranking was partially 

validated in our previous research. 

 After thoroughly analyzing its advantages, disadvantages, and other technical 

barriers as a software reliability measurement, we mathematically formalize the 

selected measurement to enhance its rigidity, repeatability, and scalability. We further 

investigate its ability in detecting problematic requirements specifications and 

develop a systematic method for requirements faults detection on the basis of the 

enhanced measurement. 

 We develop a unique automation-oriented algorithm to quantify the impact of the 

detected requirements faults on software reliability.  The quantification algorithm is 

based on the use of the formalized measurement, the Binary Decision Diagram 

techniques, and a recursive algorithm developed in this study. Moreover, this 

quantification algorithm uses detected faults instead of the number of faults because 

the former is believed to provide a more solid foundation for reliability quantification. 
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We also introduce artifacts and develop techniques to enable the automation of the 

quantification algorithm. 

 We then apply our approach to two real applications, one smaller and the other 

larger, to examine the feasibility and scalability of the proposed techniques for 

detecting SRS faults and predicting the reliability at requirement analysis phase. After 

the feasibility is clearly confirmed, we focus on identifying the scalability bottlenecks 

in our approach. 

 We employ the empirical study approach to gain insight into the nature of the 

technical barriers on scalability because quantitative research requires large sample 

sizes and such a sampling is not feasible for this study. We collect and distill the 

patterns observed in the empirical study, and develop rule-based methods to 

overcome these barriers. The influencing factors are identified and analyzed as well. 

 Finally, a controlled experiment is conducted to evaluate the usability of the 

proposed techniques/methods addressing the technical barriers. Due to the lack of 

enough resources to reliably test the effects of all identified influencing factors, we 

only statistically verify the impact of two influencing factors on using the proposed 

techniques/methods while the impact of other factors could be significant.  

1.4 Content 

 The rest of this dissertation is organized as follows: 

 In Chapter 2 we discuss the background and researches related to this study, and 

provide readers with the details on how we selected a software reliability 

measurement for this study. 
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 Chapter 3 focuses on exploring the advantages and disadvantages of the selected 

measurement. Several attempts to enhance the measurement towards a scalable 

software reliability prediction technique are discussed. Especially, the mathematical 

expression of the measurement is defined in terms of well understood mathematical 

entities, such as sets and Boolean formula, whose semantics are formally defined and 

can be easily stored and processed by computers. At the end of this chapter, we 

illustrate the use of the enhanced measurement with a simple example. 

 Chapter 4 introduces the concept of Software Requirements Specifications (SRS), 

attributes of a “good” SRS, commonly seen SRS faults, and existing techniques for 

SRS faults detection. The remainder of this chapter discusses our disciplined methods 

proposed for systematically detecting faults in natural language SRSs. 

 Chapter 5 describes the unique automation-oriented algorithm proposed for 

quantifying the impact of the detected SRS faults on software reliability. This 

algorithm is based on the formalized measurement and applicable in requirements 

analysis stage and other development stages. 

 Chapter 6 reports the procedure, results, and analysis of two case studies: Case 

Study A and Case Study B. These two case studies were conducted to evaluate the 

feasibility and scalability of the proposed CEGA techniques for quantification of 

software reliability at the requirements analysis stage. 

 Chapter 7 presents the objectives, procedure, detailed findings and analysis 

pertinent to Empirical Study C, which focuses on gaining insight into the nature of 

the scalability barriers identified in our approach. A set of rules attempting to 

overcome the scalability barrier is also proposed and presented in this chapter. 
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 Chapter 8 provides the pertinent information about a small-scale controlled 

experiment, called Experiment D. This experiment aims at comparing and evaluating 

how well the rules set proposed in Chapter 7 performs in comparison to other 

methods, and investigating whether the rules set succeeds in its goals of providing the 

same or improved benefits, with what cost, and under what circumstances it makes 

the most sense. The hypotheses about the impact of two factors (the SRS’ writing 

style and SRS’ application type) on the effectiveness and efficiency of using the rules 

set are formulated and tested. 

 In Chapter 9, we discuss restrictions and limitations on the use of our approach, 

conclude the study, and propose some suggestions for future research. 

 Please be aware that the theories and methodologies developed and presented in 

this dissertation are part of the University of Maryland Invention Disclosure No. IS-

2007-114 (November 2007), titled “Cause Effect Graphing Analysis of Software 

Requirements Specifications for Early Software Reliability Prediction”, Copyright© 

2007 University of Maryland, All right reserved. 

1.5 Summary of Contributions 

 The significant contributions of this study are as follows: 

1. Development of a method for systematical detection of faults in natural 

language requirements. This method is based on an existing technique 

originally used for black-box testing. This study thoroughly discusses this 

technique to compensate for the obvious absence of review papers in this area, 

mathematically formalizes this technique, and enhances its rigidity, 

repeatability, and scalability towards a scalable software reliability 
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measurement applicable to the analysis of natural language requirements. The 

enhanced technique is further extended to a new method capable of 

systematically detecting faults in requirements. This method allows software 

project stakeholders to identify the problematic areas in the requirements at a 

very early development stage. Moreover, this method overcomes the 

shortcomings of other techniques that fail to ensure complete coverage of 

functional requirements. 

2. Development of a method for quantifying the impact of detected faults on 

software reliability. This is the first method of its kind in the literature. 

Starting from this method, software project stakeholders are allowed to 

determine at a very early development stage whether or not the project is at 

high risk of failure while limited information about the software project is 

available. They can assess the risks of a project and either mitigate the risks 

before it is too late to do so or cancel the project. This method can be easily 

adapted to computer processing and automation. 

3. Feasibility and scalability assessment of the early-stage reliability prediction 

approach. This study also addresses the feasibility and scalability aspects of 

modeling natural languages functional requirements based on the formalized 

measurement. The nature of the technical barriers on scalability is explored 

and rule-based methods are developed to overcome these barriers. The impact 

of the writing style and application type (domain) of the requirements 

specifications on the effectiveness and efficiency in using the formalized 

measurement is statistically verified.   
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Chapter 2:  Background and Related Work 

2.1 Definitions 

 Within the software engineering community, there is much inconsistency and 

confusion over the use of the terms bug, error, defect, fault, failure, measure, metric, 

and measurement. Please be aware that this study follows the definitions of IEEE Std. 

610.12-1990 [1] and IEEE Std. 1061-1998 [2] when using these terms. It is first 

necessary to define some of the terms used in this dissertation: 

 Software reliability: is defined as “the probability of failure-free software 

operation for a specified period of time in a specified environment” [3]. By 

this definition, software reliability is a strictly operational quality attribute. 

Although researchers have come up with models relating the two, software 

reliability is inherently not a function of time [4]. 

 Error: a human action that produces an incorrect result [1]. 

 Fault (also known as bug or defect): a flaw in a component or system that can 

cause the component or system to fail to perform its required function, e.g. an 

incorrect statement or data definition. A fault is a manifestation of an error in 

software. A defect, if encountered during execution, may cause a failure of the 

component or system [1].  

 Failure: the inability of a system or component to perform its required 

functions within specified performance requirements [1]. 
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 The relationship among software error, fault, and failure is illustrated in Figure 

2-1. 

 

Figure 2-1: Relationship among the Error, Fault, and Failure 

 Measure: a way to ascertain or appraise value by comparing it to a norm; to 

apply a metric [2]. 

 Metric: a quantitative measure of the degree to which a system, component, or 

process possesses a given attribute [1]. 

 Measurement: the act or process of assigning a number or category to an 

entity to describe an attribute of that entity; a figure, extent, or amount 

obtained by measuring [2]. 

2.2 Current Situation 

 As revealed in the literature [3][4][5], the cost of a software application in the past 

decades was sweat, blood, tears, and endless debugging sessions. This is because the 

demand for complex software systems has increased more rapidly than the ability to 

design, implement, test, and maintain them. Besides, the ever increasing complexity 

of software has impaired our ability to understand how faults are born, manifest, 

propagate, and eventually lead to failures of the software. Many reported system 

outages or machine crashes were traced down to computer software failures, such as 

the London Stock Exchange crash in 2008, the Air-Traffic Controller incident at LA 
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Airport in 2004, and the Northeast Blackout in 2003 [6]. As literature is replete with 

horror stories regarding software problems, the reliability of software systems has 

become a major concern for our modern society. 

 Though frustrating, the quest of quantifying software reliability has never ceased. 

The magnitude of costs involved in software development and maintenance magnifies 

the need for a scientific foundation to support programming standards and 

management decisions by measurement. Naturally, software reliability measurement 

has become essential to quality-assured software engineering [7]. 

 Unfortunately, measuring and ensuring software reliability is no easy task. The 

high complexity of software is the major contributing factor of software reliability 

problems [3]. As hard as the problem is, promising progresses are still being made 

toward more reliable software. More standard components and better process are 

introduced in the software engineering field. However, until now, we still have no 

good way of measuring software reliability. Actually, reliability measurement in 

software is still in its infancy [3]. This is because: 

 We do not have a good understanding of the nature of software.  

 We cannot find a suitable way to measure software reliability, and most of the 

aspects related to software reliability. 

 Software reliability cannot be directly measured, so other related factors are 

measured to estimate software reliability and compare it among products. 

However, even the most obvious product metrics such as software size have 

not uniform definition. 
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 Even though researchers agree that development process, faults and failures 

found are all factors related to software reliability, no good quantitative 

methods have been developed to represent software reliability without 

excessive limitations. 

2.3 Reliability Measurement vs. Development Phases 

 A software project is made up of series of development phases. Broadly, most 

software projects are comprised of the following phases [8]: 

1. Requirements analysis: This first step is also the most important, because it 

involves gathering information about what the customer needs and defining, 

in the clearest possible terms, the problem that the product is expected to solve. 

Analysis includes understanding the customer's business context and 

constraints, the functions the product must perform, the performance levels it 

must adhere to, and the external systems it must be compatible with. 

Techniques used to obtain this understanding include customer interviews, use 

cases, and "shopping lists" of software features. The results of the analysis are 

typically captured in a formal Software Requirements Specification document 

(SRS), which serves as input to the next step. Proper requirements and 

specifications are critical for having a successful project. Removing faults at 

this phase can reduce the cost as much as faults found in the Design phase. 

2. Design: This step consists of defining the hardware and software architecture, 

specifying performance and security parameters, designing data storage 

containers and constraints, choosing the Integrated Development Environment 

(IDE) and programming language, and indicating strategies to deal with issues 
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such as exception handling, resource management and interface connectivity. 

This is also the stage at which user interface design is addressed, including 

issues relating to navigation and accessibility. The output of this stage is one 

or more design specifications, which are used in the next stage of 

implementation. 

3. Implementation: This step consists of actually constructing the product as per 

the design specification(s) developed in the previous step. Typically, this step 

is performed by a development team consisting of programmers, interface 

designers and other specialists, using tools such as compilers, debuggers, 

interpreters and media editors. The output of this step is one or more product 

components, built according to a pre-defined coding standard and debugged, 

tested and integrated to satisfy the system architecture requirements. 

4. Testing: In this stage, both individual components and the integrated whole 

are methodically verified to ensure that they are fault-free and fully meet the 

requirements outlined in the first step. An independent quality assurance team 

defines "test cases" to evaluate whether the product fully or partially satisfies 

the requirements outlined in the first step. Three types of testing typically take 

place: unit testing of individual code modules; system testing of the integrated 

product; and acceptance testing, formally conducted by or on behalf of the 

customer. Faults, if found, are logged and feedback provided to the 

implementation team to enable correction. This is also the stage at which 

product documentation, such as a user manual, is prepared, reviewed and 

published. 
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5. Operation: This step occurs once the product has been tested and certified as 

fit for use, and involves preparing the system or product for installation and 

use at the customer site. Delivery may take place via the Internet or physical 

media, and the deliverable is typically tagged with a formal revision number 

to facilitate updates at a later date. 

6. Maintenance: This step occurs after installation, and involves making 

modifications to the system or an individual component to alter attributes or 

improve performance. These modifications arise either due to change requests 

initiated by the customer, or faults uncovered during live use of the system. 

Typically, every change made to the product during the maintenance cycle is 

recorded and a new product release is performed to enable the customer to 

gain the benefit of the update. 

 Measurement of both the product and development processes has long been 

recognized as a critical activity for successful software development [4]. Good 

measurement practices and data enable realistic project planning, timely monitoring 

of project progress and status, identification of project risks, and effective process 

improvement. Appropriate measurements and indicators of software artifacts such as 

requirements, designs, and source code can be analyzed to diagnose problems and 

identify solutions during project execution and reduce faults, rework (effort, resources, 

etc.), and cycle time. These practices enable organizations to achieve higher quality 

products and reflect more mature processes, as delineated by the Capability Maturity 

Model Integration (CMMI®) [9]. The relationship between software development 

process and reliability measurement is depicted in Figure 2-2. 
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Figure 2-2: Software Reliability Measurement vs. Development Process 
 

2.4 Brief Taxonomy of Software Reliability Measurement Models 

 The current practices of software reliability measurement include two types of 

activity: reliability estimation and reliability prediction [3]: 

 Reliability estimation: This activity determines current software reliability by 

applying statistical inference techniques to failure data obtained during system 

test or during system operation. This is a measure regarding the achieved 

reliability from the past until the current point. Its main purpose is to assess 

the current reliability, and determine whether a reliability model is a good fit 

in retrospect. 

 Reliability prediction: This activity determines future software reliability 

based on available software metrics and measures. Depending on the software 

development stage, prediction involves different techniques: 
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o  When failure data are available (e.g., software is in system test or 

operation stage), the estimation techniques can be used to parameterize 

and verify software reliability models, which can perform future 

reliability prediction. 

o When failure data are not available (e.g., software is in the design 

stage), the metrics obtained from the software development process 

and the characteristics of the resulting product(s) can be used to 

determine reliability of the software upon testing or delivery. This is 

usually called “early prediction”. 

 Fenton [10] classified software metrics into three main categories: product, 

process, and project metrics: 

 Product metrics are those that describe characteristics of the software 

development life cycle processes outputs such as requirements specifications 

documents, design diagrams, source code, and executable programs. 

Examples of classical product oriented metrics are McCabe’s Cyclomatic 

Complexity, Line of Code (LOC), and Mean Time To Failure (MTTF) 

[11][12]. 

 Process metrics quantify attributes of the development process and of the 

development environment. Research has demonstrated that a relationship 

exists between the development process and the ability to complete projects 

on time and within the desired quality objectives [13]. Higher reliability can 

be achieved by using better development process, risk management process, 
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configuration management process, etc. Therefore, process metrics, such as 

the SEI Software CMM level, were also used to estimate, monitor and 

improve the reliability and quality of software. 

 Project metrics are those that describe the available resources characteristics, 

for instance, the number of developers and their skills. These metric are rarely 

used in the field of software reliability measurement. 

 Figure 2-3 shows a brief taxonomy of software reliability models. Most of the 

existing software reliability models fall in the estimation category. 

 

Figure 2-3: Brief Taxonomy of Software Reliability Measurement Models 

 This study focuses on developing product-based methods for early software 

reliability measurement. 

2.5 Why Early Reliability Measurement is Necessary 

 Studies support the following claims: 

 The majority of software projects fail to achieve schedule and budget goals. 

 The majority of faults have their root cause in poorly defined requirements. 
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 The cost of fixing a software fault is lowest in the requirements phase. 

2.5.1 Majority of Software Projects Failed to Achieve Schedule and Budget Goal 

 Studies describe what has been the industry reality for decades: the majority of 

software projects failed to achieve schedule and budget goals. 

 A summary of 1995 Department of Defense (DoD) software spending [14] is 

shown in Figure 2-4. As indicated, of the $35.7 billion spent by the DoD for software 

development, only 2 percent of the software was able to be used as delivered. The 

vast majority, 75 percent, of the software was either never used or was cancelled prior 

to delivery. The remaining 23 percent of the software was used following 

modification. 

 

Figure 2-4: Outcomes of Department of Defense Software Spending 

 A similar study conducted by the Standish Group [15] on non-DoD software 

projects in 1994 produced very similar results. In over 8,000 projects conducted by 

350 companies, 28% of projects are failures, 46% are challenged, and only 26 percent 

of the projects were considered successful.  

Poor software quality is a primary factor behind many failures, and often results 

in massive rework of application scope, design and code [15]. Such rework extends 
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release cycles and consumes significant additional budget. Aside from the time and 

money spent for application rework and increased help desk support, business 

reputation and market position can also be compromised. To reduce software failures, 

it is imperative that we better understand the quality initiatives behind the products 

being developed for today’s global economy. 

2.5.2 Requirements are the Root of Many Problems 

 There is strong evidence that early stages of the system development life cycle are 

especially prone to faults. Confusion, misunderstanding, and frustration relative to 

requirements are major risks to the success of any software project. 

 Inspection statistics for NASA shuttle software showed that the density of major 

faults found during requirements inspections was seven times higher than during code 

inspections [16].   

 In a study of a US Air Force project by Sheldon [17], faults were classified by 

source. It was found that requirements faults comprised 41% of the faults discovered, 

while logic design faults made up only 28% of the total fault count. 

 Other case studies back this result as well. For example, a study by James Martin 

[18] reported that over half of all project faults could be traced to faults made during 

the requirements stage as indicated in Figure 2-5 (adapted from [18]). Further, the 

study stated that approximately 50 percent of requirements faults were the result of 

poorly written, ambiguous, unclear and incorrect requirements. The other 50 percent 

of requirements faults could be attributed to incompleteness of specification (i.e. 

requirements that were simply omitted.) 
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Figure 2-5: Distribution of Faults in Software Projects 

 Other statistics demonstrated similar problems: 

 70-85 percent of application rework was related to faults in requirements [18] 

 44% of projects were cancelled due to problems with requirements [18] 

 54% of initial project requirements were actually realized [15] 

 45% of realized requirements ended up actually being used [15] 

 A survey of the Standish Group [15] also found that of the eight main reasons 

given for project failures, five were requirements related, as presented in Figure 2-6 

(adapted from [15]). These were “incomplete requirements”, “lack of user 

involvement”, “unrealistic user expectations”, “requirements keep changing”, and 

“system no longer needed”. 
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Figure 2-6: Distribution of Failure Causes of 8000+ projects 

 More recently, an analysis of the data gathered by the Software Engineering 

Institute (SEI) on 451 Capability Maturity Model (CMM) Level 1 CMM-Based 

Assessments for Internal Process Improvement conducted from 1997 through August 

2001 indicated that requirements continued to be a problem [19]. 

 Getting the requirements right is probably the single most important thing that can 

be done to achieve customer satisfaction. 

2.5.3 Faults Cost Less when Detected and Fixed in Early Stages of Development 

 The importance of requirements is further emphasized by Figure 2-7 (adapted 

from [20]), which depicts the distribution of effort needed to fix faults [20]. It can be 

clearly seen that the bulk of the effort (82%) is attributed to fixing requirement faults.  
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Figure 2-7: Distribution of Effort to Fix Faults  

 As accepted by the majority of the practitioners, the cost of fixing a software fault 

is lowest in the requirements phase. As the project moves into subsequent phases of 

software development, the cost of fixing a fault rises dramatically, since there are 

more deliverables affected by the correction of each fault, such as a design document 

or source code. The earlier a fault is detected, the less damage it can do to the system, 

because there are very few deliverables to correct. 

 According to the industrial data, the cost of detecting and removing a fault that is 

introduced during the earlier phases of the software development life cycle increases 

almost exponentially as we progress through the development life cycle (see Figure 

2-8, excerpted from [21]). 

 

Figure 2-8: Industry Standard Cost Ratio to Fix a Defect 
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 McConnell [22] estimated that "a requirements fault that is left undetected until 

construction or maintenance will cost 50 to 200 times as much to fix as it would have 

cost to fix at requirements time." 

 Other studies, furthermore, show that requirements faults are between 10 and 100 

times more costly to fix during later phases of the software life cycle than during the 

requirements phase itself. Let us assign a unit cost of one (“1X”) to the effort required 

to detect and repair a fault during the requirement stage.  The same fault, if not found 

until integration testing or production, will cost hundreds or even thousands of times 

more (see Figure 2-9, adapted from [13]). 

 
Figure 2-9: Cost Ratio vs. Development Phases in Which Faults are Found 

 The reason for this large difference is that many of these faults are not detected 

until well after they have been made. This delay in fault discovery means that the cost 

to repair includes both the cost to correct the offending fault and the cost to correct 

subsequent investments in the faults which were made in later phases. These 

investments include the cost for redesign and replacement of code, cost for 

documentation rewrite, and the cost to rework or replace software in the field. Indeed, 

the key issue is scrap and rework. If a fault was introduced while coding, one can just 

fix the code and re-compile. However, if a fault has its roots in poor requirements and 
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is not discovered until integration testing then one must re-do the requirements, re-do 

the design, re-do the code, re-do the tests, re-do the user documentation, and re-do the 

training materials. It is all this “re-do” work that sends projects over budget and over 

schedule.  

 This claim is supported by many studies. For instance, in a study performed at 

Raytheon, Dion [23] reported that approximately 40% of the total project budget was 

spent in rework costs. Other studies [24] indicate that for the majority of companies 

today, rework contributes between 30-40% of total project costs. Because of their 

large number, and the multiplying effect, finding and fixing requirement faults 

consumes between 70% - 85% of total project rework costs. 

 Faults are introduced in various stages of the development process, as shown in 

Figure 2-10 (excerpted from [25]). This figure shows that faults which originate in 

early stages can have a lasting influence on the quality of a system: they are the 

earliest to invade the system and the last to leave, if not fixed. This is called “fault 

summation effect” [25], which explains why requirements faults, in comparison to 

faults introduced into projects in later development phases are usually more 

expensive to be defected and fixed. 
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Figure 2-10: Summation Effect of Faults 

 The role of software has shifted from simply generating financial or other 

mathematical data to monitoring and controlling equipment which directly affects 

human life and safety.  Software’s increasing role creates both requirements for being 

able to trust it more than before, and for more people to know how much they can 

trust their software products. As a result, methods used to achieve, predict, and assess 

the safety and reliability of software are strongly needed in academia, industry, and 

government.  This is also true since many legal issues related to software liability are 

evolving [26]. 
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 Different parts of the software-related industry and society face different 

challenges. For engineers and managers involved in the development of software 

systems, there is a strong need for early indicators, such as reliability, so that actions 

can be taken early to reduce cost and prevent disasters. For regulators and policy 

makers involved in the certification of software systems, practical methods and tools 

are needed to quantitatively assess the quality of the software products, including 

requirements specification, design documents, delivered source code, and user 

manual [26]. 

 Clearly, current software engineering suffers from problematic requirements 

specifications. Matured, well-defined, and quantitative assessment methods for the 

reliability of the software products are not generally applicable until later life cycle 

phases. Most engineering methods remain qualitative and depend heavily on 

engineering judgment during the requirements phase. Therefore, the need to develop 

better software requirements engineering techniques is urgent [16]. 

2.6 Virtues of Early Software Reliability Measurement  

 First, the advantage for early software reliability measurement is simple 

economics.  Requirements faults are major source of project failures and the most 

expensive ones to be fixed. Therefore, detection and removal of requirement faults in 

the early stage of the life cycle will significantly improve the quality of the product in 

a cost-effective manner. With the cost of some systems exceeding tens or even 

hundreds of millions of dollars and with development duration of more than 12 to 18 

months, early reliability measurement can significantly contribute to the success or 

early rational cancellation of the project [27]. 
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 Secondly, early software reliability measurement provides a solid foundation to 

perform meaningful tradeoff studies at project start. If software reliability 

measurement is performed early in the software life cycle, it is possible to determine 

what improvement, if any, can be made to the software methods, techniques, or 

organizational structure. 

 Thirdly, with recent strong emphasis on speed of development, the decisions 

made on the basis of early reliability estimation can have the greatest impact on 

schedules of software projects [27]. It was observed that early defect detection could 

significantly shorten the schedule, as shown in Figure 2-11 (Excerpted from [28]). 

This is because the future rework is minimized if requirements faults are detected and 

removed during early stages of software development [28]. 

 

Figure 2-11: Development Schedule with/without Early Fault Detection  

2.7 Previous Work on Early Reliability Measurement 

 Early software reliability measurement has attracted great interest from software 

practitioners and researchers since the early 1990’s. However, quantifying software 
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reliability in an early stage has been a difficult research subject that many researchers 

have attempted to solve with limited success [4]. 

 Traditional software-reliability prediction methods such as reliability growth 

models base estimates on observing failures (and fixing faults) in validation testing, 

during which operational patterns represent the product’s actual field use. 

Unfortunately, in early developmental stages of software, failure data is not available 

to determine the reliability of software. Therefore, although many techniques and 

models have been developed, only a few can be applied in early development stages, 

e.g. design phase, before an executable version of the software system is available. 

This is because only those methods/models that can provide a reasonable estimation 

without the need of any actual failure data are applicable in early development stages. 

 The pioneering early-stage reliability measurement models proposed in the early 

1990’s include: Gaffney and Davis’ phase-based model [29], Agresti and Evanco’s 

Ada software defects model [30], and the US Air Force’s Rome Lab model [31]. The 

basic philosophy of these early-phase models is to obtain as much information as 

possible. This type of approach is referred to as the “white box” approach, which 

requires detailed information usually not available in most cases. For instance, the US 

Air Force Rome Lab model consists of nine factors that are used to predict the fault 

density of the software application. There are parameters in this estimation model that 

have tradeoff capability (maximum/minimum predicted values). The analyst can 

determine where some changes can be made in the software engineering process or 

product to achieve improved fault-density estimation. However, this tradeoff is 

valuable only if the analyst has knowledge of the software development process. 



 

29 
 

 Smidts et al (1997) [32][33] proposed an architecturally based software reliability 

model to predicting software reliability based on a systematic identification of 

software process failure modes and their likelihoods. A direct consequence of the 

approach and its supporting data collection efforts is the identification of weak areas 

in the software development process. The author believed that the key characteristics 

of the approach are applicable to other software-development life-cycles & phases. 

However, it is unclear how difficult the implementation of the approach would be, 

and how accurate the predictions would be. 

 Yin et al (2000) [34] addressed early-stage system-level software reliability 

modeling issues for large-scale software products by taking a hierarchical description 

and using Petri net mechanisms. The Petri net modeling techniques were proposed for 

handling the dependency among software modules. This approach requires only a 

minimum amount of information, which is most likely to be available in early 

development stages. However, to create a Petri net model for software modules can 

be fairly complex, especially for large-scale programs. 

 Zhao (2003) [35] presented software reliability modeling issues in the early stage 

of a software development for a fault tolerant software management system. Based on 

Stochastic Reward Nets, a model of the hierarchical view for a fault tolerant software 

management system is put forward, and an approach that consists of system transient 

performance analysis was adopted. 

 Tripathi and Mall (2005) [36] developed a model based on Reliability Block 

Diagram (RBD) for representing real-world problems and an algorithm for analysis of 

these models in the early phases of software development. The simulation result 
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shows that reliability prediction of subsystems is a good quality indicator and 

coupling can be correlated with system reliability, which can be used for system 

design assessment. 

 By assuming the same failure rate between two similar projects, Hu (2006) [37] 

suggested to "reuse" failure data from previous releases or similar projects with ANN 

models to improve early reliability prediction for current project/release. Better 

prediction performance was observed in the early phases of testing compared with the 

original ANN model without failure data reuse. 

 Mei (2007) [38] investigated an approach to using past fault-related data with 

Wavelet Networks model to improve reliability predictions in the early testing phase. 

The wavelet-networks-based model captures the input-output (I/O) relationships of 

software system to corresponding fault and to improve the accurate of predicting the 

reliability. Numerical example was illustrated with both actual and simulated datasets. 

The analysis with example shows that the proposed approach works effectively in the 

early phase of software testing. 

 More recently, Cheung et al (2008) [39]  presented a framework for predicting 

reliability of software components during architectural design phase by exploiting 

architectural models and associated analysis techniques, stochastic modeling 

approaches, and information sources available early in the development life cycle. 

The authors agreed that the scalability of their reliability prediction techniques at the 

system level remains a challenge and further investigation is needed. 

 Our previous research [40] (to be printed) proposed an approach  estimates the 

fault contents based on data collected by Software Productivity Research Inc. [41] 
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that links the SEI CMM level to the number of faults per function points. The 

probability of success per demand is obtained using Musa's exponential model. 

However, the value of a critical parameter (called fault exposure ratio) in Musa's 

model was found outdated and incorrect by orders of magnitude in particular for 

safety critical applications [40]. 

 Common problems with these existing approaches are: lack of generic 

applicability and scalability, over-dependence on industry-average data, such as faults 

content per function point, and/or ignorance of product documents generated at early 

development phase. In particular, Software Requirements Specifications documents 

(SRS), the most significant documents usually available at the end of requirements 

phase, are neglected by these approaches due to difficulties in linking requirements-

based measurement(s) to reliability. Therefore, they are inevitably unsuited to provide 

trustworthy results.  

 Apparently, a new approach is required to bridge the gap between requirements-

based measurement(s) and reliability quantification. This probabilistic-reliability 

prediction approach should also enable software professionals to identify problematic 

requirements to reduce the risks of software projects. 

2.8 Selecting Software Measurement for Early Reliability Assessment 

 There exist more than 200 software measurements [42]. To predict software 

reliability at the end of the requirements stage with limited information about a 

system at hand, appropriate measurement(s) need to be selected before 

methods/models can be developed to bridge the gap between the measurement and 

the reliability prediction. 
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 The desired measurement should possess the following characteristics: 

• applicable by the end of the requirements phase; 

• involving the use of formal logic and abstract modeling to state the 

requirements in a clear, precise, and unambiguous format to facilitate the 

communication among project stakeholders, including domain experts, 

manager, end users, and developers; 

• capable of identifying requirements faults in a systematic way; 

• easy to use for all project stakeholders, not just for those with special 

mathematical training; 

• scalable for large/complex applications. 

 Based on a list of 78 measurements identified in a study conducted by Lawrence 

Livermore National Laboratory [43], the University of Maryland [12][7] reduced it to 

30 (later extended it to 40) and systematically ranked these measurements with 

respect to their ability at predicting software reliability through expert opinion 

elicitation process. These measurements were classified into three categories: high-

ranked, medium-ranked and low-ranked. This ranking was partially validated through 

two experiments [40] [44]. Table 2-1 presents the phase-based applicability and 

ranking classification of these measurements. 

 In our previous research [40], we found that among the measurements listed in 

Table 2-1, cause-effect graphing analysis (also called cause-effect graphing) was the 

most promising candidate and was thereby selected in this study, even though it was 

ranked as “medium” in the earlier study [12]. The two primary disadvantages keeping 

it from being widely used in the field of software reliability prediction were [26]: 
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1) no specific process was defined for the measurement; 

2) no method was developed to link this measurement to software reliability. 

 This study addresses these two primary issues along with others, such as usability 

and scalability, to enable software project stakeholders to effectively detect 

requirements faults and predict software reliability at the requirements analysis stage. 

Table 2-1: Phase-based Applicability and Ranking Classification of 40 Software 

Reliability Measurements1 

Index Measure 

Applicable Development Phase(s) 
Ranking 

Class Requirement Design Implementation Testing 

1 
Bugs per line of code 
(Gaffney)     Low 

2 Cause-effect graphing     Medium 

3 Class coupling     Medium 

4 Class hierarchy nesting level     Medium 

5 Code defect density     High 

6 Cohesion     Low 

7 Completeness     Low 

8 Coverage factor     High 

9 Cumulative failure profile     High 

10 Cyclomatic complexity     Medium 

11 Data flow complexity     Medium 

12 Design defect density     High 

13 Error distribution     High 

14 Failure rate     High 

15 Fault density     High 

16 Fault-days number     High 

                                                 
 
 
1 Table legend:  = applicable ;  = not applicable. 
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Index Measure 

Applicable Development Phase(s) 
Ranking 

Class Requirement Design Implementation Testing 

17 Feature point analysis      Low 

18 Full function point     Low 

19 Function point analysis     Low 

20 Functional test coverage     Medium 

21 
Graph-theoretic static 
architecture complexity     Low 

22 
Lack of cohesion in methods 
(LCOM)     Medium 

23 
Man hours per major defect 
detected     Medium 

24 Mean time to failure     High 

25 
Minimal unit test case 
determination     Medium 

26 Modular test coverage     Medium 

27 Mutation score     Medium 

28 
Mutation testing (error 
seeding)     Low 

29 Number of children (NOC)     Medium 

30 Number of class methods     Medium 

31 
Number of faults remaining 
(error seeding)     Medium 

32 Number of key classes     Medium 

33 Requirements compliance     Low 

34 
Requirements specification 
change requests     Medium 

35 Requirements traceability     Medium 

36 
Reviews, inspections and 
walkthroughs     Medium 

37 
Software capability maturity 
model     Medium 

38 System design complexity     Medium 

39 Test coverage     Medium 

40 
Weighted method per class 
WMC)     Medium 
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Chapter 3:  Formalization of Cause-Effect Graphing Analysis as 

a Software Reliability Measurement 

3.1 What is Cause-Effect Graphing Analysis (CEGA) 

 The Cause-Effect Graphing Analysis technique was originally proposed by 

Elmendorf [45] to design the necessary and sufficient set of test cases that cover 100 

percent of the functional requirements by the use of a mathematically rigorous 

algorithm. The Cause-Effect Graphing Analysis (CEGA) is the process of 

transforming specifications into a graphical representation, called a cause effect 

graph. CEGA has a proven beneficial side effect which is to point out incompleteness 

and ambiguities in specifications as a result of developing cause effect graphs [45] 

[46][47][48]. 

 A Cause Effect Graph (CEG) is a visual and formal language into which a natural 

language specification is translated. More precisely, a CEG is a Boolean graph 

describing the semantic content of a written functional specification as logical 

relationships between causes (inputs or stimuli) and effects (outputs). It consists of 

causes, effects, and graphical notations expressing logical relationships and 

constraints among causes and effects. The logical operators include “IDENTITY”, 

“AND”, “OR”, and “NOT”. The basic notation for the CEG logical relationships is 

shown in Figure 3-1. 

  In most systems, certain combinations of causes are impossible because of 

syntactic or environmental considerations. To account for these, the notation in 

Figure 3-2 is used. The EXCLUSIVE constraint states that it must always be true that, 
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at most, one of c1, c2, …, and ck can be “1”. The INCLUSIVE constraint states that at 

least one of c1, c2, …, and ck must always be “1” (c1, c2, …, and ck cannot be “0” 

simultaneously). The ONE-AND-ONLY-ONE constraint states that one and only one 

of c1, c2, …, and ck must be “1”. The REQUIRE constraint states that for c1 to be “1”, 

c2 must be “1” (i.e., it is impossible for c1 to be “1” and c2 to be “0”). Besides, there 

frequently is a need for a constraint among effects. The MASK constraint in Figure 

3-2 states that if effect e1 is “1”, effect e2 is forced to “0”. 

 

 

Figure 3-1: Symbols of Basic CEG Logical Relationships 

 

 

Figure 3-2: Symbols of CEG Constraints 

 In general, the following steps are taken to derive test cases using CEGA [49]: 
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1) A cause-effect graph is developed on the basis of the requirements 

specification. 

2) The graph is then converted to a decision table (also called “limited-entry 

decision table”). 

3) Finally, the decision table is converted to test cases by applying certain rules. 

This is why CEGA is usually called decision table testing when it is used for 

test case design. 

This study does not discuss how to create test cases using CEGA. Instead, the 

interested reader is referred to [45] [48][50] for further information. 

3.2 Construction of CEG 

  In general, the following process is used to construct a CEG for a Software 

Requirements Specifications document (SRS) [45]: 

1) Divide the SRS into multiple workable pieces if necessary. 

2) Study the SRS to identify causes and effects. 

3) Assign a unique name to every cause and effect. 

4) Identify all of the expressed and implied logical relationships and constraints 

among causes and effects. 

 Several tools that support CEG drawing are commercially available [48]. 

BenderRBT® [51], for instance, allows project teams to quickly create cause-effect 

graphs, complete with node relationships and constraints through its add-ons for 

Microsoft Office Visio®. When the cause-effect graph is completed, users can invoke 

BenderRBT® to design test cases based on the requirements depicted in the graph. 
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 Myers [45 pp. 65-88] provided general CEG construction guidelines widely used 

in industry. However, there are no specific rules found in the literature on how to 

identify the elements of a CEG from an SRS, including the causes, effects, logical 

relationships, and constraints. We will revisit the topic of CEG construction in 

Chapter 7 and present our attempt to address this issue. 

3.3 CEGA as a Software Reliability Measurement 

CEGA is also recognized as a software reliability measurement. According to 

[42], CEGA “aids in identifying requirements that are incomplete and ambiguous”, 

and “explores the inputs and expected outputs of a program and identifies the 

ambiguities”, and “once these ambiguities are eliminated, the specifications are 

considered complete and consistent”. The measure of CEGA is defined as: 

  (%) 100 1 ,existing

total

A
CE

A

 
   

            (Eq. 3-1) 

where 

CE(%) : the cause-effect measure 

existingA  : number of ambiguities in a program remaining to be eliminated 

totalA  : total number of ambiguities identified 

 The value of the cause-effect measure is scaled between 0 and 1. A score near 1 is 

considered better than a score near 0. A value near zero indicates a strong need to 

trace to the suspected ambiguities and make any necessary change(s) in the 

requirements specifications. As changes are made to the specifications, the 

incremental measure values can be plotted to show if improvements are being made 

and how rapidly.  
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 Be aware that the value of the cause-effect measure, CE(%), is subjectively 

determined. In fact, there is no standard definition for requirements ambiguity. 

According to Le [52 p. 13], software requirements ambiguities fall into categories of 

indeterminacy (vagueness and generality), linguistic (lexical, syntactic, and semantic) 

ambiguity, and software engineering (requirement domain, application domain, 

system domain, and development) ambiguity. However, there appears to be no single 

comprehensive definition of ambiguity in the software engineering literature [52 p. 

19]. Each of the following definitions highlights only some aspects of ambiguity and 

omits others: 

 IEEE’s definition [53]: “An SRS is unambiguous if, and only if, every 

requirement stated therein has only one interpretation”. 

 Davis’ definition [54]: “Imagine a sentence that is extracted from an SRS, 

given to ten people who are asked for an interpretation. If there is more than 

one interpretation, then that sentence is probably ambiguous.” 

 Schneider, Maritin and Tsai’s definition [55]: “An important term, phrase, or 

sentence essential to an understanding of system behavior has either been left 

undefined or defined in a way that can cause confusion and misunderstanding. 

Note that these are not merely language ambiguities such as an uncertain 

pronoun reference, but ambiguities about the actual system and its behavior.” 

 Gause and Weinberg’s definition [56]: “Ambiguity has two sources, missing 

information and communication errors. Missing information has various 

reasons. For instance, humans make errors in observation and recall, tend to 

leave out self-evident and other facts, and generalize incorrectly. A 
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communication error that occurs between the author and the reader is due to 

general problems in the writing.” 

 Kamsties’s definition [57]: “A requirement is ambiguous if it has multiple 

interpretations despite the reader’s knowledge of the context. It does not 

matter whether the author unintentionally introduced the ambiguity, but 

knows what was meant, or she intentionally introduced the ambiguity to 

include all possible interpretations. The context is important to be taken into 

account, because a requirements document cannot be expected to be self-

contained in a way that an arbitrary naïve reader could understand it.” 

 The definitions together form a complete overview of the current understanding 

of ambiguity in Software Engineering [52].  

 Unsurprisingly, the repeatability of the cause-effect measure, CE(%), is not 

guaranteed. The subjective or non-subjective factors, such as personal attributes and 

knowledge, would to some extent affect the inspector’s judgment for what is a SRS 

ambiguity and what is not. Therefore, it is not appropriate to use the cause-effect 

measure for quantitatively assessing the reliability of a software system. 

3.4 Advantages and Disadvantages of CEGA 

 CEGA is a proven versatile technique for test case design and requirements 

specification validation. There are several distinct advantages and disadvantages of 

using CEGA. The general benefits of CEGA when compared to other testing 

techniques are [45][46][47][48][58][59]: 
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 It is a rigorous method for transforming a natural language specification into a 

formal language specification. The formal characteristics of CEGA guarantee 

a complete functional coverage not easily found in the state of the practice “ad 

hoc manner” testing.  

 The test cases generated can be used during all subsequent levels of testing 

from unit testing to system testing.  

 CEGA begins the process of integration testing. The code modules eventually 

must integrate with each other. If the requirements that describe these modules 

cannot integrate, then the code modules cannot be expected to integrate. The 

cause-effect graph shows the integration of the causes and effects. 

 The starting point for CEGA is the requirements document. The requirements 

can describe real time systems, events, data driven systems, state transition 

diagrams, object oriented systems, graphical user interface standards, etc. Any 

type of logic can be modeled using a CEG. 

 CEGA can also serve as an advance over other informal, ad-hoc specification 

of program function and combinatorial testing of interfaces. 

 CEGA provides consideration of constraints that application of other testing 

techniques do not provide. 

 CEGA also has the ability to detect defects that cancel each other out, and the 

ability to detect defects hidden by other things going right. 

 When compared to other validation techniques, the benefits of CEGA stem from 

the fact that it is semi-formally based on a graphics form of propositional logic which 
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gives the user some degree of confidence. This means that CEGA yields additional 

benefits, among them: 

 CEGA is helpful for creating unambiguous, concise specifications during 

requirements phase. CEGs graphically display relationships and constraints 

between application inputs and outputs. They provide detailed analysis 

information in a variety of easy-to-read formats. The analyst may get visual 

clues about missing or incorrect relationships. The project team can analyze 

every aspect of the requirements in CEGs to identify precedence problems in 

relations, logical faults, missing functionality and improperly used aliases. 

 CEGs help to uncover ambiguities and incompleteness in the specification 

during verification and validation (V&V)2. Development of the CEG from the 

specification allows a thorough inspection of the specification. Any omissions, 

inaccuracies, or inconsistencies are likely to be detected. In developing cause-

effect graphs, project teams evaluate the requirements for completeness, 

consistency, sufficient level of detail and lack of ambiguity, often finding 

defects that otherwise would not be found until integration testing. Business 

analysts and project stakeholders collaboratively can review the natural 

language test cases generated by CEGA, enabling them to identify and correct 

any requirement faults earlier in the development cycle. 

 CEGA is easy to use. The only requirement for using and understanding CEG 

is knowledge of Boolean logical operators. 

                                                 
 
 
2 Verification and Validation (V&V) is the process of checking that a product, service, or system meets 
specifications and that it fulfills its intended purpose [28]. These are critical components of a quality 
management system such as ISO 9000. 
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 CEGA is more methodical and therefore more uniform, repeatable, and 

reliable. 

 CEGA requires only functional requirements specifications, which is most 

likely to be available in the early stages of the software development. 

Therefore, CEGA can be used early in the development process in conjunction 

with review procedures such as Desk Checking and Walkthroughs [60]. 

 CEGA facilitates early involvement of customers to ensure the application 

meets their needs. The client’s ability to state the right mission goals and 

needs is essential to attain a requirements specification that is complete, 

correct and consistent, which in turn is a prerequisite for the right system to be 

ordered and to enable cost-effective design, verification and validation. 

 Many aspects of the cause-effect graphing can be automated. For instance, 

conversion of the graph to a decision table is an algorithmic process, which 

could be automated by a computer program. This trait implies that CEGA as a 

testing technique would be scalable for large-scale application. 

 CEGA improves team communications and reduces risks, rework, and 

frustration. Requirements definition with visual specifications promotes 

positive communication. As a visualized representation of requirements, CEG 

can ease the build of a common understanding between the domain experts, 

end users, managers, analysts, developers, and test personnel of project needs 

and commitments. Each project role gains the same understanding of the 

expected behavior of the software before it is developed, thereby reducing the 

risk of rework occurring throughout the software development life cycle. 
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 CEGA closes the “language gap” between business and IT and enables the 

“Big Picture” view of the business by facilitating a more structured dialogue 

between the two teams. Business stakeholders are often domain experts, 

speaking the “domain language,” but lack understanding of technical 

terminology. IT stakeholders are well versed with the technical terminology, 

but often lack expertise and understanding of the problem domain. A CEG 

synchronizes the two teams by facilitating an accurate and complete 

“knowledge transfer” from analysts and business stakeholders to the technical 

team. CEGs provide both nontechnical and technical audiences with a clear 

and concise understanding of expected system behavior. Their input can be 

captured and used to iteratively improve and refine the requirements. 

 CEGA eases compliance with standards and regulations. Validation of  

requirements using CEGA and testing software using the test cases developed 

from CEGA satisfy the definition of V&V (validation and verification) in the 

Capability Maturity Model® IntegrationSM (CMMISM) [9]. 

 While there are a number of advantages to using CEGA, there are some 

disadvantages as well. Researchers and practitioners [26][48][49][50][58][59][61] 

have observed some common difficulties when using CEGA: 

 No specific rules are rigorously defined for identifying causes, effects, logical 

relationships, and constraints, although the general procedure is known. As a 

result, CEGA has to be performed by domain specialists, people who have 

expert knowledge of the problems under study. A domain specialist may be a 
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problem owner, an end user of the required system, a sponsor, an outside 

specialist, a manager, etc. 

 Complexity of the graph generation task. The main drawback is probably the 

up-front cost of deriving causes, effects, and constraints from a given informal 

specification, even if these up-front costs are small compared to the potential 

major downstream savings because they might avoid unnecessary rework and 

operational problems. 

– Identifying causes and effects would be very tedious. 

– Identifying the true logical relationship between the causes and the 

constraints requires domain knowledge. 

– The process of actually drawing the graphs is a very time consuming 

process even with the help of commercial CEG drawing tools. 

– Graphical depiction could be overwhelming.  In particular, developing 

a CEG can become very complicated when a system has a large 

number of causes and effects. To keep the complexity under control, 

intermediate nodes are added to represent logical combinations of 

several causes. However, an appropriate choice of intermediate nodes 

is frequently not obvious. The possible complexity of CEGs makes it 

apparent that tool support is necessary for these time-consuming tasks. 

 Difficulty of updating CEGs when the specification changes or when the 

creator realizes that some information has been overlooked. Any changes that 

occur in the specification must be translated into corresponding changes in the 

graph. If new cause(s) are added into CEG, much of its internal structure may 
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have to be redesigned. A simpler intermediate representation can ease the 

difficulty [61]. 

 Difficulty of verifying the correctness of requirements specifications. The 

starting point for CEGA is the requirements document.  CEGA is valid only if 

the natural language specification satisfies the customer’s intentions.  Thus, if 

the specification is incorrect one will end up with a set of incorrect test cases.  

Therefore, one must validate the specification itself before applying CEGA to 

test case design. However, as the complexity and scope of the modeled 

behavior increases, the graphs become eventually intractable. 

 Perceived inability of CEGs to model situations involving time delays and 

numerically intensive applications. 

 Though some ambiguities, incompleteness and difficulties exist in CEGA, the 

concepts of CEG used in specifying the functional behavior of a system make it 

attractive from a usability perspective.  The CEGA technique is an advance over 

informal, ad-hoc specifications of systems.  It is systematic even though subjective in 

the first stage of construction of the CEG, and therefore relatively uniform, repeatable, 

and reliable.  It is based on a graphical form of propositional logic, which gives the 

user some degree of confidence in the specification power of the graph. As a result, 

CEGA has been widely recognized as a testing technique [60][62]. 

 However, CEGA is not extensively used as a software reliability measurement, 

even though it potentially provides a very systematic and pretty thorough way of 
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checking the end functionality required by the user. In addition to difficulties 

mentioned previously, some possible reasons for this lack of interest are: 

 Repeatability issue. For a measurement to be useful it must be repeatable. 

When software measurement definitions are incomplete or unspecific, it is 

easy to collect invalid or incomparable measurement(s) from different data 

collectors. Thus, the primary issue is not only whether a definition for a 

measurement is theoretically correct, but also specific enough, such that 

everyone understands what is to be measured and what the measured values 

represent. Until then, the values cannot be collected consistently and other 

people, different from the collectors, can interpret the results correctly and 

apply them to reach valid conclusions. Our experience with [12] [40] has 

shown that no standard definition exists that ensures repeatability of the 

CEGA measurement. To correct this, this study begins by reviewing the 

definitions of CEGA to define more precise and rigorous measurement rules.  

 The Cause-effect measure, CE(%), is too undependable to be used as an 

indicator of software reliability. CE(%) is the ratio of the number of removed 

ambiguities,   total existingA A , to the total number of ambiguities identified in 

SRS, totalA .  The major difficulty of counting ambiguities is that for any 

specification, there is always some who understand it differently from others. 

According to our experience [26][40], the values of existingA  and totalA  

subjectively depend on the person exercising CEGA. Other factors, such as 

the level of granularity to which an SRS should be broken up and the writing 

style of an SRS, can also have a significant influence on the value of CE(%). 
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 These limitations have inevitably kept CEGA from being widely adopted in the 

field of software reliability engineering. Actually, the CEGA measurement was 

ranked as “medium” among 40 software reliability measurements by experts with 

respect to its ability at predicting software reliability [12] (also see Table 2-1). Even 

worse, CEGA has been removed from IEEE Std. 982.1-2005 [11], the latest edition of 

IEEE Std.1-1988[42], “IEEE Standard Dictionary of Measures to Produce Reliable 

Software”. The justification of deleting CEGA includes “CEGA is ambiguous”, 

“difficult to interpret”, and “its low usage” [11]. 

 To enhance CEGA as a software reliability measurement, this study addresses 

these limitations by 

 Formalizing CEG in terms of mathematics. These formal definitions are 

necessary to ensure that CEGA is meaningful, true and of known accuracy 

because without specified rigorous definition and measurement rules, one runs 

the risk of collecting unrelated, meaningless data. Furthermore, compared to 

the graphical form of CEG, which is more intuitive and easier to understand, 

the mathematical form of CEG is far easier to be stored, represented, and 

implemented by computers, can be updated easily in response to frequent 

requests for requirements change in practice, and thus has better scalability. 

This rigorous form of CEG can also serve as an alternative representation of 

the graphical CEG. 

 Investigating rules to ease the task of CEG construction. 
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 Providing a systematic yet intuitive procedure for applying the proposed 

CEGA for identifying SRS faults. This further enables a consistent 

measurement process for CEGA. 

 Developing methods for quantifying the impact of identified SRS faults on 

software reliability. Software faults have different sizes of failure footprints. 

The impact of a fault on reliability depends on system structure, the way in 

which a system is used, and location of the fault. Using faults identified in 

products instead of the aggregated number of faults estimated from empirical 

data, such as existingA , is believed to provide a more solid foundation for 

reliability quantification [36]. 

3.5 Formal Definition of CEG 

Definition 3-1: CEG 

 Any CEG can be represented by a 4-dimensional tuple where each dimension is a 

set. Namely,  

ܩܧܥ   ؝ ,መܥۃ ,෠ܧ ,෠ܨ   ,ۄ෣ܱܰܥ

where 

መܥ ؝ ሼܿ௜|݅ ൌ 1,2, … , :ሽ݌ is a set of distinct causes, and p is the number of 

distinct causes. 

෠ܧ ؝ ሼ݁௜|݅ ൌ 1,2, … , :ሽݍ is a set of effects, and q is the number of effects. 

෠ܨ ؝ ൛ ௜݂: መܥ ՜ ෠ห݅ܧ ൌ 1,2, … , :ൟݍ is a set of Boolean functions that map ܥመ to ܧ෠ without 

applying any constraints. The number of Boolean 

function is equal to the number of effects. 

෣ܱܰܥ ؝ ሼܿ݊݋௜|݅ ൌ 1,2, … , : ሽݎ is a set of constraints imposed among causes and/or 
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effects , and r is the number of constraints. 

Definition 3-2: Cause 

 A cause in a CEG is a primitive input event, typically invoked by a user or 

external system(s). A primitive input event is an event that cannot be logically 

expressed by other events. All causes in a CEG are distinct. Redundant causes are not 

allowed. 

 A cause has and only has two mutually exclusive states: enabled (represented by 

“1”) or disenabled (represented by “0”). Namely, 

1      if  is enabled;

0     otherwise.

c
c


 


  

wherec is a cause in a CEG.     

Definition 3-3: Effect 

 An effect in a CEG is a system action or output, either observable or non-

observable.  

 In contrast with a cause, an effect must be logically expressed by causes using a 

Boolean function. Moreover, an effect has and only has three mutually exclusive 

states: “present”/“triggered” (represented by “1”), “absent”/“non-triggered” 

(represented by “0”), or “prohibited”/ “not allowed” due to constraint(s) (represented 

by “NA”, which is short for “Not Allowed”). Namely,  

       if any constraint in CEG is applicable;

1           if  is triggered (determined by its Boolean function);

0          if  is non-triggered (determined by its Boolean function).

NA

e e

e


 



  

wheree is an effect in a CEG. 
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Definition 3-4: Constraint 

 A constraint in a CEG is a limitation among causes or effects due to syntactic, 

environmental, or other considerations. 

 There are five types of constraints used in a CEG. The mathematical symbols and 

explanation for these constraints are summarized in Table 3-1. 

Table 3-1: Mathematical Symbols of CEG Constraints 

Constraint 
Name 

Mathematical Symbol Explanation 

EXCLUSIVE ܧܸܫܷܵܮܥܺܧሺܿଵ, ܿଶ, … , ܿ௞ሻ 

At most one of the causes among 
ܿଵ, ܿଶ, … , ܿ௞can be enabled. This constraint 
allows simultaneous absence of all of these 
causes. 

INCLUSIVE 
,ሺܿଵܧܸܫܷܵܮܥܰܫ ܿଶ, … , ܿ௞ሻ 

 

At least one of the causes among ܿଵ, ܿଶ, … , ܿ௞  
must be enabled. In contrast with the 
“EXCLUSIVE” constraint, this constraint 
does NOT allow simultaneous absence of all 
of these causes. 

ONE-AND-
ONLY-ONE 

,ሺܿଵܧܱܰ ܿଶ, … , ܿ௞ሻ 

One and only one of the causes among 
ܿଵ, ܿଶ, … , ܿ௞ can be enabled. This constraint 
does NOT allow simultaneous absence of all 
of these causes. 

REQUIRE ܴܧܴܫܷܳܧሺܿଵ, ܿଶሻ 
Cause c1 cannot be enabled until cause c2 has 
been enabled 

MASK ܭܵܣܯሺ݁ଵ, ݁ଶሻ 
The observance of effect e2 is disguised by 
effect e1 

 

 The following lemmas are helpful when determining if a constraint is applicable 

to an effect/a given input or not (see Section 5.3.4). The violation of any of these 

lemmas caused by a constraint indicates the applicability of the constraint to an effect 

or/and a given input.  

Lemma 3-1: EXCLUSIVE Constraint 
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 For a set of causes confined by an EXCLUSIVE constraint, an enabled cause 

implies that other causes are disenabled. Namely, 

 1 2      k i jIf EXCLUSIVE(c ,c , ,c ), c c , j  i , i k, j k.      

Lemma 3-2: INCLUSIVE Constraint 

 For a set of causes confined by an INCLUSIVE constraint, all causes cannot be 

disenabled simultaneously. Namely, 

 
1 2

1

       .
k

k i
i

If INCLUSIVE(c ,c , ,c ), the state combination c is not allowed


 
 

Lemma 3-3: ONE-AND-ONLY-ONE Constraint 

 For a set of causes confined by a ONE-AND-ONLY-ONE constraint, both the 

probability of any two different causes being enabled simultaneously and the 

probability of all causes not being enabled simultaneously are equal to 0. Namely, 

 

1 2

1

( , , , )

                                      i j , i k,j k, Pr( ) 0,  and

                                      Pr 0 .

k

i j

k

i
i

ONE c c c

c c

c



     

 
 

 





 

Lemma 3-4: REQUIRE Constraint 

 The implication of constraint cause c1 requiring cause c2 is two-fold. First, c1 

cannot be enabled if c2 has not been enabled yet. Second, c2 must have been enabled 

if c1 is enabled. Namely, 

 1 2 2 1 1 2 ( , ),  ,  and .If REQUIRE c c c c c c   

Lemma 3-5: Transitive Law for REQUIRE Constraint 
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 The transitive law holds for all REQUIRE constraints. Namely, 

 
).,(

),(

),(
 31

32

21 ccREQUIRE
ccREQUIRE

ccREQUIRE






 

Lemma 3-6: MASK Constraint 

 The implication of constraint effect e1 masking effect e2 is two-fold. First, e2 

cannot be triggered if e1 has been triggered already. Second, e1 is not triggered if e2 is 

triggered. Namely,  

 1 2 1 2 2 1 ( , ),  ,  and .If MASK e e e e e e   

3.6 Example of CEG Construction 

 In this section, we illustrate a sample CEG for a system called LOCAT [63]. 

LOCAT was designed for a real-time simple projectile tracking system for the 

Army’s all weather Doppler radar system.  

 For demonstration purpose, only Section 2.1 of LOCAT’s SRS was used to 

construct the sample CEG, as shown in Figure 3-3.  
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Figure 3-3: Example of Identifying Causes and Effects in an SRS 

… 
 
2 Functional Requirements 
 
2.1 Function Interface 
 
2.1.1 Introduction 

Function Interface asks user for the option. The options include: calculation of projection 

range, calculation of projection speed, calculation of trajectory, and quitting LOCAT. Then 

the corresponding function is executed. 

 
2.1.2 Inputs 

Input is an alphanumeric character specified by the user through the keyboard. 

 
2.1.3 Processing 

The function displays the message: 

1. Calculate Projection Range 

2. Calculate Projection Speed 

3. Calculate Trajectory 

4. Quit 

Make your choice 

 

The user provides the choice. If the choice is ‘1” the function Range will be initiated, if the 

choice is “2” the function Speed will be initiated, if the choice is “3”, the function Trajectory 

will be initiated, if the choice is “4”, the  function quits.  For all other options the function 

“Error” will be initiated. 

 

2.1.4 Outputs 

Interface messages. 

… 

c2-4 

c2-1 

e1 

e2-1 

c2-2 e2-2 
c2-3 

e2-3 

e2-4 

e2-5 c2-5 
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3.6.1 Identified Causes, Effects, Logical Relationships, and Constraints for the Sample SRS 

 After screening and analyzing the sample SRS, six causes and six effects were 

identified, as shown in Table 3-2 and Table 3-3, respectively. The first cause in Table 

3-2 is inferred from the context of the sample SRS, which is not shown in Figure 3-3. 

The identified constraints and their explanation are summarized in Table 3-4. 

Table 3-2: Identified Causes for the Sample SRS 

Cause 
Index 

Explanation 
Assigned 
Identifier 

1 The user runs LOCAT.  c1 

2 The user’s choice is “1”. c2-1 

3 The user’s choice is “2”. c2-2 

4 The user’s choice is “3”. c2-3 

5 The user’s choice is “4”. c2-4 

6 The user’s choice is others except “1”, “2”, “3”, and “4”. c2-5 

 

Table 3-3: Identified Effects for the Sample SRS 

Effect 
Index 

Explanation 
Assigned 
Identifier 

1 
Interface message is displayed on the screen to indicate that Function 
Interface is initiated. 

e1 

2 Function Range is initiated. e2-1 

3 Function Speed is initiated. e2-2 

4 Function Trajectory is initiated. e2-3 

5 Function Interface quits. e2-4 

6 Function Error is initiated. e2-5 
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Table 3-4: Identified Constraints for the Sample SRS 

Index Constraint Explanation 

1 c2-1 requires c1. 
The user cannot choose option “1” until LOCAT 
is initiated. 

2 c2-2 requires c1. 
The user cannot choose option “2” until LOCAT 
is initiated. 

3 c2-3 requires c1. 
The user cannot choose option “3” until LOCAT 
is initiated. 

4 c2-4 requires c1. 
The user cannot choose option “4” until LOCAT 
is initiated. 

5 c2-5 requires c1. 
The user cannot choose any other option until 
LOCAT is initiated. 

6 
c2-1, c2-2, c2-3, c2-4, and c2-5 are 
mutually exclusive. 

The user can only choose one option at a time. 

 

3.6.2 Graphical Expression of CEG for the Sample SRS 

The figure below shows the CEG constructed for the sample SRS. 

 

Figure 3-4: Graphical Expression of CEG for the Sample SRS 

3.6.3 Mathematical Expression of CEG for the Sample SRS 

 In contrast with the graphical expression, the following is the mathematical 

expression of CEG for the sample SRS: 
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௘௫௔௠௣௟௘ܩܧܥ ؝ ,መ௘௫௔௠௣௟௘ܥۃ ,෠௘௫௔௠௣௟௘ܧ ,෠௘௫௔௠௣௟௘ܨ  ,ۄ෣ܰ௘௫௔௠௣௟௘ܱܥ

Where 

መ௘௫௔௠௣௟௘ܥ ؝ ሼܿଵ; ܿଶ‐ଵ; ܿଶ‐2; ܿଶ‐3; ܿଶ‐4; ܿଶ‐5ሽ 

෠௘௫௔௠௣௟௘ܧ ؝ ሼ݁ଵ; ݁ଶ‐ଵ; ݁ଶ‐2; ݁ଶ‐3; ݁ଶ‐4; ݁ଶ‐5ሽ 

෠௘௫௔௠௣௟௘ܨ ؝

ە
ۖ
۔

ۖ
ۓ

݁ଵ ൌ׷ ܿଵ;
݁ଶ‐ଵ ൌ׷ ܿଵ ת ܿଶ‐ଵ;
݁ଶ‐2 ൌ׷ ܿଵ ת ܿଶ‐2;
݁ଶ‐3 ൌ׷ ܿଵ ת ܿଶ‐3;
݁ଶ‐4 ൌ׷ ܿଵ ת ܿଶ‐4;
݁ଶ‐ହ ൌ׷ ܿଵ ת ܿଶ‐5 ۙ

ۖ
ۘ

ۖ
ۗ

 

෣ܰ௘௫௔௠௣௟௘ܱܥ ؝

ە
ۖ
۔

ۖ
ۓ

,ሺܿଶ‐ଵܧܴܫܷܳܧܴ ܿଵሻ;
,ሺܿଶ‐ଶܧܴܫܷܳܧܴ ܿଵሻ;
,ሺܿଶ‐3ܧܴܫܷܳܧܴ ܿଵሻ;
,ሺܿଶ‐4ܧܴܫܷܳܧܴ ܿଵሻ;

,ሺܿଶ‐ଵܧܸܫܷܵܮܥܺܧ ܿଶ‐ଶ, ܿଶ‐3, ܿଶ‐4, ܿଶ‐5ሻۙ
ۖ
ۘ

ۖ
ۗ

 

Figure 3-5: Mathematical Expression of CEG for the Sample SRS 

3.7 Summary 

 This chapter focuses on exploring the advantages and disadvantages of CEGA. 

Several attempts to enhance CEGA as a scalable software reliability measurement are 

discussed. Especially, the mathematical expression of CEGs is defined in terms of 

well understood mathematical entities, such as sets and Boolean formula, whose 

semantics are formally defined, and can be easily stored and processed by computers. 

Though informal, unscalable, and unnecessary in our approach, the graphical 

expression of CEGs helps project stakeholders to find, illustrate, and analyze the 

software functional requirements, and ease the communication among different 

project roles. It is desirable to develop a tool that will allow convenient conversion 

between these two CEG formats. 



 

58 
 

Chapter 4:  Identification of Faults in Software Requirements 

Specifications Using CEGA 

 The starting point for CEGA is the Software Requirements Specifications (SRS).  

 The SRS is the first definitive representation of the capability that the provider is 

to deliver to the user or acquirer. The SRS becomes the basis for all a project's 

subsequent management, engineering, and assurance activities. As such, it is a strong 

source of potential risks that could adversely impact the project's resources, 

schedules, and products. Because of the criticality of the SRS, it is important to 

prevent or correct shortcomings in both the form and content of the SRS document 

before it is established as a project baseline. 

 Since most of software faults can be traced to faulty functional requirements, it is 

obvious that the major opportunity for improving the quality of software systems lies 

in improving the quality of SRS. It would also benefit the entire project team if there 

is one, clear, detailed, testable set of requirements that they can work from. 

 Existing SRS quality improvement methods force all SRS analyzers to rely on 

nonsystematic techniques to search for a wide variety of SRS defects. CEGA is 

broadly recognized for its ability to detect incomplete and ambiguous requirements. 

However, there were no specific rules found in the literature on how to use the power 

of CEGA for SRS faults detection.  

 The aim of the work described in this chapter is to develop CEGA-based 

techniques for natural language SRS faults detection. 
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4.1 Definition, Contents, and Organization of SRSs 

 The Software Requirements Specification (SRS) is defined as “a specification for 

a particular software product, program, or set of programs that performs certain 

functions in a specific environment” [7]. It is an outcome of the requirement analysis 

process. A well-designed, well-written SRS accomplishes four major goals: 

1) It provides feedback to the customer.  

2) It decomposes the problem into component parts 

3) It serves as an input to the design specification.  

4) It serves as a product validation check.  

 Usually, SRS is assumed to be a document, although it can be a database or 

spreadsheet that contains the requirements, or information stored in a commercial 

requirements management tool. It typically consists of descriptions for functional and 

non-functional requirements of the future system: 

 Functional Requirement: a functional requirement is a requirement defining 

functions of the system under development  

 Non-functional requirement: a non-functional requirement is a requirement 

characterizing a system property such as expected performance, robustness, 

usability, maintainability, etc. Non-functional requirements capture business 

goals/objectives and product quality attributes.  

 Software requirements are usually expressed in the form of either formal language 

or natural language. Despite the remarkable advancements in the design of user-

acceptable formal languages, the vast majority of SRSs for software projects are still 
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written in plain English (or in other natural languages) due to its flexibility, 

expressiveness, communicability, and ease of change. 

 There are several standards proposed for organizing the contents of SRS written 

in natural language: NASA-STD-2100-91 [64], MIL-STD-498 Section 5.3 [65], 

ISO/IEC 12207 Section 5.3.2 [66], and IEEE Std. 830-1998 [53], etc. Among them, 

IEEE Std. 830-1998 [53] is most widely adopted in industry. Several sample SRS 

outlines are presented in this standard. These sample templates are not standard and 

are provided to help the user in organizing the requirements specification document 

and to help him in improving the readability of the document.  Figure 4-1 shows a 

prototype SRS outline recommended by IEEE Std. 830-1998 [53]. 
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Figure 4-1: Prototype Outline of SRS (extracted from IEEE Std. 830-1998 [53]) 
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4.2 Characteristics of a “Good” SRS 

 There is no standard definition for what is a “good” SRS. Table 4-1 shows the 

fundamental characteristics of a “good” SRS proposed by Hammer [67].  

Table 4-1: Ten Language Quality Characteristics of an SRS (Adapted from [67]) 

Quality 

Characteristic 
Explanation 

Complete 
SRS defines precisely all the go-live situations that will be encountered 

and the system's capability to successfully address them. 

Consistent 

SRS capability functions and performance levels are compatible, and the 

required quality features (security, reliability, etc.) do not negate those 

capability functions. For example, the only electric hedge trimmer that is 

safe is one that is stored in a box and not connected to any electrical cords 

or outlets. 

Accurate 

SRS precisely defines the system's capability in a real-world environment, 

as well as how it interfaces and interacts with it. This aspect of 

requirements is a significant problem area for many SRSs. 

Modifiable 

The logical, hierarchical structure of the SRS should facilitate any 

necessary modifications (grouping related issues together and separating 

them from unrelated issues makes the SRS easier to modify). 

Ranked 

Individual requirements of an SRS are hierarchically arranged according to 

stability, security, perceived ease/difficulty of implementation, or other 

parameter that helps in the design of that and subsequent documents. 

Testable 

An SRS must be stated in such a manner that unambiguous assessment 

criteria (pass/fail or some quantitative measure) can be derived from the 

SRS itself. 

Traceable 
Each requirement in an SRS must be uniquely identified to a source (use 

case, government requirement, industry standard, etc.) 

Unambiguous SRS must contain requirements statements that can be interpreted in one 



 

63 
 

Quality 

Characteristic 
Explanation 

way only. This is another area that creates significant problems for SRS 

development because of the use of natural language. 

Valid 

A valid SRS is one in which all parties and project participants can 

understand, analyze, accept, or approve it. This is one of the main reasons 

SRSs are written using natural language. 

Verifiable 

A verifiable SRS is consistent from one level of abstraction to another. 

Most attributes of a specification are subjective and a conclusive 

assessment of quality requires a technical review by domain experts. Using 

indicators of strength and weakness provide some evidence that preferred 

attributes are or are not present. 

4.3 Faults in SRS 

 In practice, a perfect SRS without any faults is not easy to achieve. Particularly, 

SRSs written in a natural language are frequently wordy and unstructured, making 

them vulnerable to ambiguity, incompleteness, or self-contradiction. Figure 4-2 

depicts a generic relationship between desired and actually documented 

specifications, which is commonly seen in practice. 

Omissions Surprises

Incorrectly 
documented

Correctly 
documentedDesired 

specifications
Actually documented 

specifications

 

Figure 4-2: Desired vs. Actually Documented Requirements Specifications 
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 An SRS Fault is a fault that originates in the requirements phase (e.g., omitted 

requirement, incomplete requirements description). Typical SRS faults found in 

practice are: 

 
 Noise: the presence of text that carries no relevant information to any feature 

of the problem.  

 Silence: a feature that is not covered by any text. 

 Over-specification: text that describes a feature of the solution, rather than the 

problem. 

 Contradiction: text that defines a single feature in a number of incompatible 

ways. 

 Ambiguity: text that can be interpreted in at least two different ways. 

 Forward reference: text that refers to a feature yet to be defined. 

 Wishful thinking: text that defines a feature that cannot possibly be validated. 

 Jigsaw puzzles: e.g. distributing requirements across a document and then 

cross-referencing. 

 Inconsistent terminology: inventing and then changing terminology. 

 A more thorough taxonomy of SRS faults was defined by Hays [68], as presented 

in Table 4-2.  

Table 4-2: Taxonomy of SRS Faults (Excerpted from [68]) 

Major Fault Sub-faults Description of Sub-Faults 

Incompleteness Incomplete functional 
Decomposition 

Failure to adequately decompose a more abstract 
specification. 

Incomplete Functional 
Description 

Failure to fully describe all requirements of a 
function. 
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Major Fault Sub-faults Description of Sub-Faults 
Omitted/Missing Omitted functional 

Requirement 
Failure to specify one or more of the next lower 
levels of abstraction of a higher level specified. 

Missing External 
Constants 

Specification of a Missing value or variable in a 
requirement. 

Missing Description of 
Initial System State 

Failure to specify the initial system state, when that 
state is not equal to 0. 

Incorrect Incorrect External 
Constants 

Specification of an incorrect value or variable in a 
requirement. 

Incorrect Input or 
Output Descriptions 

Failure to fully describe system input or output. 

Incorrect Description 
of Initial System State 

Failure to specify the initial system state, when that 
state is not equal to 0 

Incorrect Assignment 
of Resources 

Over-or-under stating the computing resources 
assigned to a specification. 

Ambiguous Improper Translation Failure to carry detailed requirement through 
decomposition process, resulting in ambiguity in the 
specification. 

Lack of Clarity Difficult to understand or lack of clarity and 
therefore ambiguous. 

Infeasible 
(None) 

Requirement, which is unfeasible or impossible to 
achieve given other system factors, e.g., process 
speed, memory available. 

Inconsistent Internal Conflicts Requirements that are pair-wise incompatible. 

External Conflicts Requirements of cooperating systems, or 
parent/embedded systems, which taken pair-wise are 
incompatible. 

Over-
specification (None) 

Requirements or specification limits that are 
excessive for the operational need, causing 
additional system cost. 

Not Traceable 
(None) 

Requirement which cannot be traced to previous or 
subsequent phases. 

Unachievable 
Item 

(None) 
The functional description cannot be true in the 
reasonable lifetime of the product. 

Non-Verifiable 
(None) 

The requirement description cannot be verified by 
any reasonable testing methods. 

Misplace 
(None) 

Information which is in a different section in 
requirements document. 

International 
Deviation (None) 

The Requirement that is specified at higher level but 
intentionally deviated at lower level from 
specifications. 

Redundant or 
Duplicate 

(None) 
Requirement was already specified elsewhere in the 
specification 

 The study of Hays [68] reported an empirical categorization percentage data, as 

illustrated in Figure 4-3. The top three categories accounted for almost 80% of the 
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requirement faults evaluated. These three fault categories and their percentages were: 

Incompleteness (21%), Omitted/Missing (33%), and Incorrect (24%). Most of these 

faults were related to functional requirements. 

 

Figure 4-3: Requirements Fault Categorization Percentage Data 

4.4 V&V Techniques for SRS Faults Detection  

 The quality of SRS can be improved and costs and risks can be controlled by 

performing Verification &Validation (V&V) early in the development process. 

According to IEEE Std. 1012-2004 [69], Software Verification and Validation (V&V) 

is the process of ensuring that software being developed or changed will satisfy 

functional and other requirements (validation) and each step in the process of building 

the software yields the right products (verification). The main V&V techniques for 

SRS faults detection are: 

 Inspection: SRS Inspection involves a team of people, led by a leader, which 

formally reviews the SRS. The SRS is presented in front of the inspection team. 

The bugs that are detected during the inspection are communicated to the next 

Omitted/Missing
33%

Incorrect
24%

Incompleteness
21%

Over-
specification

6%

Ambiguous
6%

Inconsistent
5%

Infeasible
2%

Not Traceable
1%
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level in order to take care of them. The objective of an SRS inspection is to detect 

and identify defects. An SRS inspection is a rigorous peer examination that: 

o identifies nonconformance with respect to specifications and standards; 

o uses metrics to monitor progress; 

o ignores stylistic issues; 

o does not discuss solutions. 

 Walkthroughs: Walkthroughs can be considered similar to inspections without the 

formal preparation (of any presentation or documentations) aspect. During the 

walkthrough meeting, the presenter/author introduces the material to all the 

participants in order to make them familiar with it. Even though the walkthroughs 

can help in finding potential bugs, they are used for knowledge sharing or 

communication purpose. An SRS walkthrough should attempt to identify defects 

and consider possible solutions. In contrast with other forms of review, secondary 

objectives are to educate, and to resolve stylistic problems. 

 Technical reviews: The objective of an SRS technical review is to evaluate the 

SRS, and provide management with evidence that: 

o the SRS has been produced according to the project standards and procedures; 

o changes have been properly implemented, and affect only those system areas 

identified by the change specification. 

 Buddy checks: This is the simplest type of review activity used to find out bugs in 

an SRS. In a buddy check, one person goes through the SRS prepared by another 

person in order to find out bugs which the author couldn’t find previously. 
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 Software inspection is one of the best practices for detecting and removing defects 

early in the software development process. In a software inspection, review is first 

performed individually by several reviewers to analyze all or part of the specifications 

and search for defects, and then by a meeting of the reviewers and author(s) to collect 

defects. Usually, reviewers use Ad Hoc, Checklist-Based Reading (CBR), or 

Perspective-Based Reading (PBR) methods to uncover defects. These methods force 

all reviewers to rely on nonsystematic techniques to search for a wide variety of SRS 

defects. 

4.5 CEGA-based Techniques for SRS Faults Detection  

 A problem arising in existing techniques mentioned previously is “how to 

systematically cover requirements (especially functional requirements)”, or “what 

actions have to be taken to ensure a review completely and adequately covers all the 

requirements called for by users and producers?” According to the analysis in Chapter 

3, CEGA might be a good answer to this question. 

 CEGA is broadly recognized by its ability to “aid[s] in identifying requirements 

that are incomplete and ambiguous” [42]. However, there have been no specific rules 

found in the literature on how to use the power of CEGA for SRS faults detection. 

Addressing to this issue, we proposed a CEGA-based approach for practitioners to 

detect faults in SRS. 

 Our approach consists of a two-step process. The initial step includes CEG 

construction and an optional ambiguity review, which is performed by someone who 

is not a domain expert. This step takes place after the SRS reaches first draft. In this 

step, the SRS analyst is not reading the requirements for content, but only to identify 



 

69 
 

ambiguities in the logic and structure of the wording. This review finds all of the 

generic ambiguities such as unclear references. Since the initial reviewer is not a 

domain expert they cannot read into the specification facts that are not explicitly there. 

 Once the issues identified in the initial ambiguity review have been addressed, the 

requirement is then reviewed for content (i.e., correctness and completeness) by 

domain experts using the CEG validation algorithm and the related rules. 

4.5.1 CEGA-based SRS Faults Taxonomy 

 CEG is a model to capture the functional requirements specified in an SRS. In 

other words, a CEG should “faithfully” (to the best knowledge of its constructor(s)) 

represent the functional requirements stated in an SRS, no matter whether they 

contain faults or not. When the functional requirements are translated into a CEG, 

the faults contained in these requirements should be “mapped” into the CEG as well. 

These faults fall into one or more of the following fault categories in terms of the 

CEG: 

1) Missing Effect; 

2) Extra Effect; 

3) Missing Constraint; 

4) Extra Constraint; 

5) Wrong Boolean Function, including: 

i. Wrong-Boolean-Function Case 1: Missing cause(s) in a Boolean function; 

ii. Wrong-Boolean-Function Case 2: Extra cause(s) in a Boolean function; 

iii. Wrong-Boolean-Function Case 3: Wrong Boolean operator(s) in a Boolean 

function. 
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 The description of the faults categories is summarized in Table 4-3. 

Table 4-3: Categories of SRS Faults in Terms of CEG 

Fault Category Description 

Missing-Effect Omission of an effect in CEG. 

Extra-Effect Introduction of an effect that is not desired in CEG. 

Missing-Constraint Omission of a constraint in CEG. 

Extra-Constraint Introduction of a constraint that is not desired in CEG. 

Wrong-Boolean-Function 
Case 1: Missing-cause 

Omission of at least a cause in the expression of a 
Boolean function. 

Wrong-Boolean-Function 
Case 2: Extra-cause 

Introduction of at least a cause into the expression of a 
Boolean function.

Wrong-Boolean-Function 
Case 3: Wrong-Boolean-

operator  
 

Incorrect use of at least a Boolean logic operator in the 
expression of a Boolean function.

 

4.5.2 Detecting SRS Faults by CEG Construction and Optional Ambiguities Review 

 CEGA consists of a manual step of transforming an SRS into a CEG, a more 

concise and structured representation. The transformation process itself is a form of 

inspection. For example, the CEG tends to force awareness of the “Else” conditions 

that weren’t explicitly articulated in the structured English. We will revisit the topic 

on detecting SRS faults during CEG construction in Chapter 7. 

 According to our experience, the following SRS faults are usually found when 

constructing CEG: 

 Ambiguities: functional requirements which are difficult to understand or lack 

clarity, such as ambiguous statements caused by implicit connectors or 



 

71 
 

precedence of relation, ambiguous boundary, ambiguous scope of negation, 

and ambiguous reference. 

 Redundancies: requirements that were already specified elsewhere in the 

specification, such as unnecessary aliases. 

 Inconsistencies: pair-wise incompatible functional requirements. 

 Incompleteness: failure to fully describe all requirements of a function. 

 Optionally, a technique called Ambiguity Review can be applied to eliminate 

potential ambiguities in an SRS prior to the review of requirements for content by the 

domain experts. An Ambiguity Review is a test of an SRS to insure that requirements 

are written in a clear, concise and unambiguous manner. The intent of the Ambiguity 

Review is to provide the domain experts with a better quality set of requirements to 

work from, so they can better identify missing requirements, and improve the content 

(completeness and accuracy) of all requirements. After the ambiguities are identified, 

it is the responsibility of the requirements author to correct the ambiguities, and then 

have the domain experts review the requirements for content. 

  BenderRBT® Inc. [70] developed an Ambiguity Review technique. The key of 

this technique is to define a review checklist of 15 ambiguity problems commonly 

found in an SRS. Many ambiguities referred to in the Ambiguity Review Checklist 

items can be identified by looking for key words and phrases in the requirements. The 

list of words pointing to potential ambiguities is given in Appendix A (adapted from 

[70]). 

 Ambiguity Review improves the quality of requirements so that the domain 

experts have a better quality document to work from, and help them make whatever 
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changes are needed to the requirements content, so that requirements are not missed. 

 It should be noted that CEG construction and ambiguities review can usually 

detect simple linguistic faults. Other methods/techniques such as CEG validation are 

needed for detecting implicit faults in an SRS. 

4.5.3 Detecting More Implicit SRS Faults by CEG Validation 

 Validating a CEG consists of checking for the existence of the types of CEG 

faults mentioned previously in Section 4.5.1. Domain knowledge is needed to 

perform CEG validation. 

 The suggested procedure for CEG validation is shown in Figure 4-4. The detailed 

rules for identifying each type of faults are listed in the following, which were also 

summarized in our previous research [40] (to be printed). 

4.5.3.1. Rules for Identifying Missing Effect(s) in CEG: 

 The knowledge required to identify missing effects is hard to define since some 

missing effects are obvious while others are obscure. Generally, the mastery of the 

operation mechanism of the system is required to find an obscure missing effect. 

 There is no way to give a concrete process or rule for identifying missing effects. 

4.5.3.2. Rules for Identifying Extra Effect(s) in CEG 

 To identify extra effects, the inspector should be capable of understanding the 

physical meaning of the effect and determining whether the effect is necessary or not. 

An unnecessary effect is an extra effect. 
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Figure 4-4: CEG Validation Algorithm 
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4.5.3.3. Rules for Identifying Missing Constraint(s) in CEG 

 To identify missing constraints, the inspector should be capable of understanding 

the physical meaning of all causes and effects and determining whether any constraint 

is required to confine these causes/effects or not. 

 The process for identifying missing constraints is: 

1) Arrange all causes in a time sequence. 

2) If two cause events occur in a sequential manner, the “REQUIRE” constraint 

should have been applied to them. If not, it is a missing constraint. 

3) For those causes that occur simultaneously, examine whether “EXCLUSIVE”, 

“INCLUSIVE”, or “ONE-AND-ONLY-ONE” constraints might have been 

missed. 

4) Arrange all effects in a time sequence. 

5) For those effects that can occur simultaneously, examine whether there is any 

risk for their co-existence. If so, the “MASK” constraint should have been 

applied to them. If not, it is a missing constraint. 

4.5.3.4. Rules for Identifying Extra Constraint(s) in CEG 

 To identify extra constraints, the inspector should be capable of understanding the 

physical meaning of all causes or effects in a constraint and determining whether the 

constraint is necessary or not. 

 The process for identifying extra constraints is: 

1) Arrange all causes in a time sequence. 

2) If two cause events do not occur in a sequential manner, the "REQUIRE" 

constraint should not be applied to them. If applied, it is an extra constraint. 
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3) If two or more events do not occur simultaneously, "EXCLUSIVE", 

"INCLUSIVE" or "ONE-AND-ONLY-ONE" constraints should not be 

applied to them. If applied, it is an extra constraint. 

4) Examine the "MASK" constraints one by one and determine if each is 

necessary or not. If not, it is an extra constraint. 

4.5.3.5. Rules for Identifying Wrong Boolean Function(s) in CEG 

 To identify a wrong Boolean function, the inspector should be capable of 

understanding the physical meaning of all causes or effects. In addition, the inspector 

should have mastered the operation mechanism of the system to determine what 

logical relationships should be applied to the causes. 

 The process for identifying extra constraints is: 

1) Consider one Boolean function at a time. 

2) Check the causes in the Boolean function one-by-one and determine whether a 

cause is necessary or not. An unnecessary cause is an extra cause in a Boolean 

function. 

3) Consider the remaining causes in the CEG. If any cause should have been 

involved in the Boolean function, it is a missing cause. 

4) Consider other possible causes not included in the CEG. If any cause should 

have been involved in the Boolean function, it is a missing cause. 

5) Check all Boolean operators in the Boolean function to identify incorrect 

one(s). 
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4.6 Summary 

 The SRS is a model of what the user wants. A consistent, complete, precise, and 

understandable SRS is the basic premise for the product lifecycle activities, such as 

analysis, design, coding, testing, use, and maintenance. A software program might be 

unreliable if it is an implementation of an imperfect SRS. Especially, ambiguous 

requirements will not yield a satisfactory final product and will likely lead to cost 

overruns, extended schedules, and missed deliverable deadlines.  

 In recent years, many semiformal and formal languages such as UML [71], Z-

Notation [72], and B-Method [73] have been developed in an attempt to reduce 

ambiguity, inconsistency, and incorrectness in requirements descriptions. A drawback 

to these languages, however, is that they are difficult for non-experts to understand, 

which limits their practical application. Natural language, despite its inherent 

ambiguity, continues to be the most common way to express software requirements 

because natural language SRSs can be shared easily among various people involved 

in the software development process and used in several product development phases. 

 Empirical studies, such as [74], indicate that the overall SRS inspection 

performance can be improved when individual reviewers use systematic procedures 

to address to a small set of specific issues. This contrasts with the usual practice, in 

which reviewers have neither systematic procedure nor clearly defined 

responsibilities. The disciplined methods proposed in this chapter can be used for the 

systematical analysis of natural language SRS and the detection of SRS faults. 
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4.6.1 Advantages of our Methods 

 Existing techniques used for natural language SRS fault detection fail to ensure a 

complete and adequate coverage of all functional requirements specified in an SRS. 

Our approach distinguishes itself from other SRS fault detection methods by its 

CEGA-based attribute, which is rigid, systematic, and with 100 percent coverage of 

functional requirements. 

 Using our CEGA-based methods, faults residing in an SRS can be detected not 

only by CEG construction and an optional ambiguity review, but also by 

systematically validating the constructed CEG. 

 Compared with commonly used SRS reading techniques, such as ad hoc, and 

checklist-based reading techniques, our approach provides a more systematic and 

clearer path for inspectors to follow. This is because CEG is uniform, repeatable, and 

reliable (when CEG is expressed in mathematical form), and gives a better way for 

people to communicate (when CEG is expressed in graphical form). 

 Realistically, one cannot expect to identify types of SRS faults that he or she 

never ever has thought about or come across. The contribution of our approach (in 

particular, the CEGA-based SRS faults taxonomy) lies in providing a systematic way 

to explore this implicitly existing knowledge by using heuristics and in increasing the 

requirements engineer’s awareness of the problematic areas in an SRS. 

4.6.2 Limitations of our Methods 

 Similar to other reading methods, the effectiveness of our approach highly 

depends on the inspector’s knowledge of the system. The more he/she knows the 

system, the higher the probability that he/she finds fault(s) in an SRS. Any relevant 
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resources, such as the user specification document, an end-user, an analyst and so on, 

help the inspector improve his/her understanding of the system and identify fault(s) in 

a CEG. Training is also helpful. 

 Besides, CEG construction, ambiguity review, and CEG validation are carried out 

by human reviewers who read SRSs, look for faults, and document the results. The 

clerical activities are boring, time consuming, and often ineffective. It is desirable to 

develop an automated tool which 

 allows requirements engineers to perform an initial parsing of requirements by 

automatically detecting potential linguistic defects that can cause ambiguity 

problems at later stages of software product development. 

 extracts structured information and metrics for detecting linguistic 

inaccuracies and defects 

 provides support for the consistency and completeness analysis of the 

requirements. 
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Chapter 5:  Quantification of the Impact of Faults on Software 

Reliability 

 Knowing that software is sufficiently reliable is necessary before we can make 

intelligent decisions about its use. This is clear for safety-critical and mission-critical 

systems, where we need to be sure that software failures will not incur unacceptable 

loss of human life. It is less clear, but also important, in more mundane applications 

where it must be decided whether the trade-off between new functionality and 

possible loss of reliability is cost-effective. 

 Quantification of software reliability can help organizations make informative 

decisions about corrective actions, about their ability to stay on target, and reach 

goals. This chapter describes techniques proposed for quantifying software reliability 

on the basis of CEGA. 

 Since the value of the cause-effect measure, CE(%), is subjectively determined 

and using faults identified in products instead of the aggregated number of faults was 

believed to provide a more solid foundation for reliability quantification [40], our 

reliability quantification method is based on the faults identified in SRS during the 

CEGA measurement, but not on the value of CE(%) obtained from the CEGA 

measurement. 

 

5.1 Basic Notations and Definitions 

 The following notations are used throughout the remainder of this dissertation: 
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A-CEG = Actually-implemented Cause Effect Graph, constructed from SRS 

B-CEG = Benchmark Cause Effect Graph, constructed by removing all 

identified faults in A-CEG. 

 A
C  = the cause set of A-CEG 

A
E  = the effect set of A-CEG 

A
F  = the Boolean function set of A-CEG 

 A
CON  = the constraint set of A-CEG 

B
C  = the cause set of B-CEG 

B
E  = the effect set of B-CEG 

B
F  = the Boolean function set of B-CEG 

B
CON  = the constraint set of B-CEG 

A
je  = the jth effect in A-CEG. AA

j Ee  , mj ,,2,1  . 

m =
the number of distinct effects in 

A
E . This is also the number of 

distinct effects in 
B

E . 

B
je  = the peer effect in B-CEG corresponding to

A
je .  

n = the number of distinct causes in  A B
C C  

A
jf  = a Boolean function in AF corresponding to 

A
je .  

B
jf  = a Boolean function3 in BF corresponding to 

B
je .  

                                                 
 
 
3 In mathematics, a Boolean function is a function of the form f : Bk → B, where B = {0, 1} is a 

Boolean domain and k is a nonnegative integer called the arity of the function. 
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X


 = a state combination of all distinct causes in 

 A B
C C . 1 2( , , , )nX c c c


 , where

1     if the  cause is enabled;
   1, 2, , n.

0    otherwise,

th

i
i

c i
 


  

k
X


 
= the kth  state combination of all distinct causes in 

 A B
C C . n

11, 2, , 2 , and ( , , , ),
k k k k

i nk X c c c 


    

1     if the  cause is enabled;
where     1, 2, , n.

0    otherwise,

th
k
i

i
c i

 


  

Definition 5-1: Input 

 An input in this study refers to a combination of states of all causes in either A-

CEG or B-CEG. 

 Because any cause can take only two values of either “0” or “1”, there are 2n  

inputs for a given pair of A-CEG and B-CEG, where n is the total number of distinct 

causes in the input space  A B
C C . 

 Any input falls into one of two mutual exclusive categories: failure-relevant and 

failure-irrelevant. 

Definition 5-2: Failure-relevant input 

 A failure-relevant input is such an input that there exists at least an effect in A-

CEG, whose outcome in response to this input is different from that of its counterpart 

in B-CEG.  

Definition 5-3: Failure-irrelevant input 

 In contrast with failure-relevant inputs, a failure-relevant input is such an input 

that outputs of all effects in A-CEG against this input are identical to those of their 
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counterparts in B-CEG.  

Definition 5-4: Failure of A-CEG 

 In software testing, a software system is said to “fail” for a given input if one of 

the system’s actual outputs is in disagreement with expectation. Similarly, a system 

represented by an A-CEG fails if one or more effects in the A-CEG behave 

differently from expectation for a given input. 

5.2 Fundamental Lemma and Overall Algorithm for Quantifying Software Reliability 

Lemma 5-1: Fundamental Lemma 

 Given an A-CEG, the failure probability of a software system is equivalent to the 

occurrence probability of all failure-relevant inputs. Namely, 

  Probability(  ) Probability -  system fails failure relevant inputs    (Eq. 5-1) 

Prove: 

 We may infer from the definitions of failure-relevant input and failure-irrelevant 

input that 

   -  -   (  )failure relevant inputs failure irrelevant inputs universal set  , and 

   -  -   (  )failure relevant inputs failure irrelevant inputs empty set   . 

 According to the Law of Total Probability [75 p. 159], we have 

 
 
 
 

Probability( ) Probability -

Probability -

Probability -

Probability - .

system fails system fails failure relevant inputs

failure relevant inputs

system fails failure irrelevant inputs

failure irrelevant inputs







  
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(Eq. 5-2) 
 

 Moreover, we may also infer from the definitions of failure-relevant input and 

failure-irrelevant input that 

 Probability - 1system fails failure relevant inputs  , and 

 Probability - 0system fails failure irrelevant inputs  . 

 Therefore, the equation (Eq. 5-2) turns out to be 

 
 

 

Probability( ) 1 Probability -

0 Probability -

Probability - .

system fails failure relevant inputs

failure irrelevant inputs

failure relevant inputs

 

 



 

 Lemma 5-1 indicates that quantifying a system’s failure probability is equivalent 

to performing the following two sub-tasks: 

1) Determining failure-relevant inputs. 

2) Calculating the occurrence probability of all failure-relevant inputs. 

 Determining failure-relevant inputs can be achieved by examining all possible 

inputs, one input at a time, and comparing the actual outputs of effects to the expected 

outputs for a given input. However, generating expected outputs for all inputs is non-

trivial. Since there are as many as 2n inputs (n is the number of causes), the use of a 

human expert to create all expected outputs is not only difficult, time-consuming, and 

non-scalable, but also very error-prone. To aid this task, two concepts, B-CEG and 

virtual effect, are introduced in this study.  The use of B-CEG and virtual effects are 

the two pillars of the proposed reliability quantification algorithm. Details about these 

two concepts are given in Section 5.3.1 and Section 5.3.3, respectively. 
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 The task of calculating the occurrence probability of all failure-relevant inputs is 

accomplished by employing the BDD techniques to represent the Boolean logic of all 

relevant inputs and applying a recursive algorithm to calculate the probability of a 

BDD’s top node, as further discussed in Section 5.3.4. 

 The overall algorithm for predicting software reliability is shown in Figure 5-1. 

 

Figure 5-1: CEGA-based Software Reliability Prediction Algorithm 
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5.3 Determination of Failure-relevant Inputs 

5.3.1 Introduction of B-CEG 

 The idea of using B-CEG for failure-relevant inputs identification was inspired by 

software testing automation. In software testing, the mechanism used to generate 

expected results is called an oracle. An oracle is any program, process, or data that 

provides the test designer with the expected result of a test [62]. The oracle provides 

the ability to automatically determine whether tests have passed or failed. Typical 

oracles are [76]: 

 Manual verification of results (human “eye-ball” oracle) 

 Separate program implementing the same algorithm 

 Simulator of the software system to produce parallel results 

 Debugged hardware simulator to emulate hardware and software operations 

 Earlier version of the software 

 Check of specific values for known responses 

 The use of test oracle in software testing is depicted in Figure 5-2. The test oracle 

is usually costly and difficult to create. 

 

Figure 5-2: Software Testing Using Test Oracle 
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 Similarly, we introduce an artifact, called Benchmark Cause-Effect-Graph (B-

CEG), to facilitate the process of distinguishing failure-relevant from failure-

irrelevant inputs. A B-CEG is a “faultless” CEG to the best knowledge of SRS 

analyst(s). It is “closer” than A-CEG to the O-CEG (Oracle Cause-Effect Graph), a 

“perfect” CEG representing the desired system (refer to Figure 4-2), which is very 

hard to obtain in practice as pointed out in many studies. 

 Analogous to a test oracle, B-CEG enables the automation of distinguishing failure-

relevant inputs from failure-irrelevant. The use of B-CEG for identifying failure-

relevant inputs is depicted in Figure 5-3.  

 

Figure 5-3: Identifying Failure-relevant Inputs Using B-CEG 

 B-CEG could be constructed either from scratch (called “addition approach”) or 

by making a copy of A-CEG and then rectifying all identified faults (called 

“subtraction approach”).  In most cases, the “subtraction approach” is far more 

efficient than the “addition approach” since there are usually only a few faults in A-

CEG. To ease the task of BCEG construction, we developed a set of rules (described 

in Section 5.3.2) for the “subtraction approach”. By following these rules one can 

easily construct a B-CEG provided that an A-CEG and the faults in the A-CEG are 
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known. 

5.3.2 Rules for B-CEG Construction and A-CEG Revision 

 Similar to an A-CEG, a B-CEG is defined by four sets: a cause set 
B

C , an effect 

set 
B

E , a Boolean function set 
B

F , and a constraint set 
B

CON . A B-CEG is 

determined if and only all of these four sets are determined. 

 To ease the task of BCEG construction, we developed the rules for determining 

these four sets, as described below. 

5.3.2.1. Determination of 
B

C  

 The process for determining 
B

C is: 

1) Put all causes in 
A

C into 
B

C . 

2) If a cause does not appear in 
B

F , remove this cause from 
B

C . 

3) If a cause does not appear in 
A

F and appears in 
B

F ,  add this cause into 
B

C . 

5.3.2.2. Determination of 
B

E  

 The process for determining 
B

E is: 

1) Put all effects in 
A

E into 
B

E . 

2) If there are any detected “introduction-of-an-undesired-effect” faults in A-

CEG, for each of these extra effects, update the corresponding Boolean 
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function in 
B

F such that it always yields “0” for any given input. All of these 

extra effects are virtual effects in B-CEG. 

 All extra effects are intentionally left in B-CEG. As such, each of extra 

effects in A-CEG has its counterpart in B-CEG. 

3) If there are any detected “missing-an-effect” faults in A-CEG, for each of 

these missing effects,  

i. add a new effect identifier into 
B

E . 

ii. add an appropriate Boolean function into 
B

F . 

iii. add an effect identifier (identical to its counterpart in B-CEG) into  

 A
E . This is a virtual effect in A-CEG. As such, the missing effect 

in A-CEG has its counterpart in B-CEG. 

5.3.2.3. Determination of 
B

F  

 The process for determining 
B

F is: 

1) Put only those Boolean functions of 
A

F that are not corresponding to any 

virtual effects in 
A

E  into 
B

F . 

2) If there are any detected “wrong-Boolean-function” faults in A-CEG, correct 

these Boolean-functions for 
B

F . 
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3) If there are any virtual effects in 
B

E , add a new Boolean function for each of 

these virtual effects into 
B

E . These Boolean functions should always yield “0” 

for any input. 

5.3.2.4. Determination of 
B

CON  

 The process for determining 
B

CON is: 

1) Put all constraints of 
A

CON into
B

CON . 

2) If there are any detected “introduction-of-an-undesired-constraint” faults in A-

CEG, remove these extra constraints from
B

CON . 

3) If there are any detected “missing-a-constraint” faults in A-CEG, add 

appropriate constraints into
B

CON . 

 In addition to the rules mentioned above, there are actions that should also be 

taken for A-CEG in case that an effect is missing to enable the automation of 

determining failure-relevant inputs. These actions are summarized in Table 5-1. 

Table 5-1: Faults vs. Actions that should be taken for A-CEG or B-CEG 

Fault in A-CEG Actions taken for B-CEG Actions taken for A-CEG 

Omission of an 
effect 

 Add a new effect identifier 

into 
B

E . 
 Add an appropriate Boolean 

function into 
B

F . 

 Add an effect identifier 
(identical to its counterpart 

in B-CEG) into  
A

E  . This is 
a virtual effect in A-CEG. 

 Add a Boolean function into 
 A
F . This Boolean function 
should always yield “0” for 
any given input. 
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Fault in A-CEG Actions taken for B-CEG Actions taken for A-CEG 

Introduction of an 
undesired effect 

 Update the corresponding 

Boolean function in 
B

F , 
such that it always yields 
“0” for any given input. This 
extra effect is a virtual effect 
in B-CEG and purposely left 
in B-CEG. 

(None) 

Omission of a 
constraint 

 Adding  an appropriate extra 

constraint into 
B

CON  (None) 

Introduction of an 
undesired 
constraint 

 Removing this extra 

constraint from 
B

CON  (None) 

a wrong Boolean 
function- missing 

a cause 

 Correct this Boolean 

function’s expression for 
B

F

 If the cause is not in 
B

C , 
add a new cause identifier 

into 
B

C . 

(None) 

a wrong Boolean 
function- 

containing an 
extra cause 

 Correct this Boolean 

function’s expression for 
B

F
 If none of Boolean functions 

in 
B

F contains this cause, 
remove this extra cause 

from 
B

C . 

(None) 

a wrong Boolean 
function- 

containing an 
incorrect logic 

operator  

 Correct this Boolean 

function’s expression for 
B

F
(None) 

 

5.3.3 Introduction of Virtual Effect for Mating Missing or Extra Effects 

 Determination of the category of an input is achieved by pair-wisely mating all 

effects in A-CEG and B-CEG and pair-wisely comparing their outputs against the 

given input. However, there are two special cases in which there is an effect (of either 

A-CEG’s or B-CEG’s) that could not be mated: 
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Case 1: A-CEG is missing an effect. To rectify this fault, the missing effect 

should be added into B-CEG because B-CEG is the “faultless” version of 

A-CEG. However, the newly added effect in B-CEG does not have any 

counterpart in A-CEG. 

Case 2: A-CEG has an extra effect. To rectify this fault, the extra effect should be 

removed from B-CEG. However, this extra effect has to be kept in A-

CEG because A-CEG should truly represent the faulty SRS. Thus the 

extra effect in A-CEG does not have any counterpart in B-CEG after the 

rectification action has been taken. 

 To handle these two special cases, the concept of the “virtual effect” is introduced. 

A virtual effect is an artifact added into A-CEG or B-CEG such that each effect in A-

CEG and B-CEG has its counterpart. A virtual effect in A-CEG is corresponding to a 

missing-effect fault; a virtual effect in B-CEG is corresponding to an extra-effect fault. 

The use of virtual effects plays a key role in unifying the process of determining 

failure-relevant inputs (see Section 5.3.4 for details).  

 An example of adding virtual effects into ACEG and BCEG is illustrated in Figure 

5-4. In this example, there are two assumed faults in A-CEG: a missing effect (e2) and 

an extra effect (e3).   

 According to Table 5-1, a virtual effect (e2) is added into  A
E , and the 

corresponding Boolean function ( 2 : 0e  ) is added into 
A

F . Similarly, a virtual effect 

(e3) is added into 
B

E , and the corresponding Boolean function ( 3 : 0e  ) is added into  

B
F . 
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a) before Adding Virtual Effects into A-CEG and B-CEG 
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b) after Adding Virtual Effects into A-CEG and B-CEG 

Figure 5-4: Example of Adding Virtual Effects into A-CEG and B-CEG 

5.3.4 Determination of an Effect’s Output 

 When determining the response (output) of a regular (neither missing nor extra) 

effect, constraints have higher precedence than the corresponding Boolean function. 

If any constraint is applicable to the effect (in case of “MASK” constraint) or to the 

given input (in case of “REQUIRE”, “INCLUSIVE”, “EXCLUSIVE”, or “ONE-

ONLY-ONE” constraint), the effect should yield “NA” (short for “Not Allowed”); 

otherwise, the effect’s response should be determined by its Boolean function, taking 
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a value of either “0” or “1”. 

 The constraint lemmas (Lemma 3-1 to Lemma 3-6) are very helpful when 

determining if a constraint is applicable to an effect or a given output or not. The 

violation of any of these lemmas caused by a constraint indicates the applicability of 

the constraint to the effect and/or the given input. 

 Apparently, a virtual effect should not be triggered under any circumstance 

because it is not a physical entity. Therefore, the Boolean function corresponding to a 

virtual effect should always yield “0” for any given input, unless any constraint is 

applicable to the given input (in this case, “NA” is assigned as the output for the 

virtual effect).  In contrast with a non-virtual effect, which can take a value of “0”, 

“1”, or “NA”, a virtual effect can only take a value of either “0” or “NA”. Thus, we 

have the following two lemmas in regard to determining the output for a virtual 

effect: 

Lemma 5-2: Missing Effect’s Output  

 If 
A
je  is a virtual effect in 

A
E ,  

 
  0A

jf X 


, and 

 

      if any constraint in  is applicable;

0       otherwise.

A
A
j

NA CONe X
 



  

 

where X


 is any given input. 

Lemma 5-3: Extra Effect’s Output 

 If 
B
je  is a virtual effect in 

B
E ,  
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   0B
jf X 


, and 

 

      if any constraint in  is applicable;

0       otherwise.

B
B
j

NA CONe X
 



 

where X


 is any given input. 

 
 With the help of Lemma 5-2 and Lemma 5-3, the process of determining the 

output of an effect (of either A-CEG’s or B-CEG) against a given input can be 

unified, as depicted in Figure 5-5. 

   k k
j je X f X
   k

je X NA


k
X


je
k

X


je

CON
k

X


je

 

Figure 5-5: Unified Process for Determining the Output of an Effect 

5.3.5 Algorithm for Determining the Category of an Input 

 An input falls into the category of either failure-relevant or failure-irrelevant. To 

determine the category of an input, outputs of all effects in A-CEG and B-CEG are 

pair-wisely compared. If there is one (or more) effect pair(s) that yields different 

output, the input is failure-relevant; otherwise, it is failure-irrelevant.  The detailed 
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algorithm for determining the category of an input is shown in Figure 5-6.  

 Usually it does not matter in which sequence the effect pairs are chosen to 

examine the category of a given input. One convenient way is to select effect pairs by 

the ascending/descending order of the effect identifiers’ subscript. However, in case 

of the presence of any “MASK” constraint(s) in CON෣A  orCON෣B , the output of 

“Masker” effect must be determined before the output of the “Maskee” effect can be 

determined. Otherwise, there is no way to correctly judge if a “MASK” constraint is 

applicable for a “Maskee” effect or not.  For instance, in case of ܭܵܣܯሺ݁ଵ, ݁ଶሻ (e1 

masking e2), e1 is a “Masker” effect and e2 is a “Maskee” effect. The output for e1 

should be determined before determining that of e2’s. For this case, the selection 

precedence of e1 pair is higher than that of the e2 pair’s. 

 It should be noted that the algorithm shown in Figure 5-6 is ready for automation 

since there are many techniques and automation tools [77][78] available for 

evaluation of Boolean logic formula. These techniques and tools are shown to have 

excellent scalability when being applied to VLSI (Very Large Scale Integrated logical 

circuits) design and test, where there are usually millions of variables (a variable in 

VLSI design and test is equivalent to a cause in this study). It is unlikely that an SRS 

will contain millions of causes, even for a very large-scale system, such as Windows 

Vista®. Therefore, we believe that there should be no scalability issue in determining 

the failure-relevant inputs if we have developed tools based on the algorithm shown 

in Figure 5-6 and taking advantages of the existing tools for Boolean logic formula 

reduction. 

 



 

96 
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Figure 5-6: Algorithm for Determining the Category of a Given Input k
X


  

5.3.6 Examples of Identifying Failure-relevant Inputs 

 In this section, we use a sample A-CEG (shown in Figure 5-7) to illustrate how to 

identify failure-relevant inputs for the seven basic types of A-CEG faults (see Section 

4.5.1 for definitions of the A-CEG fault categories). For the sake of simplicity and 

without loss of generality, assume that there is only one type of faults in each case. 
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Figure 5-7: Mathematical Expression of the Sample A-CEG

 

5.3.6.1. Case 1: A-CEG is missing an effect 

 Assume that e3 is the missing effect and its Boolean function is 3 3:e c . 

 According to Table 5-1, e3 and its Boolean function 3 3:e c are added into B-

CEG. Besides, a virtual effect with identity e3 is added into A-CEG, and 3 : 0e   is 

assigned as its Boolean function. The revised A-CEG and B-CEG for this case is 

illustrated in Figure 5-8. 
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Figure 5-8: Revised A-CEG and B-CEG for Case 1 
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 By applying the unified effect output determination process shown in Figure 5-5, 

we determined and summarized all effects’ outputs for this case, as shown in Table 

5-2. In this table, the output that is in disagreement with its counterpart is highlighted 

with a shadow box. 

 Apparently, the failure-relevant inputs for this case are 1 2 3c c c   (k = 2), and 

1 2 3c c c   (k = 4). 

Table 5-2: Effects’ Outputs for Case 1 

index, 
k 

Input Ԧܺ௞ e1  e2  e3  

c1 c2 c3 
of A-

CEG’s
of B-

CEG’s
of A-

CEG’s
of B-

CEG’s
of A-

CEG’s 
of B-

CEG’s 

1 0 0 0 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 0 1 

3 0 1 0 0 0 0 0 0 0 

4 0 1 1 0 0 1 1 0 1 

5 1 0 0 NA NA NA NA NA NA 

6 1 0 1 NA NA NA NA NA NA 

7 1 1 0 1 1 1 1 0 0 

8 1 1 1 1 1 1 1 0 1 

 

5.3.6.2. Case 2: A-CEG has an extra effect 

 Assume e1 is the extra effect.  

 According to Table 5-1, a virtual effect with identity e1 is added into B-CEG and 

1 : 0e   is assigned as its Boolean function. The A-CEG and B-CEG for this case is 

illustrated in Figure 5-9. 
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Figure 5-9: Revised A-CEG and B-CEG for Case 2 

 By employing the unified effect output determination process shown in Figure 

5-5, we determined and summarized all effects’ outputs for this case, as shown in 

Table 5-3. In this table, the output that is in disagreement with its counterpart is 

highlighted with a shadow box. 

 Apparently, the failure-relevant inputs for this case are 1 2 3c c c   (k = 7) and 

1 2 3c c c   (k = 8). 

Table 5-3: Effects’ Outputs for Case 2 

index, 
k 

Input Ԧܺ௞ e1  e2  

c1 c2 c3 
of A-

CEG’s
of B-

CEG’s
of A-

CEG’s
of B-

CEG’s 

1 0 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 

3 0 1 0 0 0 0 0 

4 0 1 1 0 0 1 1 

5 1 0 0 NA NA NA NA 

6 1 0 1 NA NA NA NA 

7 1 1 0 1 0 1 1 

8 1 1 1 1 0 1 1 

5.3.6.3. Case 3: A-CEG is missing a constraint 

 Assume 1 2( , )MASK e e  is the missing constraint.  
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 According to Table 5-1, 1 2( , )MASK e e  is added into B-CEG. The A-CEG and B-

CEG for this case is illustrated in Figure 5-10. 
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Figure 5-10: Revised A-CEG and B-CEG for Case 3 

 By employing the unified effect output determination process shown in Figure 

5-5, we determined and summarized all effects’ outputs for this case, as shown in 

Table 5-4. In this table, the output that is in disagreement with its counterpart is 

highlighted with a shadow box. 

 Apparently, the failure-relevant inputs for this case are 1 2 3c c c   (k = 7) and 

1 2 3c c c   (k = 8). 

Table 5-4: Effects’ Outputs for Case 3 

index, 
k 

Input Ԧܺ௞ e1  e2  

c1 c2 c3 
of A-

CEG’s
of B-

CEG’s
of A-

CEG’s
of B-

CEG’s 

1 0 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 

3 0 1 0 0 0 0 0 

4 0 1 1 0 0 1 1 

5 1 0 0 NA NA NA NA 
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index, 
k 

Input Ԧܺ௞ e1  e2  

c1 c2 c3 
of A-

CEG’s
of B-

CEG’s
of A-

CEG’s
of B-

CEG’s 

6 1 0 1 NA NA NA NA 

7 1 1 0 1 1 1 NA 

8 1 1 1 1 1 1 NA 

 

5.3.6.4. Case 4: A-CEG has an extra constraint 

 Assume 1 2( , )REQUIRE c c is the extra constraint.  

 According to Table 5-1, 1 2( , )REQUIRE c c  is removed from B-CEG. The A-CEG 

and B-CEG for this case is illustrated in Figure 5-11. 

         
     
     


 

1 2 3 1 2 3

1 2 1 2

1 1

2 1 2 3

, , ,                , , ,   

, ,                                        , ,

,                                             ,

: ;

:

A A A B B BA BA B

A B

A B

A

CEG C E F CON CEG C E F CON

C c c c C c c c

E e e E e e

e c
F

e c c c


   

 

 

 

 
 

   
1

1 1

2 1 2 3

2( , )  (empty s

: ;
                     

:

                  et)

B

A B

e c
F

e c c c

CON COREQUIR NE c c

    
         





 

 
Figure 5-11: Revised A-CEG and B-CEG for Case 4 

 By employing the unified effect output determination process shown in Figure 

5-5, we determined and summarized all effects’ outputs for this case, as shown in 

Table 5-5. In this table, the output that is in disagreement with its counterpart is 

highlighted with a shadow box. 

 Apparently, the failure-relevant inputs for this case are 1 2 3c c c   (k = 5) and 

1 2 3c c c   (k = 6). 
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Table 5-5: Effects’ Outputs for Case 4 

index, 
k 

Input Ԧܺ௞ e1  e2  

c1 c2 c3 
of A-

CEG’s
of B-

CEG’s
of A-

CEG’s
of B-

CEG’s 

1 0 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 

3 0 1 0 0 0 0 0 

4 0 1 1 0 0 1 1 

5 1 0 0 NA 1 NA 1 

6 1 0 1 NA 1 NA 1 

7 1 1 0 1 1 1 1 

8 1 1 1 1 1 1 1 

 

5.3.6.5. Case 5: A-CEG has a wrong Boolean function that is missing a cause 

 Assume the desired Boolean function for effect e1 is 1 1 4:e c c  rather than

1 1:e c  (c4 is the missing cause).  

 According to Table 5-1, the desired Boolean function for e1 is updated in B-CEG. 

The A-CEG and B-CEG for this case is illustrated in Figure 5-12. 
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Figure 5-12: Revised A-CEG and B-CEG for Case 5 

 By employing the unified effect output determination process shown in Figure 

5-5, we determined and summarized all effects’ outputs for this case, as shown in 
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Table 5-6. In this table, the output that is in disagreement with its counterpart is 

highlighted with a shadow box. 

 Apparently, the failure-relevant inputs for this case are 1 2 3 4c c c c    (k = 2), 

1 2 3 4c c c c    (k = 4), 1 2 3 4c c c c    (k = 6), and 1 2 3 4c c c c    (k = 8). 

Table 5-6: Effects’ Outputs for Case 5 

index, 
k 

Input Ԧܺ௞ e1  e2  

c1 c2 c3 c4 
of A-

CEG’s
of B-

CEG’s
of A-

CEG’s
of B-

CEG’s 

1 0 0 0 0 0 0 0 0 

2 0 0 0 1 0 1 0 0 

3 0 0 1 0 0 0 0 0 

4 0 0 1 1 0 1 1 1 

5 0 1 0 0 0 0 0 0 

6 0 1 0 1 0 1 0 0 

7 0 1 1 0 0 0 0 0 

8 0 1 1 1 0 1 1 1 

9 1 0 0 0 NA NA NA NA 

10 1 0 0 1 NA NA NA NA 

11 1 0 1 0 NA NA NA NA 

12 1 0 1 1 NA NA NA NA 

13 1 1 0 0 1 1 1 1 

14 1 1 0 1 1 1 1 1 

15 1 1 1 0 1 1 1 1 

16 1 1 1 1 1 1 1 1 

 

5.3.6.6. Case 6: A-CEG has a wrong Boolean function which contains an extra cause 

 Assume the desired Boolean function for effect e2 is 2 2 3:e c c   rather than 

 12 2 3: ce c c    (c1 is an extra cause). 
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 According to Table 5-1, the desired Boolean function for effect e2 is updated in B-

CEG. The revised A-CEG and B-CEG for this case is illustrated in Figure 5-13. 
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Figure 5-13: Revised A-CEG and B-CEG for Case 6 

 By employing the unified effect output determination process shown in Figure 

5-5, we determined and summarized all effects’ outputs for this case, as shown in 

Table 5-7. In this table, the output that is in disagreement with its counterpart is 

highlighted with a shadow box. 

 Apparently, the only failure-relevant input for this case is 1 2 3c c c   (k = 7). 

Table 5-7: Effects’ Outputs for Case 6 

index, 
k 

Input Ԧܺ௞ e1  e2  

c1 c2 c3 
of A-

CEG’s
of B-

CEG’s
of A-

CEG’s
of B-

CEG’s 

1 0 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 

3 0 1 0 0 0 0 0 

4 0 1 1 0 0 1 1 

5 1 0 0 NA NA NA NA 

6 1 0 1 NA NA NA NA 

7 1 1 0 1 1 1 0 

8 1 1 1 1 1 1 1 
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5.3.6.7. Case 7: A-CEG has a wrong Boolean function which contains incorrect logic 

operators 

 Assume the desired Boolean function for effect e2 is  2 1 2 3:e c c c   rather 

than  2 1 2 3:e c c c  . 

 According to Table 5-1, the desired Boolean function for effect e2 is updated in B-

CEG. The A-CEG and B-CEG for this case is illustrated in Figure 5-14. 
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Figure 5-14: Revised A-CEG and B-CEG for Case 7 

 By employing the unified effect output determination process shown in Figure 

5-5, we determined and summarized all effects’ outputs for this case, as shown in 

Table 5-8. In this table, the output that is in disagreement with its counterpart is 

highlighted with a shadow box. 

 Apparently, the only failure-relevant input for this case is 1 2 3c c c   (k = 4). 
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Table 5-8: Effects’ Outputs for Case 7 

index, 
k 

Input Ԧܺ௞ e1  e2  

c1 c2 c3 
of A-

CEG’s
of B-

CEG’s
of A-

CEG’s
of B-

CEG’s 

1 0 0 0 0 0 0 0 

2 0 0 1 0 0 0 0 

3 0 1 0 0 0 0 0 

4 0 1 1 0 0 1 0 

5 1 0 0 NA NA NA NA 

6 1 0 1 NA NA NA NA 

7 1 1 0 1 1 1 1 

8 1 1 1 1 1 1 1 

5.4 Calculation of the Occurrence Probability of Failure-relevant Inputs 

 According to Lemma 5-1, the event “An A-CEG fails” is equivalent to the union 

of identified failure-relevant inputs. Therefore, this event can be expressed in the 

form of a fault tree, as depicted in Figure 5-15. 
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Figure 5-15: Generic Fault Tree Model for A-CEG  
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 Thus the task of calculating the occurrence probability of the event “an A-CEG 

fails” can be decomposed into two sub-tasks: 

Sub-task 1: Constructing a fault tree representing the union of all failure-relevant 

inputs. 

Sub-task 2: Calculating the occurrence probability of the top event of the fault 

tree. 

 Binary Decision Diagram (BDD) techniques are widely used for fault tree 

analysis. With the help of BDD techniques, the task of calculating the occurrence 

probability of the event “an A-CEG fails” is achieved by accomplishing the following 

two sub-tasks: 

Sub-task 1: Constructing a BDD for the fault tree representing the union of all 

failure-relevant inputs; 

Sub-task 2: Calculating the probability of the BDD’s top node. 

5.4.1 Representation of a Boolean Expression Using BDD Techniques  

 The use of Binary Decision Diagrams as a representation of Boolean expressions 

is regarded the most powerful approach for fault tree analysis [79] [80]. The BDD 

method does not analyze the fault tree directly, but converts the tree to a binary 

decision diagram, which represents the Boolean equation for the top event [80]. 

 A Binary Decision Diagram (BDD) is a data structure that is used to represent a 

Boolean function. A Boolean function can be represented as a rooted, directed, 

acyclic graph, which consists of decision nodes and two terminal nodes called 0-

terminal and 1-terminal. Each decision node is labeled by a Boolean variable and has 
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two child nodes called low child and high child. The edge from a node to a low (high) 

child represents an assignment of the variable to 0 (1). Such a BDD is called 'ordered' 

if different variables appear in the same order on all paths from the root. It is called 

'reduced' if the graph is reduced according to two rules [81]: 

 Merge any isomorphic sub-graphs.  

 Eliminate any node whose two children are isomorphic.  

 In popular usage, the term BDD almost always refers to Reduced Ordered Binary 

Decision Diagram (ROBDD) in the literature. The advantage of an ROBDD is that it 

is canonical (unique) for a particular functionality. This property makes it useful in 

functional equivalence checking and other operations like functional technology 

mapping. Figure 5-16 shows an example of a BDD for the Boolean function 

f xy z  . 

 

Figure 5-16: Example of BDD for the Boolean Function f xy z   

 BDD-based algorithms offer advantages in terms of accuracy and efficiency [80]: 

 Efficient manipulation of logic. 

 Straightforward treatment of incoherent logic. 
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 Exact quantification’: no need to use rare-event type approximations. 

 Graphical representation of Boolean Expressions. 

 There are several BDD generation software packages for free, such as CUDD (by 

Colorado University), CAL (by UC Berkeley), and BuDDy (by IT-University of 

Copenhagen).  This study uses the BuDDy package [82] to convert the Boolean 

expression of the union of all failure-relevant inputs into a BDD. 

 BuDDy is a powerful library for Boolean expression manipulation; it combines as 

easily as a C++ interface and is an efficient implementation based on the novel BDD 

data structure. Although one can work with BuDDy without understanding what 

BDDs are, it is worth understanding the concept of BDD structure and usage when 

developing large applications that are heavily based on Boolean expression. An 

example of using the BuDDy package to construct a BDD for the Boolean logic of 

“an A-CEG Fails” is given in Appendix B. 

5.4.2 Recursive Algorithm for Calculating the Occurrence Probability of a BDD’s Top Node 

After the BDD that represents the Boolean logic of the union of failure-relevant 

inputs is constructed, the recursive algorithm shown in Figure 5-17 can be used to 

calculate the probability of a BDD’s top node. This recursive algorithm is derived 

from [80][26]. 

The operational profile (see Section 5.4.3) is required to do the calculation, and 

only the operational profile for causes that appears in failure-relevant inputs is 

needed. 

We developed a tool to calculate the occurrence probability of a BDD’s top node. 
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This tool is based on the BuDDy package [82] and the recursive algorithm shown in 

Figure 5-17. The sample source code of using this tool is illustrated in Appendix B. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 5-17: Recursive Algorithm for Calculating the Occurrence Probability of a 

BDD’s Top Node 

Bdd_Prob_Cal(X) 

/* X = ite (xi, T, F), 

    T = “True” branch of node xi 

    F = “False” branch of node xi 

    PT = Probability of “True” branch reach terminal node “1” 

    PF = Probability of “False” branch reach terminal node “1”  

 */ 

{ 

 /*Consider “True” branch*/ 

 If T is terminal node “1” 

  PT = 1.0 

 else if T is terminal node “0” 

  PT = 0.0 

 else 

 /*Go deeper to find the probability of T by recursively calling this function*/ 

  PT = Bdd_Prob_Cal (T) 

 /*Consider “False” branch*/ 

 If F is terminal node “1” 

  PF = 1.0 

 else if F is terminal node “0” 

  PF = 0.0 

 else 

 /*Go deeper to find the probability of F by recursively calling this function*/ 

  PF = Bdd_Prob_Cal (F) 

  

 Probability[X] = Probability[xi]  PT + (1- Probability[xi])  PF 

 Return (Probability[X]) 

} 
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5.4.3 Operational Profile (OP)  

 It is obvious that the usage of the software is a very important constituent element 

in software reliability quantification. Therefore, the expected usage must be taken 

into consideration when estimating/predicting software reliability [3].  

 There exist several techniques to specify the usage, including Operational Profile 

(OP), and Markov usage model etc [83]. These techniques are different approaches to 

model the software usage in order to specify the same. 

 An operational profile (OP) is the estimated relative frequency for each 

“operation” that a system under test supports [84]. It associates a set of probabilities 

to the program input space and therefore describes the behavior of the system [84]. 

 OP is traditionally evaluated by enumerating field inputs and evaluating their 

occurrence frequencies. Musa [84] pioneered a five-step approach to develop OP. His 

approach is based on collecting information on customers and users, identifying the 

system modes, determining the functional profile, and recording the input states and 

their associated occurrence probabilities experienced in field operation. 

 Musa's approach has been widely utilized and adapted in the literature to generate 

OP [85]. For instance, Elbaum and Narla [86] refined Musa's approach by addressing 

heterogeneous user groups. They discovered that a single operational profile only 

"averages" the usage and "obscures" the real information about the operational 

probabilities. They utilized clustering to identify groups of similar customers. 

Sandfoss [85] suggests that estimation of occurrence probabilities could be based on 

numbers obtained from project documentation, engineering judgment, and system 

development experience. Gittens et al [87] proposed an extended OP model which is 
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composed of the process profile, structural profile, and data profile. The process 

profile addresses the processes and associated frequencies. The structural profile 

accounts for the system structure, the configuration or structure of the actual 

application, and the data profile covers the inputs to the application from different 

users. 

 Musa's approach and other extended approaches all use an assumption that field 

data or historic usage data cover the entire input domain. This assumption is not 

always true and their approaches are not always successful simply because some 

input data may not be available, especially for safety critical control systems [40]. 

 Addressing to this issue, the UMD research team [40] extended these approaches 

and generated a systematic method to identify those environmental variables and 

estimate all the environmental inputs. 

 Generating OP at earlier development phases is even more challenging. However, 

instead of discussing this open topic, this study assumes that the associated OP has 

already been collected before using the algorithm shown in Figure 5-1 to predict 

reliability for a software system. Moreover, it is assumed that OP is given in the form 

of a set of occurrence probabilities for all distinct causes that appear in the failure-

relevant inputs. 

5.5 Summary 

 This chapter presents an automation-oriented algorithm for quantifying the impact 

of detected faults on software reliability applicable in requirements analysis stage. 

The proposed quantification algorithm is also applicable during later development 

phases, such as coding and testing phase, where the potential savings are less. 
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Chapter 6:  Examination of the Applicability of the Proposed 

CEGA Techniques for Early-stage Software 

Reliability Prediction by Case Studies 

 A rigorous definition of software measurement does not guarantee its applicability 

(in terms of feasibility and scalability) in practice. 

 Feasibility is an indispensable attribute of a technique, which indicates its 

capability of being used or dealt with successfully. 

 Scalability is a desirable attribute of a technique, which indicates its ability to 

either handle growing amounts of work in a graceful manner, or to be readily 

enlarged. One serious drawback of past and current software engineering research is 

lack of scalability. Researchers have developed techniques that work only on small 

systems. Mathematical techniques have, for the most part, been used only on very 

limited properties and on unrealistically small problems. Most any analysis technique 

works on a toy problem. There is reason to believe that software development in the 

large is so different than the toy problems found in most research papers that many 

published techniques may not apply to real projects. We need to find a balance of 

formal and informal techniques that scale by considering problems of realistic size 

and complexity from the start. Given the complexity of the systems we are attempting 

to build, the only convincing argument that an approach will work in practice is to 

validate techniques on real systems. 

 To evaluate the feasibility and scalability of the proposed CEGA techniques for 

quantification of software reliability at an early development stage, we conducted two 
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case studies. The first case study was carried out against a smaller application, whose 

SRS has 32 pages and 402 sentences4. The second case study was against a larger 

application, whose SRS has 289 pages and 3492 sentences. 

 This chapter reports the procedure, results and analysis of these two case studies. 

6.1 Applications Used Case Studies 

 The smaller application used in the first case study is Personal Access Control 

System (PACS) [88]. PACS is a simplified version of an automated personnel entry 

access system used to provide privileged physical access to rooms/buildings. PACS 

system provides physical access to a restricted area to authorized users based on a 

personal ID card and personal identification number (PIN). In order to get access, the 

user swipes an ID card which contains user’s name and social security number (SSN) 

through a card reader. After using its database of user’s names and SSNs to validate 

user’s privileges, PACS system instructs the user to enter a four-digit PIN number. If 

the entered PIN matches a stored PIN, the system allows the user to enter the area 

through a gate. PACS guides the user of the system with messages written on a 

single-line display screen. A security officer monitors and controls the PACS using a 

console with another single-line display screen, an alarm, a reset button, and a gate 

override button. In its current form, requirements specification for PACS originated 

from a US government agency.  

 The larger application used in the second case study is called “SXXX”, because 

this application is copyrighted and its real name is not allowed to be exposed to the 

                                                 
 
 
4 Note that the numbers of sentences measured in this study were all rough estimates because we did 
not adopt any strict rules for sentence counting. 



 

115 
 

public. SXXX [40] is a safety-critical and real-time software system used in the 

nuclear domain. The SXXX System is based on the SXXX Processor Module. The 

SXXX Processor Module contains both discrete and high level analog input and 

output circuits. These circuits read input signals from the plant and send outputs that 

can be used to provide trips or actuations of safety system equipment, control a 

process, or provide alarms and indications. The transfer functions performed between 

the inputs and outputs are dependent on the software that is installed in the module. 

The SXXX system was installed in 1995 to partially upgrade an existing analog 

reactor protection system. 

6.2 Procedure 

 The two case studies are called Case Study A and Case Study B. 

Case Study A: Applying the proposed CEGA techniques to PACS. The primary 

purpose of this case study is to examine the feasibility of the 

proposed techniques. 

Case Study B: Applying the proposed CEGA techniques to SXXX. The primary 

purpose of this case study is to examine the scalability of the 

proposed techniques. 

 

 We hired a graduate student to carry out these two case studies. Case Study A was 

conducted first. After the feasibility of the proposed techniques was confirmed in 

Case Study A, Case Study B was conducted to examine the scalability of the 

proposed techniques. Administrative measures were taken to ensure the quality of 

results, such as partially validating the results by the author. 
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 The same steps were taken for both case studies. These steps are as follows: 

Step 1: Construct an A-CEG for the SRS and document any detected faults. The 

A-CEG is expressed in the mathematical format. 

Step 2: Detect faults in the SRS. 

Step 3: Quantify the impact of detected faults on software reliability. 

Step 4: Document all results. 

 The techniques and tools required to perform these steps are summarized in Table 

6-1. 

Table 6-1: Steps vs. Required Techniques/Tools 

Steps Task Sub task Required techniques/tools 

Step 1 
A-CEG 

construction 

Identifying causes

• The general CEG construction procedure 
and the general CEG construction 
guidelines (described in Section 3.2)  

• Mathematical expression of CEG 
(described in Section 3.5) 

Identifying 
effects 

Identifying 
logical 

relationships 
Identifying 
constraints 

Step 2 Detection of 
SRS faults  

Detecting SRS 
ambiguities 

• CEGA-based ambiguities review list 
(described in Section 4.5.2) 

Validating A-
CEG 

• CEG validating technique (described in 
Section 4.5.3) 

Step 3 

Quantification 
of the impact 
of detected 
faults on 
software 
reliability 

A-CEG revision  • A-CEG revision and B-A-CEG 
Construction Rules (described in Section 
5.3.2) 

B-CEG 
construction 
Identifying 

failure-relevant 
inputs 

• Failure-relevant identification algorithm 
(described in Section 5.3) 

                                                 
 
 
 In this table, the “General CEG construction procedure and the general CEG construction 
guidelines”, “CEGA-based ambiguities review list”, and “BDD techniques” were developed 
by others rather than the author. 
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Steps Task Sub task Required techniques/tools 

BDD construction
• BDD techniques for fault tree expression 

(described in Section 5.4.1) 
• the BuDDy package [82] 

Calculating the 
occurrence 

probability of 
BDD’s top node 

• The Fundamental Lemma (Lemma 5-1) 
• Recursive algorithm (shown in Figure 

5-17) 
• BDD top node occurrence probability 

calculation tool. The sample source code 
of using this tool is illustrated in 
Appendix B. 

Step 5 Documentation 
of results 

(None) (None) 

6.3 Results and Findings 

 Both case studies (Case Study A and Case Study B) clearly confirmed the 

technical feasibility of the proposed techniques for software reliability prediction at 

an early development stage. 

 Table 6-2 summarizes the tasks, the required techniques to perform the tasks, and 

the scalability of the techniques in these two experiments. 

Table 6-2: Scalability of the Proposed Techniques 

Task Sub task Proposed techniques Comments on the scalability 

A-CEG 
construction 

Identifying 
causes 

• General A-CEG 
construction guidelines 

• Mathematical 
expression of CEG  

Scalability of using 
Mathematical expressions for 
A-CEG was confirmed. 
 
Scalability of identifying A-
CEG elements (causes, effects, 
logical relationships, and 
constraints) using the general 
guidelines was not scalable.  

Identifying 
effects 

Identifying 
logical 

relationships 
Identifying 
constraints 

Detection of 
SRS faults  

Detecting 
SRS 

• CEGA-based 
ambiguities review list 

Scalability was confirmed. 
Commercial tools are 

                                                 
 
 
 In this table, the “General CEG construction procedure and the general CEG construction 
guidelines”, “CEGA-based ambiguities review list”, and “BDD techniques” were developed 
by others rather than the author. 
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Task Sub task Proposed techniques Comments on the scalability 
ambiguities available. 

Validating 
A-CEG 

• CEG validating 
algorithm  

• CEG validating rules 

Not scalable. Domain 
knowledge is required to 
perform this sub-task.  

Quantification 
of the impact of 
detected faults 

on software 
reliability 

A-CEG 
revision  

• A-CEG revision and 
B-CEG Construction 
Rules 

Scalability was confirmed. No 
tools are required for these two 
sub-tasks 

B-CEG 
construction 

Identifying 
failure-
relevant 
inputs 

• Failure-relevant 
identification 
algorithm 

• Generic A-CEG fault 
tree model 

Scalability was confirmed. 
Ready for automation. 

BDD 
construction 

• BDD techniques 
Scalability was confirmed. 
Free tools are available. 

Calculating 
the 

occurrence 
probability 
of BDD’s 
top node 

• Recursive BDD’s top 
node occurrence 
probability calculation 
algorithm 

Scalability was confirmed. 
Tools were developed. 

 The size of the SRSs, the A-CEGs, and the cause-effect measures for these two 

experiments are summarized in Table 6-3. 

Table 6-3: A-CEGs and CE(%) for PACS and SXXX 

Application 

Size of SRS Size of A-CEG  

CE 
(%) 

Number 
of 

Pages 

Number 
of 

sentences

Number 
of 

Causes 

Number 
of 

Effects 

Number of 
Logical 

relationships

Number of 
Constraints 

PACS 32 402 13 14 47 6 78.45 

SXXX 289 3492 255 506 1608 30 85.71 

  The detailed results of Case Study A (for PACS) are given in Appendix C. For 

comparison purpose, the graphical expressions of A-CEG and B-CEG are also 

included in Appendix C, although they are not required by the experiment. Refer to 

our technical report [40] for the detailed results of Case Study B (for SXXX).  In this 
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section, we only report the high-level findings that are most relevant to our study 

objectives. 

Finding 6-1: There is no obvious pattern in the distribution of detected faults against 

the CEG fault categories, as shown in Figure 6-1 and Figure 6-2. 

 
Figure 6-1: Distribution of Detected Faults in Case Study A (for PACS) 

 
Figure 6-2: Distribution of Detected Faults in Case Study B (for SXXX) 

Finding 6-2: An overwhelming presence of the identity logical relationship as the 

relationship between the cause and effect as shown in Figure 6-3 and Figure 6-4. This 
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is a rather interesting finding since this might be useful in a future development of a 

tool. 

 

Figure 6-3: Distribution of Logical Relationships in PACS’ A-CEG 

 

Figure 6-4: Distribution of Logical Relationships in SXXX’s A-CEG 

Finding 6-3: CEGA is effective in finding critical SRS faults (such as missing effects, 

wrong Boolean functions). Table 6-4 shows the number of (both critical and non-

critical) faults detected in SRSs of PACS’s and SXXX’s and the efforts in detecting 

these faults.  For information purpose, other SRS-based measurements results from 

our previous research [40][42] are included in Table 6-4, and illustrated in Figure 6-5 

and Figure 6-6. These measurements include Completeness measurement, Defect 

Density measurement (using Requirements Inspection technique), and Requirements 

Traceability (RT) measurement. It should be noted that the human factor should be 

taken into account when interpreting the data on the table, because these four 

measurements were implemented by different persons. 
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Table 6-4: Number of Detected Faults vs. Efforts in Using SRS-related 

Measurements5 

Application 
CEGA 

Requirements 
Completeness 

Defect Density 
(Requirements 

inspection)6

Requirements 
Traceability7 

Detected 
faults8 

Effort, 
Staff-hr 

Detected 
faults 

Effort, 
Staff-hr 

Detected 
faults 

Effort, 
Staff-hr 

Detected 
faults 

Effort, 
Staff-hr 

PACS 4 (3) 30 (not implemented) 9 (4) 40 2 (2) 35 

SXXX 7 (7) 385.5 29 (4) 285.5 8 (5) 450 5 (3) 417 

Average 
Staff-hour 

/fault 
37.8 9.8 28.8 64.6 

 

Figure 6-5: Number of Detected Faults vs. Effort for PACS 

 

Figure 6-6: Number of Detected Faults vs. Effort for SXXX 

                                                 
 
 
5 These measurements were implemented by different persons. 
6 Three inspectors and two moderators participated in PACS’ SRS inspection. Two inspectors and one 
moderator participated in SXXX’s SRS inspection.  
7 RT cannot be implemented until the end of coding phase.  
8 The numbers in parentheses on this table represent the numbers of critical SRS faults. 
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Finding 6-4: Implementation of CEGA is very time-consuming. A considerable 

amount of time was spent in manually "parsing" the natural language SRS documents 

to construct an A-CEG and identifying SRS faults. This pattern is more obvious for 

an SRS with larger size (SXXX, in this case), as shown in Figure 6-7 and Figure 6-8. 

The time spent in identifying failure-relevant inputs and documenting results, which 

account for about 29% of the total effort in Case Study A and 23% in Case Study B,  

could be significantly reduced if automation tools had been available. We think that it 

is a relatively easy task to develop automation tools for reducing time spent in these 

two activities based on the automation-oriented algorithm proposed in Chapter 5 (see 

Section 5.3). However, it is very challenging to reduce the time spent in identifying 

SRS faults since the effectiveness and efficiency of our CEGA-based SRS faults 

detection method is highly dependent on the ability of the person(s) using this method. 

Relevant resources, such as the user specification document, an end user, and so on, 

help the inspector improve his/her understanding of the system and identify faults in 

A-CEG. Training is also very helpful. Up to this point, it is not clear why A-CEG 

construction is so time-consuming and how to reduce the time spent in this activity. 

We will revisit this topic in Chapter 7. 
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Figure 6-7: Distribution of Efforts in Case Study A (for PACS) 

 

Figure 6-8: Distribution of Efforts in Case Study B (for SXXX) 

Finding 6-5: Process of manually parsing SRS is error-prone. The effectiveness and 

efficiency of the CEGA measurement is highly dependent on the ability of the person 

exercising the measurement. It is highly recommended to assign an analyzer who 

knows the software very well to perform CEGA. This is mainly because it is not very 

easy to identify the true logical relationship between the causes and the constraints. 

Without prior knowledge of the system, the defects found through CEGA may not be 

correct and the final reliability prediction may not be very meaningful. A two-week-

Constructing A-
CEG
36%

Identifying SRS 
faults
27%

Identifying 
failure-relevant 

inputs
17%

Documenting 
results
12%

Constructing B-
CEG
5%

Calculating A-
CEG's Failure 

probability
3%

Constructing A-
CEG
42%

Identifying SRS 
faults
32%

Identifying 
failure-relevant 

inputs
15% Documenting 

results
8%

Constructing B-
CEG
2%Calculating A-

CEG's Failure 
probability

1%



 

124 
 

long training on the measurement and the domain knowledge is suggested before the 

inspector may carry out this measurement.  

Finding 6-6: Metrics used early, such as the cause-effect measure, can aid in 

detection and correction of requirement faults that will lead to prevention of errors 

later in the life cycle. Finding these problematic areas in the requirements phase 

decreases the cost and prevents potential ripple effects from the changes, later in the 

development life cycle. The benefits of finding and correcting problems in the 

requirements phase has been demonstrated in the CEGA measurement, making a 

strong argument for pursuing this approach and building in reliability starting at the 

requirements phase. 

Finding 6-7: The primitives (for example, the number of ambiguities in SRS) of the 

cause-effect measure are somewhat subjective. Repeatability of the cause-effect 

measure is not guaranteed. The domain knowledge and other subjective factors, to 

some extent, highly affect the inspector’s judgment. Therefore, it is not appropriate 

for quantitatively assessing the quality of the SRS. 

Finding 6-8: The reliability of this measurement usually under-estimates the 

reliability of the final source code since SRS faults may be detected and fixed during 

later development phases. In practice, many of the ambiguities are identified and 

avoided during later development activities, such as design, coding, and testing. 
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6.4 Summary 

 The CEGA process is an old concept whose usage can be expended from merely a 

testing tool to a useful SRS validation and software reliability prediction tool.  

 The feasibility and scalability of our approach for early software reliability 

prediction has been examined against two real applications. Although feedbacks from 

the use of the proposed techniques have been encouraging, there are a number of 

areas that require further investigation.  

 According to the results of Case Study A and Case Study B, the feasibility of our 

approach is clearly confirmed and the scalability is the top issue that needs to be 

addressed. The scalability bottleneck of our approach lies in A-CEG construction and 

SRS faults detection, which account for more than 60% of the effort spent in 

implementing CEGA. The SRS faults detection requires domain knowledge. This part 

is less likely to be scalable. Although Case Study B showed that A-CEG construction 

using the general A-CEG construction guides was not scalable, we hypothesized that 

this was caused by the A-CEG contraction method (the general A-CEG construction 

guidelines). Two questions thus arise: “Is A-CEG construction scalable?” and “Are 

there other techniques that enable the scalability of A-CEG construction?” The 

answers to these questions are uncertain and can only become clear after extensive 

exploration of the nature of natural language SRSs. 
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Chapter 7:  Exploration of the Scalability of A-CEG 

Construction 

 The starting point for our approach is the SRSs, which are typically expressed in 

the form of natural language statements. However, the uses of natural language for 

specifying requirements, which are so important for human communication, represent 

an obstacle to automatic analysis of SRS. Especially, the results of Case Study B (see 

Chapter 6) showed that one of the scalability barriers in our approach lied in A-CEG 

construction. We wanted to answer the question of whether A-CEG construction is 

scalable or not and attempted to provide solution(s), if possible, to overcome the 

scalability barrier caused by A-CEG construction. Because quantitative research 

requires large sample sizes and such a sampling was not feasible for our study, a 

qualitative case-study approach was employed to understand the nature of SRSs and 

A-CEG construction. 

 During the 2006 Fall Semester, we designed an empirical study (called Empirical 

Study C) and offered an independent study project titled “Rule-based A-CEG 

Elements Extraction for Software Requirements Documents” to senior 

undergraduates at The University of Maryland pursuing Electrical Engineering or 

Computer Engineering related majors. The focus of this project was to provide insight 

about characteristics of SRSs, determine the feasibility of automatic A-CEG elements 

extraction, and lay the ground work for developing SRS-specific information retrieval 

and/or text mining tools for automatic A-CEG elements extraction. The project was 
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part of Empirical Study C and served for educational purposes in accordance with 

regulations of the university. 

 This chapter reports the objectives, procedure, detailed findings and analysis 

pertinent to Empirical Study C. 

7.1 Objectives 

 The objectives of Empirical Study C were: 

1) to study the characteristics of SRS, gain insight into the nature of SRS related 

to A-CEG construction, and obtain empirical information that leads to greater 

understanding of A-CEG construction. 

2) to observe, collect, and distill the “patterns” in A-CEG construction. 

3) to identify factors impacting the A-CEG elements identification. 

4) to explore method/rules to enhance the scalability of A-CEG construction. 

5) to provide SRS writers with caveats to avoid some common problems found 

in SRSs which were specified in plain English. These problems not only add 

difficulties in identifying A-CEG elements, but also might lead to increased 

risks of unreliable software products. 

 While many generic and successful information retrieval and text mining 

techniques/tools exist, we wanted to explore the possibility of an SRS-specific 

method, and lay the ground work for developing information retrieval and/or text 

mining tools for automatic A-CEG elements extraction. 

7.2 Methodology and Procedure 

 Empirical Study C had three steps: 
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 Step 1: Experiment preparation. 

 Step 2: Implementation of the independent study project. 

 Step 3: Postmortem analysis and improvement. 

7.2.1 Step 1: Experiment Preparation 

 We selected nine publicly available SRSs from different sectors (government, 

military, industry, and academia) used for Step 2. All of these SRSs were written in 

English and followed the format recommended by IEEE standard IEEE Std. 830-1998 

[53].  These SRSs were: 

SRS1: for MRC-II System [89], a system software as a replacement of the current 

MRC software providing a real-time robot control system for research in 

Computer-Integrated Surgery. 

SRS2: for DPUFSW [90], a major component of the data processing unit in an 

airplane control software. 

SRS3: for Long Range Advanced Scout Surveillance System [91], a system 

operable in both a stationary vehicle mounted configuration and in an 

autonomous dismounted configuration, which determines far target 

location coordinates, and provides a real-time target detection, 

recognition, and identification capability to the scout while permitting 24-

hour adverse weather operations. 

SRS4: for Qheadache [92], a computerized game that displays an interface used 

to solve a specific headache (puzzle). 

SRS5: for The Graph Editor [93], an interactive application that allows the user 

to create, edit, layout, save, and print arbitrary graphs commonly used in 
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software engineering. It uses the GXL graph notation standard for storing 

graphs to files. 

SRS6: for “Software Engineering Tool” [94], an application for aiding the 

employees in the process of developing software. 

SRS7: for the BTS (Bus Tracking System) [95], a system intended to assisting 

passengers with route planning, inform passengers of delayed busses, 

improve inter-bus transfers by informing bus drivers of connecting busses 

that are running behind schedule, help transit management produce 

accurate schedules, and help transit management allocate resources more 

efficiently. 

SRS8: for FloristExchange [96], an e-commerce project that deals with selling 

flowers online. The resulting website contains a catalog, a shopping cart, 

and other features that enable the webmaster to effectively manage. 

SRS9: for PICASSO [97], a major component of the Requirements Assistant 

System that provides an environment in which a group of developers can 

collaborate on the production of a set of software requirements. 

 Due to the time limitation, the student only worked on two pre-selected segments 

(about 10 pages in total) for each SRS, although the entire SRS was provided to him. 

Each SRS segment contained a complete section for a functional module, including 

“Input Section”, “Processing Section”, and “Output Section”. 
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7.2.2 Step 2: Implementation of the Independent Study Project 

 This step lasted 16 weeks/3.5 months (not including two holiday breaks): 4 weeks 

for the training sessions, 10 weeks for the SRS analysis sessions, and 2 weeks for the 

finalization session. Figure 7-1 depicts the entire timeline for this step. 

 

Figure 7-1: Timeline for Implementing the Independent Study Project  

 The focus of this step was to parse the selected SRSs segments and analyze how 

the A-CEG elements, including the causes, effects, logical relationships, and 

constraints, are found. The observation on the exploration process of the student in 

Case Study A and Case Study B (see Chapter 6) suggests that A-CEG elements are 

identified using the so-called “pattern-matching” approach [98]. One of the Natural 

Language Processing (NLP) techniques closest to our research purposes Pattern-

matching is the act of checking for the presence of the constituents of a given pattern. 

Pattern-matching is usually achieved on the basis of a set of pre-defined rules. A rule 

is a generalized statement that describes what is and what is not an A-CEG element in 

most or all cases. A “pattern” can be represented by a sequence of indicators which 

would point us to A-CEG element(s). Indicators are signals to us that aid us identify 

A-CEG elements in a SRS. These indicators are often verbs, nouns, prepositions that 

seem to be associated with the rules. This study preferred the rule-based pattern-
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matching approach for our research. Therefore, an attempt to establish a database of 

rules and indicators was also made in this step. 

 Before entering the SRS analysis sessions, the selected student was trained for 4 

weeks on IEEE Std. 830-1998 [53] and knowledge of A-CEG construction. Self-

study materials were assigned and help sessions were also provided to the student. 

Finally, the student was given a quiz in which he was asked to identify A-CEG 

elements in a sample SRS. After the quiz, we discussed with the student the list of 

known A-CEG elements and what A-CEG elements he had actually found. We 

accounted for correctly identified A-CEG elements (true positives), missed A-CEG 

elements (false negatives), and wrongly identified A-CEG elements (false positives), 

and analyzed the cause of the false negatives and false positives, and tried to identify 

improvements9. All of these steps were taken to ensure that the student had mastered 

the technique on A-CEG construction. 

 After we were convinced that the student was capable of performing the SRS 

analysis tasks, Empirical Study C was shifted to SRS analysis sessions. There were 

10 such sessions, each of which lasted one week. Each session consisted of an 

individual analysis of SRS performed by the student (about 6 hours), and a following 

face-to-face discussion (about 2 hours) joined by the student and the author.  

 The student first followed the workflow shown in Figure 7-2 to extract rules and 

indicators for identification of A-CEG elements. It should be pointed out that it is 

rather subjective for the student to determine whether the reasoning in identifying the 

                                                 
 
 
9 The student got 70% for Accuracy, 80% for Recall, and 84% for Precision in the quiz. See Chapter 8 
for definitions of Accuracy, Recall, and Precision. 
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A-CEG elements is covered by existing rule(s) or not, since his judgment was 

primarily based on common sense and could be limited to his domain knowledge, 

experience, and other subjective factors. To ensure the quality of experimental results, 

we asked the student to record down information pertinent to his judgment, such as 

the detected CEG element(s), and the reasoning that led to the identification of the 

CEG element(s), the extracted rules and indicators, and so on. He was also required to 

document any issues that he had encountered during the individual session. 

He then illustrated the documented results and worked through the collected rules 

and indicators with the author during the discussion session. In addition, problems, 

difficulties, and other issues regarding performance of the analysis tasks were 

exposed and discussed as well. As such, we could make sure that the project was 

always on the right track. 
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Figure 7-2: Workflow for Extracting Rules and Indicators for identification of A-

CEG Elements 

 After completing all of the ten SRS analysis sessions, the student was asked to 

finalize the results (including the database containing the extracted rules and 

indicators) and submit a report for the independent study project. The database is 

expressed in the form of a Microsoft Excel® worksheet containing related 

information, such as the SRS segment, the page number and sentence number on the 

SRS segment, the detected CEG element(s), the reasoning that led to the 
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identification of the CEG element(s), the rule(s) description, and/or the extracted 

indicator(s), and so on. 

 There were quite a few implied A-CEG elements (especially causes and logical 

relationships) in the parsed SRS segments. We were very cautious to make a rule 

when implication was used, since the process by which the implied A-CEG element 

was found was rather subjective.  

 Note that there were two analysis sessions assigned for SRS4 (including a regular 

and a re-work session) because of the degree of difficulty and peculiarity of the text. 

The difficulties with analyzing SRS4 the first time can be attributed to the fact that it 

contained a large number of implied causes and the student had no idea how to handle 

implied A-CEG elements. 

7.2.3 Step 3: Postmortem Analysis and Improvement 

 In this step, the author further improved the rules and indicators obtained in Step 

2 by making the rules more general and unified, and distilled a set of A-CEG 

Construction Rules. Moreover, the potential influencing factors for both A-CEG 

construction and the use of the A-CEG Construction Rules were identified and 

analyzed. Suggestions that would ease the task of A-CEG construction and help avoid 

some common problems in SRSs were also made during this step. 

 The process used to distill the A-CEG Construction Rules is shown in Figure 7-3. 

It should be noted that we did not define any strict criteria for classifying 

rules/indicator categories. In addition, there might be other better ways to extract and 

express the rules for A-CEG construction based on the database obtained in Step 2. 
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Figure 7-3: Process Used to Distill the A-CEG Construction Rules 

Begin

End

IndicatorIs this a rule or an indicator ?Rule 
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Does the rule belong to any known rule 
category ? 
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No
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have been hit (hit count) 
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No 
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7.3 Results and Discussion 

7.3.1 Database of Rules and Indicators for A-CEG Elements Identification  

 Through Step 2, we acquired a fairly large database containing rules and 

indicators for identification of A-CEG elements. Below are the figures (Figure 7-4 

and Figure 7-5) summarizing the numbers of rules and indicators we found for each 

SRS segment. 

 
Figure 7-4: Number of Rules Extracted from Selected SRSs  

 
Figure 7-5: Number of Indicators Extracted from Selected SRSs  

 Figure 7-4 shows that in the first 6 SRS documents we developed a good amount 

of rules; after that the identification of rules dropped off. Figure 7-5 shows that the 

indicators stay fairly constant across all SRS’. These statistics suggest that we would 
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just continue adding indicators to our list and that on the other hand few new rules 

would be found for the database if we had analyzed more SRS segments.  

7.3.2 A-CEG Construction Rules  

 The following rules were developed and distilled on the basis of a database of 

rules and indicators obtained from Step 2. These rules often depend on prepositions, 

punctuation, and sentence structure. Additionally, very often they need to be used in 

conjunction with indicators to determine A-CEG elements. These indicators were 

loosely grouped to maximize hit potential. 

Rule 7-1: Action-word Rule (for identifying events) 

 An action word in a requirements statement indicates at least an event (or events, 

if Rule 7-2 is applicable). 

 Action words are those that are used to specify control of physical input/output 

exchanges in a program, or implementation of application actions, such as reading a 

screen, submitting a query to a database, opening or closing a file. An action word is 

usually a verb which indicates some activities performed. Typical action words 

include: 

call calculate check close 

create delete display grant 

halt initiate notify open 

prevent print prohibit prompt 

protect provide quit read 

remove require reset retrieve 

return save send set 
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share store transfer transmit 

use validate verify write 

Example: “The function displays the message on the screen” is identified as an event 

because it contains “displays” that is regarded as an action word. 

Rule 7-2: Atomic-event Rule 

 An event must be a non-divisible activity.  In other words, a complex activity, 

typically signified by an “and” or an “or”, must be decomposed into several atomic 

events. All events should be mutually exclusive in the sense that no one event is part 

of another. 

Example:  “If the user presses down the right mouse key and then press left mouse 

key, …” contains two events “the user presses down the right mouse key” and “then 

(the user) press left mouse key”. 

Rule 7-3: Lowest-level-event Rule 

 In a cause-effect graph, an event must be the lowest level of activity. If an event is 

reiterated by other more detailed events, the following steps are applied: 

1. This event should not be identified as a complex (non-atomic) event. 

2. This event should be replaced by the lowest-level events. 

3. All lowest-level events should be identified as events. 

4. The constraint EXCLUSIVE should be applied to these lowest-level (events). 

Example:  “The user provides the input from the keyboard. There are four options 

provided by the user: option 1, option 2, option 3, and option 4.” 
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 In this case, “the user provides the input from the keyboard” should not be 

identified as an event. Instead, “the user provides option 1”, “the user provides 

option 2”, “the user provides option 3”, and “the user provides option 4” are 

identified as four distinct events. Besides, the EXCLUSIVE constraint is applied 

among these four events. 

Rule 7-4: No-duplicate-event Rule 

 In a cause-effect graph, every event is unique. In other words, duplicate events 

should be removed from a cause-effect graph. 

Rule 7-5: Logical-relationship-pattern Rule 

 The logical relationships among events are identified by matching the sentence to 

one of the following four basic patterns: 

1. IDENTITY pattern: IF event a THEN event b. 

2. NOT pattern: IF NOT event a THEN event b. 

3. AND pattern: IF event a1 AND event a2 THEN event b. 

4. OR pattern: IF event a1 OR event a2 THEN event b. 

 The functional requirements specifications can be casted into sentences of one of 

the above forms. Therefore, the problem of identifying logical relationships should be 

one of finding the keywords: IF, THEN, AND, OR, and NOT. Unfortunately we have 

to deal with the real world of specifications and specification writers, where clarity 

ranges from elusive, through esoteric, into incomprehensible. It takes intelligence to 

disentangle intentions that are hidden by ambiguities inherent in English and by poor 

English usage. 
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 Here is a sample of phrases that have been or can be used (and abused) for the 

indicators we need. Be aware that this is not a list of recommended synonyms for 

specification writers. Several entries appear in more than one sub-list indicating a 

source of danger. Besides, there are other dangerous phrases, such as “respectively,” 

“similarly,” “conversely,” “and so forth,” and “etc.” 

IF 

based on  based upon because but 

if if and when only if only when 

provided that when when or if whenever 

THEN 

consequently implies that infers that means that 

shall should then will 

would    

AND  

all and as well as both 

but in conjunction 
with 

coincidental with consisting of 

comprising either or furthermore 

in addition to including jointly moreover 

mutually plus together with total 

with    

OR 

and and if then and/or 
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alternatively any of anyone of as well as 

but case contrast depending upon 

each either either . . . or except if 

conversely failing that furthermore in addition to 

nor not only . . . but although other than 

otherwise or or else on the other hand 

plus    

NOT 

but but not by contrast besides 

contrary conversely contrast except if 

excluding excepting fail failing 

less neither never no 

not other than   

Rule 7-6: Single-If Rule 

 For a group of expressions in form of “If Expression 1, then Expression 2; 

otherwise Expression 3”, the following steps are applied: 

1. Expression 1 consists of at least an event. 

2. Expression 2 consists of at least an event. 

3. Expression 3 consists of at least an event. 

4. Omission of Expression 2 or Expression 3 is regarded as a fault. 

Rule 7-7: Nesting-If Rule  
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 For a group of expressions in form of “If Expression 1-1, then Expression 2-1; If 

Expression 1-2, (then) Expression 2-2; If Expression 1-3, (then) Expression 2-3;  …”, 

the following steps are applied: 

1. Expression 1-1, Expression 1-2, Expression 1-3, …, consists of at least an 

event, respectively. 

2. Expression 2-1, Expression 2-2, Expression 2-3, …, consists of at least an 

event, respectively. 

3. Constraint EXCLUSIVE should be applied to event(s) in Expression 1-1 and 

event(s) in Expression 1-2, Expression 1-3, etc. 

4. Omission of any of Expression 2-1, 2-2, 2-3, etc., is regarded as an SRS fault. 

Example: “If the choice is ‘1’, the function Range will be initiated. If the choice is 

‘2’, the function Speed will be initiated. If the choice is ‘3’, the function Trajectory 

will be initiated. If the choice is ‘4’, the function quits.  For all other options the 

function ‘Error’ will be initiated.” 

 In this case, there are ten events, including “the choice is ‘1’”, “the choice is 

‘2’”, “the choice is ‘3’”, “the choice is ‘4’”, “all other options”, “the function 

Range will be initiated”, “the function Speed will be initiated”, “the function 

Trajectory will be initiated”, “the function quits”, and “the function ‘Error’ will be 

initiated”. Besides, the constraint EXCLUSIVE is applied to the first five events. 

Rule 7-8: Sequentially-triggered-event Rule 

 For sequential events, e1, e2, …, en,  that are triggered by an event (either atomic 

or non-atomic), e, the following steps are applied: 
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1. The IDENTITY logical relationships should be applied to the triggering event 

and the triggered events in form of 1 2: ,  : ,  ,  : .ne e e e e e= = =  

2. A series of REQUIRE constraints should be applied to the triggered events in 

form of REQUIRE (en,  en-1,), REQUIRE (en-1,  en-2,), …, REQUIRE (e2,  e1,). 

Example: If event A leads to four events, event 1, event 2, event 3, and event 4 and 

these four events should occur one after another, the following logical relationships 

and constraints should be applied to them: 

 

 

 

 

 

 Alternatively, the A-CEG snippet for this requirements segment can be 

graphically expressed as follows: 

 

Rule 7-9: External-Actor Rule (for identifying causes) 

event 1:= event A  
event 2:= event A  
event 3:= event A  
event 4:= event A  
 
REQUIRE (event 4, event 3), 
REQUIRE (event 3, event 2)  
REQUIRE (event 2, event 1) 
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 An event performed by external entities is a cause. An external entity (called 

external actor) is a human or external system/function/application that communicates 

with the system, function, or application under discussion. Typical indicators for 

external actor(s) are: 

alarm card card-reader client 

CPU database file keyboard 

LED message microprocessor monitor 

RAM record screen supervisor 

timer user   

Example:  “If the input value is greater than 0 and in the format F10.4” contains two 

events “the input value is greater than 0” and “the input value is in the format 

F10.4”. These two events are identified as causes because their actor is the user who 

provides the software with the input values.  

Rule 7-10: Is-Are Rule (for identifying causes) 

 Even without any action words, the status description of external entities signifies 

a cause(s). 

Example:  “If the input value is greater than 0 and in the format F10.4” contains two 

causes “the input value is greater than 0” and “the input value is in the format 

F10.4”. 

Rule 7-11: Internal-Actor Rule (for identifying effects) 

 An event performed by the function under discussion (called internal actor) is an 

effect. Typical indicators for internal actor(s) are: 
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this algorithm this application this function this module 

this system    

Example:  “This function should initiate Function Interface after its execution” is 

identified as an effect. 

Rule 7-12: Default Actor Rule (for identifying causes) 

 If not specified, an event by default is performed by the function under discussion 

and thus is identified as an effect. 

Example: “the projection angle is validated”. 

 In this case, there is an action word “validate”. According to Rule 7-1, “the 

projection angle is validated” is identified as an event. Besides, there is no explicit 

actor mentioned in the statement. According to Rule 7-12, this event is identified as 

an effect. 

 The suggested workflow for using the A-CEG Construction Rules is shown in 

Figure 7-6. 
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Check the existence of duplicate events and remove 
them (refer to Rule 7-4)

Begin

End

Select a sentence

No

Yes
Is there  any indicator, such as “IF”, “ELSE”, 

“THEN”, ”AND”, ”OR”, and ”NOT”, in the sentence? 
(refer to Rule 7-5, 7-6, 7-7, and 7-8)

Is there any action word in the sentence?
(refer to Rule 7-1)

No

Yes

Have all sentences been  analyzed?

No

Document the potential event(s)

Check the existence of high-level events and 
decompose them into a lowest level

(refer to Rule 7-3 )

Check the existence of non-atomic events and 
decompose them into atomic events

( refer to Rule 7-2)

Document the potential events 
and/or constraints.

For each of the identified  events, use Rule 7-9, 7-10, 
and 7-11 to determine if it is a cause or an effect.

Document the results

 

Figure 7-6: Suggested Workflow for Using the A-CEG Construction Rules 

 In addition to the A-CEG Construction Rules presented previously, the following 

guidelines, which were also summarized in our previous research [40] (to be printed), 

are helpful for CEG construction:  
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 To identify causes, read the specification carefully, underlining words or 

phrases that describe causes. Any distinct input condition or equivalence 

class 10  of input conditions should be considered causes. Only functional 

events in the specification are considered. Each cause is assigned to a unique 

number. None of the descriptive specifications are considered in identifying 

causes. 

 Effects can be identified by reading the specification carefully and underlining 

words or phrases that describe effects. Only functional events in the 

specification are considered. To avoid redundancy, all the descriptive 

specifications are not considered in identifying effects. Each effect is assigned 

to a unique identifier. 

 The logical relationship between causes and effects can be identified by 

analyzing the semantic content of the specification linking the causes with the 

effects. Those keywords like "not", "or", "and" etc. usually act as indicators of 

logical relationships. Other words having the logical meaning, such as "both", 

"neither" also need to be paid much attention to. The logical relationships are 

mainly found in functional specifications. However they could be found in 

some descriptive specifications. In order to identify all logical relationships 

between causes and effects, both functional and descriptive specifications 

need to be analyzed. 

                                                 
 
 
10  An equivalence class is a portion of a component's input or output domains for which the 
component's behavior is assumed to be the same from the component's specification [44]. 
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 The external constraints among causes can be identified by checking for the 

occurrence of related causes specified in SRS. The external constraints among 

effects can be identified by checking for the occurrence of related effects 

specified in SRS. As with the logical relationships, the external constraints 

could be specified in both functional specifications and descriptive 

specifications. In order to identify all external constraints, both functional and 

descriptive specifications need to be analyzed. 

 The database and the A-CEG Construction Rules set had showed promise of 

pointing and extracting the correct A-CEG elements when we tentatively applied 

them to several SRSs. However, there are multiple issues that need to be addressed: 

 The database is a small start and only scratched the surface. As expected, the 

database is extremely limited in the way of having enough indicators to be 

adequate when covering SRSs that have not been analyzed yet.  

 We need to establish a priority system or algorithm to determine which rules 

are used first and smartly combine the rules in order to get the most accurate 

result.  

 For indicators in the database to be more effective, it would seem desirable to 

develop a domain-specific list of indicators and their synonyms to strengthen 

the accuracy of identifying A-CEG elements using our approach. This is 

especially true for action words used to identify events. For example, the 

following list of action words is commonly found in most privacy-policies-

related functional requirements in the internet security domain: 
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advise aggregate allow collect 

comply customize disallow discipline 

disclose ensure improve keep 

limit notify opt-in opt-out 

prevent prohibit protect provide 

recognize remove report require 

retrieve sell send share 

store track transmit transfer 

use    

7.3.3 Potential Influencing Factors of A-CEG Construction 

 There were several major problems that were impeding efficient identification of 

A-CEG elements in this experiment: 

1. Redundancy: This issue mostly stems from the overviews and general 

description section, in which author(s) of an SRS reiterate the 

algorithms/procedure for some functional requirements.  While overviews 

and general description in an SRS are important for the understanding of 

the reader, they often act as “trouble-makers” (leading to problems such as 

redundancy and inconsistence) rather than “trouble-shooters”. 

Distinguishing between those and the real functional requirements can be 

difficult and may be a major obstacle precluding the A-CEG Construction 

Rules from becoming efficient. This could also be a potential obstacle for 

automatic extraction of A-CEG elements. 

2. Ambiguities: It might sound surprising that CEGA itself is a victim of 

SRS ambiguities, even when CEGA has a proven powerful ability in 
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detecting SRS ambiguities. However, it is true that SRS ambiguities 

prevent the A-CEG Construction Rules from becoming efficient. They are 

also obstacles for automatic extraction of A-CEG elements. 

3. Incompleteness/implication. This issue usually arises when functional 

requirements are implicitly stated. Often the authors of SRSs do not feel 

the need to explicitly express causes, while the effects are usually stated 

well. For instance, SRS4 that we had trouble with had a lot of implied 

causes. In this situation we often had to either imply a cause, or imply a 

relationship to a previously found cause. In addition, there were quite a 

few implied logical relationships in the parsed SRS segments. Besides, it 

was extremely hard to find an explicitly expressed logical relationship 

when the procedure of an algorithm/function was described in a 

chronological manner. This was especially true when the descriptions 

were based on dataflow, where one had to imply the relationship between 

a found cause(s) and effect(s). The logical relationship was just shown by 

sequential descriptions, which did not give us a true explicitly stated 

relationship. 

4. Understandability of identified events. This issue is usually related to 

inappropriate words and/or phrases used for the statements of functional 

requirements. While we may be able to extract some of those that are not 

easily understood, we do so with risk of identifying incorrect A-CEG 

elements. Even when the right A-CEG elements are extracted, it would not 

have a lot of meaning to the reader of the graph, if he/she did not read the 
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entire SRS. This will significantly reduce the benefits from the CEGA 

approach. 

 In addition, our observations in this experiment suggest that several variables 

might have important influence on performing A-CEG construction as well as the use 

of the A-CEG construction Rules: 

 The SRS’ writing style. The presentation style of the specifications is a 

critical factor in the ease of A-CEG construction. A specification written 

as a logical design document is not suitable for A-CEG construction. The 

measure of the SRS’ writing style is defined in Chapter 8. 

 The SRS’ application type, which is defined in Chapter 8. 

 Complexity of the system under study. 

 The size of SRS (in terms of the number of sentences). 

 The standard that the SRS follows to organize the content. 

 Person-related factors, including: 

a. Capability of the person performing the task. 

b. Domain knowledge on the system under study. 

c. Prior industrial experience or other job related experiences in 

writing requirements. 

d. Educational background, such as majors of university degrees, and 

level of education (BS, MS, Ph.D.). 
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 Especially, it is important to understand the variations among the individuals that 

make them more or less effective in A-CEG construction and identifying the 

characteristics that make an individual particularly effective. 

7.3.4 Suggestions for Writing an SRS  

 Natural language's extensive vocabulary and commonly understood syntax 

facilitate communication and make it an inviting choice to express requirements. The 

informality of the language also makes it relatively easy to specify high-level general 

requirements when precise details are not yet known. However, because of 

differences among formal, colloquial, and popular definitions of words and phrases 

and the effort required to produce detailed information, these same attributes also 

contribute to documentation problems. The use of natural language to prescribe 

complex, dynamic systems has at least three common and severe problems: ambiguity, 

inaccuracy, and inconsistency. These problems not only add difficulties in identifying 

A-CEG elements, but also might lead to increased risks of unreliable software 

products. Fortunately, these defects can be prevented through a more disciplined and 

consistent approach to document design, formulation of specification statements, and 

selection of key words and phrases. 

 Poorly structured specification statements result in confusing requirements that 

are prone to incorrect interpretations. Start rewriting the specification by getting rid of 

ambiguous terms, words, and phrases and expressing it all as a long list of “IF . . . 

THEN. . .” statements. The main point of translating the specification into 

unambiguous English that uses “IF”, “THEN”, “AND”, “OR”, and “NOT” is that this 

form is less likely to be misinterpreted. 
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 The use of imprecise terms usually indicates that the specifications author was 

either lazy, incompetent, or did not have sufficient time to determine the exact 

requirements. Some writers seem to be afraid that their audience will be bored or will 

think them lazy if they use simple words and repeat themselves. When writing 

documents or software, being too fancy complicates things and make the resulting 

products hard to understand. 

 Specifications could be further strengthened through a better selection of words 

and phrases. The precise meaning of many words and phrases depends entirely on the 

context in which they are used. Attention must be given to the role of each word and 

phrase when formulating specification statements. Words and phrases that are 

carelessly selected or carelessly placed produce statements that are ambiguous and 

imprecise. The simplest word that is appropriate to its intended purpose in the 

specification is the one to use. In particular, we have the following suggestions for 

writing an SRS: 

 Use the correct imperative and use it consistently. For instance, the word "shall" 

prescribes, "will" describes, "must" and "must not" constrain, and "should" 

suggests. 

 Avoid weak phrases such as "as a minimum," "be able to," "capable of," and "not 

limited to." These phrases are subject to different interpretations and also set the 

stage for future changes to the requirements. 

 Do not use words or terms that give the reader an option regarding the extent to 

which the requirement is to be satisfied, such as "may," "if required," "as 

appropriate," or "if practical." 
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 Avoid using immaterial words or phrases, such as “independent of”, “regardless”, 

“irrespective”, “irrelevant”, “regardless”, “but not if”, and “whether or not”. 

 Do not use generalities when numbers are required, for example, "large," "rapid," 

"many," "timely," "most," and "close." Avoid imprecise words that have relative 

meanings such as "easy," "normal," "adequate," or "effective."  

 If a specification statement contains three or more punctuation marks, it probably 

needs to be restructured. 

7.4 Summary 

 In this chapter, we focus on exploring the scalability of A-CEG construction. We 

present an empirical experiment designed to understand how an undergraduate 

developed A-CEG elements and his exploration process. We briefly describe our 

goals and the experiment procedure, and give clues about data collection and analysis. 

We obtain a database of rules and indicators for identification of A-CEG elements 

and finally develop the A-CEG Construction Rules set on the basis of the database. 

We conclude with lessons learnt from this experiment and discuss the potential 

influencing factors on A-CEG construction. Caveats to avoid some common 

problems found in the practice of specifying SRSs were also discussed. Putting these 

suggestions into practice not only eases the task of identifying A-CEG elements, but 

also avoids some common problematic requirements and finally leads to reduced 

risks of unreliable software products. 

 Even when the A-CEG Construction Rules set is still open for criticism and 

improvement, we believe that using the indicators together with the A-CEG 

Construction Rules will maximize the possibility of recognizing a good amount of A-
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CEG elements. We also feel sure that A-CEG construction using our approach is 

somewhat automatic. 
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Chapter 8:  Validation of the Usability of the A-CEG 

Construction Rules 

 A methodology must be usable for people other than its developer and must be 

able to be incorporated into practice for its users. Usability is usually employed for 

measuring the capability of a methodology to be understood, learned, used, and 

attractive to the user, or the effort needed for use, when used under specified 

conditions. We wanted to explore the usability of the A-CEG Construction Rules. 

Moreover, we were very interested in investigating whether the rules set succeeds in 

its goals of providing the same or improved benefits for A-CEG construction, with 

what cost, and under what circumstances it makes the most sense. A controlled 

experiment seemed the ideal way to provide empirical evidence for our research 

interest.  

 During the Spring 2007 Semester, we conducted a small-scale controlled 

experiment (called Experiment D) at University of Maryland with the intention 

1) To compare and hence evaluate how well the A-CEG Construction Rules set 

performs in comparison to other A-CEG construction methods. Especially, we 

wanted to compare the A-CEG Construction Rules set to the widely used 

general A-CEG construction guidelines. 

2) To formulate hypotheses about the relationships between other factors (such 

as SRS’ writing style and application type) and the effectiveness/efficiency of 

an A-CEG constructor in identifying A-CEG elements (including the causes, 

effects, logical relationships, and constraints). 
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 This chapter provides the pertinent information about the experiment. It describes the 

definitions, research questions, hypotheses, the variables measured, the experimental 

design (including the subjects, experiment materials, and procedures), the data collection 

process, threats to validity, and finally a detailed discussion of the experimental results.  

8.1 Definitions  

 The following definitions are used throughout the remainder of this chapter. 

Definition 8-1: Usability 

 Usability is a term used to denote the ease with which people can employ a 

technique in order to achieve a particular goal. According to Shneiderman [99], 

usability mainly observes learnability, effectiveness, efficiency, and user satisfaction. 

Definition 8-2: Learnability 

 Learnability is a measure of how rapidly a new user can start using the technique 

and also how an infrequent user can re-learn the technique after periods of not using 

it. Learning time is the typical measure for learnability. 

 In this study, we measured the learning time by adding the time spent in training 

sessions, time spent during the help sessions and the time spent on study materials. 

The time spent on study materials was recorded from the log sheets of the students. 

Definition 8-3: Effectiveness 

 Effectiveness is the measure of how easily a user can achieve basic tasks 

according to specific goals. Effectiveness is a measure of strategic performance: the 

ability to create an intended outcome. 
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 In this study, the effectiveness of a subject in identifying A-CEG elements is 

evaluated by three indicators: accuracy, recall, and precision. All of these three 

indicators are calculated based on the confusion matrix, a typical result counting 

technique. A confusion matrix contains information about actual and predicted 

classifications done by a subject, as shown in Figure 8-1. 

 
Predicted 

Positive (“yes”) Negative (“no”) 

Actual 
Positive (“yes”) 

True Positive 
(TP)

False Negative 
(FN) 

Negative (“no”) 
False Positive 

(FP)
True Negative 

(TN) 
 

Figure 8-1: Confusion Matrix 

 True Positives (TPs), True Negatives (TNs), False Positives (FPs), and False 

Negatives (FNs), are the four different possible outcomes of a single prediction for a 

two-class case with classes “positive” (“yes”) and “negative” (“no”). A false positive, 

FP, is when the outcome is incorrectly classified as “positive” (or “yes”) when it is in 

fact “negative” (or “no”). A false negative, FN, is when the outcome is incorrectly 

classified as negative when it is in fact positive. True positives and true negatives are 

obviously correct classifications. 

Definition 8-4: Accuracy 

 The Accuracy is the proportion of the total number of predictions that were 

correct. It is determined using the below equation: 

 

Accuracy
TPs TNs

TPs FPs TNs FNs




              (Eq. 8-1) 
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 In this study, the accuracy is the primary measure of effectiveness. However, the 

accuracy determined using (Eq. 8-1) may not be an adequate effectiveness measure 

when the number of negative cases is much greater than the number of positive cases. 

Suppose there are 1000 cases, 995 of which are negative cases and 5 of which are 

positive cases. If the system classifies them all as negative, the accuracy would be 

99.5%, even though the classifier missed all positive cases. Accounting for this, the 

recall and precision are included as subsidiary measures of effectiveness. 

Definition 8-5: Recall 

 The Recall or true positive rate is the proportion of positive cases that were 

correctly identified, as calculated using the equation below: 

Recall
TPs

TPs FNs



  

            
(Eq. 8-2) 

Definition 8-6: Precision 

 Precision is the proportion of the predicted positive cases that were correct, as 

calculated using the equation below: 

Precision
TPs

TPs FPs



             (Eq. 8-3) 

Definition 8-7: Efficiency 

 Efficiency is a measure of how fast a user can achieve goals. It is an operationally-

oriented measure of productivity. The efficiency is determined using the below 

equation: 

Efficiency
TPs TNs

Effort


               (Eq. 8-4) 
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 The time to find the A-CEG elements was considered as the measure of effort. 

This value was directly available from the log-sheets collected in the experiment. 

Definition 8-8: User Satisfaction 

 User satisfaction, also called User Appeal or Subjective Satisfaction, is the degree 

to which users like the method. This is a more “subjective” factor which refers to 

attitude, perceptions, and feelings that a user experiences when interacting with a 

technique. 

 In this study, we divide the user satisfaction into five categories, with Category 1 

being the most satisfactory and Category 5 the least satisfactory. 

Definition 8-9: SRS Writing Style 

 Stylometry quantifies aspects of writing style. This study adopts Labbe’s Relative 

Inter-textual Distance [100] as the SRS stylometric characterization since its accuracy 

in text classification was confirmed by applications [101]. 

 The Relative inter-textual distance measures the degree of proximity between 

texts. The relative inter-textual distance between text A and B is: 

( )
( ),

,

iA iA
i A B

A B
iA iA

i A i B

F E

F Ed Î

Î Î

-

=
+

å

å å              
(Eq. 8-5) 

where 

( ),A Bd  = the relative inter-textual distance between text A and B. 

iAF  = the absolute frequency of type i in text A. 

iAE  = Expected frequency of type i in text A occurring in text B, 
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    A
iA iB

B

NE F N= ´ .
 

iBF  = the absolute frequency of type i in text B. 

AN  = size of text A, in number of tokens. 

BN  = size of text B, in number of tokens ( )B A N N> . 

 The values of relative distance vary evenly between 0 and 1.  

 To determine an appropriate threshold relative inter-textual distance to classify 

SRS’ writing style into two levels, we conducted a preliminary study by taking the 

following steps: 

1) Collect a set of publicly available SRSs that follow IEEE Std. 830-1998 [53]. 

Forty eight SRSs were selected in this study, including the eight SRSs that 

were used in our previous research. These eight SRSs were written by a Ph.D. 

graduate student using a consistent writing style, i.e. consistently using “IF”, 

“THEN”, “AND”, “OR”, and “NOT”. These eight SRSs were judged to be 

easy to understand. 

2) Calculate the relative inter-textual distance among the eight SRSs. LOCAT 

SRS (one of the eight SRSs) is used as the benchmark SRS (Text A in (Eq.8-

5)) because of its size (in terms of the number of tokens). LOCAT SRS is the 

smallest among these eight SRSs, as required by (Eq.8-5). The average value 

of the relative inter-textual distance among the eight SRSs is 0.32. 

3) Calculate the relative inter-textual distance, ( ),LOCAT Bd , between the remaining 

40 SRSs and LOCAT’s SRS.  

4) Judge whether an SRS is easy to understand or not. 
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5) We found that an SRS is easy to understand, whenever ( )LOCAT,Bd
 
is less than 

0.40. An SRS differs from the 8 SRSs in terms of writing style and is difficult 

to understand, whenever ( )LOCAT,Bd  is greater than 0.40. Therefore, we decided 

to use 0.40 as the threshold relative inter-textual distance to classify SRS’ 

writing style into two levels: Style I ( ( )LOCAT,B 0.40d £ ) and Style II (

( )LOCAT,B 0.40d > ).  

 The results of the preliminary study for determining the threshold relative inter-

textual distance are summarized in Table 8-1. 

Table 8-1: Results of the Preliminary Study for Determining the Threshold Relative 

Inter-textual Distance 

SRS 
index ( )LOCAT,Bd  Easy to Understand? Writing Style 

SRS-1 0.372 Yes Style I 

SRS-2 0.351 Yes Style I 

SRS-3 0.661 No Style II 

SRS-4 0.780 No Style II 

SRS-5 0.557 No Style II 

SRS-6 0.721 No Style II 

SRS-7 0.368 Yes Style I 

SRS-8 0.337 Yes Style I 

SRS-9 0.598 No Style II 

SRS-10 0.278 Yes Style I 

SRS-11 0.662 No Style II 

SRS-12 0.713 No Style II 

SRS-13 0.311 Yes Style I 

SRS-14 0.377 Yes Style I 



 

163 
 

SRS 
index ( )LOCAT,Bd  Easy to Understand? Writing Style 

SRS-15 0.307 Yes Style I 

SRS-16 0.251 Yes Style I 

SRS-17 0.741 No Style II 

SRS-18 0.791 No Style II 

SRS-19 0.634 No Style II 

SRS-20 0.655 No Style II 

SRS-21 0.345 Yes Style I 

SRS-22 0.487 No Style II 

SRS-23 0.596 No Style II 

SRS-24 0.698 No Style II 

SRS-25 0.731 No Style II 

SRS-26 0.371 Yes Style I 

SRS-27 0.512 No Style II 

SRS-28 0.371 Yes Style I 

SRS-29 0.337 Yes Style I 

SRS-30 0.301 Yes Style I 

SRS-31 0.476 No Style II 

SRS-32 0.381 Yes Style I 

SRS-33 0.551 No Style II 

SRS-34 0.671 No Style II 

SRS-35 0.708 No Style II 

SRS-36 0.805 No Style II 

SRS-37 0.357 Yes Style I 

SRS-38 0.351 Yes Style I 

SRS-39 0.366 Yes Style I 

SRS-40 0.578 No Style II 

 It should be noted that our process in which the threshold relative inter-textual 

distance is determined is rather subjective. Further research is required for validating 
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the use of Labbe’s Relative Inter-textual Distance as the SRS stylometric 

characterization. 

Definition 8-10: Application Type 

 The software projects were classified by Jones [102] as six application types. The 

definitions are given below: 

Application 
Type 

Explanation 

Commercial 
software 

Applications that are produced for large-scale marketing to hundreds 
or even millions of clients. Examples of commercial software are 
Microsoft Word, Excel, etc. 

End-user 
software 

Applications written by individuals who are neither professional 
programmers nor software engineers. 

Management 
information 

system (MIS) 

Applications that enterprises produce in support of their business and 
administrative operations, such as payroll systems, accounting 
systems, front- and back-office banking systems, insurance claims 
handling systems, airline reservation systems, and the like. 

Military software 
Software produced for a uniformed military service and constrained to 
follow the standards laid down for this purpose. 

Outsourced and 
contract software 

 

Software produced under a blanket contract by which a software 
development organization agrees to produce all, or specific categories, 
of software for the client organization. Contract software is a specific 
software project that is built under contract for a client organization. 

System software 
(SYSTEM) 

Software that controls physical devices. They include the operating 
systems that control computer hardware, network switching systems, 
automobile fuel injection systems, and other control systems. 

 

8.2 Research Questions and Hypotheses 

 This study had a primary major research question and a secondary research question. 

The primary and secondary research questions were: 

1. Are persons who use the CEC Construction Rules more effective or more efficient 

in A- CEG construction than persons using the general A-CEG construction 

guidelines? (Primary research question) 
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2. Do other factors (writing styles of SRS and Type of applications) impact the 

effectiveness of an inspector? (Secondary research question) 

 To our knowledge, these questions have not been previously investigated, and then 

there are no past findings to be used as hypotheses to be confirmed or rejected. 

 To investigate these two questions, a more detailed set of six hypotheses were 

defined. For each hypothesis, the null hypothesis (HX0) is presented, followed by the 

alternative hypothesis (HXa). 

H10  There is no difference in effectiveness between the subjects applying the 

A-CEG Construction Rules and the subjects using the general A-CEG 

construction guideline. 

H1a  The subjects applying the A-CEG Construction Rules significantly 

outperform the subjects using the general A-CEG construction guidelines 

in terms of effectiveness. 

  

H20  There is no difference in efficiency between the subjects applying the A-

CEG Construction Rules and the subjects using the general A-CEG 

construction guideline. 

H2a  The subjects applying the A-CEG Construction Rules significantly 

outperform the subjects using the general A-CEG construction guidelines 

in terms of efficiency. 

  

H30  SRS’ writing style does not affect subjects’ effectiveness in identifying A-

CEG elements. 

H3a  SRS’ writing style significantly affects subjects’ effectiveness in 

identifying A-CEG elements. More specifically, Style I is better than Style 

II in terms of effectiveness. 

  

H40  SRS’ writing style does not affect subjects’ efficiency in identifying A-

CEG elements. 
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H4a  SRS’ writing style significantly affects subjects’ efficiency in identifying 

A-CEG elements. More specifically, Style I is better than Style II in terms 

of efficiency. 

  

H50 The application type does not affect subjects’ effectiveness in identifying 

A-CEG elements. 

H5a The application type significantly affects subjects’ effectiveness in 

identifying A-CEG elements. More specifically, SRSs of type SYSTEM 

can be handled more effectively than SRSs of type MIS. 

  

H60 The application type does not affect subjects’ efficiency in identifying A-

CEG elements. 

H6a The application type significantly affects subjects’ efficiency in 

identifying A-CEG elements. More specifically, SRSs of type SYSTEM 

can be handled more efficiently than SRSs of type MIS. 

8.3 Variables 

 Three types of variables were defined for the experiment, independent, controlled, 

and dependent variables.  Because we did not have enough subjects, we focused our 

usability test on effectiveness and efficiency, and restricted the target SRSs to be of 

either SYSTEM or MIS. Moreover, we adopted the Randomized Block Designs 

techniques [103] to eliminate the experimental error due to nuisance factors. For 

randomized block designs, there is one factor that is of primary interest and several 

other nuisance factors that may affect the measured result, but are not of primary 

interest. The primary factor for this experiment was the A-CEG construction method 

used. The nuisance factors were the SRS’ writing style and the SRS’ application type. 

8.3.1 Independent Variables  

 Experiment D manipulated three independent variables: 
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o the A-CEG construction method used. The experiment groups used either the 

general A-CEG construction guidelines (excerpted from [45 pp. 65-88], for 

Group I), or the A-CEG Construction Rules (for Group II). 

o the SRS’ writing style, with two values: Style I ( ( ), 0.40LOCAT Bd £ ) and Style 

II ( ( ), 0.40LOCAT Bd > ). 

o the SRS’ application type, with two values:  MIS and SYSTEM. 

8.3.2 Controlled Variables  

 The controlled variables were  

o Standard that an SRS complies with: one level (all preselected SRSs follow 

IEEE Std. 830-1998 [53]). 

o Size of SRSs (SRS’ size is measured in terms of number of sentences): one 

level (small) 

o Educational Background (field in which a subject’s advanced degrees were 

awarded): one level (all subjects’ educational background is non computer-

related). 

o Industrial experience: one level (all subjects have no industrial experience on 

software development) 

8.3.3 Dependent Variables:  

 Experiment D measured the following dependent variables: 

o Time to learn, measured in minutes ( 1T ) 

o Time spent on finding A-CEG elements, measured in minutes ( 2T ) 

o Number of true positives (TPs) 
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o Number of true negatives (TNs) 

o Number of false positives (FPs) 

o Number of false negatives (FNs) 

o Accuracy, measured as: Accuracy
TPs TNs

TPs FPs TNs FNs




  
 

o Recall, measured as:
 
Recall

TPs

TPs FNs



 

o Precision, measured as: Precision
TPs

TPs FPs



 

o Efficiency, measured as: 
2

Efficiency
TPs TNs

T


  

 Among these dependent variables, the first six were direct measures. The last four 

were indirect measures and were calculated using the direct measures. 

8.4 Subjects 

 The subjects were four PhD students of a graduate level course on Software 

Quality Analysis at the University of Maryland. The experiment was performed as a 

13-week term class project mandatory for the course, ensuring the necessary 

motivation. The experiment served the educational objective of teaching students a 

black-box test cases design technique, as required by the course curriculum. 

 The subjects neither were notified about the experiment nor knew what the 

experimental variables were to ensure that they would not be influenced by the 

knowledge of the experiment. Preventive steps were taken to ensure that the students 

had no unwanted communications during the course. 
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8.5 Experiment Materials 

 The experiment materials were: 

 IEEE standard IEEE Std. 830-1998 [53]  

 eighteen SRS segments adapted from the functional requirements sections of 

ten preselected SRSs 

 general experiment instructions 

 the general A-CEG construction guidelines used in industry (excerpted from 

[45 pp. 65-88], for Group I only) 

 the A-CEG Construction Rules (for Group II only) 

 CEG report forms and time log-sheets (shown in Appendix D) 

 A questionnaire to assess subjects’ background (shown in Appendix E) 

 A questionnaire to assess the ease of use of  the A-CEG construction Rules 

(shown in Appendix F) 

 All preselected SRSs were written in plain text English natural language and 

adhered to the IEEE specification standard IEEE Std. 830-1998 [53]. The SRSs were 

analyzed for defects prior to the experiment by an independent inspector (the author). 

This was necessary because the requirements were assumed to be correct for the 

purpose of the experiment. These SRSs were the requirements documents for the 

following systems: 

1. CHAIRMAN Conference Management System (CCMS) [104]: a web 

application that supports every aspect of the conference organization process. 

This includes paper submission, reviewer assignments, revised and camera-

ready paper submission, registration handling of the conference participants. 
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2. Invisible Meeting Scheduler (IMS) [105]: a software application to assist in 

the scheduling of meetings among individuals whose schedules are available 

in an online calendar.  

3. LOCAT [63]: a real-time simple projectile tracking system for the Army’s all 

weather Doppler radar system called TRAC. The software is part of a host 

software subsystem called COMP running on a Sparc 4 system at 0.08 MIPS. 

4.  PACS [88]: a personal access control system. 

5. Student Registry Query System (SRQS) [106]: an application designed for 

students to create and manage their accounts online. Registry DB is a database 

that maintains student SSN, student login ID, student password, course 

information, and registration information. 

6. Search PUBS (SSP) [107]: an application designed for generating queries in 

order to interact with the PUBS database. PUBS is a database consisting of 

information on authors listing fields of last name, first name, publications and 

the city, which they belong to. 

7. SXXX [40]: a part of a digital protection system used in nuclear power plants. 

8. Tellerfast [108]: a software package performing as a part of the Automated 

Teller Machine (ATM) system described in the system requirements 

specifications of the Bank of HESUS. This software product provides the 

control necessary for the ATM system to perform its activities. 

9. The Energy Management System (THEMAS) [109]: an energy management 

system that operates independent of any other system, or any components of 

the heating and cooling system to which it is attached. 



 

171 
 

10. Word Processor Unit (WPU) [110]: an application designed to perform word 

processing using functions such as adding text, deleting text, word and 

character counting based on the user input. 

 Each SRS segment used in Experiment D contained a complete set of sections for 

a functional module, including “Input Section”, “Processing Section”, and “Output 

Section”. Table 8-2 presents some basic information for the SRS segments used in the 

experiment. 

Table 8-2: Basic Information on SRS Segments Used in Experiment D 

Index of SRS 
Segment 

SRS 
Writing 

Style 
Application 

Type 
Experiment Phase in which 
the SRS segment was used 

S-Training1 LOCAT Style I SYSTEM Phase I  
(Preparation and Training) S-Training2 Tellerfast Style II MIS 

S1 
SRQS Style I MIS 

Phase II  
(Implementation) 

S2 

S3 
SSP Style I MIS 

S4 

S5 
PACS Style I SYSTEM 

S6 

S7 
WPU Style I SYSTEM 

S8 

S9 
CCMS Style II MIS 

S10 

S11 
IMS Style II MIS 

S12 

S13 
SXXX Style II SYSTEM 

S14 

S15 
THEMAS Style II SYSTEM 

S16 
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 In addition, the SRS segments used in Phase II (S1 to S16) were thoroughly 

examined and a list of causes, effects, constraints, and logical relationships was 

produced. This list was prepared by an individual (the author) who was very familiar 

with the applications and the CEGA techniques. The aggregation numbers for this list 

are shown in Table 8-3. 

Table 8-3: Data on SRS Segments Used in Experiment Phase II 

Index 
of SRS 

segment 

Size of SRS 
segment 

Number of Total 
number of 

A-CEG 
elements 

Number 
of pages 

Number 
of 

sentences 
Causes Effects Constraints

Logical 
relationships11 

S1 3 35 11 8 6 19 44 

S2 3 34 8 9 5 18 40 

S3 3 33 8 9 4 19 40 

S4 3 32 7 11 5 22 45 

S5 3 37 9 7 6 17 39 

S6 3 31 8 9 5 20 42 

S7 3 34 8 10 5 21 44 

S8 3 36 10 6 5 18 39 

S9 3 32 11 8 6 19 44 

S10 3 34 9 9 5 18 41 

S11 3 35 10 9 5 20 44 

S12 3 32 8 11 5 20 44 

S13 3 36 10 7 6 16 39 

S14 3 35 9 9 4 20 42 

S15 3 34 10 8 6 17 41 

S16 3 36 8 11 3 23 45 

 

                                                 
 
 

11 The number of logical relationships was counted in terms of the four basic logical relationships: 
“IDENTITY”, “AND”, “OR”, and “NOT”. 
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8.6 Procedure 

 The experiment consists of two phases: Training and Preparation (Phase I), and 

Implementation (Phase II).  

 During Phase I, all subjects were prepared with a set of training lectures on IEEE 

standard for SRS and A-CEG construction. Apart from the theory presentations, the 

sessions consisted of an in-class questionnaire and an in-class quiz, and practical 

demonstrations of the techniques. Care was taken to avoid any biases that were 

suspected to be present. 

 During Phase II, all subjects were given four sets of assignment packages to 

complete the experimental tasks. 

8.6.1 Training and Preparation (Phase I) 

 The first phase of the experiment lasted three weeks. 

 The subjects were first given a questionnaire with ten questions to appraise their 

knowledge on CEGA, requirements analysis, and industry experience. The 

questionnaire showed that students had same type of backgrounds. Therefore, it was 

not necessary to take effort to mitigate the effect of the background factor from the 

experiment.  

 We then gave a 1.5-hour lecture on the IEEE standard for SRS and taught A-CEG 

construction. A sample SRS (S-Training1 in Table 8-2) was presented and an 

assignment was given for finding A-CEG elements. The results were discussed in 

class and a list of known A-CEG elements was written out according to the schema of 

A-CEG elements report forms. We then introduced a new SRS (S-Training2 in Table 

8-2). As an in-class quiz, students were asked to individually read the SRS and record 
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A-CEG elements on the CEG report forms to be used in this experiment. Subjects 

took the quiz in a classroom with enough space to avoid plagiarism. After the quiz, 

we discussed with students the list of known A-CEG elements and what A-CEG 

elements that they had actually found. 

 The subjects were then ordered by expected performance and randomly assigned 

to the two groups (Group I and Group II) in such a manner that one out of any two 

subjects with similar expected performance would be assigned to each group. This 

step was taken to avoid bias. Since no better information was available, we used the 

scores from the quiz assignments for estimating the subjects’ expected performance. 

We do not claim that this arrangement provides perfect matches, but other studies 

found that this usually results in groups with reasonably balanced average subject 

ability. 

 Another two lectures were given to Group I and Group II, separately. Subjects in 

Group I were instructed how to use the general A-CEG construction guidelines while 

subjects in Group II were instructed how to use the A-CEG Construction Rules. Each 

lecture lasted 2-hour long. 

 Finally, all subjects were given a lecture on the whole process of Phase II 

experiment, explaining the goals and the specific process to be used in the experiment. 

In addition, the students were instructed to work independently and record every 

event. The students were also given log-sheets and were demonstrated how to use 

them. The experiment details were recorded on log-sheets. The students recorded the 

time taken, nature and the possible cause of any events in the log-sheets. There were 

extra credits for using log-sheets which provided them the necessary motivation. 
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While designing the log-sheet, it was ensured that it is very easy to fill in and that it is 

not ambiguous. This ensured that the extra burden on the subjects because of the log-

sheets was minimal. 

 Questions were encouraged during the class but no interactions were allowed 

among students outside the class. Students were strictly instructed to avoid outside-

class communications. We were always present to answer questions and preventing 

unwanted communication. All questions to the instructor, outside the class were 

through help sessions. Events in lecture and the help sessions were recorded for the 

learning time measure. 

8.6.2 Running the Experiment (Phase II) 

 After the last lecture, all students were assigned four assignment packages. This 

part of the experiment lasted 8 weeks/2 months. 

 Each assignment package contained: 

1. instructions for the assigned task 

2. an SRS segment 

3. either the general A-CEG construction guidelines (for Group I) or the A-CEG 

Construction Rules set  (for Group II) 

4. blank CEG report forms  

5. a log-sheet for A-CEG elements finding time 

 The instructions for the students were: 

1. The assignment is due in two weeks. 

2. No communication with other students in regard to the assignment is allowed. 

3. The textual requirements are assumed to be correct. 
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4. Read through all documents briefly before starting to work. 

5. The main task is to identify and record A-CEG elements (including causes, 

effects, logical relationships, and constraints) in the assigned SRS segment. 

6. Log all clock times about the activities. 

7. When finished, verify that the logged data seem to be correct and hand them 

in. 

 The four assignment packages were assigned one after another rather than being 

assigned all at once. The next package was assigned when the previous package was 

submitted. After each student turned in the assignments and log-sheets, the data was 

briefly examined for errors and missing information in the record in order to get as 

accurate data as possible. Table 8-4 shows the assignment information on the SRS 

segments. 
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Table 8-4: Assignments of SRS Segments 

SRS Segment 
Index 

SRS 
Writing 

Style 
Type of 

Application 
Student 

Assigned 
Group 

Assigned 

S1 
SRQS Style I MIS 

Student A Group I 

S2 Student B Group II 

S3 
SSP Style I MIS 

Student C Group I 

S4 Student D Group II 

S5 
PACS Style I SYSTEM 

Student A Group I 

S6 Student B Group II 

S7 
LOCAT Style I SYSTEM 

Student C Group I 

S8 Student D Group II 

S9 
CCMS Style II MIS 

Student A Group I 

S10 Student B Group II 

S11 
IMS Style II MIS 

Student C Group I 

S12 Student D Group II 

S13 
SXXX Style II SYSTEM 

Student A Group I 

S14 Student B Group II 

S15 
THEMAS Style II SYSTEM 

Student C Group I 

S16 Student D Group II 

 

 A postmortem questionnaire (see Appendix F) with nine questions was sent to the 

students at the end of the experiment to assess the subjective measures of usability, 

satisfaction and ease, and to help us understand the opinion of the participants toward 

the A-CEG technique. 

 The entire design for Experiment D is provided in Table 8-5. 
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Table 8-5: Entire Design of Experiment D 

Group  Activity 

I 
Q1 T1 Q2 M1 R 

T2-1 M2-1 
S Q3 M3 

II T2-2 M2-2 

Where 

Q1 : Delivering and collecting a questionnaire to distinguish subjects’ 

background of knowledge and industry experience. 

T1 : Training all subjects on IEEE standard IEEE Std. 830-1998 for SRS 

and A-CEG construction (1.5 hours) 

Q2 : Assigning a quiz to distinguish student’s expected performance of 

A-CEG construction (0.5 hours) 

M1 : Measuring the students’ expected performance. 

R : Randomization according to subjects’ expected performance 

T2-1 : Training Group I on using the general A-CEG construction 

guidelines (2 hours) 

T2-2 : Training Group II on using the A-CEG Construction Rules (2 hours) 

M2-1 : Measuring time that Group I students need to master the guidelines. 

M2-2 : Measuring time that Group II students need to master the A-CEG 

Construction Rules. 

S : SRS assignments (12 weeks) 

Q3 : Delivering and collecting a postmortem questionnaire asking for 

subjective judgments on the usability, satisfaction and ease of the A-

CEG construction method. (0.5 hours) 

M3 : Measuring subjects’ performance and analyzing results 
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8.7 Experiment Results and Discussion 

 Table 8-6 presents the experiment data used in statistical tests. 

Table 8-6: Experiment Data Used for Hypotheses Testing 

SRS 
Segment 

Index 

Independent Variable Dependent Variable 

A-CEG 
Construction 

Method 

Writing 
Style 

Type of 
Application

TP TN FP FN 2T , 

minutes

S1 Group I Style I MIS 37 0 0 7 84.5 

S2 Group II Style I MIS 34 0 2 6 75.5 

S3 Group I Style I MIS 33 0 1 7 83 

S4 Group II Style I MIS 40 0 1 5 76 

S5 Group I Style I SYSTEM 32 0 1 7 87 

S6 Group II Style I SYSTEM 38 0 2 4 77.5 

S7 Group I Style I SYSTEM 36 0 2 8 85 

S8 Group II Style I SYSTEM 33 0 1 6 81.5 

S9 Group I Style II MIS 33 0 3 11 84.5 

S10 Group II Style II MIS 34 0 2 7 85 

S11 Group I Style II MIS 32 0 2 12 87.5 

S12 Group II Style II MIS 36 0 3 8 91.5 

S13 Group I Style II SYSTEM 28 0 3 11 95 

S14 Group II Style II SYSTEM 35 0 2 7 89.5 

S15 Group I Style II SYSTEM 28 0 2 13 85 

S16 Group II Style II SYSTEM 32 0 3 13 90 

 

8.7.1 Statistical Analysis 

 In this section, we focus on descriptive analysis and statistical tests for proposed 

hypotheses. All hypotheses are analyzed taking the following steps: 

Step 1: Calculating the descriptive statistical data. These data are then displayed 

using a box plot for the comparison analysis of the commonalities and 
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differences between two populations. A box plot (also known as a box-and-

whisker diagram) is a convenient way of graphically depicting groups of 

numerical data through five-number summaries, including minimum, 25% 

quartile, median, 75% quartile, and maximum [111]. 

Step 2: Performing one-tailed F-test (two-sample for variances). The F-test is used 

to test for differences among sample variance [111]. This test can be a two-

tailed test or a one-tailed test. The two-tailed version tests against the 

alternative hypothesis that the standard deviations are not equal. The one-

tailed version only tests the standard deviation from the first population is 

either greater than or less than (but not both) the second population standard 

deviation. 

Step 3: Performing two-sample Student’s t-test. Student's t-test is one of the most 

commonly used techniques for testing a hypothesis on the basis of a 

difference between sample means for small samples, usually less than thirty 

[111]. It is applied when the population is assumed to be normally 

distributed but the sample sizes are small enough that the statistic on which 

inference is based is not normally distributed because it relies on an 

uncertain estimate of standard deviation rather than on a precisely known 

value [111]. 

Step 4: Performing Mann–Whitney U test (also called Wilcoxon rank-sum test, or 

Wilcoxon-Mann-Whitney test). The Mann-Whitney U test is a non-

parametric alternative to the two-sample Student's t-test when the population 
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cannot be assumed to be normally distributed [111]. In Experiment D, we 

use the Mann-Whitney U test as a subsidiary to the Student’s t-test. 

Step 5: Drawing a conclusion about the hypothesis test by either accepting the null 

hypothesis or rejecting the null in favor of the alternative hypothesis. The 

significance value of rejecting the null hypotheses is 0.05 for all tests. 

8.7.1.1. Impact of A-CEG Construction Method on Effectiveness (Hypothesis H1) 

 Table 8-7 presents the descriptive statistics for the impact of the A-CEG 

Construction method (independent variable) on the effectiveness (dependent variable). 

This independent variable was defined with two levels: either using the general A-

CEG construction guidelines (Group I) or using the A-CEG Construction Rules set 

(Group II). 

Table 8-7: Descriptive Statistics for the Impact of A-CEG Construction Method on 

Effectiveness 

A-CEG 
Construction 

Method  

Dependent 
Variable 

Mean 
Standard 
Deviation 

Min 
Lower 
Quart 

Median 
Upper 
Quart 

Max 

Group I 

Accuracy, 
% 

74.3 7.07 65.1 68.9 74.2 80.1 84.1 

Recall, 
% 

77.29 6.03 68.3 72.5 78.4 82.2 84.1 

Precision, 
% 

94.8 3.20 90 92.8 94.5 97.0 100.0 

Group II 

Accuracy, 
% 

80.1 5.80 68.8 78.5 80.3 83.5 87.0 

Recall, 
% 

83.5 5.84 71.1 82.6 84.0 86.0 90.5 

Precision, 
% 

94.9 1.89 92 94 94.5 95.5 98 

 

 The box plots in Figure 8-2 graphically show the impact of the A-CEG 

construction method on the effectiveness. 
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 (a) Accuracy                          (b) Recall                          (c) Precision 

Figure 8-2: Impact of A-CEG construction method on the Effectiveness 

 Table 8-8 presents the results obtained from the F-test, Student’s t-test, and Mann-

Whitney U test using SPSS Statistics® [112]. In this table, “N” represents observations, 

“df” short for “degree of freedom”, and “t-Stat” for “t-Statistic”. 

Table 8-8: Statistical Testing Results for Hypothesis H1 ( 0.05a = ) 

Independent 
Variable 

Dependent 
Variable 

N 
F-test Student’s t-test 

Mann-
Whitney 

U test 

df F 
P(F<=f)
1-tailed 

df 
t-

Stat 
P(T<=t) 
1-tailed12 

P-value 
1-tailed 

A-CEG 
Construction 

Method 

Accuracy 8 7 1.55 0.289 14 -1.77 0.049 0.0805 

Recall 8 7 1.07 0.468 14 -2.10 0.027 0.019 

Precision 8 7 3.50 0.060 14 -0.16 0.438 0.323 

 The results of F-tests ( ( ) 0.289P F f£ = , ( ) 0.468P F f£ = , and 

( ) 0.060P F f£ = ) indicate that there is no significant difference in variances 

between samples for the accuracy, recall, and precision measure, respectively.  

                                                 
 
 
12 The value of “P(T <= t) 1-tailed” indicates the False Negative Rate β, the probability of failing to 
reject a null hypothesis. 1 െ  .is the power of a test ߚ
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 The results of both Student’s t-test ( ( ) 0.438P T t£ = ) and Mann-Whitney U test 

( 0.323P = ) show that there is no significant effect of the A-CEG construction 

method on the precision at 0.05a = . However, a main effect of the A-CEG 

construction method on accuracy and recall was observed ( ( ) 0.049P T t£ = ,

0.0805P = for accuracy, and ( ) 0.027P T t£ = , 0.019P =  for recall), suggesting that 

Group II (using the A-CEG construction rules set) produced more accurate CEG 

elements, and missed less CEG elements than Group I. These allow H10 to be rejected 

in favor of H1a. 

8.7.1.2. Impact of A-CEG Construction Method on Efficiency (Hypothesis H2) 

 Table 8-9 follows the presentation style used in Table 8-7, but deals with 

efficiency instead of effectiveness. 

Table 8-9: Descriptive statistics for the Impact of A-CEG Construction Method on 

Efficiency 

A-CEG 
Construction 

Method 

Dependent 
Variable 

Mean
Standard 
Deviation 

Min 
Lower 
Quart 

Median 
Upper 
Quart 

Max 

Group I Efficiency, 
A-CEG 

elements/hr 

22.6 2.84 17.7 21.4 22.8 24.8 26.3 

Group II 25.6 3.45 21.3 23.6 24.2 27.6 31.6 

 The box plot in Figure 8-3 graphically shows the impact of the A-CEG 

construction method on the efficiency. 
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Figure 8-3: Impact of A-CEG Construction Method on Efficiency 

 Table 8-10 presents the results obtained from the F-test, Student’s t-test, and 

Mann-Whitney U test using SPSS Statistics® [112]. In this table, “N” represents 

observations, “df” short for “degree of freedom”, and “t-Stat” for “t-Statistic”. 

Table 8-10: Statistical Testing Results for Hypothesis H2 ( 0.05a = ) 

Independent 
Variable 

Dependent 
Variable 

N 
F-test Student’s t-test 

Mann-
Whitney 

U test 

df F 
P(F<=f)
1-tailed 

df 
t-

Stat 
P(T<=t) 
1-tailed13 

P-value 
1-tailed 

A-CEG 
Construction 

Method 
Efficiency 8 7 0.68 0.309 14 -1.91 0.038 0.0525 

 The results of the F-test ( ( ) 0.309P F f£ = ) indicate that there is no significant 

difference in variances between samples for the efficiency measure.  

 The results of both Student’s t-test ( ( ) 0.038P T t£ = ) and Mann-Whitney U test 

( 0.0525P = ) show that there is a significant effect of the A-CEG construction 

method on the efficiency at 0.05a = , suggesting that Group II (using the A-CEG 

                                                 
 
 
13 The value of “P(T <= t) 1-tailed” indicates the False Negative Rate β, the probability of failing to 
reject a null hypothesis. 1 െ  .is the power of a test ߚ
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construction rules set) were more efficient in identifying CEG elements. These allow 

H20 to be rejected in favor of H2a. 

8.7.1.3. Impact of SRS’ Writing Style on Effectiveness (Hypothesis H3) 

 Table 8-11 presents the descriptive statistics for the impact of the SRS’ writing 

style (independent variable) on the effectiveness (dependent variable). This 

independent variable was defined with two levels: Style I and Style II. 

Table 8-11: Descriptive Statistics for the Impact of SRS’ Writing Styles on 

Effectiveness 

SRS’  
Writing Style 

Dependent 
Variable 

Mean 
Standard 
Deviation 

Min 
Lower 
Quart 

Median 
Upper 
Quart 

Max 

Style I 

Accuracy, 
% 

82.4 3.16 78.3 80.4 81.8 84.7 87.0 

Recall, 
% 

84.9 3.19 81.8 82.4 84.4 86.0 90.5 

Precision, 
% 

96.6 1.93 94.0 94.9 97.1 97.2 100.0 

Style II 

Accuracy, 
% 

71.9 5.91 65.1 66.7 69.9 77.2 79.5 

Recall, 
% 

75.9 5.94 68.3 71.6 73.9 82.1 83.3 

Precision, 
% 

92.8 1.58 90.3 91.6 92.8 94.2 94.6 

 

 The box plots in Figure 8-4 graphically show the impact of the SRS’ writing style 

on the effectiveness. 
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 (a) Accuracy                          (b) Recall                          (c) Precision 

Figure 8-4: Impact of Writing Style on Effectiveness 

 Table 8-12 presents the results obtained from the F-test, Student’s t-test, and 

Mann-Whitney U test using SPSS Statistics® [112]. In this table, “N” represents 

observations, “df” short for “degree of freedom”, and “t-Stat” for “t-Statistic”. 

Table 8-12: Statistical Testing Results for Hypothesis H3 ( 0.05a = ) 

Independent 
Variable 

Dependent 
Variable 

N 
F-test Student’s t-test 

Mann-
Whitney 

U test 

df F 
P(F<=f)
1-tailed 

df 
t-

Stat 
P(T<=t) 
1-tailed14 

P-value 
1-tailed 

SRS’ Writing 
Style 

Accuracy 8 7 0.28 0.059 14 4.60 0.00021 0.0005 

Recall 8 7 0.29 0.060 14 3.81 0.00097 0.0025 

Precision 8 7 1.5 0.302 14 4.31 0.00036 0.0005 

 The results of F-tests ( ( ) 0.059P F f£ = , ( ) 0.060P F f£ = , and 

( ) 0.302P F f£ = ) indicate that there is no significant difference in variances 

between samples for the accuracy, recall, and precision measure, respectively.  

                                                 
 
 
14 The value of “P(T <= t) 1-tailed” indicates the False Negative Rate β, the probability of failing to 
reject a null hypothesis. 1 െ  .is the power of a test ߚ
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 The results of both Student’s t-test ( ( ) 0.00021P T t£ = , ( ) 0.00097P T t£ = , and 

( ) 0.00036P T t£ = ) and Mann-Whitney U test ( 0.0005P = , 0.0025P = , and 

0.005P = ) show that there are strongly significant effects of the SRS’ writing style 

on the accuracy, recall, and precision at 0.05a = , suggesting that A-CEG elements 

in SRSs of Style I  were identified more effectively than those in SRSs of Style II. 

These allow H30 to be rejected in favor of H3a. 

8.7.1.4. Impact of SRS’ Writing Style on Efficiency (Hypothesis H4) 

 Table 8-13 follows the presentation style used in Table 8-11, but deals with 

efficiency instead of effectiveness. 

Table 8-13: Descriptive Statistics for the Impact of SRS’ Writing Style on Efficiency 

SRS’ 
Writing 

Style 

Dependent 
Variable 

Mean 
Standard 
Deviation 

Min 
Lower 
Quart 

Median 
Upper 
Quart 

Max 

Style I Efficiency, 
A-CEG 

elements/hr 

26.25 3.08 22.1 24.2 25.9 27.6 31.6 

Style II 21.9 2.22 17.7 21.0 22.7 23.5 24.0 

 The box plot in Figure 8-5 graphically shows the impact of the SRS’ writing style 

on the efficiency. 

 

Figure 8-5: Impact of Writing Style on Efficiency 
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 Table 8-14 presents the results obtained from the F-test, Student’s t-test, and 

Mann-Whitney U test using SPSS Statistics® [112]. In this table, “N” represents 

observations, “df” short for “degree of freedom”, and “t-Stat” for “t-Statistic”. 

Table 8-14: Statistical Testing Results for Hypothesis H4 ( 0.05a = ) 

Independent 
Variable 

Dependent 
Variable 

N 
F-test Student’s t-test 

Mann-
Whitney 

U test 

df F 
P(F<=f)
1-tailed 

df 
t-

Stat 
P(T<=t) 
1-tailed15 

P-value 
1-tailed 

SRS’ Writing 
Style 

Efficiency 8 7 1.92 0.204 14 3.24 0.00296 0.0015 

 The results of the F-test ( ( ) 0.204P F f£ = ) indicate that there is no significant 

difference in variances between samples for the efficiency measure.  

 The results of both Student’s t-test ( ( ) 0.00296P T t£ = ) and Mann-Whitney U test 

( 0.0015P = ) show that there is a strongly significant effect of the SRS’ writing style 

on the efficiency at 0.05a = , suggesting that A-CEG elements in SRSs of Style I  

were identified more efficiently than those in SRSs of Style II. These allow H40 to be 

rejected in favor of H4a. 

8.7.1.5. Impact of SRS’ Application Type on Effectiveness (Hypothesis H5) 

 Table 8-15 presents the descriptive statistics for the impact of the SRS’ 

application type (independent variable) on the effectiveness (dependent variable). 

This independent variable was defined with two levels: SYSTEM and MIS. 

                                                 
 
 
15 The value of “P(T <=t ) 1-tailed” indicates the False Negative Rate β, the probability of failing to 
reject a null hypothesis. 1 െ  .is the power of a test ߚ
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Table 8-15: Descriptive Statistics for the Impact of SRS’ Application Type on 

Effectiveness 

SRS’ 
Writing 

Style 

Dependent 
Variable 

Mean 
Standard 
Deviation 

Min 
Lower 
Quart 

Median 
Upper 
Quart 

Max 

SYSTEM 

Accuracy, 
% 

78.4 6.67 66.7 76.9 79.8 81.8 86.4 

Recall, 
% 

81.8 5.87 71.8 80.3 83.1 84.3 90.5 

Precision, 
% 

94.7 2.98 90.3 93.7 94.5 95.5 100.0 

MIS 

Accuracy, 
% 

76.3 7.32 65.1 70.5 77.45 81 87 

Recall, 
% 

79.0 7.31 68.3 72.3 81.8 83.0 88.9 

Precision, 
% 95.4 2.06 92.3 93.9 95.9 97.1 97.6 

 The box plots in Figure 8-6 graphically show the impact of the SRS’ application 

type on the effectiveness. 
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(a) Accuracy                          (b) Recall                          (c) Precision 

Figure 8-6: Impact of Application Type on Effectiveness 

 Table 8-16 presents the results obtained from the F-test, Student’s t-test, and 

Mann-Whitney U test using SPSS Statistics® [112]. In this table, “N” represents 

observations, “df” short for “degree of freedom”, and “t-Stat” for “t-Statistic”. 

Table 8-16: Statistical Testing Results for Hypothesis H5 ( 0.05a = ) 

Independent 
Variable 

Dependent 
Variable 

N 
F-test Student’s t-test 

Mann-
Whitney 

U test 

df F 
P(F<=f)
1-tailed 

df 
t-

Stat 
P(T<=t) 
1-tailed16 

P-value 
1-tailed 

SRS’ 
Application 

Type 

Accuracy 8 7 0.83 0.406 14 0.59 0.281 0.287 

Recall 8 7 0.64 0.288 14 0.87 0.200 0.140 

Precision 8 7 2.09 0.176 14 -0.58 0.574 0.253 

                                                 
 
 
16 The value of “P(T <= t) 1-tailed” indicates the False Negative Rate β, the probability of failing to 
reject a null hypothesis. 1 െ  .is the power of a test ߚ
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 The results of F-tests ( ( ) 0.406P F f£ = , ( ) 0.288P F f£ = , and ( ) 0.176P F f£ = ) 

indicate that there is no significant difference in variances between samples for the 

accuracy, recall, and precision measure, respectively.  

 The results of both Student’s t-test ( ( ) 0.281P T t£ = , ( ) 0.200P T t£ = , and 

( ) 0.574P T t£ = ) and Mann-Whitney U test ( 0.287P = , 0.140P = , and 0.253P = ) 

show that there are no significant effects of the SRS’ application type on the accuracy, 

recall, and precision at 0.05a = . These allow H50 to be accepted. 

8.7.1.6. Impact of SRS’ Application Type on Efficiency (Hypothesis H6) 

 Table 8-17 follows the presentation style used in Table 8-15, but deals with 

efficiency instead of effectiveness. 

Table 8-17: Descriptive Statistics for the Impact of SRS’ Application Type on 

Efficiency 

SRS’ 
Application 

Type 

Dependent 
Variable 

Mean 
Standard 
Deviation 

Min 
Lower 
Quart 

Median 
Upper 
Quart 

Max 

SYSTEM Efficiency, 
A-CEG 

elements/hr 

24.2 3.53 17.7 23.1 23.8 26.5 29.4 

MIS 24.0 3.57 19.8 21.8 23.8 24.6 31.6 

 The box plot in Figure 8-7 graphically shows the impact of the SRS’ application 

type on the efficiency. 
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Figure 8-7: Impact of Application Type on Efficiency 

 Table 8-18 presents the results obtained from the F-test, Student’s t-test, and 

Mann-Whitney U test using SPSS Statistics® [112]. In this table, “N” represents 

observations, “df” short for “degree of freedom”, and “t-Stat” for “t-Statistic”. 

Table 8-18: Statistical Testing Results for Hypothesis H6 ( 0.05a = ) 

Independent 
Variable 

Dependent 
Variable 

N 

F-test Student’s t-test 
Mann-

Whitney 
U test 

df F 
P(F<=f)
1-tailed 

df 
t-

Stat 
P(T<=t) 
1-tailed17 

P-value 
1-tailed 

SRS’ 
Application 

Type 
Efficiency 8 7 0.98 0.487 14 0.11 0.456 0.399 

 The results of the F-test ( ( ) 0.487P F f£ = ) indicate that there is no significant 

difference in variances between samples for the efficiency measure.  

                                                 
 
 
17 The value of “P(T <= t) 1-tailed” indicates the False Negative Rate β, the probability of failing to 
reject a null hypothesis. 1 െ  .is the power of a test ߚ
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 The results of both Student’s t-test ( ( ) 0.456P T t£ = ) and Mann-Whitney U test 

( 0.399P = ) show that there is no significant effect of the SRS’ application type on 

the efficiency at 0.05a = . These allow H60 to be accepted. 

8.7.2 Summary of Statistical Testing 

 Table 8-19 provides the summary of the statistical tests. Overall, the statistical 

testing results indicate two things: 

1. The A-CEG Construction Rules are helpful in identifying A-CEG elements. 

Subjects using the A-CEG Construction Rules committed false positives and 

false negatives less frequently and identified the true positives more 

efficiently. 

2. The SRS’ writing style has a significant impact on the identification of A-

CEG elements. SRSs of Style I were handled far more effectively and 

efficiently than SRSs of Style II.  

 The most surprising finding is that the application type, which was assumed 

important, was shown to have no statistically significant impact on A-CEG 

construction. Note that this conclusion was drawn on the basis of the comparison 

between SYSTEM and MIS. It may not be true for the comparison among other 

application types. 

Table 8-19: Summary of Statistical Tests 

Hypothesis Testing Result Explanation 

H1 Accepted H1a 

The subjects applying the A-CEG Construction Rules 
significantly outperform the subjects using the general A-
CEG construction guidelines in terms of effectiveness. 

H2 Accepted H2a 
The subjects applying the A-CEG Construction Rules 
significantly outperform the subjects using the general A-
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CEG construction guidelines in terms of efficiency. 

H3 Accepted H3a 
SRS’ writing style significantly affects subjects’ effectiveness 
in identifying A-CEG elements. 

H4 Accepted H4a 
SRS’ writing style significantly affects subjects’ efficiency in 
identifying A-CEG elements. 

H5 Accepted H50 

The impact of SRS’ application type on subjects’ 
effectiveness in identifying A-CEG elements is relatively 
small and not statistically significant 

H6 Accepted H60 

The impact of SRS’ application type on subjects’ efficiency in 
identifying A-CEG elements is relatively small and not 
statistically significant 

8.7.3 Qualitative Analysis 

 Table 8-6 presents the experiment data used for qualitative analysis. A major 

caveat would be that the postmortem questionnaire (see Appendix F) measured 

subjects’ stated opinions rather than their actual ones, which could be markedly at 

odds with this. 

Table 8-20: Experiment data for Qualitative Analysis 

Subject Group 
1T , 

minutes 

Answers to Postmortem Questionnaire 

Q1 
(Usefulness) 18 

Q2 (Ease 
of use) 19 

Q3 (Ease of 
Learning) 20 

Q4 
(Satisfaction) 21 

Q5 (In 
general) 22 

Student 
A 

I 285 1 4 3 4 3 

Student 
C 

I 293 2 4 3 2 2 

Student 
B 

II 302 2 4 3 4 3 

Student 
D 

II 291 2 2 1 2 2 

 
 Learning Time ( 1T ) 

                                                 
 
 
18 For this column, an answer with “1” is the most useful and “5” the least useful. 
19 For this column, an answer with “1” is the easiest and “5” the most difficult. 
20 For this column, an answer with “1” is the easiest and “5” the most difficult. 
21 For this column, an answer with “1” is the most satisfactory and “5” the least satisfactory. 
22 For this column, an answer with “1” is the best and “5” the worst. 
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 According to Table 8-20, all subjects spent almost the same amount of learning 

time. This is partly because most of the learning time was spent in in-class trainings, 

which was equal by design.  The only differences among the subjects were the times 

spent in help sessions. However, the differences between the subject/groups are small. 

 User Satisfaction 

 There is no significant difference in user satisfaction between two groups. In 

general, subjects of both groups were not very satisfied with either of the A-CEG 

construction methods. This indicates the need to improve the A-CEG Construction 

Rules in terms of the ease of use and ease of learning. 

 Excerpted Comments from Subjects 

 Student A: “… It is hard to distinguish between causes and effects just based on 

the SRS. This is maybe due to the fact that there is not enough information in SRS 

itself, or the SRS itself is vague. …”  

 Student B: “… The CEG is useful in the sense that it gives a good picture of the 

SRS and how it is organized. Moreover, graphical representations are usually a good 

way to picture how things work. But the difference between cause and effect is still 

not clear. I believe the method of filling in tables could be a good way to work 

with. …” 

 Student C: “… I like the fact that there are a low number of different elements 

and operations for the CEG. This small variety helped me to quickly understand the 

notation and the basic rules to design a CEG. Moreover, it offers a clean overview of 

the specifications which is important to better spot defects. On the other hand, I found 
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that the definitions of cause and effect were not properly stated. It took me some time 

to figure out that cause indicates everything external, related to the user, and effect 

includes both consequences and actions. Maybe a better definition of effect could 

help novice users to quickly understand the potential of CEG. …” 

 Student D: “… The rules help in understanding how to construct the CEG and 

how to handle the duplications. However, the use of action words in finding events is 

not practical because many events were not related to any action words. …” 

8.8 Threats to Validity 

 As with any empirical study, there are various threats to validity that must be 

discussed. This section explains the major threats to validity in this study.  

 The first threat is the threat of a selection bias in the subject population. The 

specific subjects who participated in this study could be the major source of the 

observed result and may not be repeatable by other researchers. This threat was 

alleviated to some degree by the fact that the participants were selected without any 

prior information about the composition of the class or participants. In addition, the 

participants did not receive any compensation for participation in the study. They all 

participated as a part of their class project and therefore the level of motivation of 

each subject should have been similar. 

 The second threat, the representativeness of the artifact is a threat to external 

validity. It is possible that the SRSs used in this study may not be reflective of an 

actual requirements document. This threat is addressed to some degree by the fact that 

the SRSs were selected from public academia and industry projects. Hence these 

SRSs describe a realistic piece of software that is not a trivial system. 
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 The third thread is the experience of subjects’ - the most frequent concern with 

experiments using student subjects is that the results cannot be generalized to 

professionals. Experience is certainly an issue for this experiment, where the subjects 

had no industrial experience. However, we do not believe that the experiment was 

influenced by our subjects’ limited experience with SRS analysis, because 

implementing A-CEG construction was rather straightforward. 

 The last threat is one that is common to any empirical study. Researchers cannot 

draw a general conclusion based solely on the results of one study. Because of the 

presence of a large number of context variables, both known and unknown to the 

researchers, it cannot be assumed that results will always generalize beyond the 

setting in which the study was conducted. More confidence in a result comes from 

replication of a study. Therefore, this study needs to be replicated to build a body of 

empirical knowledge to allow concrete, general conclusions to be drawn.  

8.9 Summary 

 The objective of Experiment D is to compare and hence evaluate how well the A-

CEG Construction Rules set performs in comparison to other A-CEG construction 

methods. This chapter presents a small-scale controlled experiment where the A-CEG 

Construction Rules set is compared to the general A-CEG construction guidelines 

used in industry. The results are promising since the study shows that the A-CEG 

Construction Rules set is significantly better than the general A-CEG construction 

guidelines in terms of both effectiveness and efficiency in finding the A-CEG 

elements in SRSs. 
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 Be aware that there are several limitations to this experiment. First of all, this 

experiment is clearly based on a small sample size and therefore, one has to take into 

account the possibility of response bias. A larger-scale experiment is needed to 

validate our claims. Secondly, the experiment has to be replicated in different 

contexts. The replications should address changes in the SRSs, for example, using 

other different application types. The experiment should also be investigated in an 

industrial setting in order to evaluate whether it still provides positive effects. It 

would be especially interesting to investigate the method with professionals as 

subjects. Other further work also includes enhancement of the A-CEG Construction 

Rules set, either to include checklist items or to develop automation tools to facilitate 

the identification of A-CEG elements.   
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Chapter 9:  Conclusion and Suggestions for Future Research 

9.1 Principal Results of this Study and its Significance 

 In the software development life cycle, requirements analysis is one of the 

important phases as any fault in this phase will be carried through the rest of the 

development. In particular, the SRS, a product of the requirement analysis phase, is 

so crucial to the success of a software project that it is hard to improve the quality 

and/or productivity of the project without first addressing the quality of the SRS. 

Studies revealed that faults made in the requirements phase are extremely expensive 

to repair and requirements faults are the largest class of faults typically found in a 

complex software project. Requirements must be correct if the rest of the 

development effort is to succeed. In order to improve quality and reliability of 

software continuously throughout the software development life cycle, it is 

imperative to develop measurement criteria along the life cycle, especially in the 

early stages. Activities like CEGA which can be carried out in the early phases of 

software development can ensure software quality and reliability. A review of the 

literature reveals the scarcity of any publicly reported software measurements related 

to the detection of problematic requirements and to software reliability prediction at 

the early stages of software development. 

 This study focuses on developing an approach to enable the detection of 

requirements faults and prediction of software reliability at the requirements analysis 

stage when limited information about the software project is available. The proposed 

approach is based on the enhanced CEGA, and can be employed for SRS faults 
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detection and reliability prediction in an early stage and possible throughout the 

development life cycle. It is shown how the faults in the requirements specifications 

document can be systematically detected and how the output from the SRS faults 

detection process can be used as an input to enable the prediction of software 

reliability in the requirements analysis phase and other development phases. It is 

demonstrated that the use of the enhanced CEGA as a software reliability 

measurement tool can be more rigorous and intuitive. Related techniques, methods, 

and rules are developed to enhance the rigidity, repeatability, and scalability of the 

approach. The feasibility, usability, and scalability of the approach are experimentally 

validated. 

 More specifically, this study accomplishes the following: 

 Thoroughly analyzed the advantages, disadvantages, and other technical barriers 

for CEGA to serve as a software reliability measurement.  

 Mathematically formalized CEGA and enhanced its rigidity, repeatability, and 

scalability toward a solid software reliability measurement. These formal 

definitions are necessary to ensure that the CEG is meaningful, true and of known 

accuracy, easy to be stored, represented, and implemented by computers, and can 

be updated easily in response to the frequent requests for requirements change in 

practice. 

 Developed a CEGA-based taxonomy for SRS faults. One cannot expect to 

identify types of SRS faults that he or she never ever has thought about or come 

across. The contribution of the taxonomy lies in providing a systematic way to 

explore this implicitly existing knowledge by using the heuristics and in 
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increasing the requirements engineer’s awareness of the problematic areas in an 

SRS. 

 Developed a two-phase CEGA-based method for SRS faults detection. This 

method allows software project stakeholders to identify problematic areas in the 

requirements at a very early development stage. Moreover, this method 

overcomes the shortcomings of other techniques that fail to ensure complete 

coverage of functional requirements. According to the cost ratio shown in Figure 

2-9, applying our method at the requirements analysis phase could save as much 

as 99% (or even more) on detecting and fixing the SRS faults if the same SRS 

faults were not found and fixed until the testing phase. 

 Developed a CEGA-based algorithm to quantify the impact of detected faults on 

software reliability. This is the first method of its kind in the literature. Starting 

from this method, software project stakeholders are allowed to determine at a very 

early development stage whether or not the project is at high risk of failure while 

limited information about the software project is available. They can use the 

predicted reliability to assess the risks of a project, determine whether a trade-off 

between new functionalities and the possible loss of reliability is cost-effective, 

mitigate the risks by removing the major contributor(s), or even cancel the project. 

However, the topic on how to make decisions based on the reliability predicted at 

the early stages of software development is beyond the scope of this study. 

Interest readers are referred to the literature on risk management and/or decision 

making for further information. 
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 Examined the feasibility and scalability of the proposed techniques for detecting 

SRS faults and predicting the reliability at the requirements analysis phase via two 

case studies. 

 Revealed many aspects of the nature of CEG construction, including 

o collected and distilled patterns in CEG construction. 

o identified and analyzed the influencing factors in CEG construction. 

o provided SRS writers with caveats to avoid common problems found in 

the practice of specifying SRSs. These problems might cause difficulties 

in identifying A-CEG elements and lead to increased risks of unreliable 

software products. 

o developed a set of rules to ease the task of CEG construction. According 

to the results of Experiment D, the mean accuracy of A-CEG constructors 

who were using the A-CEG Construction Rules is 8% higher than that of 

those who were using the general A-CEG construction guidelines, the 

mean recall 10% higher, and the mean efficiency 13% higher. 

 Statistically evaluated the usability of the proposed rules. 

 Statistically verified the impact of two influencing factors on using these rules.  

 The proposed approach provides methods for development teams to detect faults 

in requirements specification and determine the uncertainty of their impact; it 

supports trade-off decision and evaluation of remedial actions.  The approach is still 

open for improvement, but it can be concluded that so far the results are inspiring for 

the future. It will enable software project stakeholders to effectively detect 

requirements faults and assess the quality of requirements early in development, and 
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ultimately lead to improved software reliability if the identified faults are removed in 

time. Even with some limitations, the intrinsic advantages of our approach make it 

attractive from a usability perspective. Software project practitioners (including 

architects, requirements specialists, designers, coders, testers, and managers), 

regulators, and policy makers involved in the certification of software systems can 

benefit most from the techniques proposed in this study. 

9.2 Advantages 

 Our approach has the following advantages/characteristics: 

 Our approach is applicable at the requirements analysis phase, a very early 

stage in the software development lifecycle. One obvious benefit of this 

characteristic is that fault detection and reliability prediction realized earlier in 

the software development cycle have a dramatic effect on making software 

development practices better and more efficient. The CEGA technique 

discussed in this study can identify potential problem areas in SRSs that may 

lead to problems or faults in the later development phases. Finding these 

problem areas in the requirements analysis phase decreases the cost and 

prevents potential ripple effects from SRS, later in the development life cycle. 

The primary value gained from utilizing our CEGA-based approach is the 

capability of systematically analyzing and detecting SRS faults and predicting 

reliability early in the development process. What makes the approach 

especially attractive is that CEGA appears to be very effective in detecting 

other requirements fault types. We have empirically evaluated this broader 
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aspect of the CEGA strategy on a simplified personal access control system 

and a safety-related real-time control system used for nuclear power plants. 

 Our approach distinguishes itself from others by its CEGA-based attribute, 

which is rigid, methodical, systematic, and therefore uniform, highly 

repeatable, and reliable. Only a graphical technique such as CEGA may be 

able to capture the implications in an SRS. CEGA can reveal complexity that 

may have been hidden by the words alone. It exposes incomplete, incorrect, 

and ambiguous functional requirements in an SRS.  

 Our SRS faults detection methods ensure complete coverage of functional 

requirements. The SRS analyst can be confident that once CEGA is 

implemented, the functional requirements are to the best of his/her knowledge 

faultless, and no ambiguous, incomplete, inconsistent, or incorrect 

functionality will move into production. 

 Many aspects of our approach can be automated.  

 Our approach requires only functional requirements and the associated 

operational profile, which is most likely to be available in the early 

development stages. 

 Our approach is applicable to all types of software systems, although this 

study focuses on mission-critical systems where a reliable final product has 

top priority. 

9.3 Limitations 

 This study has a few limitations. Practitioners must carefully weigh these against 

other options on a case-by-case basis. The limitations of this study are: 
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1. Our approach assumes that the SRSs are written in plain English text, a primary 

form to state requirements. Our approach may not be applicable for SRSs 

specified in some formal languages. 

2. Our approach is based on CEGA which uses a CEG to provide a concise 

representation of logical combinations and corresponding actions specified in an 

SRS. Be aware that not every aspect of a software system will be specifiable by a 

CEG. The CEG can only capture functional requirements specified in the SRS 

and is primarily concerned with modeling inputs and outputs involved in the 

system to be specified.  

3. CEGA will not be able to detect hidden requirements  

4. It is unclear how accurate the reliability prediction given by our approach would 

be. Further research will help answer this question.  

5. Implementing our approach is very costly. The most time-consuming task in our 

approach is to construct an A-CEG from a given informal specification. 

Automation is a good way to cut down time and cost in A-CEG construction.  

And we think that A-CEG construction can be partially automated.  

6. In general, a significant amount of human intervention is still needed in our 

approach. The process of identifying SRS faults requires domain knowledge and 

understanding of the system under study, as well as inspector’s creativity, 

experience, and even intuition. Without prior knowledge of the system, the faults 

found through CEGA may not be correct and the final reliability estimation may 

not be very meaningful.  Unfortunately, automatic SRS faults’ detection is very 

difficult. 
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 It might seem that these restrictions eliminate many potential applications. 

However, despite external appearances, overheads associated with our approach 

(even without tool support) are lower than the expected benefits which will be 

incurred by the project. Especially, the cost of using our approach is small compared 

to the potential major downstream savings because the project teams avoid 

unnecessary rework and operational problems. 

9.4 Suggestions for Future Research 

 We encourage further studies on the following topics: 

 Further Validation of the usability of the A-CEG Construction Rules. Through a 

small-scale controlled experiment we have assessed the usability of the rules for 

CEG generation. This has served as a proof of the feasibility and usability of the 

rules. Due to the intricacy of A-CEG construction and the scarcity of empirical 

evidence available, there is also a need to further validate our findings by 

considering SRSs from different domains and explicitly controlling people-related 

factors, such as SRS analysis expertise in a particular domain. 

 Improvement of the A-CEG Construction Rules. The A-CEG Construction Rules 

set is an attempt to ease A-CEG construction.  It is very helpful to add consistency 

to the way we construct A-CEGs. However, while it still remains useful for A-

CEG construction and can produce significant cost and time savings in CEGA 

implementation, the rules set is still open to criticism and improvement.  

 Automation of our CEGA-based approach. The automation of our approach might 

be an interesting direction to pursue. There are several aspects of our approach 

that can be automated:  
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1) Conversion between the mathematical expression and graphical 

expression for a CEG. Graphical techniques are especially valuable for 

communicating with people who speak different languages. Though 

informal, unscalable, and unnecessary in our approach, the graphical 

expression of a CEG helps project stakeholders to find, illustrate, and 

analyze the software functional requirements, and ease the communication 

among different project roles. Therefore, it is desirable to develop a tool 

that will allow convenient conversion between these two CEG formats. 

2) Tools that facilitate the detection of SRS faults. Our SRS fault detection 

methods are performed by humans through a time-consuming procedure 

of reading requirements documents and looking for errors. This is tedious 

at best, and at worst, prone to errors. Even if a complete and general 

automation of the entire fault detection process is impossible, the most 

promising approach to improved fault detection is a systematic manual or 

partially automated procedure. Our methods in conjunction with a 

powerful analytical tool will provide a rigorous, consistent and cost 

effective approach to detect SRS faults.  

3) Tools that facilitate A-CEG construction. We notice that manually 

constructing an A-CEG for a bulky SRS is very time-consuming, even 

with the help of the A-CEG Construction Rules. 

4) Identification of failure-relevant inputs. The unified failure-relevant input 

determination algorithm (shown in Figure 5-5) is ready for automation. 
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Even if doable, it is challenging to manually determine failure-relevant 

inputs when the number of causes is more than 15. 

 Validation of the accuracy of the reliability prediction given by our approach. 

Although the feasibility and scalability of our approach have been verified using 

real applications, it is unclear how accurate the reliability predictions given by our 

CEGA-based approach would be. It has been pointed out [40] that reliability 

prediction based on process or product measurements alone may not be 

sufficiently accurate. These predictions need corroboration. In practice, 

particularly when high levels of reliability need to be assured, it will be necessary 

to use several sources of evidence to support reliability claims, for instance, 

evidence of process quality and evidence from software components and 

structure. Combining such disparate evidence to aid decision making is itself a 

difficult task. Research in this area is still in a rather early stage. The explosive 

complexity of today’s software systems has made this task even more 

challenging. Nevertheless we believe this kind of approaches offers the best 

prospects for accurate reliability prediction and more potential refinement in the 

future. 

 Expansion of our approach to other software development phases. A natural 

extension of this study is to consider applying similar techniques to later products 

in the life-cycle, such as designs or even source code, where the potential savings 

are less. We believe that the key characteristics of our approach should apply to 

other software development phases. 
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Appendix A: List of Words that Point to Potential Ambiguities (adapted from 

[70]) 

 
Dangling Else 

 
 
Ambiguity of Reference 

 
 
Ambiguous Adjectives 

 
 
Ambiguous Adverbs 

 
 

can could is one of must 

shall should will would 

above below it such   

the previous them these this 

those    

all any appropriate custom 

efficient every few frequent 

improved infrequent intuitive invalid 

many most normal ordinary 

rare same seamless several 

similar some standard the complete 

the entire transparent typical usual 

valid    

accordingly almost approximately by and large 

commonly customarily efficiently frequently 

generally hardly ever in general 

infrequently 
 

Intuitively just about more often than 
not 

more or less mostly nearly normally 

not quite often on the odd occasion ordinarily rarely 

roughly seamlessly seldom similarly 

sometime somewhat transparently typically 

virtually    
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Ambiguous Variables 

 
 
Ambiguous Verbs 

 
 
E.G. versus I.E. 

 
 
Implicit Cases 

 
  

the application the component the data the database 

the field the file the frame the information 

the message the module the page the rule 

the screen the status the system the table 

the value the window   

adjust alter amend calculate 

change compare compute convert 

create customize derive determine 

edit enable improve Indicate 

manipulate match maximize may 

minimize might modify optimize 

perform process produce provide 

support update validate verify 

e.g. i.e.   

also although as well besides 

but even though for all other furthermore 

however in addition to likewise moreover 

still notwithstanding otherwise on the other hand 

though unless whereas yet 

as required as necessary   
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Temporal Ambiguity 

 
 
Boundary Ambiguity 

 
 
Totally Ambiguous 

 
  

after annually at a given time 
 

at the appropriate 
time 

bimonthly biweekly daily every other month 

every other week fast in a while later 

monthly quarterly quickly soon 

twice a month twice a year weekly yearly 

up to among including  

etc. (sentences that end 
with “?”) 

  



 

212 
 

Appendix B: Sample Source Code for Calculating the Occurrence Probability 

of a BDD’s Top Node 

 

/************************************************************************ 

PROGRAM:      BDD’ Top Node Occurrence Probability Calculation  

FILE:               CEG_main.cpp 

FUNCTION:     Constructing a BDD and calculating the top node’s occurrence probability  

AUTHOR:        Wende Kong 

REVISIONS:   02/21/2005 Second release; 10/1/2004 First release 

ENVIRONMENT: Visual C++ version 6.0, Pemtium 4/1.0G ; 256mb RAM, Windows XP 

 

NOTES:  

 This C++ program incorporates a software module complied from Binary Decision 

Diagrams Library Package Version 2.3 (Copyright © 1996, Jorn Lind-Nielsen, All right 

reserved).  This software tool is applicable for other software applications, too, with minor 

modification. The following steps are required to compile this source code: 

(1) Download the file "buddy19.zip" to your computer from 

 http://www.ee.pdx.edu/~alanmi/research/softports.htm 

(2) Unzip the file into a local directory, which will become the home directory of the Buddy 

static library 

(3) Open "Buddy.dsw" in Microsoft Visual C++ 6.0 (click “File -> Open Workspace...”) 

(4) Click “Executing command Build -> Rebuild All”. Ignore the 15 warnings produced by 

compiling. Thus the buddy.lib is created. 

(5) Create an empty project of type "Console Application" 

(6) Add this source code the “file source…” 

(7) Add "<your_library_path>\buddy\include" to  

  Project -> Settings -> C/C++ -> Additional include directories 

(8) Add "<your_library_path>\buddy\Debug\buddy.lib" to 

  Project -> Settings -> Link -> Object/library modules 

(9) Compile and link the project. An .exe file is created. Execution of this .exe file will yield 

the occurrence probability of PACS’ A-CEG fails. In this sample source code, we 

assume that the identified failure-relevant inputs are 1 2 4 5 1 2 4 5 1 2 4 5c c c c c c c c c c c c  . 

*************************************************************************/
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#include <iostream.h> 

#include "bdd.h" 

 

#define N 14   

// N is the number of causes plus 1. An extra storage is needed since the first element  

// (the one with index 0) of the array is purposely neglected. 

 

float bddProbCal(bdd & currentBdd); 

 

static float NodeProb[N]={0.97,0.97,0.97,0.99,0.97,0.8,0.8,0.8,0.98,0.5,0.5,0.001,0.99}; 

//NodeProb array stores the probabilities of all causes. 

// Pr(c1)=0.97, Pr(c2)=0.97, Pr(c3)=0.97, Pr(c4)=0.99, Pr(c5)=0.97, Pr(c6)=0.8, Pr(c7)=0.8, 

// Pr(c8)=0.8, Pr(c9)=0.98, Pr(c10)=0.5, Pr(c11)=0.5, Pr(c12)=0.001, Pr(c13)=0.99. 

 

//The following code is corresponding to the revised recursive algorithm shown in  

// Figure 5-17. 

float bddProbCal(bdd & currentBdd) 

{ 

 float PL, PH, q;  

 // consider "High" branch 

 if (bdd_high(currentBdd) = = (bdd) 1) 

  PH = 1; 

 else if (bdd_high(currentBdd) = = (bdd) 0) 

  PH = 0; 

 else 

  PH = bddProbCal(bdd_high(currentBdd)); 

  

 // consider "Low" branch 

 if (bdd_low(currentBdd) = = (bdd)0) 

  PL = 0; 

 else if (bdd_low(currentBdd) = = (bdd)1) 

  PL = 1; 

 else 

  PL = bddProbCal(bdd_low(currentBdd)); 
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 q = NodeProb[bdd_var(currentBdd)-1]; 

 

 //calculate and return probability value of node 

 return (q*PH+(1-q)*PL); 

} 

 

void main(void) 

{ 

 int i, j, k; 

 bdd c[N+1];  // c[i] is corresponding to ci. c[0] is not used. 

 bdd I_1;  // I_1 is the expression of failure relevant inputs 1 2 4 5c c c c . 

 bdd I_2;            // I_2 is the expression of failure relevant input 1 2 4 5c c c c . 

 bdd I_3;  // I_3 is the expression of failure relevant input 1 2 4 5c c c c . 

 bdd I_ALL;  // I_ALL is the expression of the union of all failure relevant inputs. 

 

 // Initialize the BDD storage. 

 bdd_init(100,100); 

 bdd_setvarnum(N); 

 

 // The variable order in the final ROBDD is: c1, c2, c3, …, cN) 

 for (i = 1; i <= N; i++) 

  c[i] = bdd_ithvar(i); 

 

 I_1 = bdd_not(c[1]) & bdd_not(c[2]) & bdd_not(c[4]) & bdd_not(c[5]); 

 

 I_2 = bdd_not(c[1]) & c[2] & bdd_not(c[4]) & bdd_not(c[5]); 

 

 I_3 = c[1] & bdd_not(c[2]) & bdd_not(c[4]) & bdd_not(c[5]); 

 

 I _ALL= I_1 | I_2 | I_3;  

  

 cout << "Final Prob=" << bddProbCal(I_ALL) << endl; 

} 
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Appendix C: Results of Case Study A 

 

B1. PACS’s A-CEG for PACS 

 

Figure Appendix C-1: Graphical Expression of PACS’s A-CEG 
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଼݁ ൌ׷ ܿҧହ ת ሾܿҧଷ ׫ ሺת ܿ଺ ת ଼ܿ ת ܿଵ଴ሻሿ;
݁ଽ ൌ׷ ܿҧହ ת ሾܿҧଷ ׫ ሺת ܿ଺ ת ܿଽ ת ܿଵ଴ሻሿ;
݁ଵଵ ൌ׷ ܿҧହ ת ܿ଺ ת ܿଵ଴ ת ሺܿ଻ ׫ ଼ܿ ׫ ܿଽሻ;

݁ଵଶ ൌ׷ ሾܿҧହ ת ܿ଺ ת ܿଵ଴ ת ሺܿ଻ ׫ ଼ܿ ׫ ܿଽሻሿ ׫ ܿଵଵ;
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Figure Appendix C-2: Mathematical Expression of PACS’s A-CEG 

 
 
B2. Identified Faults in PACS’ A-CEG 

 No faults were identified from constructing PACS’ A-CEG and conducting 

ambiguities review.  The following faults were detected using the CEG validation 

algorithm described in Section 4.5.3. 

 Wrong Boolean function for effect e1 (missing cause c4) 

 Wrong Boolean function for effect e2 (missing cause c4); 

 Missing effect e3;  

 Missing effect e10;  
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B3. PACS’ B-CEG 

 

 Figure Appendix C-3: Graphical Expression of PACS’s B-CEG 
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Figure Appendix C-4: Mathematical Expression of PACS’s B-CEG 
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B4. Definitions of Effects’ in PACS’ A-CEG and B-CEG 

Table Appendix C-1: Definitions of Effects’ in PACS’ A-CEG and B-CEG 

Effect Description 

e1 Displaying “Enter PIN” on the screen; 

e2 Displaying “Retry” on the screen; 

e3 Displaying “Access Denied” to officer; 

e4 Displaying “Access Denied” on the screen; 

e5 Displaying “System Failure” to officer; 

e6 Displaying “Invalid PIN” on the screen; 

e7 Recording a failed entry into a file; 

e8 Displaying “see officer” to officer; 

e9 Displaying “see officer” on the screen; 

e10 Displaying “Please Proceed” on the screen; 

e11 Recording and reporting a successful entry; 

e12 Opening the gate; 

e13 Resetting system and displaying “Insert Card”; 

e14 Locking the gate. 

 

 

B5. Identified Failure-relevant Inputs 

 The identified failure-relevant inputs for PACS are 

  

1 2 3 4 12 1 2 3 4 12 1 2 3 4 12 1 2 4 12 1 2 4 12

1 2 4 12 4 4 5 6 7 9 12 4 5 6 7 9 12 4 5 6 7 9 12

3 4 5 8 9 12 3 4 5 8 9 12 3 4 5 8 9 12 3 4 5 8 9 12

3 4 5 8 9 12 3 4 5 8 9 12 3 4

c c c c c c c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c

    
    

   
  5 8 9 12 3 4 5 8 9 12

3 4 5 8 9 12 4 5 6 7 8 9 12 4 5 6 7 8 9 12 4 5 6 7 8 9 12

4 5 6 7 8 9 12 4 5 6 7 8 9 12 4 5 6 7 8 9 12

4 5 6 7 8 9 10 12 4 5 6 7 8 9 10 12 4 5 6 7 8 9 10 12

c c c c c c c c c
c c c c c c c c c c c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c c c c
c c c c c c c c c c c c c c c c c c c c c c c c

 
   
  
 
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B6. PACS’ Operation Profile(obtained from [5]) 

Table Appendix C-2: PACS’ OP 

Cause Description Probability 

c1 Entering a valid card at the first attempt; 0.97 

c2 Entering a valid card at the second attempt; 0.97 

c3 Entering a valid card at the third attempt; 0.97 

c4 Database is available for access; 0.99 

c5 Hardware Failure; 0.001 

c6 Entry of digits of PIN within the 5-seconds time limit; 0.97 

c7 Entering a valid PIN at the first attempt; 0.80 

c8 Entering a valid PIN at the second attempt; 0.80 

c9 Entering a valid PIN at the third attempt; 0.80 

c10 Entry of the 1st digit within the 10-seconds time limit; 0.98 

c11 Guard Overriding: the guard allows the user to entry; 0.50 

c12 Officer resets the system; 0.50 

c13 
User able to pass within the 30-second time limit after the 

gate is opened. 
0.99 

 

 
B7. The Predicted Reliability for PACS 

 Implementing source code similar to Appendix B yields 0.003856, which is 

corresponding to the occurrence probability of PACS’ A-CEG fails. Therefore, the 

predicted reliability of PACS’ is 1 െ  0.003856 ൌ   0.996144. 
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Appendix D: Reporting Tables Used in Experiment D 

Table Appendix D-1: Identified Causes and Effects (for Group I and II) 

Sentence 
No. 

Cause/Effect 
Index 

Description 

1 e.g.: c1 
e.g.: The user provides the speed value from the 
keyboard 

⁞ ⁞ ⁞ 

 

 

Table Appendix D-2: Identified Constraints (for Group I and II) 

No. Constraint 

1 e.g.: REQUIRE(c1, c2) 

⁞ ⁞ 

 

 

Table Appendix D-3: Identified Logical Relationships (for Group I and II) 

No. Logical Relationship 

1 e.g.:  e1 :=  c1  c2 

⁞ ⁞ 
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Table Appendix D-4: Activity-Effort Log Sheet (for Group I and II) 

Section 
No. 

Start time End time Activities Percentage, % 

1 e.g.: 3:20pm e.g.: 4:30pm 

e.g.: identifying events e.g.: 10% 

e.g.: removing duplicate 
events 

e.g.: 20% 

… … 

⁞ ⁞ ⁞ ⁞ ⁞ 

 
Instructions for using Table Appendix D-4:  
 This table is designed to keep track of your learning process. You will be graded partly 
on this document. Please follow the instructions carefully. 

1. Record data for each session. A session is any time you start working on the 
application till you take a break. 

2. Note the session start time and session end time. A session may be as small as five 
minutes. 

3. An activity is anything you do during a session. It can be anything from learning how 
to use the rules, reading and understanding the specification, applying rules to 
identify cause, effects, logical relationships, constraints, applying rules to refine the 
results, to drawing the cause-effect graphs. Record every activity in a Session. 

4. Be honest and attentive. Although a detailed recording of activities will be 
appreciated, you need not be creative with your data. 

 
 

Table Appendix D-5: Training Activity-Effort Log Sheet (for Group II only) 

Section 
No. 

Start 
time 

End 
time 

Training Activities 
Duration, in 

minutes 

1   Step 1: Explaining rules  

2   

Step 1: Showing an example of applying rules to a 
sentence 

 

Step 2: Practice 1 on applying rules to sentences  

Step 3: Practice 2 on applying rules to sentences  

3   

Step 1: Explaining workflow  

Step 2: Showing how to use the workflow  

Step 3: Practice 1 on how to use the workflow  

Step 4: Practice 2 on how to use the workflow  
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Table Appendix D-6: Rules to Identify Constraints (for Group II only) 

Constraints Applicable Rules (mark “N/A” if no rules are applicable) 

e.g.: REQUIRE(c1, c2) e.g.: Rule 7.9 

⁞ ⁞ 

 
 

 

Table Appendix D-7: Rules to Identify to Identify Causes and Effects (for Group 

II only) 

Event index Cause/Effect Applicable Rules 

e.g.: c1 e.g.: Cause e.g. Rule 7.10 

⁞ ⁞ ⁞ 

 

 

 

Table Appendix D-8: Rules to Identify Logical Relationships (for Group II only) 

Logical Relationships 
Applicable Rules (mark “N/A” if no rules 

are applicable) 

e.g.:  e1 :=  c1  c2 e.g.: Rule 7.5 

⁞ ⁞ 
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Appendix E: Questionnaire Used in Experiment D (to assess subjects’ 

background) 

 

Your Name: _____________________ 

1. Have you taken the following classes (Please darken the appropriate option(s))? 

� Data structure and algorithms  � Computer Systems Architecture 

� Object-Oriented Programming � Database Design 

� Computer Networks    � Information Security 

� Operating Systems    � Compiling Principle 

� Computer Graphics    � Software Engineering 

� Software Testing     � Software Safety 

� Ensuring Software Reliability and its Integrity 
 
2. Do you have any other professional experience relevant to software engineering? 
 
3. Why did you take the course and what would you most like to get out of the course? 

 
4. What research are you working on? 
 
5. What is recursion? (Please darken the correct option) 

� A function issues a call to itself   
� A function is repetitively called in an application 
� An array with infinite number of elements 
� Other (Please Specify): _______________________________________ 

 
6. (a) Which is the fastest sorting algorithm? (Please darken the correct option) 

� Quick sort  � Insertion sort � Bubble sort � Heap sort � Merge sort 
� Selection sort  � Shell sort  � Bin sort (bucket sort) 
� Other (Please Specify): _______________________________________ 
 
(b) Order these sorting algorithms. 
 

7. What is a function point? (Please darken the correct option) 
o It is the main objective of a function as specified in the software requirements 

specification 
o It is the metric that represents a function’s contribution in LOC to the net SLOC. It is 

expressed as a fraction of the net SLOC. 
o It is a measure of the size of computer applications and the projects that build them. 

The size is measured from a functional, or user, point of view. 
o None of the above. 

 
8. What is Cause-Effect Graphing technique? (Please darken the correct option) 
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o It is a black-box testing technique that was originally proposed to generate test cases 
by transforming a natural language SRS into an acyclic Boolean logic network 

o It is a software reliability measurement that aids in identifying requirements that are 
incomplete and ambiguous. 

o It is a computer graphic technique used to render photographic-quality, realistic 
images 

o None of the above 
 

9. Which of the following computer languages have you had experience with? What is your 
level of expertise?  

� I have NOT used any of these ever. 

� I have used the following: 
 

Language Experience(months) Expertise Scale (1 -10)  
(10 is for the strongest level) 

C   
C++   
VB   
Java   
SQL   
JSP 
ASP 

  
 

HTML   
PHP   
Perl   

other:   
 

 
10. Please darken testing techniques that you have ever learned/used. 

o Data Flow Testing 
o Control Flow Testing 
o Loop Testing 
o Domain Testing 
o Boundary Testing. 
o Transaction Flow Testing 
o Code Walk-through 
o Code Inspection 
o Compatibility Testing 
o Configuration Testing 
o Localization Testing 
o Stress Testing 
o Performance Testing 
o Verification & Validation 
o Peer review 
o Decision table testing (Cause-effect graphing testing) 
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Appendix F: Postmortem Questionnaire Used in Experiment D (to assess 

usability of the A-CEG Construction Rules set) 

 

Your Name: _____________________ 

 

(Please tick the blank most closely corresponding to your feelings on the statements below) 

Q. 1: “The CEG technique is useful for me to understand the SRS” (Usefulness) 

� Strongly Agree  � Agree  � Neither Agree nor Disagree  � Disagree   � Strongly Disagree 

 

Q 2: “The CEG technique is very easy, and simple to use” (Ease of Use) 

� Strongly Agree  � Agree  � Neither Agree nor Disagree  � Disagree   � Strongly Disagree 

 

Q 3: “I learned to use the CEG technique quickly” (Ease of Learning) 

� Strongly Agree  � Agree  � Neither Agree nor Disagree  � Disagree   � Strongly Disagree 

 

Q 4: “I am satisfied with the CEG technique” (Satisfaction) 

� Very good  � Good   � Fair   � Bad   � Terrible 

 

Q 5: What is your general impression of the CEG technique? (In general) 

� Very good  � Good   � Fair   � Bad   � Terrible 

 

(Please describe your answers to the below questions) 

Q 6: What are the strengths and weaknesses of the CEG technique that you were assigned. 

 

Q 7: What in particular do you like or dislike about the CEG technique? Do you have other 

comments or suggestions that can help us improve the CEG techniques? 

 

Q 8: In your opinion, under what circumstances and to what extent the assigned technique has 

the advantages as an A-CEG construction technique, and under what circumstances and to 

what extent the technique has the disadvantages, why? 

 

Q 9: What are the problems that you found when using the technique? 
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Glossary 
 

 

A-CEG  Actually-implemented Cause-Effect Graph 

B-CEG  Benchmark Cause-Effect Graph 

BDD  Binary Decision Diagram 

CEG  Cause-Effect Graph 

CEGA  Cause-Effect Graphing Analysis 

CMM  Capability Maturity Model 

CMMI  Capability Maturity Model Integration 

DD  Defect Density measurement 

DoD  Department of Defense 

FDN  Fault-Days Number measurement 

FN  False Negative 

FP  False Positive 

MIS  Management Information System 

O-CEG  Oracle Cause-Effect Graph 

PACS  Personal Access Control System 

ROBDD  Reduced Ordered Binary Decision Diagram 

RSCR  Requirements Specifications Change Request measurement  

RT  Requirements Traceability measurement 

SRS  Software Requirements Specifications 

TN  True Negative 

TP  True Positive 

UML  Unified Modeling Language 

V&V  Verification & Validation 
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