Dataflow-based Design and Implementation of Image Processing
Applications*

Chung-Ching Shen, William Plishker, and Shuvra S. Bhattacharyya
Department of Electrical and Computer Engineering, and
Institute for Advanced Computer Studies
University of Maryland, College Park, Maryland, USA
{ccshen, plishker, ssb}@umd.edu

Abstract

Dataflow is a well known computational model and is widely used for expressing the func-
tionality of digital signal processing (DSP) applications, such as audio and video data stream
processing, digital communications, and image processing. These applications usually require
real-time processing capabilities and have critical performance constraints. Dataflow provides
a formal mechanism for describing specifications of DSP applications, imposes minimal data-
dependency constraints in specifications, and is effective in exposing and exploiting task or data
level parallelism for achieving high performance implementations.

To demonstrate dataflow-based design methods in a manner that is concrete and easily
adapted to different platforms and back-end design tools, we present in this report a number
of case studies based on the lightweight dataflow (LWDF) programming methodology. LWDF
is designed as a ”minimalistic” approach for integrating coarse grain dataflow programming
structures into arbitrary simulation- or platform-oriented languages, such as C, C++, CUDA,
MATLAB, SystemC, Verilog, and VHDL. In particular, LWDF requires minimal dependence on
specialized tools or libraries. This feature — together with the rigorous adherence to dataflow
principles throughout the LWDF design framework — allows designers to integrate and exper-
iment with dataflow modeling approaches relatively quickly and flexibly into existing design
methodologies and processes.

1 Dataflow Introduction

Model-based design has been explored extensively over the years in many domains of embedded
systems. In model-based design, application subsystems are represented in terms of functional
components that interact through formal models of computation (e.g., see [1]). By exposing and
exploiting high level application structure that is often difficult to extract from platform-based
design tools, model-based approaches facilitate systematic integration, analysis, synthesis, and
optimization that can be used to exploit platform-based tools and devices more effectively.
Dataflow is a well known computational model and is widely used for expressing the func-
tionality of digital signal processing (DSP) applications, such as audio and video data stream
processing, digital communications, and image processing (e.g., see [2, 3, 4]). These applications
usually require real-time processing capabilities and have critical performance constraints. Dataflow

*Technical Report UMIACS-TR-2011-11, Institute for Advanced Computer Studies, University of Maryland at
College Park, 2011. A version of this report is to appear in L. Guan, Y. He, and S-Y. Kung, editors, Multimedia
Image and Video Processing. CRC Press, second edition.

provides a formal mechanism for describing specifications of DSP applications, imposes minimal
data-dependency constraints in specifications, and is effective in exposing and exploiting task or
data level parallelism for achieving high performance implementations.

Dataflow models of computation have been used in a wide variety of development environments
to aid in the design and implementation of DSP applications (e.g., see [1, 5, 6, 7]). In these
tools, an application designer is able to develop complete functional specifications of model-based
components, and functional validation or implementation on targeted platforms can be achieved
through automated system simulation or synthesis processes.

Dataflow graphs are directed graphs, where vertices (actors) represent computational func-
tions, and edges represent first-in-first-out (FIFO) channels for storing data values (tokens) and
imposing data dependencies between actors. In DSP-oriented dataflow models of computation,
actors can typically represent computations of arbitrary complexity as long as the interfaces of the
computations conform to dataflow semantics. That is, dataflow actors produce and consume data
from their input and output edges, respectively, and each actor executes as a sequence of discrete
units of computation, called firings, where each firing depends on some well-defined amount of data
from the input edges of the associated actor.

Retargetability is an important property to integrate into dataflow-based design environments
for DSP. The need for efficient retargetability is of increasing concern due to the wide variety
of platforms that are available for targeting implementations under different kinds of constraints
and requirements. Such platforms include, for example, programmable digital signal processors,
field programmable gate arrays (FPGAs), and graphics processing units (GPUs). For efficient
exploration of implementation trade-offs, designers should be able to rapidly target these kinds
of platforms for functional prototyping and validation. For example, Sen et al. introduced a
structured, dataflow-based design methodology for mapping rigid image registration applications
onto FPGA platforms under real-time performance constraints [4]. Shen et al. presented a method
to derive Pareto points in the design space that provide trade-offs between memory usage and
performance based on different scheduling strategies [8]. This approach to derive such Pareto points
demonstrates a systematic, retargetable methodology based on high level dataflow representations.

By following structured design methods enabled by dataflow modeling, designers can efficiently
port implementations of dataflow graph components (actors and FIFOs) across different platform-
oriented languages, such as C, C++, CUDA, MATLAB, SystemC, Verilog, and VHDL, while the
application description can still be tied as closely as possible to the application domain, not the
target platform. This makes a dataflow-based design highly portable while still structured enough
to be optimized for. For example, in [8], a dataflow-based design tool is introduced for design and
analysis of embedded software for multimedia systems. In this tool, exploitation of data parallelism
can be explored efficiently and associated performance metrics are evaluated for different dataflow
graph components that are implemented using different platform-oriented languages.

By promoting formally specified component interfaces (in terms of dataflow semantics), and
modular design principles, dataflow techniques also provide natural connections to powerful unit
testing methodologies, as well as automated, unit-testing-driven correspondence checking between
different implementations of the same component (e.g., see [9, 10]).

To demonstrate dataflow-based design methods in a manner that is concrete and easily adapted
to different platforms and back-end design tools, we present case studies based on the lightweight
dataflow (LWDEF) programming methodology [11]. LWDF is designed as a “minimalistic” approach
for integrating coarse grain dataflow programming structures into arbitrary simulation- or platform-
oriented languages, such as those listed above (i.e., C, C+4, CUDA, etc.). In particular, LWDF
requires minimal dependence on specialized tools or libraries. This feature — together with the
rigorous adherence to dataflow principles throughout the LWDF design framework — allow design-

ers to integrate and experiment with dataflow modeling approaches relatively quickly and flexibly
into existing design methodologies and processes.

Thus, LWDF is well suited for presenting case studies in the context of this report, where our
objective is to emphasize fundamental dataflow concepts and features, and their connection to devel-
oping efficient parallel implementations of image processing applications. In this report, we provide
background on relevant dataflow concepts and LWDF programming, and present LWDF-based
case studies that demonstrate effective use of dataflow techniques for image processing systems.
We focus specifically on case studies that demonstrate the integration of dataflow programming
structures with C, Verilog, and CUDA for simulation, FPGA mapping, and GPU implementation,
respectively.

2 Overview of Dataflow Models

In this section, we review a number of important forms of dataflow that are employed in the design
and implementation of DSP systems.

Synchronous Dataflow (SDF) [3] is a specialized form of dataflow that is useful for an important
class of DSP applications, and is used in a variety of commercial design tools. In SDF, actors
produce and consume constant amounts of data with respect to their input and output ports. Useful
features of SDF include compile-time, formal validation of deadlock-free operation and bounded
buffer memory requirements; support for efficient static scheduling; and buffer size optimization
(e.g., see [12]). Cyclo-static Dataflow (CSDF) [13] is a generalization of SDF where the consumption
or production rate of an actor port forms a periodic sequence of constant values. Both SDF and
CSDF are static dataflow models in which production and consumption rates are statically known
and data-independent.

The Parameterized Synchronous Dataflow (PSDF) model of computation results from the inte-
gration of SDF with the meta-modeling framework of parameterized dataflow [14]. PSDF expresses
a wide range of dynamic dataflow behaviors while preserving much of the useful analysis and syn-
thesis capability of SDF [14]. Based on the scheduling features provided by PSDF, low-overhead,
quasi-static schedules can be generated for hand-coded implementation or software synthesis. Here,
by a quasi-static schedule, we mean an ordering of execution for the dataflow actors whose struc-
ture is largely fixed at compile time, with a relatively small amount of decision points or symbolic
adjustments evaluated at run-time based on the values of relevant input data.

Boolean Dataflow (BDF) [15] allows data-dependent control actors to be integrated with SDF
actors. In BDF, the consumption and production rates of an actor port can vary dynamically
based on the values of tokens that are observed at a designated control port of the actor. Two
basic control actors in the BDF model are the switch and select actors. The switch actor has
two input ports — one for control and another for data — and two output ports. On each firing,
the actor consumes one token from its data input, and one Boolean-valued token from its control
input, and copies the value consumed from its data input onto one of its two output ports. The
output port on which data is produced during a given firing is selected based on the Boolean value
of the corresponding control input token.

In contrast, the select actor has two data input ports, one control input port, and one output
port. On each firing, the actor consumes a Boolean-valued token from its control input, and selects
a data input based on the value of this control token. The actor then consumes a single token from
the selected data input, and copies this token onto the single actor output port.

Enable-Invoke Dataflow (EIDF) is a recently proposed dataflow model [16] that facilitates the
design of applications with structured dynamic behavior. EIDF divides actors into sets of modes.

Each mode, when executed, consumes and produces a fixed number of tokens. The fixed behavior of
a mode provides structure that can be exploited by analysis and optimization tools, while dynamic
behavior can be achieved by switching between modes at run-time.

Each mode is defined by an enable method and an invoke method, which correspond, respec-
tively, to testing for sufficient input data and executing a single quantum (“invocation”) of execution
for a given actor. After a successful invocation, the invoke method returns a set of admissible next
modes, any of which may be then checked for readiness using the enable method and then invoked,
and so on. By returning a set of possible next modes (as opposed to being restricted to a single
next mode), a designer may model non-deterministic applications in which execution can proceed
down many possible paths.

In the implementation of dataflow tools, functionalities corresponding to the enable and invoke
methods are often interleaved — for example, an actor firing may have computations that are
interleaved with blocking reads of data that provide successive inputs to those computations. In
contrast, there is a clean separation of enable and invoke capabilities in EIDF. This separation helps
to improve the predictability of an actor invocation (since availability of the required data can be
guaranteed in advance by the enable method), and in prototyping efficient scheduling and synthesis
techniques (since enable and invoke functionality can be called separately by the scheduler).

Dynamic dataflow behaviors require special attention in scheduling to retain efficiency and
minimize loss of predictability. The enable function is designed so that if desired, one can use it as
a “hook” for dynamic or quasi-static scheduling techniques to rapidly query actors at runtime to see
if they are executable. For this purpose, it is especially useful to separate the enable functionality
from the remaining parts of actor execution.

These remaining parts are left for the invoke method, which is carefully defined to avoid
computation that is redundant with the enable method. The restriction that the enable method
operates only on token counts within buffers and not on token values further promotes the separation
of enable and invoke functionalities while minimizing redundant computation between them. At
the same time, this restriction does not limit the overall expressive power of EIDF, which is Turing
complete. This can be seen from our ability to formulate enabling and invoking methods for BDF
actors [16]. Since BDF is known to be Turing complete, and EIDF is at least as expressive as BDF,
EIDF can express any computable function, including conditional dataflow behaviors, and other
important forms of dynamic dataflow.

The restrictions in EIDF can therefore be viewed as design principles imposed in the architec-
ture of dataflow actors rather than restrictions in functionality. Such principles lay the foundation
for optimization and synthesis tools to effectively target a diverse set of platforms including FPGAs,
GPUs, and other kinds of multi-core processors.

The LWDF programming approach, which is used as a demonstration vehicle throughout this
report, is based on the Core Functional Dataflow (CFDF) model of computation [16, 17]. CFDF
is a special case of the EIDF model. Recall that in EIDF, the invoking function in general returns
a set of valid next modes in which the actor can subsequently be invoked. This allows for non-
determinism as an actor can be invoked in any of the valid modes within the next-mode set. In
the deterministic CFDF model, actors must proceed deterministically to one particular mode of
execution whenever they are enabled. Hence, the invoking function should return only a single valid
mode of execution instead of a set of arbitrary cardinality. In other words, CFDF is the model of
computation that results when EIDF is restricted so that the set of next modes always has exactly
one element. With this restricted form of invoking function, only one mode can meaningfully be
interrogated by the enabling function, ensuring that the application is deterministic.

3 Lightweight Dataflow

Lightweight dataflow (LWDEF) is a programming approach that allows designers to integrate various
dataflow modeling approaches relatively quickly and flexibly into existing design methodologies and
processes [11]. LWDF is designed to be minimally intrusive on existing design processes and requires
minimal dependence on specialized tools or libraries. LWDF can be combined with a wide variety
of dataflow models to yield a lightweight programming method for those models. In this report,
the combination of LWDF and the CFDF model is used to demonstrate model-based design and
implementation of image processing applications, and we refer this method to as lightweight core
functional dataflow (LWCFDF) programming,.

In LWCFDF, an actor has an operational context (OC), which encapsulates the following
entities related to an actor implementation:

e Actor parameters.

Local actor variables — variables whose values store temporary data that does not persist
across actor firings.

Actor state variables — variables whose values do persist across firings.

References to the FIFOs corresponding to the input and output ports (edge connections) of
the actor as a component of the enclosing dataflow graph.

Terminal modes: a (possibly empty) subset of actor modes in which the actor cannot be fired.

In LWCFDF, the OC for an actor also contains a mode variable whose value stores the next
CFDF mode of the actor and persists across firings. The LWCFDF operational context also includes
references to the invoke function and enable function of the actor. The concept of terminal modes,
defined above, can be used to model finite subsequences of execution that are “re-started” only
through external control (e.g., by an enclosing scheduler). This is implemented in LWCFDF by
extending the standard CFDF enable functionality such that it unconditionally returns false
whenever the actor is in a terminal mode. An example of a terminal mode is given in Section 4 as
part of the specification of a Gaussian filtering application.

3.1 Design of LWCFDF Actors

Actor design in LWCFDF includes four interface functions — the construct, enable, invoke, and
terminate functions. The construct function can be viewed as a form of object-oriented constructor,
which connects an actor to its input and output edges (FIFO buffers), and performs any other pre-
execution initialization associated with the actor. Similarly, the terminate function performs any
operations that are required for “closing out” the actor after the enclosing graph has finished
executing (e.g., deallocation of actor-specific memory or closing of associated files).

To describe LWCFDF operation (including the general operation of the underlying CFDF
model of computation) in more detail, we define the following notation for dataflow graph actors
and edges.

e inputs(a): the set of input edges for actor a. If a is a source actor, then inputs(a) = 0.
e outputs(a): the set of output edges for actor a. If a is a sink actor, then outputs(a) = 0.

e population(e): the number of tokens that reside in the FIFO associated with e at a given time
(when this time is understood from context).

e capacity(e): the buffer size associated with e — that is, the maximum number of tokens that
can coexist in the FIFO associated with e.

e cons(a,m,e): the number of tokens consumed on input edge e in mode m of a given actor a.
e prod(a,m,e): the number of tokens produced on output edge e in mode m of a given actor a.

e 7(a): the set of terminal modes of actor a.

In LWCFEDF, a finite buffer size capacity(e) must be defined for every edge at any point
during execution. Typically, this size remains fixed during execution, although in more complex or
less predictable applications, buffer sizes may be varied dynamically. For simplicity, this optional
time-dependence of capacity(e) is suppressed from our notation. Further discussion of dynamically
varying buffer sizes is beyond the scope of this report.

In the enable function for an LWCFDF actor a, a true value is returned if

population(e) > cons(a,m,e) for all e € inputs(a); (1)

population(e) < (capacity(e) — prod(a, m,e)) for all e € outputs(a); and (2)

m ¢ 7(a), 3)

where m is the current mode of a.

In other words, the enable function returns true if the given actor is not in a terminal mode,
and has sufficient input data to execute the current mode, and the output edges of the actor have
sufficient data to store the new tokens that are produced when the mode executes. An actor can
be invoked at a given point of time if the enable function is true-valued at that time.

In the invoke function of an LWCFDF actor a, the operational sequence associated with a single
invocation of a is implemented. Based on CFDF semantics, an actor proceeds deterministically to
one particular mode of execution whenever it is enabled, and in any given mode, the invoke method
of an actor should consume data from at least one input or produce data on at least one output (or
both) [16]. Note that in case an actor includes state, then the state can be modeled as a self-loop
edge (a dataflow edge whose source and sink actors are identical) with appropriate delay, and one
or more modes can be defined that produce or consume data only from the self-loop edge. Thus,
modes that affect only the actor state (and not the “true” inputs or outputs of the actor) do not
fundamentally violate CFDF semantics, and are therefore permissible in LWDF.

The enable and invoke functions of LWCFDF actors are executed by schedulers in the LWCFDF
runtime environment. When an enclosing scheduler executes an LWCFDF application, each actor
starts in an initial mode that is specified as part of the application specification. When the invoke
function for an actor a completes, it returns the next mode for a to the runtime environment. This
next mode information can then be used for subsequent checking of enabling conditions for a.

3.2 Design of LWCFDF FIFOs

FIFO design for dataflow edge implementation is orthogonal to the design of dataflow actors in
LWDF. That is, by using LWDF, application designers can focus on design of actors and mapping
of edges to lower level communication protocols through separate design processes (if desired) and
integrate them later through well-defined interfaces. Such design flow separation is useful due

to the orthogonal objectives, which center around computation and communication, respectively,
associated with actor and FIFO implementation.

FIFO design in LWDF typically involves different structures in software compared to hardware.
For software design in C, tokens can have arbitrary types associated with them — e.g., tokens can
be integers, floating point values, characters, or pointers (to any kind of data). Such an organization
allows for flexibility in storing different kinds of data values, and efficiency in storing the data values
directly (i.e., without being encapsulated in any sort of higher-level “token” object).

In C-based LWCFDF implementation, FIFO operations are encapsulated by interface func-
tions in C. These functions are referenced through function pointers so that they can be targeted
to different implementations for different FIFO types while adhering to standard interfaces (poly-
morphism).

Standard FIFO operations in LWDF include operations that perform the following tasks.

e Create a new FIFO with a specified capacity;

e read and write tokens from and to a FIFO,;

e check the capacity of a FIFO;

e check the number of tokens that are currently in a FIFO;

e deallocate the storage associated with a FIFO (e.g., for dynamically adapting graph topologies
or, more commonly, as a termination phase of overall application execution).

For hardware design using hardware description languages (HDLs), a dataflow graph edge
is typically mapped to a FIFO module, and LWCFDF provides designers with mechanisms for
developing efficient interfaces between actor and FIFO modules. For maximum flexibility in design
optimization, LWCFDF provides for retargetability of actor-FIFO interfaces across synchronous,
asynchronous, and mixed-clock implementation styles.

4 Simulation Case Study

As an example of using the LWDF programming model based on the CFDF model of computation
for DSP software design using C, a C-based LWCFDF actor is implemented as an abstract data
type (ADT) to enable efficient and convenient reuse of the actor across arbitrary applications. Such
ADTs provide object-oriented implementations in C. In particular, an actor context is encapsulated
with a separation of interface and implementation. Furthermore, by building on memory layout
conventions of C structures, an actor context inherits from an actor design template that contains
common (or “base class”) types that are shared across actors. Similarly, through the use of function
pointers, different execution contexts for a related group of actors can share the same name (e.g.,
as a “virtual method”).

In typical C implementations, ADT components include header files to represent definitions
that are exported to application developers and implementation files that contain implementation-

specific definitions. We refer to the ADT-based integration of LWCFDF and C as LWCFDF-C.

4.1 Application Specification

To demonstrate LWDEF in a C-based design flow, we create a basic application centered around
Gaussian filtering. Two-dimensional Gaussian filtering is a common kernel in image processing

coefficient_
filter_reader

[0,1] matrix

bmp_file |[0,1] tile ,

Figure 1: Dataflow graph of an image processing application for Gaussian filtering.

that is used for pre-processing. Gaussian filtering can be used to denoise an image or to prepare
for multiresolution processing. A Gaussian filter is a filter whose impulse response is a Gaussian
curve, which in two dimensions resembles a bell.

For filtering in digital systems, the continuous Gaussian filter is sampled in a window and
stored as coefficients in a matrix. The filter is convolved with the input image by centering the
matrix on each pixel, multiplying the value of each entry in the matrix with the appropriate pixel,
and then summing the results to produce the value of the new pixel. This operation is repeated
until the entire output image has been created.

The size of the matrix and the width of the filter may be customized according to the ap-
plication. A wide filter will remove noise more aggressively but will smoothen sharp features. A
narrow filter will have less of an impact on the quality of the image, but will be correspondingly
less effective against noise.

Figure 1 shows a simple application based on Gaussian filtering. It reads bitmap files in tile
chunks, inverts the values of the pixels of each tile, runs Gaussian filtering on each inverted tile,
and then writes the results to an output bitmap file. The main processing pipeline is single-rate
in terms of tiles, and can be statically scheduled, but after initialization and end-of-file behavior is
modeled, there is conditional dataflow behavior in the application graph, which is represented by
square brackets in the figure.

Such conditional behavior arises, first, because the Gaussian filter coefficients are programmable
to allow for different standard deviations. The coefficients are set once per image —
coefficient_filter_reader produces a coefficient matrix for only the first firing. To correspond
to this behavior, the gaussian filter actor consumes the coefficient matrix only once, and each
subsequent firing processes tiles. Such conditional firing also applies to bmp_file reader, which
produces tiles until the end of the associated file is reached.

It should also be noted that the tiles indicated in Figure 1 do vary somewhat between edges.
Gaussian filtering applied to tiles must consider a limited neighborhood around each tile (called
a halo) for correct results. Therefore, tiles produced by bmp_file reader overlap, while the
halo is discarded after Gaussian filtering. As a result, non-overlapping tiles form the input to
bmp_file writer.

4.2 Actor Design using LWCFDF-C

As shown in Figure 1, our dataflow model of the image processing application for Gaussian filtering
includes five actors: bmp_file reader, coefficient filter reader, invert, gaussian filter,
and bmp_file writer. Design and implementation of each actor using LWCFDF-C is described
below.

The bmp_file _reader actor contains two modes: the process mode and the inactive mode.

In the process mode, for each firing when the bmp file reader actor is enabled, it reads image
pixels of the processing tile and the corresponding header information from a given bitmap file, and
produces them to its output FIFOs. Then the actor returns the process mode as the mode for its
next firing. This continues for each firing until all of the data has been read from the given bitmap
file. After that, the actor returns the inactive mode, which is a terminal mode (see Section 3),
and therefore indicates that the actor cannot be fired anymore until its current mode is first reset
externally (e.g., by the enclosing scheduler). In other words, the inactive mode is in the terminal
mode set of the bmp file reader.

The coefficient filter reader actor contains two modes: the process mode and the
inactive mode. Again, the inactive mode is a terminal mode. For each firing when it is en-
abled (not in the inactive mode), the coefficient filter reader actor reads filter coefficients
from a given file, stores them into a filter coefficient vector (FCV) array, and produces the
coefficients onto its output FIFO. The FCV V has the form

V = (sizeX,sizeY, cp,c1,...,Cp), (4)

where sizeX and sizeY denote the size of the FCV represented in two dimensional format; each ¢;
represents a coefficient value; and n = sizeX X sizeY. After firing, the actor returns the process
mode if there is data remaining in the input file; otherwise, the actor returns the inactive mode.

The bmp_file writer actor contains only a single mode, called the process mode. Thus, the
actor behaves as an SDF actor. For each firing when it is enabled, the bmp_file writer actor reads
the processed image pixels of the processing tile and the corresponding header information from its
input FIFOs, and writes them to a bitmap file, which can later be used to display the processed
results. The actor returns the process mode as the next mode for firing.

The invert actor contains only the process mode which makes the actor implemented as
an SDF actor. For each firing when it is enabled, the invert actor reads the image pixels of the
processing tile from its input FIFOs, inverts the color of the image pixels, and writes the processed
result to its output FIFO. The actor returns the process mode as the next mode for firing.

The gaussian filter actor contains two modes: the store coefficients STC mode and the
process mode. In the STC mode, for each firing when it is enabled, the gaussian filter actor
consumes filter coefficients from its coefficient input FIFO, caches them inside the actor for further
reference, and then returns the process mode as the next mode for firing. In the process mode,
for each firing when the gaussian filter actor is enabled, image pixels of a single tile will be
consumed from the tile input FIFO of the actor and the cached filter coefficients will be applied to
these pixels. The results will be produced onto the tile output FIFO. The actor then returns the
process mode as the next mode for firing. To activate a new set of coefficients, the actor must
first be reset, through external control, back to the STC mode.

To demonstrate how actors are designed using LWCFDF-C, we use the gaussian filter actor
as a design example, and highlight the core implementation parts of the construct function and
enable function in the following code segments.

/* actor operational context */
gfilter_cfdf_context_type *context = NULL;
context = util_malloc(sizeof (gfilter_cfdf_context_type));

/* actor enable function */
context->enable = (actor_enable_function_type)gfilter_cfdf_enable;

/* actor invoke function */
context->invoke = (actor_invoke_function_type)gfilter_cfdf_invoke;

context->mode = STC_MODE; /* initial mode configuration */
context->filter = NULL; /* pointer to filter coefficients */
context->filterX = 0; /* size of filter coefficients X dimension */
context->filterY = 0; /* size of filter coefficients Y dimension */
context->tileX = tileX; /* length of the tile */

context->tileY = tileY; /* height of the tile */

context->halo = halo; /* halo padding around tile dimensions */
context->coef_in = coef_in; /* coef input */

context->tile_in = tile_in; /* tile input */
context->tile_out = tile_out; /* tile output */

boolean result = FALSE;
switch (context->mode) {

case STC_MODE: /* Store Coefficients Mode */
result = disps_fifo_population(context—>coef_in) >=1;
break;

case PROCESS_MODE: /* Process Mode */
result = disps_fifo_population(context->tile_in) >= 1;
break;
default:
result = FALSE;
break;
}

return result;

The invoke function implements the core computation of the gaussian filter actor. The
functionality of the corresponding modes is shown in the following code segments.

10

switch (context->mode) {
case STC_MODE:
fifo_read(context->coef_in, &fcv);

/* first element of fcv stores the size of the filter. */

context->filterY = fcv[0];

context->filterX = fcv[1];

context->filter = util_malloc(sizeof (float) * context->filterY *

context->filterX);

for (x = 0; x < context->filterY * context->filterX; x++) {
context->filter[x] = fcvlx + 2];

}

sum_coefs = 0;

for (x = 0; x < context->filterY* context->filterX; x++) {
sum_coefs += context->filter[x];

}

for (x = 0; x < context->filterY * context->filterX; x++) {
context->filter[x] /= sum_coefs;

}

context->mode = PROCESS_MODE;

break;

11

case PROCESS_MODE:
fifo_read(context->tile_in, &tile);

/* form a new tile */
newtile = malloc(sizeof (float) * (tileX) * (tileY));

/* loop through the pixels in the tile */
for (x = 0; x < tileX; x++) {
for (y = 0; y < tileY; y++) {
int yf, xf;
newtile[(tileX) * y + x] = 0;

/*loop through the coefs of the filterx*/
for (yf = 0; yf < context->filterY; yf++) {
for (xf = 0; xf < context->filterX; xf++) {
newtile[(tileX) * y + x] +=
context->filter[yf * context->filterX + xf] x
tile[(tileX + 2 * halo) * (y + yf) + (x + xf)];

3

fifo_write(context->tile_out, &newtile);
context->mode = PROCESS_MODE;
break;

Functional correctness of the LWCFDEF design for the Gaussian filtering application can be
verified by simulating its LWCFDF-C implementation using a simple scheduling strategy, which is
an adaptation of the canonical scheduling strategy of the functional DIF environment [17]. Since
the semantics of LWCFDF dataflow guarantee deterministic operation (i.e., the same input/output
behavior regardless of the schedule that is applied), validation under such a simulation guarantees
correct operation regardless of the specific scheduling strategy that is ultimately used in the final
implementation.

Such a simulation approach is therefore useful to orthogonalize functional validation of an
LWDF design before exploring platform-specific scheduling optimizations — e.g., optimizations that
exploit the parallelism exposed by the given dataflow representation. This approach is also useful
because it allows use of a standard, “off-the-shelf” scheduling strategy (the canonical scheduling
adaptation described above) during functional validation so that designer effort on scheduling can
be focused entirely on later phases of the design process, after functional correctness has been
validated.

12

—r— I0B
—— 0B
—+— 10B
— 10B
—r— I0B
—+— 10B

10B —— I - 108
CLB CLB

10B

I0B —11 1

108

CLB CLB
10B

I |
e

CLB CLB

108

||
-

Clock
Management

Figure 2: A typical FPGA architecture.

e —

I10B ——
I0B ——
10B ——
10B ——

— LT l_
MUX

-l -

UX

- LUT—I—

MUX

L S

Figure 3: Simplified Xilinx Virtex-6 FPGA CLB [19].

5 Background on FPGAs for Image Processing

5.1 FPGA Overview

A field-programmable gate array (FPGA) is a type of semiconductor device containing a regular
matrix of user programmable logic elements whose interconnections are provided through a pro-
grammable routing network [18]. FPGAs can be easily configured to implement custom hardware
functionalities. FPGAs provide for relatively low cost, and fast design time compared to implemen-
tation on application-specific integrated circuits (ASICs) with generally some loss in performance
and energy efficiency. However, even when ASIC implementation is the ultimate objective, use of
FPGASs is effective for rapid prototyping and early stage design validation.

A typical FPGA architecture, which is shown in Figure 2, consists of various mixes of config-
urable logic blocks, embedded memory blocks, routing switches, interconnects, and subsystems for
high-speed 1/0, and clock management.

Configurable Logic Blocks (CLBs) or Logic Elements (LEs) are the main programmable logic
elements in FPGAs for implementing simple or complex combinatorial and sequential circuitry.
A typical CLB element contains look-up tables for implementing Boolean functions; dedicated
user-controlled multiplexers for combinational logic; dedicated arithmetic and carry logic; and
programmable memory elements such as flip flops, registers, or RAMs. An example of a simplified
Xilinx Virtex-6 FPGA CLB is shown in Figure 3.

13

Various FPGAs device families include significant support for computationally-intensive DSP
tasks. In addition to having higher-performance designs for major logic and memory elements and
interconnects, dedicated hardware resources are provided in such FPGAs for commonly-used DSP
operations, such as multiply-accumulate (MAC) operations. Furthermore, performance-optimized
intellectual property (IP) cores are also incorporated into FPGAs to perform specific DSP tasks,
such as FIR filtering and FFT computation.

5.2 Image Processing on FPGAs

Image processing on FPGAs is attractive as many interesting applications, for example in the
domains of computer vision, and medical image processing, can now be implemented with high
flexibility, relatively low cost, and high performance. This is because many common image pro-
cessing operations can be mapped naturally onto FPGAs to exploit the inherent parallelism within
them. Typical operations for image processing applications include image differencing, registration,
and recognition.

Real-time image processing often requires DSP algorithms operating on multiple rows or
columns of image pixels concurrently. FPGAs can provide extensive capabilities for high-speed,
parallel-processing of image pixels. For example, Xilinx’s new FPGA, the Virtex-6, can deliver
over 30 billion MAC operations per second for processing pixels in parallel. These elements can
also be reconfigured to perform different tasks based on application requirements.

6 FPGA Design Case Study

To illustrate a dataflow-based design for FPGA implementation using the Verilog hardware descrip-
tion language (HDL), we design an LWCFDF actor as a Verilog module, where input and output
ports of the actor are mapped to unidirectional module ports. Such an actor-level module can
contain arbitrary sub-modules for complex actors, and the functionality of an actor can in general
be described in either a behavioral or structural style. We refer to such an integration of LWCFDF
with Verilog as LWCFDF-V.

Design of an LWCFDF-V actor module can be structured as a finite state machine (FSM)
for implementing the associated mode operations, an I/O controller for performing read and write
operations on the FIFOs that are connected to the actor, and any number of sub-modules for
concurrent execution of processing sub-tasks.

In the Gaussian filtering application based on the dataflow graph shown in Figure 1, only
the invert and gaussian filtering actors are synthesizable modules. The bmp_file read,
coefficient filter reader, and bmp file writer actors can be designed for verifying functional
correctness of the application in Verilog simulations.

The gaussian filter actor in LWCFDF-V has two modes: the STC and process modes.
The actor implements the core computation of the Gaussian filtering application. In the STC
mode, the actor reads coefficients and stores them into an internal memory. As described in
Section 4, this operation under the STC mode is applied only once per image. In the process
mode, the gaussian filter actor incorporates a sub-module to exploit parallelism associated
with the convolution computations of the filter coefficients and image pixels. A design schematic
of this parallel processing component of the LWCFDF-V gaussian filter actor module is shown
in Figure 4.

As shown in Figure 4, the processing elements for the convolution computations basically
consist of levels of multipliers and adders. In order to have efficient hardware implementations for
both operations, we apply the Dadda Tree Multiplier (DTM) [20] as the design method for designing

14

Pixels of the processing tile

fev[0] fev[n-1]

multipliers

Parallel carry look-ahead adders

|

new pixel

Figure 4: Parallel processing for tile pixels geared towards FPGA implementation.

the multipliers and the Carry Look-ahead Adder (CLA) [21] for the adders. Both design methods
provide speed improvements for the respective operations.
A Verilog specification of the gfilter filter actor module is illustrated in the following

code. This type of structural design provides a useful standard format for designing actor modules
in LWCFDEF-V.

15

[Ko Ko KoK KoK KoK oK ok oK ok K oK K oK KK KK KoK KK KoK K oK K KoK KKK K K oK oK ook o oK ok ok ok oK o ok ok oK o K ok ok ok oK ok ok ok K ok ok o
Structural modeling for parallel processing
KK Ko oK ok oK oK KoK KK K oK oK K oK K oK K oK KK K K KK KK KoK oK oK ok ok o oK ok ok ok oK o ok ok K ok ok ok K ok K ok ok ok K ok ok ok ok ok ok ok ok /
gfilter_process_module gpm(new_pixel, new_pixel_ready, pixel[0], pixel[1],
., pixel[m-1], fcv[0], fcv[1], ..., fcv[n-1], mode, pixel_ready, clock
, reset);

/KA Ao K o K K o K oK ok oK oK KoK ok ok K oK Kok oK ok ok oK ok ok o oK ok ok ok K sk Kok o sk ok ok Kok K sk ok Kok ok ok ok ok Kok ok K ok ok
Behavioral modeling for FSM and I/0 control
sk ok K ok ok K oK o oK ok oK ok K oK ok oK oK ok oK oK o Kok o ok o K oK ok ok oK oK oK ok oK oK ok Kok oK ok K ok ok ok o ok Kok oK ok ok oK ok oK ok oK ok ok ok Kok ok
always @(posedge clock or negedge reset) begin
if (“reset) begin
/* System reset */
end
else begin
case (mode)
‘GFILTER_STC_MODE: begin
/* sequential operations and state transition */
end
‘GFILTER_PROCESS_MODE: begin
/* sequential operations and state transition */
end
endcase
end
end
always @(*) begin
case (mode)
‘GFILTER_STC_MODE: begin
/* combinational operations and state update */
end
‘GFILTER_PROCESS_MODE: begin
/* combinational operations and state update */
end
endcase
end

Functional correctness of the LWCFDF-V design for the Gaussian filtering application can be
verified by connecting all of the actor modules with the corresponding FIFO modules in a testbench
module, and simulating the LWCFDF-V implementations based on a self-timed scheduling strategy.
In such a scheduling strategy, an actor module fires whenever it has sufficient tokens (as required by
the corresponding dataflow firing) available on its input FIFOs, and there is no central controller

to drive the overall execution flow [22].

To experiment with the LWCFDF-V design, we used the Xilinx Virtex-5 FPGA device. We
applied 256x256 images decomposed into 128x128 tiles and filtered with a 5x5 matrix of Gaussian
filter coefficients. Based on these settings, 25 DTMs and 23 CLAs were instantiated for parallel pro-
cessing. The synthesis result derived from the LWCFDF implementation of the gaussian filter

16

Array of Texture Processors

Texture Processing Unit
TPU
Texture Memory
TPU
PEC PEC PEC
TPU
Processing Element Cluster
Instruction Memory
| Shared Data Memory 1
Processing

TPU Element

Figure 5: A typical GPU architecture.

actor module achieves a clock speed of 500MHz, and uses about 1% of the slice registers and 1%
of the slice LUTSs on the targeted FPGA platform.

7 Background on GPUs for Image Processing

Graphics processing units (GPUs) provide another class of high performance computing platforms
that can be leveraged for image processing. While they do not have the flexibility of FPGAs,
GPUs are programmable with high peak throughput capabilities. Typically a GPU architecture
is structured as an array of hierarchically connected cores as shown in Figure 5. Cores tend to
be lightweight as the GPU will instantiate many of them to support massively parallel graphics
computation. Some memories are small and scoped for access to a few cores, but can be read or
written in one or just a few cycles. Other memories are larger and accessible by more cores, but at
the cost of longer read and write latencies.

Graphics processors began as dedicated co-processors to CPUs for providing rendering capa-
bilities. As graphics developers wanted more control over how the co-processors behaved, GPU
architectures introduced limited programmability to the processing pipeline. As GPUs became
increasingly flexible to accommodate different rendering capabilities, developers began to realize
that if a non-graphics problem could be cast as a graphics rendering problem, the cores on the
GPU could be used for massively parallel processing. Initially, this required application develop-
ers to use a graphics language such as OpenGL [23] to describe their non-graphics problem, but

17

modern programming interfaces to GPUs directly support general purpose programming [24, 25].
These general purpose programming models have enabled GPU acceleration across a wide gamut
of application areas [26].

Image processing is particularly well suited to acceleration from GPUs. If an image processing
problem can be constructed as a per pixel operation then there is a good match to a GPU processing
pipeline intended to render each pixel on the screen. Furthermore, GPUs typically have texture
caches, which match well with 2D image tiles to be processed. Memory structures are tailored
for contiguous access such as loading blocks of images. Furthermore, losing some floating point
precision during the operation is also usually not critical.

This match between the application domain and the architecture has made GPUs popular in the
image processing community. For example, GPUs are used extensively in computer vision, where
computationally intensive kernels require acceleration to work in real time or on video streams [27].
Medical images may be enhanced through a variety of image processing techniques, and the GPU
is leading to computationally intensive processing techniques that are clinically viable [28].

8 GPU Implementation Case Study

To examine concretely the problem of supporting dataflow applications on GPUs, we continue our
development of the Gaussian filtering application, which was introduced in Section 4. Pipeline
parallelism expressed by dataflow is generally not as applicable to GPUs as FPGAs. Because
GPU threads are executed with individual instruction streams and cannot coordinate at a coarse
granularity, pipelines must be separated by distinct calls to the GPU. There are still benefits for
GPU implementation to be derived from pipeline parallelism; however, in the context of GPU-based
image processing, vectorization often leads to the most useful form of dataflow graph parallelism. In
such vectorization, multiple firings of the same actor are executed concurrently to achieve parallel
processing across different invocations of the actor. Each instance of a “vectorized actor” may be
mapped to an individual thread or process, allowing the replicated instances to be executed in
parallel.

Fundamentals of vectorized execution for dataflow actors have been developed by Ritz [29],
and explored further by Zivojnovic [30], Lalgudi [31], and Ko [32].

Vectorized actor execution is simplest and most efficient when the actor in question is stateless.
A stateful actor necessitates coordination among the duplicated instances of the actor. This does
not prohibit a functionally correct vectorized realization, but the coordination step that must occur
on every firing (and that potentially creates dependencies between actors) incurs overhead, which
increases as the degree of duplication increases. Read-only data does not involve such overhead
because read-write hazards do not exist and the data may be duplicated before invocation to
alleviate memory access issues.

In our Gaussian filtering example, the core actor is stateless, and applies the same matrix to
each tile and each pixel in the image.

An application developer may consider vectorization within and across actors while writing
kernels for CUDA acceleration. In the context of LWCFDF-based design, the actor interface need
not change as the vectorization degree changes, which makes it easy for designers to start with the
programming framework provided by CUDA and wrap the resulting kernel designs in LWDF for
integration at the dataflow graph level.

In the GPU-targeted version of our Gaussian filtering application, a CUDA kernel is developed
to accelerate the core Gaussian filtering computation, and each thread is assigned to a single pixel,
which leads to a set of parallel independent tasks. The threads are assembled into blocks to

18

maximize data reuse. Each thread uses the same matrix for application to the local neighborhood,
and there is significant overlap in the neighborhoods of the nearby pixels. To this end, the threads
are grouped by tiles in the image. Once the kernel is launched, threads in a block cooperate to
load the matrix, the tile to be processed, and a surrounding neighborhood of points. The image
load itself is vectorized to ensure efficient bursting from memory. Because CUDA recognizes the
contiguous accesses across threads, the following code induces a vectorized access to global memory.

__global__ void gfilter_kernel(float *input, float *output,
float *filter_in) {
__shared__ float s_a[BLOCK_DIMX*BLOCK_DIMY];

/* the global memory index for the pixel assigned to this thread */
int input_ix = ...

/* the local shared memory index for the pixel assigned to this thread */
int local_ix = ...
s_allocal_ix] = input[input_ix];

This loads only the core pixels of the tile to be processed, so additional code is needed to
load the halo and the filter coefficients from main memory. Computational vectorization occurs
the same way with each thread in a block able to run simultaneously with other threads to utilize
the parallel datapaths in the GPU. For the core computation of Gaussian filtering, the iterations
of the outer loop that index over a tile are controlled by the threads, where each thread executes
the two inner loops that index over the filter, as shown in the following code.

float value = O;
int yf, xf;
for (yf = 0;yf < FILTER_SIZE; yf++) {
for(xf = 0;xf < FILTER_SIZE; xf++) {
value += filter[yf] [xf] * s_a[(TILE_PLUS_HALO) *
(threadIdx.y+yf) + (threadIdx.x+xf)];

}

output [output_ix] = value;

The original outer loops reveal exactly the style of parallelism we need to accelerate the actor
using vectorization, but the inner loops could have been parallelized as well. However, these would
return less performance benefits as the summation represents dependencies across threads. This
would lead to further overhead to sum to the final result.

The outer loop acceleration is accommodated by LWDF by simply augmenting the execution
of a single mode of the original C actor. Since the actor interface need not change, all other aspects

19

Implementation | Time (seconds)
LWCFDF-C 3.793
LWCFDF-CUDA 0.995

Table 1: Runtime for 2 different Gaussian filter implementations.

of the LWDF interface remain intact, opening the possibility of seamlessly using CUDA accelerated
actors in the same application with actors that employ other forms of acceleration. For example,
if the designer had chosen the invert actor to also be CUDA-accelerated, the actor’s interfaces
could have been altered to pass GPU pointers to image data instead of host pointers to image data.
Then fewer loads to the device would be required, which would reduce execution time. If the GPU
is not fully utilized, such that more blocks of threads are needed, vectorization of the actor (which
is permissible because it is a stateless model) allows us to create more threads that may be spread
across the GPU.

We examined software implementations of our Gaussian filtering application with and without
GPU acceleration. For our experimental setup, we used 256x256 images decomposed into 128x128
tiles and filtered with a 21x21 matrix of Gaussian filter coefficients. We applied an NVIDIA GTX
285 running CUDA 3.1 and compared that to a C only implementation running on 3GHz Intel
Xeons.

The total runtimes are showed in Table 1. While the GPU did not massively outperform the
C-only implementation, it did show a marked improvement. The kernel itself was significantly
faster, but because of transfer times to and from the GPU, only a modest overall speedup was
observed.

9 Summary

In this report, we introduced dataflow-based methods for implementing efficient parallel implemen-
tations of image processing applications. Specially, we used a lightweight dataflow programming
model to develop an application example for image processing and demonstrated implementations
of this application using C, Verilog, and CUDA. These implementations are oriented, respectively,
for fast simulation and, embedded software realization; field programmable gate array mapping;
and high performance acceleration on multicore platforms that employ graphics processing units.

Through these case studies on diverse platforms, we have demonstrated the utility of dataflow
modeling in capturing high level application structure, and providing design methods that are rel-
evant across different implementation styles, and different forms of parallel processing for image
processing. The systematic, dataflow-driven design methods illustrated in this report are more
broadly applicable for improving the productivity of the design process; the agility with which de-
signs can be retargeted across different platforms; and the application of high level transformations
for optimizing implementation structure.

10 Acknowledgment

This work was sponsored in part by the Laboratory for Telecommunication Sciences, and the US
National Science Foundation.

20

References

[1]

J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, and Y. Xiong, “Taming
heterogeneity - the ptolemy approach,” Proceedings of the IEEE, vol. 91, no. 1, pp. 127-144,
January 2003.

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “Synthesis of embedded software from
synchronous dataflow specifications,” Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology, vol. 21, no. 2, pp. 151-166, June 1999.

E. A. Lee and D. G. Messerschmitt, “Synchronous dataflow,” Proceedings of the IEEE, vol. 75,
no. 9, pp. 1235-1245, September 1987.

M. Sen, Y. Hemaraj, W. Plishker, R. Shekhar, and S. S. Bhattacharyya, “Model-based map-
ping of reconfigurable image registration on FPGA platforms,” Journal of Real-Time Image
Processing, 2008, 14 pages.

G. Johnson, LabVIEW Graphical Programming : Practical Applications in Instrumentation
and Control. McGraw-Hill, June 1997.

J. L. Pino, K. Kalbasi, H. Packard, and E. Division, “Cosimulating synchronous dsp appli-
cations with analog rf circuits,” in Proceedings of the IEEE Asilomar Conference on Signals,
Systems, and Computers, November 1998.

C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software synthesis from the dataflow interchange
format,” in Proceedings of the International Workshop on Software and Compilers for Embed-
ded Systems, Dallas, Texas, September 2005, pp. 37—49.

C. Shen, H. Wu, N. Sane, W. Plishker, and S. S. Bhattacharyya, “A design tool for efficient
mapping of multimedia applications onto heterogeneous platforms,” in Proceedings of the IEEE
International Conference on Multimedia and FExpo, Barcelona, Spain, July 2011, to appear.

W. Plishker, C. Shen, S. S. Bhattacharyya, G. Zaki, S. Kedilaya, N. Sane, K. Sudusinghe,
T. Gregerson, J. Liu, and M. Schulte, “Model-based DSP implementation on FPGAs,” in
Proceedings of the International Symposium on Rapid System Prototyping, Fairfax, Virginia,
June 2010, invited paper, DOI 10.1109/RSP_2010.SS4, 7 pages.

P. Hamill, Unit Test Frameworks. O’Reilly & Associates, Inc., 2004.

C. Shen, W. Plishker, H. Wu, and S. S. Bhattacharyya, “A lightweight dataflow approach
for design and implementation of SDR systems,” in Proceedings of the Wireless Innovation
Conference and Product Ezxposition, Washington DC, USA, November 2010, pp. 640-645.

S. S. Bhattacharyya, R. Leupers, and P. Marwedel, “Software synthesis and code generation for
DSP,” IEEFE Transactions on Circuits and Systems — II: Analog and Digital Signal Processing,
vol. 47, no. 9, pp. 849-875, September 2000.

G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete, “Cyclo-static dataflow,” IFEFE
Transactions on Signal Processing, vol. 44, no. 2, pp. 397-408, February 1996.

B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow modeling for DSP sys-
tems,” IEEE Transactions on Signal Processing, vol. 49, no. 10, pp. 2408-2421, October 2001.

21

[15]

[16]

J. T. Buck and E. A. Lee, “The token flow model,” in Advanced Topics in Dataflow Computing
and Multithreading, L. Bic, G. Gao, and J. Gaudiot, Eds. IEEE Computer Society Press,
1993.

W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya, “Functional DIF for
rapid prototyping,” in Proceedings of the International Symposium on Rapid System Prototyp-
ing, Monterey, California, June 2008, pp. 17-23.

W. Plishker, N. Sane, M. Kiemb, and S. S. Bhattacharyya, “Heterogeneous design in functional
DIF,” in Proceedings of the International Workshop on Systems, Architectures, Modeling, and
Simulation, Samos, Greece, July 2008, pp. 157-166.

W. Wolf, FPGA-Based System Design. Prentice Hall, 2004.

Virtez-6 FPGA CLB User Guide, UG364 (v1.1), September 2009.

L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol. 34, pp. 349-356, 1965.
R. Katz, Contemporary Logic Design. The Benjamin/Cummings Publishing Company, 1994.

E. A. Lee and S. Ha, “Scheduling strategies for multiprocessor real time DSP,” in Proceedings
of the Global Telecommunications Conference, November 1989.

D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL(R) Programming Guide : The Official
Guide to Learning OpenGL(R), Version 2 (5th Edition). Addison-Wesley Professional, August
2005.

NVIDIA CUDA Compute Unified Device Architecture - Programming Guide, 2007.
Khronos OpenCL Working Group, The OpenCL Specification, version 1.0.29, December 2008.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger, A. Lefohn, and T. J. Purcell,
“A survey of general-purpose computation on graphics hardware,” Computer Graphics Forum,
vol. 26, no. 1, pp. 80-113, 2007.

Using graphics devices in reverse: GPU-based Image Processing and Computer Vision, 2008.

W. Plishker, O. Dandekar, S. S. Bhattacharyya, and R. Shekhar, “Utilizing hierarchical mul-
tiprocessing for medical image registration,” IEEE Signal Processing Magazine, vol. 27, no. 2,
pp- 61-68, March 2010.

S. Ritz, M. Pankert, and H. Meyr, “Optimum vectorization of scalable synchronous dataflow
graphs,” in Proceedings of the International Conference on Application Specific Array Proces-
sors, October 1993.

V. Zivojnovic, S. Ritz, and H. Meyr, “Retiming of DSP programs for optimum vectorization,”
in Proceedings of the International Conference on Acoustics, Speech, and Signal Processing,
April 1994, pp. 492-496.

K. N. Lalgudi, M. C. Papaefthymiou, and M. Potkonjak, “Optimizing computations for ef-
fective block-processing,” ACM Transactions on Design Automation of Electronic Systems,
vol. 5, no. 3, pp. 604-630, July 2000.

22

[32] M. Ko, C. Shen, and S. S. Bhattacharyya, “Memory-constrained block processing for DSP
software optimization,” Journal of Signal Processing Systems, vol. 50, no. 2, pp. 163-177,
February 2008.

23

