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With the increasing natural and human-made disasters, the risk of an event with potential 

to cause major disruption to our transportation systems and their components also 

increases.  It is of paramount importance that transportation systems could be effectively 

recovered, thus economic loss due to the disasters can be minimized.  This dissertation 

addresses the optimization problems for transportation system performance measurement, 

decision-making on pre-disaster preparedness and post-event recovery actions planning 

and scheduling to achieve the maximum network resilience level.  

In assessing a network’s potential performance given possible future disruptions, 

one must recognize the contributions of the network’s inherent ability to cope with 

disruption via its topological and operational attributes and potential actions that can be 

taken in the immediate aftermath of such an event.  A two-stage stochastic program is 

formulated to solve the problem of measuring a network’s maximum resilience level and 

simultaneously determining the optimal set of preparedness and recovery actions 

necessary to achieve this level under budget and level-of-service constraints.  An exact 



 

 

methodology, employing the integer L-shaped method and Monte Carlo simulation, is 

proposed for its solution.  

In this dissertation, a nonlinear, stochastic, time-dependent integer program is 

proposed, from operational perspective, to schedule short-term recovery activities to 

maximize transportation network resilience.  Two solution methods are proposed, both 

employing a decomposition approach to eliminate nonlinearities of the formulation.  The 

first is an exact decomposition with branch-and-cut methodology, and the second is a 

hybrid genetic algorithm that evaluates each chromosome’s fitness based on optimal 

objective values to the time-dependent maximum flow subproblem. Algorithm 

performance is also assessed on a test network. 

Finally, this dissertation studies the role of network topology in resilience.  17 

specific network topologies were selected for network resilience analysis. Simple graph 

structures with 9~10 nodes and larger network with 100 nodes are assessed. Resilience is 

measured in terms of throughput and connectivity and average reciprocal distance. The 

integer L-shaped method is applied again to study the performance of the network 

structure with respect to all three resilience measures. The relationships between 

resilience and average degree, diameter, and cyclicity are also investigated.  
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Chapter 1: Introduction 

1.1 Motivation and Objectives 

Disasters, of any kind, can create a wide range of challenges. Examples of recent 

disasters include: the 9/11 terrorist attacks, the Nisqually Earthquake of 2001, Hurricanes 

Katrina and Rita in 2005, Minneapolis’ bridge collapse of August 2007, 2010 Haiti 

earthquake, and 2011 Tohoku earthquake and subsequent tsunami. These disasters, both 

natural and human-made, have resulted in massive fatalities, property and/or 

environmental damage, significant economic losses, and displacement of population. The 

estimated economic loss in Louisiana and Mississippi due to Hurricane Katrina is nearly 

$150 billion, for example. Further, Hurricane Katrina forced the relocation of over one 

million people from the central Gulf Coast.  

Under a natural (e.g. earthquake, flood) or human-made disaster (e.g. terrorist 

attack) it is of paramount importance that transportation systems remain operational or 

their functionality be repaired quickly to provide effective transport services in the 

disaster’s aftermath (Nicholson and Du, 1997).  Using empirical data from the 1995 Kobe 

earthquake, Chang (2000) showed the significance of a functioning transportation system 

in disaster recovery and the long-term economic impact of continued substandard 

operations. Past data has shown that damage to road network components (e.g., bridges, 

tunnels, highway, etc.) can severely disrupt traffic flow and negatively impact the 

economic activity of a region as well as post-disaster emergency response and recovery 

activities (Franchin and al., 2006a; Franchin and al., 2006b; Lupoi and al., 2006; 

Schotanus and al., 2004). For example, Hurricane Katrina damaged over 45 bridges and     
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most highways in Alabama, Louisiana, and Mississippi. These losses to the transportation 

infrastructure significantly obstructed emergency response activities, caused loss of lives, 

and hampered the movement of needed suppliers to the region. 

This dissertation provides tools to support the creation of resilient intermodal 

freight transportation systems. Performance measures, such as system resiliency, can 

provide indication of the system’s ability to withstand or cope with a disaster, and thus, 

can offer insights for disaster management. Resilience in the context of transportation 

networks is quantified herein as the ability of a transportation network to withstand and 

quickly recover from disruption. This measure considers the network’s inherent ability to 

cope with negative consequences of disruptions as a result of the network’s topological 

and operational attributes. To achieve the maximum network resilience level, pre-disaster 

preparedness and post-disaster recovery actions and investments are planned and 

scheduled given the possibility of a host of disaster scenarios that might arise. That is, a 

multi-hazard approach is taken.  

This dissertation work has arisen from increasing concerns, both nationally and 

internationally, for securing existing transportation systems. Details of the specific 

problems to be addressed are described next, followed by general contributions derived 

from this dissertation. 

1.2 Specific Problems Addressed 

An overview of the three main problems addressed within this dissertation is given in this 

section. These problems are discussed in terms of conceptual framework, problem 

modeling and analytical methodologies developed for their solution.  
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1.2.1 Resilience with preparedness options (RPO), 

Preparedness and recovery are key components to support efficient disaster management 

and mitigate the impacts to our society due to disaster. From the perspective of planning, 

preparedness should be considered for the provision of equipment and personnel ahead of 

time to facilitate and enhance potential recovery actions. The recovery phase emphasizes 

the evacuation of traffic demand, mobilization of the preparedness resources and 

restoration of transportation system capacity that was lost during the disaster.  

Although interest by researchers and practitioners has grown in past decades, the 

extent to which transportation network resilience analysis is systematically investigated is 

still insufficient. Most studies on this topic focus on either disaster management 

following events or develop methods to support pre-disaster preparedness. For example, 

models have been proposed to identify essential activities in transportation system 

planning under emergencies by analysis and modeling of capacity in transportation 

networks (Chen et al., 1999; Chen et al., 2002; Wong, 1996; Yang and Bell, 1998; Yang 

et al., 2000). These models aimed to determine the maximum level of demand that can be 

served by a transportation network and provided useful information for managing 

mobility demand and identifying efficient strategies for controlling traffic demand under 

emergencies. Barbarosoglu and Arda (2004) further investigated post-disaster 

transportation network management to consider uncertainties in available supplies, 

demand and network arc capacities through consideration of a set of potential disaster 

scenarios. Chen and Miller-Hooks (2012) provide a means for quantifying the resilience 

measure conceptualized in (Rose, 2004) that chooses the optimal set of recovery actions 

to take for each disaster scenario.  



4 

 

Few works consider preparedness and recovery actions that can be taken to 

maximize resilience. Several advocate for resilience measures that account for recovery 

capability, but provide only qualitative discussions. The work by Chen and Miller-Hooks 

(2012) from which concepts of this thesis are built introduces a quantitative measure of 

resilience that explicitly accounts for recovery options. It only implicitly considers 

preparedness options. Johnstone et al. (2004) used pre-positioning strategies for 

equipment and ammunition to facilitate rapid and effective response to conflicts from a 

military view. Again, the developed model focuses on planning of necessity, but does not 

consider the evacuation of the traffic demand from origins to destinations. 

Additionally, few existing models account for uncertainty in demand or damage 

to the network. The possibility of adverse outcome and uncertainty over the occurrence, 

timing or magnitude of the adverse outcome from a disaster must be considered (Covello 

and Merkhofer 1994). Such uncertainty makes the establishment of a comprehensive and 

directly relevant disaster management plan difficult and leads to a complex stochastic 

decision problem. 

Few works study the synergies between preparedness and recovery. These works 

are discussed in succeeding chapters. This dissertation expands on the conceptualization 

of resilience by incorporating preparedness decisions and exploits synergies between 

preparedness activities and recovery options. A two-stage stochastic integer program is 

proposed in which preparedness decisions are taken in the first stage and recovery actions 

are suggested for each disaster scenario in the second stage. Incorporating risk mitigation 

through preparedness investment within a framework that accounts for the inherent 

network coping capacity along with immediate post-disaster recovery options, the 
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developed model aims to provide tactical support for improving pre-disaster preparedness 

and post-disaster recovery and, as a result, achieving an optimal balance between 

preparedness and recovery investment under budget and level-of-service constraints. 

Two-stage stochastic integer programs are difficult to solve because they are 

generally non-convex and discontinuous. An exact methodology, employing with some 

adaptation of the integer L-shaped method of Laporte and Louveaux (1993) and Monte 

Carlo simulation, is proposed for its solution. Optimal allocation of a limited budget 

between preparedness and recovery activities is explored on an illustrative problem 

instance involving a network abstraction of a rail-based intermodal container network in 

United States.  

This resilience concept that accounts for pre-disaster preparedness and post-

disaster recovery activities is presented in Chapter 2. 

1.2.2 Resilience with optimal recovery scheduling (RORS) 

Decision-making in post-disaster activities in (Chen and Miller-Hooks 2012)) and 

Chapter 2 is conducted at a planning level. While choosing the optimal set of recovery 

actions to take for each disaster scenario, details of the recovery action implementation 

are handled in an aggregate way. That is, candidate recovery activities chosen for 

implementation are assumed to begin immediately after the event. That resources are 

limited and all activities cannot be implemented simultaneously is not addressed.  

 A time-dependent modeling approach is required to incorporate the effects of 

scheduling decisions that can be used to prioritize the implementation of recovery actions 

over the response period. Prioritization is also necessary to take advantage of efficiencies 
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that can be gained as a result of synergies between actions and the timing of their 

implementations. 

This work studies the resilience of a transportation system from a practical 

operational perspective. A stochastic, time-dependent, nonlinear, integer program that 

accounts for both scheduling recovery activities under various disaster scenarios and 

managing dynamic flow to maximize the network resilience level, is proposed. This 

model aims to (1) select what recovery activities are to be taken, (2) identify where the 

recovery activities should be implemented, (3) determine when each of the recovery 

activities should get started and, (4) determine how fast the recovery activities should be 

completed, that is how much resources to supply for each action. 

In this dissertation, two solution methodologies are presented. The first method is 

exact; it employs decomposition with branch-and-cut. The exact solution method requires 

extraordinary computational effort. An efficient solution algorithm is required that can 

quickly generate optimal or near-optimal solutions. Thus, the second method, a heuristic 

approach that relies on the concept of genetic algorithm, is proposed to speed up the 

process of finding a satisfactory solution.  

Chapter 3 presents the proposed method for scheduling of recovery actions in a 

time-dependent network is formulated, and the formulation and its solution are 

demonstrated on an illustrative case study. 

1.2.3 Assessing the role of network topology 

Network topology can impact a network’s ability to withstand the impact of disaster. This 

dissertation further studies the role of network topology in resilience. Different network 
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topologies demonstrate different inherent capacity to cope with potential disaster. In this 

chapter, systematically designed numerical experiments were conducted to assess a host 

of known network structures with the goal of gaining insight into the role of a network’s 

topology in its resilience. 

17 specific network topologies were selected for network resilience analysis. 

Simple graph structures with 9~10 nodes are first assessed. These were tiled together or 

expanded to produce larger instances (100 nodes each) with similar structure.  These 

larger networks were also tested. Resilience is measured in terms of throughput and 

connectivity and average reciprocal distance. The integer L-shaped method is applied 

again to study the performance of the network structure with respect to all three resilience 

measures. 

This portion of dissertation further studies the relationship between overall system 

health and component-level resilience.  The relationships between network resilience and 

average degree, diameter, and cyclicity were also investigated. The impact of damage at 

the component-level on overall system health and the recovery capability was also 

assessed. 

Details of the experimental design, numerical results and insights learned from the 

results are presented in Chapter 4. 

1.3 Contributions 

The primary goal of this dissertation is to formulate models and develop associated 

solution methodologies to support transportation system performance measurement, 

optimal decision-making on pre-disaster preparedness and post-event recovery actions 
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planning and scheduling to achieve the maximum network resilience level. This 

dissertation also studies the role that transportation network topology, including specific 

network structures, plays in resilience.  

Synergies between preparedness activities and recovery activities were 

systematically studied. A two-stage stochastic integer model is developed to support the 

decisions associated with pre-disaster preparedness and the selection of post-event 

recovery activities. The model yields (1) optimal pre-disaster preparedness activities 

(types of equipment and personnel) and (2) post-event optimal recovery activities 

(locations for implementation, types of activities). Solution of the proposed two-stage 

stochastic integer program remains challenging and requires significant computational 

time. An integer L-shaped method that takes advantage of the existence of binary first-

stage decision variables derived by Laporte and Louveaux (1993) is employed for 

transportation network resilience analysis. The integer L-shaped method decomposes the 

original model into many deterministic sub-problems. This decomposition eliminates 

intractable nonlinearity terms.  

A stochastic, time-dependent, nonlinear integer model is formulated to account 

for scheduling recovery activities. Two solution methods are proposed, both employing a 

decomposition approach to eliminate nonlinearities of the formulation.  The first is an 

exact decomposition with branch-and-cut methodology, and the second is a hybrid 

genetic algorithm that evaluates each chromosome’s fitness based on optimal objective 

values to the time-dependent maximum flow subproblems. A novel chromosome 

representation for the scheduling of post-disaster recovery action is proposed to reduce 

the computational effort of the standard genetic algorithm procedure. 
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Decision support enabled through the research effort of this dissertation takes into 

account society’s need for a stable transportation system in the event of an accident, 

natural hazard or act of terrorism resulting in large-scale disruption. It enables prejudice-

free decisions and can offer transparency in the decision-making process. Moreover, 

decision-makers will be better informed and prepared to make logical and systematic 

decisions in an emergency.  

General conclusions and future extensions are discussed in Chapter 5.   
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Chapter 2: Measuring and Maximizing Resilience of Freight 

Transportation Networks 

2.1  Introduction and Motivation 

Freight transportation infrastructure and related transport elements (trains, ships, planes 

and trucks) comprise a crucial lifeline for society. In the United States (U.S.), for 

example, an extensive freight transportation system, with a network of 4 million miles of 

roadway, nearly 140,000 miles of rail, approximately 25,000 miles of waterways, more 

than 350,000 intermodal terminals, almost 10,000 coastal and inland waterway facilities, 

and over 5,000 public-use airports (USDOT RITA BTS 2010), enables the expedient 

movement of raw materials, other resources, and end-products between suppliers, 

manufacturers, wholesalers, retailers and customers. Its expediency and efficiency are in 

large part due to an open, accessible design. This design, that supports mobility 

objectives, leaves the system vulnerable to malicious and random acts with the aim or 

unintended consequence of disrupting operations. Even minor disruptions can have 

effects that ripple through the network, resulting in major reductions in system efficiency 

with nation-wide or even global impact (as discussed in Miller Hooks et al., 2009).  

This chapter proposes a method for assessing and maximizing the resilience of an 

intermodal freight transport network. Resilience involves both the network’s inherent 

ability to cope with disruption via its topological and operational attributes and potential 

actions that can be taken in the immediate aftermath of a disruption or disaster event. 

This conceptualization of resilience in terms of both inherent and adaptive components is 

discussed in (Rose, 2004) and was quantified in (Chen and Miller-Hooks, 2012). See also 
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(Nair et al., 2010) in which the concept was applied in a component-based application 

involving the intermodal port of Świnoujście in Poland. 

Chen and Miller-Hooks (2012) formulated the problem of measuring resilience, 

defined as the expected system throughput given a fixed budget for recovery action and 

fixed system demand, in an intermodal freight transportation application. The problem 

was posed as a stochastic, mixed integer program. The program includes no first-stage 

variables. All decisions are taken once the outcome of the random disaster event is 

known. Thus, the problem can be decomposed into a set of independent, scenario-

specific, deterministic (albeit NP-hard) problems and the focus of their solution approach 

is on the sampling methodology and exact solution of each independent deterministic 

problem that results for a given network state. They presented a solution framework 

employing Benders decomposition (Benders, 1962), column generation and Monte Carlo 

simulation. A secondary outcome from solving the mathematical program is the optimal 

set of recovery actions that can be taken to obtain the maximum attainable throughput for 

each potential network state.  

This conceptualization of resilience that includes not only the network’s inherent 

coping capacity, but also the potential impact of immediate recovery action within a 

limited budget is illustrated in Figure 2.1. 

 

Figure 2.1: Illustrative example showing impact of recovery activities on system performance 
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As depicted in the figure, post-disaster arc capacities may be significantly reduced 

for affected arcs (Figure 2.1(b)), resulting in a poorly performing network. However, if 

recovery actions can be taken in the immediate aftermath of disaster to restore and even 

improve at least a subset of the affected arcs (Figure 2.1(c)), and such restoration can be 

accomplished quickly and within an acceptable budget, one may view the network a 

priori as highly performing, i.e. resilient. 

This chapter expands on this conceptualization of resilience by incorporating 

preparedness decisions and capturing synergies between preparedness activities and 

recovery options. The concept of resilience as defined by Chen and Miller-Hooks (2012) 

was developed as a strategic tool. It permits the measurement of a network’s resilience 

level given a set of possible, future network states and potential remedial actions. 

Remedial actions that may be taken pre-event (e.g. adding additional arcs to the network, 

ordering spare parts or backup equipment, prepositioning resources in anticipation of 

potential recovery activities, implementation of advanced technologies, training, and 

other pre-event actions that can reduce the time or budget required to complete potential 

recovery activities should they be required post-event) were not considered in their work. 

Thus, their formulation does not include pre-event, i.e. first-stage, decision variables and 

their approach does not incorporate decisions concerning actions that can be taken pre-

disaster.  

In determining resilience within this research, a budget is available for both 

preparedness and recovery options. A two-stage stochastic, integer program is presented 

in which preparedness decisions are taken in the first stage and recovery actions are 

suggested for each disaster scenario in the second stage. The incorporation of first-stage 
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decisions precludes the problem’s decomposition into a set of independent, deterministic 

problems as was possible when only recovery options were considered (i.e. as in (Chen 

and Miller-Hooks, 2012)). An integer L-shaped method is proposed herein for solution of 

the resilience problem with preparedness options.  

By incorporating risk mitigation through preparedness investment within a 

framework that accounts for the inherent network coping capacity along with immediate 

post-disaster recovery options, the developed solution methodology will provide tactical 

support for improving pre-disaster preparedness and post-disaster response, thus, 

achieving an optimal balance between preparedness and recovery investment. While this 

research focuses on intermodal freight transport networks, general concepts developed 

herein have wider applicability.  

In the next section, related works in the literature are reviewed. In Section 3, the 

concept of resilience with preparedness options is defined. A two-stage stochastic integer 

program is presented for obtaining the allocation of funds to preparedness and recovery 

activities such that resilience, measured in terms of expected system throughput, is 

maximized. The formulation accounts for the inherent coping capacity of the network, 

along with the impact of cost-effective preparedness and recovery actions that can be 

taken to preserve or restore the system’s ability to perform its intended function in a 

disaster’s aftermath. The integer L-shaped method proposed for its solution is presented 

in Section 4. Solution of the program results in a measure of maximum resilience in terms 

of expected throughput for a given budget level, as well as the preparedness and post-

disaster actions that are needed to achieve the maximum resilience value. Finally, these 

concepts and the effectiveness of the proposed solution methodology are illustrated on 
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the Double-Stack Container Network (Morlok and Chang, 2004; Sun et al., 2006) under 

disaster scenarios involving a terrorist attack, flooding or earthquake. Results of the 

numerical study show the additional benefits in terms of increased resilience level that 

are derived from taking preparedness actions. In addition, the optimal allotment of the 

budget between preparedness and recovery options for the case study is investigated. 

2.2 Literature Review 

Numerous works in the literature address network vulnerability, reliability and flexibility. 

These concepts are not always well defined and their meaning often varies from one work 

to another. It is only in rare cases, however, that consideration is given to actions that can 

be taken in the immediate aftermath of the disaster to improve system performance. An 

overview of the concepts of vulnerability, reliability, flexibility and resilience in the 

literature is given in (Chen and Miller-Hooks, forthcoming). Prior to (Chen and Miller-

Hooks, forthcoming) and (Nair et al., 2010), a few works have considered compatible 

notions. Havidán et al. (2006) developed qualitative measures of resilience related to 

business contingency planning that account for actions taken to mitigate event impact. 

Srinivasan (2002) and Chatterjee (2002) espouse the need for recovery planning in the 

context of intermodal freight systems. Srinivasan (2002) advocates for a comprehensive 

and quantitative vulnerability index that can account for recovery potential, but does not 

provide such an index. A number of additional works recognize the importance of having 

resilient systems. Bruneau et al. (2003) emphasize that resilient systems reduce the 

probability of failure and its consequences, as well as the time for recovery. Other works 

consider recovery actions in the wake of natural and human-induced disasters (Juhl 1993, 
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Daryl 1998, Williams et al. 2000 and), but do not consider a network performance 

measurement.  

Ip and Wang (2009) define network resilience as a function of the number of 

reliable paths between all node pairs. Such a concept is consistent with other notions of 

network reliability. Ta et al. (2009) developed a qualitative definition of resilience in the 

context of freight transport as a tool for visualizing disruption consequences. Their 

definition captures the interactions between managing organizations, the infrastructure, 

and its users. Murray-Tuite (2006) introduced a quantitative measure of resilience 

designed to consider network performance under disruption. The measure involves 10 

dimensions: redundancy, diversity, efficiency, autonomous components, strength, 

collaboration, adaptability, mobility, safety and the ability to recover quickly. She 

considered both system optimal and user equilibrium traffic assignment modeling 

approaches and examined and compared the network performance based on the last four 

dimensions of the resilience measure. Zhang et al. (2009) also evaluate resilience as a 

function of change in system mobility, accessibility and reliability from pre-disruption 

levels for intermodal transportation systems.  

Numerous works address disaster operations management, which can affect 

network performance in a disaster’s aftermath. A review of many of these works can be 

found in (Altay and Green, 2006). Altay and Green (2006) categorized these works based 

on the phases of the disaster management lifecycle phases addressed or type of disaster 

considered. Examples of works addressing disaster operations management include (Feng 

and Wen 2005, Kondaveti et al. 2009 and Chen and Miller-Hooks 2012). These works 

seek an optimal post-disaster allocation of resources and optimal recovery actions that 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Ip:Andrew_W=_H=.html
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can be taken in a disaster's immediate aftermath, but do not attempt to assess network 

performance a priori.  

In this research, not only are short-term recovery options incorporated within a 

quantitative pre-disaster measure of resilience, but preparedness actions that can affect 

recovery capacity are considered. To address the preparedness phase, numerous works 

study network fortification by pre-positioning resources (Huang et al. 2007, Rawls and 

Turnquist 2010 and Zhu et al. 2010) and reinforcing network components (Holmgren et 

al. 2007, Liu et al. 2009, Fan and Liu 2010, Peeta et al. 2010, Cappanera and Scaparra 

2011) to reduce disruption consequences and probability of failure. Huang et al. (2007) 

seek the optimal locations for fire stations and number of emergency vehicles to position 

at each station such that coverage of critical transportation infrastructure components is 

maximized in preparation for a major disaster. Zhu et al. (2010) determine optimal 

storage locations and capacities to meet post-disaster demand that is known in advance 

only with uncertainty. Holmgren et al. (2007) present a game-theoretic approach to 

optimally allocating resources for reinforcement in the context of the electric grid. Such 

reinforcement actions have implications for the total system recovery time. Peeta et al. 

(2010) addressed pre-disaster planning as an investment problem with the aim of 

strengthening the highway network and enhancing its ability to cope with disaster. 

Cappanera and Scaparra (2011) developed a methodology that seeks a network 

fortification plan to minimize the length of the shortest path between O-D pairs in 

response to a worst-case disruption scenario.  

Liu et al. (2009) and Fan and Liu (2010) examine the allocation of limited 

resources (i.e. a fixed budget) for retrofitting and repairing bridges within a region. It was 
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assumed that if a bridge were retrofitted, it would withstand all disaster forces. They 

further assume that non-retrofitted bridges will be damaged and impassable in the event 

of disaster and all damaged bridges will require repair. They model the problem of 

optimal investment in either pre-disaster retrofitting or post-disaster repair as a two-stage 

stochastic program in which a fixed budget is available for retrofitting the bridges. The 

objective is to minimize a function of travel and repair costs. Liu et al. (2009) compute 

travel costs from total travel time incurred by all vehicles in the system. Fan and Liu 

(2009) compute travel costs assuming an user equilibrium is reached. In both works, 

travel times are based on conditions in the immediate aftermath of the disaster. Liu et al. 

(2009) require that all demand be met in each disruption scenario, while Fan and Liu 

(2010) only penalize solutions containing unsatisfied demand. Neither work considers the 

impact of repair on system performance. 

Liu et al. (2009)'s two-stage stochastic program involves a nonlinear recourse 

function in the second stage. They propose a modified L-shaped method to solve the 

problem using a convex and piecewise linear approximation of the second stage objective 

function. The formulation given in Fan and Liu (2010) can be categorized as a 

mathematical program with complementarity constraints due to the traffic flow 

equilibrium constraints. As the L-shaped method relies on an assumption of convexity, an 

alternative solution approach is required. Thus, they propose a progressive hedging (PH) 

method due to (Rockafellar and Wets 1991) that decomposes the problem into multiple 

independent subproblems based on scenarios. Within this solution framework, the 

subproblems are further reformulated into a series of mixed integer nonlinear programs in 

which the complementarity constraints are relaxed. Each such program is solved using a 
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commercial solver. One can view the techniques proposed herein as extending the 

capabilities proposed in Liu et al.’s work to include recovery actions in the second stage 

as proposed in Chen and Miller-Hooks (forthcoming), as well as retrofit and repair 

options with intermediate, as opposed to all-or-nothing, impact. This work also provides 

a network performance measurement tool, which was not the goal of these earlier works. 

Stochastic programming has been applied in numerous arenas, including, for 

example, production management, financial modeling, logistics, energy, pollution 

control, and healthcare. See (Wallace and Ziemba, 2005) for a review of stochastic 

programming applications. This approach is particularly well suited to the problem posed 

herein, as generally two-stage stochastic programs can be seen as having a preparedness 

stage, i.e. a stage in which decisions must be taken prior to the realization of a random 

event, and a recovery stage, referred to as recourse, in which changes to earlier decisions 

can be made to improve the solution once the random values are actualized. 

It appears that no prior work in the literature provides a network resilience 

measurement tool incorporating both preparedness and post-disaster recovery actions, as 

well as the potential impact of those actions. 

2.3  Problem Definition 

In this section, the problem of measuring resilience given preparedness options is 

defined. To the extent possible, for consistency, notation and definitions presented in 

(Chen and Miller-Hooks, forthcoming) are used.  

As in the previous work, network resilience is defined as the expected fraction of 

demand that can be satisfied post-disaster: 



19 

 













































 
 Ww

w

Ww

w

Ww

w

Ww

w dEDDdE 1  (2.1) 

where Dw is the original pre-disaster demand for O-D pair w. dw is the post-disaster 

maximum demand that can be satisfied for O-D pair w. Demand that can be satisfied 

depends on the inherent coping capacity of the network and post-disaster recovery actions 

taken to restore or enhance network capacity. The network’s inherent ability to cope with 

disaster can be enhanced through preparedness efforts. Moreover, new options for actions 

that can be taken in the immediate aftermath of disaster may exist if certain preparedness 

actions are taken. That is, preparedness actions can affect recovery capacity. 

The problem of measuring resilience given preparedness options, referred to 

herein as Resilience with Preparedness Options (RPO), is formulated as a two-stage 

stochastic program. The first stage includes decisions on pre-disaster preparedness 

actions, actions that would be taken prior to disaster realization. The second stage, the 

recourse stage, involves the selection of post-disaster recovery actions to take in the 

aftermath of disruption, once the impact of the disaster on network performance, 

specifically on arc capacities and traversal times, is known.  

A network representation of the intermodal system is exploited in the formulation 

and solution framework. Let G=(N,A), where N is the set of nodes and A is the set of arcs. 

To address intermodal movements within the system, a representation employing 

intermodal connections between modal arcs would ordinarily be employed. For 

simplicity, intermodal movements are considered only in recovery options, and thus, in 

the following problem definition, modal arcs are indistinguishable. This is acceptable 

here, because decision variables represent the movement of shipments in the form of 
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containers that can be transported along any modal arc in the network. Had the decision 

variables produced vehicular-movements, such as rail car or truck movements, the 

intermodal network representation would need to be explicit. Notations employed in the 

problem formulation are synopsized as follows.  

W  set of O-D pairs 

wK  set of paths k connecting O-D pair w 

wD  original demand between O-D pair w 

R Set of available recovery actions 

arb  cost of implementing recovery activity rR on arc a 

P Set of available preparedness actions 

apb  cost of implementing preparedness activity pP on arc a 

p
arb  cost of implementing recovery activity r on arc a if preparedness action p is taken 

B  given budget 

)(ac  post-disaster capacity of arc a for disruption scenario   

apc  augmented capacity of arc a given preparedness action p is taken 

)(arc

 

augmented capacity of arc a due to implementing recovery activity r for disruption 

scenario   

)(at  Traversal time of arc a under disruption scenario   

art  Traversal time of arc a if recovery activity r is implemented 
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arq  Implementation time of recovery activity r on arc a 

p
arq  

Traversal time of arc a if related preparedness action p and recovery action r is 

implemented 

)(
w

k
Q  Maximum implementation time of recovery actions on path k between O-D pair w 

w
Tmax  

Maximum allowed traversal between O-D pair w 

 
Preparedness-recovery action relationship matrix in which each element 

pr  is set to 

1 if recovery action r is affected by preparedness action p and 0 otherwise. 

w

ak
  path-arc incidence (=1 if path k uses arc a, and =0 otherwise) 

 

Decision variables 

ap  
binary variable indicating whether or not preparedness activity p is undertaken on arc 

a (=1 if preparedness action p is taken on arc a and =0 otherwise) 

)(
w

k
y

 

binary variable indicating whether or not shipments use path k (=1 if path k is used 

and =0 otherwise) between O-D pair w 

)(
w

k
f  post-disaster flow of shipments along path k between O-D pair w under scenario   

  ar  

binary variable indicating whether or not recovery activity r is undertaken on arc a in 

the aftermath of disruption scenario   (=1 if recovery action r is taken on arc a and 

=0 otherwise) 

Based on this notation, resilience with preparedness options (RPO) is formulated 

as the following two-stage stochastic program:  

(RPO) 

First stage:  

 

  )(max ~ 


ZE

 
(  (2.2) 
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ar  , ,1  
(2.12) 

    RrAaar  ,1,0  (2.13) 

    WwKkfy w
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k
w
k  ,integer,  ,1,0)(   (2.14) 

The objective function (2.2) in the first stage seeks to maximize the expectation of 

)(Z  over disruption realizations   for a given decision on preparedness actions, where 
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)(Z  is the maximum total post-disaster number of shipments, )(
w

k

f , that can be made 

between all O-D pairs for a given disruption scenario  . Thus, objective function (2.2) 

gives the maximum expected total throughput. First-stage constraint (2.3) specifies that at 

most one set of preparedness actions can be taken for each arc and (2.4) restricts the 

preparedness variable 
ap  to be binary. Demand constraints (2.6) guarantee that the total 

number of shipments pushed along all paths between a particular O-D pair w will not 

exceed the original pre-disaster demand for the O-D pair. Constraint (2.7) requires that 

the total cost of all chosen pre-disaster preparedness action and post-disaster recovery 

actions not exceed available budget B. The monetary interaction between pre-disaster 

preparedness and post-disaster recovery actions is accounted for by preparedness-

recovery action relationship matrix . This matrix consists of predetermined binary 

elements that specify whether the preparedness action p impacts recovery action r in 

terms of its implementation cost. That is, the cost of implementing recovery action r on a 

arc a, p
arb , given that a relevant preparedness action p is taken pre-disaster, i.e. 1pr , 

can decrease the implementation cost of recovery activity r when taken alone. Note that 

constraint (2.7) is nonlinear. 

Constraints (2.8) account for the impact of preparedness actions on network 

capacity enhancement. An augmented capacity 
apc  can be achieved by taking 

preparedness action p in arc a. The post-disaster capacity of the arc, thus, is the sum of 

the post-disaster reduced capacity for the given disruption scenario and the augmentation 

in capacity obtained by implementing preparedness and recovery actions. Note that arc
 

is a function of the disaster scenario realization. This permits the modeling of situations 
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where the impact of a recovery action may be minimal under certain scenarios. For 

example, pumping water from a roadway arc will provide added capacity in a flooding 

scenario, but will provide little aid in mitigating the effects of an earthquake.  

The fact that taking preparedness actions in advance can reduce the 

implementation time of recovery actions is taken into account through level-of-service 

(LOS) constraints (2.9) through (2.11). These constraints limit the total traversal time, 

including arc travel time and recovery action implementation time, between each O-D 

pair w for a pre-defined threshold w
Tmax

. This restriction holds only for paths along which 

flow is ultimately sent. )(
w
ky  specifies whether path k is used for sending shipments 

between O-D pair w. If it is not, the limitation is not imposed. If for a given shipment the 

total traversal time exceeds the threshold, the shipment is considered unserved and is not 

included in the throughput computation. The implementation time of recovery actions 

depend on whether or not certain preparedness actions have been taken, as described in 

constraints (2.11). Recovery action implementation times are accounted for in LOS 

computations. 

At most one set of recovery actions can be taken along each arc as specified 

through constraints (2.12). Constraints (2.13) restricts recovery action variables, ar , to 

be binary and constraints (2.14) impose integrality and non-negativity restrictions for 

second stage variables.  

Note that for simplicity of notation, as written, all preparedness and recovery 

actions are presumed to be available for every arc. This need not be the case. 
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2.4 Solution Methodology 

2.4.1 Overview of solution methodology 

The aim of the solution methodology is to determine the optimal portion of the budget to 

spend on preparedness and amount of the budget to save for post-disaster recovery given 

future network states that could result from one of many possible disaster scenarios. The 

probability of each disaster scenario is assumed to be known a priori and it is possible 

that no such disaster scenario will be realized. The optimal investment plan will result in 

the maximum expected resilience index for the network.  

(RPO) is a non-linear, two-stage stochastic program with binary first-stage 

decision variables and binary, as well as integer, second stage decision variables. The 

nonlinearity arises in second stage constraints, where first- and second-stage variables are 

multiplied. A primal decomposition method that decomposes the problem by stage will 

eliminate this nonlinearity by fixing the value of the first-stage variables when 

considering the second stage problem at each iteration. An L-shaped method, a type of 

primal decomposition method, is proposed herein for solution of (RPO). Alternatively, 

one could apply the dual decomposition approach, designed to address integer stochastic 

programs, proposed by Caroe and Schultz (1998); however, such an application would 

require solution of a nonlinear, deterministic program for each scenario, i.e. at each 

iteration of the algorithm. 

The L-shaped method of Van and Wets (1969), a variant of Benders’ 

decomposition, is typically applied in solving two-stage stochastic programs. Within this 

approach, a single variable, , is used to approximate the expected value of the second-
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stage recourse function. The technique seeks the solution corresponding with the optimal

 , and   is determined iteratively by using LP duality to construct a convex piecewise 

linear approximation of the objective function. Because this approach requires that dual 

variables be obtained in each iteration, it cannot be applied in solving stochastic programs 

with integer decision variables. Instead, an integer L-shaped method for problems with 

binary first-stage variables and arbitrary second stage variables developed by Laporte and 

Louveaux (1993) and applied successfully to a vehicle routing problem (Laporte and 

Louveaux, 1998) is employed. Laporte and Louveaux’s technique extends earlier work 

by Wollmer (1980) for two-stage stochastic programs with binary first-stage and 

continuous second-stage decision variables. 

Like the standard L-shaped method, the integer L-shaped method applied herein 

begins with the decomposition of the two-stage stochastic program into a master problem 

(MP) in which integrality constraints are relaxed and a set of subproblems (SPs), one 

subproblem for each network state. A branch-and-bound tree structure is imposed. Nodes, 

referred to as pendant nodes, are added to the tree during the procedure. The initial 

problem, in which no variables are fixed, is solved at the root of the tree. 

At any step v, solution of the master problem results in an approximation of 

  )(~ 


ZE (from first stage objective function (2)), denoted v
 . If solution of the master 

problem is not integer, two new branches are created from the current node to two new 

pendant nodes, fixing the value of a chosen variable, and the process continues by 

branching. 
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If the solution is integer, decision variables from the master problem are fixed 

within the subproblems and the subproblems are solved. An expectation, which in step v 

is denoted as )(
v

 , 
PpAa

v
ap

v
 ,}{ , is taken over the resulting subproblem 

objective function values weighted by network state probabilities. If )(
v

  is no less 

than v
 , an optimality cut is generated from the solutions of the subproblems and an 

absolute lower bound associated with the subproblems. This cut is added back to the 

master problem starting the next step v+1. The master problem is resolved. Otherwise, if 

)(
v

 <
v

 , the current node is fathomed and the process continues at the next pendant 

node.  

When no pendant nodes of the tree that have not yet been considered remain, the 

entire procedure terminates. As optimality cuts are added to the master problem, the 

master problem becomes increasingly constrained. This integer L-shaped algorithm is 

guaranteed to converge in a finite number of steps.  

To generate network states with properties related to a chosen set of scenario 

classes (e.g. earthquake, flooding,...), Monte Carlo simulation is employed. Through 

Monte Carlo simulation, arc capacities for a set of network states are set through repeated 

sampling so as to approximate pre-specified probability distribution functions and to 

preserve a given correlation structure among the random variables. The greater the 

number of samples (i.e. network states), the more accurate the approximation. The 

approach developed by Chang et al. (1994) and employed by Chen and Miller-Hooks 

(forthcoming) in a similar context is applied herein to generate multivariate correlated 

random variates of arc capacities. This approach transforms the original arc capacity 
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probability distributions with correlation matrix to standard normal space. By taking the 

orthogonal transformation of the correlation matrix to produce its eigenvector matrix, 

correlated normal random variates can be generated, which can be transformed back to 

the original probability space. Different correlation matrices are used for each distinct 

scenario. These sample network states are generated during initialization. 

The general framework for the integer L-shaped method employed herein is 

illustrated in Figure 2.2. The Monte Carlo simulation technique embedded with the 

framework generates scenarios based on assumed probability distribution functions for 

event occurrence and consequence. These probability distribution functions can be 

estimated using one of several methodologies that have been introduced to obtain realistic 

probability distributions related to disaster events. Many of these techniques use 

historical data of past disasters and estimate the probability and damage potentials of 

disasters based on the geographical and geologic characteristics of a targeted network. 

For floods and storm events, hydrologic models, such as the Precipitation-Runoff 

Modeling System (Chang et al 2010) and CoreLogic Flood Model (Jeffery et al. 2011), 

can be applied to estimate the probability and severity of a flooding event. The 

Precipitation-Runoff Models, for example, are calibrated based on historical data. The 

calibrated model is employed within a simulation framework to determine the probability 

of future flooding for new situations. Seismologists apply methodologies to predict the 

probabilities of earthquakes in different locations. The U.S. Geological Survey (USGS) is 

known as a reliable resource of national seismic hazard data, which can be used to 

estimate the probability of earthquake and its severity in terms of measures of Peak 

Ground Acceleration (PGA) and Spectral Acceleration (FEMA 2006). These measures 
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provide information that can be used to predict potential damage to different types of 

buildings. After the attack of September 11, 2001, numerous studies have focused on 

quantitative approaches to measure the risk of terrorism (Willis et al. 2005, Rosoff and 

John 2009). These studies primarily employ physical attributes of potential targets in 

predicting the attractiveness of a particular structure and risk of terrorist attack on that 

structure. Risk models, e.g. the Risk Management Solution (RMS) model (Willis et al. 

2005) and Proxy Utility Model (Rosoff and John 2009), have been proposed for 

estimating the likelihood of terrorist attack on a particular structure. These models further 

predict the probability distribution of consequence to a structure for a given event. 

 

Figure 2.2: Flowchart for integer L-shaped method 
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2.4.2 Applying the integer L-shaped method for solution of (RPO) 

To implement the integer L-shaped method for solution of the (RPO), the problem is 

treated as one of minimization, i.e. (2.2) is replaced by (2.15), and the problem is 

decomposed into a master problem (MP) and subproblems (SPs) as follows. 


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,10,0),(  apf   (2.18) 

where   is the approximation of expected second-stage objective function value, 

PpAaap  ,}{ , and 0),( f  is the set of linear optimality cuts generated during 

the algorithm. A valid constraint (2.17) that requires that the cost of preparedness actions 

not exceed the total budget is also added to the master problem. 
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For |P| available preparedness activities and |A| arcs, the number of elements in 

=|P||A|, denoted here by n. Let the i
th

 element in vector  be given as (i)ap . Then, 

n
apapap n {0,1})}((2),...,(1),{  . Index set 1})(:{  iiI ap . Optimality cuts are 

obtained through equation (2.20).  
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where L  is a finite absolute lower bound on (19). Since the total throughput cannot 

exceed the total pre-disaster demand, we can set the negative of the total demand as a 

valid absolute lower bound. Thus, .-

w

wDL The validity of the optimality cuts (2.20) is 

a consequence of the fact that ||)()( Iii

Ii

ap

Ii

ap  


 .  

In implementing the procedure, branching is based on the most fractional variable. 

Addition of the optimality cuts to the master problem is implemented following the 

scheme proposed by Listes (2004), which was shown to reduce computation times. 

Unlike the original implementation of the integer L-shaped method in which any cuts 

added to the master problem are applied until termination, this scheme employs a 

dynamic list of optimality cuts. Optimality cuts generated at an ancestor node in the 

branch-and-bound tree are imposed on only descendant nodes in the tree. 

Constraint (7) includes the nonlinear term   arap  . Since the elements of  are 

set in the first stage, they can be treated as constants in the second stage where the 

constraint is enforced. Thus, the structure of the solution approach is exploited to 

eliminate concerns with nonlinearities in the formulation. 

2.5 Illustrative Case Study 

To assess the impact of preparedness on resilience level, the integer L-shaped method 

was applied on the Double-Stack Container Network introduced by (Morlok and Chang, 

2004; Sun et al., 2006) and considered in (Chen and Miller-Hooks, forthcoming). The 
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solution methodology was implemented in C++ and run in the Microsoft Visual Studio 

C++ 2005 environment, employing IlOG’s CPLEX 10.1 and the Concert Library. The 

computations were carried out on a personal workstation with a Pentium 4 3.20 GHz 

processor with 2.00 GB RAM running Windows XP Professional Edition.  

2.5.1 Illustration on the double-stack container network 

The Double-Stack Container Network depicted in Figure 2.3 provides a simplified 

representation of the intermodal freight network in the Western U.S. It contains 8 nodes, 

representing major cities, 24 rail one-way arcs and 22 bi-directional virtual highway arcs. 

It is assumed that highway arcs have sufficient capacity to support all freight transport 

demand for the region. Travel time estimates for the virtual highway arcs were obtained 

from Google Maps. Intermodal arcs exist at every node (i.e. at every city), connecting 

each rail terminal with the highway network. 17 O-D pairs are considered. 

 

Figure 2.3: Western U.S. Double-Stack Container Network 
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2.5.2 Disaster scenarios, preparedness and recovery activities 

Consistent with (Chen and Miller-Hooks, 2012), five scenario classifications designed for 

replicating five general disaster event types (bombing (1), terrorist attack (2), flood (3), 

earthquake (4) and intermodal terminal attack (5)) were considered in the experimental 

runs. Each scenario realization corresponds with a setting of the random arc attributes. A 

bombing scenario was replicated by reducing arc capacities on randomly selected arcs 

within the network. In the case of a terrorist attack, a few pre-specified arcs were 

assumed to incur significant damage, and thus, significant reduction in capacity. The 

attack is assumed to impact not only the chosen arcs, but also arcs directly connected to 

these chosen arcs. The capacity reduction of the directly connected arcs is presumed to be 

smaller than that incurred by the chosen arcs. For the impact of flood scenario, the 

capacities of multiple connected arcs (i.e. a single randomly chosen arc and all arcs 

incident on an end node of this arc) were reduced. To replicate an earthquake, arcs were 

randomly selected over a large area and their capacities were randomly reduced. In the 

last disaster event type, rail service is assumed to be inoperable into and out of the 

terminals in Chicago and Los Angeles. 

Monte Carlo simulation was used to generate each network state under different 

disaster scenarios. Due to the dependency of random capacity of adjacent arcs under 

various disasters, network attributes for each state are characterized through correlation 

matrices. In the experiments, the arc capacities are assumed to have a uniform 

distribution )](,0[ aCU , and travel times increase in proportion to capacity decrease. For 

one unit decrease in capacity, an increase of 10% is incurred in travel time. Since a 

virtual highway network is employed, and alternative roadway paths may exist that 
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connect the same O-D pair, it is assumed that only rail arcs will be impacted by a disaster. 

This study assumes that the impacts to arcs and links in disaster scenarios will not evolve 

over time, and no further changes on capacity and travel time are considered.  

As the computational effort required to solve a stochastic program is significant, 

and that effort increases linearly with each realization, only 100 realizations from each 

disaster classification, or a total of 500 realizations, were generated in this experiment. A 

larger number of realizations will reduce the sampling error. For simplicity, we assume 

the probability of each of the five disaster scenarios to equal 0.2.  

One might also consider a case in which the probability of any disaster arising is 

quite small, thus adding an additional scenario in which no changes to the network occur. 

Because the budget is fixed, there will be no change in solution as a result of considering 

a no disaster scenario when disaster scenarios are considered proportionately identical in 

both cases. If an objective of minimizing expenses were considered, however, solution in 

the case involving a positive probability of no disaster will result in reduced spending in 

the preparedness stage and greater spending in the response stage.  

To compare the resilience level when preparedness activities are implemented, the 

same six recovery activities defined by Chen and Miller-Hooks (2012) are available. The 

duration time, cost of implementation, impact to the arc capacity, and candidate arc for 

application of each recovery activity are listed in Table 2.1. 
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Table 2.1: Characteristics of recovery activities 

Recovery 

activities 

Recovery activity 

duration (units) 

Cost  

 (units) 
(% increase in link capacity) Candidate links 

R1 2 6 10 1-12 

R2 1 10 10 1-6 

R3 6 1 5 7-12 

R4 4 4 10 1,3,5,7,9,11 

R5 3 8 15 2,4,6,8,10,12 

R6 3 10 Return to original capacity 1-12 

Two preparedness options that might be taken in preparation for a disaster event 

are available for implementation in this study: special training of personnel along specific 

routes to enhance recovery (P1) and prepositioning of water pumps (P2). These actions 

are coupled with a level of retrofit that provides additional enhancement to the capacities 

of arcs to which these actions are applied. Additional information pertaining to the 

preparedness actions are given in Table 2.2.  

Table 2.2: Characteristics of preparedness activities 

Preparedness 

activities 

Cost  

 (units) 
(% increase in link capacity) Candidate link 

Applicable for 

disaster scenarios 

P1 3 10 1-6 1-5 

P2 2 8 1-6 3 

The implementation time and cost of all six recovery actions on a given arc will 

be reduced if P1 is taken on that arc. It is assumed that the reduction is 20% for both 

travel time and cost. The benefits of P2 will only be realized if recovery action 4 (e.g. 

pumping water) is implemented. If P2 is chosen for application between two cities, its 
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benefits will be received in both directions. The preparedness-recovery relation matrix is 

shown in Table 2.3.  

Table 2.3: Preparedness-recovery activity relationship matrix,  

 R1 R2 R3 R4 R5 R6 

P1 1 1 1 1 1 1 

P2 0 1 1 0 0 0 

 

 A budget of 30 units and an unlimited budget are considered. The maximum 

allowable travel time for each O-D pair is assumed to be 1.5 times the travel time of the 

shortest path between the O-D pair in the original network. That is, an increase of as 

much as 50% in travel time is assumed to produce an acceptable level of service given 

the disaster occurrence.  

2.5.3 Experimental results 

Results of the numerical experiments in terms of obtained resilience level are given in 

Figure 2.4. Note that all obtained solutions are optimal. Because equal probability of each 

type of scenario was presumed, one can obtain the total resilience for the network over all 

scenario classes by simply adding the conditional resilience values and dividing by five. 

To judge the impact of preparedness actions on the network’s resilience level, three 

additional runs were completed. The runs are synopsized in Table 2.4, along with overall 

resilience level (i.e. expected throughput over all scenarios). Results are shown for each 

disaster category. The first of the additional runs considers the case where no recovery or 

preparedness activities are available, a measure comparable to some notions of reliability. 

The second set of additional runs permits only preparedness actions, while the third 
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considers only recovery options. Results from these additional runs are provided for 

comparison in Figure 2.4. 

 

Figure 2.4: Resilience level by disaster scenario (budget=30) 

 

Table 2.4: Description of implementations of resilience measure 

Run Description 
Overall Resilience, 

 

1 no recovery and preparedness activities taken 0.54 

2 only preparedness activities are implemented 0.65 

3 only recovery activities are implemented 0.68 

4 
both preparedness and recovery activities can be 

undertaken 

0.72 

 

The results indicate that both preparedness and recovery activities can 

significantly improve network resilience level. When taken alone, the recovery actions 
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have greater impact than the preparedness actions. Moreover, the implementation of both 

preparedness and recovery activities provides a higher resilience level than either can 

reach alone. As evidence of this, note that on their own recovery activities led to a 14% 

improvement in the overall resilience level, while just under an 11% increase was 

obtained through preparedness activities alone. An 18% increase was obtained when both 

types of activities were available.  

The average portion of the budget allocated to preparedness and recovery 

activities, as well as the maximum and minimum cost incurred over the set of disaster 

scenarios, are provided in Table 2.5.  

Table 2.5: Cost of activities (budget=30) 

 

 

Scenario 

Runs 

Run 1 Run 2 Run 3 Run 4 

CP CR CP CR CP CR CP CR 

Bomb 0 0 18 0 0 26.7 16 12.6 

Terrorist 

Attack 
0 0 18 0 0 28.2 16 12.5 

Flood 0 0 18 0 0 29.6 16 13.4 

Earthquake 0 0 18 0 0 29.3 16 13.3 

Terminal 

Attack 
0 0 18 0 0 26.6 16 11.8 

M 0 18 30 30 

m 0 18 10 18 
CP- Average cost of preparedness activities 

CR- Average cost of recovery activities 

M- Maximum cost of actions on tested disaster realizations 

m- Minimum cost of actions on tested disaster realizations 

The budget was not restrictive in Run 2. That not all the budget is used in each 

scenario may be a function of the discrete nature of activity costs. Results of Run 4 

indicate that more funds were spent on preparedness actions than on recovery actions in 

the optimal solution. If a scenario involving no disaster were considered and this scenario 
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were given a relatively high probability, one would expect that much more of the budget 

would be spent on recovery actions than on preparedness. It may also be particular to this 

example. 

To further investigate the allocation of the budget between preparedness and 

recovery options, Runs 3 and 4 were repeated with an unlimited budget. Runs 1 and 2 

need not be reconsidered since the maximum budget used in any realization was less than 

the original budget permitted. Results from these runs are provided in Figure 2.5. The 

associated allocation of the budget across activity types is given in Table 2.6.  

 

Figure 2.5: Resilience level by disaster scenario (unlimited budget) 
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for many disaster realizations, no additional improvement in resilience could be obtained 

from increasing the budget.   

Table 2.6: Cost of activities (unlimited budget) 

 

 

Scenario 

Runs 

Run 3 Run 4 

CP CR CP CR 

Bomb 0 38.7 18 27.9 

Terrorist Attack 0 41.9 18 32.6 

Flood 0 62.6 18 48.1 

Earthquake 0 47.5 18 33.8 

Terminal Attack 0 40.4 18 30 

M 76 79 

m 12 16 

CP---Average cost of preparedness activities 

CR--- Average cost of recovery activities 

M---Maximum cost of actions on tested disaster realizations 

m---Minimum cost of actions on tested disaster realizations 

2.5.4 Additional study of computational time requirements 

Several factors affect the required computational time required for running the L-shaped 

method: network size in terms of number of nodes and arcs, and number of preparedness 

activities, recovery activities, and instances of disaster scenarios. The network size and 

number of preparedness activities, i.e. factors affecting first stage decisions, play a more 

significant role in the required computational effort of the procedure, because these 

factors directly impact the size of the branch-and-bound tree. Additionally, computation 

time grows exponentially with the number of recovery activities considered in the second 

stage and linearly with the number of disaster instances.  

Additional runs were conducted to assess the impact of these problem 

characteristics on computation time. The Double-Stack Container Network was modified 
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to create three additional networks for consideration. Problem characteristics and 

required CPU time are provided in Table 2.7. Results obtained for the unmodified 

Double-Stack Container Network are listed under network 2 in the table. These results 

indicate that the computational requirements of the proposed methodology increase 

substantially with increasing problem size. Note that while a feasible solution was 

obtained, no guarantee of optimality was received after several days of running on the 

largest network. 

Table 2.7: Descriptions and computation time of tested experiments 

Network 

Size of 

network 
# of 

preparedness 

activities 

# of 

recovery 

activities 

Disaster instances CPU 

time 

(seconds) 
# of 

nodes 

# of 

arcs 

# of 

scenarios 

Instances 

per scenario 

1 5 10 2 3 5 20 1136 

2 8 24 2 6 5 100 31304 

3 12 38 2 6 5 150 317526 

4 15 52 4 6 5 200 N/A 

2.6 Conclusions  

This chapter revisits the notion of resilience proposed by Chen and Miller Hooks 

(forthcoming), which accounts for recovery actions that can be taken post-disaster within 

a limited time frame and budget. Herein, this notion is extended to include preparedness 

actions that can provide increased recovery capability, in addition to increased coping 

capacity. The concept is applied in the context of an intermodal rail application, but its 

relevance extends beyond transportation. The inclusion of preparedness decisions in 

determining a network’s resilience level provides an extra level of decision support; 

however, this addition increases the problem difficulty. Whereas omission of 
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preparedness options permits the problem’s decomposition into a set of deterministic 

subproblems, its inclusion prevents it. In this work, the problem of measuring a network’s 

resilience level and determining the optimal set of preparedness and recovery actions 

needed to achieve this level given budget and level of service constraints is formulated as 

a two-stage stochastic program. An integer L-shaped method accredited to Laporte and 

Louveaux (1993) is proposed for its solution. The solution method decomposes the 

problem into a master problem and set of subproblems, each associated with a different 

disaster realization. Monte Carlo simulation is employed for the generation of the disaster 

realizations. This decomposition eliminates concerns associated with nonlinearities in the 

budget constraint of the formulation. The solution approach was applied on the Double-

Stack Container network abstracting the intermodal rail system of the Western U.S. 

Optimal allocation of a limited budget between preparedness and recovery options is 

studied and the proposed expanded notion of resilience is compared with resilience 

without optimizing preparatory actions and a comparable notion of reliability.  

Results of the numerical experiments provide some insight into optimal 

investment allocation of a fixed budget between preparedness and recovery stages. While 

improvements in resilience level are obtained from taking preparedness or recovery 

actions alone, the highest resilience level is attained when both preparedness and 

recovery options are available. In general, whether the budget or the available 

preparedness and recovery options were the limiting factors, greater benefit was derived 

through greater allocation of funds to the preparatory actions. If a scenario involving no 

disaster were introduced; however, one should expect that a greater portion of the budget 

would be reserved for the recovery stage. 
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The techniques presented herein will substantively increase our ability to aid in 

pre-disruption network vulnerability assessment and making pre-disaster vulnerability-

reduction investment decisions. Quick identification of the appropriate actions to take can 

play a crucial role in lessening post-disaster economic and societal loss. Competing 

measures, such as reliability and flexibility, that do not consider quick and inexpensive 

recovery actions that may be taken post-disaster may underestimate the network’s ability 

to cope with unexpected events and may lead to unnecessary or misdirected investment. 

The problem instance studied within this research is rather small. To represent a 

real-world transport network with greater fidelity, the problem size will grow 

substantially. Exact solution of such large problem instances will be difficult to obtain as 

indicated by numerical experimentation. The conceptualization of the problem as a two-

stage stochastic program and suggested solution approach provide a methodology for 

solving small benchmark problems against which the performance of a developed 

heuristic can be measured. Development of heuristics for assessing and maximizing 

network resilience is the subject of future work by the authors. 

Alternatives to the (RPO) formulation might be considered. For example, one 

might envision a version of the problem with an objective of minimizing the required 

budget needed to obtain a specific resilience level. Other formulations might incorporate 

details for alternative applications. The authors are currently conceiving of a similar 

notion of resilience for passenger traffic, where no load can be left unserved.  

Also discussed in (Liu et al., 2009), added realism may be obtained by 

considering decision-dependent network state probabilities (addressed by Jonsbraten et 
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al. (1998) in the context of generic discrete decision problems through an implicit 

enumeration method). This is because the probability of a specific realization of a disaster 

scenario may be impacted by the taking of a preparedness action. That is, if a component 

of the infrastructure is hardened, the probability that its capacity would be substantially 

reduced may be decreased as a result of the action. Such consideration, however, greatly 

reduces the problem’s tractability. 
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Chapter 3: Scheduling Short-Term Recovery Activities to 

Maximize Transportation Network Resilience 

3.1 Introduction and Motivation 

Freight transportation plays an important role in U.S. economic growth and international 

competitiveness. The U.S. freight transportation network handled more than $3.4 trillion 

in international merchandise trade in 2008 and 4.6 trillion ton-miles of domestic traffic 

(RITA 2008). Investment in the transportation network, through capacity expansion, 

infrastructure improvement, and application of advanced intelligent technologies 

nonetheless does not keep pace with increasing freight transport demand. Consequently, 

this growth in demand places escalating pressure on an already congested transportation 

system. Disruptions and other emergencies have further negative impact on system 

capacity. Recent disasters, including those caused by for example the 9/11 terrorist 

attacks, Hurricanes Katrina and Rita in 2005, 2007 Minneapolis 35W bridge collapse, 

and the 2011 Tohoku, Japan earthquake with ensuing tsunami, have brought to bear the 

need for transportation management agencies to prepare for the impact of potential future 

disaster events. A sustainable and well-functioning freight transportation system is able to 

satisfy the demand for fast, safe and efficient movement of goods, commodities, 

equipment and other materials even in the presence of disruptions. Thus, preparation for 

disaster is needed to reduce the impact of such events and the potential negative 

economic consequences. 

Optimal allocation of available resources (e.g. equipment, materials and 

personnel) and post-disaster scheduling of recovery actions by responsible agencies can 
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aid in successful recovery from disaster. Recovery actions in this context might include, 

for example, repair of a roadway stretch or railway track, re-establishment of major 

transport linkages, removal of large debris, pumping of water from a flooded area, and 

utilities and communications restoration. The longer the recovery, the greater and longer 

lasting the economic consequences. Thus, it is of paramount importance to get the freight 

transport system back up and running quickly.  

This research proposes a methodology for quantifying and maximizing resilience 

of rail-based freight transportation systems. 41% of the U.S. domestic freight market is 

handled by rail as measured in ton-miles (BTS 2009). Resilience in this context is a 

measure of how much throughput the system is expected to be able to handle post-

disaster compared to demand handled pre-disaster. Building on a definition of resilience 

posed in (Chen and Miller-Hooks, 2012), resilience as discussed herein involves both the 

network’s inherent coping capacity via its topological and operational attributes and 

potential actions that can be taken post-disruption or disaster event.  

A multi-hazard approach is used, where any number of disaster scenarios is 

possible, and the scenarios can be drawn from a host of different disaster event types, 

such as naturally-induced events like hurricanes or earthquakes, or accidental/malicious 

events. To achieve the maximum resilience level, an efficient allocation of limited 

resources in the immediate aftermath of a disaster event to a chosen subset of potential 

short-term recovery actions is required. As only limited resources will be available to 

support recovery activities, simultaneous implementation of all needed repair actions may 

not be possible and the order in which recovery actions are taken can greatly affect gains 

achieved in capacity recovery over time. The need for sequencing these actions was 
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ignored in the prior work. Instead, it was assumed that all chosen actions could be taken 

simultaneously, beginning immediately post-disaster, and that the entire path was 

inoperable until the time at which all constituent damaged arcs were repaired. In this 

chapter, a stochastic integer mathematical program is proposed that, given a fixed budget 

and duration of time to undertake recovery activities, will (1) select what recovery 

activities are to be taken, (2) identify where the recovery activities should be 

implemented, (3) determine when each of the recovery activities should begin, and (4) 

determine how much resources should be supplied for each action, affecting time for 

completion. This time-dependent formulation permits flow across undamaged arcs and 

across repaired arcs at the time the repairs are complete. 

Although a significant number of works in the literature have proposed models to 

support emergency recovery, these works are primarily strategic in nature; few consider 

operational details as will be described in the following section. Notation definition and 

problem formulation are also given in the next section. Two solution methodologies are 

proposed in section 4. The first is an exact solution method that uses decomposition with 

branch-and-cut (D-BAC). An alternative hybrid genetic algorithm (GA) is presented for 

solution of larger problem instances for which exact solution may be difficult to obtain. 

Both methods rely on decomposition for separating the decision variables related to 

recovery activities from the variables associated with flow. This separation eliminates 

nonlinear terms that exist in the model, and simultaneously guarantees an optimal 

solution to the original problem. Within the hybrid method, the fitness of each 

chromosome is taken as the objective value for a time-dependent maximum flow 

subproblem, which is solved exactly through CPLEX. In section 5, application of these 
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methodologies on a numerical example is presented. Performance of the hybrid GA is 

compared with that of the exact solution methodology. The benefits derived from 

scheduling the activities as compared with the more simplistic planning model that 

presumes all recovery activities begin simultaneously are evaluated. In section 6, the 

contributions are summarized and limitations are discussed.  

3.2 Literature Review 

Resilience has been defined in a variety of ways in the literature beginning decades ago 

with Hollings’ seminal work on the persistence of natural systems to the changes in 

ecosystem variables (Hollings, 1973). Hollings defined resilience as the time required for 

an ecosystem to return to an equilibrium following a perturbation. Alternative resilience 

measures have been given in, for example, (Berkes and Folke 1998, Srinivasan, 2002, 

Gunderson and Holling 2002, Bruneau et al. 2003, Rose, 2004, Havidán et al. 2006, 

Murray-Tuite 2006, Ta et al. 2009, Chen and Miller-Hooks 2012, Gooding 2012). Chen 

and Miller-Hooks (2012) provide a means for quantifying the resilience measure 

conceptualized in (Rose, 2004) in which not only is the inherent coping capacity of a 

system to be included, but the effects of adaptive actions that can be taken to mitigate the 

effects of the disaster are accounted for. Nair et al. (2010) applied this methodology to 

evaluate intermodal (IM) freight operations of a port. Miller-Hooks et al. (2012) and 

Faturechi et al. (forthcoming) further study resilience of freight transportation networks 

also incorporating pre-disaster preparedness and post-disaster recovery actions in rail (in 

press) and airport pavement (in review) networks, respectively. A recent review of works 

on risk, reliability, vulnerability, robustness, survivability, flexibility and resilience in the 

context of transportation systems is given in (Faturechi and Miller-Hooks, under review). 

http://en.wiktionary.org/wiki/equilibrium
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Very few works consider recovery actions in pre-disaster system evaluation, and none 

consider the optimal sequencing of these actions in this context. 

This work builds on the work of Chen and Miller-Hooks (2012) in which an 

indicator of network resilience and technique for its maximization are proposed for 

quantifying the expected performance of a rail-based IM freight transport network faced 

with numerous potential future disaster scenarios and accounting for the potential impact 

of post-disaster recovery actions that can be taken quickly and at a low cost. Their 

technique employs concepts of stochastic mixed integer programming and takes a 

planning perspective. While choosing the optimal set of recovery actions to take for each 

disaster scenario, details of the recovery action implementation are handled in an 

aggregate way. That is, candidate recovery activities chosen for implementation are 

assumed to begin immediately after the event. That resources are limited and all activities 

cannot be implemented simultaneously is not addressed. With only limited resources, a 

sequencing, and thus prioritization, of these activities will be necessary, and computation 

of the effects of the chosen sequence will be required. Further, it is presumed that no flow 

is permitted along any path that requires repair until the last of the repair actions on that 

path is complete. For example, consider a rail line from city A to B to C with demand 

from city A to city B that is awaiting clearance to depart. If both arcs (A,B) and (B,C) 

require repair, and arc (A,B) is chosen for repair first, the time for the shipments to arrive 

at C will be earlier than if repairs are made to arc (B,C) first. The potential impact of 

treating recovery activities from this operational, as opposed to planning, perspective is 

investigated herein. 
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Many works in the literature address emergency management decision-making for 

post-disaster applications. Brown and Vassiliou (1993) introduced a real-time operational 

and tactical decision support system named ARES to determine the optimal assignment 

of units for required tasks. Tamura et al. (1994) used a genetic algorithm to prioritize 

improvements to roadway segments for use in an urban area post-disaster. Fiedrich et al. 

(2000) suggest a resource allocation decision support system for post-earthquake search-

and-rescue missions. Both simulation and analytical modeling techniques are employed 

in the system. Özdamar et al. (2004) proposed an emergency logistics planning model for 

natural disasters. Their model was formulated as a dynamic, time-dependent problem. Yi 

and Özdamar (2007) proposed a dynamic logistics coordination model for both 

evacuation and support in disaster relief operations. Examples of other works that address 

optimal allocation of resources for post-disaster repair include Knott (1988), Rathi et al. 

(1992),  Barbarosoglu et al. (2002), Sheu (2006), and Chen and Miller-Hooks (2012). 

While these works investigate emergency recovery and associated resource allocation 

strategies, none of these works accounts for improvements obtained through the 

scheduling of recovery actions. Also, measuring system performance is not a goal of 

these works. 

Management of debris is a concern after many major disasters. There are several 

studies in the literature focusing on post-disaster debris management. Concerns related to 

disaster debris removal after Hurricane Katrina are discussed in (Luther 2006, 

Stephenson 2008, Roper 2008). Relatively few quantitative studies on debris cleanup 

exist. Yan and Shih (2009) proposed a model that simultaneously considers emergency 

road repair and relief distribution. Fetter and Rakes (2011) use prospective statistical 

http://www.sciencedirect.com/science/article/pii/S1366554507000191#bib14
http://www.sciencedirect.com/science/article/pii/S1366554507000191#bib18
http://www.sciencedirect.com/science/article/pii/S1366554507000191#bib18
http://www.sciencedirect.com/science/article/pii/S1366554507000191#bib2
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process control methods to achieve equity in allocating debris disposal resources. 

Carbajal et al. (2009) discussed debris management operations in the both pre- and post-

disaster phases. Additional literature exists in the form of government issued guidelines. 

USEPA (2008) and FEMA (2007) give a range of general technical and management 

options for disaster waste. These documents can inform models designed to predict debris 

quantities and may be helpful in organizing short-term clean-up efforts post-disaster.   

Numerous additional works consider the ordering of infrastructure repair 

operations and assignment of tasks to crews for civil infrastructure maintenance (e.g. 

Carnahan et al. (1987), Madanat and Ben-Akiva (1994), Chen and Tzeng (1999), 

Childress and Durango-Cohen (2005), and Durango-Cohen and Sarutipand (2009)). 

Optimal maintenance policies are derived given deterioration estimates arising from 

natural causes. These works offer insights into the optimal scheduling of repair actions 

for infrastructure systems; however, network attributes are assumed to be known with 

certainty, and the emphasis of these works is on long-term system performance in which 

disrepair is limited and arises gradually and deterministically over time. Thus, techniques 

developed for this application cannot be directly applied for post-disaster resilience 

analysis in which one of a host of potential disaster scenarios might arise, the impact of 

which is likely to be sudden and severe and cannot be known a priori with certainty.    

In the next section, a framework that explicitly considers scheduling of activities 

in the measurement and maximization of system resilience in the context of rail-based 

goods movement is provided. 



52 

 

3.3  Definitions, Preliminaries and Problem Formulation 

3.3.1 Network resilience indicator 

A mathematical formulation that exploits a network representation of a rail freight 

transportation system is presented. This formulation seeks to maximize resilience through 

a selection of a subset of recovery actions and the scheduling of their implementation, 

along with the optimal movement of traffic flow through the network. This problem of 

selecting and scheduling these actions is referred to herein as the Resilience with Optimal 

Recovery Scheduling (RORS) problem. The formulation considers that improvements in 

component and/or network performance due to implementation of recovery actions are 

obtained over time, as the actions are completed. Thus, time-dependent network attributes 

are considered. Travel times may increase and capacities may decrease post-disaster; 

their values depend on the disaster realization, which cannot be known a priori with 

certainty.  

3.3.2 Network definition 

Network            is a digraph        , where   is defined by a set of nodes   

and   is the set of directed arcs. Time is discretized into small increments of equal 

duration, i.e.           . A potential distribution of traffic is assessed under a variety 

of possible network states   , each of which is defined by a set of non-negative arc 

capacities given by         
and travel times given by         for each arc          Arc 

capacities bound the amount of total flow that can be shipped along an arc departing the 

arc’s origin node i at time  . Capacities are recaptured over time as flow moves through 

the arcs. That is, as introduced by Ford and Fulkerson (1958 and 1962), dynamic 
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properties of flow are captured. Concepts from the first of these two papers are employed 

in the problem formulation in the following subsection. For a given state    the 

distributions of post-disaster arc capacities and travel times are assumed to be known. 

Details associated with overtaking due to nonFIFO travel times are not considered. It is 

assumed that where overtaking is possible a train will pull onto the side rail to permit 

passing behavior. Arc travel times are taken as multiples of the time increment employed 

in time discretization and are assumed to be frozen from the time of entry (Orda and 

Rom, 1991). 

Multiple source nodes,   , and sink nodes,   , at which flow originates and 

terminates, respectively, are included. For each origin-destination (O-D) pair w, there is a 

set of paths    connecting    with   . Let    
      denote the flow that leaves node   at 

time   along path   and reaches node   at time          . Flow can be held in storage 

at intermediate nodes along a path before being shipped onward. The holdover capacity 

for an arc       is determined by the node capacity at  , representing the amount of flow 

that can stay in the node at a given time.  For simplicity, an infinite capacity is assumed 

to exist at all nodes. The travel time for a path is computed from the summation of travel 

and waiting times of a path’s constituent arcs and nodes, respectively. 

A time-expanded network is employed in the formulation of the RORS problem. 

Such a network expansion is depicted Figure 3.1. 
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Figure 3.1: Example of dynamic and time-dependent network and its time-expansion 

 Notation employed in the problem formulation is summarized as follows.   

W  set of O-D pairs 

wP  set of paths, p, connecting O-D pair w, Ww   

wD  pre-disaster demand between O-D pair w, Ww   

K set of available recovery actions, k  

po  origin node of path p 

pl  destination node of path p 

T  timeframe of interest      

w
T max  maximum allowed travel time for O-D pair w 

),( tij   travel time along arc (i,j) at departure time t for disruption scenario   

),( tT
p

i


 

time that a unit of flow will have spent traveling from the origin p
o  departing at 

time  t and heading toward node i  along path p under disruption scenario  

B  budget 

)( kU
 

maximum number of allowable recovery activities, k, that can be simultaneously 

undertaken  
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)(ijc  post-disaster capacity of arc (i,j) for disruption scenario  

)(ijkc

 

augmented capacity of arc (i,j) due to implementing recovery activity k  for 

disruption scenario  

ijkb  cost of implementing recovery activity Kk  on arc (i,j) 

ijkq  required implementation time of recovery activity k
 
on arc (i,j) 

ijp
 path-arc incidence (=1 if path p uses arc (i,j), and =0 otherwise) 

 

Decision variables 

 

),( ty
p

ij
  

flow of shipments on arc (i,j) along path p at departure time t  from node i under 

disruption scenario  

)(
w

pz
 

binary variable indicating whether or not shipments use path p (=1 if path p is 

used and =0 otherwise) between O-D pair w for disruption scenario  

)( ijk

 

binary variable indicating whether or not recovery activity k  is undertaken on 

arc (i,j) for disruption scenario  

),( tijk   
binary variable indicating whether or not recovery activity k  is undertaken on 

arc (i,j) at time t  for disruption scenario  

),( t
ijk

  
binary variable indicating whether or not recovery activity k  is completed on 

arc (i,j) at time t  for disruption scenario  

 

3.3.3 Problem formulation 

The RORS problem can be formulated as (P): (2)-(17). 

















   
   },...,0{},)'('|'{ ),(

)',(maxmax)(

Ttttijtt ppli wPp Ww

p

pil
tyEP



   (3.2) 
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p

i

p

hpo

p

ij
 ,,),(,),(},,...,0{)],(,[),( 

 

(3.3) 

WwPppijTttTttTtT w

p

jji

p

j

p

i
 ,,),(},,...,0{)](,[),(),( 

 
(3.4) 
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  AjiTttccty
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ijkijkij

Ww wPp
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ijijp   
 
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AjiTttt

k

ijkijkijij   ),(},,...,0{),()()0,(),(   (3.7) 

 Bb
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k

ijk  

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(3.8) 

KkAjiqt

T

t

ijkijkijk 
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0
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t
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ijkijkijk  
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,),(},,...,0{),(),(

0
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  },...,0{ ),(

)(),(   
(3.13) 
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ijk 
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(3.15) 

        WwPpKkAjiTtztt w

w
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(3.16) 

WwPpAjiTtty w

p

ij
 ,,),(},,...,0{0),(  (3.17) 

 

Objective (3.2) seeks the maximum expected total throughput over a set of 

possible disruption realizations. Throughput is measured by the total flow into the 

destination nodes of all O-D pairs  W. For each scenario, the maximum throughput in 

terms of number of shipments that can reach their destination before the end of the 

chosen time horizon and within      
  for each  W is sought, and the maximum 

expectation over all scenarios is taken. The network’s resilience level can be assessed by 

dividing the maximum expected throughput provided through the objective function 
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value by the throughput that was accommodated prior to the disaster (i.e. the pre-disaster 

demand). 

For each path of a given O-D pair  , constraints (3.3) ensure flow conservation 

accounting for time-dependent flows. Constraints (3.4) are recursive equations needed to 

compute   
     , the total time that the flow travels from origin node    at departure 

time   to node   along path  . This computation employs the travel time taken to arrive at 

the predecessor node j,    
             , plus the travel time on arc       at time 

     
     ,    [      

     ] . Boundary conditions restricting travel time to the 

origin of the path to be zero are given in constraints (3.5). Waiting at the path’s origin is 

captured in the departure time index, t. Capacity constraints (3.6) restrict the flow on each 

arc to be less than the arc’s capacity. The capacity depends on the impact of the disaster 

and recovery activities that are taken. Augmented capacity       is included when 

recovery activity k is completed.  

Several constraints are used to model recovery activities. Constraints (3.7) are 

used to compute the arc travel times, which depend on the post-disaster travel time and 

improvements in travel times due to recovery activities. That is, the arc travel time along 

arc       can be reduced by       if recovery activity   is completed. That total cost of 

selected recovery actions should not exceed a given budget is accounted for in constraint 

(3.8). Constraints (3.9) require that all recovery actions be completed by time   ; 

otherwise, their impact in terms of enhancing arc capacities is not included. That only one 

recovery action can be implemented for each arc is enforced through constraints (3.14), 

and the number of activities that can be undertaken over the entire network at any point in 
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time is limited to      in constraints (3.15), reflecting limitations in equipment and 

personnel. Constraints (3.16) and (3.17) enforce non-negativity and integrality 

requirements.  

Constraints (10) and (11) are transformations of desired if-then constraints (3.18).  

 .0),(otherwise;1),(then,),(if

0






t

ijkijkijkijk ttq



          (3.18)  

That is, if ,),( 

0






t

ijkijk q



  from constraints (11) we have .1),( tijk  likely, if






t

ijkijk q

0

),(



 , from constraints (3.10) we have 0),( tijk  . If the total amount of 

time assigned to implementation of a recovery action equals the required amount of time 

for its implementation, implementation of the action is considered complete and its 

benefits derived.  

In constraints (3.12) and (3.13),   
   , for each ξ, specifies whether or not path p 

   is used for sending shipments between O-D pair  . Level of service (LOS) 

constraints (3.12) require that the time that each shipment spends traversing a path 

     not exceed a pre-defined threshold     
  if the path is active. Demand restrictions 

that limit flow leaving the origin of each O-D pair to its pre-disaster demand are given in 

constraints (3.13). The use of such an indicator variable,   
   , removes nonlinearities 

that would exist through the introduction of complementarity constraints in which 

decision variables associated with flows are multiplied by LOS constraints. Such an 

approach to addressing complementarity constraints through the introduction of such 

binary variables is known as a disjunctive constraints approach. This approach was 

originally prosed in (Fortuny-Amat and McCarl, 1981) and was adopted in (Chen and 
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Miller-Hooks, 2012), where constraints similar to (3.6) - (3.9) and (3.12) - (3.14) were 

also included.  

Some concepts used in this mathematical program, such as the indexing for the 

sum in the objective function, were adapted from formulations of the time-dependent 

dynamic minimum cost and maximum flow problems of Miller-Hooks and Stock 

Patterson (2004) and Cai et al. (2001), respectively. (P) is a stochastic, time-dependent, 

integer, nonlinear program with nonlinear terms in both objective function and 

constraints. This nonlinearity arises from interactions between flows and travel times, as 

well recovery action variables. 

3.4 Solution Methodology 

The RORS problem is an integer nonlinear program with binary and integer decision 

variables. The nonlinearity arises in both objective function and constraints 3.3 and 3.4. 

In the objective function, decision variable     
 (   ) is a function of arc travel time, and 

the arc travel times depend on the selection of recovery actions. Furthermore, the number 

of nonlinear terms will increase exponentially with increasing network size, number of 

time intervals and options for recovery activities. Though integer nonlinear programs 

(INLPs) or mixed-integer nonlinear programs (MINLPs) have been widely studied for 

decades, they remain challenging from both theoretical and computational perspectives. 

Available methods for addressing INLPs are still rather limited and some methods are 

problem specified. D-BAC and Hybrid GA solution methods are presented next. Both 

methods rely on decomposition for separating the decision variables related to recovery 

activities from the variables associated with flow.  
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3.4.1 Exact solution method  

Given the block-separable characteristics of the RORS problem, a solution approach 

employing decomposition with branch-and-cut (D-BAC) is applied. D-BAC was first 

introduced in (Sen and Sherali 2006) for solving stochastic mixed integer programs. The 

framework of D-BAC is outlined in Figure 3.2. Briefly, this approach decomposes a 

problem into a master problem (MP) and set of subproblems (SPs), one for each scenario. 

The MP and SPs are solved iteratively. For each iteration, cuts are generated from 

solutions of the SPs and are added to the MP in the form of constraints, narrowing the 

solution space. The generation of these cuts is key to the success of D-BAC. A valid cut 

ensures convergence to the optimal solution for the original problem, and also determines 

how fast the algorithm converges. Each SP is deterministic, and its solution can be 

readily obtained through application of a commercial software product like CPLEX. In 

the context of the RORS problem, the MP seeks a schedule of recovery activities that 

maximizes expected throughput over all scenarios, and each SP is a time-dependent 

maximum flow problem given tentative scheduling decisions taken in the MP. 

  

 

 

 

                   

 

 

 

 

 

Figure 3.2: D-BAC solution methodology framework 
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Specification of the MP and SPs, along with an absolute lower bound and valid 

cuts as required by the procedure, are given in the context of the RORS problem 

following requirements outlined in (Sen and Sherali 2006). The decomposition with 

branch-and-cut approach is outlined next: 

1. Initialization: Denote the initial problem by P and decompose it to a master 

problem      and a subproblem    ). Set the active nodes of    to be         . 

Set the upper bound of the original problem to be  ̅    , and   is set to    or to an 

appropriate lowest value of   .  Set    . 

2. Termination: If   is empty, the solution which yields the incumbent objective value  ̅ 

is optimal, and stop. 

3. Selection: Select a node      from  . 

4. Solve   : Set      , solve    and obtain the optimal solution (      ),   is 

decision variable in   . If    is infeasible, fathom the node       and go to Step 3. If 

(      ) is not integer, two new branches are created from        to generate two new 

nodes and add the nodes to N and branch and bound process continues. If (      ) is 

integer, go to Step 5. 

5. Solve   : Solve the    by fixing   , and compute        as the objective value of   . 

Update  ̅        if    ̅       . 

6. Generating cuts: If          , then fathom       and go to Step 3. Otherwise, 

generate a cut and append it to   .  Go to Step 4.  

To implement the solution method for the RORS problem (3.2) is replaced by 

(3.19). 
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The MP is specified as follows. 

  min)( MP  

(3.20) 

s.t. constraints (8)-(11), (14) and (15)   
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(3.23) 

  is an approximation of the objective value of the SPs, and constraints (3.21) are linear 

cuts generated in solving the SPs. Constraints (3.8) - (3.11), (3.14) and (3.15) involve 

decision variables of recovery activity scheduling. The remaining functional constraints 

of (P) are included in the SPs as follows. 
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s.t. constraints (3)-(7), (12), (13) and (17)  

Let   ⋃    ,   ⋃    ,   ⋃    , and    ⋃ ⋃ . For |R| candidate 

recovery activities applied to |A| arcs within |T| time intervals, the number of elements of 

 
 
is (2|T| +1)|R||A|. Let      denote the     element of  ,   is a binary variable. In each 

iteration,              and             . Constraints (21) can be computed by 

eq. (3.25).  

])(][)()([)( LiiS

SiSi

 


 ,
                                                         

(3.25) 

where   is a finite absolute lower bound on (3.25). The maximum throughput is restricted 

by the total pre-disaster demand. Therefore,   is set as the negative of the total 

demand.    ∑    .  
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3.4.2 Heuristic solution  

GAs are search heuristics that belong to the larger class of evolutionary algorithms that 

generate solutions to optimization problems using techniques inspired by natural 

evolution. GAs have been demonstrated to be effective in applications related to a host of 

transportation problems. Different from many other metaheuristics that produce a single 

solution and seek improvements to this solution, GAs work with a set of potential 

solutions. Each solution is referred to as a chromosome. The representation of this 

chromosome can have significant impact on the performance of the algorithm. Mutation 

in a chromosome increases the diversity of solutions and reduces the likelihood that the 

GA will become trapped at a local minimum.  

RORS consists two parts, first part is a scheduling plan that contains recovery 

activity-related decision variables (    ,            ) only, and second part is a time-

dependent maximum flow problem (TDMFP) that is formed from the remaining flow-

related decision variables and constraints. Initially, a population of chromosomes is 

generated to represent the scheduling of recovery activities. The quantity and length of 

chromosome do not change during iterations.  Decision variable values set within each 

chromosome define link capacities and travel times over time, and thus, provide the 

parameters of a remaining TDMFP. The total maximum flow that can be achieved in this 

network provides the fitness value for each chromosome, which is employed in the GA 

for choosing chromosomes for crossover and survival to the next generation. The scheme 

used to represent each solution in a chromosome and details of the steps of the hybrid GA 

are provided next, an overview of which is given in Figure 3.3.  
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Figure 3.3: Overview of the Hybrid GA 

 

Solution representation 

The representation of a chromosome can have significant impact on the performance of 

the heuristic. For each arc (i,j) and recovery activity k,       
and         can be easily 

determined if          
 
is known; thus, the chromosome need only represent                   

to form a candidate scheduling plan of recovery actions. A representation scheme that 

allows chromosomes to be created or heuristic operators to be applied so as to maintain 

feasibility is critical. An encoding scheme is proposed that is efficient in terms of its 

length, resulting solution search space, and convergence to a good solution.  

The proposed encoding scheme for each chromosome involves an arc number 

represented by a string of bits, recovery activity options associated with that arc, and 

recovery action start times. Together, these provide a representation for the binary 

recovery activity implementation variables,        , and are referred to as an element, e, 
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of the chromosome. Define the set     to be the set of arcs for which recovery activities 

are available. The constant number of elements to be included in a chromosome is 

computed by equation (3.26). 

.
},),(:min{
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
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(3.26) 

Each element is unique in its association with an arc. This proposed encoding scheme is 

illustrated in Figure 3.4 and explained in detail next.  

 

 

  

 

 

 

Figure 3.4: An encoding scheme for the RORS problem 

 

Step 1 (Arcs): Assign each arc (i,j)C an ID,      , between 1 and |C|. This 

assignment of an       to arc (i,j)  is made through a string of bits (“Arc string_ep,”) 

that form the first portion p of the chromosome’s element (e) associated with that arc. 

          is the number of required bits in this portion. To ensure a one-to-one 

mapping of element e to a       using bits, the following strategy is proposed.   

For each element e taken in turn from e=1, the randomly generated binary 
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(3.28)
    

A simple example to illustrate this mapping strategy is provided in Figure 3.5 in 

which it is presumed that there are possible recovery actions that can be taken along all 

four arcs. 

 

Figure 3.5: The mapping strategy 

 

Step 2 (Recovery activities): Constraints (15) require that each activity   be 

implemented only as many as      times throughout the network. Accordingly, each 

type of recovery activity in String_e2 is assigned an ID,    , between 1 and |R|, and a 

recovery activity list is generated: }1,...1,1,...,2,...2,2,1,...1,1{
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. One 

recovery activity drawn (and not replaced) from the recovery activity list is assigned to 

each element of the chromosome. The assignment of      to each element e is completed 

using a similar mapping strategy as is used in assigning each element with an      . 
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Step 3 (Start time of recovery activities): The last portion to be encoded is 

string_e3. Any given recovery activity        should be continuously implemented in 

     time intervals. Thus the start time of the recovery activity     should not exceed   

    . As in steps 1 and 2, a mapping between a binary string and an integer number, in 

this case a start time between 0 and        , is employed. 

Using this proposed encoding scheme, all constraints of the RORS problem 

except budget constraint (8) will be met throughout the steps of the algorithm. A 

correction heuristic is employed after initialization and mutation to ensure feasibility in 

constraint (3.8). In this heuristic operator, the sum of recovery activity costs ∑         , 

is computed. If this sum exceeds B, then the last g in 1, 2, …, g, for which (3.29) is 

satisfied must be identified. 
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(3.29) 

While each chromosome remains intact, only the first g elements of the chromosome will 

be decoded to obtain its interpretation in terms of the original decision variables. That is, 

other elements (g+1, g+2…) are maintained and can be crossed over, but they are not 

included in the fitness evaluation, because it is assumed they will not contribute to the 

solution. Thus, only feasible solutions are generated.  

Creation of initial population 
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A set of arcs, recovery actions and their start times,                  are randomly generated 

to form a candidate chromosome. A fixed number of chromosomes are generated, and the 

population size and length of each chromosome are fixed.   

Evaluation 

Each chromosome represents a scheduling plan. Given a chromosome, the travel time 

        and capacity         of each arc are known, thus the remaining TDMFP become 

deterministic.  CPLEX is used to solve the resulting TDMFP and maximum flow of 

TDMFP is recorded. Chromosomes are evaluated in terms of the maximum flow 

achievable for the TDMFP, Fitness values of chromosomes are sent back for further 

chromosome operations.  

Crossover 

Pairs of chromosomes are selected for crossover, each crossover action producing two 

offspring. Single-point crossover is applied in which a point of exchange is set at a 

random location in the selected chromosomes. 

Mutation  

After crossover, the chromosomes are subjected to mutation. Mutation is applied by 

flipping a bit and can be implemented in any position belonging to the arc, recovery 

activity and start time of the recovery activity. Mutation in a chromosome increases the 

diversity of solutions and reduces the likelihood that the GA will become trapped at a 

local minimum. 

Selection for next generation 
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A fixed population size is maintained. A linear ranking selection method is employed to 

select the individuals to continue into the next generation. This method first ranks the 

individuals of the population according to their fitness values. The individuals are 

selected with a probability in linear proportion to their rank. An elitist selection strategy 

is employed to ensure that the best individual solution in a generation continues to the 

next generation.   

The GA is terminated when stopping criterion, i.e. the maximum number of 

generation have been produced, is met.  

3.4.3 Addressing networks with waiting 

The proposed D-BAC and GA assume that no waiting is permitted at the nodes. However, 

in the TDMFP solution, it may be beneficial for flow units to wait at nodes, because arc 

travel times do not necessarily follow the first-in first-out (FIFO) property. Additionally, 

waiting may be required as arcs are repaired. In this section, a method for transforming a 

network that includes waiting is provided. With this transformation, the proposed 

mathematical model and solution techniques can be applied directly. 

A threshold on the maximum waiting time at any node,    , a multiple of the 

discrete time interval, is given. For each node i, a copy node i’ is created and an arc (i,i’,t) 

with infinite capacity is introduced for each time increment t from zero to    . t is the 

time required to traverse the arc. At most one arc (i,i’,t) can be used on any path. Positive 

flow along arc (i,i’,0) infers that no waiting at node i is incurred. Likewise, positive flow 

along arc (i,i’,3) infers a waiting time of 3 units. This is illustrated in Figure 3.6. 
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Figure 3.6: Network transformation example  

 

3.5 Illustrative Case Study 

The performance of the proposed solution methods are compared on the Double-Stack 

Container Network depicted in Figure 3.7. This network, originally described in (Morlok 

and Chang, 2004, Sun et al., 2006) contains 12 double-rail railways connecting 8 major 

western cities in the United States. Arc travel times were estimated from path lengths 

obtained from Google Maps. Demand between all 17 O-D pairs is considered. The D-

BAC and GA were implemented in C++ interfacing with CPLEX Optimization Studio 

Academic Research Edition 12.3. Runs were conducted on a Pentium 4 desktop with 3.20 

GHz processor and 2.00 GB RAM running Windows XP Professional Edition. 
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Figure 3.7:  Western U.S. Double-Stack Container Network 

3.5.1 Experimental design 

Three disaster event categories were considered in the experiments from which scenarios 

were generated: (1) terrorist attack, (2) flood and (3) earthquake. For each terrorist attack 

scenario, damage in the form of capacity loss and performance degradation for a single 

randomly selected arc is incurred. While the arcs of this network span very large 

distances and a single attack would not take down the entirety of rail infrastructure 

between the cities, damage to any portion of the this infrastructure would have significant 

negative consequences for travel between the cities. Flooding scenarios are generated by 

capturing the consequences of an event occurring in one of the cities. Thus, in each 

scenario, a city is chosen randomly. All traffic entering and exiting the city is assumed to 

be impacted; thus, capacities and traversal times on incident links of the chosen node are 

affected. Finally, events involving an earthquake are replicated through changes to the 

capacities and travel times of randomly and independently chosen arcs. 

300 disaster scenarios were generated through Monte Carlo simulation in equal 

proportion across scenario categories. For simplicity, the probability of each scenario is 

assumed to be equivalent. For each impacted arc, under any disaster scenario, the 

reduction in arc capacity due to the event is assumed to follow a uniform distribution on 

the interval from 0 to the arc’s original capacity. Arc travel times are assumed to increase 

with decreasing capacity according to )]/1(int[ cct   , where int[x] returns the 

integer component of x, for x a real number.  
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Three recovery activities were considered. The cost and duration of time required 

for their implementation, as well as the impact of the repair action on arc capacity, are 

provided in Table 3.1.  

Table 3.1: Characteristics of recovery activities 

Recovery 

activities 

Durations 

(units) 

Cost 

(units) 

Arc capacity 

increase (%) 

Candidate arcs 

Recovery-1    4    6       20       1-12 

Recovery-2    6    4       10       1-12 

Recovery-3    5    5       15       1-8 

 

A budget of 30 units (B=30) and time horizon T=20 are considered. For each 

recovery activity, it is assumed that there are enough resources to implement each 

recovery activity in at most three locations simultaneously. The maximum allowable 

travel time      
  for each O-D pair w is 1.5 times the travel time along the O-D’s shortest 

path in the pre-disaster network.   

Finally, several combinations of crossover and mutation probabilities are tested. 

The probability of a chromosome being chosen for crossover ranged between 0.2 and 0.4 

in increments of 0.05. Mutation probability varied between 0.15 and 0.3 in increments of 

0.05. The best performance of the GA noted in preliminary experiments was obtained 

using the following parameter settings: 200 generations, population size of 30, crossover 

probability of 0.3, and mutation probability of 0.2.  

3.5.2 Experimental results 

The resilience level for each scenario is the expectation of resilience level of the 100 

network realization. Run 1 is the case that no scheduling of recovery is considered, all the 
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actions will be implemented immediately in the aftermath of disaster, see details of 

solution methodology in Miller-Hooks and Zhang (2011). Run 2 and 3 show the results 

with recovery scheduling using D-BAC and hybrid GA. The network’s resilience level 

under each disaster category obtained from numerical experiments is given in Table 3.2 

and Figure 3.8.  

Table 3.2: Description of designed resilience measurement runs for T=20, B=30 

 

 

Figure 3.8: Resilience level by disaster scenario 

Under all three scenarios, an average of between 88 and 99% of the budget was 

utilized. Less than 100% utilization of the budget infers that other constraints, such as 

time for implementation and resource availability, were more limiting. Additional runs 
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were conducted to assess the impact of T on resilience level. For T=15 time units, 

resilience is as low as 0.53. At T=25, it increases to 0.76. 

The results of Table 2 also indicate that significant improvement in resilience 

level can be achieved from permitting flows along portions of the network when 

facilitated by the scheduling of recovery activities and flows. In fact, a nearly 15% 

improvement in resilience level is obtained through scheduling. Any benefits derived 

from assuming that enough resources are available to begin all recovery actions 

immediately after the disaster are dwarfed by losses due to restricting flows until the 

paths are open. Thus, the planning approach used in prior work results in significant 

underestimation of the network’s resilience level. It also created a solution requiring a 

larger portion of the allowed budget (29.0 units) than did the solution of the RORS 

problem (requiring 27.4 units).   

Convergence of the proposed GA to an optimal solution using parameter settings 

as described in the prior subsection is displayed in Figure 3.9. A solution within 95% or 

90% of optimal was obtained after 43 or 31 generations, respectively. These results were 

obtained in 361 and 335 seconds of CPU time, respectively, significantly lower than the 

time required to run D-BAC (i.e. multiple days) for the same problem instance. The GA 

was terminated once the solution value was within 1% of optimal; this solution was 

achieved after 105 generations and 992 seconds of CPU time. By comparison, exact 

results through D-BAC required over 20 hours of computational time.    
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Figure 3.9: Evolution of resilience level over generations for proposed hybrid GA  

3.6 Conclusions 

In this chapter, the problem of assessing and maximizing network resilience is formulated 

as a stochastic, time-dependent, nonlinear, integer program in which assignment of 

resources to implement chosen recovery activities must be scheduled over time. This 

extends prior work by Chen and Miller-Hooks (2012) in which a stochastic, static, linear, 

integer program was proposed with the same goal. This earlier model did not capture the 

limitations related to the availability of resources and thus presumed that all selected 

actions could be taken simultaneously and immediately. It further restricted flows along 

the paths while repairs are incomplete, despite that movements along significant portions 

of the path may be possible while repairs are underway. To create the more realistic 

version of the model introduces nonlinearities and time-dependencies. An exact solution 

methodology that uses concepts of decomposition and branch-and-cut is proposed and 

applied on a small case study. A specialized hybrid GA that exploits decomposition and 

employs CPLEX to obtain exact fitness values at all generations is proposed for larger 
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networks and longer time periods; the GA performs well on the case study and requires 

comparatively minimal computation time. 

A number of assumptions were made in the development of the proposed problem 

formulation or case study application. First, specific details related to rail operations are 

not included in this discussion. A directed representation of the arcs is assumed, which 

does not account for the potential use of track in both directions. Also, crossing of trains 

is not modeled. The solution method was applied on a test network with coarse 

granularity. Actual application of the tool to networks that include significantly more 

detail, and thus larger number of nodes and links, will be required. The hybrid GA is 

proposed with these larger problem instances in mind. Second, the arc capacity will not 

be restored until the entire arc is repaired, despite that a portion of the arc may be usable. 

For very long arcs, this may be unrealistic. The arc may need to be broken into smaller 

pieces. Finally, transfer of cargo to truck may warrant consideration as a recovery action 

if intermodality is permitted. The proposed methodologies can be applied directly in 

these cases.  
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Chapter 4: Assessing the Role of Network Topology in 

Transportation Network Resilience 

4.1 Introduction 

The abstract representation of a transportation system as a network of nodes and 

interconnecting links, whether that system involves roadways, railways, sea links, 

airspace, or intermodal combinations, defines a network topology. Such topologies may 

have regular or irregular shape, and many topologies have been generically categorized. 

Among the most common in the context of transportation systems are the grid, ring, hub-

and-spoke, complete, scale-free and small-world networks.  Many arterial roadway 

networks have a grid or ring shape, networks of towns can be well-represented by small-

world networks, while air systems are commonly shaped as hub-and-spoke networks. 

These networks can be characterized by various measures, and even networks with 

different topologies can have common characteristics. This paper investigates the role of 

network topology, and the topology’s characteristics, in a transportation system’s ability 

to cope with disaster. Specifically, the paper hypothesizes that the topological attributes 

of a transportation system significantly affect its resilience to disaster events.  

In this study, a definition of resilience given in (Miller-Hooks et al., 2012) is 

adapted that explicitly considers the system’s coping capacity, along with the effects of 

pre-disaster preparedness actions and adaptive response actions that can be quickly taken 

in the disaster’s aftermath while adhering to a fixed budget. The system’s coping capacity 

is measured through its capability to resist and absorb disaster impact through 
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redundancies and excess capacities. The pre- and post-disaster event actions are taken to 

prevent, reduce and ameliorate damage impact.  

A quantitative approach developed in this earlier work that was originally posed 

for maximizing throughput in the context of freight movements is modified for the 

quantification of resilience measures relating also to connectivity and compactness. 

Specifically, two-stage integer stochastic programs designed for each considered 

resilience measure are described. This stochastic optimization approach provides a 

measure of system performance given pre- and post-event actions required for its 

maximization. Integer L-shaped decomposition is applied to obtain maximum 

performance measure values for each resilience interpretation.  

Insights gleaned from results of systematically designed numerical experiments 

on 17 network structures employing this modeling framework and the appropriate 

adaptations provide a basis for the characterization of highly resilient network topologies 

and conversely identification of network attributes that might lead to poorly performing 

systems. In the assessment, the three resilience measures (based on throughput, 

connectivity and compactness) are considered with and without the benefits of 

preparedness and recovery actions. 

Preliminary experiments involving four carefully designed 10-nodes complete, 

hub-based, grid and random networks were completed (Chen and Miller-Hooks, 2012). A 

concept of resilience in which recovery actions were possible was tested. However, no 

preparedness options that can improve a network’s coping capacity and support recovery 

actions were considered in the study. Results of these runs indicated that topological 
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structures with limited redundancies faired worst when no recovery actions were 

supported; however, even with limited or modest budgets to support recovery options, 

improvements in resilience levels were achieved. It was also noted that improvements 

were greatest for networks with hubs. This is because exercising only a few options could 

restore connectivity between a large number of O-D pairs. Network structures that 

traditionally fair poorly when considering only the network’s coping capacity (i.e. where 

no budget is available for response actions), perform well by focusing recovery actions 

on the most critical links. These experiments involved very small networks of only four 

topological classifications applying only one concept of resilience. A more 

comprehensive analysis from which significantly deeper and broader insights can be 

garnered is presented herein.  

Network topologies that are studied herein are introduced in the next section. 

Measures for their characterization, such as diameter, betweeness centrality and the 

Shimbel index, are also discussed. This is followed by methods for measuring and 

maximizing resilience with respect to throughput, connectivity and average reciprocal 

distance (the measure of compactness). The experimental design, numerical results and 

analysis follow. Finally, conclusions and implications of the findings for transportation 

applications are discussed. 

4.2 Literature Review 

Many works have proposed measures to characterize networks and their performance for 

a range of applications, including physics, geography, the Internet, and biological and 

social systems. Early examples include (Kansky, 1963, Haggett and Chorley, 1967 and 

Garrison and Marble, 1974). Kansky (1963) considered nodal importance and network 
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complexity in the context of transportation network with three main indices: Alpha, Beta, 

and Gamma indices, all measures of connectivity. These measures and additional 

measures are defined in Table 4.1 of the next section.  Their studies, however, were 

hampered by limited computational resources.  

In random graphs, nodes are randomly linked with an equal probability of links 

between any pair of nodes. Two other types of random networks have been studied in the 

literature. Barabási and Albert (1999) defined a scale-free network as a network in which 

the distribution of degree between nodes follows a power law. In a scale-free network, 

some nodes have a degree that greatly exceeds the average. Wu et al. (2004) showed that 

scale-free type characteristics exist in urban transit networks in Beijing. Small-world 

networks, on the other hand, are densely connected in local regions, creating highly 

connected subgraphs with few crucial connections between distant neighbors. Watts and 

Strogatz (1998) studied the performance of neural and power grid networks in terms of 

shortest average path length and clustering. They found that some neural and power grid 

networks have the shape of small-world networks. They did not investigate the role of 

network topology in network performance, however. Latora and Marchiori (2002) 

suggested that the Boston subway system has a small-world network structure. Zhao and 

Gao (2003) studied the performance of small-world, scale-free and random networks in 

terms of their performance in terms of total travel time and traffic volumes in the context 

of a traffic network.  

Some works have studied network topology in nature. Theraulaz et al. (1998) 

considered a nest network of interconnected chambers and galleries inside which the 

activities of insects take place. These networks are self-organized and emerge from the 



81 

 

work of tens of thousands of insects. No model or results are provided. Perna et al. (2008) 

studied six 3-D networks of galleries found in nests built by termites. They measured 

communication efficiency within the network, using measures such as average path 

length, clustering coefficient, betweenness centrality, and local graph redundancy (also 

defined in Table 4.1 of the next section). These studies only focus on one specific 

network type; no comparison to other network types is made.   

Studies that focus on the role of network topology in transportation or civil 

infrastructure application are limited. 

4.3 Network Resilience Measurement 

4.3.1 Selection and characterization of network topologies 

The 17 network topologies that were investigated were chosen from approximately 30 

topologies discovered in a search of the literature covering many areas, including 

transportation, communications, the Internet, general graph theory and biological 

systems, among others. They were selected for their potential relationship with existing 

transportation system network representations. The basic structure of each of the chosen 

network classes is described in Figure 4.1. All networks were created with symmetry. 

These basic structures provide the fundamental elements for the construction of larger 

comparable networks. This extrapolation to larger network sizes (greater number of 

nodes and links) is also included in Figure 4.1. The resilience of each basic structure and 

structures constructed from these elements (used as tiles where logical to do so) is 

studied.  
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Figure 4.1: Network topology and extrapolation 
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Each network topology was characterized in terms of connectivity and 

accessibility measures. Connectivity measures are used to assess redundancies and other 

measures of connectedness, while accessibility measures are used to compare the relative 

position of nodes in the network. Commonly used measures in these categories are 

presented in Table 4.1. The aim of describing each studied topology by such measures is 

to provide consistency in comparisons and enable deeper insight and generalization of the 

findings. 

Table 4.1: Typical graph-theoretic network measures 

 

Connectivity 

Index Expression  Range Note 

Cyclomatic 

number 
            

Number of fundamental 

circuits in the network 

Alpha index   
 

    
       

Ratio of number of cycles to 

possible maximum number of 

cycles 

Beta index   
 

 
     

Ratio between number of 

links and number of nodes, 

equivalent to average degree 

Gamma index   
 

      
       

Ratio of number of links to 

maximum possible number of 

links 

Average 

degree  ̅  
∑    

 
  ̅    

Average number of arcs 

incident on the nodes 

Cyclicity  ̂  
∑       

 
   

   
    ̂    

Number of times random 

walk led to a cycle back to a 

previously visited 

node/number of random 

walks 

Accessibility 

Index Expression  Note 

Diameter             The maximum distance from all shortest 

distances between all O-D pair in the 

network 

Average 

Shimbel index    
∑    

 
   

   
 

Average of the sum of the lengths of all 

shortest paths connecting all pairs of nodes 

in the network 



87 

 

Betweenness 

centrality  
    

      

   
 

Number of times a node is crossed by 

shortest paths in the graph 

(Note:  - number of links in the graph,  -number of nodes in the graph,  -number of 

sub-graphs in the graph,   -number of arcs incident on node i,    - distance of shortest 

path between O-D pair (i,j),       -number of times random walk cycled back to node 

i,    - number of random walks) 

 

In this study, three measures are used to characterize a network: average degree d

, diameter D , and cyclicity C


. To obtain a value for cyclicity for a given network 

topology, a random walk is taken in a large number of randomly generated networks of 

the same topology and size. The random walk is terminated under one of three 

conditions: (1) n decisions corresponding to the traversal of links, where n = 1.5 D have 

been taken, (2) the walk returns to a node that was already visited, and (3) no further 

move is possible. In each random walk, a link may be traversed at most once. If that link 

has been used in one direction, it cannot be used again in that direction. For each 

network, the random walk is attempted 100,000 times. C


 = (number of runs on a network 

for which the walk returned to a node already visited) / (100,000 * number of nodes in 

the network). 

4.3.2 Defining resilience 

The term resilience has been used to mean many different things. Herein, the definition 

conceptualized in (Chen and Miller-Hooks, 2012) and expanded in (Miller-Hooks et al., 

2012 and Faturechi and Miller-Hooks, 2013) is adopted. These works define resilience as 

a ratio of expected performance under a set of potential future disaster scenarios and 

possible preparedness and recourse (i.e. remedial) actions to pre-disaster achievable 

performance goals. In the context of transportation systems, Miller-Hooks et al. (2012) 

define resilience as the expected proportion of maximum throughput that can be 
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accommodated post-disaster given a required/achievable pre-disaster throughput level. 

Their concept differs from other previous approaches to measuring network performance 

in that it accounts for the possibility of taking preparedness and recovery actions a priori 

given a fixed, small budget and duration of time for implementing recovery options.  

In these earlier work, the problem of measuring a network’s resilience as an 

optimization problem was formulated as a two-state stochastic integer program, with 

first-stage preparedness and second-stage recovery decision variables. Thus, the problem 

of measuring resilience is also a problem of maximizing it. Herein, three interpretations 

of resilience are studied. The first is based on throughput using the earlier proposed 

definition from (Miller-Hooks et al., 2012). The second is based on a concept of 

connectivity between origin-destination pairs, termed O-D connectivity. The third is 

computed from the average reciprocal distance between all O-D pairs. These 

interpretations were chosen to incorporate some of the characteristics of classical graph 

theory measures described in the previous subsection. For example, classic connectivity 

and shortest distance forms the basic component of O-D connectivity and average 

reciprocal distance.  

The original formulation from (Miller-Hooks et al., 2012) with resilience based 

on throughput and adaptations for O-D connectivity and average reciprocal distance are 

presented next. Notation used in these formulations are summarized in Table 4.2, and 

follow the notation given in Miller-Hooks et al. (2012) as closely as possible. 
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Table 4.2: Notation used for problem formulations 

Notation Description` 

W  set of O-D pairs 

wK  set of paths k connecting O-D pair w 

K

w
K  set of K shortest paths k connecting O-D pair w 

wD  original demand between O-D pair w 

w  
original connectivity of O-D pair w (=1 if connected, =0 otherwise) 

w  original shortest distance of O-D pair w  

R
 

set of available recovery actions 

arb  cost of implementing recovery activity rR on arc a 

P
 

set of available preparedness actions 

apb  cost of implementing preparedness activity pP on arc a 

p
arb  

cost of implementing recovery activity r on arc a if preparedness action p is 

taken 

B  given budget 

)(ac  post-disaster capacity of arc a for disruption scenario   

apc  augmented capacity of arc a given preparedness action p is taken 

)(arc  
augmented capacity of arc a due to implementing recovery activity r for 

disruption scenario   

 
a

  post-disaster connectivity of arc a for disruption scenario   

ap
  augmented connectivity of arc a given preparedness action  p is taken 

 
ar

  
augmented connectivity of arc a due to implementing recovery activity r for 

disruption scenario   

a
d  length of arc a 

)(
w

d  shortest distance of O-D pair w under disruption   

)(at  traversal time of arc a under disruption scenario   

art  traversal time of arc a if recovery activity r is implemented 
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arq  implementation time of recovery activity r on arc a 

p
arq  

traversal time of arc a if related preparedness action p and recovery action r is 

implemented 

)(
w

k
Q  

maximum implementation time of recovery actions on path k between O-D 

pair w 

w
Tmax

 maximum allowed traversal between O-D pair w 

 

preparedness-recovery action relationship matrix in which each element pr
  

is set to 1 if recovery action r is affected by preparedness action p and 0 

otherwise. 

w

ak
  path-arc incidence (=1 if path k uses arc a, and =0 otherwise) 

ap  

binary variable indicating whether or not preparedness activity p is 

undertaken on arc a (=1 if preparedness action p is taken on arc a and =0 

otherwise) 

)(
w  

binary variable indicating whether or not O-D pair w (=1 if O-D pair w is 

connected and =0, otherwise) under scenario   

)(
w
k  

binary variable indicating whether or not O-D pair w is connected along path 

k (=1 if path k is connected and =0, otherwise) under scenario   

)(
w

a
X  

binary variable indicating whether or not arc a is used for O-D pair w (=1 if 

link a is used and =0, otherwise) under scenario   

)(
w

k
y  

binary variable indicating whether or not shipments use path k (=1 if path k is 

used and =0 otherwise) between O-D pair w under scenario   

)(
w

k
f  

post-disaster flow of shipments along path k between O-D pair w under 

scenario   

  ar  binary variable indicating whether or not recovery activity r is undertaken on 

arc a in the aftermath of disruption scenario   (=1 if recovery action r is 

taken on arc a and =0 otherwise) 

 

For completeness, the resilience formulation of RPO is presented next. Detailed 

explanation of the model is given in the earlier work. Modifications to this formulation 
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required for O-D connectivity and average reciprocal distance variants are provided 

thereafter.  

Resilience – Throughput (R
T
) 
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In classical connectivity analyses of digraphs, an O-D pair is said to be connected 

if there is a directed path with positive capacity between the path’s origin and its 

destination. The network is strongly connected if such a path exists between every O-D 

pair. Consider a set of pre-disaster k-shortest paths for each O-D pair. In O-D 

connectivity considered herein, an O-D pair is considered connected if one of its pre-

disaster k-shortest O-D paths exists, the total connectivity is set as the number of 
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connected O-D pairs. Alpha and Gamma indices described in Table 4.1 capture similar 

characteristics to this measure. Thus, interpret K

w
K  as the set of pre-disaster k-shortest, 

loopless paths between O-D pair w. Then, resilience with respect to O-D connectivity is 

formulated as follows. 

Resilience – O-D Connectivity (R
OD

)  
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Objective (4.14) seeks to maximize the expected number of O-D pairs that are 

connected divided by the total number of O-D pairs. Constraints (4.15) ensure that if an 

O-D path exists, then each arc along the path must either be in good working order, 

retrofitted so as to guarantee its operation in any disaster, or repaired post-disaster. 

Constraints (4.15) ensure O-D pair w is connected as long as post-disaster there exists 

one path k of the original k-shortest paths. The connectivity of path k is assessed in 

constraints (4.16), where both the post-disaster state of each arc in the path and whether 

or not it is repaired if damaged are considered. )(
w  and )(

w

k
are restricted to be 

binary.  

Finally, resilience in terms of average reciprocal distance is defined.  Average 

reciprocal distance is similar to the Average Shimbel Index described in Table 4.1. It is 
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calculated by first computing one over the shortest post-disaster distance of existing paths 

between each O-D pair w. The average reciprocal distance is, thus, computed from the 

average of these reciprocal distances over all O-D pairs. If any O-D pair is disconnected, 

an exceptionally long distance is associated with that O-D pair. The resilience 

formulation is revised accordingly next. 

Resilience – Average Reciprocal Distance (R
ARD

) 
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Constraints (4.19) are flow conservation constraints. They ensure that only one 

path is selected to connect O-D pair w. Constraints (4.20) compute the distance of the O-

D path. The objective (4.18) aims for each such O-D path to be the shortest possible 

given a fixed budget for repairing damaged links post-disaster. Constraints (4.21) require 

that all arcs of each O-D shortest path is functional post-disaster. If an arc of a path does 

not function, that path will not exist. Binary and integer restrictions on )(
w

aX and )(
w

d

are indicated in constraints (4.22). 
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Three implementations of each resilience measure are considered corresponding 

to whether or not preparedness and/or recovery actions are enabled through a budget. If 

the budget is zero, the system’s inherent coping capacity is measured. This is indicated by 

the addition of (CC) to the nomenclature, e.g. R
T 

(CC). Additions of (P), (R) and (P&R) 

indicate that a budget is available for only preparedness, only recovery or both 

preparedness and recovery actions, respectively. These implementations can be 

controlled by forcing the preparedness and recovery action decision variables to zero as 

appropriate. 

4.4 Obtaining Resilience Values: Solution Methodology 

An exact solution methodology based on integer L-shaped decomposition described in 

(Miller-Hooks et al., 2012) proposed for solution of formulation R
T
 is employed herein 

and adapted for addressing formulations R
OD

 and R
ARD

. The Integer L-shaped method is a 

variant of Benders’ decomposition. It was originally proposed in (Laporte and Louveaux 

1993) for solving two-stage integer stochastic programs with binary first-stage decision 

variables. In this method, the two-stage stochastic program is decomposed into a master 

problem (MP) and set of subproblems (SPs), one for each scenario. In the MP, integrality 

constraints are relaxed. The MP and SPs are solved iteratively employing a pendant node 

list used to implement a type of branch-and-bound procedure. Solutions from the SPs 

provide valid optimality cuts that can be incorporated within the MP in the form of 

constraints, narrowing the solution space. The solution process terminates when the 

pendant node list is empty.  

This procedure applies directly in solution of R
OD

. It is, however, necessary to 

generate the set of k-shortest paths as a preprocessing step. There are several classical 
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algorithms presented in the literature for solving the k-shortest, loopless path problem. 

Yen’s algorithm was adopted herein (Yen 1971). The integer L-shaped method is also 

used to solve R
ARD

. To implement the integer L-shaped method for solution of R
T
, R

OD 

and R
ARD

, the problem is treated as one of minimization. The reformulation for R
T
, R

OD 

and R
ARD

 as a MP and set of SPs is given in Table 4.3.  

Table 4.3: Decomposition for R
T
, R

OD 
and R

ARD
 

 MP SPs 

R
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 Note that each subproblem in the decomposition of R
ARD

 is an all pairs shortest 

path problem. Floyd-Warshall’s algorithm (1962) can be applied to solve each SP in this 

case. Also, wD ,
w ,

w are constants and need not be considered in the steps of the 

solution method. 
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4.5 Numerical Experiments 

Numerical experiments were conducted to assess resilience of the network topologies 

given in Figure 4.1 through solution of each of the three considered resilience problems. 

The experiments were completed first on the small (tile-size) networks and then again on 

their larger extrapolations. All arcs were assumed to have identical pre-disaster capacity. 

This capacity decreased by 50% or 100% if the arc is impacted in a disaster scenario. Arc 

travel times were assumed to increase 100% for a capacity drop of 50%. Arc lengths were 

set to 1 unit in all networks for all arcs with one exception. Diagonal arcs of the matching 

pair, complete and diamond networks have a length consistent with their Euclidean 

length. Regardless of network size, 100 network realizations were considered in scenario 

generation. In each scenario, the number of impacted arcs, n, follows a binomial 

distribution with parameter p=0.25. n arcs are chosen randomly from a uniform 

distribution. Half of the chosen arcs had a 50% drop in capacity and the remaining 50% 

had a 90% drop in capacity. The assignment of the capacity drop is made randomly. 

Two preparedness (P1 and P2) and three recovery (R1, R2, and R3) actions are 

designed to mitigate the impact of disaster. For the R
T
 analysis, the characteristics of 

these actions are summarized in Table 4.4. The implementation time and cost of all three 

recovery actions are reduced by 20% or 25% if action P1 or P2 is taken for that arc 

respectively.  
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Table 4.4: Characteristics of preparedness and recovery actions 

Actions 

Recovery 

activity duration 

(units) 

Cost  

 (units) 

Increase in arc  

capacity (units) 

Reduction in arc  

traversal time (units) 

P1 N/A 10 1 N/A 

P2 N/A 20 1 N/A 

R1 2 25 2 4 

R2 1 10 1 2 

R3 3 50 3 5 

 

In the case of R
OD 

and R
ARD

, the three recovery activities restore arc connectivity 

but at different costs. Though preparedness actions do not directly improve the 

performance of target arcs in terms of connectivity, in the case of R
OD 

and R
ARD

, such 

actions can reduce the cost of recovery actions. The cost of recovery and the relationship 

between preparedness and recovery actions in R
OD 

and R
ARD

 are set to be the same as in 

R
T
. A budget of 200 and 2,000 units is assumed for small and large networks, 

respectively. 

For each resilience measure, four results are given in terms of: coping capacity 

(CC), preparedness only (P), recovery only (R), and preparedness and recovery (P & R). 

That is, in coping capacity, no preparedness or recovery actions are permitted, while in 

preparedness only and recovery only, the budget can be used for only preparedness or 

recovery actions, respectively. In the last category, the budget can be allocated across 

both types of actions. 

Table 4.5: Resilience levels of network topologies (small networks) 

Type v e d  

R
T
 R

OD
 R

ARD
 

CC P 

only 

R 

only 

P& 

R 
CC 

P 

only 

R 

only 

P& 

R 
CC 

P 

only 

R 

only 

P& 

R 

1 9 12 2.6 70.6 76.2 87.3 92.2 70.4 73.2 92.4 97.3 52.1 53.3 55.2 61.7 
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2 9 8 1.8 65.3 72.1 78.8 85.3 70.0 78.6 83.1 92.5 44.8 46.9 51.4 58.8 

3 9 8 1.8 56.2 65.6 73.1 82.4 63.1 65.3 88.3 90.5 40.4 45.9 48.7 54.0 

4 9 9 2 45.9 50.4 65.4 72.7 48.6 58.3 73.6 86.7 27.7 32.7 42.5 49.2 

5 8 16 4 90.8 94.9 96.2 100 92.5 98.5 100 100 60.9 62.3 65.5 68.5 

6 9 16 3.6 78.1 85.2 88.6 95.3 87.9 91.2 96.5 100 54.7 55.5 60.3 67.4 

7 9 36 8 100 100 100 100 100 100 100 100 83.5 87.3 94.5 97.3 

8 10 10 2 66.6 72.5 80.8 86.4 72.4 80.2 84.7 92.8 46.1 50.2 54.8 57.8 

9 10 10 2 66.3 71.9 80.5 85.3 70.5 75 88.8 90.4 46.4 48.5 52.6 55.1 

10 10 10 2 65.2 72.6 79.3 85.6 68.6 79.3 81.2 92.2 44.1 49.7 52.2 60.0 

11 10 9 1.8 52.5 57.2 72.6 79.3 57.2 60.4 77.8 81.1 29.6 36.6 44.2 52.3 

12 9 12 2.6 75.4 81.7 88.3 94.3 84.6 85.6 97.4 98.5 54.4 56.3 58.7 65.7 

13 9 8 1.8 61.0 69.3 72.6 80.2 61.5 71.6 75.6 86.1 45.2 48.7 51.9 58.9 

14 9 10 2.2 65.8 76.3 82.4 91.6 71.9 80 92.2 93.3 46 50.8 56.7 61.4 

15 9 12 2.6 64.3 69.3 77.4 85.4 68.4 70.4 79.8 89.9 45.2 48.9 53.7 57.2 

16 9 12 2.6 62.2 67.5 73.6 82.6 65.4 68.1 76.1 86.6 42.1 44.5 47.6 53.8 

17 9 12 2.6 60.3 66.2 70.7 76.1 64.7 69.2 72.5 78.0 41.3 44.0 47.2 52.1 

* 1 Grid, 2 Hub and Spoke, 3 Double Tree, 4 Ring Network, 5 Matching Pairs, 6 Complete grid network, 7 

Complete network, 8 Central ring, 9 Double-U, 10 Converging tails, 11 Diverging tails, 12 Diamond 

Network,  13 Crossing paths networks, 14 single depot network, 15 Random network, 16 Scale Free, 17 

Small world 

* d  Average degree of network 

 

 

Table 4.6: Resilience levels of network topologies (large networks with 100 nodes) 

Type d  D C


 

R
T
 R

OD
 R

ARD
 

CC P 

only 

R 

only 

P& 

R 
CC 

P 

only 

R 

only 

P& 

R 
CC 

P 

only 

R 

only 

P& 

R 

1 3.6 18 6.7 71.6 79.5 87.3 92.2 71.9 76.3 91 96.3 53.9 55.8 58.6 64.9 

2 1.98 20 0.0 66.1 71.1 81.5 90.3 71.3 74.3 79.6 93.2 46.3 51.3 55.8 63.8 

3 1.98 24 0.0 56.8 72.3 75.1 82.7 64.4 64.3 83.8 87.6 41.8 48.4 52.2 58.5 

4 2 50 0.0 46.7 49.2 62.4 75.6 53.8 62.4 75.4 84.1 33.0 37.0 46.0 53.1 

5 50 51 67.6 91.9 93.2 97.4 100 94.0 95.6 100 100 62.8 65.7 66.7 70.7 

6 6.84 13 31.0 79.2 88.7 92.3 97.4 91.1 92.4 95.6 100 58.1 59.2 64.1 69.5 

7 99 1 100 100 100 100 100 100 100 100 100 88.2 89.2 95.9 98.9 

8 2 23 0.0 67.6 76.1 81.4 91.1 74.1 82.8 88.2 94.8 48.1 54.6 58.4 60.9 

9 2 48 0.2 70.5 74.6 82.7 89.3 72.5 75.4 90.0 95.0 51.1 51.2 55.1 58.3 

10 2 97 0.0 69.5 74.6 81.7 89.2 76.1 82.3 82.8 93.9 47.0 53.3 55.1 64.0 

11 1.98 66 0.0 53.2 57.6 73.1 84.9 58.9 63.0 77.8 82.7 31.4 39.2 44.7 54.4 

12 4 51 0.0 76.7 85.4 91.1 96.1 88.0 89.1 94.6 97.2 58.0 61.4 62.7 67.9 
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13 1.98 51 0.0 63.3 71.7 74.1 85.3 64.0 71.6 76.5 91.2 48.6 51.1 53.6 60.9 

14 2.02 49 0.0 67.1 76.8 82.8 93.2 73.1 80.3 94.9 95.7 47.8 52.3 59.2 64.9 

15 3.6 18 5.2 69.2 76.5 81.0 87.3 72.2 77.8 83.0 91.5 46.0 49.9 54.5 57.4 

16 3.6 18 4.1 65.8 69.3 74.4 82.9 69.1 72.8 76.3 84.3 42.1 45.3 48.4 54.3 

17 3.6 18 3.8 64.6 68.1 72.3 80.4 66.2 70.3 75.4 81.6 41.4 44.7 47.6 52.9 

* 1 Grid, 2 Hub and Spoke, 3 Double Tree, 4 Ring Network, 5 Matching Pairs, 6 Complete grid network, 7 

Complete network, 8 Central ring, 9 Double-U, 10 Converging tails, 11 Diverging tails, 12 Diamond 

Network, 13 Crossing paths networks, 14 single depot network, 15 Random network, 16 Scale Free, 17 

Small world 

*2 d - average degree, D - diameter, and C


- cyclicity. 

 

The analysis directly applies to the system-level resilience concept that treats each 

transportation component as simple nodes with no properties or specific structure. These 

components, however, can be complex networks in their own right. Thus, it was assumed 

that an event that impacts a component’s capacity will be realized through a reduction in 

capacity of incident links. Thus, additional experiments were conducted to explore the 

relationship between component health and system resilience. Sometimes, several 

components of a system have similar characteristics. In the experiments, those 

components generate a group or tile. When a tile is impacted by disaster, only the nodes 

and arc within the tile will have capacity reductions. The component-based application of 

the resilience measure in the proposed programs provided a quantitative assessment of a 

component’s level of vulnerability. The ability to compute such a resilience index allows 

decision makers to assess the potential impact of greater investment levels for recovery 

actions on facility resilience, as well as the magnitude of the benefits that can be derived 

from the application of security measures, including technology implementations and 

changes to the physical infrastructure. 

For small networks, damage to a single randomly selected arc or node (.5 

probability of each) was simulated. 100 such simulations were run. In the runs with 
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damage to a node, capacity of all incident arcs (incident on or emanating from the node) 

was reduced by either 50% or 100% (.5 probability of each). A similar capacity reduction 

pattern was employed for damage to a single arc. In each simulation run on the large 

networks, damage was imposed on one randomly chosen “tile” used in creating the larger 

network structure. The capacity of all arcs within the damaged tile was reduced by 

between 50 and 100% (.5 probability of each). 100 such simulations ran in the 

experiment.  

Resilience estimates from the runs are provided in Tables 4.7 and 4.8.  Note that 

only the coping capacity (i.e. in which no preparedness or recovery actions are 

considered) is considered in measures reported in Table 4.7, because any action could 

restore full system capacity due to the experimental setting. The network effects of post-

damage repair actions are studied through comparison of the resulting resilience 

measures by implementation (i.e. CC, P, R and P&R). 

Table 4.7: Results of system health (small networks) 

Type v e d  

CC in R
T
 CC in R

OD
 CC in R

ARD
 

R  Max Min s R  Max Min s R  Max Min s 

1 9 12 2.6 80.6 87.0 74.5 4.5 82.6 89.4 77.9 2.6 54.2 60.1 48.2 2.7 

2 9 8 1.8 76.0 81.9 69.1 4.6 77.6 83.8 72.3 3.6 45.1 51.6 38.6 3.7 

3 9 8 1.8 69.5 73.8 63.0 5.2 73.7 76.3 67.9 3.6 42.1 49.0 37.9 2.9 

4 9 9 2 58.8 64.5 54.8 3.3 62.3 68.2 56.1 2.0 31.6 39.0 23.9 3.8 

5 8 16 4 91.6 99.6 88.2 6.4 92.4 98.6 88.8 5.2 55.5 58.7 49.1 2.3 

6 9 16 3.6 88.7 95.0 83.5 6.8 89.3 95.5 84.4 5.0 53.1 58.5 47.2 1.9 

7 9 36 8 100 100 100 0.0 100 100 100 0.0 90.1 92.2 87.6 0.8 

8 10 10 2 74.7 81.3 66.1 5.4 76.8 85.9 69.1 4.7 46.2 54.3 36.4 4.4 

9 10 10 2 74.8 85.3 70.2 5.4 76.3 85.9 68.3 3.7 45.6 56.1 38.5 4.8 

10 10 10 2 74.2 88.3 70.9 6.0 77.9 86.2 73.5 5.0 45.0 56.4 40.3 3.6 

11 10 9 1.8 67.2 70.5 64.2 2.8 72.0 74.5 67.8 0.9 31.3 37.1 29.9 2.0 
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12 9 12 2.6 85.1 87.9 76.3 4.4 87.1 92.4 72.5 2.5 54.2 58.2 43.0 4.4 

13 9 8 1.8 69.6 74.0 64.1 4.3 71.0 78.1 65.7 2.6 45.8 51.4 38.6 3.5 

14 9 10 2.2 78.9 80.1 70.2 5.4 81.5 87.5 73.4 3.4 49.0 52.0 39.5 3.0 

15 9 12 2.6 78.0 87.5 70.4 6.3 79.1 86.2 73.6 4.2 50.4 58.7 42.3 5.7 

16 9 12 2.6 75.2 83.3 68.2 7.6 77.3 84.4 68.5 6.9 46.3 53.2 40.9 6.3 

17 9 12 2.6 72.5 80.1 65.3 7.2 75.6 80.9 67.3 5.5 45.6 54.8 39.5 5.2 

* 1 Grid, 2 Hub and Spoke, 3 Double Tree, 4 Ring Network, 5 Matching Pairs, 6 Complete grid network, 7 

Complete network, 8 Central ring, 9 Double-U, 10 Converging tails, 11 Diverging tails, 12 Diamond 

Network,  

13 Crossing paths networks, 14 single depot network, 15 Random network, 16 Scale Free, 17 Small world 

* R -average resilience level, Max-Maximum resilience level, Min-Minimum resilience level, s-stand 

deviation of resilience 
 

 

Table 4.8: Results of system health (100-node networks) 

 

Type d  D C


 

R
T
 R

OD
 R

ARD
 

CC 
P 

only 

R 

only 

P& 

R 
CC 

P 

only 

R 

only 

P& 

R 
CC 

P 

only 

R 

only 

P& 

R 

1 3.6 18 6.7 82.5 90.0 94.8 98.3 82.8 90.8 95.7 98.5 56.6 59.2 61.6 68.0 

2 1.98 20 0.0 77.0 85.3 92.1 96.7 78.1 85.7 96.0 97.4 50.2 56.4 60.2 66.2 

3 1.98 24 0.0 73.6 78.0 84.1 88.5 74.1 76.1 85.4 89.2 44.8 52.9 56.4 62.4 

4 2 50 0.0 62.1 69.6 77.3 82.3 62.2 70.7 78.3 83.5 37.2 42.2 50.4 57.7 

5 50 51 67.6 95.0 98.6 100 100 95.8 99.6 100 100 64.9 69.0 69.4 73.4 

6 6.84 13 31.0 91.9 95.3 99.2 100 93.1 96.3 99.6 100 61.3 63.0 67.0 72.8 

7 99 1 100 100 100 100 100 100 100 100 100 96.5 98.7 100 100 

8 2 23 0.0 76.7 81.8 88.8 94.3 77.4 82.1 89.3 94.7 51.3 59.1 62.1 64.7 

9 2 48 0.2 76.6 84.3 88.7 93.6 77.0 85.3 90.0 94.1 54.3 55.9 59.3 62.4 

10 2 97 0.0 75.8 82.4 88.9 95.8 77.1 83.1 89.3 96.2 50.3 57.3 58.4 67.5 

11 1.98 66 0.0 67.5 76.3 85.3 90.4 67.9 76.4 86.3 90.5 33.2 41.9 47.1 56.7 

12 4 51 0.0 87.9 92.8 95.8 100 89.3 93.4 96.9 100 61.8 66.5 66.8 72.3 

13 1.98 51 0.0 71.6 73.6 82.7 86.9 72.4 74.2 82.7 87.6 51.0 54.5 56.1 63.7 

14 2.02 49 0.0 79.6 85.1 92.2 97.5 79.8 85.8 93.3 97.8 50.1 55.8 62.4 67.9 

15 3.6 18 5.2 78.4 87.5 90.2 96.5 79.2 88.1 91.3 96.8 53.2 57.3 59.2 63.1 

16 3.6 18 4.1 75.8 81.6 86.2 91.3 76.7 83.2 86.8 92.3 50.3 52.6 55.4 60.5 

17 3.6 18 3.8 73.6 80.3 84.7 89.6 74.6 81.4 86.2 91.7 49.6 51.9 54.4 58.8 

* 1 Grid, 2 Hub and Spoke, 3 Double Tree, 4 Ring Network, 5 Matching Pairs, 6 Complete grid network, 7 

Complete network, 8 Central ring, 9 Double-U, 10 Converging tails, 11 Diverging tails, 12 Diamond 

Network, 13 Crossing paths networks, 14 single depot network, 15 Random network, 16 Scale Free, 17 

Small world 
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*2 d - average degree, D - diameter, and C


- cyclicity. 

 

Statistical analyses were conducted on the large networks to investigate the 

correlations between coping capacity with respect to R
T
, R

OD 
and R

ARD
 of a topology and 

network structure as characterized by average degree d  diameter D , and cyclicity C


. 

Results of correlation analyses are given in Table 4.9. The results indicate that resilience 

level has a relatively strong correlation with average degree. Cyclicity is also positively 

correlated with resilience, but the correlation is less significant as compared with average 

degree. Diameter is negatively, although weakly, correlated with resilience. All metrics (

d , D , C


) are most strongly correlated with RARD of the three resilience measures.  

Table 4.9: Correlation of coping capacity of resilience and d , D ,  and C


 in large network 

 R
T
 R

OD
 R

ARD
 

Average degree ( d )
T
 0.79 0.70 0.65 

Diameter ( D ) -0.28 -0.32 -0.21 

Cyclicity ( C


) 0.83 0.73 0.71 

 

The difference between resilience with only single-component damage and 

resilience with random damage is given in Table 4.10. The results indicate that 

throughput is most vulnerable to component level damage. Overall, damage that is 

concentrated in a small portion of the network is more damaging in terms of resiliency 

than when it is randomly spread about the network given the same total damage level. 

  Table 4.10: Difference between component health and overall system resilience 

 R
T
 R

OD
 R

ARD
 

CC 7.23 6.18 4.12 

P 6.25 7.52 3.17 

R 5.74 4.96 2.41 
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P&R 3.85 3.44 2.32 

 

Additionally, regression models with dependent variables R
T
, R

OD 
and R

ARD
 and 

independent variables d , D ,  and C


 were estimated. These models and measures of 

goodness-of-fit in terms of R-square and Significance F are provided in Table 4.11. The 

closer to 1.0 the R-square value, the better the fit. A Significance F of less than 0.05 

indicates a good fit at a 95% confidence interval. It can be noted that with only 17 data 

points, the R-square values in some cases are poor; thus, only limited insights from the 

equations should be drawn. Experimentation with additional model forms, e.g. nonlinear 

forms, may produce betting fitting models. P-values, however, indicate with 95% 

confidence that all three graph theory metrics are significant in all equations. It is 

interesting to note that while the coefficient of C


 is always positive, the coefficients of d  

and D vary between positive and negative values. In the case of d , the coefficient is 

negative for all implementations of R
T and R

OD, but is positive for all implementations of 

R
ARD. In the case of D, however, there is no discernible pattern.  

Table 4.11: Estimated resilience regression equations 

Estimated regression equation R-square Significance F 

CDdCCR
T


51.0002.016.063.64)(   0.70 0.005 

CDdPR
T


53.0038.026.013.73)(   0.56 0.011 

            CDdRR
T


47.0013.026.014.78)(   0.55 0.013 

CDdRPR
T


35.0031.022.008.86)&(   0.45 0.040 

CDdCCR
OD


65.002.036.004.69)(   0.63 0.003 

CDdPR
OD


57.0041.031.09.72)(   0.58 0.008 

CDdRR
OD


42.0029.0246.048.82)(   0.45 0.045 
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CDdRPR
OD


31.0028.021.07.89)&(   0.34 0.134 

CDdCCR
ARD


19.0048.019.068.46)(   0.75 0.001 

CDdPR
ARD


12.0025.026.096.49)(   0.74 0.001 

CDdRR
ARD


058.004.032.068.54)(   0.79 0.002 

CDdRPR
ARD


05.0005.032.02.59)&(   0.76 0.001 

Note: double underline indicates that the parameter is statistically insignificant 

 

4.6 Analysis of Results 

Analysis of the results from the larger networks (with 100 nodes) given in the prior 

section provides several important insights. In general, throughput, O-D connectivity and 

average reciprocal distance resilience measures increase with average degree and greater 

cyclicity, but decrease with network diameter. Thus, the complete network has the 

highest values of resilience, while the ring network has the lowest. In all network 

topologies, improvements in all types of resilience are obtained from taking preparedness 

and/or recovery actions. The highest level is attained when both preparedness and 

recovery options are allowed. The improvement gains from recovery actions are more 

significant than from preparedness actions. The significance of these actions appears to 

be greatest for those networks with the lowest coping capacities. The overall ordering of 

the network topologies from most resilient to least resilient was found to be: complete, 

matching pairs, complete grid, diamond, grid, single depot, central ring, hub-and-spoke, 

double-u, converging tails, random, scale-free, small-world, crossing path, double tree, 

diverging tails and ring network.  This ordering indicates a strong connection between 

resilience and average degree. 
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Generally, networks with higher coping capacity also have higher resilience level 

(accounting for the implementation of preparedness and recovery actions). Rankings 

under each category are similar, with change in ranking only for double tree and diamond 

networks for resilience with preparedness only. With only one exception for the hub-and-

spoke network, resilience in terms of O-D connectivity is always higher than resilience in 

terms of throughput, which is always higher than resilience in terms of average 

reciprocal distance.  

Other insights were gleaned from this analysis. For a comparable level of disaster-

induced damage in networks with similar average degree, networks with critical arcs (i.e. 

arcs whose removal will cause the network to be disconnected) tend to be less resilient in 

terms of all three resilience measures considered herein. Such critical arcs are especially 

prevalent in double tree, diverging tail and crossing path networks. Greater percentage 

increase in resilience level was observed in such networks when preparedness and 

recovery actions were implemented than when similar actions were taken to rectify or 

mitigate damage in other network classes. That is, the benefits derived from taking 

mitigation and responsive actions are greatest for networks containing the greatest 

number of such critical arcs. 

Networks with higher diameter are often sparser and contain less redundant 

connections. Consequently, they are more vulnerable and less resilient to disaster. For 

example, the double-U network with smaller diameter is more resilient than the diverging 

tails network. Given comparable average degree and diameter, networks with higher 

cyclicity tend to be more resilient. Cycles are by definition contain redundancy in that the 

removal of a single arc will not cause a loss in connectivity. This is exemplified by 
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comparing the grid and random networks, where grid networks have higher cyclicity and 

also notably greater resilience values. 

The tested random, scale-free, small-world networks have the same average 

degree as the grid network, however, these networks tended to be less resilient than the 

grid network. This may be because scale-free and small world networks have greater 

connections between some nodes and fewer connections between other nodes as 

compared with the random network. Thus, some portions of these networks are highly 

redundant while others are more vulnerable to single link failure. 

In considering the relationship between component health and system health, one 

can see that the resilience level of the ring and converging trail networks is most affected 

by degradation in the health of a system component. From the statistical analysis, it can 

be generally concluded that the average degree and cyclicity are better indicators of 

resiliency than diameter.  

4.7 Conclusions 

There are several general conclusions that can be drawn from the results of the 

numerical experiments. Specifically, the more redundancies built into the network, as 

indicated by average degree and cyclicity metrics, the greater the resilience level. 

Moreover, the more compact the network as indicated by a low diameter value, the more 

resilient the network. These insights have implications for transportation applications. For 

example, in designing and expanding transit systems, it is often the case that new lines 

are added that reach out into suburban areas. These expansions lead to less compact 

network designs, and thus lower resilience levels. As more riders rely on the new lines, 
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system resilience becomes increasingly important. Future additions to the network that 

not only have greater reach, but that help increase network compactness are worth 

considering.  

Studying the differences in resilience of the various network topologies can 

provide a deeper understanding of how the addition or subtraction of specific links can 

affect system performance. This can have implications for transportation network 

planning, as well as disaster preparedness and response. In building evacuation, for 

example, the opening or closing of a doorway is represented by the existence or 

nonexistence of a link. Thus, understanding how network topology affects resilience can 

be useful in facility design decisions, as well. 

The ability to compute such a resilience index allows decision makers to assess 

the potential impact of greater investment levels for recovery actions on facility 

resilience, as well as the magnitude of the benefits that can be derived from the 

application of security measures, including technology implementations and changes to 

the physical infrastructure. 

In applications involving networks with ring or converging trail-like topologies 

for which the effects of component damage on system resilience are greatest, actions to 

reduce the possibility of component failure will be particularly beneficial. Alternatively, 

changes to the network topological structure may be helpful. Ring networks are common 

topologies for many urban roadway systems. 
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Chapter 5: Conclusions and Extensions 

5.1 Conclusions 

This dissertation proposes models and solution algorithms for transportation network 

performance measurement, decision-making on pre-disaster preparedness and post-event 

recovery actions, and the analysis of the role of network topology in network resilience. It 

provides tools to support the creation of resilient intermodal freight transportation 

systems. In contrast to earlier works, it quantifies a network’s resilience with consideration 

for the synergies between preparedness and recovery activities, and incorporates 

operational considerations of post-disaster recovery.  

Three major operational concerns are addressed in the dissertation:  resilience 

with preparedness options (RPO), resilience with Optimal Recovery Scheduling (RORS), 

and analysis of role of network topology in network resilience. Mathematical models 

associated with these problems are formulated in a stochastic environment using a multi-

hazard approach, and solution algorithms are proposed..  

The RPO problem is formulated as a two-stage stochastic integer program and 

solved using an integer L-shaped method. The RORS problem is a stochastic, time-

dependent, nonlinear, integer program. An exact solution technique employing 

decomposition with branch-and-cut and a hybrid genetic algorithm are proposed for its 

solution.  The solution to the model provides optimal allocation of a limited budget 

between preparedness, as well as recovery activities, and the planning and operations of 
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post-disaster recovery actions. Transportation management agencies can benefit from the 

proposed models to mitigate the impacts of potential disasters and related negative 

economic consequences.  The proposed model and solution methodology were applied on 

illustrative example of a double-stack container network in United States.  

In addition to the resilience function of throughput, O-D connectivity and average 

reciprocal distance were considered network resilience measures to investigate the role of 

network topology in network resilience. The integer L-shaped method is applied again for 

this purpose. The relationships between network resilience and average degree, diameter, 

and cyclicity are also investigated. Furthermore, this dissertation assesses the impact of 

damage at the component level on overall system health and recovery capability. The 

ranking of networks with respect to resilience level and insights related to network 

topology’s role in resilience are provided. 

This dissertation assumes that the total budget available for disaster preparedness 

and/or recovery actions to be fixed. For some emergency events, the budget may increase 

after disaster. This is particularly true in long-term recovery from large-scale disasters.  

The models could directly incorporate a separate added fund to be used for post-disaster 

recovery only.  Both RPO and RORS do not account for demand uncertainty. It is also 

assumed that demand is inelastic to the event, and thus, the pre-disaster demand for 

shipments (e.g. in tonnage) is assumed to remain post-disaster. Finally, early arrival of 

shipments (ahead of schedule and thus before time Tmax) will not result in improved 

resilience.  
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5.2 Extensions 

In addition to addressing limitations of the proposed models and solution methods due to 

assumptions discussed in the previous subsection, a number of extensions to this network 

resilience study may lead to additional insights. Some perspective extensions are 

summarized next. 

The integer L-shaped method can solve only small problem instances to 

optimality. Moreover, its efficiency deteriorates when the problem instances increase. A 

quicker and more efficient solution method is desired for larger problem instances, 

involving larger networks, more disaster scenarios, or more preparedness and recovery 

options. Heuristics may be required for large problem instances.  

In RPO, resilience is formulated based on the maximum post-disaster throughput 

that can be accommodated. There are tradeoffs between the allowed recovery time, 

budget, and resilience level. Given a specific resilience level and a fixed time window, 

transportation agencies may also seek a recovery plan with least cost. For this 

consideration, the problem can be reformulated with an objective of minimizing the 

required budget needed to attain a given resilience level in a given amount of time.  

RORS did not consider the role of preparedness in resilience measurement or its 

role in enhancing post-disaster recovery. Future work might extend the RORS model for 

scheduling recovery activities considering the synergies between preparedness and 

recovery. Such a study would likely require a multi-stage, stochastic, time-dependent 

nonlinear integer program. The new problem will be much more difficult to solve; thus, 

the proposed integer L-shaped method and D-BAC cannot be apply directly. Another 
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promising direction to extend RORS is to prioritize chosen O-D pairs. Such prioritization 

could support emergency response post-disasters. 

Although the proposed model is built on the rail-based transportation network, it 

can also be applied for networks involving other transportation modes, e.g. road and air 

transportation. The proposed models should be modified to take into account the 

operational characteristics of these other modes.  
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