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1. Introduction

This paper develops a new approach for the study of generalized stability of parametrized
families of matrices or polynomials. The matrix case is emphasized in the exposition.

Generalized stability [V] of a matrix (resp. polynomial) entails that its eigenvalues
(resp. zeros) lie in a prespecified domain of the complex plane. The classical stability re-
quirements result upon defining the domain of interest as the open left half complex plane
(continuous-time case) or the open unit disk (discrete-time case). Practical considerations
relating to damping ratio, bandwidth, vehicle handling qualities, etc., are commonly ex-
pressed in terms of the generalized stability formulation, with respect to a suitable domain
in the complex plane.

The problem of obtaining necessary and sufficient conditions for the Hurwitz stability
of polytopes of matrices or polynomials has recently been considered by several authors
(see for instance [BD]). This research direction was inspired largely by Kharitonov [K],
who studied Hurwitz stability of families of real polynomials with uncertain coeflicients.
Specifically, he studied “interval polynomial” families, i.e., families of polynomials with
coeflicients belonging to fixed compact intervals of the real line. He showed that the
Hurwitz stability of such a family of polynomials is equivalent to that of four distinguished
“corner polynomials.” Bartlett, Hollot and Lin [BHL] showed that, in the case of an
arbitrary polytope of polynomials, it suffices to check the edges (The Edge Theorem).
These strong results do not hold however for polytopes of matrices. For the case of Hurwitz
stability of the convex hull of two real matrices or polynomials, necessary and sufficient
conditions have been obtained by Bialas [B1] and, in subsequent independent work, by Fu
and Barmish [FB1]. Very recently, the case of one- and two-parameter families of matrices
was resolved for several specific domains of the complex plane [GT], [VT], [STA].

In this paper, we introduce and apply to the generalized stability of parametrized
families problem the concepts of “guardian map” and “semiguardian map” for sets of
matrices or polynomials. These notions allow one to replace the question at hand with
that of whether or not the guardian map is nonzero for all members of the family (this
key fact is proved in Section 3). These concepts are closely related to work of Gutman

[G2] and Gutman and Jury [GJ] on root clustering in domains of the complex plane. The
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notion of “critical constraints,” used in examples in [G2], is similar in spirit to the idea of

guardian maps.

Necessary and sufficient conditions are given for stability of one-parameter families
relative to domains for which the set of generalized stable matrices is endowed with either a
guardian or semiguardian polynomial map. In particular, the technique yields conditions
for Hurwitz and Schur (i.e., discrete-time) stability of the convex hull of two matrices
or polynomials. Combined with the Edge Theorem, it solves the problem of generalized
stability of arbitrary polytopes of polynomials.

For the two-parameter case, we consider stability of families of matrices relative to
domains to which we can associate a polynomial guardian map. The first step replaces the
two-parameter problem by a one-parameter stability problem relative to a new domain.
The second step employs a polynomial semiguardian map associated with the new domain
to obtain necessary and sufficient conditions for stability.

The paper is organized as follows. Section 2 establishes notation and provides requisite
background material. The concepts of guardian and semiguardian maps are introduced
in Section 3. Two basic results and several examples are also presented there. These
results are applied to one- and two-parameter families of matrices in Section 4 and Sec-
tion 5 , respectively. In Section 6, a systematic procedure for constructing guardian and
semiguardian maps is presented for problems of stability relative to domains with polyno-
mial boundaries. In Section 7, some applications of the techniques are presented. Finally,

concluding remarks are given in Section 8.
2. Preliminaries

This section begins by establishing notation, and proceeds to a brief discussion of relevant

background material from algebra.
2.1. Notation
Arg(s): Argument of the complex number s

(%’ _ ((E'.;.): Open left-half (right-half) complex plane
D¢: Complement of set D



D: Closure of set D

0D: Boundary of set D

int(D): Interior of set D

I,,: Identity matrix of dimension n (also denoted I when n is clear from the context)

Ai(A): Eigenvalue of matrix A

o(A): Eigenvalues of matrix 4 (counting multiplicities)

Z(p): Zeros of polynomial p (counting multiplicities)

p': Derivative of polynomial p

det(A): Determinant of matrix A

2: Generic open subset of €, symmetric about the real line

= @'\ [0,1]

0: @ \[1,00)

Pn: Set of all real polynomials of degree at most n.

S.(D): Set of all n x n real matrices with spectrum inside D C €. §,() is also
used to denote the set of all real polynomials of degree n with zeros
inside D. (Sometimes denoted S(D) when n is clear from the context.)

®, ®: Kronecker product, Kronecker sum

A6 B: A®(—-B)

A . B: Bialternate product of A and B (see Section 2.2)

Al: Schlafiian form of order 2 of matrix A (“Upper Schliflian”; see Section 2.2)

Ajg): Infinitesimal version of Al (“Lower Schliflian”; see Section 2.2)

2.2. Some Algebraic Tools

Kronecker product and sum

Given square matrices A and B having dimension n; and ns, respectively, the Kronecker

product (e.g. [B3]) of A and B, denoted A ® B, is the square nyny-dimensional matrix

whose 35" ny x ny block-entry is given by a;;B. The Kronecker sum A® B of A and B

is the njny-dimensional matrix A ® I, + I,, ® B. Note that A @ A is linear in A.

The eigenvalues of A® B and A® B consist of the nyn, products A;(A)A;(B) and ning

sums A;(A) + X;(B), respectively, over all ordered pairs (¢,7), 1 =1,...,n1, 7 =1,...,n.
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In fact, this is simply a special case of the following more general result. Let p be a complex
polynomial in the variables z; and z2, given by

i+j=N

p(z1,22) = Z P:‘jﬂm%, (1)

1,7=0
and consider the associated function of two complex square matrices A and B

i+j=N ' )
P(A,B) := Z pi; A' ® BY. (2)
£,j=0
Lemma 1. (Stéphanos[S3]). With the notation above, the eigenvalues of P(A, B) consist
of the nyng values p(A;(4), \j(B)) over all possible (ordered) pairs (7,7), ¢ =1,...,n1, j =

1,...,n2.

Schléflian forms

The Schliflian forms,? discussed next, have spectral properties akin to those of the Kro-
necker product and sum with the advantage of reduced dimensionality. Let z = (z4,...,
z,)T and p > 2 be an integer. Denote by z!?! the N;-dimensional vector (N, := (1)

P
formed by the lexicographic listing of all linearly independent terms of the form

n
it zh? .. abn, Zp,-:p, pi>0,1=1,...,n. (3)

=1
For a given n X n matrix A, the associated (upper) Schliflian matriz of order p (e.g., [A2],
[B4], [BZ]), denoted Al?l, is the Np-dimensional square matrix defined by the implicit

relationship
(A2)P = APl vz e R™. (4)

The related form Ay, (the “lower Schléflian matrix”) is defined as follows. Consider
the equation # = Ax for £ € IR". Then Ay, is defined as the coefficient matrix in the
equation

dzPl

2 These are also referred to as power transformations [BZ].
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It can be shown that Ay is the directional derivative of Al along the direction I, [B4].
As such, Apy is linear in A.

The next result is essentially the same as results in [B4] and [BZ).
Lemma 2. The eigenvalues of Ap, (resp. AlPl) consist of the N]' sums (products) over

distinct unordered multiindices of the form

Xiy(A) + -+ Xi, (A)  (resp. Aiy(4) x -+ x A;, (4)). (6)

In contrast, recall that the eigenvalues of the Kronecker sum A @ A consist of the

n? sums A;(A) + A\;(A) over ordered pairs (z,7). In the light of Lemma 2, it is clear that

o(A®A) = o(A[z)) (not counting multiplicities). Hence the n(n2+1) X n("2+1) lower Schlaflian
matrix Az may be viewed as a redundancy-free version of the n? x n? matrix A® A, as far
as the eigenvalues are concerned. Because of this, Aj5) may be used to advantage, instead
of A ® A, in the application of some of the results presented in the sequel. A similar
statement clearly holds for A2l vs. A ® A.

Bialternate product

Let A and B be n x n matrices. To introduce the bialternate product of A and B, we
first establish some notation. Let V" be the %n(n — 1)-tuple consisting of pairs of integers
(p,q9), p=2,3,...,n, ¢g=1,...,p— 1, listed lexicographically. That is,
V*=1[(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),...... ,(nyn —1)]. (7)
Denote by V;* the it entry of V™. Denote
1 Gpr Qpg b b
: == " det | P7 P¢ 8
P ino) = (de [ g o] e [ 2r e ®

where the dependence of f on A and B is kept implicit for simplicity. The bialternate
product of A and B (e.g., [F], [GJ], [M]), denoted A B, is a £n(n — 1)-dimensional square

matrix whose i5'! entry is given by?!

(A-B)ij = f (V" V]). (9)

! As far as the properties discussed below are concerned, the particular ordering of V"

is immaterial. In the literature, it is typically left unspecified ([F], [G2] and [GJ]).

6



Define

T(A,A) =) AP - A, (10)
Pq
and denote the eigenvalues of the n x n matrix A by Ay,..., An.

Lemma 3. (Stéphanos [S3]). With the notation above, the eigenvalues of ¥(A, A) are the

zn(n — 1) values

B(Ai, Ay) 1= %Zz/)pq(/\f,\§+/\?)\§? L i=2..msi=1...i-1 (1)

p,q

For example, if A is 3 x 3 then o(A - A) = {\; A2, \123, A223}. In contrast, note that in
this case 0(A ® A) = {23, M1 A2, A1 A3, Aa A1, A2, Aads, Ashr, As e, A2}. As another example,
it is easily checked (e.g. [G2], [GJ]) that if

Q(A) = (A2 - T— A A) (12)

for an n X n matrix A with eigenvalues A;,..., An, then

a(@(A))={(A1‘2A2> ,...,01—2%)2,02—2As)2m<Az—2An)2,_“,(xn_12—xn>2}_

(13)
The Bezoutian

Given any polynomial a(s) = ans™ + --- + a18 + ag, an # 0, define the polynomial a(s) :=

s"a(s71) =aps" 4+ -+ + an_15 + a, and the matrix

ay as . . . an'
as . R 0
S@:=1|_ . (14)
. a, - - . .
la, 0 . . . 0

The Bezoutian B(a,b) of two polynomials a and b may then be expressed as the n x n

matrix, n being the largest of the degrees of a and b, given by

B(a,b) := S(a)S(b)P — S(b)S(a)P, (15)
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where P is a certain permutation matrix [LT].

Our interest in the Bezoutian stems from the following result.
Lemma 4. The polynomials a(s) and b(s) have no common zeros if and only if the asso-

ciated Bezoutian B(a, b) (or, equivalently, the matrix S(a)S(d) — S(5)S(&)) is nonsingular.

The same result holds if instead of the Bezoutian, the resultant (or Sylvester) matrix,

which has dimension 2n, is used [LT] (see also [AS]).
3. Guardian and Semiguardian Maps

In this section, the concepts of guardian and semiguardian maps are introduced. These

concepts play a key role in subsequent developments. Several examples are presented.
3.1. Guardian Maps

The definition of guardian maps given next has been formulated with a view toward prob-
lems more general than the generalized stability issues considered in this paper. (See e.g.
Example 3.6 below.) For the purposes of this paper, the set S of Definition 1 will usually
be of the form S(2), where

S(Q)={Ae€IR"":0(A) C Q} (16)
for matrix stability problems, and
S ={pePn:Z(p)C} (17)

for polynomial stability problems. Here, €2 is an open subset of the complex plane. Such

sets S(§2) will be referred to as (generalized) stability sets.

Definition 1. Let X’ be the set of all n x n square real (complex) matrices, or the set of
all polynomials of degree at most n with real (complex) coeflicients, and let S be an open

subset of X. Let v map X into €. We say that v guards S if for all z € S, the equivalence
t€dS < v(z)=0 (18)

holds. In this case, we also say that v is a guardian map for S.
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Proposition 1 below will be used in subsequent sections to tackle the stability problem
for parametrized families of matrices or polynomials relative to domains of the complex
plane corresponding to guarded stability sets. Let r = (ry,...,7%) € U, where U is a
pathwise connected subset of IR¥, and let z(r) be a matrix or polynomial in X which
depends continuously on the parameter vector r. Given an open subset S of X', we seek

basic conditions for z(r) to lie within § for all values of r in U.

Proposition 1. Let S be guarded by the map v and assume that z(r®) € § for some
r® € U. Then

z(r) €S forallreU < v(z(r)) #0 forallrel. (19)

Proof. Suppose that z(r!) ¢ S for some r! € U. By virtue of the pathwise connectedness
of U, there exists a curve {r(t) : t € [to,1]} within U, such that r(¢) = r® and r(t;) = r'.
Now consider z(r(t)) as t increases from tp. Since z(r®) € S, it follows that there is a
t* € (to,t1] such that

z(r(t*)) € 0S.

This implies that there is an r* € U (namely r* = r(¢*)) such that
z(r*) € 0S.

Since v guards S, we conclude that

v(z(r*)) = 0.
This proves sufficiency. Necessity follows from the openness and guardedness of S.

O
3.2. Semiguardian Maps

The following generalization of the concept of guardian maps will prove useful in the

development to follow.

Definition 2. Let & and v be as in Definition 1. The map v is said to be semiguarding

for S if, for all z € S, the implication
zedS = v(z)=0 (20)
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holds. In this case, we also say that v is a semiguardian map for S. An element z € S for

which v(z) = 0 is said to be a blind spot for (v,S).

In the light of Definition 1 and 2, a guardian map for a given set S is simply a semiguardian

map for which the corresponding set of blind spots is empty.

The next proposition is the analogue of Proposition 1 for semiguarded sets of matrices
or polynomials, the main difference being that, in this case, the blind spots must be taken
into account. The result will prove useful in the study of two-parameter problems in
Section 5, and is intended also for sets for which only a semiguardian map is known.

Proposition 2. Let S be semiguarded by v and assume that z(r®) € S for some r* € U.

Then the equivalence

z(r)eS forallrelU <« =z(r)eS forallrel, (21)

holds, where
Ug:={reU: v(z(r)) =0}. (22)

Proof. Similar to that of Proposition 1.

Proposition 2 implies that for the infinite family of real matrices or polynomials
{z(r) : r € U} to be stable relative to £, it suffices to check that the family {z(r) : r € Ue,}
is stable. In other words, to establish that the family {z(r) : r € U} is stable relative to
§2, one has to ensure that ¥(A(r)) = 0 corresponds to the family “hitting” the blind spots
and not dS({2). In cases where Uy, is a finite set, Proposition 2 therefore provides a tool

for asserting the stability of the family {z(r) : r € U}.

Remark 3.1. The assumption z(r®) € S for some r® € U appearing in Proposition 2 is,

strictly speaking, required only in the case U, = 0.

Remark 3.2. For some sets S, the semiguardian map v factors as v = v v, where vo(z) =0
implies z ¢ S (see Example 3.9 and Proposition 7). In this situation, the set U, in the
Proposition above may be replaced by UL, := {r € U : v1(z(r)) = 0}, with the requirement
that the set U2 := {r ¢ U : v(2(r)) = 0} be empty.

3.3. Ezamples
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We now give some examples of guardian and semiguardian maps and the associated
guarded and semiguarded sets of matrices or polynomials. The number of examples given
is justified by the important role each plays in the development to follow. Before proceed-
ing with the examples, we point out that for every guardian or semiguardian map for the
matrix case there are corresponding maps for the polynomial case, and vice versa. For
instance, note that a family of polynomials may be viewed as characteristic polynomials
of an associated family of companion matrices. Similarly, stability of a family of matrices

may be reformulated in terms of the associated family of characteristic polynomials.

Ezample 8.1. The map v: A+ det(A) guards the set of nonsingular matrices; similarly,

v: p+ p(0) guards the set of all polynomials that do not vanish at zero.

The next two examples provide the simplest useful illustrations of the concept of
guardian map: both the set of Hurwitz stable matrices (or polynomials) and the set of

Schur stable matrices (or polynomials) are guarded.

Ezample 3.2. The map v: A +— det (A @ A) guards the set of n x n Hurwitz stable

matrices S(C_). This follows from the property that the spectrum of A @ A consists of all

pairwise sums of eigenvalues of A (see Section 2). Another such guardian map v is given

by v(A) = det (Ajg)). Note that each of these maps guards S ((E’+) as well. Similarly, the

set of Hurwitz stable real polynomials of the form

p(8) = ans™ +an_18" M+ -+ ays+ap (23)

is guarded by the map v : p — detH(p) where H(p) is the Hurwitz matrix associated with
p and is given by

Gpn-1 QGn-3 QAan-5 01
Gn  Gpn-2 Gn_g4 0
0 dn—-1 Q4p-3 0
H(p) = 0 an  Gp_2 0 (24)
0 . . . . az o 0
L 0 as agp J
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This follows from Orlando’s formula [G1], [B1]:

dati(p) = (-1 (3) ar™ ] (o) (25)

1<i<k<n

where z1,...,z, are the zeros of p(s).

Ezample 3.3. Themap v: A +— det (A® A — I ® I) guards the set of Schur stable
matrices, i.e., of matrices with eigenvalues in in the open unit disk. Another guardian map
for this set is given by v(A) = det (Al — I?1). Here too, both maps guard the generalized
stability set corresponding to the outside of the unit disk. Similarly, a guardian map for

the set of Schur stable real polynomials of the form (23) can be readily obtained from
results in [JP], [AB]: Define the (n — 1) x (n — 1) matrix D(p) by

0p  Qp-1 Gp-2 . . as G2 — Qg
0 dn Qn_1 . . as — do as — aj
D(p) = : (26)
0 —ao —ap -+ QGp —AQp—4 QAp—_3 —0p-3
L — Q9 —ai —da9g N —ap—3 Ap — Ap2 J

Then we have the following expression for detD(p):

detD(p) = [] (1 — zize). (27)
k=1

i<k

Clearly, detD(p) vanishes whenever p has a pair of conjuguate eigenvalues on the unit
circle. Note however that detD(p) does not necessarily vanish if p only has 1 (or —1)
as eigenvalue. Taking this into account, we conclude that the set of Schur stable real
polynomials is guarded by v : p — p(1)p(—1)detD(p).

In the next two examples we exhibit guardian maps for sets of matrices having all

their eigenvalues in the domains depicted in Fig. 1 and Fig. 2.

Ezample 8.4. Given 8 > 0, themap v: A — det [(A+iBI) 6 (A —iBI)] guards S(QP)
where Q7 := {s: |Sm(s)| < B}. Indeed, ¥(A) = 0 if and only if A has two eigenvalues
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A =z + iy, and XAy = z + 1y2 such that y; — y; = 28. Therefore, if 4 € E(T)ﬂ_) then
v(A) = 0 if and only if A has some eigenvalues on 904, i.e., A € dS(QP).

Ezample 3.5. Given 6y € [+5,7), v: A det (¢! A6 e % A) guards §(Qy,) where
{24, is the sector given by Qg, := {s: |Arg(s)| > 6p}. Again, v(4) = 0 if and only if A
has eigenvalues A\ = rre'®* &k = 1,2 such that rie®f1eifo — pyeif2e—ifo — 0, 1.e., if and
only if r; = r; and 6; — 6; = 26y (mod 27). Since 7 < 6 < m, this says that for all

A € §(R4,), v(A) = 0 if and only if A has at least one pair of eigenvalues on €, or a

[+]
single eigenvalue at 0. Note that Qg, = C_ for 6, = 5
As a final example of guardian maps, Example 3.6 below is of interest when assessing
“strict aperiodicity” of linear systems wherein the eigenvalues (poles) are real, negative

and distinct [J2], [J3]. It is also a building block for a semiguardian map to be considered

below.

Ezample 3.6. The map v: A+ det(A?-I— A- A) guards the set of all real matrices
having only algebraically simple eigenvalues; this follows directly from (11). Similarly,
it follows from Lemma 4 that the map v : p — detB(p,p') guards the set of all real
polynomials with only algebraically simple zeros. Using this, it can be seen that the map
v: A det(A? - T — A- A) det(A) (resp. v: p s detB(p,p') p(0)) guards the set of
strictly aperiodic matrices (resp. polynomials).

Our first examples of semiguardian maps are related to Examples 3.5 and 3.6. In
Section 6, we shall provide a systematic procedure for constructing “polynomic” guardian
and semiguardian maps for stability sets corresponding to a large class of domains in the

complex plane (boundaries of which are defined by polynomials).

Ezample $.7. Given >0 and @ = {s: |Sm(s)| > B}, the set S,() is not guarded
by v: A det [(A+i8I)© (A —ifI)]if n > 3. Indeed, for n > 3, one can easily
construct a matrix A € S(2) with a pair of eigenvalues A\; = z + iy;, Ay = z + 1y9 such
that yo —y; = 2. Clearly, this cannot be done if n < 3, and Sn(Q) is guarded by v for
n = 2,3. However, for any n, v is a semiguardian map for S,(Q) and any matrix having

the eigenvalues A1, A above is a blind spot for (v, S,(Q)).

Ezample 3.8. For 6y € (Z,7), let the interior of the complement of the sector Qg
2 0
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be denoted by @ = {s : | Arg (s)] < 6p}. Again the set S§,(Q) is not guarded by
v: A det (40 e %A) for any n > 2. Indeed, if A € S() has eigenvalues
e'® and e~ where § = 1 — 6, < 6o, then one eigenvalue of e A4 0e 1A s given by
e'feil _ em0e=i0 — i _ ¢~ — () implying v(A4) = 0 although A is a stable matrix.
Here as in the previous example, v is a semiguardian map for S,,(Q2), for any n. The set
of blind spots includes any matrix with at least one eigenvalue in the mirror image (w.r.t.
the imaginary axis) of 0Q \ {0} (dashed lines in Fig. 3).

Our final example will be used in the study of two-parameter families of matrices or

polynomials.

Ezample 8.9. Let a, B be finite real numbers, with o # 3, and let  := €'\ [@, 8]. Then
the set of stable matrices §(2) is semiguarded by the map

vi A det (A2-1— A- A)det (A — al)(A — BI)). (28)
For = @'\ (—o0, f], S(Q) is semiguarded by the map
v: A det (A T~ A A)det(A - BI). (28)

This can be seen by referring back to Example 3.6 and noting that S(€'\ IR) is semiguarded
byv: A det (A2-T—A. A) . In the case of polynomials, analogous semiguardian maps
are given by

v: p+ detB(p,p') p(a)p(B). (30)

and

v: pr detB(p,p') p(B), (31)

respectively. Similar expressions based on the polynomial resultant [LT]| may also be used
as semiguardian maps. In all these cases, the blind spots include any matrix (polynomial)
having at least one multiple eigenvalue (zero) off the real axis.

In the sequel, to highlight the stability aspect of this work we choose to focus on the
case of stability sets S(Q2), with the understanding that the results hold in general. In
addition, for ease of exposition we discuss only the matrix case. The development can be

carried out, mutatis mutandis, for the polynomial case.
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4. One-Parameter Families

In this section, we derive necessary and sufficient conditions for stability of a one-parameter

family of matrices

Alr)=Ao+rA1 4+ -+ 4Ap , (32)

r € [0,1],® relative to a given domain @ C €. In (32), Ak, k=1,...,m, are given n X n
real matrices. In the remainder of this section, the family {A(r) : r € [0,1]} is denoted
by A.

All guardian and semiguardian maps considered thus far are “polynomic,” in the sense
of the following definition.
Definition 3. A guardian map v is said to be polynomic if it is a polynomial function of

the entries (matrix case) or coefficients (polynomial case) of its argument.

The case in which a polynomic guardian map for S(f2) is available is considered first.

We then consider the case in which only a polynomic semiguardian map is available.

4.1. Polynomic Guardian Maps

Let v be a polynomic guardian map for §(2). Then v(A(r)) is a polynomial in . From
Proposition 1, it follows that the family A is stable relative to 2 if and only if (i) Ao is
stable relative to Q (i.e., A9 € S(2)), and (ii) the univariate polynomial v(A(r)) has no
zeros in [0,1]. In other words, if S(R?) is guarded by v and A(0) € S(§2) then a necessary
and sufficient condition for the family A to be stable relative to §2 is that the polynomial
v(A(r)) be stable relative to =. In such situations, it therefore suffices to merely check
that a scalar polynomial has no zeros in a certain interval; this can be done using a finite
algorithm based on Sturm sequences (see e.g. [J1]).

The necessary and sufficient condition given above assumes availability of a guardian
map v(A) explicitly in the form of a polynomial in the entries of A. However, examples

considered in Section 3, as well as results on a class of domains considered in Section 6,

3 In fact, the discussion applies for r constrained to lie in any interval (not necessarily

compact).
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show that guardian and semiguardian maps often occur in the form
v(A) = det F(A) (33)

where F is a polynomial mapping on IR"*". A necessary and sufficient condition analogous
to the one above, but not requiring expansion of the determinant (33), is now formulated.

With A(r) as in Eq. (32), we may write

q

F(A(r) = Z riFi(Ag,...,Am) (34)
Note that
Fo(Aoy. .. Am) = F(A). (35)

In the sequel, F; denotes Fi(Ao, ooy Am) for 1=0,1,...,q.

Theorem 1. Let S(Q) be guarded by a map v of the form (33), and let A9 € S(€2). Then
A(r) € 8(Q) for all r € [0,1] if and only if M(Ag,...,An) € S(O) where © = €'\ [1,00)

and
0 I 0
M(Ao,....,An)=| = ‘ 36
(Ao ) g I (36)
My . . . —M;,
with
M; = F;'F,_;, i=0,...,q—1 (37)
if ¢ > 2, and
M(Ao,...,Am) = —F; 'Fy (38)

Proof. From Proposition 1, we have A(r) € §(Q) for all r € [0,1] if and only if
v(A(r)) # 0 for all r € [0, 1]. (39)

Since 4y € 8(f) and v guards S(), it follows that v(Ay) = detF(Ao) # 0. Therefore Fy
is invertible. Thus (33) and (34) imply

I/(A(T‘)) = det F() det(I + ’I"Mq_l + .-+ T‘qMO ) (40)
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This implies that v(A(r)) is nonvanishing for all r € [0, 1] if and only if
xX(p) ==det( pdI + p? 'My_y + ...+ uMy + My) #0 (41)

for all p € [1,00), where px := 1. Since x(u) is the characteristic polynomial of M(A,y,...
yAm) if ¢ > 1 (also of —M,_, if ¢ = 1), we have that A(r) € S(Q) for all r € [0,1], if
and only if M(4o,...,Amn) has no eigenvalues in [1, o).
O
Stability of the matrix M (Ao, ..., An) relative to © is therefore necessary and suffi-
cient for stability of the family A relative to the guarded set S(Q).

4.2. Polynomic Semiguardian Maps

Let v be a semiguardian map for S(Q2) and assume that 4(0) € S(Q). From Proposition 2,
we have that the family A is stable relative to Q if and only if A(r) € S(Q) for all r € U,
where U.; is the set of zeros of the polynomial v(A(r)) belonging to [0, 1].

For semiguardian maps of the form (33), if the matrix M (Ao, ..., Ap) is well-defined,
the condition M (A,,... ,Am) € S(©) of Section 4.1 remains sufficient for stability of
the family A, but is no longer necessary. The test is inconclusive if M (Ao,.. . ,Am)
has an eigenvalue in [1,00). Suppose that v(4g) = detF(Ap) # 0. Then the matrix

M(Ao,...,Am) given by (36) (or (38)) is well defined. Define the critical subset of the
spectrum of M(Ao, ceey Am) by

Ser 1= o(M(Ao, ..., Am)) N [1,00). (42)

If Zer is nonempty, denote it by {p1,. .., pue}. Since p = 1, theset Ug = {r € [0,1] : v(A(r)) =
0} will then be given by {u7",...,u;'}. Proposition 2 now yields the following.

Theorem 2. Let S(Q2) be semiguarded by a map v of the form (33), and let v(4y) # 0.
X =0,ie, M(Ag,...,A,) has no eigenvalues in [1,00), then the family A is stable

relative to § if and only if Ay € §(Q). If, however, S¢; = {1, ..., pe} # 0, then the family
A is stable relative to  if and only if

AT es), i=1,...,¢ (43)
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Remark 4.1. A result analogous to Theorem 2 may be obtained with v a polynomial map
rather than being specifically of the form (33). The companion matrix associated with
the scalar polynomial v(A(r)) then plays the role of M (Ao, ... ,Am), and the assumption
v(Ap) # 0 is then no longer relevant.

The results above may be applied to the special case of generalized stability of the
convex hull of two matrices or polynomials. Combined with Edge Theorem [BHL], these
results therefore provide a solution to the generalized stability of a polytope of polynomials.
The special case of Hurwitz and Schur stability of the convex hull of two matrices or

polynomials is presented next.

4.3. Hurwitz and Schur Stability of the Conver Hull

of Two Matrices or Polynomaals

As applications of Theorem 1, we consider Hurwitz and Schur stability of the convex hull
of two real matrices. For the former problem, a known result is obtained [B1], [FB1].
Given two n X n real matrices Ag and Aj, the convex hull co(A4p, A1) of Ay and A,

consists of the matrices

Alry=(1—-r)As +r4y
= Ao + (A1 — Ao),
for r € [0,1].

Hurwitz stability

Let © = @'_ and recall that S(f) is guarded by v : A +— detF(A), where F(A) may
denote either Ap; or A @ A.

Corollary 1. Let A9 be Hurwitz stable. Then co(Ay, A;) is Hurwitz stable if and only if
F~1(Ao)F (A1) has no eigenvalues in (—o0,0]. Here, F(A) can denote either Ay or A@ A.
Proof. Since F is linear,
v(A(r)) = det F(Ap + (A1 — Ao))
= det (F(Ao) + rF(A1 — Ao)).

Hence Fy = F(Aoy) and Fy = F(A; — Ap), in the notation of Theorem 1. Applying
Theorem 1 with ¢ = 1 yields that co(Ao, A1) is Hurwitz if and only if M(Ag, 41 — Ap) =
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—F 1 (Ao)F(A1 — Ao) € S(O), i.e., has no eigenvalue in the interval [1,00). Finally,
—Fo ' F(A1 — Ao) = I — F~Y(Ao)F (A1), and the result follows.

0

The analogue of Corollary 1 for the case of the convex hull of two polynomials py and p;

([B1, Theorem 1], [FB1, Theorem 3.1]) follows along the same lines, from Example 3.2.

Corollary 2. Let py be Hurwitz stable. Then co(py,p;) is Hurwitz stable if and only if
the n x n matrix H~'(po)H(p1) has no eigenvalues in (—o00,0]. Here, H(p) denotes the

Hurwitz matrix associated with the polynomial p.

Discrete-time (Schur) stability

Let €} be the open unit disk. From Example 3.3, S(Q) is guarded by v : A — detF(A)
where F(A) may be taken as either AQ A — I ® I or A2 — I, Although the latter map
is preferable from a computational point of view, the former is used here for notational

convenience. Denoting A; — Ay by A, we have that
F(A(r)) = F(Ao +r4;)
=(A0®A))—I@I+r [Ao®f11 + A ®Ao] +r?h @ 4

=: Fy+rF +r’F,. (44)

We now apply Theorem 1 with Fy, F} and F, as in Eq. (44) and A; identified with A,.

Corollary 3. Let all the eigenvalues of Ay have magnitude less than 1. Then the same
is true for any matrix in co(Ao, 41) if and only if M (Ao, 4;) has no eigenvalues in [1, 00),

where

0 I

M(AOa Al) = _F0—1F2 —Fo_lFl

(45)

and Fy, F1 and F; are as in (44).

A similar result ([AB]) for the case of Schur stability of the convex hull of two polynomials
co(po, p1) may be obtained using the map given in Example 3.3 and is given next. For a

proof, see [S1].
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Corollary 4. Let py and p; be Schur stable. Then co(po,p;1) is Schur stable if and only
if the matrix D~(py)D(p;) has no eigenvalues in (—o0,0). Here, the matrix D(p) is the
one defined by (26).

5. Two-Parameter Families

In this section, we consider stability of two-parameter families of real matrices relative
to a domain 2 for which §(f2) is endowed with a polynomic guardian map vq, which
we assume to be real valued.* The matrices we study, denoted A(r;,r2), are polynomic
functions of the parameters 1,72 which are taken to lie in [0,1].> Since both v and
A(r1,72) are polynomic in their arguments, we may express vq(A(r;,72)) in the form of a

bivariate polynomial, vo(ry,r2), viz.

va(ri,rz) i=va(A(r1,m2)) = Z Z Vi i1 TS (46)
11—-0 12—-0
Assume that A(0,0) € S(§2). Proposition 1 then implies that A(r1,r2) € S(Q) for all
T1, T2 € [0,1] precisely when

va(ri,r2)#0  for all (ry,7m2) € [0,1] x [0,1]. (47)

Note that vo(ry,r2) is not identically zero, as vg g = v(A4(0,0)) # 0 since 4(0,0) € S(Q)
and since S(Q) is guarded by vg.

In view of condition (47), the generalized stability problem being considered is re-
ducible to a positivity question (e.g., [B2]) which can be addressed using work of [WZ],
[AS]. This approach was recently taken in [GT] and [VT}, in addressing the two-parameter
generalized stability problem relative to several specific domains.

Notwithstanding the amenability of the problem at hand to solution by positivity

methods, we now consider this problem using semiguardian maps. This calculation is given

* All of the examples considered thus far are of this type. In the cases of Examples 3.4

and 3.5, real guardian maps can be obtained using results of Section 6.
5 More general intervals may be considered.
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because it leads one to consider the issue of guardedness of approzimations of S(Z) (only
a polynomic semiguardian map is known for S(E)), which is anticipated to be important
in multiparameter problems.

The bivariate polynomial vg(r;,r2) can be rewritten in the form of a univariate poly-

nomial in, say rq, viz.
va(ri,r2) = ap(r1) + aa(ri)rs + -+ + as—1(r1 Yr2®2 ™l 4 g, (r1)r2*? (48)

where each coefficient a;(r;), ¢ = 0,...,s2 is a polynomial in r;. Denote by p, the
polynomial in r, resulting upon fixing r; in (48). The bivariate polynomial vq(ry,72) does

not vanish for any ry, ro € [0,1] if and only if
pr, € S(E) for each ry € [0, 1]. (49)

Consequently, a generalized stability question for a two-parameter family of matrices has
been reduced to a similar question for a related one-parameter family of polynomials

relative to the specific domain =.

From Example 3.9, the map vz given by

vz(p) = detB(p, p') p(0)p(1) (50)

is semiguarding for §(Z). Letting v1(p), v2(p) denote det B(p, p') and p(0)p(1), respectively,
we obtain by combining Remark 3.2 and Proposition 2 that p,, € §(Z) for all r; € [0,1] if
and only if the polynomial py € S(Z), UL, = 0@ and

pr, € S(E) forall r, € UZ, (51)

where
Uer = {r1 €10,1]: v1(pr,) = 0}, (52)
U :={r1 €[0,1] : va(pr,) =0}, (33)

From (50), it is clear that v=(p,, ) is a polynomial in the parameter r{, which we

assume not to be identically zero. Thus the set U, := UL U U2 is finite. For the case
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in which U, is empty, we have, by Remark 3.1, that p,, € S(E) for all r; € [0,1] if and
only if py € S(Z). Hence, in the current setting, A is stable relative to 2 if and only if
po € S(Z). Suppose, on the other hand, that U2 = § and Ul =: {p1,..., e} where the
pi’s belong to [0,1]. Then the requirement that p,; € S(Z), i =1,...,¢ is necessary and
sufficient for stability of the family A relative to 2.

The following theorem summarizes the foregoing discussion.

Theorem 3. Let Q be a subset of the complex plane such that S(£2) is guarded by a given
real polynomic map vg. Let A := {A(ry,r2): (r1,72) € |a1, 1] X [@2, B2]} be a nominally
stable family of real matrices; e.g., A(a1,a2) € S(2). Then the family A is stable relative
to Q if and only if U2 = @ and the univariate polynomials pa,, and pr,, r1 € Ug,, have no

zeros in [aq, B2]. Here, for each r1, p,, denotes the univariate polynomial vq(A(r1,.)),
Ul :={r1 €[a1,p1]: detB(p,,,p},) =0}

and

Uz :={r1 € [o1,B1): pr,(02)pr,(B2) =0}.

6. Techniques for Constructing Guardian and Semiguardian Maps

6.1. Generating New Guarded and Semiguarded Sets from Known Ones

The next proposition states properties which provide means for the construction of new

domains from existing ones with the resulting generalized stability sets being guarded or

semiguarded.

Proposition 3. Let S, S; and S; be subsets of IR"™".

(1) Assume that S is guarded (resp. semiguarded) by v. Then —§ := {-A: A€ S} is
guarded (resp. semiguarded) by v_ : A — v(—A). In particular, if § = S(R), S(—Q)
is guarded by v_, where —§) := {~s: s € 2}.

(ii) Let S be guarded (resp. semiguarded) by v and let « € IR. Then S 4 ol :=
{A+al : A e S} is guarded (resp. semiguarded) by v(® : 4 +— v(A — o).
In particular, if S = S(R), S(2(®) is guarded (resp. semiguarded) by v{®), where
Q@) :={s+a: s€Q}.
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(iii) Let S be guarded (resp. semiguarded) by v and let p € IR\ {0}. Then pS :=
{pA: A € S} is guarded (resp. semiguarded) by v,: A+ u(%). In particular, if
S = 85(Q), S(pQ) is guarded (resp. semiguarded) by v,.

(iv) Let S; and S; be guarded (resp. semiguarded) by v, and ve, respectively. Then
81 N S is guarded (resp. semiguarded) by v: A — 1v1(4)r2(A). In particular, if
S1 = §(1) and S; = §(§,), then S(Q N Q2) is guarded (resp. semiguarded) by v.

The analogous statement holds for polynomials.

(v) Let S be guarded (resp. semiguarded) by v. Then any connected component of S is
guarded (resp. semiguarded) by v.

Since any convex domain (symmetric w.r.t. to the real axis, symmetric for short) with
polygonal boundary may be generated from the two basic domains Q? and Qy, using the

basic operations in Proposition 3, we have the following subsidiary result.

Proposition 4. Let  be any (symmetric) convex domain with polygonal boundary.
Then S(f2) is guarded by a polynomic map. Moreover, Proposition 3 can be used to

construct a guardian map.
6.2. Domains with Polynomial Boundary

In this section, we construct guardian and semiguardian maps for generalized stability sets
corresponding to a whole class of domains of the complex plane. Specifically, we consider
domains whose boundaries are given by a polynomial equations p(z,y) = 0 where z and y
denote real and imaginary parts, respectively.

Denote

Q={s=za+iy: p(z,y)<0}

where

plz,y) = Y prexty®, (54)
[,

is a real polynomial. The fact that we focus on real matrices is accounted for by considering
polynomials containing only even powers of y. Thus only domains symmetric w.r.t. the

real axis are considered.
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Associate with p the real valued polynomial

< A+ A=A
AMNA)=p| ——

=5 pre(-1)* (E)W(AM)’“(A—W
. Pke 5 .

Rewrite (55) as
g\, ) = qug/\k/—\f
k£

where the coefficients g, are real.

With this notation, { and 9 have the alternative expressions
Q={eC: g <0}
={ el : g\ =0}
Consider the mapping F : IR™™" — R > given by

F(A) := Z qreAF @ A
k,e

Lemma 1 implies that with o(4) = {A1,...,A.},

U(f(A)) = {q(/\,',/\j) : i,j = 1,...,77.}.

(55)

(56)

(57)

(58)

(59)

(60)

Now suppose that A € 0S(£2). Then some eigenvalue of A satisfies \; € 9Q, i.e., ¢(\i, \i) =
0. It then follows from (60) that F(A) is singular (det F(A4) = 0). We obtain the following

propositions.

Proposition 5. Assume that v is not identically zero. Then the map

v: A det Y gred* @ A
k.l

is semiguarding for ().
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Proposition 6. The map (61) guards S(Q) if and only if ¢ satisfies the condition’

g\, A) <0 and ¢(p, ) <0 = g(\p)#0. (Condition C)

Maps such as (61) involve determinants of matrices the size of which increases rapidly as n

does. Alternative formulas, based on the bialternate product, exist which involve matrices

of dimension "—("2———1—), which is approximately half that of F(A) for large n.

Consider the mapping M from IR™*" to IR = given by
M(A) =) qreA* - A% (62)

k€

Lemma 3 implies that
o(M(A)) = {un(mf +XMAY/2 i=1,. -1 j=i+ ln} (63)
ke

Note that

o(M(A4)) = {gAi,A;): i=1,...,n~1; j=i+1,..., n}. (64)

(Compare with Eq. (60).) This follows from (63) and the fact (implied by (55)) that
1
o) = g, A) = 5 (a(A 1) + a1, 1)) (65)

Proposition 7. Suppose that det M(A) is not identically zero.
(a) If 02 N IR = 0, then the map

v: A detM(A) (66)

is semiguarding for S(2).

T “Q-transformability” [GJ].
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(b) Let 0Q N IR = Uf=1[a,-,ﬂ,~] witha; <) <+ <ai <Bi < <ag < Pe. Denote
P(A) = Hf=1(A — a;I)(A — B;I) where, by convention, the factor (A — a;I) (resp.
(A — Bel)) is omitted when a; (resp. B¢) is —oo (resp. +o0). Then the mapping

v: A detM(A)detP(A) (67)

is semiguarding for S(2).
Proof. Let A € IR™™" N dS():

(a) If A has an eigenvalue A € O then ), also an eigenvalue of A, is distinct from A.
Therefore g(A,A) = 0 € o(M(A)) by virtue of (62). Hence v(4) = 0.

(b) Let A € 00 be an eigenvalue of A. That is, g(A\,X) = 0. If A ¢ IR, then ) is also an
eigenvalue of A, distinct from X. Consequently, g(A\,A) = 0 € 0(M(4)) and v(4) = 0.
If A\ € IRNON, then A € [a;, B;] for some i € {1,...,£}. Since by assumption A € 040,
then it is the limit of a sequence of matrices {A4;} with each Ax € S(2). It follows
that there is a j € {1,...n} such that A = limg_o0 X;j(Ax). If A € (ai, 8i) (Bi > «;
assumed) then there is a positive K such that for all £ > K

/\j(Ak) € (D\lR and )\ = klim /\j(Ak).

Since {4} is a sequence of real matrices, we have that A = limg_,00 Xj(Ax) as well.
Consequently, A must be an eigenvalue of A of multiplicity at least 2. By virtue of
(62), (A, X)) = (A, ) € a(M(A)), ie., v(A) = 0. If a; # Bi and ) is either a; or
Bi, then X\ might be a simple eigenvalue of A, in which case ¢(A,A) = 0 is no longer
an eigenvalue of M(A). The case when «; and f§; are finite and A = a; = f; is
handled similarly. The reason for the introduction of the second factor detP(A) in

the expression (67) for v should now be clear.

O

Remark 6.1. Proposition 6 applies for the maps of Proposition 7 as well.

We have exhibited semiguardian maps for generalized stability sets corresponding to

domains with polynomial boundary. Determining whether or not these maps are also
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guardian maps requires further investigation. One needs to check whether or not the
polynomial ¢ satisfies Condition C. Sufficient conditions for Condition C were obtained by
Gutman and Jury [GJ] for the cases in which the degree of polynomial p (or ¢)is 1,2,3 or

4. Another result in this direction is given next.
Proposition 8. Suppose that
gk 20, Vk2>1, (68)
qgre=0, VYk#£L kL#£0. (69)
Then ¢ satisfies Condition C.

Proof. Proceeding by contradiction, assume that for some pair (A, p), ¢(A,p) = 0,

g(\, X)) < 0 and ¢(p, i) < 0. Since the coefficients of ¢ are real, we also have g(A, i) = 0.
Set

w = g(\ ) + a(p, B).
Clearly w < 0 and

= Z are (VXG4 bt — (Rt + N*ph).
]

From (55) and (56), we have
gro = qok, Vk >1. (70)

It now follows from (69) and (70) that

w=3gro (A 4 uF — (A% +3) 4 35 4 55 — (uF + %))

k=1

+ 3 gk (VR 4k — (AR 4 3Rg)).
k=1

The first summation yields zero. Under assumption (68), the second summation is non-
negative, as can be seen by noting that, with a = r1e/% and g = rye’%,
aa+ BB —(af+aB) =ri+ri—2rirs cos (61 +62)

> (r1 —ra)2.
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This contradicts the fact that w < 0.

Ezample 6.1. Let Q= {s=z+1y: z+y* <0}. Here p(z,y) = = + y% and

1 1 1 1 1
q(A p) = 5/\ Tkt 5/\Il - Z/\Z — Zﬂz

It follows from Proposition 8 that ¢ satisfies Condition C, and therefore that S(§2) is
guarded by both

v: A detF(A) and v: A~ det M(A)det(A).
Here,
1 1 142 2
FA)=5(A0I1+IQ0A)+540A4A- (A"01+104%)

_ %(A@A)— %(AeA)% (71)

and

M(A)=%(A-I+I-A)+%A-A—%(A2.I+I-A2)

=A.I+%A-A—%I-A2. (72)

7. Examples of Application

We apply some of the results obtained in this paper to three examples. The first
two examples deal with the stability of one-parameter families of matrices relative to
certain domains which arise in control system design. For the second of these examples,
we compute the largest interval of parameter variation containing 0 for which stability 1s
preserved. The final example concerns the Hurwitz stability of a two-parameter family
of matrices. Programs implementing the techniques in this paper and using the symbolic

language MACSYMA 8 were developed and applied to construct the examples [S2].

8 MACSYMA is a registered trademark of Symbolics, Inc., Cambridge, MA.
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7.1. Robust Stability with Adequate Step Response.

To ensure adequate maximum settling time and minimum damping, it is often required
in the design of compensators for linear control systems that the eigenvalues (poles) of
Re(s) < —o ; |Arg(s)| >
6 }, for given 0 > 0 and 6 € (F, ) (see Fig. 4) [V]. In this example we investigate the

the closed loop system be confined within a domain Q := {s:

stability, with respect to €2, of the one-parameter family of matrices A given by

r—3 1 2r +1
A(r): T -1 -1
1 r+1 -3

11
y TE [—5, '2']>

in the case 0 = —1 and § = 3Z. We first provide a guardian map for S(2). Letting Q2

denote the set of Example 3.5, and using the notation of Proposition 3, we observe that

o(—0a)

Q=0QsnNn0C_

. Since guardian maps for S(f2¢) and S (&' —) are available, it follows from

Proposition 3 that S(Q?) is guarded by the map v specified by

v(A) = det(e’? Ao e 4) det((A+al)y). (73)
For a 3 x 3 matrix,
M 2a11 2a12 2a13 0 0 0 7
az1 ai + ae a3 ays a3 0
| a3 asz a1 t+azz O as a3
A[2] o 0 2&21 0 20,22 2(123 0 (74)
0 asy az1 azz a2 +asz ags
L 0 0 2&31 0 2(132 2(133 J

Let us for convenience write v(A) = v1(A)v2(A) where the v;’s are the respective factors
appearing in (73). We obtain
v1(A(r)) = 5v/2(—32r° — 16r® — 34477 + 336r° + 6636r° + 13604r* + 15408r°
— 48008r? + 382981 — 22536), (75)
vo(A(r)) = —32r® — 192r° 4 288r% + 64r% — 640r + 312. (76)

It is easily checked that A(0) € S(2), and, using Sturm sequences for example, that 4 and

vy have no zeros in [—%, -;—] We may conclude by virtue of Proposition 1 that the family
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A is stable relative to Q. Parenthetically, the real zeros of of v; and v, are given by

{—5.7588,0.5919} and {—2.9859,0.95126,3.737},

respectively. Thus, an eigenvalue of A(r) leaves 2, for the “first time,” at » = 0.5919.

7.2. Largest Interval for Generalized Stability

In this example, we investigate the stability of the one-parameter family of matrices

r? -1 r+1
A(r) = r2—-2r—1 -1
relative to the domain (see Fig. 5) Q = {s: p1 <|s| < p2; |Arg(s)| > 8}, with

27 V2
0=— = — = 2.
37 pl 27 p2

Such domains arise in flight controller design [A1, p. 394]. We seek to compute the largest

open interval (r,7), containing 0, such that A(r) € §(Q) for all r € (r,7) (note that the

eigenvalues of A(0) are —1 % ¢, hence A(0) € S(2)). To apply Proposition 3, we write

Q = Qp N B(p1) Nint(B°(p2))

where B(p) denotes the open disk of radius p. Thus §(€2;) is guarded by the map v, given

by
v2(A) = det(e® A 0 e A) det(AD — p2112]) det (Al — p2112])

=:v1(A)va(4A)vs3(4).
Here, A is given by
2 2
11021 a11022 + A12G21 d12022
2 2
ayq 2&210,22 a59

For the example at hand we obtain
v1(A(r)) = —=3r" — 3r® 4+ 217° 4 24r* — 367 — 51r% + 12,

(87° — 76r" — 52r% 1 24475 4 3187 — 170r° - 492r® — 282y — 51),

oo F=

va(A(r)) =
v3(A(r)) = —r® + 137" 4 10r° — 55r° — 52r* 4+ 79r® + 5872 — 12r — 40.
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The real zeros of the polynomials above are
r=-2, rx~-1246, r=-1, r~x 0445, r~1801, r=2;

r~—1.384, r~—-1.112, r = —0.5578, r =~ —0.4332, r = 1.919, r = 1.942, r = 2.252;
r=-2, ,r=1, r=2, r~3.152;

respectively. Clearly, the matrix A(r) is not stable relative to Q for all values of r € IR.
It is also seen furthermore that the maximal interval of stability is [—0.4332, 0.445].

7.8. Hurwitz Stability of a Two-Parameter Family

]

In this example, Q = @' _ and

—3—ro+3r2  —l4ry+4rir,

A("'l,r2) = -1 + 27‘1 -2 + 37’1 + Ty — T'% ’

r1, r2 € [0,1]. Note that A(0,0) is Hurwitz stable. A guardian map for S(Q2) is given by
va(A(r1,r2)) = det Ay (r1,72),

where A[y] is given by

2a;; 2a2, 0
az1  aip +azp aiz | . (78)
0 2a12 2(1,22
We obtain
va(A(ri,r2)) = —(100 — 20071 + 84r%) + (207, + 1487% — 963 )ry + (120 — 284r; + 100r2)r2
— (80 — 40ry + 6472)r3 + (28 + 367 )i + 3215 — 2478
=: pr,(r2).

In this case, we find that
Ul ~ {0.5689, 0.5725, 0.8207} and U2 ~ {0.5663, 0.7142, 1} £ 0.

It follows from Theorem 3 that the family of matrices being considered is not Hurwitz

stable. For r; = 0.5663, p,, has (r; =) 1.0 as zero, implying that A(0.5663,1.0) is Hurwitz
unstable (its eigenvalues are {—1.3,0.0}).
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8. Concluding Remarks

This paper has introduced a new framework for the study of generalized stability of
parametrized families of matrices and polynomials. Stability relative to a wide variety
of domains in the complex plane can be addressed within this framework.

Proposition 1 and 2 give necessary and sufficient conditions for generalized stability
of multiparameter problems. Where Proposition 1 applies and the family of interest is
polynomic, the problem is reducible to a positivity test.

Although the presentation has emphasized the case of generalized stability sets S(),
the results apply as well to other open sets of matrices or polynomials. A case in point is
the set of strictly aperiodic matrices (see Example 3.6).

Finally, the results presented in this paper can be extended in a straightforward man-
ner to the case of matrices with complex entries or polynomials with complex coefficients.
In particular, guardian and semiguardian maps can be readily constructed for sets of com-

plex matrices corresponding to domains of the complex plane with polynomial boundaries.
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Fig. 1. Stability domain for Example 3.4
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Fig. 2. Stability domain for Example 3.5
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Fig. 3. Eigenvalue location of typical blind spots
for Example 3.8
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Fig. 4. Stability domain for Example 7.1
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Fig. 5. Stability domain for Example 7.2






