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Abstract

We consider high-rate scalar quantization of a memoryless source for transmission
over a binary symmetric channel. It is assumed that, due to its suboptimality, the
quantizer’s output is redundant. Our aim is to make use of this redundancy to combat
channel noise. A rate-one convolutional code is introduced to convert this natural
redundancy into a usable form. At the receiver, a maximum a posteriori decoder
is employed. An upper bound on the average distortion of the proposed system
is derived. An approximation of this bound is computable and we search for that
convolutional code which minimizes the approximate upper bound. Simulation results
for a generalized Gaussian source with parameter a = 0.5 at rate 4 bits/sample and
channel crossover probability 0.005 show improvements of 11.9 dB in signal-to-noise
ratio over the Lloyd-Max quantizer and 4.6 dB over Farvardin and Vaishampayan’s
channel-optimized scalar quantizer.

Index Terms: Convolutional code; non-equiprobable memoryless data; combined
source-channel coding.

T This work was supported in part by National Science Foundation grants NSFD MIP-91-09109
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I. Introduction

It is known that the performance of a scalar quantizer can be degraded if it 1s
used over a noisy channel. The performance degradation is more severe for high-rate
(i.e., high-resolution) quantizers [1].

Thus far, the most successful approach to solving this problem is to take the ef-
fect of channel errors into consideration when designing the quantizer ~ the so-called
combined source-channel coding approach [2, 3]. With this approach, the source dis-
tribution and channel transition matrix are assumed to be given. The Lloyd-Max
formulation [4, 5] for designing a locally-optimal scalar quantizer for a given rate and
source distribution is then modified with the effects of channel errors entering the
optimization process. This results in a locally-optimal quantization system [2, 3].
A quantizer so designed will be referred to as a channel-optimized scalar quantizer
(COSQ). Compare to the Lloyd-Max quantizer (LMQ), which is designed for a noise-
less channel, the COSQ provides a better performance when the channel is noisy.

In this paper, we propose a different approach. It is assumed that the source is
memoryless and its distribution is sharp-peaked and broad-tailed, i.e., it is highly non-
uniform. Also, it is assumed that a LMQ has been designed for this distribution and
its output is represented in binary using a natural binary code (NBC). Due to the non-
uniform distribution of the input and the optimal structure of the LMQ, the output
distribution is also non-uniform. Therefore, the entropy of the quantizer’s output is
lower than the rate (log of the number of levels) of the quantizer. The difference
between these two quantities is called the quantizer’s “residual” redundancy [6].

In previous works [6, 7], it was found that the residual redundancy can be used
to combat channel noise — providing that maximum a posteriori (MAP) detection is
performed at the decoder. However, the redundancy in [6, 7] is due to the quantizer
output memory rather than its non-uniform distribution.

When the channel is symmetric (as is assumed here), redundancy at the channel



input in the form of memory can be better utilized at the decoder than redundancy
in the form of non-uniform distribution. The information-theoretical argument for
this is that, for symmetric channels, a uniform input distribution maximizes the
mutual information between channel input and output. This means that in sending
redundancy-bearing information over a symmetric channel, the redundancy should
be in the form of memory rather than non-uniformity.

Therefore, in this work, we do not transmit the quantizer output directly over
the channel, as was done in [6, 7]. Instead, the quantizer’s output is first encoded
by a rate-one convolutional encoder. A rate-one convolutional encoder is one which
produces as many bits as it accepts. The purpose of the convolutional encoder is to
match the quantizer’s output to the channel, i.e., it converts non-uniformly distributed
data into uniformly distributed data.

The output of the convolutional encoder is then transmitted over a binary symmet-
ric channel (BSC). At the receiver, a MAP decoder, implemented using the Viterbi
algorithm, is employed. The output of the MAP decoder is then fed to the LMQ
decoder. The complete system is depicted in Figure 1.

In this paper, an upper bound on the average distortion of the system in Figure 1
is derived. An approximation of this upper bound is computable and the convolu-
tional encoder is chosen as that which minimizes this approximated upper bound.
Simulation results are presented. Two other decoding techniques, MAP symbol-by-
symbol decoding and minimum mean squared error decoding, are considered. It is
then shown that, using an entropy-constrained formulation, the quantizer output re-
dundancy can be adjusted so that the overall system performance can be improved.
The performance of this system under channel mismatch conditions is also studied.

The rest of this paper is organized as follows. In Section II, we present rate-one

convolutional codes and derive an approximate upper bound on the average distortion

of the proposed system. Simulation results are presented in Section III. Finally,
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conclusions are given in Section IV.

II. Rate-One Convolutional Codes

In this section, we describe a rate-one convolutional code whose function is to
“match” the LMQ output to the BSC. The theoretical justification for choosing a
convolutional code for this task can be found in the works by Koshelev [8] and Hell-
man [9]. Koshelev investigated the computational complexity of sequential decoders of
convolutional codes used in joint source-channel coding of discrete non-equiprobable
sources [8]. Hellman proved that there exist convolutional codes of rate R, < C/H

“that can be reliably decoded when used for joint source-channel coding” provided

that MAP decoding is employed [9].

A. System Description
In the following, we will consider the system depicted in Figure 1. The source,

{X.}, is assumed to be an i.i.d. process with marginal probability density function

(p.d.f.) f(z). The p.df. is assumed to be symmetric, i.e., f(z) = f(—=z), Va. The
source is encoded by an LMQ of rate R bits/sample. The LMQ encoder is described
by a set of M — 1 quantization thresholds, {T1,T5,...,Tnm_1}, where M = 28, The
output of the LMQ encoder is a sequence of binary R-tuples (R is an integer). Assume
that the NBC is used, let J 2 {0,1,...,M —1} and v : J ~ {0,1}" be the binary

representation of the integers in 7. The encoder is then described by
U, = 7(7) if X, € (T;,Ti41), t=0,1,...,M —1, (1)

where it is assumed that Thy = —Tp = oo, and T; < Ti4q forz =0,1,..., M — 1. The
LMQ is also assumed to be symmetric, hence T; = —Ty_; for 2 € J. The output of
the LMQ encoder is an index, U, € {0,1}#, representing the quantization level for
X {Uy,} is passed through a rate-one convolutional encoder which produces {W,}

which, in turn, is fed into a BSC, the output of which is denoted by {V,}. At the



receiver, we make a MAP estimate, U = {Un}nN___l, of the sequence U = {U,}V,
based upon the observation V = {V,}_,. Then, U is fed to the LMQ decoder; the
output of the decoder is an estimate, X, of X, given by

A

Xn = q’y—l((‘]")a (2)

where ¢; is the i** reconstruction level of the quantizer (i € J). We will use the block

notation: U = ¢(X), W = 1(U), U = (V) and X = §(U).

B. Distortion Upper Bound
Traditionally, convolutional codes are designed to minimize probability of error
(or, equivalently, maximize free distance). Our aim, however, is to design codes

which minimize the squared-error distortion,
1 & oy
D:E[j\[— Z(An‘“Xn) ] (3)
n=1
To do this, we first derive an (approximate) upper bound on D and then choose that
code which minimizes this bound. Let X, = Q=1 (U, 1-€., X, is the reconstruction
sample given that U, = U,. It can be shown that (3) can be expressed as [15]
1 & . 1 &
D = Bl (X, — K]+ Bl (K - K1) a

n=1 n=1

The first term in (4), denoted by D, is the average distortion induced by the source
coding (quantization) operation while the second term, denoted by D, is the distor-

tion introduced by channel noise. Our goal now is to minimize D..

Let Q = {qo>q1,---,qn—1} be the set of reconstruction levels. Define
A o - .
pi 2 Pe{X, = g1} = Pr{X, € (1, T}, i€, (5)
By symmetry, we have ¢; = —qa-1-; and p; = pa_1-; for ¢ € J. Since the

source distribution is assumed to be sharp-peaked, reconstruction levels closer to
the origin are more Probable than those on the outskirts. We thus assume that for

1=0,1,...,M/2 =2, p; < pis1.



Let X = (X1, X3,...,Xn). We are interested in upper bounds for D, given the
“type” of X and the number of bit errors.
Suppose X € {arms2-1, qnay2}Y = To, i.e., each element of X is either qM/2-1 OF

gmy2- Such a sequence is called a type-0 sequence and
> L
Pr{X € To} = 2"phijo-1 = Qo. (6)

Type-0 sequences are the most probable. If z € 7y, then Pr{f( =z} = p%ﬂ_l = B.
Now define a type-1 sequence as one in which exactly N — 1 elements are either
gm/2-1 Or gpr/2 and the other element is either gas/2-2 or gas/a41. The set of all type-1

sequences is denoted by 77 and
Pr{X € T} = N2V il pia-e 2 Qi (7)

Type-1 sequences are the second most probable. If z € Ty, then Pr{X = z} =
p11y/1721_1PM/2—2 = P,. Continuing this way, we get a sequence of types {7;}%, and two
sequences of probabilities, {Q;}%, and {P;}2,, where UL T = QV, 4 . Q: = 1 and
P, > Py fore=0,1,...,L — 1.

Let W and V be the transmitted and received bit sequences, respectively, and let

dp(W,V) be the number of errors occurred during transmission. Define

Lo wnels |
Dij & B[ IIX = XIP[X € T,du(W, V) = j )

1=0,1,...,L,35=0,1,..., RN. D, can be computed according to

L RN
D, = ZZ Di,j PI‘{X & Zde(W,V) = J}7 (9)
1=0 j=0
where
A, - S ) RN i _ RN —j
Pr{X € T;,dg(W,V) =3} =Q; i e (1—¢) , (10)

and e is the channel bit error rate (BER).



Define the a posterior probability (APP) of a sequence u € {0,1}7V given that a

sequence V is received as
APP(ulv) £ Pr{U = u|V = v}. (11)
The output of the MAP detector is given by

u=ry(v)=arg uel{Tcl)al)}(RN APP(ulv). (12)

Then, D; ; can be upper bounded by

N 1.
D;; < Di,j = nax NHX - 5(77("))”2- (13)

xeT;
v :dp(h(g(X)),v) =
If the above upper bound can be computed, an upper bound on D, can be computed

by
L RN
DEEYS" DLQ ( RJN ) (1 — )i, (14)

=0 7=0
which leads to an upper bound on D given by D* 2 D, + D¥. Note that the

maximization in (13) can be written as

DY¥; = max D¥(%), (15)
! XeT;

where

D¥(%) = max <l = 8 (v)) I (16)

v du(h(g(%),v) =5 VN
The following theorem states that when ¢ = 0 the maximization in (15) is unnecessary.
Theorem 1 D¥(X) is constant on Ty, i.e.,

D;L(f(l) - D;L()‘V(Q) Vxl,ig < 76, V_] = 0, 1, e ,RN (17)

The proof of the theorem is provided in [15]. In the following, we provide an algo-

rithmic approach for computing an upper bound on D¥(x) for a given X.



Algorithm:

(1) Set Dy(x) =0for l=0,1,...,RN. Set = 0.
(2) I=1+1.

(3) Let u be the binary representation of X, define

= {z € {0, 1} s dy(h(u), h(z)) = I, APP(z|h(z)) > APP(u[h(z))},

(18)

and set

1
[(X) = —|Ix = é(2)|]*. 19
Di(x) = max—[[x — &(z)]| (19)
(4) Vz € Z!, let j* be the minimum j for which

Pr{U =z} 79(1 — V-9 > Pr{U = u}(1 — )N, (20)

and set

. (s . oy s

D} (5) = max( D} (%), %1% - 5(=)|1) (21)

(5) If I < RN, go to step (2).
(6) For I =0,1,..., RN, let D;(X) = max(D;(X), D;(X),..., D;(X)).
(7) Stop.

Note that in step (3) we assume that if we receive h(z) and APP(z|h(z)) >
APP(ulh(z)) then we decode z. In step (4), we note that only j* errors need to
occur for APP(zlh(z)) > APP(ul|h(z)). Finally, in step (6), we force D¥(X) to be
monotonically non-decreasing. The following theorem establishes that D}(x) upper

bounds D¥(X).

Theorem 2 Dj(x) > D¥(x) for j =0,1,...,RN.



The proof of this theorem is also given in [15]. The above provides a yet looser upper
bound on the conditional average distortion. This new upper bound is computable.

D%(x) in step (3) can be computed using a small modification of the algorithm

described in [10, 11].

C. Approzimations
Even though D}(x) is not constant on 7; for ¢ > 0, we have observed that, in
most cases, it does not vary much on 7;. We thus approximate the maximum of
D;(x) over the set T; by D;(%) for some randomly chosen X € 7;. Also, we note that
D;; is bounded (by the maximum distance between any two elements in Q) while
Pr{X € T, dy(W,V) = 7} vanishes for large ¢ and j. Therefore, we approximate the
upper bound on D. (see (14)) by
D: - ZZ v, ( ) 1L~ N, (22)
where Df; = Dji(x) for some randomly chosen X € T; and tmee < L, jmaw < RN
are chosen such that Pr{X e UX T;} and Pr{dy(W, V) > ju.} are sufficiently

1=tmaz+1

small.

D. Search for Good Codes

The above development provides an (approximate) upper bound on the average
distortion for a given convolutional encoder. To find that encoder which minimizes
the (approximate) upper bound, the following procedure is adopted. First, an encoder
is chosen at random by randomly selecting the tap coefficients. The upper bound for
this code is computed. A new encoder is chosen by randomly changing one of the tap
coefficients. If this results in a smaller upper bound, it is recorded as “the best code
found thus far”. The encoder is again changed and the procedure is repeated. We
stop the algorithm if no improvement is found after T changes.

A list of good codes found by the above procedure is listed in Table 1. Here,



we consider two types of encoders: minimal encoders and encoders with feedback.
For minimal encoders, the tap coeflicients are listed where we assume that the least
significant bits are fed into the encoder first. In the case of feedback, we used the
structure depicted in [12], where all additions and multiplications are over GF(2%).
We used the primitive polynomials p(X) =14+ X + X3 and p(X) =1+ X + X* to
construct GF(2%) and GF(2*), respectively [13]. The tap coefficients of the forward
loop are given in the first row while the tap coefficients of the feedback loop are given
in the second row. For both minimal and feedback encoders, the coefficients are given

in octal for I = 3 and hexadecimal for R = 4.

IV. Simulation Results

Simulations of the system in Figure 1 for a Generalized Gaussian source with
a = 0.5 have been performed and the results are given in Table 2. Performances of
LMQ with NBC and COSQ and the optimum performance theoretically attainable
(OPTA) are also given in Table 2. Note that in almost all cases the convolutionally

encoded system beats the COSQ.

A. Other Decoding Techniques

We note that all of the delay of the system in Figure 1 is in the MAP decoder. The
MAP decoder must wait for the entire sequence to arrive before it makes a decision on
which sequence was transmitted. In this subsection, we consider two other decoding
methods which have smaller delays than the MAP Viterbi decoder.

We first consider optimum symbol-by-symbol decoding for a given delay 7. Sup-
pose we are interested in decoding u,, given that we have observed vit”™ = (v, vq, ..., Vptr).

The minimum probability of error decoding rule is given by:

Uy, = arg max Pr{lU, = u,|V}t" = v{*"}. (23)

Un

Note that the above minimizes the symbol error probability whereas the MAP Viterbi



decoder minimizes the sequence (or block) error probability. Implementation of this
decoder is described in [15].

Note that similar to hard-decision convolutional decoding, there is an irreversible
loss of information between the MAP decoder and the LMQ decoder. To fix this

problem, we combine these two decoders into a single minimum mean-squared error

(MMSE) decoder. The MMSE estimate of X,, given that V317 = vi*7 ig
%u = E[X. |V = vi"7], (24)
which can be expanded to
S = X JUn = 1, VIV = IV Pr{Uy = VIV =v17). (25)

Since the source is memoryless, the above expectation is just ¢,-1(y,). The second
factor in the above summation can be obtained {from the symbol-by-symbol decoder.
Simulation results using symbol-by-symbol and MMSE decoding with 7 = 20 samples
are given in Table 3. In all cases, MMSE decoding is superior to symbol-by-symbol
decoding. In Figure 2, we plot the SNR performance as a function of the delay for

the case a = 0.5, I = 3,¢ = 0.005 and constraint length K = 2.

B. Entropy-Constrained Scalar Quantizer

We have repeated the simulations for a Generalized Gaussian source with o = 1.0,
i.e., a Laplacian source. The results are given in Table 4. The codes that have been
found for o = 1.0 are given in [15]. We note that the results of the convolutionally
encoded system for o« = 1.0 are not as good as those for a = 0.5. In fact, for many
cases, the SNR performances of the convolutionally encoded system are even worse
than that of LMQ-NBC.

The poor performance of the convolutionally encoded system for the Laplacian
source (@ = 1.0) can be attributed to the low level of redundancy at the output of the

LMQ. It is possible to increase this redundancy by changing the quantization levels
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of the quantizer. This may reduce the SNR performance when there is no channel
noise. However, the increase in redundancy will lead to additional protection when
there is noise.

Here, instead of LMQ, we consider rate- and entropy-constrained scalar quan-
tizers. These are quantizers in which both the number of levels and the entropy are
constrained. We used the generalized Lloyd algorithm described in [14] to design these
quantizers. The redundancy of a quantizer is defined to be the difference between its
rate and its entropy. In Figure 3, we plot the SNR performances of the convolution-
ally encoded system for o = 1.0 using rate- and entropy-constrained scalar quantizers
and MAP Viterbi decoding as a function of the quantizer redundancy. Here, we used
the feedback codes listed in Table 1. Table 5 lists the best results using rate- and

entropy-constrained scalar quantizers.

C. Channel Mismatch

Up to this point, we have been working under the assumption that the channel
BER i1s known. In most practical situations, the BER is not known a priori or it is
time-varying. In this subsection, we will examine the performance of the convolution-
ally encoded system under channel mismatch, i.e., when the system is designed for
a BER ¢4, but applied to a channel whose BER is actually €¢,. We consider the case
a = 0.5,R = 4,K = 2. The simulation results for this case are plotted in Figure 4,
where we have chosen the entropy-constrained scalar quantizers which yielded the

peak performances reported in Table 5.

V. Conclusions
We have proposed the use of a rate-one convolutional code to exploit the residual
redundancy of the LMQ. We derived an approximate upper bound on the average

distortion of the proposed system and searched for those codes which minimize the

approximate upper bound. Iven though its performances are still far from OPTA,

11



the proposed system provides significant improvements in SNR over LMQ-NBC and
COSQ.
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Minimal Feedback
Rl ¢ |[K=1K=2K=1|K=2
42 441 (47 762
310.005(21 222 |3 16
15 135
41 465 (47 762
0.010(2 4 204 |3 16
13 133
81 SFS8 [AD |A8S
410.005|4 F 44D |2 87
23 2F2
17 13E
85 882 |[AD |AS8S
0.0104 3 4 A1 12 87
2B 25D
12 1 B3

Table 1: A List of Good Rate-One Convolutional Codes for the Generalized Gaussian
Source with a = 0.5; K = Constraint Length; 2% = Number of States.
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Convolutional Encoder
LMQ- |COSQ|{ Minimal Feedback |OPTA
R| ¢ |NBCI[3]| [8] |K=1|K=2|K=1|K=2
310.000} 10.35 | 10.35 {10.35{10.35{10.35|10.35| 21.74
0.005| 5.19 8.35 | 8.94 | 9.60 | 9.12 {10.00| 20.97
0.010} 2.90 7.23 | 7.75 | 8.44 | 7.21 | 8.71 | 20.34
410.000f 15.69 | 15.69 |15.69{15.69115.6915.69] 27.79
0.005| 3.49 10.79 111.16]14.5612.96|15.36 | 26.95
0.010| 0.64 9.09 | 9.48 {11.60| 9.40 [12.46| 26.05

Table 2: SNR (in dB) Performances of LMQ-NBC, COSQ and Convolutionally
Encoded Systems with MAP Viterbi Decoding; Generalized Gaussian Source with
a = 0.5; K = Constraint Length; 257 = Number of States.

MAP Viterbi | Sym-By-Sym MMSE
Delay=o00 Delay=20 Delay=20
Feedback Feedback Feedback

Rl ¢ IN=1|K=2K=1|K=2|K=1{K=2

310.005} 9.12 | 10.00 | 8.96 | 9.90 | 9.33 | 10.10

0.010f 7.21 | 871 | 7.59 | 859 | 822 | 9.03

410.005| 12.96 | 15.36 | 12.37 | 15.22 | 13.23 | 15.33

0.010{ 9.40 | 12.46 { 9.17 | 11.85 | 10.37 | 12.75

Table 3: SNR (in dB) Performances of Convolutionally Encoded Systems Using Three
Different Decoding Techniques; Generalized Gaussian Source with o = 0.5; K =
Constraint Length; 25% = Number of States.

Convolutional Encoder
LMQ- [ COSQ| Minimal Feedback |OPTA
R| € |NBC3]| [38] |K=1|K=2|K=1|K=2
310.000| 12.64 | 12.64 [12.64]12.64|12.64[12.64| 18.68
0.005| 9.30 10.49 | 8.64 | 9.50 | 8.11 | 9.05 | 17.87
0.010| 7.44 9.17 | 6.16 | 6.16 | 5.56 | 5.34 | 17.23
410.000| 18.13 18.13 [18.13(18.13[18.13]18.13| 24.70
0.005| 9.78 12.76 | 9.64 [10.72| 8.57 |11.02| 23.65
0.010| 7.11 11.03 | 5.59 | 5.04 | 5.26 | 5.49 | 22.77

Table 4: SNR (in dB) Performances of LMQ-NBC, COSQ and Convolutionally
Encoded Systems \Vitll MAP Vitelbi Decoding; Clenera‘lizecl Gaussian SOUI"CC \r\'itll
a = 1.0; K = Constraint Length; 28F = Number of States.
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LMQ Feedback

a |R| e |NBC[3]{COSQ[3]| K=2 |OPTA
0.5]3(0.005| 5.19 8.35 10.08 20.97
0.010( 2.90 7.23 9.37 20.34
410.005| 3.49 10.79 15.39 26.95
0.010| 0.64 9.09 13.91 | 26.05

1.0/ 3(0.005| 9.30 10.49 10.72 | 17.87
0.010| 7.44 9.17 9.45 17.23
410.005| 9.78 12.76 15.76 23.65
0.010| 7.11 11.03 13.58 | 22.77

Table 5: SNR (in dB) Performances of LMQ-NBC, COSQ and Convolutionally En-

coded Systems with MAP Viterbi Decoding and Entropy-Constrained Scalar Quan-
tizers; K = Constraint Length; 2% = Number of States.

Rate-O
LMQ Un lcgnv.ne W,
X, Encoder Encoder
9(-) h(-)
BSC
LMQ MAP
X, Decoder - Decoder
6(+) U, n(-) Va

Figure 1: Block Diagram of Convolutionally Encoded System.
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a=05R=3¢e=0005K =2

11 = |

——6—— Minimal; Symbol-By-Symbol Decoding

5 - Minimal; MMSE Decoding =
~———e&—— Feedback; Symbol-By-Symbol Decoding

4 ——@—— Feedback; MMSE Decoding -

3 | i i i | I 1 1 1

0 4 8 12 16 20 24 28 32

Delay (Number of Samples)

Figure 2: SNR (in dB) Performances of Convolutionally Encoded Systems with
Symbol-By-Symbol and MMSE Decoding Vs. Delay; Generalized Gaussian Source
with a = 0.5; K = Constraint Length; 287 = Number of States.
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Figure 3: SNR (in dB) Performances of Convolutionally Encoded Systems with MAP
Viterbi Decoding Vs. Redundancy of Entropy-Constrained Scalar Quantizer; Gen-
eralized Gaussian Source with o = 1.0; K = Constraint Length; 2% = Number of
States.
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Figure 4: SNR (in dB) Performances of Convolutionally Encoded Systems with MAP
Viterbi Decoding Under Channel Mismatch; Generalized Gaussian Source with a =
0.5; €4 = Design BER; €, = Actual Channel BER; K = Constraint Length; 257 =
Number of States.
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