
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

A Comparison of Formulations for the Single-Airport Ground
Holding Problem with Banking Constraints

by R. Hoffman, M. Ball

T.R. 98-44

A Comparison of Formulations

for the

Single-Airport Ground Holding Problem

with Banking Constraints

by

Robert Hoffman
Applied Mathematics Program

and
Institute for Systems Research

University of Maryland
College Park, MD 20742

and
Michael O. Ball

College of Business and Management
and

Institute for Systems Research
University of Maryland,
College Park, MD 20742

October, 1997

ABSTRACT

Both the single-airport ground-holding problem (GH) and the multi-airport ground-holding
problem can be extended by the addition of banking constraints to accommodate the hubbing
operations of major airlines. These constraints enforce the desire of airlines to land certain
groups of flights, called banks, within fixed time windows, thus preventing the propagation of
delays throughout their entire operation. GH can be formulated as a transportation problem
and readily solved. But in the presence of banking constraints, GH becomes a difficult integer
programming problem. In this paper, we construct five different models of the single-airport
ground holding problem with banking constraints (GHB). The models are evaluated both
computationally and analytically. For two of the models, we show that the banking constraints
induce facets of the convex hull of the set of integer solutions. In addition, we explore a linear
transformation of variables and a branching technique.

1

1. Introduction

As of the mid-1980’s, air traffic congestion in the Unites States has become an

increasing problem, particularly at the major airports. Although air traffic demand is

problematic, it is primarily comprised of scheduled flights, hence, it is generally

predictable. Airport capacity, on the other hand, can change sharply and with little

warning. Most of the airport capacity-demand inequities are the result of a sudden drop

in arrival capacity rather than an unforeseen insurgence of arrival demand. Bad weather

is the primary cause. Precipitation and icing can shut down runways altogether and

aircraft must approach more slowly and cautiously when relying on instruments rather

than on human vision. Special airport operations, visiting dignitaries and runway

construction also contribute to reduced arrival capacities.

A capacity-demand inequity at an airport can lead to queuing of both departing

aircraft and arriving aircraft. Queuing as a result of reduced arrival capacity is considered

to be a more serious problem, though, because it forces the aircraft into airborne holding

patterns, which is costly, dangerous and adds to the stress level of the air traffic

controllers. In this paper, we address capacity-demand inequities in arrivals only.

The Air Traffic Control Systems Command Center (ATCSCC) monitors airports

throughout the United States for capacity-demand inequities. Whenever it is predicted

that the number of flights arriving at an airport within a 15-minute time interval will

exceed the number of flights scheduled to land, the ATCSCC takes action. Short-term

periods of capacity-demand inequities can be alleviated by airborne tactics such as re-

routing and variations in airborne speed. Longer-term periods of capacity-demand

inequities are met by the ATCSCC with ground-holding strategies in which aircraft are

held at their departure gates in lieu of costly and dangerous airborne delay.

The primary tool of the ATCSCC for addressing arrival capacity-demand

inequities is a ground delay program (GDP). In a GDP, each flight scheduled to arrive at

an afflicted airport over a predetermined time period is held at its departure gate long

enough to ensure that it will be able to land without delay. For instance, if flight f is

scheduled to arrive at airport A at 12:00 and it is known that f will not be able to land

2

until 12:30 due to limited arrival capacity at A, then f would be held at its departure gate

for 30 minutes.

Currently, when the ATCSCC formulates a GDP, arrival slots are assigned on a

‘first-scheduled, first-assigned’ basis. That is, if flight f were originally scheduled to

arrive before flight g, then f should arrive before g in the final slot assignments. However,

the entire process of assigning allocating slots during a GDP has fallen under heavy

scrutiny and is currently being revamped by a large-scale, cooperative effort between the

FAA and the scheduled carriers, known as collaborative decision making (CDM). Under

the proposed CDM procedure, (to be implemented in the fall of 1997), flights will

initially be assigned to time slots on a first-scheduled, first-assigned first basis. Then, in

an iterative exchange between the airlines and the ATCSCC, each airline will have the

opportunity to reassign some of its flights to its allocated arrival slots, thus giving the

airlines greater control over the economic impacts of a GDP.

An area of our future research is to understand the axioms imposed by these

algorithms and to incorporate them into a single optimization model. For the purposes of

this paper, we will view the CDM allocation procedure as a black box and model it as a

generalized ground-holding problem (GH). In GH, a decision-maker is faced with

reduced arrival capacity at an airport and must determine the appropriate amount of

ground delay to assign to each incoming flight so as to minimize overall delay costs. This

problem can be formulated as a transportation problem, as follows. We discretize the

time horizon into time periods t = 1,2,…,T. Each time period could represent, say, a 15-

minute time interval. For each flight f, let af be the scheduled time of arrival. For each

time period, t, let bt to be the arrival acceptance rate (AAR) of the airport, i.e., the

maximum number of flights that can be accepted by the airport during that time interval.

We assume that bt is known in advance for each time period t. (Strictly speaking, this last

assumption does not hold in practice but the specialist must fix these numbers according

to the current best estimate thus, for purposes of this formulation, we will assume that

arrival capacity for each time period is deterministic and known in advance.

Each flight in a ground delay program is assigned a controlled time of arrival

(CTA) and a controlled time of departure (CTD). Since en route travel times can be

3

predicted with reasonable accuracy, both the CTD and the amount of assigned ground

delay are easily computed once the CTA is fixed: the controlled time of departure (CTD)

is simply the CTA minus the en route time and the ground delay is the CTD minus the

scheduled arrival time. Thus, a feasible solution to the single-airport ground-holding

problem can be derived once each flight has been assigned a CTA.

Let F be the set of incoming flights that require arrival slots. We define for each f

and each t, a binary variable, X f t , such that

X f t =
%&'
1, if flight f is assigned to time interval t

0, otherwise
.

Then we have the following integer program.

(GH) Min C t a X
f F t

T

f f ft
∈ =
∑ ∑ −

1

3 8σ
(1.1)

subject to

(assignment) X for all fft
t

T

=
∑ =

1

1 (1.2)

(capacity) X b for all tft t
f F

≤
∈
∑ (1.3)

 0 1≤ ≤X for all t for all ff t , (1.4)

 X for all f for all tf t ∈ 0 1, ,; @ (1.5)

where,

bt = arrival capacity of airport during time interval t

Cf = a constant peculiar to flight f

σ > 1is a fixed parameter.

Constraint set (1.1) ensures that each flight f is assigned to exactly one time

interval t while constraint set (1.2) ensures that the capacity of each time interval is not

4

exceeded. The objective function reflects overall delay costs. The parameter σ > 1 is used

for super-linear growth in the tardiness of a flight so that the model tends to favor a

moderate amount of delay to each of two flights rather than the assignment of a small

amount of delay to one and a large amount to the other.

GH was first systematically described by Odoni in [7]. Since that time, GHP has

been treated on a stochastic level by Odoni, Andreatta and Richetta in [9] and [10]. Both

GH and traffic flow management in general have been treated on a network-wide level

(taking multiple airports and flight connectivity into account) in Attwool [3], Sokkapia

[11], Andreatta and Romanin-Jacur [1], Wang [15] and by Vranas, et. al., in [13] and

[14], and, more recently, by Bertsimas and Stock [5]. However, in this paper, we will

restrict our attention to single-airport scenarios and the deterministic version of GH.

Since the LP relaxation of GH (GHLP) is a transportation problem, LP solvers or

specialized transportation codes can be applied to GHLP to obtain the (integer) solution to

GH.

For operational efficiency, most major airlines in the United States have selected

at least one airport as a hub of its operation. The hub acts as a base of operation and a

central point of transfer for passengers, thus simplifying the enormous scheduling

problem that confronts the airline. The hub-and-spoke system allows an airline to pool at

a central location those passengers with geographically diverse points of origin but a

common destination (or the reverse). For instance, some of the passengers from flights

A, B and C can be scheduled to transfer at the hub to a flight D with a destination

common to all of them. But in order for this to work, the arrival of flights A, B and C

need to be coordinated with the departure of D. Flights A, B and C form what is known

as a bank, meaning, a group of flights whose arrival times must fall within a specified

time window.

In the solution to GH, the assigned arrival times of the flights tend to spread out

over time because the number of flights that can be accepted per time period is less than

in the original schedule. Of course, this tends to spread out the arrival of flights within a

bank as well, often beyond an acceptable level.

5

One can add banking constraints to the formulation of the GH to keep the flights

of each bank temporally grouped. For each bank b, let Φb be the set of flights in bank b

and let wb be the width of b, meaning the maximum number of time intervals over which

the flights of bank b are allowed to land. Note that the difference between the

sums tX f t
t

T

=
∑

1

 and tX g t
t

T

=
∑

1

is the difference between the arrival times of the flights f and

g. Then the following constraint set, for instance, will ensure that the flights of b land in

a time window of desired length.

Formulation 1: XTC (the time coefficient model)

tX tX w for all b for all f gf t
t

T

g t
t

T

b b b
= =
∑ ∑− ≤ ∈ ×

1 1

, ,1 6 Φ Φ (1.6)

By adding (1.6) to GH, we have a model (XTC) of GHB. Unlike GH, the LP

relaxation of the GHB rarely yields optimal integer solutions. In this paper, we will be

exploring alternate formulations of GHB. Alternate formulations can be derived by

reformulating the constraints, selecting new variables, or augmenting the existing ones.

Ideally, we would a formulation of GHB that can be solved quickly on a commercial

solver such as CPLEX.

In sections 2 and 3 of this paper, we present several models of GHB and explain

some of the intuition behind them. In section 4, we analyze the polyhedra induced by

some of the more promising models and, in section 5, we test the computational

performance of each model on both real and artificially constructed data sets. We

summarize the paper in section 6.

We should mention that, although this paper is written in the context of air traffic

management, the problem is in its most general form a job scheduling problem in which a

number of sequenced jobs must be scheduled for processing subject to the constraint that

only so many jobs can be processed in a given time period and the (banking) constraint

that certain jobs must be processed within temporal proximity of each other.

6

2 Alternate Models of GHB

Formulation 2: XW (the Window model)

It seems, intuitively, that the solving of GHB would be greatly facilitated by

advanced knowledge of the time window in which each bank will arrive in the optimal

solution. Each such window can be uniquely identified by its first time interval (i.e., the

one with the lowest index value, t). This is the earliest time interval to which any of the

flights of bank b can be assigned. So, for each bank, b, we establish a set of binary

“marker” variables as follows.

Z
if t is the first time open tobank b

otherwiset
b =

%&'
1

0

,

, .

interval

We can use the marker variables to write a constraint that says, “if t is the earliest

time interval open to the flights of bank b, then the arrival time of flight f in bank b must

be no later than wb units after t”. We need one such constraint for each flight in each

bank.

 Z X for all t for all b for all ft
b

fs
s t

t w

b

b

− ≤ ∈
=

+ −

∑ 0
1

, , Φ (2.1)

The following set of assignment constraints ensures that the first time interval open to

each bank is unique.

Z for all bt
b

t

T

=
=
∑ 1

1

 (2.2)

The model XW is obtained by adding constraint sets (2.1) and (2.2) to GH. This

model yields at most one banking constraint of type (2.1) for each pair (f, t), where f ∈ F

and t ∈ {1, 2, …, T}, and one banking constraint of type (2.2) for each b. Thus, the total

7

number of banking constraints is O(nT), where n is the number of bank flights and T is

the number of time intervals.

Formulation 3: XMM (the Monotone Markers model)

An alternate formulation of the window constraint (C3.XW) can be written by

directly translating the statement “if flight f (in bank b) arrives in time interval t, then one

of the wb intervals prior to t must be marked as the first interval open to bank b”. This is

the converse of the statement that generated (2.1) in the model XW.

 X Z for all t for all b for all ff t s
b

s t w

t

b

b

− ≤ ∈
= −

−

∑
1

0 , , Φ (2.3)

Rather than mark the first time interval by Zt
b = 1, and Zt

b = 0 for all other time

intervals (as in XW), we can mark all time intervals strictly preceding the start of the

window by the assignment Zt
b = 1 and all subsequent intervals by Zt

b = 0. (In essence,

we are transforming the marker variables into Bertsimas-Stock variables - see section 3

for an explanation of these variables and why they might help). Constraint set (2.4)

excludes the possibility that both Xft and Zt
b are equal to one for a fixed t while constraint

set (2.5) forces the marker variables to be monotonically non-increasing.

Z X for all t for all b for all ft
b

f t b+ ≤ ∈1 , , Φ (2.4)

Z Z for all t for allbt
b

t
b− ≤−1 0 , (2.5)

The model XMM is obtained by adding (2.3), (2.4) and (2.5) to GH. The number of

banking constraints increases quadratically with the size of the problem and has an

asymptotic bound of O(nT).

Formulation 4: XSS (the Double Sum model)

8

The following simple constraint states that if flight f arrives in time interval t, then

flight g cannot arrive in time interval s and vice-versa.

X Xf t g s+ ≤ 1 (2.6)

If we write one constraint of type (2.6) for each pair of bank flights f and g and for each

pair of time intervals t and s such that |t − s| > wb , then all the flights of bank b must

arrive within a window of wb units.

We can write a stronger version of (2.6), which states that if f lands in time

interval t or earlier than g cannot land in time interval t wb+ or later, as below.

X X for all t for all f gf s g ss b b
ss t w

T

s

t

b

+ ≤ ∈ ×
= +=
∑∑ 1

1

, ,1 6 Φ Φ (2.7)

The final model, XSS, is obtained by adding (2.7) to GH. We extend the notion of

“arrival” to fractional solutions by saying that if Xft > 0, then f has partially arrived at

time t and f has fully arrived at the earliest time interval t for which X fs
s

t

=
∑ =

1

1. For each

bank b, let Ab = X f bf t: ∈= B . Then in any solution to the linear relaxation of the GHB,

one can compute the minimum and maximum values of t for which at least one of the

variables in Ab is non-zero. We define the range of the bank in a given solution to be the

difference of those numbers.

The strength of our latest formulation, XSS, lies in its ability to keep this bank

range as small as possible in the LP. That is, XSS screens out fractional solutions in

which the range of the bank is large. As an example of a fractional solution that is

feasible to constraints of the type (1.2)-(1.4) but not to (2.7), consider two flights, f and g,

in bank b, with a specified bank width of wb = 2 time intervals. The table below gives a

feasible assignment for the variables Xft and Xgt for the time intervals, t = 1, 2, …, 8.

9

t = 1 2 3 4 5 6 7 8

Xft = 1/2 1/2 0 0 0 0 0 0

Xgt = 0 0 0 0 0 1/2 1/2 0

The model XSS has the undesirable feature that it produces a tremendous number

of constraints for large problems. In fact, the number grows cubically with the size of the

problem; it’s asymptotic behavior is O(Tn2). On the largest data set that we tested,

114,855 of the 115,174 constraints (i.e., 99.73%) were banking constraints. For problems

of this size, even the compilation time of the C-program that writes the input for the

solver CPLEX is significant: on the order of ten minutes. We now search for a model of

equal strength that brings with it fewer constraints.

Formulation 5: XGF (the Ghost Flight model)

So far, in our formulations of banking constraints, we have made pairwise

comparisons of the arrival times of the flights within a bank. But if we knew that, in

every feasible solution to GHB, a “pilot” flight in the bank were going to arrive before the

other flights in the bank, then we could compare the arrival of each bank flight to the pilot

flight and cut down on the number of constraints by an order of magnitude.

There is no reason to believe, á priori, that every bank would naturally contain a

pilot flight but we can add a ghost flight to each bank and write a constraint to enforce the

arrival of the ghost flight before the other flights in the bank. For each bank b, we define

a set of assignment variables, {Zt
b : t = 1, 2, … , T}, to mark the (fictitious) arrival of the

ghost flight. That is, Zt
b = 1 if the ghost flight arrives at time t and Zt

b = 0, otherwise.

The following constraint set will ensure that the arrival of each ghost flight is unique.

Z for all bt
b

t

T

=
=
∑ 1

1

(2.8)

10

For each flight f in bank b, we write a constraint of the type (2.9) to ensure that the ghost

flight will arrive before flight f and a constraint of type (2.10) to prevent the flights of

each bank b from arriving more than wb units behind the bank’s ghost flight.

Z X for all t for all b for all fs
b

s t

T

fs
s t

T

b
= =

∑ ∑− ≤ ∈0 , , Φ (2.9)

Z X for all t for all fs
b

f ss b
ss t w

T

s

t

b

+ ≤ ∈
= +=
∑∑ 1

1

, Φ (2.10)

The final model, XGF, is obtained by adding (2.8), (2.9) and (2.10) to GH. For

every bank flight f and every time interval t, this model yields one banking constraint of

the type (2.10) and one of the type (2.9). For every bank b and every time interval t, there

is one constraint of the type (2.8). Thus, the total number of banking constraints produced

by this model is O(nT), where n is the number of bank flights. Contrast this with O(n2T)

for model XSS.

In section 4, we will show that XSS and XGF are of equal strength, meaning that

they optimal function value for the LP is the same for each model. Moreover, we will see

that for both XSS and XGF, every banking constraint is a facet of the polyhedron formed

by the set of integer solutions. This is most desirable because it greatly increases the

chances of yielding an integer solution directly from the LP relaxation.

11

3 Variations on the Models

3.1 A Branching Technique:

Recall that several of our formulations employ marker (Z) variables. If the

(binary) value of each marker variables is fixed, then each banking constraint reduces to a

trivial statement or is redundant to a non-banking constraint. The subsequent LP

relaxation is a transportation problem and will yield an integer solution. Thus, we obtain

a valid formulation by restricting only the Z variables to be integer. The IP solvers will

then only branch on the Z variables.

This branching technique was applied to XW, XMM, XSS and XGF. In Tables 1-

7 (Appendix A), the reader will find rows marked “XWZ” and “XMMZ”. These

formulations are MIP (mixed integer programs) versions of XW and XMM, respectively,

because the assignment variables (Xft) have not been declared integer. Neither XSS nor

XGF model names are suffixed with a “Z” because we solved these models only with this

special branching technique. In section 5, we will analyze the benefits of the branching

technique.

2. Bertsimas-Stock variables: A linear transformation

One can replace the standard assignment variables, with so-called Bertsimas-Stock (B-S)

variables, defined by

W
if flight f arriveby time t

otherwiseft =
%&'
1

0

,

,
.

The assignment variables are defined so that for exactly one t, Xft = 1. In contrast,

the B-S variables are defined so that for every s greater than some t, Wf s = 1. Thus, every

model that employs B-S variables requires the following set of monotonicity constraints.

W W for all t for all ff t f t− − ≤1 0 , (3.1)

12

One can see that the standard variables are linearly related to the B-S variables via

X f t = W Wf t f t − −1 . (3.2)

In [5], Bertsimas-Stock versions of the multi-airport ground holding problem

(MAGHP) performed quickly and often offered optimal integer solutions directly from

the LP relaxation. According to Bertsimas and Stock, the B-S variables conveniently

captured the connecting constraints of the MAGHP and were in many cases facetial in

nature. Hoping for similar success with respect to our banking constraints, we applied the

transformation (3.2) to models XSS and XGF to obtain WSS and WGF, respectively.

(WSS) Min C t a W W
f F

f f f t f t
t

T

∈
−

=
∑ ∑ − −3 8 3 8σ

1
1

(3.3)

subject to

W W for all ff T f= =1 00, (3.4)

W W b for all tf t f t t
f F

− ≤−
∈
∑ 13 8 (3.5)

W W for all t for all ff t f t− − ≤1 0 , (3.6)

W W for all t for all f gf t g t w bb
− ≤ ∈+ −1 0 , ,1 6 Φ (3.7)

W for all f for all tf t ∈ 0 1, ,; @ (3.8)

WGF is the same as WSS except that (i) we add one (ghost flight) binary variable set

W t Tt
b: , ,...,= 0 1< A for each bank b (ii) we add monotone constraint set

W W for allbT
b b= =1 00, (3.9)

W W for all t for all ft
b

t
b

− − ≤1 0 , (3.10)

13

and (iii) we replace (3.7) with the following two sets of banking constraints.

W W for all t for all b for all ff t t
b

b− ≤ ∈0 , , Φ (3.11)

W W for all t for all b for all ft
b

f t w bb
− ≤ ∈+ 0 , , Φ (3.12)

Since WSS and WGF are linear transformations of XW and XSS, they will yield

the same objective function values (in the LP’s) as their assignment variable counterparts.

Moreover, since XSS and XGF are equivalent in the LP (see section 4 for proof), the LP

optimal function value will be the same for all four models in every problem instance.

This fact is confirmed empirically in Tables 1-7, Appendix A.

14

4. Polyhedral Results

The set of integer feasible solutions is the same for each of the models we have

presented but the variations in the associated LP relaxations can drastically affect the

performance of solution methods based on a branch-and-bound algorithm. Formulations

are preferable for which the function value of the LP relaxation is close to the function

value of the integer program. In this section, we investigate analytically the strength of the

formulations XSS and XGF. We will employ the notation and basic results of polyhedral

combinatorics, which can be found Nemhauser and Wolsey [6], and Pulleyblank [4]. We

require the following additional notation.

GH = set of integer solutions to constraints (1.2),(1.3) and (4)

GHB1 = set of integer solutions to constraints (1.2), (1.3), (4) and (2.7)

GHB2 = set of integer solutions to constraints (1.2), (1.3), (4), (2.8), (2.9) and (2.10)

P C = convex hull of P , where P is a given set of points in Euclidean Space

Then GH is the set of feasible solutions to the ground holding problem, GHB1 is

the set of feasible solutions to the double-sum formulation (XSS) and GHB2 is the set of

feasible solutions to the ghost flight formulation (XGF). We will show that, under mild

assumptions, each of the banking constraints of the models XSS and XGF represents a

facet of its respective polytope. We will show that the each capacity constraint (1.3)

represents a facet of both GHBC
1 and GHBC

2 . Finally, we will show that XSS and XGF

are equivalent in the strength of their LP relaxations. These results will be based upon

the following assumptions.

Assumption 1. bT = F . We assume that the capacity of the last time interval is the same

as the number of flights. In would be true in practice to ensure feasible solutions. Our

theoretical use of this assumption will be to construct feasible solutions in which an

arbitrary number of flights has been assigned to the last time interval without affecting the

optimal solution to the problem.

15

Assumption 2. bi b
i t

i t wb

>
=

= +

∑ Φ for all b and all t. We assume that the capacities of the time

intervals are sufficient to allow for the landing of any bank, b, over any block of wb

contiguous time intervals. Combined with assumption 1, this will allow us to generate a

feasible solution in which bank b arrives in any chosen block of time intervals and all

flights not in bank b arrive in time interval T . The full strength of this assumption is not

required but the complexity of the weaker version would obscure the proofs.

 Assumption 3. For all t, bt ≥ 2. In practice, a time interval would probably represent 10

minutes or more, hence, could accommodate at least two flights. The case in which bt < 2

for some or all of the t might be interesting from a theoretical standpoint.

Assumption 4. We assume that for each flight f, af =1 . This means that flight f can be

assigned to any one of the time intervals, t = 1, 2, …, T. This assumption eliminates

pathological interactions between the flight arrival times and the bank structure and

allows us to index the components of a feasible solution (vector) in the following uniform

fashion.

X X X X X X X X X XT T F F F T= (,..., | ,..., | ,...,)11 1 2 1 2 1 2 2 2 1 2 .

For notational convenience, let N = FT and n = FT − F. We begin by establishing the

dimensionalities of the ambient polytopes.

Lemma 1: For each constraint C of the form (2.7), there are at least n affinely

independent points of GHB C
1 that meet C at equality.

Proof: See Appendix B.

Lemma 2: Dim()GHB nC
1 ≥ .

Proof: See Appendix B.

Theorem 1: Dim(GHB C
1) = Dim(GH)= n.

16

Proof: We have already shown that dim(GHB C
1) ≥ n. Since GHB C

1 ⊆ GH , we have that

dim(GH) ≥ dim(GHB C
1). Because constraint set (1.2) generates F linearly independent

equations, we have that dim(GH) ≤ TF−F = n, and the result follows.

•

When an instance of GHB is formulated by XGF rather than XSS, we have added

one ghost flight to the problem for each bank. This increases the number of flights from

F to F + B, where B is the number of banks and the dimension of the ambient Euclidean

space for XGF has increased from N = TF to N* = T(F + B), in the case of XGF. We

would like to restrict our attention to the vector space RN* rather than alternate between RN

and RN*. So, let us assume that, in the formulation of XSS, we have added one ghost

flight for each bank. This will not change the optimal solution since the variables

corresponding to the ghost flights do not need to appear in any of the constraints. The

purpose of this assumption is not only for notational simplification but also so that the

solution vectors for XSS and XGF will have the same dimension and we can consider the

feasibility of a single solution vector to either XSS or XGF and we can make use of our

previous results. In particular, we can restate the conclusion of Theorem 1 to be that

Dim(GHB C
1) = Dim(GH)= n*, where

n* = T(F + B) − (F + B) = n + (TB − B) .

Theorem 2: Dim(GHBC
2) = n*, where n* = n + (TB − B).

Proof: Let Ω be the set of all solutions, X and Y, constructed in Algorithm 1. Each

solution (vector) in Ω was constructed so that flight 1 lands before all other flights in

bank b . Under the assumption that flight 1 is the ghost flight of bank b, each solution in

Ω becomes feasible to GHBC
2 . As in Lemma 1, the vectors in Ω can be linearly combined

to yield a set, Ω*, of n linearly (affinely) independent solutions to GHBC
2 . As in the proof

of Lemma 2, one more linearly independent vector, U, may be added to Ω* to bring the

total number to (n* + 1). U is formed by setting U = (Y − X), where Y and X are the

integer solutions to GHBC
2 , described below.

17

Let k = (wb + t −1).

In block 1: Y1, k = X1, k = 1 all other components are zero

In block 2: Y2, k = 1 X2, k+1 = 1 all other components are zero

In block m (m ≠1, 2): Ym,n = Xm, n for all n. Set these binary components in
 any feasible manner.

This shows that dim(GHBC
2) ≥ n*. From Theorem 1, we know that dim(GH1) = n* and

since GHBC
2 ⊆ GH1 , we conclude that dim(GHBC

2) = n*.

•

The following lemma is used to establish that the banking constraints from model XSS

induce facets.

Lemma 3: For every constraint C of the form (2.7), there is an integer point, X ∈ GH ,

that satisfies every constraint of the form (2.7) except C.

Proof: Let constraint C be given. This fixes bank flights f and g and a time interval, t >

wb, where f, g ∈ Φb . For notational ease, let w = wb and let us drop the subscripts f and g

from the assignment variables Xf t and Xg t so we can refer to the variables as Xt and Yt ,

respectively. Also, we will assume that both flights are scheduled to arrive in the first

time interval so that Xt and Yt are defined for all t. Then the constraint C is given by

X Ys
s

t

s
s t w

T

= = +
∑ ∑+ ≤

1

1 . (4.1)

Let S1 be any solution that assigns Xt = 1 andYt w+ = 1. Since 1 + 1 > 1, S1 violates

constraint (4.1) . We will show that S1 satisfies every other constraint of the form (2.7).

Only certain of these constraints apply to the flights f and g and they come in two forms:

18

Xi
i i w

T

= = +
∑ ∑+ ≤

1

1
τ

τ
Y i (4.2)

or

Y Xi
i

i
i w

T

= = +
∑ ∑+ ≤

1

1
τ

τ
 . (4.3)

Since each summation in (4.2) and (4.3) is bounded between one and zero, it will suffice

to show that exactly one of the two summations is zero. The four cases appear in

Appendix B.

•

Theorem 3: Every banking constraint of the form (2.7) represents a facet of GHB C
1 and

no two such constraints represent the same facet.

Proof: Fix a banking constraint, C, and let F be the face represented by C.

Theorem 1 shows that there are n* linearly independent (affinely independent) integer

vectors of GHB C
1 that meet C at equality. Thus, dim(F) ≥ n*. We know that dim(GHB C

1)

= n*. Let H be the hyperplane represented by C. H has dimension greater than n*, so we

must consider the possibility that dim(F) = n*. Let GHB C
1 * be the polytope that results

when constraint C is relaxed from GHB C
1 . By Theorem 1, and the fact that GHB C

1 ⊂

GHB C
1 * ⊂ GH2 we know that dim(GHB C

1 *) = n*. Now dim(F) = n* only if all of

GHB C
1 * lies on H. But Lemma 3 shows that a (unique) point of GHB C

1 * is eliminated by

this hyperplane. Thus, dim(F) < n* . In all, dim(F) ≤ n* −1 and dim(F) ≥ n* −1, so dim

(F) = (n* − 1), and F is a facet of GHB C
1 , by definition. It follows from the uniqueness

of the point in Lemma 3 that no two such constraints represent the same facet.

•

Theorem 4: Every banking constraint of the form (2.9) represents a facet of GHBC
2 and

no two such constraints represent the same facet.

Proof: See Appendix B.

•

19

Theorem 5: Every banking constraint of the form (2.10) represents of a facet

of GHBC
2 and no two such constraints represent the same facet.

Proof: Note that every facet of GHB C
1 is also a facet of GHBC

2 . (Recall that we have

assumed the existence of ghost flights in the model XSS, so this statement is well

defined.) Every ghost-flight constraint of the form (2.10) is a double-sum constraint of the

form (2.7). We have already shown that every constraint of the form (2.7) is a facet of

GHB C
1 and that the representation is unique.

•

Let Ft be the face of GHB C
1 (or GHBC

2) represented by the capacity constraint

corresponding to t. The conditions that are both necessary and sufficient for Ft to be a

facet are extremely complex and peculiar to the problem instance. As we will see in the

next theorem, a condition sufficient for Ft to be a facet is that there should be at least one

solution feasible to all constraints except the capacity constraint. Since GHB is usually

being solved under reduced capacity, it would not be hard to construct such a solution.

For instance, if flights, f1, f2,…,f10 are scheduled to arrive in time interval t, and if the

capacity of time interval t has been cut to, say, bt = 7 flights, then one could assign f1,

f2,…,f7 to time interval t and all other flights to time interval T. This type of construction

would fail for an early time interval for which there are not enough flights to be assigned

to it or when there is a bad interaction between bank flights and non-bank flights. For

instance, suppose that the only way to fill the capacity of time interval t is to assign a

particular flight, f, to time interval t. Then for every feasible solution, X, we have the

implied equation, Xf t = 1. Since the variables over block f must sum to one, Xf,j = 0 for

each j ≠ t. This means that Ft has lost T dimensions, dim(Ft) < (n* (1.2), and Ft cannot

be a facet of GHB C
1 (nor ofGHBC

2). But we consider this last scenario to be pathological.

The hypothesis of the following theorem would most likely be true in practice.

Theorem 6: Let Ft be the face of GHB C
1 (orGHBC

2) represented by the capacity

constraint corresponding to time interval t. Then for each t T≠ , Ft is a facet of GHB C
1

(orGHBC
2), provided that there is a set of bt + 1 non-bank flights that can be assigned to t.

20

Proof: One can construct, for each t T≠ , a set Ω of n*-many linearly independent

vectors such that each vector in Ω is a linear combination of vectors from Ft (see

Appendix B for details of the construction). Therefore, Ft must contain n* linearly

independent vectors. Since linearly independent vectors are affinely independent, it

follows that dim(Ft) ≥ (n* (1.2). Recall that dim(GHB C
1) = n* = dim(GHBC

2). Since Ft

is contained in GHB C
1 (and GHBC

2), we have that Ft <= n*. Under the assumption that at

least bt + 1 flights can be assigned to t, there is at least one feasible solution that does not

meet the capacity constraint at equality, hence, does not lie on Ft. Therefore, Ft is a

proper subset of GHB C
1 (and GHBC

2) and we can rule out the possibility that dim(Ft) =

n*. It follows that dim(Ft) ≥ (n* (1.2) and so Ft is a facet by definition.

•

By using a polyhedral projection (see [3] and [6] for background), we will show that XSS

and XGF are equivalent in strength. Let P1 be a polyhedron defined over variable set x

and let P2 be a polyhedron defined over variable set (x, z) . Then P1 is the projection of

P2 onto x is if

P1 = {x: there exists a z with (x, z) ∈ P2 }.

Theorem 7: Let P1 be the set of feasible solutions to the LP relaxation of XSS and let P2

be the set of feasible solutions to the LP relaxation of XGF. Then P1 is the projection of

P2 onto the variable x.

Proof: It will suffice to show that

(i) whenever (,)x z P∈ 2 , x P∈ 1 .

 and (ii) whenever x P∈ 1 , there is a z such that (,)x z P∈ 2

Proof of (i): Let y x z P= ∈(,) 2 . Fix time interval t and flights f and g in bank b. Because

y satisfies every constraint of the form (2.9), we have that

Z Xs
b

s t

T

f s
s t

T

= + = +
∑ ∑− ≤

1 1

0 . (4.4)

21

The equalities below follow from (1.2) and (2.8), respectively.

X Xf s
s t

T

f s
s

t

= + =
∑ ∑= −

1 1

1 (4.5)

Z Zs
b

s t

T

s
b

s

t

= + =
∑ ∑= −

1 1

1 (4.6)

By substituting (4.5) and (4.6) into (4.4), we obtain

X Zf s
s

t

s
b

s

t

= =
∑ ∑≤

1 1

. (4.7)

For an arbitrary flight g in bank b, we add to a sum to each side of (4.7), to obtain the

following inequality.

X Xf s
s

t

g ss
ss t w

T

b

= = +

∑ ∑+
1

 ≤ Z Xs
b

s

t

g ss
ss t w

T

b= = +
∑ ∑+

1
 (4.8)

Since y satisfies every constraint of the form (2.10), the right-hand side of (4.8), hence,

the left-hand side of (32) is less than or equal to one. We have shown that, for an arbitrary

time interval and pair of bank flights, the corresponding constraint of the form (2.9) is

satisfied by x. The fact that x satisfies (1.2), (1.3) and (4.8) is trivial. Therefore, x P∈ 1 .

Proof of (ii): Let x P∈ 1 . For each bank b and each time interval t, we define

B MAX Xt
f

f i
i

t

b

=
∈ =

∑
Φ 1

 . For each bank b, we recursively define

Z

B if t

B Z otherwiset
b

t

t i
b

i

t=
=

−





 =

−

∑

,

,

1

1

1 (4.9)

22

Let z be the vector whose components are comprised of the variables defined in (4.9). We

will show that (x, z) is in P2 . By definition Zt
b , we have that Z Bi

b

i

t

t
=
∑ =

1

. Since

0 1≤ ≤Bt for each t, we have that 0 1
1

≤ ≤
=
∑ Zi

b

i

t

 for each t. Now whenever t < τ,

B Bt ≤ τ , so Zi
b

i

t

=
∑

1

 is non-decreasing, as t increases. Thus, for each t and b, Zt
b is

nonnegative and every constraint of the form Zt
b ≥ 0 is satisfied. The feasibility of x to

XSS implies that X f s
s

T

=
∑ =

1

1 for every bank flight f and, in particular, BT = 1. Since

Z Bi
b

i

T

T
=
∑ =

1

, every constraint of the form (2.8) is satisfied for every bank b. These same

constraints imply that for every t > 1 and every bank b,

1
1

1

− =
= =

−

∑ ∑Z Zs
b

s t

T

s
b

s

t

. (4.10)

Note that by definition z and Bt-1, X f s
s

t

=

−

∑ =
1

1

Z Bs
b

s

t

t
=

−

−∑ =
1

1

1 for some flight f in bank b with

the property that X Xf s
s

t

g s
s

t

=

−

=

−

∑ ∑≥
1

1

1

1

 for every g in bank b. Thus, for every g,

X Zg s
s

t

s
b

s t

T

=

−

=
∑ ∑≤ −

1

1

1 . (4.11)

By substituting X Xg s
s

t

g s
s t

T

=

−

=
∑ ∑= −

1

1

1 into (4.11), we obtain the following constraint for

every bank flight, g, and every time interval, t >1.

23

Z Xs
b

s t

T

g s
s t

T

= =
∑ ∑− ≤ 0 (4.12)

In the event that t = 1, each of the summations in (4.12) is equal to one and the validity of

the inequality is trivial. We have shown that (x, z) satisfies every constraint of the form

(2.9).

Lastly, to show that (x, z) satisfies every constraint of the form (2.10), fix t and bank b.

Let f be the flight corresponding to the maximum sum in the definition of Bt. For every

g b∈Φ , there is a constraint of the following form (2.9) that is satisfied by x. That is,

 X Xf i
i

t

g i
i t w

T

b= = +
∑ ∑+ ≤

1

1 . (4.13)

By substituting Z Bi
b

i

t

t
=
∑ =

1

 =
=
∑ X f i
i

t

1

 in for the left-hand sum in (4.13), we see that (x,

z) satisfies constraint (2.10) for an arbitrary t and flight f in an arbitrary bank b. Thus, (x,

z) satisfies every constraint of the form (2.10) and (x, z)∈ P2, as desired.

•

Corollary 1: The LP relaxations to XSS and XGF have the same optimal objective

function values.

Proof: Note that none of the auxiliary variables (Zbt) appear in the objective function for

XGF and that the objective functions for XSS and XGF are the same. The result follows

from the preceding theorem.

•

24

5.1 The Data

We used five data sets to test the performance of the various formulations of

GHB. Each data set was comprised of a set of flights, a collection of banks (subsets of the

set of flights), the scheduled arrival times of the flights, and the capacities of the flights

(i.e., the number of passengers that could be carried). The capacities were used to

compute the weight of the flight in the objective function.

Data Sets 1 - 4 were constructed with a fictitious airport in mind with an arrival

capacity of about one flight per minute. The total number of flights in each data set

varied from 25 to 129 and the time horizon varied from 30 minutes to just over two

hours. The arrival capacity is typical of a large metropolitan airport but the time horizons

represent a relatively small slice of time. The time horizons were kept short to be sure that

the problems could be solved in a reasonable amount of time. A more realistic time

horizon would be on the order of 4-6 hours (as in data set 5) which would imply several

hundred flights. Each problem instance was solved with a reduced arrival capacity of one-

half the original arrival capacity (i.e., one flight per every two minutes).

The number of banks per data set was varied from one to seven, each bank

consisting of eight to ten flights. In practice, this would be a small or medium-sized

bank. The banks were scheduled to land over one to three time intervals. Since the time

horizon was divided up into ten minute intervals, this translates to 10-30 minutes per

bank. The bank densities (percentage of total flights that were bank flights) ranged from

8.9% to 45%.

We found that when a given data set (1- 4) is solved without banking constraints,

each bank would tend to spread over about four time intervals (at ten minutes per time

interval, that’s a total of forty minutes). So, the bank spans were set at three time intervals

(that’s thirty minutes total) in order to keep the banking constraints active.

Data Set 5 was actual flight data taken over an eight-hour period at Chicago

O’Hare Airport on February 12, 1993. By convention, GDP’s are formulated and run over

a four hour period so this data set represents a large instance of GHB. We solved the data

set over the full eight hour period (13:00 - 20:59, data 5C) but not all the models were

able to solve a problem this size, so we generated smaller data sets of four hours (13:00 -

25

16:59, data set 5A) and six hours (13:00 - 18:59, data set 5B) in order to test fully the

performance of each model on real data.

Each problem instance was solved using CPLEX 3.0 on a SPARC 10 work station

both as an LP relaxation and as an integer program (IP). We found little or no

improvement in performance using the customization settings provided in CPLEX, so we

stayed with the default settings.

With respect to the LPR, we were looking for

• High optimal function values

• Low run times, and low iterations of the algorithm

With respect to the IP, we were looking for

• Ability to solve the IP within a node limit of 20,000

• Low run times, low number of iterations and low iterations of the algorithm

The computational results are tabulated in Appendix A, Tables 1-7. In each data

set, the delay constant for flight f, Cf, was set to one-tenth the passenger capacity of the

aircraft. The time intervals are ten minutes each, so the function value units are roughly

passenger-delay minutes. We say “roughly”, because the delay cost of a flight grows

exponentially with its tardiness.

5.2 The Findings

The value gap of a formulation is the percent by which the LPR optimal value

varies from the IP optimal value. A lower value gap indicates a stronger model. In this

respect, XGF proved to be the best of the five models. XSS, WSS and WGF will have

the same performance relative to this metric since they have equivalent LP’s. XGF

yielded the lowest value gap in every data set. The value gap for XGF was never more

than 2.32% and fell to zero in three of the data sets (1, 5A and 5B), indicating that the

optimal integer solution was obtained directly from the LPR. We believe that the LP

26

strength of the XGF model is due to the fact that each of its banking constraints

represents a facet of the convex hull of the set of integer solutions.

Note that for each data set, XGF (but not necessarily XSS, WSS and WGF) solved

the IP to integer optimality in very few nodes of the branch-and-bound algorithm (the

most was 24 nodes for data set 4).

The run times for XGF (on the IP) varied from fractions of a second to just over

25 minutes (in data set 5B). GDP’s are typically formulated a few hours in advance. The

specialist would need time to review an optimal solution to GHB before making a final

decision, so, in practice, the solution times that XGF displayed would most likely be

acceptable.

The outstanding IP performance of XGF comes partly from its LP strength but

also from the fact that we greatly reduced the number of nodes required in the branch-

and-bound algorithm by the branching only on the Z-variables. Recall from section 3 that

this branching technique was applied not only to XGF but to the other models that use

marker variables (to mark the time window in which a bank lands): XWZ and XMMZ. In

the tables, the formulations XWZ, XMMZ are the same as XW and XMM, respectively,

but the IP was solved by branching only on the marker (Z) variables. Of course, the LP

performances for XW and XWZ are the same (likewise, for XMM and XMMZ).

However, the “Z” versions of these models vastly outperformed their counterparts in IP

performance. For instance, the number of nodes that XWZ required to solve data set 4

was 16 nodes compared to 20,000 for XW.

This difference is so marked that we consider the establishment of marker

variables and subsequent branching to be crucial toward solving in real time medium or

large instances of GHB (or any such assignment problem with banking constraints).

At the lowest end of the performance spectrum lies the model XMM which, in

every problem instance, ranked last in LP strength (high value gap), run time (both LP

and IP) and number of nodes explored in the branch-and-bound algorithm. XMM was

able to solve only the smallest of problems to integer optimality in the allotted thresholds

of three hours and 20,000 nodes (data sets 1 and 2, which had only 25 flights and less

than 25 time intervals).

27

5.3 Bertsimas-Stock Performance

We did not expect the B-S versions to find integer optimal solutions to the LP

relaxations in cases where the standard versions did not since the LP are equivalent. Thus,

differences will be related to LP solution times and branching issues.

In general, the B-S versions required more iterations to solve as an LP relaxation -

often a full order of magnitude more than their standard counterparts. For instance, WGF

required 1683 iterations to solve data set 3 (see Table 3, Appendix A) while XGF took

only 657. The run times were not so widely different but the standard assignment variable

models still outperformed the B-S versions.

For all but the smallest of data sets (i.e., more than 25 flights) the B-S models

were outperformed by the standard assignment variable models. One possible reason for

the poor performance of the B-S models relates to the replacement of non-negativity

constraints with monotonicity constraints (essentially, there is an additional constraint for

every variable). This would cause the simplex algorithm to spend significantly more time

finding inverses of matrices, thus driving up the LP run times.

We conjectured that the B-S performance would become comparable to the

standard versions if the problem had fewer variables. One way to cut down on the

number of variables is to limit the amount of delay that could be assigned to any given

flight. For instance, if a flight f were scheduled to arrive in the first time interval and

there were a total of 25 time intervals, then with a 10 time period limit on the tardiness of

each flight, one would need variables Wft for t = 1, 2, …, 10 rather than for t = 1, 2, .., 25.

This type of limitation would be done in practice anyway since a flight is effectively

canceled if it is severely delayed.

In order to test this hypothesis, we solved the LP relaxation of model WGF on

data sets 4 and 5A, before and after upper bounds of 5 time units and 6 time units,

respectively. The runtime of WGF dropped by about 61-72% while the number of

iterations dropped by about 22-44% (see Table 8). However, we found comparable

savings in run time and iterations (see Table 8) for XGF. The imposed bound did not

close the performance gap between the two models.

28

A very significant property of the B-S models is that very simple constraints tend

to represent facets. Recall that every banking constraint of XSS and XGF represented a

facet of the convex hull of integer solutions. Since WSS and WGF are linear

transformations of XSS and XGF, respectively, the banking constraints of WSS and WGF

also represent facets for their respective polytopes. Note that these constraints involve

only two variables.

5.4 Some Highlights of the Experiments

For data set 5, it took XGF just over 25 minutes to solve the six-hour time period

(13:00 - 18:59, see data set 5B) whereas it took only 20 minutes to solve the eight-hour

period (13:00 - 20:59, see data set 5C). One would think that it would take more time to

solve an extension of a problem. We conjecture that the six-hour problem is equally

difficult to solve because most of the bank flights are grouped in the first six hours of the

eight-hour time period. We further conjecture that the node selection in the branch-and-

bound algorithm may have been less fortunate in the six-hour case.

XTC turned out a surprisingly good performance on data set 5. Although its LP

strength is less than that of XGF (or XSS), it solved data sets 5A and 5B in much less

CPU time than XGF - sometimes an order of magnitude less. XTC required 1368 nodes

of the branch-and-bound algorithm to solve data set 5C compared to only 3 for XGF and

yet the solution times were comparable (around 20 minutes). This is because XTC was

able to solve each iteration of the LP in much less time than XGF. This demonstrates that

the strongest model (in LP strength) is not always the quickest way to solve an IP.

As one would expect, the length of time required to solve the LP and the IP grows

with the time horizon and number of flights. All of the models were able to solve the

small data sets (1 and 2) in less than a few seconds while on the larger data sets (5A, 5B,

5C) several of the models could not solve the problem in the (arbitrary) three-hour time

limit. The relationship between size and run time is not strict, however. Data set 4 is

smaller than data set 5A (120 flights versus 280 flights) and yet most models (XW and

XMM in particular) had far more trouble solving data set 4. This might be because data

set 4 had four banks whereas data set 5A had only two.

29

6. Closing Remarks

The single-airport ground-holding problem (GH) is a resource allocation problem

in which each flight bound for an airport suffering reduced arrival capacity must be

assigned to an arrival slot. We have explored various ways to add banking constraints to

the single-airport ground-holding problem to enforce the temporal grouping of certain

collections of flights known as banks. In all, we developed five basic models of the

ground-holding problem with banking constraints. We showed analytically that two of

these models, XSS and XGF, are equivalent in LP strength and that the banking

constraints induce facets.

We tested the computational performance of the models on both real and

constructed data sets. By branching on marker variables employed in several of the

models, we obtained dramatic savings in obtaining integer solutions. The model XGF

proved to be superior in every aspect of our computational testing. XGF is a powerful

formulation of GHB that would perform well on real-world instances of the problem.

The computational performances of the Bertsimas-Stock versions of the models

were disappointing. The primary reason was that the LP relaxations took much longer to

solve. We managed to improve their performances by restricting the assignment of

flights to excessively late time intervals. Even still, the models employing standard

assignment variables prevailed in computational performance.

One way in which our work here could be extended is to reexamine the axiom that

each bank must arrive strictly within its specified time band. A more realistic model

might allow for the temporal expansion of a bank of flights beyond the desired parameter

but at a penalty reflected in the objective function. The challenge there would be to find a

concise mathematical representation of the expansion. Another option would be to allow

the model to exempt (if necessary) one or two flights of each bank from the banking

constraints. This might be a desirable trade-off for the reduction of overall delay costs.

We note that, when applied in practice, our model would be embedded within a decision

support tool such as the flight schedule monitor (FSM) currently used by CDM. By

appropriate iterative use, solutions similar to those associated with these other models

could be obtained.

30

Appendix A

Proof of Lemma 1:

The algorithm below produces n-many linearly independent, linear combinations of the

vectors is S, where n = ()FT F− and S is the set of integer solutions in GHBC
1 .

Algorithm 1

Note: Let w = wb , for ease of notation.

STEP 1:

For j = 1, 2, ..., T

Set vector Y via:

Block 1: Y1, j = 1 Y1, k = 0, k ≠ j

if 1 ≤ j ≤ (T − w+1)

Block 2: Y2, j+w−1 = 1 Y2, k = 0, k ≠ j + w
else

Block 2: Y2, T = 1 Y2, k = 0, k ≠ T

end if
 Block p: (Set these components in any feasible manner)

(p ≠ 1, 2)

Output row vector U = Y (Note: U1, j = 1, U1,k = 0 for all k < j)

end for

STEP 2:

For j = 1, 2, ..., (T − 2)

Set vectors X and Y via:

if 1 ≤ j≤ (w(1.3)

Block 1: Y1, 1 = 1 X1, 1 = 1 Y1, k = X1, k = 0, k ≠ j

Block 2: Y2, j = 1 X2, j+1 = 1 Y2, k = 0 for k ≠ j and X2, k = 0 for k ≠ j+1

if (wb (1.2) ≤ j ≤ (w (1.2) + t −1

u = (j − w + 2)

Block 1: Y1, u = 1 X1, u = 1 Y1, k = X1, k = 0, k ≠ u

Block 2: Y2, j = 1 X2, j+1 = 1 Y2, k =0 for k ≠ j and X2, k = 0 for k ≠ j+1

if (w+ t (1.2) ≤ j ≤ (T − 2)

Block 1: Y1, j+1 = 1 X1, j+1 = 1 Y1, k = X1, k = 0, k ≠ j+1

31

Block 2: Y2, j+1 = 1 X2, j+2 = 1 Y2, k = 0 for k ≠ j+1 and X2, k = 0 for k ≠ j+2

end if

Block p: Yp, k = Xp, k for all k. [Set these components in any feasible manner]
(p ≠1, 2)

OUTPUT Z = (Y − X) (Note: U2, j = 1, U2,k = 0 for all k < j)

end for

Repeat STEP 3 for each block m = 3, 4, ..., F

STEP 3:

For j = 1, 2, ..., (T (1.2)

Set vectors X and Y via:

if 1 ≤ j ≤ (T − w + 1)

Block 1: Y1, j = 1 X1, j = 1 Y1, k = X1, k = 0, else.

Block 2: Y2, (j+w(1.2) = 1 X2, (j+w(1.2) = 1 Y2, k = X2, k = 0, else.

Block m: Ym, j = 1Xm, (j + 1) = 1 Ym, k = Xm, k = 0, else.

else

Block 1: Y1, j = 1 X1, j = 1 Y1, k = X1, k = 0, for k ≠j

Block 2: Y2, T = 1 X2, T = 1 Y2, k = X2, k = 0 for k ≠ T

Block m: Ym, j = 1 Xm, (j+1) = 1 Ym, k = 0 for k ≠ j and Xm, k = 0 for k ≠ j+1

Block p: Yp,k = Xp,k for all k. (Set these components in any feasible manner)

(p ≠1, 2, m)

Output row vector U = (Y − X).

end for

Block p: Yp,k = Xp,k for all k. (Set these components in any feasible manner)

(p ≠1, 2, m)

Output row vector U = (Y − X).

end for

Proof that Algorithm 1 is correct:

We form a matrix, A, by letting the kth row of matrix A be the kth (row) vector output by

Algorithm 1. Note that A has FT -many columns. To show that the algorithm is correct, it

will suffice to show that the rows of A (output of the algorithm) are linearly independent,

32

linear combinations of vectors from S, where S is the set of integer solutions in GHBC
1 .

To this end, we will show three things:

(i) The number of rows in A is n = ()FT F−

(ii) The rows of A are linearly independent

(iii) Each row of A is a linear combination of vectors from S

Proof of (i) : Step 1 yields T vectors. Step 2 yields (T − 2) vectors. Step 3 yields (T − 1)

vectors for each of its (F − 2)-many executions. The total number of vectors output by the

algorithm is given by:

T T F T F T FT F n+ − + − − = − = − =() ()() ()2 2 1 1

Note: We have not shown that these vectors are distinct, but this will follow from the

linear independence of the vectors.

Proof of (ii): To show that the rows of A are linearly independent, it will suffice to show

that A is in row-echelon form and that each row is a pivot row. By construction, every

(row) vector has a lead “1” in component (i, j), for some (i, j). We will show that the lead

entries in the rows of matrix A are staggered, left to right. Let U be any vector output by

the algorithm except the last. Suppose that the lead entry of U occurs in the position (i, j)

(i.e., Ui j = 1 and for all m < j, Ui,m = 0 and for all k < i and all h, Uk h = 0). The lead-entry

of the next vector, U*, will occur either in the same block i, and the position (i, j+1),

(whenever U* is created in the same for-loop) or it will occur in the next block, (i +1)

(whenever U* is created in the subsequent for-loop). In either case, the lead-entry of U* is

strictly to the right of the lead entry in U. So, A is in row-echelon form and each of its n-

many rows is a pivot row.

Proof of (iii): Lastly, we must show that each row of A is a linear combination of vectors

in S. Each vector, U, output by the algorithm is formed by either U = (Y − X) or U = Y, so,

33

clearly, U is a linear combination of the vectors X and Y. Next, we must show that X and

Y are in S. That is, we must show that X and Y are

(a) integer vectors

(b) solutions to GHB and

(c) meet constraint C at equality

Since the components of X and Y are binary, (a) is clear. Over each block, the components

of Y (and X) sum to one, so constraints (1.3) are satisfied. Let j be 1 ≤ j ≤ T. The number

of k for which Yk j = 1 (or Xk j = 1) is less than or equal to two (except for j = T) and since

we have assumed that for all t, bt ≥ 2, Y (and X) satisfies the capacity constraints, (4). Let

Yi, j = 1 and Ym, n = 1 where m ≠ i. By construction, |j − n| ≤ wb, so Y satisfies the banking

constraints. The same holds for X. So, X and Y are solutions to GHB, and (b) is shown.

Finally, to show (c), note that for any vector, X, constraint C reads

X Xs
s

t

s
s t w

T

b

1
1

2 1, ,
= = +

∑ ∑+ ≤ .

To show that X meets C at equality, it suffices to show that exactly one of the following

holds true:

 (i) X1, s = 1 for exactly one s ∈ {1, 2, ..., t}

 (ii) X2, s = 1 for exactly one s ∈ {t + wb, t + wb +1, ..., T}

By this technique, we will show that, at each step of the algorithm, both X and Y meet C

at equality.

Let w = wb.

STEP 1:
for j = 1, 2, ..., t,

Y1, j = 1 ⇒ (1.2) true for Y
Y2, j+w-1 = 1 ⇒ Y2, k = 0 for all k ≥ t + w⇒ (1.3) false for Y

34

for j = (t + 1), (t +2), ..., T
Y1, j = 1 ⇒ Yi, k = 0 for all k ≤ t ⇒ (1.2) false for Y
Y2, T = 1 ⇒ (1.3) true for Y

STEP 2:
for j = 1, 2, ..., w−2 + t

Y1, j = 1 for some 1 ≤ j ≤ t ⇒ (1.2) true for Y
Y2, j = 1 ⇒ Y2, k = 0 for all k ≥ t+ w ⇒ (1.3) false for Y
X1, j = 1 for some 1 ≤ j ≤ t ⇒ (1.2) true for X
X2, j+1 = 1 ⇒ X2, k = 0 for all k ≥ t+ w ⇒ (1.3) false for X

for j = (w + t), (w + t) +1, ..., (T − 1)
Y1, j = 1 ⇒ (1.2) false for Y
Y2, u = 1 for u ≥ w + t ⇒ (1.3) true for Y
X1, j = 1 ⇒ (1.2) false for X
X2, u = 1 for u ≥ w + t ⇒ (1.3) true for X

STEP 3:
Note that Y1, k = X1, k and Y2, k = X2, k for all k
for j = 1, 2, ... t

Y1, j = 1 ⇒ (1.2) true for Y, (1.2) true for X
Y2, j+w-1 = 1 ⇒ Y2, k = 0 for all k ≥ t + w ⇒ (1.3) false for Y, (1.3) false for Y

for j = t, t +1, ..., T
Y1, j = 1 ⇒ (1.2) false for Y, (1.2) false for X
Y2, u = 1 for some u ≥ w + t ⇒ (1.3) true for Y, (1.3) true for X

Thus, each X and each Y produced by algorithm 1 satisfy C at equality. In all, we have

shown that there are (at least) n-many linearly independent (hence, affinely independent),

integer vectors in GHB C
1 that meet constraint C at equality.

•

Proof of Lemma 2: Recall that in Lemma 1, we generated a matrix A of n-many linearly

independent, integer vectors from span(Ω), where Ω ⊆ GHB C
1 . We will show how to add

to matrix A one more linearly independent, integer vector from GHB C
1 for a total of (n +

1)-many linearly independent integer solutions to GHB C
1 . Since linearly independent

vectors are affinely independent, this will show that dim(GHB C
1) ≥ n.

As it stands, matrix A does not have a row with a pivot in component (2, k) (i.e.,

the kth component of the second block), where k = (wb + t (1.2). But we can generate such

35

a row by creating a vector, U = (Y − X), where Y and X are integer solutions to

SAGHPBC and constructed as follows:

In block 1: Y1, k = X1, k = 1 all other components are zero

In block 2: Y2, k = 1 X2, k+1 = 1 all other components are zero

In block m (m ≠1, 2): Ym,n = Xm, n for all n. Set these binary components in
 any feasible manner.

Note that, since U = (Y − X), U2, k = 1 and all components to the left of U2, k are zero.

Because of its unique pivot, this row is linearly independent of the other rows.

•

Proof of Lemma 3:

Let w = wb.

Case 1: (4.2) with τ > t. Since Yt+w = 1, Ys = 0 for all s > t + w. Thus, τ + w > t + w

implies that Yi
i w

T

= +
∑
τ

= 0.

Case 2: (4.2) with τ < t. Since Xt = 1, Xs = 0 for all s < t and we have that X i
i=
∑ =

1

0
τ

 .

Case 3: (4.3) with τ < t + w. Since Yt+w = 1, Ys = 0 for all s < (t + w), and we have that

Yi
i=
∑ =

1

0
τ

.

Case 4: (4.3) with τ ≥ t + w. Since Xt = 1, we see that Xs = 0 for all s > t. In particular, Xs

= 0 for all s ≥ τ.

•

Proof of Theorem 4:

 Let C be an arbitrary constraint of the form (2.9). Then for some time interval t, and

some flight f, C has the form

Z Xi
b

i t

T

f i
i t

T

= =
∑ ∑− ≤ 0 . (B.1)

36

None of our work is affected by the assignment of a flight outside bank b to the

last time interval, T. Thus, for ease of vector notation, we can ignore all flights not in

bank b and assume that the set of flights, {1, 2, …, F + B}is indexed so that variable Z

corresponds to flight 1 (i.e., flight 1 is the “ghost flight”) and that variable Xft corresponds

to flight 2.

The proof is almost identical to the proof of Theorem 1. All of the vectors

constructed in Algorithm 1 (with n = n*) are inGHBC
2 . All but five of those vectors meet

constraint (B.1) at equality. Below are the replacements necessary so that all vectors X

and Y generated in (but not output by) algorithm 1 meet (B.1) at equality.

In STEP 1, iteration j = (t − 1), change vector Y so that

Y1, t −1 = Y2, t −1 = 1.

In STEP 2, iteration j = (t − 1), change vectors Y and X so that

Y1, t +1 = Y2, t +1 = X1,t+1 = X2, t+2 = 1.

In STEP 3, iteration j = (t − 1), change vectors Y and X so that

Y1, t −1 = Y2, t −1 = X1, t−1 = X2, t−1 = Y3, t−1 = X3, t = 1. wb

With these minor modifications to algorithm 1, all of its output is in the span of

the set of vectors that meet (B.1) at equality. Thus, there are at least n*-many linearly

independent (affinely independent) vectors that meet (B.1) at equality and the face, F,

represented by (B.1) must have dimension at least (n* − 1). (B.1) is the one and only

constraint to eliminate the solution, X, in which flight f lands in time slot (t − 1) and the

ghost flight lands in time slot t. Therefore, dim(F) = (n* − 1), and since dim(GHBC
2) = n*

(see Prop 3), F is a facet ofGHBC
2 . Moreover, the uniqueness of X implies that (B.1) is

the only constraint of its kind that represents F.

•

Proof of Theorem 6: Fix a time interval t ≠ T and let C be the corresponding capacity

constraint. Let k = MAX bt T t≠ () . By re-indexing or adding dummy flights to the set of

37

flights, F , we may assume that the last (k +1)-many flights of F is a set, F *, of non-

bank flights such that a f = 1, for each f ∈ F *. Let F* be indexed via {f1, f2, ..., fk, fk+1}.

Recall that the components of each N*-dimensional vector are indexed by the set

I = { (i, j) : 1 ≤ i ≤ F and 1 ≤ j ≤ T }.

We define I* ⊆ I via I* = { (i, j) ∈ I : j ≠ T}. Note that there is one pair in I* for

every component of every flight block except the last component. Thus, |I*| = N* − F =

n*. For each (i, j) ∈ I*, we will generate a row vector U with a lead “1” (all zeros to the

left) in component (i, j). The set Ω will be the collection of all such U-vectors. Thus, |Ω|

= n* and the vectors in Ω are linearly independent because they can be used to form the

rows of an upper triangular matrix.

Fix the index (i, j).

Case 1: i ∈ (F − F *). First, generate a feasible solution vector, Y as follows. Assign

flight i to time interval j. If i is a bank flight in, say, bank b, then let wb be the width of

the bank b. Assign the flights of (Φb − { i}) to time intervals j , j+1, ..., j+ wb in any

feasible manner that does not exhaust the capacity of interval (j+1) (this uses Assumption

2). If j = t, then assign the last (bt − 1) flights of F * to time interval t. If j ≠ t, then

assign the last bt flights of F * to time interval t. Assign every flight in (F − Φb),

including the remaining flights ofF *, to time interval T. Note that whether j = t or j ≠ t,

there are exactly bt flights assigned to time interval t and that there is exactly one flight

assigned to time interval j. Vector Y meet the capacity constraint at equality, hence, is in

Ft.

Secondly, generate a feasible solution (row) vector X by setting every component

of X as in Y, except that flight i should be assigned to time interval (t +1) (this is possible

by assumption 2). If j = t, then one of the flights that is currently assigned to time interval

38

t should be reassigned to time interval T. Thus, there will be exactly bt -many flights

assigned to interval t. Vector X meets the capacity constraint at equality, hence, is in Ft.

Let U = (Y − X). Clearly, U is a linear combination of vectors in Ft. Y and X are

the same in all components strictly to the left of (i, j). Moreover, Yi, j = 1, Xi, j = 0, Yi, j+1 =

0, Xi, j+1 = 1. Thus, Ui, j = 1, Ui, j+1 = −1 and all other components of U are zero. U has a

lead “1” in component (i, j), as desired.

Case 2: i ∈ F * = { f1, f2, ..., fk, fk+1}.

If i = f1 , then construct row vectors Y and X as follows.

Vector Y: Assign all flights of (F − F *) to time interval T. Assign f1 to time interval j. If

j ≠ t, then assign bt -many of the flights of (F *−{ f1}) to time interval t. This is possible

because |F *| = (k +1) , where k = bt . And if j = t, assign bt − 1 flights of F * to time

interval t. Either way, the number of flights assigned to time interval t is bt and the vector

Y is in Ft.

Vector X: Assign f1 to time interval (j +1). If (j+1) ≠ t, then assign bt -many of the

flights of (F *−{ f1}) to time interval t. And if j = t, then assign bt − 1 flights of F* to

time interval t. Either way, the number of flights assigned to time interval t is bt and the

vector X is in Ft.

If i > f1, then construct row vectors Y and X as follows.

Vector Y: Assign all flights of (F − F *) to time interval T. Assign flight i to time interval

j. If j ≠ t, then assign bt -many of the flights of (F *−{ i}) to time interval t. If j = t, then

let d = bt − 1 and assign d-many of the flights to time interval t. Assign all remaining

flights of (F * −{ i}) to time interval T.

Vector X: For each i < F1 and for each j,

Let U = (Y − X). Clearly, U is a linear combination of vectors in Ft. Y and X are

the same in all components strictly to the left of (i, j). Moreover, Yi, j = 1, Xi, j = 0, Yi, j+1 =

0, Xi, j+1 = 1. Thus, Ui, j = 1, Ui, j+1 = −1 and all other components of U are zero. U has a

lead “1” in component (i, j), as desired.

39

•

40

TABLE 1: Data Set 1
Flights = 25 Banks = 2 (6 each) 48% Width = 3 Capacity = 5 T = 6

LP IP
Model Gap

(%)
Function

value
Iterations
Simplex

Time
(sec)

Function value Iterations
Simplex

Time
(sec)

Nodes
B&B

XTC 3.41 90.60 87 0.13 93.80 382 0.70 93
XW 1.81 92.10 113 0.13 93.80 209 0.30 18
XWZ 1.81 92.10 113 0.12 93.80 345 0.53 4
XMM 11.64 82.88 111 0.17 93.80 1991 4.75 776
XMMZ 11.64 82.88 111 0.18 93.80 231 0.30 6
XSS 0.00 INT 93.80 92 0.15 93.80 92 0.15 0
WSS 0.00 INT 93.80 172 0.23 93.80 172 0.23 0
XGF 0.00 INT 93.80 93 0.12 93.80 93 0.15 0
WGF 0.00 INT 93.80 158 0.18 93.80 158 0.18 0

TABLE 2: Data Set 2
Flights = 25 Banks = 2 (9 each) 79% Width = 3 Capacity = 5 T = 6

LP IP
Model Gap

(%)
Function

value
Iterations
Simplex

Time
(sec)

Function value Iterations
Simplex

Time
(sec)

Nodes
B&B

XTC 11.35 100.35 124 0.27 113.20 3773 0.27 629
XW 8.82 103.22 159 0.28 113.20 1352 0.27 156
XWZ 8.82 103.22 159 0.28 113.20 268 0.27 8
XMM 25.22 84.65 118 0.20 113.20 23904 64.10 6161
XMMZ 25.22 84.65 118 0.20 113.20 226 0.42 4
XSS 2.32 110.57 112 0.30 113.20 139 0.42 8
WSS 2.32 110.57 224 0.53 113.20 290 0.82 26
XGF 2.32 110.57 115 0.18 113.20 125 0.27 3
WGF 2.32 110.57 176 0.30 113.20 197 0.35 2

TABLE 3: Data Set 3
Flights = 79 Banks = 2 (10 each) 25% Width = 3 Capacity = 5 T = 16

LP IP
Model Gap

(%)
Function

value
Iterations
Simplex

Time
(sec)

Function value Iterations
Simplex

Time
(sec)

Nodes
B&B

XTC 0.47 890.92 585 1.30 895.10 2932 20.22 540
XW 2.96 868.62 961 3.42 NL 934.40 388,988 2021.37 20,000
XWZ 2.96 868.62 967 3.93 895.10 1561 6.27 16
XMM 5.37 847.00 596 3.33 NL 920.10 134,303 924.90 20,000
XMMZ 5.37 847.00 596 3.35 895.10 1548 7.38 14
XSS 0.31 892.35 720 8.13 895.10 4645 86.47 574
WSS 0.31 892.35 1937 17.60 895.10 4343 50.88 382
XGF 0.31 892.35 657 3.30 895.10 694 3.40 3
WGF 0.31 892.35 1683 7.68 895.10 1733 10.05 5

INT - integer solution in LP LIMIT - 3 hour CPU time limit reached time
N/A - not applicable (limits reached) NL - node limit reached (20,000)

41

TABLE 4: Data Set 4
Flights = 120 Banks = 4 (8 each) 26% Width = 3 Capacity = 5 T = 24

LP IP
Model Gap

(%)
Function

value
Iterations
Simplex

Time
(sec)

Function value Iterations
Simplex

Time
(sec)

Nodes
B&B

XTC 0.69 2784.71 1369 4.73 NL 2915.20 437,068 4171 20,000
XW 4.90 2666.72 2525 16.08 NL 2898.20 726,325 8556 20,000
XWZ 4.90 2666.72 2525 16.08 2804.10 17502 191 283
XMM 7.22 2601.53 1637 21.18 NL 3001.60 279,618 3801 20,000
XMMZ 7.22 2601.53 1637 21.18 2804.10 11980 149 146
XSS 0.26 2796.68 1838 38.95 NL 2804.60 398,102 11,589 20,000
WSS 0.26 2796.68 7060 142.38 NL 2804.80 464,154 11,958 20,000
XGF 0.26 2796.68 1845 14.22 2804.10 2924 30 24
WGF 0.26 2796.68 4489 26.55 NL 2804.80 5478 64 26

TABLE 5: Data Set 5A (13:00-16:59)
Flights = 280 Banks = 6 (12-36) 48% Width = 6 Capacity = 10 T = 30

LP IP
Model Gap

(%)
Function

value
Iterations
Simplex

Time
(sec)

Function value Iterations
Simplex

Time
(sec)

Nodes
B&B

XTC 0.00 7317.78 1996 29.17 7318.10 2002 30.43 3
XW 0.09 7311.60 6784 103.42 7318.10 8938 156.33 140
XWZ 0.09 7311.60 6784 103.90 7318.10 6805 104.02 4
XMM 0.41 7287.81 2110 55.35 7318.10 61,411 3807.30 20,000
XMMZ 0.41 7287.81 2110 55.63 7318.10 2225 63.48 3
XSS 0.00 INT 7318.10 6925 1132.73 7318.10 6925 1127.28 0
WSS 0.00 INT 7318.10 47,250 9037.80 7318.10 47,250 9024.78 0
XGF 0.00 INT 7318.10 3875 71.82 7318.10 3875 71.63 0
WGF 0.00 INT 7318.10 12,708 292.30 7318.10 12,708 292.30 0

TABLE 6: Data Set 5B (13:00-18:59)
Flights = 419 Banks = 10 (12-36) 48% Width = 6 Capacity = 10 T = 42

LP IP
Model Gap

(%)
Function

value
Iterations
Simplex

Time
(sec)

Function
value

Iteration
Simplex

Time
(sec)

Nodes
B&B

XTC 0.05 14,579.28 3533 39.63 14,587.10 5276 150.82 323
XW 0.74 14,478.50 23,325 381.70 NL 14,620.40 326,130 7720.70 20,000
XWZ 0.74 14,478.50 23,325 381.10 14,587.10 23,892 383.90 16
XMM 1.67 14,343.19 5224 137.83 NL 14,647.60 158,201 10,559.28 20,000
XMMZ 1.67 14,343.19 5224 138.15 14,587.10 6302 286.23 29
XSS N/A N/A N/A LIMIT N/A N/A LIMIT N/A
WSS < 0.01 INT 1458.71 34,701 2137.72 14,587.10 34,701 2136.73 0
XGF < 0.01 INT 1458.71 22,052 1590.52 14,587.10 22,052 1508.53 0
WGF < 0.01 INT 1458.71 34,701 2137.72 14,587.10 34,701 2138.42 0

INT - integer solution in LP LIMIT - 3 hour CPU time limit reached time
N/A - not applicable (limits reached) NL - node limit reached (20,000)

42

TABLE 7: Data Set 5C (13:00-20:59)
Flights = 536 Banks = 6 (12-36) 45% Width = 6 Capacity = 10 T = 54

LP IP
Model Gap

(%)
Function

value
Iterations
Simplex

Time
(sec)

Function
value

Iterations
Simplex

Time
(sec)

Nodes
B&B

XTC 0.06 22,822.05 6504 187.93 22,835.90 11,725 1360.90 1368
XW 0.82 22,647.80 49,186 1888.05 N/A N/A LIMIT N/A
XWZ 0.82 22,647.80 49,186 1886.98 22,835.90 50,620 2360.15 35
XMM 1.72 22,442.19 7973 531.82 N/A N/A LIMIT N/A
XMMZ 1.72 22,442.19 7973 533.02 22,835.90 11,460 892.77 48
XSS N/A N/A N/A LIMIT N/A N/A LIMIT N/A
WSS N/A N/A N/A LIMIT N/A N/A LIMIT N/A
XGF 0.03 22,829.87 14,944 1197.22 22,835.90 15,030 1205.31 3
WGF N/A 22,829.87 81,633 8266.10 22,835.90 81,718 8296.67 2

INT - integer solution in LP LIMIT - 3 hour CPU time limit reached time
N/A - not applicable (limits reached) NL - node limit reached (20,000)

TABLE 8
Does LP performance improve with a uniform bound on flight tardiness?

Data Set Model Time
Intervals

Uppe
r

bound

Cap Iterations
Simplex

Time (sec)

4 (before bound) XGF 24 none 7 923 5.63
4 (after bound) XGF 24 6 7 671 2.17

Improvement: 27.30% 61.46%
4 (before bound) WGF 24 none 7 3919 42.00
4 (after bound) WGF 24 6 7 3067 16.32

Improvement: 21.74% 61.11%
5A (before bound) XGF 30 none 10 3875 80.25
5A (after bound) XGF 30 5 10 1450 9.20

Improvement: 62.58% 88.88%
5A (before bound) WGF 30 none 10 12,708 292.30
5A (after bound) WGF 30 5 10 7061 83.75

43

References

[1] ANDREATTA, G., and G. ROMANIN-JACUR, 1987. “Aircraft Flow Management
Under Congestion”. Transportation Science. 21, 249-253.

[2] ANDREATTA, G., ODONI, A.R. and RICHETTA, O. 1993, “Models for the
Ground-Holding Problem”, in Large-Scale Computation and Information
Processing in Air Traffic Control, L. Bianco and A.R. Odoni, eds., Springer-Verlag,
Berlin, pp. 125-168.

[3] ATTWOOL, V.W. 1977. “Some Mathematical Aspects of Air Traffic Systems”. J.
Inst. Navig. 30, 394-411

[4] BALL, M. O., LIU, W. and PULLEYBLANK W.R.. 1989. "Two-Terminal Steiner
Tree Polyhedra", in Contributions to Operations Research and Economics: the
Twentieth Anniversary of CORE, MIT Press, Cambridge, Mass, 251-284.

[5] BERTSIMAS, D. and STOCK, S. 1996. “Air Traffic Flow Management Problem
with Enroute Capacities”, to appear in Operations Research.

[6] NEMHAUSER, G.L. and WOLSEY, L., 1988, Integer and Combinatorial
Optimization, Wiley, New York.

[7] ODONI, A. R.. 1987. “The Flow Management Problem in Air Traffic Control,” in
Flow Control of Congested Networks, 269-288, A. R. Odoni, L. Bianco and G.
Szego (eds.), Springer Verlag, New York.

[8] PULLEYBLANK, W. R.. 1989. “Polyhedral Combinatorics”, in Handbook on
Operations Research and Management Science, Volume 1: Optimization, G.L.
Nemhauser, A.H.G. Rinnooy Kan and M.J. Todd, eds., North-Holland,
Amsterdam.

[9] RICHETTA, O. and A.R. ODONI. 1993. “Solving Optimally the Static Ground-
Holding Policy Problem in Air Traffic Control,” Transportation Science 27, 228-
238.

[10] RICHETTA, O. 1995. “Optimal Algorithms and a Remarkably Efficient Heuristic
for the Ground-Holding Problem in Air Traffic Control,” Operations Research 43,
758-770.

[11] SOKKAPIA, B. G. 1985. Arrival Flow Management as a Feedback Control System.

The Mitre Corporation, Washington, D.C.

44

[12] TERRAB, M. and A. R. ODONI. 1993. “Strategic Flow Management for Air
Traffic Control,” Operations Research 41, 138-152.

[13] VRANAS, P., D. BERTSIMAS and A. R. ODONI. 1994.“The Multi-Airport
Ground-Holding Problem in Air Traffic Control,” Operations Research 42, 249-
261.

[14] VRANAS, P., D. BERTSIMAS and A. R. ODONI. 1994. “Dynamic Ground-
Holding Policies for a Network of Airports”, Transportation Science 28, 275-291.

[15] WANG, H. 1991. “A Dynamic Programming Framework for the Global Flow
Control Problem in Air Traffic Management,” Transportation Science 25, 308-
313.

