
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

A Distributed Algorithm for Solving a Class of Multi-agent
Markov Decision Problems

by Hyeong Soo Chang, Michael C. Fu

TR 2003-25

A Distributed Algorithm for Solving a Class

of Multi-agent Markov Decision Processes

Hyeong Soo Chang and Michael C. Fu∗

February 27, 2003

Abstract

We consider a class of infinite horizon Markov decision processes (MDPs) with multiple

decision makers, called agents, and a general joint reward structure, but a special decompos-

able state/action structure such that each individual agent’s actions affect the system’s state

transitions independently from the actions of all other agents. We introduce the concept of

“localization,” where each agent need only consider a “local” MDP defined on its own state and

action spaces. Based on this localization concept, we propose an iterative distributed algorithm

that emulates gradient ascent and which converges to a locally optimal solution for the average

reward case. The solution is an “autonomous” joint policy such that each agent’s action is

based on only its local state. Finally, we discuss the implication of the localization concept for

discounted reward problems.

Keywords: multi-agent, Markov decision process, distributed algorithm, local optimal solution,

stochastic control

∗H.S. Chang can be reached by email at hschang@ccs.sogang.ac.kr and is with the Department of Computer

Science and Engineering, Sogang University, Seoul, Korea, and M.C. Fu can be reached by telephone at +1 (301)

405-2241, by fax at +1 (707) 897-3774, or by email at mfu@rhsmith.umd.edu and is with the Robert H. Smith School

of Business and the Institute for Systems Research, University of Maryland, College Park, MD 20742-1871, U.S.A.

1

2

1 Introduction

We consider a class of decision-making problems under uncertainty where there are multiple decision

makers, called agents, which act independently of each other, but have a common goal of maximizing

a system-wide reward function. We model these systems as multi-agent, discrete-time Markov

decision processes (MDPs) with a general joint reward structure, but a special product-form state

transition probability function that “factors” into the product of functions, each of which depends

only on localized state/action information of an individual agent.

As a result, aside from the reward structure, the original MDP is decomposable into smaller

“local” MDPs based only on actions and states of a particular agent. However, actually “solving”

such a local MDP (i.e., finding an optimal local policy) requires the specification of a reward func-

tion that depends only on local state/action information, but the overall (global) reward function

itself is not assumed separable. Thus, it is not obvious a priori how to exploit the decomposition

appropriately, because each agent needs to take an action in its local state in a “cooperative”

manner to maximize the global reward.

On the other hand, even when the local state and action spaces of the agents are relatively

small, the global MDP may still suffer from the curse of the dimensionality, making solution of

the global MDP using standard approaches, such as policy or value iteration, computationally in-

tractable. A natural approach is to try to find a solution scheme where certain tasks are distributed

to the individual agents, and then the results for the tasks are “merged” or “coordinated” via some

predetermined protocol of information communication among the agents, and this general process

repeated until a given terminating condition is satisfied. However, such a distributed approach

should meet the following conditions to be sound and “efficient”. First, the overhead of the com-

munication among the agents must not be large. Second, the tasks assigned to each agent need

to be small in terms of time and space complexities. Finally, the merged results from the tasks of

each agent must provide a “useful” and “meaningful” global solution. To the best of the authors’

knowledge, there is no existing work that satisfies these conditions for the setting we consider, where

there is a joint reward structure. This paper is a step toward developing an efficient distributed

control scheme that meets the above conditions when the local state and action spaces of each

agent are relatively small.

Our “localization” of the original MDP into local MDPs for each individual agent converts the

joint reward function into a local reward function dependent only on an individual agent’s states

and actions by projecting with respect to the stationary distributions of the Markov chains induced

by the policies of the other agents. We show that solving the local MDP for a given agent provides

an optimal “reactive” local policy, given any fixed set of local policies of the other agents. Based on

this, we present an iterative distributed algorithm that converges to a locally optimal solution of

the global MDP, where the solution is an overall policy such that each agent’s decision is based on

3

only its own local state, i.e., each agent need not observe the states of the other agents, eliminating

any communication overhead among the agents in implementing the policy.

The algorithm starts from an arbitrary local policy for each agent. Given the currently selected

policies of the other agents and the corresponding induced stationary distributions, each agent

computes its best local reactive policy by solving its current local MDP. During the computation

of the best autonomous local reactive policy, there is no communication among the agents. With

a certain monotonicity property, the algorithm converges to a local optimal solution for the global

MDP.

Some previous work on decentralized control of finite-state Markov processes [12] [1] considered

partitioned state and/or action spaces with a delayed sharing information structure. Even though

an autonomous joint policy structure is considered, the algorithms for computing an optimal policy

with such structure are centralized with the given global parameters, and thus there is no reduction

in dimensionality when carrying out the solution procedure. Similarly, asynchronous implementa-

tions of value iteration (see, e.g., [19]) presented in [13] [4] are done with the global parameters via

a communication protocol. Kushner and Chen [16] present an algorithm that generates a set of

independent “local” subproblems at each iteration, which can be solved in parallel, by the Dantzig-

Wolfe decomposition technique based on a linear programming formulation for a given MDP, where

the MDP does not have a partitioned state/action space. However, the algorithm is based on the

assumption that grouping of states is possible such that each group is connected with other groups

via some border states that do not belong to any group and need to be identified in advance. The

performance of the algorithm depends on how such grouping is done. Each independent subproblem

for each group is defined with a “local” parameter of the group, but at each iteration, a centralized

problem must be solved using the solutions to the local subproblems.

This paper is organized as follows. In Section 2, we define the class of MDPs considered in this

paper and present some examples that can be modeled by such MDPs. In Section 3, we introduce

the concept of the localization, and in Section 4, we provide an iterative distributed algorithm

for average reward problems based on the localization concept. We discuss the implication of

localization for discounted reward problems in Section 5. Section 6 concludes with some remarks.

2 Multi-agent Markov Decision Processes

2.1 Model

We formally describe the class of MDPs with N multiple decision makers, called agents, that we

consider. Each agent i = 1, ..., N <∞ has its own finite state space Xi and finite action space Ai.

For simplicity, it is assumed that every action in Ai is admissible at each state in Xi for agent i.

We define a local policy πi : X1 × · · · ×XN → Ai for agent i and denote the set of all possible such

4

local policies for agent i as Πi. We also define an autonomous local policy φi : Xi → Ai for agent i,

and denote the set of all possible such local policies for agent i as Φi. Thus, an autonomous local

policy prescribes an action from the agent’s local action set depending on only the agent’s local

state.

Each agent i is associated with a local state transition function Pi : Xi × Ai → D(Xi), where

D signifies a probability distribution over Xi. Denote the probability of transitioning from state

xi ∈ Xi to yi ∈ Xi by taking action ai ∈ Ai at xi by Pi(yi|xi, ai). Given a local reward function

Ri : Xi ×Ai → R, denote the local MDP for the agent i as Mi = (Xi, Ai, Ri, Pi).

Define a global MDP M = (X,A,P,R) from the dynamics of each agent as follows: the joint

state space X = X1 × · · · × XN so that a state x ∈ X is an N -tuple x = (x1, ..., xN); the joint

action space A = A1 × · · · × AN so that an action a ∈ A is an N -tuple a = (a1, ..., aN); the joint

state transition probability is product form, i.e.,

P (y|x, a) =
N∏

i=1

Pi(yi|xi, ai), x, y ∈ X,a ∈ A;

and the joint reward function is general R : X × A → R, i.e., unlike the state transition function,

which is the product of the local transition functions, there is a priori no relationship assumed

between the global reward function R and local reward functions Ri. We assume that R is bounded

such that there exists a constant M < ∞ such that maxx,aR(x, a) ≤ M , and also assume that

there is no interdependent constraint on the action set, i.e., an action taken by agent i does not

affect or limit the feasible action space Aj , j �= i, of any other agent.

Solving each local MDP Mi, i = 1, ..., N independently will not necessarily lead to a solution

of the global MDP, since the local reward functions Ri and the global reward function R are not

assumed related. We denote a joint policy for all the agents as an N -tuple π = (π1, ..., πN) and

Π as the set of all possible such joint policies, and we say that a policy π is fully decentralized if

π = (φ1, ..., φN) with φi ∈ Φi, i = 1, ..., N . We will make the following assumption throughout.

Assumption 2.1 For each i = 1, ..., N , the local MDP Mi is unichain.

Note that the property of an MDP being unichain is completely unrelated to the reward function.

Furthermore, under the above assumption, the global MDP M is unichain, too.

There are several (ergodicity) conditions from which we can check whether or not an MDP

is unichain (e.g., [11, p.56]). Perhaps the simplest condition, called the “minorant” condition, is

that there exists a state reachable (with positive probability) from every other state. For example,

the system can reach a “reset” state with a positive probability (from any state with any action).

Suppose that a given MDP is not unichain. We can add then an artificial state x̄ = (x̄1, ..., x̄N) to

X by adding x̄i to Xi, i = 1, ..., N such that x̄i is reachable from any local state xi with probability

(w.p.) ε ≈ 0 by taking any admissible action a at x. But to make each agent not willing to reach

5

the added local state in their optimal decisions, we make the immediate reward of taking any action

at x̄i extremely small. In this way, we can transform the given MDP into a unichain MDP, and an

optimal solution for the unichain MDP can approximate an optimal solution for the original MDP

very closely.

For π ∈ Π and x ∈ X, define the infinite horizon average reward value function:

Jπ(x) = lim
H→∞

E
{∑H−1

t=0 R(Yt, π(Yt))|Y0 = x
}

H
,

where {Yt, t = 0, 1, ...} denotes the state of the MDP at time t. It is well-known that because the

global MDP is unichain, Jπ(x) is independent of the initial state x (e.g., [19]), and we use gπ to

denote the corresponding infinite horizon average reward of following the policy π. A (joint) policy

π∗ ∈ Π is optimal if it achieves the maximum average reward g∗, i.e.,

gπ∗
= g∗ ≥ gπ for any π ∈ Π.

The time-complexity of solving the global MDP M is O(|X|2|A|) for carrying out one policy im-

provement step in policy iteration or one iteration in value iteration [17]. Therefore, if either |X| or

|A| is large, solving the MDP M via the well-known exact methods is impractical, motivating the

need for good decentralized policies that can be found efficiently. In general, there may not exist

a fully decentralized policy that is optimal, but in the setting considered in this paper, we provide

an algorithm that will find a full decentralized policy that achieves a form of local optimality. Each

agent i considers its own local MDP knowing the currently selected local policies of all other agents

and the corresponding induced stationary distributions.

2.2 Some examples

In this section, we provide a couple of examples that have the special structure on the state transi-

tion function that we assume in the setting of this paper. Other examples that we do not describe

here, but that fall into our framework, include the air vehicle battle management problems described

in the recent work by Arslan et al. [3], and certain classes of distributed database problems.

2.2.1 Multi-robot navigation

Consider multiple “robots” operating on a common area, such as a two-dimensional rectangular

grid, where the overriding objective is to navigate them such that they are kept at a safe distance

apart. Alternatively, the objective might be to bring them all together. During each time step,

each of the robots chooses independently to stay put or attempt to make a move of one unit in any

permissible direction, but there would be some random mechanism determining whether the chosen

move would actually be executed. For example, there could be a Bernoulli probability that the

move is successful, and otherwise either the robot stays put or with some (e.g., equal) probability

6

moves to another neighboring state. The overall reward function to be maximized would be some

function of the Euclidean distances between the current location of the robots, for example the

minimum distance or the average (pairwise) distance. If the goal were to bring the robots together,

then a similar cost function (e.g., maximum distance) could be minimized.

2.2.2 Admission control

Queueing networks are commonly used to model communication networks [2] and manufacturing

systems. An important class of problems involves admission control into the system. We describe

some simple examples in this class that fall into our framework.

There are several, say K > 1, independent sources of jobs (e.g., different traffic streams on

the Internet) that feed one or several first-come, first-served (FCFS) queues. The actions involve

admission control at each of these sources. The number of jobs that the server can process in a

time period may also be stochastic, e.g., due to breakdowns or other unplanned events or random-

ness in the system. The global objective must tradeoff between throughput and queue length (or

equivalently, delay), and clearly depends jointly on each source. In our framework, the MDP model

would specify an agent for each of the different arrival sources and possibly one agent for the server.

There are myriad variations that have this basic structure. We will describe two of these in more

detail now.

In the first variation, there is a separate upstream queue for each of the K independent sources,

and the decision to be made is whether to admit or to reject a newly arriving job into the queue.

The job arrival process for each queue is described by a Markov Modulated Bernoulli Process

(MMBP) [10] such that for the queue i, there is a finite number of traffic states in the set Si

and the transition dynamics between the traffic states is governed by a Markov chain. Denote

δi
si,s′i

as the probability of transitioning from state si ∈ Si to s′i for the MMBP model of the job

arrival process at queue i. At each state si ∈ Si, one job is generated w.p. λi(si) > 0. Once a

job is admitted into queue i, each job departs queue i w.p. µi (i.i.d.) after staying at least one

unit decision time. The departed jobs from each upstream queue are fed into a downstream FCFS

single-server queue, which for this variation is assumed to have infinite buffer capacity and serves

one job each period (if there is one to be processed). An additional agent is required to model this

server, though in this variation the server has no action choices; thus, this MDP model has K + 1

agents.

A local state xi for an agent corresponding to queue i = 1, ...,K, is (ni, si, φi), where ni is the

number of the current jobs (already admitted) at the (upstream) station i; si is the current traffic

state of the MMBP model for the job arrival process; φi ∈ {0, 1}, where 0 indicates a new job arrival

and 1 indicates no new job arrival. A local action ai is either 1 for accepting a job or 0 for rejecting

a job. For the server, the local state xK+1 is simply given by the number of jobs in its buffer, and

7

the transition to the next local state is given (deterministically) by (xK+1 +
∑K

i=1 di − 1)+, where

di represents the number of jobs that departed from queue i and x+ = max(x, 0).

The global transition structure is product form. For xi = (ni, si, φi) and yi = (n′i, s
′
i, φ

′
i), if

n′i = ni + aiφi − di, then

Pi(yi|xi, ai) = δi
si,s′i

[λi(s′i)φ
′
i + (1 − λi(s′i))(1 − φ′i)](µi)di , di = 1, 2, ..., ni,

and 0 otherwise. Then, we have

P (y|x, a) =
K∏

i=1

Pi(yi|xi, ai)

for yK+1 = (xK+1 +
∑K

i=1 di − 1)+, and 0 otherwise.

The global immediate (random) reward function could take the following general form:

R(x, a) =
K∑

i=1

ai − ζ

(
xK+1 +

K∑
i=1

ni

)
,

where ζ > 0 is a tradeoff parameter between throughput and queue length.

In the second variation, again assume that each of the underlying arrival processes is Markov

modulated, with the same notation for the underlying Markov chain. This time, however, the

capacity of the queue is finite, and the action is a choice of the number of jobs to generate from a set

dependent on the local Markov state, i.e., at each state xi, source i can generate ai ∈ {0, ..., αi(xi)}
jobs with αi(xi) < ∞. In addition, the server chooses how many jobs to attempt to process, with

a success (all or none of the jobs served) probability dependent on the number of jobs attempted.

Thus, this MDP model again has K + 1 agents.

Denote the queue capacity by M <∞. If Q is the queue length at the beginning of the period,

ai is the number of jobs generated by source i in the current period, and η ≤ Q is the number of

jobs processed in the period, then the queue length at the beginning of the next period is given by

the following expression:

min

{
Q+

K∑
i=1

ai,M

}
− η. (1)

Note that if the number of newly generated jobs exceeds the queue capacity M , then some decision

rule must be invoked in order to discard the excess jobs, but since the job characteristics are all

i.i.d., the decision rule in our simplest setup does not matter.

Assume that all jobs are identical and a job can be processed during one time period, start-

ing with the period after its arrival. The stochastic service mechanism is such that if there

are Q > 0 jobs in the queue, a server attempting to process i ∈ {1, ..., Q} jobs is successful

w.p. γQ(i),
∑Q

i=1 γ
Q(i) = 1. Again, failure means that all jobs stay in the queue for an additional

period. In other words, in (1), η = i w.p. γQ(i) and 0 w.p. 1 − γQ(i). If Q = 0, the server is idle

and takes no action.

8

The global MDP state x = (x1, ..., xK , xK+1) is defined by the Markov chain state for each

source xi ∈ Si, i = 1, ...,K, along with the number of the pending jobs in the queue xK+1. The

global action a = (a1, ..., aK , aK+1) is defined by the number of jobs generated at each source, along

with the number of jobs attempted to be processed by the server aK+1 ∈ {0, 1, ...,min(xK+1,M)}.
Again, it is not difficult to see that the transition dynamics are of product form. From (1) and

the service mechanism,

P (y|x, a) = γxK+1(aK+1)
K∏

i=1

δi
xi,yi

,

for yK+1 = min(xK+1 +
∑K

i=1 ai,M) − aK+1,

P (y|x, a) = (1 − γxK+1(aK+1))
K∏

i=1

δi
xi,yi

,

for yK+1 = min(xK+1 +
∑K

i=1 ai,M) (and 0 otherwise).

The immediate (average) reward function R is given by

R(x, a) = γxK+1(aK+1) · aK+1 − ζ ·
(

min

{
xK+1 +

K∑
i=1

ai,M

}
− aK+1γ

xK+1(aK+1)

)
,

where the expectation w.r.t. the server success probability has been taken, and again ζ > 0 is a

tradeoff parameter between throughput and queue length.

We can easily extend the above examples to a load balancing problem, where there are κ > 1

parallel servers, leading to a model with K + κ agents, where agent K + 1, ...,K + κ represents the

server at each queue. Agents 1 through K, representing the job arrival sources, not only need to

control the sending rate but also need to determine where to dispatch the generated jobs among

the κ servers. This decision certainly depends on the current load of each queue and the service

characteristic of each queue.

3 Localization

Suppose that all of the agents except one, say agent i, have fixed autonomous local policies, {φj ∈
Φj : j �= i}, leaving just the choice of local policy for agent i to be determined. Define the following

average reward value-like function, which is a constant independent of the initial state:

g∗i := max
πi∈Πi

lim
H→∞

1
H
E

{
H−1∑
t=0

R
(
xt, (φ1(x1

t), ..., πi(xt), ..., φN (xN
t))
) ∣∣∣∣x0 ∈ X

}
,

where xt = (x1
t , ..., x

N
t) and xj

t ∈ Xj denotes the local state at time t for agent j = 1, ..., N . Note

that g∗i is defined over all local policies for agent i, and not just autonomous local policies. In this

section, we show using the concept of localization that g∗i can be achieved using an autonomous

local policy by defining the reward function Ri appropriately.

9

From standard MDP theory, constraining the action choices for agent j �= i, j = 1, ..., N, by the

autonomous local policies φj , under Assumption 2.1, there exists a bounded function hi defined

over X that satisfies the following equation: for any x = (x1, ..., xN) ∈ X,

g∗i + hi((x1, ..., xN)) =

max
ai∈Ai

(
R (x, (φ1(x1), ..., ai, ..., φN (xN)))

+
∑

yk∈Xk,k=1,...,N


Pi(yi|xi, ai)

∏
j �=i,j=1,...,N

Pj(yj|xj , φj(xj))


hi((y1, ..., yN))

)
. (2)

Thus, for any ai ∈ Ai,

g∗i + hi((x1, ..., xN)) ≥
R (x, (φ1(x1), ..., ai, ..., φN (xN)))

+
∑

yk∈Xk,k=1,...,N


Pi(yi|xi, ai)

∏
j �=i,j=1,...,N

Pj(yj|xj , φj(xj))


hi((y1, ..., yN)). (3)

Let {ρj(x), x ∈ Xj} denote the stationary distribution of the Markov chain induced on the local

state space of agent j by autonomous local policy φj . Then, summing up both sides of Equa-

tion (??) w.r.t. ρj, j �= i, gives (where the notation
∑

xj �=i∈Xj
is shorthand for the double summation∑

j=1,...,N ;j �=i

∑
xj∈Xj

)

g∗i +
∑

xj �=i∈Xj


∏

j �=i

ρj(xj)


hi((x1, ..., xN))

≥
∑

xj �=i∈Xj

∏
j �=i

ρj(xj)

(
R (x, (φ1(x1), ..., ai, ..., φN (xN)))

+
∑

yk∈Xk,k=1,...,N


Pi(yi|xi, ai)

∏
j �=i,j=1,...,N

Pj(yj|xj , φj(xj))


hi((y1, ..., yN))

)

≥
∑

xj �=i∈Xj

∏
j �=i

ρj(xj)R (x, (φ1(x1), ..., ai, ..., φN (xN)))

+
∑

y1,...,yi,...,yN




∑

xj �=i

∏
j �=i

[ρj(xj)Pj(yj|xj , φj(xj))]


Pi(yi|xi, ai)


hi((y1, ..., yN))

=
∑
xj �=i

∏
j �=i

ρj(xj)R (x, (φ1(x1), ..., ai, ..., φN (xN)))

+
∑

yi∈Xi

Pi(yi|xi, ai(xi))


 ∑

yj �=i∈Xj


∏

j �=i

ρj(yj)


hi((y1, ..., yN))


 , (4)

10

where the last step follows from the invariance property of the stationary distribution (see, e.g., [11,

p.57]): for any φk ∈ Φk, ∑
xk∈Xk

ρk(xk)Pk(yk|xk, φk(xk)) = ρk(yk).

Define an average value function defined over Xi from hi or “projection” of hi w.r.t. the stationary

distributions ρj over Xj of the selected policies φj from the other agents j �= i:

h̄i(xi) :=
∑

xj �=i∈Xj


∏

j �=i

ρj(xj)


hi((x1, ..., xN)), xi ∈ Xi. (5)

Similarly, define also an average reward function w.r.t. φj :

R̄i(xi, ai) :=
∑

xj �=i∈Xj


∏

j �=i

ρj(xj)


R (x, (φ1(x1), ..., ai, ..., φN (xN))) , xi ∈ Xi, ai ∈ Ai. (6)

Since Equation (3) holds for any ai ∈ Ai, it holds in particular for the action that maximizes the

right-hand side of (3), so

g∗i + h̄i(xi) ≥ max
ai∈Ai


R̄i(xi, ai) +

∑
yi∈Xi

Pi(yi|xi, ai)h̄i(yi)


 , xi ∈ Xi.

Denoting an action that achieves the right hand side of Equation (2) as a∗i , and summing up both

sides over the stationary distributions of ρj , j �= i, Equation (2) can be rewritten as

g∗i + h̄i(xi) = R̄i(xi, a
∗
i) +

∑
yi∈Xi

Pi(yi|xi, a
∗
i)h̄i(yi), xi ∈ Xi.

It trivially follows that

g∗i + h̄i(xi) ≤ max
ai∈Ai


R̄i(xi, ai) +

∑
yi∈Xi

Pi(yi|xi, ai)h̄i(yi)


 , xi ∈ Xi.

Therefore,

g∗i + h̄i(xi) = max
ai∈Ai


R̄i(xi, ai) +

∑
yi∈Xi

Pi(yi|xi, ai)h̄i(yi)


 , xi ∈ Xi, (7)

which we refer to as a localized version of Bellman’s optimality equation, since the equation involves

only Xi and Ai.

Now consider an MDP with Xi, Ai, Pi, and Ri = R̄i. Under Assumption 2.1, there exists a

constant κ and a bounded function ζ defined over Xi for which

κ+ ζ(xi) = max
ai∈Ai


Ri(xi, ai) +

∑
yi∈Xi

Pi(yi|xi, ai)ζ(yi)


 , xi ∈ Xi, (8)

and if a constant κ′ and a function ζ ′ satisfy Equation (7), then κ′ = κ (see Theorem 8.4.3 in [19]).

Notice that g∗i and h̄i satisfy Equation (7).

We summarize the localization concept below as a theorem:

11

Theorem 3.1 Given φj ∈ Φj and corresponding {ρj(·)} for all agents j �= i, under Assumption 2.1,

for Mi = (Xi, Ai, Pi, Ri) with Ri = R̄i, there exists a bounded function ζ defined over Xi and a

constant κ such that

κ+ ζ(xi) = max
ai∈Ai


Ri(xi, ai) +

∑
yi∈Xi

Pi(yi|xi, ai)ζ(yi)


 , xi ∈ Xi, (9)

and any policy φ ∈ Φi which, for each local state xi ∈ Xi, prescribes an action that maximizes the

right hand side of Equation (8) achieves g∗i with κ = g∗i .

We remark that if we add the condition that
∑

xi∈Xi
ρi(xi)ζ(xi) = 0 to Equation (8), where ρi is

the stationary distribution of the Markov chain induced from such a policy φ for agent i as defined

by the theorem, then ζ = h̄i from the uniqueness of ζ. As a special case of R̄i, if each agent k is

associated with its local (bounded) reward functionRk : Xk×Ak → R and R(x, a) =
∑

k Rk(xk, ak),

then R̄i(xi, ai) = Ri(xi, ai) +
∑

j �=i,j=1,...,N ψ
φj , where ψφj is the average reward of following the

policy φj w.r.t. Mj = (Xj , Aj , Pj , Rj). Note that if there is no constraint on the action choices

across the agents, for this case just solving the local MDP independently and forming a composite

global policy provides an optimal joint policy for the global MDP. This particular case gives an

intuitive argument for the results of the localization concept.

The localization theorem result is intuitively reasonable but also somewhat surprising. If an

agent needs to maximize the global average reward constrained for a given set of fixed autonomous

local policies of the other agents, and if the joint state transition structure is product form, max-

imizing the local average reward, defined with the projected reward function w.r.t. the stationary

distributions of the fixed autonomous local policies of the other agents, is equivalent to maximizing

the (constrained) original global average reward. Furthermore, there exists an autonomous local

policy for agent i that achieves this maximal reward g∗i . In other words, one might expect that in

order to achieve g∗i , a local policy would depend on the states of the other agents. However, by the

above theorem, the agent need only consider its own local state.

The localization theorem result can be extended to Borel state spaces as long as Equation (2)

can be stated with the existence of the constant g∗i and the function hi and the existence of the

stationary distributions for the selected policies φj ∈ Φj. A simple condition for this being true is

that each local MDP Mi, i = 1, ..., N, satisfy one of the recurrent conditions given in [11, p.57].

Iterative solution methods to obtain κ and φi follow directly from the well-known average reward

value iteration and policy iteration procedures. We briefly review policy iteration. Agent i starts

with an arbitrary policy φ0
i ∈ Φi and iterates the following steps: at iteration n ≥ 0, agent i obtains

ψφn
i and ζn that satisfy the following:

ψφn
i + ζn(xi) = R̄i(xi, φ

n
i (xi)) +

∑
yi∈Xi

Pi(yi|xi, φ
n
i (xi))ζn(yi), xi ∈ Xi,

12

where this step is called policy evaluation. Then a policy φn+1
i such that

φn+1
i (xi) ∈ arg max

ai∈Ai


R̄i(xi, ai) +

∑
yi∈Xi

Pi(yi|xi, ai)ζn(yi)


 , xi ∈ Xi,

is obtained, where this step is called policy improvement. Eventually, φn
i converge to an optimal

(in the sense of Theorem 3.1) φi within a finite number of iterations. The localization naturally

induces a simple distributed iterative algorithm that converges to a local optimal solution for the

global MDP M .

4 A Distributed Algorithm for a Local Optimal Solution

We describe the algorithm in a constructive way, rather than giving a pseudocode for it, and for

the two-agents case (N = 2) for simplicity. Extending the algorithm for N > 2 is straightforward.

Assume that the global joint reward function R is known to both agents. Each agent 1 and 2

starts with its own initial policy α0 ∈ Φ1 and β0 ∈ Φ2. At iteration k ≥ 1, agent 1(2) informs agent

2(1) of αk−1(βk−1) and the corresponding stationary distribution ρk−1
1 (ρk−1

2). Then agent 1 solves

the local MDP Mk
1 = (X1, A1, P1, R

k
1), where Rk

1(x1, a1) =
∑

x2∈X2
ρk−1

2 (x2)R(x1, x2, a1, β
k−1(x2)).

An optimal policy for Mk
1 is αk. Similarly, agent 2 solves the local MDP Mk

2 = (X2, A2, P2, R
k
2),

where Rk
2(x2, a2) =

∑
x1∈X1

ρk−1
1 (x1)R(x1, x2, α

k−1(x1), a2), to obtain βk. Because at each iter-

ation, each agent finds the best autonomous local policy with respect to the policy of the other

agent, as the gradient is the direction of the greatest local increase in a given objective function,

the underlying idea is similar to that of the gradient-ascent algorithm.

By the above construction, we first have the following fact: for k ≥ 2 and k = 2m with

m = 1, 2, ...,

g(αk ,βk−1) ≥ g(αk−2,βk−1) ≥ g(αk−2,βk−3) ≥ g(αk−4,βk−3) ≥ · · · ≥ g(α2,β1) ≥ g(α0,β1).

Similarly,

g(αk−1,βk) ≥ g(αk−1,βk−2) ≥ g(αk−3,βk−2) ≥ g(αk−3,βk−4) ≥ · · · ≥ g(α1,β2) ≥ g(α1,β0).

That is, the performances of the pairs of the policies of the agent 1 and 2 monotonically improve

in a zigzag manner across the agents’ views. We state this property as a proposition.

Proposition 4.1 For k ≥ 3 and k = 2m with m = 1, 2, ..., the following monotonicity holds:

g(αk ,βk−1) ≥ g(αk−2,βk−3) and g(αk−1,βk) ≥ g(αk−3,βk−2).

Recall that αk achieves g∗1 = maxπ1∈Π1 g
(π1,βk−1) and βk achieves g∗2 = maxπ2∈Π2 g

(αk−1,π2) for

k ≥ 1. Therefore, we have that for k ≥ 1,

g(αk ,βk−1) ≥ g(π1,βk−1) for any π1 ∈ Π1

13

and for k ≥ 2,

g(αk−2,βk−1) ≥ g(αk−2,π2) for any π2 ∈ Π2.

It follows that we can state the following result:

Proposition 4.2 For k ≥ 2 and k = 2m with m = 1, 2, ...,

g(αk ,βk−1) ≥




g(π1,βk−1) for any π1 ∈ Π1

g(αk−2,π2) for any π2 ∈ Π2

g(π1,βk−3) for any π1 ∈ Π1

g(αk−4,π2) for any π2 ∈ Π2

· · ·
g(α0,π2) for any π2 ∈ Π2

Similarly, for k ≥ 2 and k = 2m with m = 1, 2, ...,

g(αk−1,βk) ≥




g(αk−1,π2) for any π2 ∈ Π2

g(π1,βk−2) for any π1 ∈ Π1

g(αk−3,π2) for any π2 ∈ Π2

g(π1,βk−4) for any π1 ∈ Π1

· · ·
g(π1,β0) for any π1 ∈ Π1

It is then immediately true that in the best case, at the kth iteration with k ≥ 2 and k =

2m,m = 1, 2, ..., O
(
k(|A1||X| + |A2||X|)

)
suboptimal policies are eliminated from Π.

At each iteration k ≥ 3, agent 1 checks whether or not

g(αk ,βk−1) = g(αk−2,βk−3),

and agent 2 checks if

g(αk−1,βk) = g(αk−3,βk−2).

If both of the conditions hold, then the algorithm stops. Otherwise, both agents continue their

communications and (distributed) computations. The communication requires that each agent pass

to the other agent the currently computed best reactive autonomous local policy and the corre-

sponding stationary distribution, along with a flag indicating the status of its stopping condition.

Because of the monotonicity and the finite number of the (joint) policies in Π, both conditions will

hold eventually after some finite number of iterations.

Even if both of the conditions are true, this does not imply that the performance of the converged

policy sets of agents 1 and 2 are equal, nor does it ensure that either one of them has found an

optimal joint policy for the global MDP. It only indicates that the algorithm has converged to

locally optimal policies, and we select the policy set with the greater performance.

14

Suppose that |Ai| = C and |Xi| = D for all i = 1, ..., N . As discussed earlier, the time

complexity of applying just one “policy improvement” step of policy iteration to solve the global

MDP is O(CN · D2N). The policy iteration algorithm converges to an optimal joint policy in

O(CND2N

) iterations in the worst case, making the total worst-case time complexity of solving the

global MDP O(CN · D2N · CND2N

). For our algorithm, if each agent applies the policy iteration

algorithm in parallel to its local MDP, solving the local MDP takes O(CDD2) in the worst case

with the communication cost of O(D) and with acomputation cost O(C ·DN) of the average reward

function. If our algorithm converged to an optimal joint policy for the global MDP in the worst case,

it would have taken at most O(CD ·D2 ·CND2N

) iterations neglecting the computational cost of the

average reward function. Therefore, the worst-case time complexity of solving the global MDP in a

global manner can be exponentially alleviated by our algorithm depending on the size of C, D and

N if the average reward function can be computed efficiently. Thus, an efficient implementation of

the projection operation for the average reward function is key to the practical effectiveness of our

algorithm. One possible way to address the computational problem of the average reward function

is to use a sample mean, where the sampling is done over the stationary distributions so that more

emphasis is given to frequently visited states.

Even though our algorithm converges to only a locally optimal solution in theory, the algorithm

may serve as a good heuristic. There are several published works that a policy obtained from

one-step policy improvement with a “good” heuristic policy is near-optimal for various problems

(see, e.g., [18] [8] [15] [22] [6] [14]). Similarly, each agent can start with a good heuristic policy

available for its local MDP or the given global MDP and apply some number of iterations of the

proposed algorithm to generate an improved joint policy. Note that in contrast to one-step policy

improvement, in the best case, each agent will eliminate an exponential number of suboptimal

policies.

5 Implication on Discounted Rewards

For the discounted reward case, we define the following value function (π ∈ Π, x ∈ X):

V π(x) = E

{ ∞∑
t=0

γtR(xt, π(xt))
∣∣∣∣x0 = x

}
, 0 < γ < 1,

and refer to V ∗(x) = maxπ∈Π V
π(x) as the optimal value at x for the infinite horizon discounted

reward criterion. The nominal goal is again to find an optimal joint policy π∗ ∈ Π that achieves

the optimal value.

Given an agent i and for a set of fixed policies {φj ∈ Φj : j �= i} from the other agents, we

define a value function V ∗
i over X such that

V ∗
i ((x1, ..., xN)) := max

πi∈Πi

E

{ ∞∑
t=0

γtR
(
xt, (φ1(x1

t), ..., πi(xt), ..., φN (xN
t))
) ∣∣∣∣x0 = (x1, ..., xN) ∈ X

}
,

15

where xt = (x1
t , ..., x

N
t) and xj

t ∈ XJ denotes the local state at time t for agent j. Define a function

V̄ ∗
i such that

V̄ ∗
i (xi) :=

∑
xj �=i∈Xj ,j=1,...,N


 ∏

j �=i,j=1,...,N

ρj(xj)


V ∗

i ((x1, ..., xN)), xi ∈ Xi.

As before, V̄ ∗
i is an average value function defined over Xi from V ∗

i or projection of V ∗
i w.r.t. the

stationary distributions ρj over Xj of the selected policies φj from the other agents j �= i.

With similar arguments as in the average reward case for Belleman’s optimality equation of the

infinite horizon discounted reward criterion, it can be proven that the following result holds.

Theorem 5.1 Given φj ∈ Φj and corresponding {ρj(·)} for all agents j �= i, under Assumption 2.1,

for Mi = (Xi, Ai, Pi, Ri) with Ri = R̄i, there exists a bounded function V defined over Xi such that

V (xi) = max
ai∈Ai


Ri(xi, ai) + γ

∑
yi∈Xi

Pi(yi|xi, ai)V (yi)


 , xi ∈ Xi, (10)

and any policy φi ∈ Φi which, for each local state xi ∈ Xi, prescribes an action which maximizes

the right hand side of Equation (9) achieves V̄ ∗
i (xi).

As we can see from the theorem, the projected value at a particular agent i’s local state of the

optimal value function for the global MDP w.r.t. the stationary distributions of the other agents’

autonomous local policies is equal to the optimal value function value at the particular agent i’s

local state for the local MDP defined with the projected reward function w.r.t. the stationary

distributions of the other agents’ autonomous local policies. However, unlike the average reward

case, an autonomous local policy that achieves the V -function value does not necessarily achieve

the V ∗
i -function value. It merely achieves the projected value of the V ∗

i -function value. This is

because for the infinite horizon discounted reward criterion, the optimal action choice for an agent

to optimize the global reward function depends on the given initial local states of the other agents.

Certainly, we can develop an iterated algorithm as in the average reward case by using the

localization result given in Theorem 5.1. In this case, each agent will obtain the best autonomous

reactive policy that achieves the optimal projected value function with respect to the autonomous

policies chosen by the other agents.

Recently, there has been a lot of work directed at approximating the (optimal) value function

with a set of linearly parameterized functions or “basis functions” (see, e.g., [5]), where the V ∗-

function is approximated by a parameterized function

Ṽ (x, r) =
K∑

k=1

rkζk(x), r ∈ RK , ζi : X → R, i = 1, ...,K.

16

Researchers have concentrated on how to compute the value of the weight vector r to “fit” Ṽ (x, r)

to V ∗(x) under the assumption that the functions {ζi(x)} are given (see, e.g., [9]), but it is very

difficult to design such basis functions. This is because there is no general rule to extract some

“features” contained in a given problem. Our localization result provides a general rule to select a

set of basis functions. We can use {V̄ ∗
i (xi), i = 1, ..., N} as a set of basis functions such that

Ṽ ((x1, ..., xN), r) =
N∑

k=1

rkV̄
∗
k (xk) with

N∑
k=1

rk = 1, rk ≥ 0 for all k = 1, ..., N.

6 Concluding Remarks

The local optimality result of the proposed algorithm can be enhanced by introducing a random

restart, which is commonly used in several global optimum seeking algorithms. We can generate

several initial local policies at random and apply the algorithm, or we can generate random local

policies once the algorithm converges to a local optimal solution.

At each iteration of the algorithm, each agent has a set of autonomous local policies of all agents.

If desired, once we apply the proposed algorithm for a certain number of iterations, we can stop

the algorithm and can generate a global policy, combining each set of local policies of the agents

via methods called “parallel rollout” or “policy switching” [8, 7], which improves the performances

of all joint policies from each set.

If the computation of the stationary distribution for each agent is impractical, we can approxi-

mate the stationary distribution by several methods [21], leading to an approximate version of our

algorithm.

References

[1] M. Aicardi, F. Davoli, and R. Minciardi, “Decentralized optimal control of Markov chains

with a common past information set,” IEEE Trans. Automat. Control, AC-32, pp. 1028–1031,

1987.

[2] E. Altman, “Applications of Markov decision processes in communication networks : a survey,”

Markov Decision Processes, Models, Methods, Directions, and Open Problems, E. Feinberg and

A. Shwartz (Eds.) Kluwer, pp. 488-536, 2001.

[3] G. Arslan, J. D. Wolfe, J. Shamma, and J. L. Speyer, “Optimal planning for autonomous air

vehicle battle management,” in Proc. of the 41st IEEE CDC, 2002, pp. 3782–3787.

[4] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods.

Englewood Cliffs, NJ: Prentice-Hall, 1989.

17

[5] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. Athena Scientific, 1996.

[6] S. Bhulai and G. Koole, “On the structure of value functions for threshold policies in queueing

models,” Technical Report 2001-4, Department of Stochastics, Vrije Universiteit Amsterdam,

2001.

[7] H. S. Chang, On-line sampling-based control for network queueing problems, Ph.D. Thesis,

School of Electrical and Computer Engineering, Purdue University, 2001.

[8] H. S. Chang, R. Givan, and E. K. P. Chong, “Parallel rollout for on-line solution of partially

observable Markov decision processes,” Discrete Event Dyn. Syst., 2002, revised.

[9] D. P. de Farias and B. Van Roy, “The linear programming approach to approximate dynamic

programming,” to appear in Operations Research.

[10] W. Fischer and K. Meier-Hellstern, “The Markov-modulated Poisson process (MMPP) cook-

book,” Performance Evaluation, vol. 18, pp. 149–171, 1992.

[11] O. Hernández-Lerma, Adaptive Markov Control Processes. Springer-Verlag, 1989.

[12] K. Hsu and S. I. Marcus, “Decentralized control of finite state Markov processes,” IEEE

Trans. Automat. Control, AC-27, pp. 426–431, 1982.

[13] A. Jalali and M. J. Ferguson, “On distributed dynamic programming,” IEEE Trans. Automat.

Control, vol. 37, no. 5, pp. 685–689, 1992.

[14] A. Kolarov and J. Hui, “On computing Markov decision theory-based cost for routing in

circuit-switched broadband networks,” J. Network and Systems Management, vol. 3, pp. 405-

425, 1995.

[15] G. Koole and Philippe Nain, “On the value function of a priority queue with an application

to a controlled pollying model,” Queueing Systems, vol. 34, pp. 199–214, 2000.

[16] H. J. Kushner and C. Chen, “Decomposition of systems governed by Markov chains,” IEEE

Trans. Automat. Control, AC-19, no. 5, pp. 501–507, 1974.

[17] M. Littman, T. Dean, and L. Kaelbling, “On the complexity of solving Markov decision

problems,” in Proc. 11th Annual Conf. on Uncertainty in Artificial Intelligence, 1995, pp.

394–402.

[18] T. J. Ott and K. R. Krishnan, “Separable routing: a scheme for state-dependent routing of

circuit switched telephone traffic,” Ann. Oper. Res. vol. 35, pp. 43–68, 1992.

18

[19] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, New York, 1994.

[20] S. M. Ross, Applied Probability Models with Optimization Applications. San Francisco, CA:

Holden-Day, 1970.

[21] P. J. Schweitzer, “A survey of aggregation-disaggregation in large Markov chains,” in Proc.

1st Int. Workshop on the Numerical Solution of Markov Chains, 1990.

[22] N. Secomandi, “Comparing neuro-dynamic programming algorithms for the vehicle routing

problem with stochastic demands,” Comput. Oper. Res., vol. 27, pp. 1201–1225, 2000.

