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Two models are discussed here to illustrate the quantum many-body phenomena in

mixtures of ultra-cold atoms in optical lattices. The first model describes a mixture of

two species of bosonic atoms of equal masses in optical lattices and the second describes

a mixture of heavy bosonic atoms and light fermionic atoms in optical lattices. For both

models, we assume the trap is present and use parameters typical in experiment.

For the first model, the discussion is aimed at providing a thorough description of the

collective behavior of the binary mixture in various interaction regions, with emphasis on

two many-body phenomena, pairing and anti-pairing, as a result of the inter-species inter-

action. The pairing leads to a new type of superfluid order, called the paired superfluid

(PSF) and the anti-pairing leads to another type of superfluid order, called the counter-

flow superfluid (CFSF). In addition, we discuss the coexistence of charge density wave

order with the three superfluid orders in the strong interaction region. We use both Lut-

tinger liquid theory and the time evolving block decimation (TEBD) method to study this

model in one dimension. The discussion is organized in three parts: the phase diagram



and the correlation functions; the noise correlation functions; and the transport proper-

ties. Two phase diagrams are constructed to map the different orders in the parameter

space. The correlation functions, include noise correlations, are carefully examined for the

determination of the orders and for possible detection methods. In the end, the transport

properties of the PSF and CFSF orders are studied through the dipole oscillation induced

by trap displacement.

For the second model, examining a mixture of heavy bosons and light fermions, the

discussion is oriented toward determining the thermal properties of the mixture for attrac-

tive inter-species interactions. This work is motivated by experiments creating artificial

molecules through optical and magnetic control of ultra-cold atoms. We use the strong

coupling (SC) expansion method to evaluate the density profile, the onsite inter-species

correlations, the density fluctuations and the entropy per particle. Analytical expressions

are derived for all the quantities above as well as the partition function. To benchmark the

accuracy, the SC calculations are compared with inhomogeneous dynamical mean field

theory (IDMFT) and Monte Carlo (MC) simulation. From the calculations, we find that 1)

the efficiency of creating pre-formed molecules is significantly increased by confining the

mixtures onto optical lattices; 2) the temperature of the mixtures in optical lattices can be

reliably estimated through the density gradient and the density fluctuations.
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4.4 Noise correlations, G11(k, k′) (a) and G12(k, k′) (b), in the SF state of a homo-

geneous system. The values of G11(k, k′) and G12(k, k′) are exactly the same

as in Fig. 4.3 (b). We create non-linear gray scales by plotting tanh(10G11)

and tanh(200G12) in linear scales. The labels of the color-bar reflects the val-
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4.23). In (b), we find that the structures along k = k′ is similar with the ones

in Luttinger Liquid calculations, however, the structures along k = −k′ is

negative, different from the Luttinger Liquid predictions (see also Fig. 4.2).
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4.6 Noise correlations in the trapped system. The system size is 80 sites and

t/U = 0.02. In (a), the system is in the SF state. The particle number of
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U12/U = −0.11. The system has both MI and PSF orders. The MI state forms

a plateau at unit-filling at the center of the trap and the PSF is formed at the

edge. The PSF state at the edge causes the small peak along the k = −k′

direction, similar to the one in (c). However, this peak is at a much smaller

amplitude than the one shown in (c), where the whole system is a PSF state.

In (c), the particle number of each species is 20, the trap frequency 1×10−5U

and U12/U = −0.11. The whole system is in the PSF state. A strong pairing
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4.8 Noise correlation C11(q) and structure factor S(k) in a PSF/CDW state. The

system size is 80 sites and there are 20 particles of each species (ν = 0.25).

The trap frequency is Ω = 10−5U , the hopping t = 0.02U and the inter-

species interaction is U12 = −0.11U . The density at the center of the trap

is roughly 0.45 per site and the cusps are developed around ±0.9π. The

inhomogeneity of a trapped system means that the “Fermi wave vector” kF

is no longer πν, where ν is the average filling of the system. Instead, kF can

be evaluated as πncenter, where ncenter is the density at the center of the trap, 90

5.1 Dipole oscillation in the CFSF state. Note that time t is in the unit of ~/J for

all plots. At t = 0, the density distributions of both species have the same

plateau at half-filling and then the trap of species 1 is briefly perturbed by

a displacement of one lattice site [see Fig. 5.2 (a)]. In (a) and (b), we show
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Chapter 1

Introduction

Incredibly rich quantum many-body effects are observed (and predicted) in ultra cold

atoms [1, 2, 3]. Study in this area now involves methods and concepts from atomic physics,

condensed matter physics, quantum information theory and quantum chemistry. With the

development of the technology for cooling and manipulating atoms, dilute gases of alkali

or alkaline-earth atoms can be cooled to temperatures below micro-Kelvin. The extremely

low temperature leads to the realization of quantum degenerate gases such as the Bose-

Einstein condensate [4, 5] and the Fermi degenerate gas [6]. With the ability to adjust the

interaction strength through the Feshbach resonance [7] and the possibility of changing

the dimensionality with optical potentials and of generating optical lattices [8], the dilute

gases can display many-body phenomena that are characteristic of strongly correlated sys-

tems, which typically exist only in the dense and strongly interacting quantum liquids of

condensed matter or nuclear physics.

In principle, an accurate quantum description of such many-body phenomena requires

solving the many-body Schrödinger equation with the inclusion of the scattering interac-

tion and the interaction with the optical potential. In practice, the Schrödinger equation

of such large systems is impossible to solve directly. However, the resemblance between

ultra-cold atoms in optical lattices and a conventional condensed matter system is often

made, with atoms in analogy to electrons and the periodic optical lattice to the periodic

crystalline lattice [9, 10]. Such resemblance leads to suggestions that the many-body phe-

nomena for ultra-cold atoms can be studied through the methods used in the condensed

matter theory, such as non-relativistic field operators and the second quantization of the

many-body Hamiltonian. Describing ultra-cold atoms in optical lattices with second quan-

tized many-body Hamiltonians has lead to the successful prediction of the quantum phase

transition between the superfluid (SF) and the Mott insulator (MI) states as the amplitude
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of the optical lattice increases [10]. This SF to MI transition has been observed in three [11],

quasi-two [12] and quasi-one dimensions [13] in ultra-cold atom experiments.

In this thesis, the discussion is focused on two types of ultra-cold atom mixtures in

optical lattices in reduced dimensions. The first mixture consists of two species of bosonic

atoms of equal mass. We assume that the system is in one dimension, which can be studied

efficiently by the Luttinger liquid theory and the time evolving block decimation (TEBD)

method. The discussion for this system is carried on in four parts: the introduction to

the TEBD method in Chapter 2; the phase diagram and correlation functions in Chapter

3, the noise correlation functions in Chapter 4, and the transport properties in Chapter

5. In Chapter 6, we discuss the second model, which consists of heavy bosonic and light

fermionic atoms. The discussion is focused on the pre-formed molecules in such systems.

For the rest of this chapter, we would like to give a brief introduction to the basic

concepts and methods that are most relevant to discussions in the later chapters.

2



Publications in the PhD work:

• Chapter 3:

– Counterflow and paired superfluidity in one-dimensional Bose mixtures in optical lat-

tices, Anzi Hu, L. Mathey, Ippei Danshita, Eite Tiesinga, Carl J. Williams, and

Charles W. Clark, Phys. Rev. A 80, 023619 (2009).

• Chapter 4:

– Noise correlations of one-dimensional Bose mixtures in optical lattices, Anzi Hu, L.

Mathey, Carl J. Williams, and Charles W. Clark, Phys. Rev. A 81, 063602 (2010).

• Chapter 5:

– Detecting paired and counterflow superfluidity via dipole oscillations, Anzi Hu, L.

Mathey, Ippei Danshita, Carl J. Williams, and Charles W. Clark, in preparation.

• Chapter 6

– Improving the efficiency of ultracold dipolar molecule formation by first loading onto

an optical lattice, J. K. Freericks, M. M. Maśka, Anzi Hu, Thomas M. Hanna, C. J.
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1.1 Second quantization

Theoretical studies on interacting many-body systems almost always start with a second

quantized Hamiltonian. Here, we discuss the general procedure of the second quantiza-

tion (for detailed discussion, see for example [14]) and then derive several of the many-

body models relevant to ultra-cold atoms in optical lattices.

Creation and annihilation operators: In general, we can assume that there exists a quantum-

mechanical basis that describes the number of particles occupying each state in a complete

set of single-particle states and introduce the vector state as

|n1, n2, ..., n∞〉 (1.1)

where the notation means that there are n1 particles in the eigenstate 1, n2 in the eigenstate

2, etc. We also assume that this basis is complete and orthonormal. The creation and

annihilation operators are introduced as operators that create or annihilate one particle

from the corresponding eigenstate. For bosonic particles, the creation and annihilation

operators follow the same rule as those for harmonic oscillators:

[
br, b

†
s

]
= δr,s, [br, bs] =

[
b†r, b

†
s

]
= 0. (1.2)

For fermionic particles, the creation and annihilation operators satisfy the anticommuta-

tion rules, {
cr, c

†
s

}
= δr,s, {cr, cs} =

{
c†r, c

†
s

}
= 0, (1.3)

where the anticommutator is defined by the following relationship,

{A,B} ≡ AB +BA. (1.4)

Second quantization: For almost all systems with two-body interactions, the Hamilto-
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nian takes the form

H =
N∑
k=1

T (xk) +
1
2

N∑
k 6=l=1

U(xk, xl). (1.5)

Here T (xk) is the single-particle energy, which includes the kinetic energy, the potential,

etc. And U(xk, xl) is the energy due to interaction between particles. The second quanti-

zation of the Hamiltonian is introduced by applying the field operator,

ψ̂(x) =
∑
j

ψj(x)aj , (1.6)

onto the Hamiltonian

Ĥ =
∫
d3xψ̂†(x)T (x)ψ̂(x) +

1
2

∫ ∫
d3xd3x′ψ̂†(x)ψ̂†(x′)U(x,x′)ψ(x′)ψ(x). (1.7)

Here, the field operator aj can be either bosonic or fermionic and the function ψj(x) is the

single-particle wave function. Note that the relationship represented in Eq. (1.7) is inde-

pendent of the specific representation of field operators. For field operators represented

by annihilation operators, the equation above leads to a discretized Hamiltonian which we

will derive in the following section. A different way of representing the field operators is

discussed in the section of Luttinger liquid theory.

1.1.1 Bose Hubbard model

As suggested in Ref. [10], the Bose Hubbard model can describe a system of bosonic atoms

in the optical lattices. In this case, the field operator ψ̂(x) is constructed to describe the

behavior of atoms in the lowest energy band of the energy spectrum of a single atom in an

optical lattice,

ψ̂(x) =
∑
j

w(x− xj)bj (1.8)

where w(x − xj) is the Wannier function of the lowest band and bj corresponds to the

bosonic annihilation operator at lattice site j. The Hamiltonian for the bosonic system is
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written as,

H =
∫
d3xψ̂†(x)

(
− ~

2m
∇2 + V0(x) + VT (x)

)
ψ̂(x)

+
1
2

4πas~2

m

∫
d3x

∫
d3x′ψ̂†(x)ψ̂†(x′)δ(x− x′)ψ̂(x′)ψ̂(x). (1.9)

Here, the first term corresponds to the kinetic energy, p2/2m. The function V0(x) is the

periodic potential created by the optical lattice and Vt(x) is the external trapping potential.

In the simplest case, the optical lattice potential can be written as standing waves of wave

vector k = 2π/λ, with λ the wavelength of the laser light,

V0(x) =
3∑
j=1

Vj0 sin2(kxj). (1.10)

The interaction potential is approximated by a on-site interaction with scattering length as

and atomic mass m.

After the second quantization, the Hamiltonian is written as,

H = −
∑
〈j,j′〉

tj,j′b
†
jbj′ +

∑
j

εjnj +
1
2
U
∑
j

nj(nj − 1) (1.11)

where nj is the number operator at site j, nj = b†jbj . The parameter tj,j′ is the hopping

parameter between site j and j′,

tj,j′ =
∫
d3xw∗(x− xj)

[
− ~2

2m
∇2 + V0(x)

]
w(x− xj′). (1.12)

For the simplest case, the sites j and j′ are adjacent sites. The parameter εj describes the

energy offset of each lattice site,

εj =
∫
d3xVT (x)|w(x− xj)|2 ≈ VT (xj). (1.13)
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And the parameter U describes the interaction between two atoms at site j,

U =
4πas~2

m

∫
d3x|w(x)|4. (1.14)

Typically, we consider repulsive interactions, as > 0, and therefore U is always positive.

This model can be further simplified if we assume the energy offset due to the external

trapping potential is negligible and the system is homogeneous. In this case, and when

a grand canonical ensemble is considered, the energy offset term εjnj is replaced by the

chemical potential term, −µnj .

1.1.2 Multi-component Hamiltonian

For ultra-cold atom systems with internal degrees of freedom, one can derive multi-component

Hubbard-type models similar to the way the Bose Hubbard model is derived. The internal

degrees of freedom can be the result of mixed species, mixed atomic states, and/or mixed

energy bands. Here, we consider mixed species as an example and introduce α to denote

different species. The bosonic and fermionic field operators are now written as a sum of

different species,

ψ̂b(x) =
∑
j,α

wα(x− xj)bj,α, (1.15)

and

ψ̂f (x) =
∑
j,α

wα(x− xj)cj,α. (1.16)

Here bj,α is the bosonic annihilation operator of species α at site j and cj,α is the fermionic

annihilation operator of species α at site j. The function wα is the single-particle Wannier

function of species α .

The quantization is carried out in a similar way except for the Hamiltonian is now a

matrix in internal degrees of freedom. If we assume there are no cross-species correlations,

the Hamiltonian can be written as a sum of single-species Hamiltonians, Hα. The param-

eters in each Hα depends on each species’ atomic properties and their Wannier functions.
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For a given lattice, it is possible that different species experience very different hopping

and interaction strengths, as a result of different atomic masses and scattering lengths.

If we assume that there are cross-species interactions, i.e. the interaction part of the

Hamiltonian is not diagonal, one additional term appears in the Hamiltonian,

Uαα′nα,jnα′,j . (1.17)

Here nα,j is either the bosonic or fermionic number operator of species α at site j. For a

Bose-Fermi mixture, nα,j and nα′,j represent the bosonic and fermionic number operator

respectively.

If we assume that the species are associated with each other, i.e. the single particle

Hamiltonian is not diagonal, two additional terms can occur in the Hamiltonian: one cor-

responds to transferring one species to another at one site,

tα,α′,ja
†
α,jaα′,j + h.c., (1.18)

and the other corresponds to transferring one species at site j to another species at site j′,

tα,j;α′,j′a
†
α,jaa′,j′ + h.c.. (1.19)

Note that such off-diagonal terms can only occur within bosonic or fermionic mixtures,

not Bose-Fermi mixtures.

In this thesis, the first model we describe is a two-component Bose Hubbard model

in which both components have the same hopping and the same repulsive intra-species

interactions. The inter-species interaction in this model can be either positive or negative

[see Eq. (3.1)]. For the second model, we consider tunable bosonic intra-species interac-

tions and tunable inter-species interactions and neglect the quantum effect of the hopping

of the heavy bosons. This leads to the spinless Bose-Fermi Falicov Kimball model [see Eqs.

(6.1-6.3) ].
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1.2 Phase diagram

1.2.1 Off diagonal long-range order

First discussed by Penrose in Ref. [15], the quantum coherence in Bose-Einstein conden-

sates and the superfluidity in liquid Helium can be characterized by the non-decaying

behavior of the single-particle density matrix in the coordinate space representation, i.e.

ρ1(x,x′) = 〈ψ̂†(x)ψ̂(x)〉 ∼ constant, (1.20)

as |x − x′| → ∞. Off diagonal long-range order (ODLRO) is introduced to describe this

non-decaying behavior. A more general discussion on ODLRO is given in Ref. [16]. The

discussion in Ref. [16] turns out to be relevant not just to superfluidity, but also the pairing

and counter-flow effects to be discussed in later chapters.

Here, we consider a many-particle system with fixed number of particles whose den-

sity matrix is denoted as ρ,

Tr(ρ) = 1, (1.21)

We define the reduced density matrices ρ1, ρ2, ρ3.... as

〈i|ρ1|j〉 = Tr(ajρa
†
i )

〈ij|ρ1|kl〉 = Tr(akalρa
†
ja
†
i ) (1.22)

etc. ,

where i, j,... represent single particle states and ai, aj ,..., are the corresponding annihilation

operators. The density matrices ρ1, ρ2, and ρ3 stands for one-, two- and three- particle re-

duced density matrix. Ref. [16], it argues that ODLRO can occur in groups of particles that

are composed of bosons and an even number of fermions. In this generalized statement,

the Bose Einstein condensate and the superfluid correspond to the ODLRO of m = 1. The

superconductivity in electronic systems corresponds to the ODLRO of a special group of

m = 2, where the group is composed of one spin-up and one spin-down fermion.
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1.2.2 Order parameter

Also originating from the theory for dilute Bose gases is mean-field theory introduced by

Bogoliubov (1947). The key point in mean-field theory is the separation of the condensate

contribution from the bosonic field operator. In other words, we can introduce a complex

function φ(x),

φ(x) = 〈ψ̂(x)〉. (1.23)

This function φ(x) is a classical field (not an operator). It has the meaning of an order pa-

rameter and characterizes the off-diagonal long-range behavior of the one-particle density

matrix,

〈ψ̂†(x)ψ̂(x′)〉 → φ∗(x)φ(x′), (1.24)

for large |x − x′|. It immediate follows that if 〈ψ̂†(x)ψ̂(x′)〉 goes to a constant as |x − x′|

goes to infinity, the order parameter φ(x) should also approach a constant. In the mean-

field theory, the non-zero order parameter is used as an indication of the existence of its

corresponding ODLRO.

The concept of the order parameter can be applied to study other long-range orders,

such as superconductivity. In the BCS theory [17], the order parameter can be written as

φ ∼
∑
k

〈c−k,1ck,2〉. (1.25)

Here, the index 1 stands for spin down electrons and 2 stands for spin up electrons. If we

define the field,

ψ̂α(x) =
∑
k

e−ikxc−k,α, (1.26)

the order parameter can be written as the expectation value of the pair,

φ ∼ 〈ψ̂1(x)ψ̂2(x)〉. (1.27)

Combining Yang’s discussion on ODLRO and the order parameter introduced in the
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mean-field theory, we find that in general one can define an operator to represent to the

group of m particles, whose reduced density matrix presents an ODLRO,

Om = a1a2...am. (1.28)

Here O is an operator of the product consisting of the annihilation operators, a1, a2, ...,

am. For the superfluid and the Bose Einstein condensate of identical bosonic particles, this

operator is the bosonic field,

OSF = ψ̂(x). (1.29)

In superconductivity, the operator is the pair of one spin-up and one spin-down fermion,

ψ̂1(x) and ψ̂2(x) ,

OBCS = ψ̂1(x)ψ̂2(x). (1.30)

The correlation function of Om, 〈O†m(x)Om(x′)〉, is the m-particle reduced density matrix

and the non-decaying behavior of the correlation function signals the existence of the cor-

responding ODLRO.

For many quantum many-body models, ODLRO occurs only below a certain critical

temperature, when the thermal fluctuation is low. This is the case for the Bose-Einstein

condensate, superfluid and superconductivity. ODLRO may also disappear at zero tem-

perature, as a result of the competition between the kinetic energy, the interaction and the

external potential. It is also possible that for a given model, several different ODLROs can

exist in different parameter regions and sometimes, different ODLROs can coexist, such

as the case for supersolid[18]. How to determine the existence of an ODLRO therefore

becomes very important, because the ODLRO characterizes the properties of the state. A

parameter map can be drawn to show the parameter regions of different ODLRO and the

border where the transition occurs. Such a parameter map is often called the phase dia-

gram, which is often used to study the phase transitions for a given model.
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1.2.3 Superfluid to Mott insulator phase transition

The existence of two phases in the Bose Hubbard model can be understood from the two

extreme cases: 1) the non-interacting case, where U = 0; 2) the extremely strong repulsive

interaction case, where the hopping is completely suppressed, i.e. t = 0.

In the case U = 0, the model is quadratic in the operators bj and b†j . Transforming the

Hamiltonian into the momentum space and diagonalizing the Hamiltonian. We find that

the energy spectrum is

E =
∑
q

[µ− 2t cos(q− π)]nq. (1.31)

and the ground state of the model corresponds to the state where all the atoms occupy the

q = 0 state of the lowest band,

|ΨN 〉(U = 0) =
1√
N

 1√
NL

∑
j

b†j

N

|0〉, (1.32)

where N is the total number of particles and NLis the total number of lattice site.

In the case t = 0, the Hamiltonian is diagonal in the Fock state basis,
∏
j ⊗|νj〉, where

νj corresponds to the occupation number at site j. The energy at each site j is a function

of νj as

Ej = −µνj + Uνj(νj − 1). (1.33)

For the case whereN/NL = 1, the ground state of the system is a MI state with one particle

at each site,

|ΨN=NL
〉(t = 0) =

N∏
j=1

b†j |0〉. (1.34)

If we define the order parameter for the SF order as 〈aj〉, it is easy to show that 〈aj〉

is non-zero in the SF state of Eq. (1.32) and zero in the MI state of Eq. (1.34). These two

extreme cases also imply that the phase transition between the SF and the MI states is

the result of the competition between the kinetic energy (represented by t), which trys to

delocalize the particles and reduce the phase fluctuations, and the combination of the inter-
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actions and the periodic potential (represented by U ), which tries to localize the particles

and reduce the density fluctuations. Depending on the values of U and t, either the SF

or MI state has lower energy and is energetically favored at very low temperature. The

competition between the kinetic energy and the interactions also plays an important role

for the pairing and anti-pairing ordering in the mixtures, which is going to be discussed in

Chapter 3.

For more rigorous studies on the SF to MI phase transition, one can use many differ-

ent methods, such as mean-field theory [19, 20] which studies the behavior of the order

parameter〈aj〉, the strong-coupling expansion method [22] which studies the energy gap

between the ground state in the atomic limit (t = 0), |Ψ〉 and the state with one added

particle, ∼
∑

i a
†
i |Ψ〉 and one hole, ∼

∑
i ai|Ψ〉, or quantum Monte Carlo simulation which

studies either the correlation function or the density fluctuations [21]. Generally speaking,

the SF-MI phase diagram as a function of µ and t/U usually contains loops for the MI state,

where the density is fixed at some integer number and is not susceptible to a small change

of µ. This indicates the incompressibility of the MI state.

1.3 Tomonaga-Luttinger liquid theory

Quasi-one-dimensional systems can be achieved by loading cold atoms onto a two-dimensional

lattice, where the atoms are confined by the cigar-shaped one-dimensional tubes created by

the lattice. In these arrays of one-dimensional tubes, interesting quantum many-body phe-

nomena have been observed, such as the Tonks-Girardeau gas [23] and the one-dimensional

SF to MI transition. The many-body physics in one dimension has attracted much inter-

est because it is in many senses quite different from the physics in higher dimensions.

In one-dimensional systems, the quantum fluctuations play an much enhanced role and

there is no true long-range order even at zero temperature. Instead, one can define quasi-

long range order through the asymptotic behavior of various correlation functions. The-

oretically, these correlation functions and other observables are calculated based on the

Tomonaga-Luttinger liquid theory. In this subsection, we briefly describe how Tomonaga-

Luttinger liquid theory is applied to one-dimensional bosonic atoms as an example. More
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detailed discussion about Tomonaga-Luttinger liquid theory and its application in cold

atom systems can be found in [24, 25].

We start the discussion by considering the effective Hamiltonian for a homogeneous

one-dimensional system of bosonic atoms in lattices,

H =
∫
dx

[
− ~2

2m
∂xψ̂

†(x)∂xψ̂(x) + V (x)ρ(x)
]

+
g

2

∫
dxψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x), (1.35)

where V (x) is the lattice potential in one-dimensional system, V (x) = V0 sin2(kx) and g

is the on-site interaction strength. In Tomonaga-Luttinger liquid theory, the Hamiltonian

is rewritten in terms of collective variables that describe the density and phase fluctua-

tions. The advantage of the density-phase presentation is that the interaction term be-

comes quadratic in this presentation, therefore can be treated non-perturbatively. To first

illustrate the quadratic form of the Hamiltonian, we consider the case of one-dimensional

interacting systems where the lattice is absent, V (x) = 0.

The field operator in the density-phase representation up to the leading order is written

as

ψ̂(x) = (ρ0 +
1
π
∂xθ)1/2

∑
p

ei2p(πρ0x+θ(x))eiφ(x). (1.36)

Here θ and φ are the long wavelength density and phase fields that obey the standard

commutation relation

[∂xθ(x), φ(y)] = iπδ(x− y). (1.37)

The variable ρ0 is the average density. The field ∂xθ corresponds to the density fluctuation

and is assumed to be small compared with ρ0. Using Eq. 1.36 and retaining only the terms

that can become dominant at the low temperature, the Hamiltonian is rewritten as,

H0 =
~v
2π

∫ L

0
dx

[
K (∂xφ)2 +

1
K

(∂xθ)
2

]
(1.38)

Here the parameters K and v are dimensionless and depend on both the density ρ0 and
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the interaction strength. This Hamiltonian leads to the action,

S/~ =
1

2πK

∫
dx

∫
dτ

[
1
v

(∂τθ)2 + (∂xθ)2

]
(1.39)

and the partition function is expressed via functional integrals,

Z =
∫
Dθ(x, τ)

∫
DΠ(x, τ)eS/~, (1.40)

where Π = π∂xθ.

The single-particle Green’s function and the density correlations are then calculated

based on the partition function and the leading orders in the two functions are written as

〈ψ̂†(x)ψ̂(0)〉 = A
(α
x

) 1
2K + .... (1.41)

〈ρ(x)ρ(0)〉 = ρ0 +
K

2π
y2
α − x2

(y2
α + x2)2

+A3 cos(2πρ0x)
(

1
x

)2K

+ .... (1.42)

Here Aj is a prefactor. The parameters yα and α are related to the interaction parameters

and the temperature. It is interesting to note that the asymptotic behavior of the correlation

functions is solely determined by the parameter K. For non-interacting systems, K =

∞ and we recover the non-decaying single-particle Green’s function, which indicates the

existence of the ODLRO and the system is condensed in the lowest momentum state. As

the repulsion increase (K decreases), the correlation function decays faster and the system

has less and less tendency towards superfluidity. For purely local interactions,K = 1 is the

minimum, corresponding to the infinitely large local interaction. In this limit, the system

is the Tonks-Girardeau gas [26].

Now we consider the effect of adding an optical lattice. Here the existence of a lattice

introduces an underlying periodicity for the density, characterized by the lattice constant

aL and the quasi-momentum, q = 2π/aL. In the interaction process, the conservation of

momentum now takes the form k1 + k2 − k3 − k4 = q. This can be understood as the

particles transferring momentum back and forth with the lattice. Such process is known
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as the umklapp process. Now in this case, the term ei2p(πρ0x) in Eq. 1.36 can become non-

oscillating for p 6= 0 when pρ0x becomes an integer. This is possible in the lattice system,

because the position x is discretized as jaL , where j stands for the j th site in the lattice.

When pρ0 = na−1
L is satisfied, the corresponding term in the Hamiltonian becomes non-

trivial and it leads a new term in the Hamiltonian,

HL ∝ g0

∫
dx cos [2pθ(x)] . (1.43)

For the Bose-Hubbard model with onsite interaction,HL is non-trivial only for the case p =

1 and it corresponds to an integer number of atoms per site, i.e. ρ0a = n, with n being any

integer. The parameter g0 depends on the optical lattice potential, g0 ∼ ρ0V0(V0/µ)n0−1,

where µ is the chemical potential and n0 is the number of bosons per site.

This Hamiltonian takes the form of the sine-Gordon model and can no longer be com-

puted exactly. Treating HL perturbatively and use the renormalization procedure, one can

find that the parameter K is now determined by flow equations. The behavior of the flow

equations reveals that the value ofK can either converge to a fixed pointK∗, in which case

HL is irrelevant, or continue to grow, in which case the system goes to the strong coupling

region. Along the separatrix between these two regions, K converges to the fixed point

Kc. For the case where HL is irrelevant, the Hamiltonian is still written in the quadratic

form and the asymptotic behavior of correlation functions can still be written in the form

of Eq. (1.41) with K replaced by the fixed point K∗. For the case where the system goes

to the strong coupling region, HL can be expanded around θ = 0, assuming the density is

localized at each lattice site, and the second order expansion of HL leads to a “mass” term

in the Hamiltonian. The asymptotic behavior becomes exponential.

For the Bose Hubbard model, the separatrix between these two regions at commensu-

rate fillings corresponds to the fixed point Kc = 2. If |K∗ − 2| > 0 , the system is in the

SF region. Otherwise, the system is the MI region. It is also worth noting that the sine-

Gordon problem is a two-dimensional (one space one imaginary time) problem and the

SF-MI transition described here falls into the Berezinskii-Kosterlitz-Thouless (BKT) tran-

sition [27]. The SF to MI transition in one dimension has also been studied numerically
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[29, 28]

1.4 Detection Methods

1.4.1 Time-of-flight measurement

The time-of-flight (TOF) measurement in the context of ultra-cold atom experiments means

measuring the absorption image of the density distribution of atoms after the free expan-

sion when all confinement, including the trap and the optical lattices, is turned off [1]. It is

one of the most frequently used experimental methods to detect the coherence properties

of ultra-cold atoms. Here we briefly explain the mathematical description of the time-of-

flight measurement and the reason why the time-of-flight image can reflect the momentum

distribution before the flight.

Let’s assume at t = 0 (in this section t stands for time, not hopping), both the trap and

lattices are turned off and all confined atoms are released and start to expand. Because the

gas is usually very dilute, we also assume the expansion is ballistic. Ballistic expansion in

free space can be described by the time evolution of the field operator,

ψ̂(p, t) ∼ 1
(2π)3

∫
d3pe−i~p

2t/2M ψ̂(p), (1.44)

where

ψ̂(p) =
1

(2π)3/2

∫
d3re−ip·rψ̂(r)

=
∫
d3r

∑
j

w(r−Rj)bje−ip·r

=
∑
j

w̃(p)e−ip·Rjbj . (1.45)

Here, M is the atomic mass, bj is the annihilation operator at site j, w(r) is the Wan-

nier function and w̃(p) is the Fourier transform of the Wannier function. At time t after

the expansion, the density distribution at position x at time t is the expectation value of
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ψ̂†(x, t)ψ̂(x, t)

〈n̂(x, t)〉 = 〈ψ̂†(x, t)ψ̂(x, t)〉

=
1

(2π)3

∫
d3p1

∫
d3p2e

−i(p1−p2)·x〈ψ̂†(p1, t)ψ̂(p2, t)〉

' (M/~t)3|w(k)|2G(k), (1.46)

where k is related to x by k = Mx/~t, and G(k) characterizes the coherence properties of

the initial many-body state,

G(k) =
∑
j,k

eik·(Rj−Rk)〈b†jbk〉. (1.47)

If we redefine k and Rj as the momentum and the position vectors in the lattice system

as k = 2πn/NLaL, and Rj = jaL, where aL is the lattice constant, NL is the total num-

ber of lattice sites and n = 0, 1, ..M , the function G(k) above is exactly the momentum

distribution of the atoms in the lattice.

The relationship between the density distribution after the time-of-flight and the mo-

mentum distribution before the time-of-flight often leads to the simplified relationship

〈n̂(x, t)〉TOF ≈ 〈n̂(k)〉trap, (1.48)

where the position x is related to the momentum k before the expansion with k = Mx/~t.

This relationship is usually sufficient to estimate the main features in the time-of-flight

measurement.

1.4.2 Noise correlation

In the time-of-flight measurement, each experimental image corresponds to a single real-

ization of the density, not the expectation value. Moreover, each pixel in the image records

on average a substantial number Nσ of atoms, while in each single realization of an exper-

iment, the number of atoms on the pixel exhibits shot-noise fluctuations of relative order
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1/
√
Nσ [1]. These shot-to-shot fluctuations can be characterized by the density-density

correlation function Gαβ(x,x′),

Gαβ(x,x′, t) = 〈n̂α(x, t)n̂β(x′, t)〉 − 〈n̂α(x, t)〉〈n̂β(x′, t)〉. (1.49)

Here α and β are the species indices for a system of multiple species. For the system of

one species, α and β can be omitted. Similar to the relationship between the time-of-flight

density distribution and the momentum distribution before the expansion, the density-

density correlation (or noise correlation) function after the time-of-flight is related to the

density-density correlation in the momentum space before the expansion,

Gαβ(x,x′, t) ≈ 〈n̂α(k)n̂β(k′)〉trap − 〈n̂α(k)〉trap〈n̂β(k′)〉trap, (1.50)

where, again, k = Mx/~t. The noise correlation function, Gαβ(x,x′, t) , can be particu-

larly useful for detecting certain strongly correlated orders that can not be revealed in the

averaged density distribution image. This is because the noise correlation includes contri-

butions from higher-order correlations as

〈n̂α(k, t)n̂β(k′, t)〉 ∼
∑
j,k

eik·(Rj−Rj′ )+ik
′·(Rk−Rk′ )〈b†αjbαj′b

†
βkbβk′〉. (1.51)

This relationship between the noise correlation function and the higher-order correla-

tion functions was first explained in Ref. [30]. Since then, such analysis has been used

to experimentally demonstrate the SF to MI phase transition [31, 32] and the formation of

fermionic pairs [33]. Theoretically, it has been shown that the noise correlation functions

can also be used to detect the charge density wave order [34, 35, 36, 37, 38]. Noise correla-

tion functions are calculated in one- and two-component Fermi systems [36, 38], as well as

bosonic systems in the hard-core limit [40].
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1.4.3 In situ measurement

Although the time-of-flight image and its density fluctuations can reveal rich information

about the long-range order, the measurement can only extract information from the mo-

mentum space of the lattice system. The direct observation of atoms and their density

distribution in situ has been a challenge for many years.

Recent progress in this area has been made: the site-resolved optical imaging of single

atoms has been demonstrated in lattices with large spacing [41] and in sparsely populated

one-dimensional arrays [42]; imaging of 2D arrays of ‘tubes’ with large occupations with

an electron microscope [43] and optical imaging systems [44]. Most recently, the density

profile up to a single site resolution was measured experimentally for a thin layer of atoms

in a two dimensional lattice [45] and the high-resolution measurement of the density pro-

file in both SF and MI states in two dimension have been also achieved [46, 47].

The in situ measurements make it possible to directly study the observables in real

space and real time. It makes it possible to directly study the onsite number fluctuations.

It provides new ways of studying the phase diagram. For example, the variance of the local

chemical potential can be controlled through the trapping potential. In the trapped system,

the density develops a plateau corresponding to integer filling fractions in the MI state and

the width of the plateau is related to the width of the MI loops in the phase diagram [47].

It is also possible to directly observe the dynamics. In Refs. [45, 46], the atomic tunneling

between the lattice site is directly recorded and the tunneling rate is measured for different

lattice depths.
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Chapter 2

Time evolving block decimation method

2.1 Basic TEBD method

2.1.1 State decomposition

The time evolving block decimation (TEBD) method is originally developed in the context

of quantum information, as a method to simulate quantum computations that involve

only a limited amount of entanglement [48]. In the context of quantum information, this

method describes a chain of qubits coupled to their neighboring qubits. The total Hilbert

space H is a product of the Hilbert space of each qubit, which are two-dimensional vector

spaces with the qubit states, |0〉 and |1〉, as the orthonormal basis. The TEBD method is

soon extended to simulate a wide range of one dimensional quantum many-body models

outside quantum information and have shown to be an effective tool to study the static

and dynamical properties of quantum many-body models [50].

Here, we discuss how the TEBD method is applied to simulate one-dimensional Hubbard-

type models. The Hubbard-type models are similar with qubit systems in the sense that

its Hilbert space H can be decomposed as a product of local Hilbert spaces,

H = ⊗Ml=1Hl. (2.1)

Here, l refers to the lth lattice site and M is the number of sites. The local Hilbert space

at site l, Hl , has a local dimension of d, d = 2 for fermionic systems and d is infinite for

bosons. The orthonormal basis in H is expressed as the tensor product of the Fock state on
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each site, |j1〉|j2〉 · · · |jM 〉. Any state |Ψ〉 in H is represented as a superposition of the basis,

|Ψ〉 =
d∑

j1,j2,...,jM =1

cj1,j2,...,jM |j1〉|j2〉 · · · |jM 〉, (2.2)

where cj1,j2,...,jM is the superposition coefficient. The dimension of the superposition coef-

ficients grows like dM and are very expensive to calculate for a large system. For example,

in a system of 100 lattice sites with a local dimension of 2, the dimension of the Hilbert

space is as large as dM = 2100 ∼ 1033. It is necessary to introduce some kind of truncation

that can greatly reduce the coefficient space, yet effectively simulate the system.

In the TEBD method, this truncation is inspired by the measure of entanglement. Ac-

cording to the Schmidt decomposition (SD), the decomposition of a state |Ψ〉with respect

to the bipartite splitting of the system at site l, i.e. [1, . . . , l − 1, l] : [l + 1, l + 2, . . . ,M ] is

written as

|Ψ〉 =
χl∑
αl=1

λ[l]
αl
|ΦA
αl
〉|ΦB

αl
〉. (2.3)

Here, the vector λ[l]
αl and χl are the coefficients and rank of the Schmidt decomposition. The

states |ΦA
αl
〉 form an orthonormal basis for subsystem A of lattice sites [1, . . . , l − 1, l]. The

states |ΦB
αl
〉 form an orthonormal basis for subsystem B of lattice sites [l + 1, l + 2, . . . ,M ].

The Schmidt coefficients λ[l]
αl satisfy

∑
αl

|λαl
|2 = 1 (2.4)

and

〈ΦA
αl
|Ψ〉 = λ[l]

αl
|ΦB
αl
〉. (2.5)

The Schmidt coefficients are closely related to the eigenvalues of the reduced density ma-
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trices of subsystems,

ρA = TrB(|Ψ〉〈Ψ|) =
∑
αl

∣∣∣λ[l]

αl

∣∣∣2 |ΦA
αl
〉〈ΦA

αl
|, (2.6)

and

ρB = TrA(|Ψ〉〈Ψ|) =
∑
αl

∣∣∣λ[l]

αl

∣∣∣2 |ΦB
αl
〉〈ΦB

αl
|, (2.7)

where TrB denotes the partial trace over subsystem B and TrA the partial trace over sub-

system A.

The Schmidt rank χl is often regarded as a measure of entanglement in quantum in-

formation theory [51, 48]. Large values of χl usually means more entangled subsystems

A and B. For χl = 1, the state |Ψ〉 can be written as a tensor product of |ΦA〉 and |ΦB〉,

which means subsystems A and B are separable (not entangled). For all possible bipartite

splittings, the maximum possible value of χl is dM/2, when the bipartite splitting is at the

center of the system.

State decomposition: Based on the Schmidt decomposition, the TEBD method introduce

the following way to decompose the state |Ψ〉 of Eq. 2.2,

cj1,j2,...,jM =
χ∑

α1=1

χ∑
α2=1

· · ·
χ∑

αM−1=1

Γ[1]j1
α1

λ[1]
α1

Γ[2]j2
α1α2

λ[2]
α2
· · ·

×λ[M−2]
αM−2

Γ[M−1]jM−1
αM−2αM−1λ

[M−1]
αM−1

Γ[M ]jM
αM−1

. (2.8)

This decomposition is composed of M tensors {Γ[1],..., Γ[M ]} and M − 1 vectors {λ[1],...,

λ[M−1]}. The index jl in Γ[l] corresponds to the local basis state |jl〉 and take values in {1,

..., d − 1} and the indices αl in Γs and λs takes values in {1,..., χ}. Expect for Γ[1] and Γ[M ],

all Γs are rank-3 tensor with the dimension of χ × d × χ. The matrices Γ[1] and Γ[M ] have

the dimension of χ × d. The vector λ[l] has χ elements, which are ordered in a decreasing

order, i.e. λ
[l]
1 ≥ λ

[l]
2 ≥ ... ≥ λ

[l]
χ . The total number of parameters in all Γs and λs is

(M − 2)dχ2 + (M − 1)χ+ 2dχ, which scales like M(dχ2 + χ) for large M .

For an arbitrary state |Ψ〉, χ can scale exponentially with M and the total number of
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parameters after the decomposition is comparable to dM . However, for states where χ

scales linearly with M , this decomposition requires only ploy(M ) parameters and is much

more efficient than the direct diagonalization. This means that the state decomposition

in the TEBD method is efficient for a less entangled state, where the Schmidt rank χ �

dM/2. Fortunately, for certain one dimensional many-body models, the ground state and

low energy excitation states satisfy such condition. In [49], it is shown that the Schmidt

coefficients λ[l]
α decay roughly exponentially with index α for the ground and low energy

excitation states,

λ[l]
α ∼ exp(−Kα). (2.9)

This state decomposition directly gives the Schmidt decomposition. For a state |Ψ〉

represented by Eqs. 2.2 and 2.8, the Schmidt decomposition at site l is given by,

|Ψ〉 =
χ∑

αl=1

λ[l]
αl
|ΦA
αl
〉|ΦB

αl
〉, (2.10)

where the states |ΦA
αl
〉 and |ΦB

αl
〉 are given by,

|ΦA
αl
〉 =

χ∑
α1=1

χ∑
α2=1

· · ·
χ∑

αl−1=1

Γ[1]j1
α1

λ[1]
α1

Γ[2]j2
α1α2
· · ·

×λ[l−1]
αl−1

Γ[l]jl
αl−1αl

|j1〉|j2〉...|jl〉, (2.11)

and

|ΦB
αl
〉 =

χ∑
αl+1=1

χ∑
αl+2=1

· · ·
χ∑

αM−1=1

Γ[l+1]j1
αlαl+1

λ[l+1]
αl+1

Γ[l+2]j2
αl+1αl+2

· · ·

×λ[M−1]
αM−1

Γ[M ]jM
αM−1

|jl+1〉|jl+2〉...|jM 〉. (2.12)

Besides its relationship with Schmidt decomposition, the state decomposition also pro-

vides an efficient way for local operations. In the following section, we discuss how local
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operations are carried out for the decomposed state.

2.1.2 Single-site and two-site operations

For most one-dimensional Hubbard-type models, the Hamiltonian is written as a sum of

only single-site and two-site operations,

H =
M∑
l=1

Hl =
M∑
l=1

(K [1]
l +K

[2]
l ), (2.13)

where K [1]
l is some single-site operator at site l and K [2] is some two-site operator that

involves usually nearest-neighbor or next-nearest-neighbor sites. Here, we only discuss

the single-site and double-site operations, but the method can be easily extended to the

three- or higher-site operations. However, as we shall see in the discussion that the com-

putational cost grows rapidly for higher-site operations. It is reasonable to expect that the

TEBD method is most efficient for models with localized operations.

Single-site operation: For a single-site operator O at site l,

O =
∑
jl,kl

Ojlkl
|jl〉〈kl|, (2.14)

only Γ[l] needs to be updated, and the new state is given by

Γ[l]jl
αl−1αl

=
d∑

kl=1

Ojl
k′l

Γ[l]k1
αl−1αl

. (2.15)

Nearest-neighbor operation: For a operator Q of two neighboring sites, l and l + 1,

Q =
∑

Q
jljl+1

klkl+1
|jl〉|jl+1〉〈kl+1|〈kl|, (2.16)

we need to update the tensors Γ[l], Γ[l+1] and λ[l]. To explain the update, we first rewrite

the state |Ψ〉 into four state, the states before site l, on site l, on site l+ 1 and after site l+ 1 :

1) an orthonormal basis for sites [1...l − 1] represented by |α〉,
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|α〉 =
χ∑

α1=1

χ∑
α2=1

· · ·
χ∑

αl−1=1

Γ[1]j1
α1

λ[1]
α1

Γ[2]j2
α1α2
· · ·

×λ[l−2]
αl−1

Γ[l−1]jl−1
αl−1α |j1〉|j2〉...|jl−1〉; (2.17)

2) the Fock state basis for site l, |j〉;

3) the Fock state basis for site l + 1, |k〉;

4) an orthonormal basis for sites [l + 2, ...,M ], represented by |γ〉,

|γ〉 =
χ∑

αl+2=1

χ∑
αl+3=1

· · ·
χ∑

αM−1=1

Γ[l+2]j1
γαl+2

λ[l+2]
αl+2

Γ[l+3]j2
αl+2αl+3

· · ·

×λ[M−1]
αM−1

Γ[M ]jM
αM−1

|jl+1〉|jl+2〉...|jM 〉. (2.18)

Together, the state |Ψ〉 is written as

|Ψ〉 =
χ∑

α,β,γ=1

d∑
j,k=1

λ[l−1]
α Γ[l]j

αβλ
[l]
β Γ[l+1]k

βγ λ[l+1]
γ |α〉|j〉|k〉|γ〉. (2.19)

If we introduce a rank-4 tensor

Θjk
αγ =

χ∑
β=1

λ[l−1]
α Γ[l]j

αβλ
[l]
β Γ[l+1]k

βγ λ[l+1]
γ , (2.20)

the expression for |Ψ〉is further simplified as

|Ψ〉 =
χ∑

α,γ=1

Θjk
αγ |α〉|j〉|k〉|γ〉. (2.21)

Now when the two-site operator Q is applied, Q is acting on the rank-4 tensor Θ. Let Θ̃ be

the updated and renormalized Θ after applying Q,
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Θ̃jk
αγ =

∑
j′,k′ Q

jk
j′k′Θ

j′k′
αγ∥∥∥∑j′,k′ Q

jk
j′k′Θ

j′k′
αγ

∥∥∥ . (2.22)

To update Γ[l], Γ[l+1] and λ[l] one just need to find Γ̃[l], λ̃[l] and Γ̃[l+1] that satisfy,

Θ̃jk
αγ =

χ∑
β=1

λ[l−1]
α Γ̃[l]j

αβ λ̃
[l]
β Γ̃[l+1]k

βγ λ[l+1]
γ . (2.23)

The new tensors Γ̃[l], λ̃[l] and Γ̃[l+1]can be found through the singular value decomposition

(SVD) of Θ̃. Specifically, we construct a χd× χd matrix T ,

T(j−1)×χ+α,(k−1)×χ+γ = Θ̃jk
αγ (2.24)

and through the single value decomposition we obtain,

T = UΛV ∗, (2.25)

where U is an χd× χd unitary matrix, Λ is an χd× χd diagonal matrix with non-negative

real numbers on the diagonal, and V ∗ is the conjugate transpose of V , an χd × χd unitary

matrix. The SVD is performed numerically with only the first χ columns of U , the first χ

diagonal elements of Λ (in decreasing order) and the first χ rows of V as the output result,

T(j−1)×χ+α,(k−1)×χ+γ =
∑χ

β=1 U(j−1)×χ+α,βΛβVβ,(k−1)×χ+γ . (2.26)

The values of Γ̃[l]j
αβ , λ̃

[l]
β , Γ̃[l+1]

βγ are determined as,

Γ̃[l]j
αβ =

U(j−1)×χ+α,β

λ
[l−1]
α

, λ̃
[l]
β = Λβ, Γ̃[l+1]

βγ =
Vβ,(k−1)×χ+γ

λ
[l+1]
γ

. (2.27)

Next-nearest-neighbor operator: In the TEBD simulation, the next-neighboring operator

cannot directly be apply to its corresponding sites, instead the site in between should also

be included. To apply one next-neighboring operator as a two-site operator while main-
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taining the tensor product sequence in Eq. 2.8, totally three nearest-neighbor operations

are needed. To illustrate the three operations, let’s assume V be an operator acting on site

l and l + 2,

V =
d∑

kl,kl+2=1

V
jljl+2

klkl+2
|jl〉|jl+2〉〈kl+2|〈kl|. (2.28)

The three steps of applying V on the state |Ψ〉are:

1) Exchange the state at site l + 1 with the state at site l + 2 by applying the swapping

operator at the site l + 1. The swapping operator at an arbitrary site l is defined as

Q[l]
swap =

∑
j′l ,jl,j

′
l+1,jl+1

δjl,j′l+1
δjl,j′l+1

|jl〉|jl+1〉〈j′l+1|〈j′l|, (2.29)

where δx,y is the Dirac delta function δ(x − y). Since the swapping operator is a nearest-

neighbor operator, it is directly applied to the state.

2) Apply V as a nearest-neighbor operator on the swapped state (note now the state at

site l + 1 corresponds to the state at site l + 2 before the swapping),

V =
d∑

kl,kl+2=1

V
jljl+2

klkl+2
|jl〉|jl+1〉〈kl+1|〈kl|. (2.30)

3) Exchange the updated state at site l + 1 with the state at site l + 2 again by applying

the swapping operator Q[l+1]
swap.

After the three steps, we effectively apply V onto the state at site l and at site l+2. Note

that the stat at site l+ 1 is also updated as a result of swapping. For further discussion, see

also Ref. [52].

2.1.3 Time evolution

In the TEBD method, both the ground state and the dynamic calculation are based on the

application of the time evolution operator, or the propagator, which is decomposed into

a series of local operations. This can be done because the Hamiltonian consists only local

operations, i.e.
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H =
∑
l

Hl,l+s, (2.31)

where s is the number of sites around site l. If s = 1, the Hamiltonian involves only

single-site and nearest-neighbor operations. If s = 2, the Hamiltonian involves single-

site, nearest-neighbor and next-nearest-neighbor operations. To illustrate the basic steps

involved in the time-evolution simulation, we will first explain the case of s = 1, where

the Hamiltonian involves only single-site and nearest-neighbor operation.

Let the time propagator be exp(−iHt) with the Plank constant ~ = 1. Because Hl,l+1

does not necessarily commute with each other, the time propagator can not be written

directly as a product of exp(−iHl,l+1t),

exp(−iHt) = exp(−i
∑
l

Hl,l+1t) 6=
∏
l

exp(−iHl,l+1t). (2.32)

But notice that Hl,l+1 and Hl+2,l+3 always commute with each other. If we divide the

Hamiltonian into the even site part Heven and the odd site part Hodd,

H = Heven +Hodd =
∑
even l

Hl,l+1 +
∑
odd l

Hl,l+1. (2.33)

every Hl,l+1 commutes with each other within Heven and Hodd. Using the second order

Suzuki-Trotter expansion [54] we can rewrite the propagator for a very short time δt as

follows,

e−iHδt = e−iHoddδt/2e−iHevenδte−iHoddδt/2 +O(δt3).

=
∏
odd l

e−iHl,l+1δt/2
∏
even l

e−iHl,l+1δt
∏
odd l

e−iHl,l+1δt/2 +O(δt3). (2.34)

In this way, exp(−iHδt) is decomposed into a product of local operations e−iHl,l+1δt , each

of which can be applied onto the state |Ψ〉through a nearest-neighbor operation. For our

calculation, δt is on the order of 0.01 and the error introduced by this expansion is on the
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order of 10−6. To further reduce the error, one use higher-order Suzuki-Trotter expansions

[54].

Imaginary-time evolution: the imaginary time propagation method states that the ground

state is the state that the imaginary-time evolution of a superposition of eigenstates con-

verges into as the imaginary time, τ = −it, goes to infinite,

|Ψ〉gs = lim
τ→∞

exp(−Hτ)|Ψint〉
‖exp(−Hτ)|Ψint〉‖

. (2.35)

In the TEBD method, the initial superposition of eigenstates can either be the input state,

or the state after applying the propagator with a very large δt ∼ 10. We assume such states

are a superposition of many eigenstates, including the ground state, of the system.

2.1.4 Observables

To numerically study the static and dynamical properties, it is essential to calculate various

quantities, such as the total energy , the density distribution and varies correlation func-

tions. Generally speaking, there are two ways for calculating the quantities in the TEBD

method: 1) through calculating reduced density matrix and 2) through the inner tensor

product. For quantities that involve only single-site or local sites, it is often more efficient

to calculate it through the reduced density matrix. For quantities that involves many sites

or far-apart sites, the inner tensor product of the whole state is more efficient. As an ex-

ample, we explain the calculation of the energy E, the density distribution ρ(x) and the

correlation functions. The calculation of other quantities can be easily extended from the

examples.

Single-site observables: for the density distribution and other single-site observables,

they are calculated through the reduced density matrix at the corresponding site. Let ρl be

the reduced density of state at site l, ρl is directly calculated from Γ[l], λ[l]and Γ[l+1],

ρl =
∑

αj ,αj+1

λ[l]
αj

Γ[l]jl
αjαj+1

λ[l+1]
αj+1

(λ[l]
αj

Γ[l]j′l
αjαj+1λ

[l+1]
αj+1

)∗|jl〉〈j′l|. (2.36)
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The density n(x) at site l is then calculated as

n(x) = 〈Ψ|n̂l|Ψ〉 = Tr(n̂lρl), (2.37)

where n̂l is the number operator at the site l.

Two-site observables: For the total energy E and other observables that involves only

neighboring site operators, the calculation is based on the reduced two-site density matrix,

ρl,l+1, which can be written in terms of the rank-4 tensor Θ in Eq. 2.20 ,

ρl,l+1 =
∑

αl,αl+2

Θjljl+1
αlal+2

(
Θ
j′lj
′
l+1

αlαl+1

)∗
|jl〉|jl+1〉〈j′l+1|〈j′l|. (2.38)

The total energy E is a sum of local two-site operations over all lattice sites,

E =
∑
l

El =
∑
l

〈Ψ|Hl,l+1|Ψ〉 = Tr(Hl,l+1ρl,l+1). (2.39)

For an observable involving sites l and l+k, where k > 1 , the reduced two-site density

of state can be found as a inner product of the Γs and λs between l and l+k. For very large

k, this calculation can be numerically expensive.

Correlation functions: for the calculation of the correlation function 〈O†l1Ol2〉, one first ap-

ply the single-site operator Ol2 onto |Ψ〉which updates the state to |Ψ1〉 (non-normalized)

and then apply O†l1 onto |Ψ1〉 and update the state to |Ψ2〉. The correlation function is then

the tensor inner product between |Ψ〉 and |Ψ2〉,

〈Ψ|O†l2Ol1 |Ψ〉 = 〈Ψ|O†l1 |Ψ1〉 = 〈Ψ|Ψ2〉, (2.40)

where

|Ψ1〉 = Ol1 |Ψ〉, |Ψ2〉 = O†l2 |Ψ〉. (2.41)

This method can be easily adapted for nth order correlation functions, 〈Ψ|O†lnOln−1 ....O
†
l2
Ol1 |Ψ〉,

by applying operators in the sequence of Ol1 , O†l2 , .., Oln−1 , , O†lnonto |Ψ〉,
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〈Ψ|O†lnOln−1 ....O
†
l2
Ol1 |Ψ〉 = 〈Ψ|O†lnOln−1 ...O

†
l2

(Ol1 |Ψ〉)

= 〈Ψ|O†lnOln−1 ...
[
O†l2 (Ol1 |Ψ〉)

]
...

= 〈Ψ|
{
O†lnOln−1 ...

[
O†l2 (Ol1 |Ψ〉)

]}
. (2.42)

In our calculation, this method have been applied to calculate the pairing, anti-pairing and

the four point correlations. Now, we have explained all basic components of the TEBD

method and in the next subsection, we will discuss some of additional methods to improve

the efficiency and extend the application.

2.2 Extended TEBD method

2.2.1 Number conservation

In the TEBD method, the computational cost is mainly determined by the size of the trun-

cated Hilbert space. The truncated Hilbert space can be further reduced by taking into

account the existence of conserved quantities in the studied systems. In our work, we are

interested in the ultra-cold atoms in a confined lattice system, it is reasonable to assume

that the total number of atoms in the system is conserved. Here we briefly describe how

the number conservation can be implemented in the TEBD method.

In the Bose-Hubbard model, the orthonormal basis for the local Hilbert space at an ar-

bitrary site l is the Fock state |jl〉, where jl corresponds to the number of particles at site

l. Let the total number to be fixed be at N , the number conservation require that the or-

thonormal basis for the system, |j1〉|j2〉...|jM 〉, satisfy
∑

l jl = N . This is easy to satisfy for

the input state in the TEBD method. The question is how to preserve the number conser-

vation through the time propagation. Now because the propagation is decomposed into a

series of local two-site operations (see Eq. 2.34), the number conservation is preserved as

long as the two-site operation conserves the total number of particles.
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To implement the number conservation in the two-site operation, it is obvious that the

local two-site Hilbert space should only contain the states whose particle number equals

to the total particle numberN minus the particle number of the rest of the lattice. Now the

problem here is that the local states are linked with the states on the left and right through

tensor products. The numbers of particles on the right and left are not numbers, but a

vector. To illustrate this problem, let us first label the lattice sites from the left to right with

numbers 1, 2, 3,....M and consider a two-site operation at an arbitrary site l. The state |Ψ〉

is written as product of states |α〉, |j〉, |k〉, |γ〉 as in Eq. (2.21).

Let NL[l](α) be the total number of particles in state |α〉and let NR[l+1](γ) be the total

number of particles in state |γ〉. The vector NL[l] contains all the possible total number of

the particles on the left of site l and the vectorNR[l+1] contains all the possible total number

of the particles on the right of site l + 1. The states |j〉 and |k〉must satisfy

j + k +NL[l](α) +NR[l+1](γ) = N . (2.43)

Now let the total number of particles in state |α〉and state |j〉 be NJ(α, j) ≡ j + NL[l](α)

and the total number of particles in state |γ〉and state |k〉 be NK(α, k) = k +NR[l](α). The

biggest and smallest possible value in N1 are

NJ,M = max [NJ(α, j)] = min
[
max(NL[l]) + (d− 1), N −min(NR[l+1])

]
, (2.44)

NJ,m = min [NJ(α, j)] = max
[
min(NL[l]), N −max(NR[l+1])

]
; (2.45)

where d is the local dimension for all sites. Similarly, we find the biggest and smallest

possible values of N2 are

NK,M = max [NK(λ, k)] = min
[
max(NR[l]) + (d− 1), N −min(NL[l+1])

]
, (2.46)

NK,m = min [NK(λ, k)] = max
[
min(NR[l]), N −max(NL[l+1])

]
. (2.47)

There are totally (NJ,M−NJ,m+1) possible values for the total particle number for state
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|α〉 and state |j〉combined. We therefore reconstruct Θ̃ into (NJ,M − NJ,m + 1) matrices,

B[v], where v = 1, 2.., (NJ,M −NJ,m + 1). The matrix element B[v]
mn is equal to Θ̃jmkn

αmγn where

{jm, αm, kn, γn} be themth combination of j and α that satisfy j+NL
[l]
α = v+NJ,m−1 and

the nth combination of k and γ that satisfy k+NR
[l]
γ = N − v−NJ,m + 1. We also store the

indices {jm, αm, kn, γn} in matrices LL[v] and LR[v] as

LL
[v]
m,1 = jm, LL

[v]
m,2 = αm, LR

[v]
n,1 = kn, LR

[v]
n,2 = αn. (2.48)

The SVD of B[v] yields a series of unitary matrices U [v], V [v] and the diagonal matrices

S[v] whose diagonal elements are the single values for B[v],

B[v] = U [v]S[v]V [v]∗. (2.49)

Now, we have a series of matrices S[v] whose diagonal elements are the values for λ̃[l]. But

we cannot assign the values in S[l] to λ̃[l] arbitrarily, because the elements in λ̃[l] must be in

the decreasing order. In other words, the value of λ̃[l]
β can only be βth largest value in all

S[l]s. Its corresponding column vectors in U [v] and V [v] should be used to update Γ̃[l]j
αβ and

Γ̃[l]k
βγ .

To satisfy this requirement, λ̃[l]
β , Γ̃[l]j

αβ and Γ̃[l+1]k
αβ are determined in the following way.

First, let us assume S[y]
x is the βth largest element in all S[v]. We then immediately have

λ̃
[l]
β = S[y]

x . (2.50)

The xth column of matrix U [y] is then used to update Γ[l]j
αβ ,

Γ[l]j
αβ =

U
[y]
mx

λ
[l−1]
α

(2.51)

where the indices j and α are determined by LL[y] ,
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j = LL
[y]
m,1, α = LL

[y]
m,2. (2.52)

Similarly, the xth row of matrix V [y]∗ is used to update Γ[l+1]k
βγ ,

Γ[l+1]k
βγ =

V
∗[y]
xn

λ
[l+1]
γ

, (2.53)

where the indices k and γ are determined by LR[y],

k = LR
[y]
n,1, γ = LR

[y]
n,2. (2.54)

For the elements in λ̃[l], Γ̃[l] and Γ̃[l+1] that are not updated in the above procedure, they are

all set to zero. Tensors λ̃[l], Γ̃[l] and Γ̃[l+1] are the updated λ[l], Γ[l] and Γ[l+1] and the number

conserved two-site operation is completed. Repeat the procedures for each application of

exp(−iHl,l+1δt), the total number is conserved during the whole time propagation opera-

tion.

2.2.2 One dimensional two-component Hamiltonian

The straightforward way of presenting the two-component system is to double the local

Hilbert space dimension, but this is not favorable because of the high computational cost

for increasing the local dimension. A more efficient way is to map the two-component

Bose-Hubbard model (Eq. 3.1) onto the one-component Hamiltonian with next-nearest-

neighbor hoppings and nearest-neighbor interactions,

H = −t
2N−2∑
l=1

(b†l bl+2 + h.c.) + U12

∑
odd l

nlnl+1

+
U

2

2N∑
l=1

nl(nl − 1), (2.55)
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whereN is the number of sites in the original two-species Hamiltonian. In this one-species

Hamiltonian, there are 2N sites, each of which is indexed by l. The odd sites l correspond to

species 1 and the even sites to species 2. Hopping between neighboring sites−t b†a,iba,i+1 in

Eq. 3.1 is mapped onto a next-nearest-neighbor hopping−t b†l bl+2 in Eq. 2.55. Similarly, the

inter-species onsite-interaction U12n1,in2,i is mapped onto the nearest-neighbor interaction

U12nlnl+1. This type of mapping has been successfully applied to treat the two-legged

Bose-Hubbard model [53].

The reason why the mapping reduces the cost is explained as follows. The cost in the

TEBD method scales as Md3χ3. For the two-species system with N sites, M = N , and

with a local dimension of D for each species, i.e. d = D2 for two species, the cost scales

as MD6χ3. On the other hand, for the mapped Hamiltonian with 2N sites, M = 2N , and

with a local dimension ofD, the cost only scales as 2ND3χ. In our calculation, we set d = 3

or 5. The mapping makes the computation five to ten times faster.

To apply the time propagation of the mapped Hamiltonian, we need to split the Hamil-

tonian into three parts as H = Hint +Hodd
hop +Heven

hop , where

Hint =
N∑
m=1

[U12n2m−1n2m + Un2m−1(n2m−1 − 1)

+Un2m(n2m − 1)] , (2.56)

Hodd
hop = −t

∑
oddm

(b†2m−1b2m+1 + b†2mb2m+2 + h.c.),

Heven
hop = −t

∑
even m

(b†2m−1b2m+1 + b†2mb2m+2 + h.c.).

Subsequently, we use the second-order Suzuki-Trotter expansion to decompose e−iĤδ as

e−iHδ = e−iHintδ/2e−iH
odd
hop δ/2e−iH

even
hop δe−iH

odd
hop δ/2

×e−iHintδ/2 +O(δ3), (2.57)

Each of the operators e−iHintδ/2, e−iH
odd
hop δ/2, and e−iĤ

even
hop δ can be decomposed into a product

of two-site operators, which can be efficiently applied to the matrix product state |Ψ〉.
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We use swapping techniques to apply the next-nearest-neighbor operators e−iH
odd
hop δ/2 and

e−iĤ
even
hop δ.

2.3 Efficiency and accuracy estimation

Based on our previous discussion on the TEBD method, it is easy to see that the complexity

of the TEBD method is proportional to ∼ Mχ3d2, where M is the system-size and χ3d2 is

the complexity of a two-site operation. For a given system-size and a local dimension, the

computational cost of the TEBD method depends largely on the value of χ. To reduce the

computational cost, it is ideal to set χto a small value.

From the viewpoint of accuracy, larger χ is favorable because it includes more entan-

gled states into the decomposition. In fact, for a system of system-size M and fixed local

dimension d, the TEBD method is exact if χ is fixed at the maximum value of dM/2. But

this value of χmakes the TEBD method even less efficient than direct diagonalization. The

optimal value of χ is crucial for achieving the desired accuracy with minimum computa-

tional cost. Usually, we determine the accuracy by studying the dependence of λαon α.

Numerically, we find that λα decreases very fast as α increases. For the value of χ chosen

in our calculation, the value of |λχ| is less than 10−12.

For models involving bosonic particles, where a cut-off is needed for the local dimen-

sion d, the accuracy of the calculation also depends on the value of d. The accuracy can

be estimated by compare the calculations with local dimensions of d and d + 1. When d

is large enough for the state considered, there is very small difference in the calculation

results between d and d+ 1.

2.4 Example: one-dimensional Bose Hubbard model

To demonstrate the capabilities of the TEBD method, we would like to discuss the compu-

tation of the ground state of one dimensional Bose-Hubbard model in different parameter

regions. As explained in Chap. 1, the model is written in terms of the bosonic creation and

annihilation operators b†i and bj for particles on site j,
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H = −t
M−1∑
j=1

(b†jbj+1 + h.c.) +
M∑
j=1

Unj(nj − 1)−
M∑
j=1

[
µ− Ω(j − jc)2

]
nj . (2.58)

Here we assume a closed lattice system of M lattice sites and the lattice constant a. The

operator nj is the number operator on site j, nj = b†jbj ; The parameter t is the hopping

parameter, U is the onsite interaction parameter. As a result of the implementation of the

total number conservation, the chemical potential µ is set to zero. Instead, we use N to

present the total number of the particles in the system. The term Ω(j − jc)2 corresponding

to the harmonic trap that is located at the center of the lattice, jc = (M + 1)/2.

As is discuss in the previous chapter, there are two phases that exist in the Bose-

Hubbard model: Mott insulator (MI) and superfluid (SF). In this section, we will discuss

the TEBD calculation of the ground state in the MI and SF regions in one dimension. We

will show the calculation of the one body density matrix Gi,j = 〈b†ibj〉 , the momentum

distribution n(k) and the on-site number fluctuations ∆j =
√

(nj − 〈nj〉)2.

2.4.1 Homogeneous System

when the trap frequency Ω = 0, the model corresponding to a homogeneous lattice system

with hard-wall boundary conditions. In the SF region, the number fluctuations is very

high. The asymptotic behavior of the one-body reduced density matrix, Gij = 〈b†ibj〉,

is algebraic, Gij ∼ |i − j|−1/K , where K is the Luttinger parameter (Chapter 1). In the

MI region, the number fluctuation is low and the Green’s function decays rapidly. The

asymptotic behavior of Gij is exponential, Gij ∼ exp(−α|i − j|), where α is the decay

constant. As an example, we choose a system of 50 lattice sites and totally 50 particles.

The local dimension for each site d is 5, which corresponds to the maximum occupation

number of 4. The parameter χis set to 50.

In Fig. 2.1, we show the behavior of the number fluctuation, and density distribution,

〈nj〉, as a function of location j in the SF and MI region. The density is at unit filling for

both cases, while the fluctuation in the SF region is much higher than the one in the MI
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Figure 2.1: Number fluctuations ∆j and density distribution 〈nj〉 for U/t = 1(a), 4(b),
10(c), 20(d). The total number of particle is 50. The density distribution is uniformly 1
except for at the boundary. In (a) and (b), the system is in the SF state, this is reflected by
the large number fluctuation. In (c) and (d), the system is in the MI state and the number
fluctuations are much reduced.

region. In Fig. 2.2 and 2.3, we discuss the behavior of the one body reduced density matrix

for U/t =1, 2, 10 and 20. For U/t = 1 and 2, the system is in the SF state. In both cases,

Gij decays algebraically. For U/t = 2, Gij has a larger decay power. This is the result

of the increased U/t in (b) compared with (a). As U/t continues to increase, Gij becomes

short-ranged and the decay behavior changes to exponential. This is the case for U/t = 10

and 20, where the system is in the MI state. In Fig. 2.3, we study the decay behavior of

Gij by considering i = 25 and j = 25, 26, ..50. We can use the power law and exponential

fit function to extract the decay parameters. From the decay power, one can determine the

Luttinger parameter K. We find that K decreases as U/t increases till around 2, where the

transition to MI happens and the decay behavior changes to the exponential decay. In the

MI region, Gij decays very fast from the diagonal j = i. This decay can approximated by

a exponential function, exp(−αx). The decay constant α becomes bigger for stronger U/t.
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Figure 2.2: One-body density matrix Gij = 〈b†ibj〉 for U/t = 1(a), 4(b), 10(c) and 20(d). The
parameters are the same as in Fig. 2.1. In (a) and (b) the system is in the SF state. In (c)
and (d) the system is in the MI state. In (a), Gij decays very slowly and the correlation
function is forced to zero by the boundary condition at the edge of the lattice. In (b), Gij
decays faster than in (a) but still qualifies as algebraic decay (see also Fig. 2.3) with a larger
decay power. In (c) and (d), Gijbecomes short-ranged and the decay behavior changes to
exponential.
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Figure 2.3: Algebraic and exponential fit for Gij . Here we choose i = 25, j = 25, ...50. The
function G25,j represent the decay behavior of the off-diagonal one body density matrix.
Through the fit, one can obtain the Luttinger parameter K, K = 9.4 in (a) and K = 6.4
in (b). The decay length X0 can be found for the exponential decay, X0 = 1.5 in (c) and
X0 = 0.75 in (d).

2.4.2 Harmonic trap

The trap introduces a local potential variance on each site. To understand the effect of

the local potential, one can use the local density approximation and treat local potential

variance as the chemical potential at site j, µj = µ−Ω(j−jc)2. The state at site j is then the

state of the homogeneous system with chemical potential of µ−Ω(j− jc)2 and the same U

and t. In the SF-MI phase diagram, the MI state exists within lobes of µand t/U . In each of

the MI lobe, the density is fixed as a integer filling as µchanges. This means that the local

compressibility ∂n/∂µj should be zero. In other words, in MI state, the density is held at

an integer filling despite of the trap. The density in the SF state on the other hand will vary

over lattice sites and reflect the trap potential.

In Figs. 2.4 and 2.5, we show the number fluctuations, the density distribution and one

body density matrix for the trapped system at U/t = 1 and U/t = 20. The parameters

for this calculation is Ω = 0.016 and N = 25. The trap frequency is strong enough to

confine the particle within the trapping potential and hard-wall boundary conditions can
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Figure 2.4: Density distribution and number fluctuations in a trapped system. In (a), the
system is in the SF state with U/t = 1 In (b), the interaction is strong, U/t = 20. The
density forms a plateau near the center of the trap. This is where the MI state is formed.
The fluctuations are reduced at the plateau area as the result of the MI order. The SF state
still exists at the edge of the trap.

be neglected. For U/t = 1, the whole system is in a SF state. The number fluctuation is high

[Fig. 2.4 (a)] and the functionGi,j shows long-range correlation [Fig. 2.4 (b)]. For U/t = 20,

the MI state is at the center of trap, while the SF state is in the edge. The incompressibility

of the MI state leads to the plateau at the center of the trap in the density distribution [Fig.

2.4 (b)]. The difference between the MI and SF states can be seen behavior of the number

fluctuation in Fig. 2.4 (b) and in the one-body density matrix Gi,j in Fig. 2.5 (b).

2.4.3 Accuracy estimation

As is discussed in section 2.3, the truncation parameter χ plays an important role of de-

termine the accuracy of the TEBD method. In Fig. 2.6 and 2.7, we show examples of λ[l]
α

as a function of l and α for the SF and MI states discussed here. We find that in the SF

region, λ[l]
α decays to the order of 10−4 when α approaches to χ = 50 and in the MI region,

λ
[l]
α decays to the order of 10−10 as α approaches χ = 50. The decay becomes faster and

faster as U/t increases. In the limit of U/t→∞, the ground of the model is the Fock state,

which is the basis vector state for the TEBD method. Even for the SF region, where the

ground state is closer to the many-body state of the lowest single-particle momentum, the

value of λ[l]
α still decays fast (see Fig. 2.7). Throughout the whole parameter region, we

find that reasonable accuracy can be achieved with χ ∼ M , where M is the systemsize.
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Figure 2.5: One-body density matrix in a trapped system. The parameters in (a) and (b)
are the same as in Fig. 2.4. In (a), the system is in the SF state. The density matrix is
reduced dramatically to zero near the edge of the cloud. In (b), the off-diagonal decay is
exponential in the MI region. The decay changes to algebraic as a result of the SF state at
the edge.

The computational cost for one parameter set is around 3 CPU hours for this system-size,

which is much more efficient than the direct diagonalization.

In Fig. 2.8, we show the behavior of λ[l] in a trapped system. In Fig. 2.8(a), the whole

system is in a SF state. The value of λ[l] decays faster and the edge of the trap and the

slowest at the center of trap. A slight different behavior is found in Fig. 2.8 (b), where λ[l]

near the center decays much faster than that at the edge. This is the result of a MI state

near the center. Overall, we found reasonable accuracy for this calculation as well.
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Figure 2.6: Vector λ[l] as a function of l and α. The decomposition rank χ is 50 and the size
of the system is 50 lattice sites. In (a) and (b), the value of λ decreases to around 10−4 for
α = 50 at the center. In (c) and (d), the value of λdecays rapidly as α increases and is less
than 10−9 at α = 50.
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Chapter 3

One dimensional binary Bose mixtures in optical lattices (I):

paired and counter-flow superfluidity

3.1 Introduction

Bose-Einstein condensation [4] is a fascinating many-body phenomenon, which demon-

strates the significance of quantum statistics at low temperature. Identical bosons can oc-

cupy the same single particle state and are in fact more likely to do so than classical parti-

cles. At a critical temperature, a gas of bosons undergoes a phase transition towards a state

in which a macroscopic fraction of the particles occupy the lowest energy state, creating

a condensate. Such a state was realized in ultra-cold atom systems in [5], demonstrating

that the technology of cooling and manipulating atoms had reached a level of control with

which novel states of matter could be generated and studied.

In the case of a Fermi gas, the Pauli exclusion principle prevents such a phenomenon

to occur, because no single particle state can be more than singly occupied. However, the

phenomenon of condensation can still occur in Fermi systems via a different mechanism:

fermions can form pairs to create composite bosons. The bosonic particles then form a

condensate of pairs. Conventional superconductors, for example, were understood as a

condensate of electron pairs [17]. In ultra-cold atoms, fermionic condensates of this type

were created in [55].

Interestingly, this mechanism of condensation of pairs is not limited to fermionic sys-

tems but can occur in bosonic systems as well. In fermionic systems, formation of Bosonic

pairs necessarily occurs before condensation. In bosonic systems this mechanism can be

favored energetically, and will typically be in competition with single particle condensa-

tion.

In [56, 57], two types of composite bosons were predicted for a binary Bose mixture in
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Figure 3.1: Sketch of a condensate of pairs. Atoms of each species (red/green) pair together
and form a paired superfluid (PSF) state.

a optical lattice: pairs and anti-pairs. For attractive mutual interactions, a bosonic mixture

can form pairs of atoms which then form a paired superfluid (PSF) state, as is visualized in

Fig. 3.1. For repulsive interactions, at special fillings, the atoms can form anti-pairs, which

can be interpreted as pairs of one atom of one species and one hole of the other species.

These anti-pairs can then generate a counterflow superfluid (CFSF) state, visualized in

Fig. 3.2. Most of their simulations were performed for two dimensional systems.

In one-dimensional gases quantum phases have quasi-long range order (QLRO), rather

than true long range order. QLRO of an operator O(x) is defined as follows: The correla-

tion function R(x) = 〈O†(x)O(0)〉 falls off algebraically as R(x) ∼ |x|α−2 as |x| → ∞ with

α > 0. Various order parameters O(x) will be defined in the text. In contrast in higher

dimensional bosonic systems correlation functions can have true long range order, where

correlation functions approach a finite value. Power-law scaling in a 1D optical lattice has

been observed in [23]. They observed the Tonks-Girardeau regime of strongly interacting

bosons.

In this chapter we consider a two-component Bose mixture held in an optical lattice that

only allows atoms to hop in one spatial dimension. We ask the question of how the super-

fluid as well as other phases or orders can be realized. We assume that the two species of

the mixture have the same filling ν, restricted to the range 0 < ν ≤ 1. The phase diagram

of these mixtures is determined using Tomonaga-Luttinger liquid theory [24], which gives

the universal phase diagram in terms of a few effective parameters. Based on the universal
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Figure 3.2: Sketch of a condensate of anti-pairs. Here, atoms of one species are strongly
anti-correlated with atoms of the other species, creating a counterflow superfluid (CFSF)
state. These composite bosons can also be thought of as a pair of one atom of one species
and one hole of the other species.

phase diagram, we generate the numerical phase diagram using the time-evolving block

decimation (TEBD) method discuss in Chapter 2. With these two approaches we find that

CFSF can exist for ν = 1/2 (half-filling) and repulsive interaction, whereas PSF can exist

for ν < 1 and attractive interaction (see also [58]).

We also find that charge density wave (CDW) quasi-order can coexist with both PSF

and CFSF, as well as single particle superfluidity (SF). The regimes in which CDW and

SF quasi-order coexist constitute a quasi-supersolid phase [39, 18]. Similarly, the regimes

where CDW and PSF quasi-order coexist is a quasi-supersolid of pairs and in the case of

CFSF, a quasi-supersolid of anti-pairs. Previous work has predicted coexistence of CDW

and PSF for 1D Bose mixtures [59, 39] and bi-layer 2D lattice bosons with long-range inter-

actions [60], and that of CDW and CFSF for 1D Bose-Fermi mixtures [18, 61].

We then address the question whether PSF and CFSF can be realized and detected

in experiment. To simulate the effect of a global trap, we numerically study a mixture

confined by a harmonic trap and find that PSF and CFSF can indeed exist in such trapped

systems. Their existence can be detected through various measurements. The PSF phase

can be detected by using a Feshbach ramp, similar to what has been used in BEC-BCS

experiments [55], which generates a quasi-condensate signal in the resulting molecules.

The CFSF phase can be detected by applying a π/2 pulse followed by Bragg spectroscopy.
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This generates a quasi-condensate signal in the structure factor. Time-of-flight expansion

can also be used to show the absence of single particle superfluidity in PSF and CFSF.

Measuring the structure factor via Bragg spectroscopy can be one way of detecting CDW

order.

This chapter is organized as follows: in Section 3.2, we introduce the model that is used

to describe the system; in Section 3.3, we use Tomonaga-Luttinger liquid theory to derive

the phase diagram. The numerical results are discussed in Section 3.4. Specifically, phase

diagrams of the homogeneous system are presented in Section 3.4.1, and the realization

and detection of PSF and CFSF are discussed in Section 3.4.2. We conclude in Section 3.5.

3.2 Two-component Bose Hubbard model

Ultra-cold bosonic atoms in optical lattices can be well described by Bose Hubbard mod-

els [10]. Here, we consider a mixture of two types of atoms confined to a one-dimensional

lattice system. The Hamiltonian of such a system is given by

H = −t
∑
a=1,2

N−1∑
i=1

(b†a,iba,i+1 + h.c.) + U12

N∑
i=1

n1,in2,i

+
U

2

∑
a=1,2

N∑
i=1

na,i(na,i − 1). (3.1)

We denote the different types of atoms with index a = 1, 2, and the lattice site with index

i. We assume that the two species have equal particle density ν ≤ 1, the same intra-species

interaction U > 0 and hopping parameter t > 0. The inter-species interaction is given by

U12. The operators b†a,i and ba,i are the creation and annihilation operators for atoms of

type a and site i and na,i = b†a,iba,i are the number operators.

3.3 Luttinger liquid approach

The universal behavior of this system can be found within a Tomonaga-Luttinger liquid

description [24]. First, we switch to a continuum description, ba,i → ba(x), and express the
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operators ba(x) through a bosonization identity, according to Haldane [25, 62]:

ba(x) = [n+ Πa(x)]1/2
∑
m

e2miΘa(x)eiφa(x), (3.2)

where the real-space density of each species is n = ν/aL and aL is the lattice constant.

The lattice sites are at positions x = iaL. This expression is a phase-density representation

of the Bose operators, in which the square root of the density operator has been written

in an intricate way. The fields Π1,2(x) describe the small amplitude and the long wave

length density fluctuations. The fields Θ1,2(x) are given by Θ1,2(x) = πnx+ θ1,2(x), where

θ1,2(x) = π
∫ x

dyΠ1,2(y). The fields φ1,2(x) describe the phase, and are conjugate to the

density fluctuations Π1,2(x).

The contact interactions between the densities in 3.1 written in Haldane’s representa-

tion generate an infinite series of terms that contain exp(2m1i(πnx+θ1)+2m2i(πnx+θ2)),

where m1 and m2 are some integers. A term of this form can only drive a phase transi-

tion, if the oscillatory part 2πm1nx + 2πm2nx vanishes for all lattice sites. This leads to

the requirement m1ν +m2ν = m3, with m3 another integer [59]. As a further requirement,

small integers m1 and m2 are necessary, because the scaling dimension of the term scales

quadratically in m1 and m2.

For the range 0 < ν ≤ 1, we find that there are three different cases: unit-filling (ν = 1),

half-filling (ν = 1/2), and non-commensurate filling (ν 6= 1 and ν 6= 1/2). It can be checked,

using renormalization group arguments as below, that higher forms of commensurability

do not generate new phases, but that either phase separation or collapse is reached first.

Our numerical findings are consistent with this.

Non-commensurate filling. The action of the system, assuming a short-range spatial cut-

off r0, at non-commensurate filling is given by [24, 62, 39]:

S =
∫
d2r[

∑
j=1,2

1
2πK

(
(∂vτθj)

2 + (∂xθj)
2
)

+
U12aL
π2v~

∂xθ1∂xθ2 +
2gσ

(2πr0)2
cos(2θ1 − 2θ2)] (3.3)
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The first line of the action is characterized by a Luttinger parameter K and a velocity v,

contained in r = (vτ, x). This part of the action, without the coupling between the two

fields θa(x), generates a linear dispersion ω = v|k|, where . v should therefore be inter-

preted as the phonon velocity. The Luttinger parameterK is a measure of the intra-species

interaction U . We will be interested in the regime U & t, in which we have approximately

[63]

K ≈ 1 +
8t
U

sinπν
π

. (3.4)

The velocity v can also be related to the parameters of the underlying Hubbard model by

v ≈ vF (1− 8tν cosπν/U) (3.5)

where vF is the ‘Fermi velocity’ of an identical system of fermions, vF = 2(aLt/~) sinπν,

and kF is the ’Fermi wave vector’, kF = πn. Here, ~ is the Planck constant.

The two fields θa(x) are coupled by the inter-species interaction. The interaction term

U12n1n2 in the underlying Hubbard model generates both the term containing ∂xθ1∂xθ2,

as well as the backscattering term [24, 59] containing cos(2θ1 − 2θ2). The action S is only

well-defined with a short-range cut-off r0. It is proportional to 1/n. At this scale, gσ is

approximately given by

gσ = U12aL/(v~). (3.6)

We diagonalize the quadratic part of the action by switching to the symmetric and

antisymmetric combinations θS/A = 1√
2
(θ1 ± θ2). For the two sectors we find

KS/A = (1/K2 ± U12aL/(v~πK))−1/2 (3.7)

as effective Luttinger parameters. To lowest order inU12 this givesKS/A ≈ K∓U12aLK
2/(2πv~).

The effective velocities are vS/A = v
√

1± U12aLK/(πv~). Collapse (phase separation) of
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the superfluid phase is when vS/A is imaginary. We note that KS diverges when collapse

(CL) is approached, and that KA diverges as the system approaches phase separation (PS).

The anti-symmetric sector contains the nonlinear backscattering term cos(2
√

2θA). To

study its effect, we use an RG approach. We renormalize the short-range cut-off r0 to a

slightly larger value, and correct for it at one-loop order. The resulting flow equations are

given by [24]:

dgσ
dl

= (2− 2KA)gσ (3.8)

dKA

dl
= − g2

σ

2π2
K3
A (3.9)

The flow parameter l is given by

l = loge

(
r′0
r0

)
, (3.10)

where r′0 is the new cut-off that has been created in the RG process.

The flow equations 3.8 and 3.9 have two qualitatively different fixed points: Either gσ

diverges, which in turn renormalizes KA to zero, or gσ is renormalized to zero for finite

KA = K∗A. In the latter case, the action S is quadratic in θS and θA. For the parameter KS ,

we use the bare value given in Eq. 3.7.

As mentioned in the introduction, we can determine the phase diagram by studying

the long-range scaling behavior of correlation functions, 〈O†(x)O(y)〉, of various order pa-

rameters O(x). In particular, the single-particle superfluid order parameter is OSF = ba(x)

with a = 1, 2. The CDW order is related to the 2kF wavevector component of the density

operator, OCDW = na. PSF is described by OPSF = b1(x)b2(x), and CFSF by OCFSF =

b†1(x)b2(x). In the homogeneous system, it suffices to study

G(x) = 〈b†a(x)ba(0)〉, a = 1, 2 (3.11)

Rn,a(x) = 〈na(x)na(0)〉, a = 1, 2 (3.12)

RS(x) = 〈b†1(x)b†2(x)b1(0)b2(0)〉 (3.13)
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Figure 3.3: Phase diagram of a bosonic mixture at non-unit and non-half-filling. For at-
tractive interactions U12 and K < 2 the system can form a paired superfluid state, in the
regime labeled PSF and PSF(CDW). This phase can coexist with CDW order for weaker in-
teractions. For large repulsive (attractive) interactions U12 the system phase separates (PS)
(collapses (CL)). For the remaining regime the system shows single particle superfluidity
(SF). This can coexist with CDW order, resulting in a quasi-supersolid (SS) regime.

RA(x) = 〈b†1(x)b2(x)b1(0)b†2(0)〉. (3.14)

We find that away from collapse (CL) and phase separation (PS), the correlation functions

scale either algebraically or exponentially. For algebraic scaling, we have

G(x) ∼ |x|αSF−2,

αSF = 2− 1/(4KS)− 1/(4KA) (3.15)

Rn,a(x) ∼ cos(2kFx)|x|αCDW−2,

αCDW = 2−KS −KA (3.16)

RS(x) ∼ |x|αPSF−2, αPSF = 2− 1/KS (3.17)

RA(x) ∼ |x|αCFSF−2, αCFSF = 2− 1/KA. (3.18)

where the scaling exponents αO are determined by KS and KA after the RG flow. For the

case that gσ diverges in Eqs. 3.8 and 3.9 and KA is undefined, these expressions can still
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be used. We set KA to zero, and find that αCDW and αPSF are well defined. Hence Rn,a

and RS still show algebraic scaling. On the other hand, αCFSF and αSF become −∞ and

G and RA scale exponentially.

We can identify regimes where different scaling exponents are positive based on the

relationship between the scaling exponents and KS/A after the flow. This determines the

different quasi-long range orders that are present. The resulting phase diagram is shown

in Fig. 3.3, as a function K and U12aL/(v~), as appearing in the action in Eq. 3.3. These

two parameters determine the initial values of the flow equations through equations 3.7

and 3.6.

We can estimate the phase boundary between PSF and SF. For small U12aL/(v~) this

boundary is near the point KA = 1 and gσ = 0. For that limit, Eq. (3.9) can be linearized to

dKA

dl
= − g2

σ

2π2
(3.19)

and the expression A = π2(1 − KA)2 − g2
σ/4 becomes an invariant of the flow. From the

properties of the RG flow of a Berezinskii-Kosterlitz-Thouless transition (see e.g. [24, 27]),

the phase boundary is given by A = 0 and gσ < 0. Using the expressions of KA and v in

terms of the Hubbard parameters, we estimate the critical interaction U12 for PSF to occur

at

U12

U

∣∣∣∣∣
c

= −32
t2

U2
sin2(πν). (3.20)

The phase boundary between supersolid (SS) and SF has been derived in Ref. [39].

Half-filling. In the case of half-filling, another non-linear term has to be introduced in

the action

Suk =
2guk

(2πr0)2

∫
d2r cos(2θ1 + 2θ2). (3.21)

This term describes Umklapp scattering. At the initial cut-off r0 ∼ 1/n, guk is approxi-

mately given by U12aL/v. In addition to the RG flow in the antisymmetric sector we now
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Figure 3.4: Phase diagram of a bosonic mixture at half-filling. In addition to the phases
that appear in Fig. 3.3, the system now develops a counterflow superfluid (CFSF) phase,
which can coexist with CDW order.

also have

dguk
dl

= (2− 2KS)guk (3.22)

dKS

dl
= −

g2
uk

2π2
K3
S (3.23)

in the symmetric sector. Proceeding along the same lines as for the non-commensurate

case, we find the phase diagram shown in Fig. 3.4.

We estimate the SF-CFSF phase boundary in the same way as the PSF-SF boundary. We

find

U12

U

∣∣∣∣∣
c

= 32
t2

U2
sin2(πν). (3.24)

Unit-filling. At unit-filling we have to introduce a term of the form

S1 =
2g1

(2πr0)2

∫
d2r (cos(2θ1) + cos(2θ2)) . (3.25)
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The resulting RG flow for this system is given by

dguk
dl

= (2− 2KS)guk + α3
g2

1(KA −KS)
2π

(3.26)

dgσ
dl

= (2− 2KA)gσ + α3
g2

1(KS −KA)
2π

(3.27)

dg1

dl
= (2− KS +KA

2
+ α3

gukKS + gσKA

π
)g1 (3.28)

dKA

dl
= − g2

σ

2π2
K3
A −

g2
1

16π2
(KS +KA)K2

A (3.29)

dKS

dl
= −

g2
uk

2π2
K3
S −

g2
1

16π2
(KS +KA)K2

S (3.30)

where α3 is some non-universal parameter [64]. The behavior of this set of equations de-

pends strongly on the initial value of g1. For small values of g1, four phases can be stable:

Single-particle superfluidity, CFSF, PSF and a Mott phase. For large values only single-

particle SF and MI are stable. We determine with our numerical approach, that the Hub-

bard model falls into the second category, i.e. there is only a single-particle SF and a Mott

state at unit-filling.

Having established the universal behavior of the system from Tomonaga-Luttinger liq-

uid theory, we now want to connect the phase diagram with the parameters in the Hub-

bard model. The expressions 3.4 and 3.5, which relate the Luttinger parameter K and the

velocity v to microscopic parameters of the Hubbard model, are only approximate, no full

analytic expression is known. In addition, only some phase boundaries are predicted re-

liably, because we use perturbative RG in the gσ. We expect that the analytic calculation

only predicts the general structure of the phase diagram, as well as the decay behavior

of the correlation functions. To obtain the phase diagram in terms of the parameters in

the Hubbard model, we need to use numerical methods. The next section describes the

numerical determination of the phase diagram.

3.4 Numerical approach

We use the time-evolving-block-decimation (TEBD) method to obtain an approximate ground

state solution. We considerN lattice sites with hard-wall boundary conditions and express
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RS(x) RA(x) G(x) Rn,a(x)
MI E E E A
SF A A A A

CFSF E A E A
PSF A E E A

CDW A or E A or E A or E A (α < 2)

Table 3.1: Definitions of MI, SF, CFSF and PSF orders in terms of the large x behavior of the
correlation functions RS(x), RA(x), and G(x), Rn,a(x). A: algebraic decay of the form x−α;
E: exponential decay of the form e−βx. A correlation function is said to exhibit quasi-order
when it is subject to algebraic decay with α < 2. In this system, the algebraic decay for
RS , RA and G always has α < 2, while Rn,a can have α ≥ 2. CDW quasi-order exists only
when Rn,a is described by α < 2.

the Hubbard parameters in units of the intra-species interaction U . The number of sites N

is equal to 80, unless otherwise noted. In our numerical analysis, we limit the particle

number on each site and each species to two for filling ν 6 0.8 and four otherwise. Once

we obtain the ground state, we calculate the energy, density distributions, correlation func-

tions, and the structure factor to identify the quasi-long range order and other properties

of the ground state.

For example, to determine whether a SF, PSF, or CFSF is present, we study the decay

behavior of the correlation functions, G(x), RA(x), and RS(x), defined in Eqs. 3.11, 3.14,

and 3.13, respectively. If both RA and RS decay algebraically, the system is in a single-

particle superfluid (SF) state. If both are exponential, the system is in a Mott insulator(MI)

state. If RS or RA decays algebraically, the system is in the PSF or CFSF state, respectively.

These relationships are summarized in Table 3.1.

In Fig. 3.5(a) and (b), we show the decay behavior of the correlation functions in the

PSF and CFSF phase, respectively. As the Hamiltonian is discrete, the correlation func-

tions are calculated as discrete functions: G(i, j) = 〈b†a,iba,j〉, RS(i, j) = 〈b†1,ib
†
2,ib1,jb2,j〉, and

RA(i, j) = 〈b†1,ib2,ib1,jb
†
2,j〉. For the PSF phase, RA(i, j) decays exponentially, while RS de-

cays algebraically. It is also worthwhile to notice that the single-particle Green’s function

decays exponentially, implying the absence of single-particle superfluidity. For the CFSF

phase, RA decays algebraically while RS decays exponentially. Single-particle superfluid-

ity is again absent.

Behavior ofKS andKA: We study the decay behavior ofRS andRA in more detail. Using
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Figure 3.5: Correlation functions RA, RS , and G on a logarithmic scale as a function of
distance |i − j|. The index i is 40, the center of the 80 lattice sites. The squares are the
numerical data. The blue lines are exponential fits to the data and red dotted lines are
algebraic fits. Note that the scale of the vertical axis of the graphs differs by orders of
magnitude. In (a), we show an example for the paired superfluid phase at ν=0.3, t = 0.02U ,
and U12 = −0.16U . RA decays exponentially and RS decays algebraically. The single-
particle correlation function decays exponentially, implying the absence of single-particle
superfluidity. In (b), we show an example for the counterflow superfluid phase at ν = 0.5,
t = 0.02U , and U12 = 0.2U . The anti-pair correlation function RA decays algebraically,
while the pair correlation function decays exponentially. Single-particle superfluidity is
again absent. The algebraic fits deviate from the data around |i − j| ≈ 40, due to the
boundary conditions of our numerical calculations.
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the fit function, c · |i−j|α−2, where c and α are the fitting parameters, we obtain the power-

law exponent α and, hence, the Luttinger parameters KS and KA based on Eqs. 3.17 and

3.18. In Fig. 3.6(a), we show these KS and KA as a function of U12, for non-commensurate

filling. A Luttinger parameter is formally set to zero when its correlation function decays

exponentially.

For U12 < −0.06U , RA decays exponentially, while for U12 > −0.06U , RA decays alge-

braically, and KA. increases as U12 increases. The system undergoes a PSF to SF transition

at U12 = −0.06U . On the other hand, KS decreases monotonically for U12 > −0.6U . For

U12 < −0.6U the numerics failed to converge to a homogeneous state. This indicates that

the system collapses, and we therefore cannot extract a Luttinger liquid parameter. We can

observe charge density wave (CDW) order for a range of U12/U in Fig. 3.6. According to

Eq. 3.16, this order exists when KS +KA < 2. In fact, it co-exists with the SF, PSF or CFSF

order. At half-filling, KS will go to zero at a critical, positive value of U12. This indicates

the transition from the SF to CFSF phase.

Finite-size effect: The behavior ofKA/S stated above is affected by the size of the system.

Finite size effects can ’smooth out’ a sudden change in KA/S at the phase transition. This

effect can be estimated from the RG flow calculation by integrating Eqs. 3.8 and 3.9 out

to a finite value l rather than to infinity. In Fig. 3.6(b), we show an example of a finite-l

RG calculation in the vicinity of the PSF-to-SF transition. We see that as l increases, KA

dramatically changes for the attractive U12. In the limit of l → ∞, KA becomes discon-

tinuous and ’jumps’ from 0 to 1 at U12 ≈ −0.01U . This is where the PSF-to-SF transition

occurs. This transition is a Berezinskii-Kosterlitz-Thouless transition [27, 24]. In order to

compare the RG result with our TEBD result, we associate the system size N with the flow

parameter l, based on the relation in Eq. 3.10. The cut-off r0 is the lattice constant aL and

r′0 = NaL. For N = 80 we have l = 4.4 and we find that the RG and TEBD are in good

agreement. The regime between U12/U ≈ −0.06 and −0.01 is a cross-over regime due to

the finite size of the system.

Collapse and phase separation: For large |U12|, the system approaches collapse or phase

separation. According to Tomonaga-Luttinger liquid theory, KS → ∞ as the system ap-

proaches collapse and KA → ∞ as the system approaches phase separation. As seen in
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Figure 3.6: (a) KS and KA as a function of U12 as extracted from the fit of the correlation
functions, RS and RA. The filling ν is 0.7 and t/U is 0.02. Around U12/U ≈ −0.06, the anti-
pair correlation function changes from algebraic to exponential decay. This corresponds to
the transition from the PSF to SF phase. When RA decays exponentially, KA is formally set
to zero. ForKa+Ks . 2, the system has CDW order. Error bars are one standard deviation
uncertainties obtained from the power-law fit to the numerical data. (b) Comparison ofKA

obtained from our RG and TEBD calculations. The red square connected by lines are the
TEBD results while all other lines are determined from the RG flow with flow parameter
l = 3, 4, 7, and 10, where l is defined in Eq. 3.10. The error bars are as in panel (a). The PSF-
to-SF transition obtained from TEBD is around U12/U ≈ −0.06, while the RG calculation
shows that for l = 10, the transition occurs near U12/U ≈ −0.01. We interpret the regime
between U12/U ≈ −0.06 and −0.01 the cross-over region.
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Figure 3.7: Phase diagram for a homogeneous system with 80 sites and the hopping param-
eter t = 0.02U as a function of filling ν and inter-species interaction U12/U . The horizontal
axis shows three disconnected regions in U12/U . The solid lines are the estimated phase
boundaries based on the TEBD results and the dotted line is the PSF-to-SF phase bound-
ary predicted by our RG calculation (see Eq. 3.20). For attractive interaction U12 . −0.06U ,
the system forms a paired-superfluid (PSF). The state collapses(CL) for U12 . −0.7U . For
U12 & −0.06 and U12 . U the system shows single-particle superfluidity (SF). The system
phase-separates (PS) for U12 & 1 and forms two single-particle superfluids (SF). Open cir-
cles are the points whereKS+KA < 2 and charge density wave (CDW) order coexists with
a superfluid phase (SF,PSF, or CFSF). At half and unit filling there exist special phases. For
repulsive interaction U12 & 0.08U and half-filling, the system forms a counterflow super-
fluid (CFSF). For unit filling, we find a Mott-Insulator (MI) phase for interactions |U12| . U .
Finally, in the PS region at half- and unit-filling, the system forms two individual MI states.
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Fig. 3.6, we indeed find such a tendency in our TEBD calculations. For U12 > 0.8U (not

shown), KA increases rapidly to values around 10, indicating a possible phase separation.

For U12 < −0.6U , due to the slow decay of the correlation functionRS and the finite-size of

our system, we are unable to extract an accurateKS from the numerical result. On the other

hand, we observe a peaked density distribution for U12 < −0.6U , indicating a collapse. In

the phase separation regime, G(x) has algebraic decay except for ν = 0.5 or 1, where it has

exponential decay. An algebraic decay implies two spatially-separated single-species su-

perfluids while the exponential decay implies two spatially-separated Mott insulators.[65].

3.4.1 Phase diagram

We study the phase diagram as a function of filling ν and parameters of the Hubbard

Hamiltonian. Assuming a positive U , the system can be fully characterized in terms of ν,

t/U , and U12/U . Our results are shown in Fig. 3.7 for a fixed hopping parameter and in

Fig. 3.8 for half filling.

3.4.1.1 Phase diagram at a fixed hopping parameter

In Fig. 3.7 we show the phase diagram for filling fractions between 0 and 1 and the inter-

action U12/U between -1.1 and 1.1. The symbols correspond to numerical data points at

which the phases have been characterized. Different markers represent the different or-

ders. The orders are determined from the decay behavior of the three correlation functions

RA, RS , and G.

For weak attractive inter-species interaction, −0.06 < U12/U < 0, the system is in a

SF state. As U12 grows more attractive, paired superfluidity (PSF) occurs. The critical U12

is largest, ∼ −0.08U , at half-filling and gradually decreases away from half-filling. This

phase boundary differs from that predicted by our RG calculation (Eq. 3.20), plotted as

the dotted line in Fig. 3.7. This discrepancy is the result of the finite-size effect discussed

in Fig. 3.6(b). In the SF to PSF cross-over regime, charge density wave (CDW) order can

coexist. According to the phase diagram Fig. 3.3, for attractive interaction, CDW order

can co-exist only with PSF order. In our numerical work, we observed the CDW order
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slightly outside the numerical phase boundary of PSF but within the RG phase boundary

of PSF. The sub-regime where CDW and PSF coexist ends when U12/U . −0.4. When the

inter-species attraction is comparable to the intra-species repulsion, U12 . −U , the system

collapses (CL) and no long-range order is present.

For repulsive inter-species interaction and U12 < U , the system is in a SF state for

all non-commensurate fillings. Within the SF regime, there is a smaller parameter re-

gion where CDW order coexist with the SF order. This subregime is a quasi-supersolid

regime. The boundary between a normal superfluid and a quasi-supersolid is estimated

by RG calculation in Ref. [39]. At half-filling, counterflow superfluidity (CFSF) occurs

when 0.08 . U12/U . 1. Within the CFSF regime, the CDW order can coexist, forming

a quasi-supersolid of anti-pairs. It also worthwhile to point out that at half-filling, CDW

order only exists within the PSF and CFSF regimes.

At unit filling, our numerical results do not show evidence of PSF or CFSF for any U12.

We find a Mott insulator (MI) state for |U12| < U .

3.4.1.2 Phase diagram at half-filling

In Fig. 3.8, we show the phase diagram at half filling as a function of U12/U and t/U . From

this diagram, we find that the border between PSF and SF and the border between PSF and

CL approach each other as t increases. Similarly, the border between the CFSF and SF and

the border between CFSF and PS approach each other. In fact, the PSF and CFSF phases

end around t ∼ 0.16U . Within the PSF and CFSF regimes, CDW order can co-exist. In the

phase separated regime, the separated single-species ensembles form two individual Mott

insulating states for t . 0.14U and two individual SF states for t > 0.14U .

We can compare this phase diagram with the half-filling phase diagram in Fig. 3.4

obtained from Tomonaga-Luttinger liquid theory. Especially, we can compare the loca-

tion of the phase boundary between SF and PSF(CFSF). To do so, we plot the RG phase

boundaries, described by Eqs. 3.20 and 3.24, onto our phase diagram. The area near the

two boundaries is interpreted as the cross-over regime where finite-size effects modify the

phase boundary.
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Figure 3.8: Phase diagram at half-filling as a function of U12/U and t/U . The solid lines are
estimated phase boundaries from the TEBD calculation and the dotted lines are the phase
boundaries predicted by the RG calculation (see Eqs. 3.20 and 3.24). For large repulsive
interaction, the system phase separates (PS) and for large attractive interaction, the system
collapses (CL). For moderate interactions and for t/U . 0.2, the system shows paired
superfluidity (PSF) on the attractive side and counterflow superfluidity on the repulsive
side. Both PSF and CFSF can coexist with charge density wave (CDW) order when t .
0.1U .
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3.4.2 Realization and detection

Having established the phase diagram for the homogeneous system, we now discuss how

to realize and detect the PSF and CFSF phases. First, we need to modify the Hubbard

Hamiltonian in Eq. 3.1 because in any ultra-cold atom experiment an additional trapping

potential is present. We add a harmonic potential, Ω(j − jc)2(n1,j + n2,j), where j is the

site index and jc is the index at the center of the system. The TEBD method is used to find

the ground state. We consider a system of 80 lattice sites and adjust the total number of

particles and the trap frequency so that the number of particles is negligible at the edge of

the lattice.

We again determine the orders of the system by studying the correlation functions

in Table 3.1. We find that, in spite of the presence of the trap, the correlation functions

still show exponential or algebraic scaling away from the edge of the lattice. In fact, a

correlation function can have different decay behavior in different parts of the trap. We also

find that SF, PSF, and CFSF still exist. The remainder of this article focuses on experimental

signatures that distinguish between these orders by calculating the density distribution,

the time-of-flight image after an expansion, or the structure factor for Bragg spectroscopy.

Density distribution: We find that in a trapped system PSF and CFSF can only exist

when the density distribution satisfies certain conditions. For PSF, the density of each

species at the center of the trap, ncenter, must be less than one atom per site or equivalently

per lattice constant aL. (The density is largest at the center.) For CFSF, ncenter must satisfy

ncenteraL = 1/2. Once such conditions are satisfied, the critical value of U12 for PSF and

CFSF is close to the one for a homogeneous system (See Figs. 3.7 and 3.8).

In Fig. 3.9(a) we show density distributions for three attractive interactions U12 and

a hopping parameter equal to the one used for Fig. 3.7. For all attractive interactions,

the density distributions of each species are the same. For more attractive inter-species

interaction, the density distribution concentrates near the center of the trap. There is no

discontinuous change in the density distribution when the system goes from SF to PSF.

In Fig. 3.9(b) we show the density distribution for U12 = 0.2U . In this case in the center

of the trap, where the density distribution is constant or has a “plateau”, the system is in a
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Figure 3.9: Density distribution of a trapped system for t = 0.02U . (a) Attractive interac-
tion U12. The trap frequency is Ω = 1 × 10−5U and the number of atoms is 20 for each
species. For attractive interactions, the density distributions of the two species are iden-
tical. For U12 = −0.01U (curve I) the system is superfluid. For U12 = −0.11U (curve II)
and U12 = −0.21U (curve III), the system is in the paired superfluid (PSF) state. As U12 be-
comes more negative the distribution gradually shrinks in size. (b) Repulsive interaction
U12 = 0.2U with Ω = 8 × 10−5U and 30 atoms of each species. The red and green curves
correspond to the species, respectively. The density distribution has a ’plateau’ with half-
filling in the center of the trap. The system is in a counter-flow superfluid (CFSF) state.
The two species have weak interlocked density modulations around half filling.

CFSF state. The “plateau” is at half-filling consistent with predictions from a local density

approximation and noting that in Fig. 3.7 CFSF only occurs at ν = 1/2. Towards the edge,

where the density is decreasing sharply, it is in a SF state. The plateau implies that the

system is incompressible in the center.

Time of flight measurement: A widely used measurement technique in the field of ultra-

cold atoms is measuring the density of atoms after a time-of-flight (TOF) expansion. The

1D optical lattice potential and the harmonic trap are abruptly turned off at time T = 0

and the atoms expand freely afterwards. We calculate the density at time T , according to

na(x, T ) = 〈c†a(x, T )ca(x, T )〉 (3.31)

with a = 1, 2. The operators ca(x, T ) are related to the lattice operator ba,j according to

ba(x, T ) =
N∑
j=1

w(x− rj , T )ba,j , (3.32)
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Figure 3.10: Density distribution after a time-of-flight expansion. We assume 87Rb atoms
and use an expansion time of 0.03s. The hopping energy is t = 0.02U . Panel (a): For
attractive interaction U12, we show the TOF expansion of a SF state at U12 = −0.01U (red
line) and of a PSF state at U12 = −0.21U (green line). The two curves correspond to the
expansion of the densities shown as curve I and III in Fig. 3.9(a) The trap frequency is
Ω = 1×10−5U . Panel (b): For repulsive interaction, we show a TOF expansion of a SF state
at U12 = 0.01U and of a CFSF state at U12 = 0.21U . The trap frequency is Ω = 8× 10−5U .

where w(x, T ) =
√
d/
√

2π∆(T )2 exp(−x2/(4∆(T )2)) describes the free expansion from the

initial Gaussian wave-function of an atom in a lattice site and ∆(T )2 = d2 + iT~/(2m). The

parameter d is the width of the initial Gaussian state andm is the atomic mass. The density

distribution na(x, T ) is then given by

na(x, T ) =
N∑

j1,j2=1

w∗(x− rj1 , T )w(x− rj2 , T )G(j1, j2),

where G(j1, j2) is the single-particle Green’s function. In Fig. 3.10 we show examples of

TOF expansions of PSF, CFSF, and SF order. For the SF phase, we find a strongly peaked

interference pattern, reflecting the single-particle quasi-long range order. For both PSF and

CFSF phases, the TOF density shows a broad Lorentzian distribution, which is due to the

exponential decay of the single-particle Green’s function.

Feshbach ramp: In order to detect the superfluidity of pairs, we consider applying a

Feshbach ramp to pairwise project the atoms onto molecules formed by one atom from

each species, which is similar to detection of fermionic pairs in the BCS regime [55]. In

those experiments, a fast ramp across a Feshbach resonance was used, followed by a time-

of-flight expansion. The density distribution of the molecules showed the superfluidity of
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fermionic pairs. We propose a similar detection for bosonic pairs in PSF.

To give a simple estimate of a TOF image after a Feshbach ramp, we imagine that

bosons of different species on the same lattice site are converted into molecules. This leads

to the replacement b1,jb2,j → Mj , where Mj is the molecule annihilation operator. A TOF

density of the molecules at position x and time T is given by

nM (x, T ) =
N∑

j1,j2=1

w∗(x− rj1 , T )w(x− rj2 , T )Rs(j1, j2). (3.33)

In the expanding wave functionw(x, T ), the massm is replaced by the mass of the molecule.

We assume the same initial width d. In a more realistic estimate, the conversion efficiency

to molecules would not be 100%, but approximately given by the square of the overlap

of the molecular wave function and the single-atom wave functions. This leads to a re-

duced signal. The spatial dependence, however, remains the same. In Fig. 3.11, we see

an example of the density of molecules after TOF and, for comparison, the atomic den-

sity after TOF for the PSF state. The strongly peaked molecular distribution indicates the

quasi-condensate of the bosonic pairs. The single-atom density is a broad Lorentzian dis-

tribution, indicating the absence of single-particle SF.

Bragg spectroscopy: To detect the presence of CDW order, one can use Brag spectroscopy

[66, 67]. The quantity that is measured in those experiments is either the dynamic or static

structure factor. Here we calculate the static structure factor Sa(k) for species a = 1, 2. It is

defined as

Sa(k) =
1
N

∑
j1,j2

e−ikaL(j1−j2)(〈na(j1)na(j2)〉

−〈na(j1)〉〈na(j2)〉) . (3.34)

For wave vectors k near twice the “Fermi wavevector” kF , the structure factor S(k) ∼

||k|−2kF |1−αCDW with αCDW = 2−KS−KA [24]. In our system, KS +KA is always larger

than 1 and, thus, 1−αCDW is positive. Consequently, the structure factor does not diverge.

In the CDW regime with KS + KA < 2 the power 1 − αCDW , however, is less than one.
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This gives S(k) cusps at ±2kF when CDW quasi-long range order is present. In Fig. 3.12

we show examples of S(k) for a case with and without CDW.

Bragg Spectroscopy preceded by a π/2 pulse: To detect CFSF order, we propose the fol-

lowing detection method. It applies to the case that the mixture is composed of atoms in

different internal states rather than different atomic species. First, we apply a π/2 pulse,

which transfers the atoms into the superpositions b1/2,i → b±,i = (b1,i ± b2,i)/
√

2. We

then measure the structure factor, which now corresponds to the Fourier transform of the

density correlations Rn±(i, j) = 〈n±,in±,j〉 − 〈n±,i〉〈n±,j〉. In terms of the original b1/2,i

operators these density correlations are given by

Rn±(i, j) =
1
4
〈(n1,i + n2,i)(n1,j + n2,j)〉

−1
4

(〈n1,i〉+ 〈n2,i〉)(〈n1,j〉+ 〈n2,j〉)

+
1
2
〈b†1,ib2,ib

†
2,jb1,j〉 (3.35)

The last term in the above equation is the correlation functionRa(i, j) of the order parame-

ter of CFSF, b1,jb
†
2,j . In Fig. 3.13, we show the structure factor S+(k), the Fourier transform

of Eq. 3.35, as well as the Fourier transform of Ra(i, j). Both S+(k) and the Fourier trans-

form of Ra(i, j) have a cusp around k = 0. The cusp is due to the long-range correlations

of the anti-pairs in the CFSF. The two functions are nearly identical near k = 0, indicating

that the momentum distribution of anti-pairs can be measured by determining the struc-

ture factor S+(k) .

3.5 Summary

We have studied ground state properties of one-dimensional Bose mixtures in an optical

lattice using both Tomonaga-Luttinger liquid theory and the time-evolving block decima-

tion method. We first discussed the zero-temperature phase diagram in a homogeneous

system at different filling fractions and different parameter regimes. We have shown that

1D Bose mixtures in an optical lattice can have quasi-long range orders that include su-

perfluid, paired superfluid (PSF), counterflow superfluid (CFSF), and Mott insulator. We

69



also found that each type of superfluid order can coexist with charge density wave (CDW)

order and that in both PSF and CFSF phases single particle superfluidity (SF) is absent.

In addition, we discussed ways of realizing and detecting these phases experimentally.

We propose using a Feshbach ramp to probe the momentum distribution of pairs in the

PSF, which shows signatures of the quasi-condensate of pairs. To detect the CFSF for a

mixture composed of two atomic hyperfine states, we propose to measure the static struc-

ture factor by using Bragg spectroscopy preceded by a π/2 pulse. A sharp peak in the

structure factor was shown to be dominated by the contribution from the momentum dis-

tribution of anti-pairs in the CFSF phase. Finally, we suggest to detect CDW order with

Bragg spectroscopy.
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Figure 3.12: Structure factor at filling ν = 0.3. For U12 = −0.01U the system is in the SF
regime (dashed line) and for U12 = −0.07U the system is in the PSF regime (continuous
line). Cusps at |k| = 2πν only occur for U12 = −0.07U indicating the coexistence of CDW
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Chapter 4

One dimensional binary Bose mixtures in optical lattices (II):

noise correlation

In Chapter 1, we have discussed the study of noise correlations as a way of probing ultra-

cold atom systems. The noise correlations are measured as the spatial correlations of the

density in the fully expanded atomic cloud after turning off the trap. If atomic interactions

during the expansion can be ignored, one can use the noise correlation measurements to

infer momentum space correlations in the initial state. Such an analysis has been used to

demonstrate the phase transition between superfluid (SF) and Mott insulator (MI) states

[31, 32], as well as the formation of fermionic pairs [33]. In Refs. [38, 36], noise correlations

were shown to be an effective probe of such orders in 1D Fermi systems, for both one- and

two-component systems. Similar studies have been done for 1D bosonic systems, either in

the hard-core limit [40] or using Luttinger liquid (LL) theory [35]. In Ref. [35], the signature

of condensates and quasi-condensates was discussed in detail.

Noise correlations can also be used to study the phases of binary bosonic mixtures. In

the previous chapter, we established the phase diagram of a binary mixture exhibiting SF,

PSF, CFSF and MI orders, and we showed that each of the superfluid orders can coexist

with the CDW order. We also show that because the PSF and CFSF orders are the result

of inter-species pairing, they do not provide a signature in the momentum distributions of

the individual atomic species. In this paper, we show that noise correlation measurements

provide distinctive signals of both the PSF and CFSF orders. Ref. [71] shows that noise

correlations characteristic of the PSF/CFSF orders can be observed even in a system of

only four atoms. Here we calculate the noise correlation spectra from the ground state

obtain by the TEBD method, which is supported by analytical calculations based on LL

theory. We make appropriate comparisons between results for homogeneous and trapped

systems.
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To evaluate the noise correlations, we first assume ballistic expansion and long expan-

sion time and define the noise correlations as the density correlations in momentum space,

Gaa′(k, k′) = 〈na,kna′,k′〉 − 〈na,k〉〈na′,k′〉 (4.1)

where a, a′ are species indices (a, a′ = 1, 2), k, k′ are momenta, and na,k and na′,k′ are the

occupation operators in momentum space. We also consider the derived quantities Caa′(q)

and Daa′(q), defined as

Caa′(2q) =
∫
dk
〈na(k + q)na′(k − q)〉
〈na(k + q)〉〈na′(k − q)〉

, (4.2)

and

Daa′(2q) =
∫
dk
〈na(k + q)na′(q − k)〉
〈na(k + q)〉〈na′(q − k)〉

. (4.3)

Each of these quantities can capture the main features of the noise correlations for partic-

ular types of order and can be directly measured in experiments [32]. We will present all

our results first in the form of Gaa′(k, k′) and then use Caa′(q) and Daa′(q) to highlight the

key features.

This chapter is organized as follows: in Sec. 4.1, we first summarize the different quasi-

orders discussed in the previous chapter and introduce the noise correlations in such mix-

ture; in Sec. 4.2, we show our LL results and predict the generic signature of the noise

correlations for different orders. In Sec. 4.3, we present our numerical calculation of noise

correlations for both homogeneous and trapped systems. In Sec. 4.4 we summarize the

main features of the noise correlations for 1D binary Bose mixtures.

4.1 Noise correlations and quasi-orders

In previous chapter, we discuss the phase diagram for the binary Bose mixtures in opti-

cal lattices and show that the single-species superfluid (SF) has the order parameter ba(x)

(a = 1, 2) and its corresponding correlation functionG(x) = 〈b†a(x)ba(0)〉; the paired super-
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fluid (PSF) has the order parameter b1(x)b2(x) and its corresponding correlation function

RS(x) = 〈b†1(x)b†2(x)b1(0)b2(0)〉; the counter-flow superfluid (CFSF) has the order param-

eter b1(x)b†2(x) and its corresponding correlation function RA(x) = 〈b†1(x)b2(x)b1(0)b†2(0)〉.

The CDW order parameter is na(x) (a = 1, 2) and the corresponding correlation function

Rn,a(x) = 〈na(x)na(0)〉. The asymptotic behavior of the correlation functions at large x is

listed in Table. 3.1.

We calculate the noise correlations from the four-point correlation function:

Gaa′(k, k′) =
N∑

j1,,j2,j3,j4=1

Laa′(j1, j2, j3, j4)ei[kj12+k′j34] − 〈na(k)〉〈na′(k′)〉,

(4.4)

(4.5)

where j12 ≡ j1 − j2, j34 ≡ j3 − j4 and Laa′ is the four-point correlation function,

Laa′(j1, j2, j3, j4) = 〈b†a,j1ba,j2b
†
a′,j3

ba′j4〉. (4.6)

It is easy to see that the correlation functions RS , RA and Rn,a are the special cases of Laa′ ,

L12(j1, j2, j1, j2) = RS(j1, j2),

L12(j1, j2, j2, j1) = RA(j1, j2), (4.7)

Laa(j1, j2, j2, j1) = Rn,a(j1, j2) + na,j1 .

The noise correlation G12, therefore, contains the Fourier transform of RS and RA,

gS(k, k′) =
∑
j1,j2

RS(j1, j2)ei(k+k′)(j1−j2) (4.8)
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and

gA(k, k′) =
∑
j1,j2

RA(j1, j2)ei(k−k
′)(j1−j2) (4.9)

and Gaa contains the Fourier transform of Rn,a,

gn,a =
∑
j1,j2

Rn,a(j1, j2)ei(k−k
′)(j1−j2). (4.10)

If RS(j1, j2) decays as |j1 − j2|−1/KS , we find that gs scales as |k + k′|−1/KS . Similarly,

if RA decays as |j1 − j2|−1/KA , gA scales as |k − k′|−1/KA . For the PSF phase, we find that

gs(k, k′) is the dominant term of G12(k, k′) with a strong peak around k = −k′. This peak is

the signal of the PSF order. Similarly, for the CFSF phase, we find that the function gA(k, k′)

becomes dominant around k = k′ in G12(k, k′). The peak around k = k′ is the signal of the

CFSF order. These remarks are made to give the reader an intuitive interpretation of the

relationship between the noise correlations and the long-range orders. In the following

section, we will explain the calculation of the noise correlations via LL theory and show

that the features mentioned above are indeed reflected in the LL calculation results.

4.2 Luttinger liquid approach

In this section we determine the generic behavior of the noise correlations using a Luttinger

liquid approach. This formalism has been applied to one-dimensional Fermi systems in

Ref. [36], and additionally to single-species bosonic systems in Ref. [35], where a detailed

description of these calculations was given. Here, we use an analogous derivation for the

case of a bosonic mixture. We outline key steps of the derivation, but refer the reader to

Ref. [35] for a detailed description of the method.

As described in Chapter 3, we use the Luttinger liquid theory to construct the field

operator for both species [Eq. (3.2)] and obtain the action of Eq. 3.3. We calculate the

noise correlations at the Gaussian fixed point, corresponding to the SF phase. Here, the

system separates into symmetric and anti-symmetric degrees of freedom, defined as θS,A =

(θ1 ± θ2)/
√

2 and φS,A = (φ1 ± φ2)/
√

2. The action can be written either in terms of the
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Figure 4.1: Noise correlations in different phases, derived from Luttinger liquid theory. In
the MI state (column (a)), δ-function like correlations along k = k′ in G11(k, k′) are visible,
whereas G12 nearly vanishes. In the SF state (column (b)), with Luttinger parametersKA =
1.03 and KS = 0.96, we find various contributions in G11, especially δ- function along
k = k′. In Fig. 4.2, we show the contour plots for G11 and G12 for the same state, where
we can see the negative correlations at k = 0 and k′ = 0, as well as pairing correlation
along k = −k′, which is similar to the single-species result in Ref. [35]. G12 shows similar
features, but the bunching contribution is an algebraic peak, rather than a δ-function. In (c)
we show an example for the PSF phase, with KA = 0.01 and KS ' 1.3, in (d) an example
for the CFSF phase, with KS = 0.01 and KA ' 1.2. In the PSF state, the inter-species
correlation G12(k, k′) has strong correlations along k = −k′, a reflection of pairing. In the
CFSF state, the peak is formed along k = k′ direction, an indication of the anti-pairing
(particle-hole) formation in the CFSF state.
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the anti-pairing correlation along k = k′ and the pairing correlation along k = −k′.
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phase fields

S =
∑
j=S,A

∫
d2rj

[Kj

2π
[(∂vjτφj)

2 + (∂xφj)2]
]
, (4.11)

or in terms of the fields θS,A

S =
∑
j=S,A

∫
d2rj

[ 1
2πKj

[(∂vjτθj)
2 + (∂xθj)2]

]
. (4.12)

The velocities vS,A are the phonon velocities of the symmetric/anti-symmetric modes, and

rS,A = (vS,Aτ, x). The parametersKS,A are the Luttinger parameters of the symmetric/anti-

symmetric sector. To calculate the noise correlations away from the SF regime, we take the

limitsKS,A → 0 to describe the phases in which either or bothRS/A have short-ranged cor-

relations (exponential decay). This approximation corresponds to the limit that the length

scale of the exponential decay is much smaller than any other length scale of the system.

Our calculation could be extended in a straightforward way to include a finite decay length

of the exponential decay.

We start out by calculating 〈na,k〉 for small momentum k ≈ 0, for which the Bose oper-

ators are given by ba ∼
√
neiφa . For 〈na,k〉we find:

〈na,k〉 ∼ n

∫
dx12e

ikx12e−
1
2
〈(φa(2)−φa(1))2〉, (4.13)

where φa(1) refers to φa(x1), and similarly for φa(2), and x12 = x1 − x2. The correlation

function 〈(φa(2)−φa(1))2〉 can be rewritten in terms of correlation functions for φS,A. Using

the Gaussian action above, we find

〈(φS/A(2)− φS/A(1))2〉 =
1

2KS/A
log

r2
0 + x2

12

r2
0

, (4.14)
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where r0 is a short-range cut-off. With that we find

〈nk〉 ∼ n
∫
dx12e

ikx12F(x12), (4.15)

where

F(x) =
(

r20
r20+x2

)g
. (4.16)

The exponent g is given by g = 1/8KS + 1/8KA. Next we evaluate the expectation value

〈nknk′〉 along the same lines. We obtain:

〈n1,kn1,k′ 〉 ∼ n2

∫
eikx12+ik′x34F(x12)F(x34)A, (4.17)

where

A =
(

(r2
0 + x2

14)(r2
0 + x2

23)
(r2

0 + x2
13)(r2

0 + x2
24)

)h
, (4.18)

and Eq. 4.17 is a volume integral over the spatial variables x12, x23, x34. The exponent h

is given by h = −1/8KS − 1/8KA. We combine these expressions to get the correlation

function G11(k, k′):

G11(k, k′) ∼ n2

∫
eikx12+ik′x34F(x12)F(x34)(A− 1). (4.19)

For G12(k, k′) we proceed analogously, and find h = −1/8KS + 1/8KA. For the finite-size

systems that we treat here, we evaluate these integrals numerically, by choosing a finite

length L of the system, and by replacing each spatial variable x by (L/2π) sin(2πx/L) (see

Ref. [24]). To compare with the TEBD calculations of a homogeneous system in the next

section, we choose the values of the Luttinger parameters, KA and KS to those obtained

from the TEBD calculations and they are listed in Table. 4.1.
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In Fig. 4.1 (b) and 4.2, we show an example for the SF regime. In the upper panel of

Fig. 4.1 (b), we show G11(k, k′), in the lower panel G12(k, k′). The Luttinger parameters

are KA = 1.03 and KS = 0.96. The ratio L/r0 was chosen as L/r0 = 20, corresponding

to the particle number of each species in the numerical example. The shape of G11(k, k′)

is the same as the noise correlation function for a single bosonic SF, which was discussed

in Ref. [35]. It has the characteristic features of a superfluid: positive correlations along

k = −k′, which indicates pairing correlations; negative correlations for the axes k = 0 and

k′ = 0, indicating the negative correlations between the quasi-condensate and the higher

momenta due to pair fluctuations; and bunching correlations along k = k′. For G12(k, k′)

we find qualitatively a similar shape, with the main difference, that the bunching along

k = k′ does not have a δ-function contribution, but only algebraic terms. We note that for

a system of two non-interacting species, i.e. for U12 = 0, KS = KA, and G12 vanishes.

In Figs. 4.1 (c) and (d) we show the noise correlations for the PSF and the CFSF phase,

respectively. For the PSF example, the Luttinger parameters are KS = 1.3 and KA = 0.01.

For L/r0 we again pick L/r0 = 20. For the CFSF phase, the parameters are KA = 1.2 and

KS = 0.01. In the PSF regime, we find a strong pairing signature in G12, similar to the

pairing signature in Fermi mixtures [36, 35]. In the CFSF example, an strong anti-pairing

signature is found in G12.

We can obtain the functional form of these signatures in the limit L→∞, by applying

similar arguments to what has been given in Ref. [35]. In the PSF region, We rewrite

the noise correlation integral in terms of z = (x12 − x34)/2, h+ = (x14 + x23)/2 and h− =

(x14−x23)/2. We then note that for G12 and forKA → 0, the exponent h = −1/8KS+1/8KA

diverges. This enforces the integrand to be negligible away from z, h+ ≈ 0. Thus the

integral evaluates to

G12 ∼ |k + k′|−1/KS . (4.20)

This is the shape that would be approached in an infinite system by the noise correlations

shown in Fig. 4.1 (c), lower panel. The deviation from the pure power law is due to the

finite size of the system. With similar arguments one can show that in the CFSF regime the
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inter-species noise correlation approaches

G12 ∼ |k − k′|−1/KA , (4.21)

for L→∞. Again, the deviation from a pure power law is due to the finite size of the sys-

tem. Furthermore, one can show that for both PSF and CFSF orders, G11(k, k′) approaches

δ(k−k′), in the limit of infinite size. Equations 4.20 and 4.21 show that there is a simple re-

lationship between G12 andKS in the PSF regime and G12 andKA in the CFSF regime. This

suggests that a careful measurement of G12 can be used to extract the value of the Luttinger

parameters appropriate to the system. This is further confirmed by our numerical calcu-

lations for a trapped system, where we show that the algebraic relationship described by

Eqs. 4.20 and 4.21 remains valid in the presence of a harmonic trap. We discuss prospects

for experimental determination of Luttinger parameters in Sec. 4.3.3.

The MI result in Fig. 4.1 (a) is obtained by setting both KA and KS to 0.01. In this case,

the ground state closely approximates a simple product of MI states of each species. Thus,

G11 approaches a δ-function, whereas G12 nearly vanishes.

Next we calculate the noise correlations for the case k ≈ 0 and k′ ≈ 2kF , where kF is

the Fermi wavevector defined above. Essentially the same calculation can be done for k′ ≈

−2kF , and k′ ≈ 0 and k ≈ ±2kF . na,k is still given by the expression (4.15), but na,k′ now

needs to be calculated with the operator representation b(x) =
√
n exp(2iΘ(x)) exp(iφ(x)).

With that we find

〈nq′+2kF
〉 ∼ n

∫
dx12e

iq′x12F ′(x12), (4.22)

where F ′(x12) has the same form as before but with an exponent g′ = 1/8KS + 1/8KA +

(KS +KA)/2. The noise correlations take the form

G11(k, q′) ∼ n2

∫
eikx12+iq′x34F(x12)F ′(x34)(A− 1). (4.23)
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Parameter setting Order Luttinger Parameters
(a) U12/U = 0.01, ν = 1 MI KA = KS = 0
(b) U12/U = 0.01, ν = 0.5 SF KA ' 1.03, KS ' 0.96
(c) U12/U = −0.11, ν = 0.5 PSF KA = 0, KS ' 1.3
(d) U12/U = 0.11, ν = 0.5 CFSF KA ' 1.2, KS = 0
(e) U12/U = 0.26, ν = 0.2 SF & CDW KA ' 1.4, KS ' 0.57

Table 4.1: The parameters used in the numerical examples and the Luttinger parameters
extracted from the algebraic fit of correlation functions, RA and RS . The Luttinger param-
eters are set to zero when the correlations decay exponentially. The hopping parameter t is
0.02U for all cases. The parameters are chosen to represent different orders that can exist
in this system.

We therefore note that around the points k ≈ 0 and k′ ≈ ±2kF , and k ≈ ±2kF and k′ ≈ 0

the integrand is multiplied by a contribution that is of the form of the integrand of the

static structure factor

S(q) ∼
∫
eiqx12

(
r2

0

r2
0 + x2

12

)(KS+KA)/2

, (4.24)

which can create cusps in the noise correlation when the system is in the CDW regime.

These cusps are found in our numerical calculations and are discussed in the next section.

4.3 Numerical approach

The calculation of noise correlations is based on the ground state generated by the TEBD

method. We set the Schmidt rank χ = 100 and the local dimension d = 5. We use

imaginary-time propagation to generate the ground state. After obtaining the ground

state, we calculate the correlation functions, RA, RS , Rn,a and G, and determine the quasi-

long range order present in the system based on the relationship shown in Table. 3.1.

Furthermore, we can extract the value of the Luttinger parameters, KA and KS , from the

numerically calculated correlation functions. We use these parameters in a Luttinger Liq-

uid calculation to compare the numerical and the analytical results.

The main challenge of determining the noise correlation functions is the high compu-

tational cost of calculating the four-point function, Laa′(j1, j2, j3, j4) (Eq. 4.6), which is

estimated to scale as χ3d3N4. For the system sizes used in this paper, we use parallel com-
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Figure 4.3: Noise correlations for a homogeneous system of 40 lattice sites, calculated with
the TEBD method. The frames (a) – (d) correspond to the examples (a) – (d) in Table 4.1. In
(a), we show the noise correlations of a MI state. In the plot of G11(k, k′), there is a strong
correlation along the direction k = k′, whereas the noise correlation function G12(k, k′)
essentially vanishes. In (b), we show the noise correlations of a SF state. Here, we can
see the peak around k = k′ corresponding to the δ- function bunching peak predicted by
Luttinger Liquid theory (see also Fig. 4.1 (b)). For G12, we find negative value at k = k′ = 0,
which is different from the Luttinger Liquid result (Fig. 4.1 (b)). Other structures predicted
by Luttinger Liquid theory can be seen in Fig. 4.4, where G12 and G11 are plotted in a non-
linear color scale to magnify the structures around k = k′ = 0. In (c) and (d), we show
the noise correlations of the PSF and CFSF state, respectively. In the PSF state (c), the
inter-species correlation G12(k, k′) has strong correlations along k = −k′, a consequence of
pairing (see also Fig. 4.1 (c)). In the CFSF state (d), the peak is formed along the direction
k = k′, an indication of anti-pairing in the CFSF state (see also Fig. 4.1).

puting algorithms to speed up the calculation by parallelization the computation of Laa′

along the indices ji.

4.3.1 Homogeneous systems

In this section we discuss the numerical results for noise correlations of a homogeneous

system of 40 lattice sites, subject to the hard-wall or “open” boundary condition, in which

the wave function is required to vanish on the fictitious sites of index 0 and N + 1 im-

plied by Eq. 3.1. We consider five parameter sets listed in Table 4.1, representing different

regimes of the phase diagram of 1D Bose mixtures.
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Figure 4.4: Noise correlations, G11(k, k′) (a) and G12(k, k′) (b), in the SF state of a homo-
geneous system. The values of G11(k, k′) and G12(k, k′) are exactly the same as in Fig. 4.3
(b). We create non-linear gray scales by plotting tanh(10G11) and tanh(200G12) in linear
scales. The labels of the color-bar reflects the values of G11(k, k′) and G12(k, k′). The fea-
tures around k = k′ = 0 are magnified as a result of the non-linear scale. In (a), we find
the features predicted by LL calculations (4.2 (a)). In addition, we can see a weak corre-
lation at around k = k′ ± 2kF , where kF = ν × π/aL = 0.5π/aL. This is where a strong
correlation (cusps) will develop if CDW order is present. This feature can also been shown
in Luttinger Liquid calculations at around k ≈ 0 and k′ ≈ 2kF (Eq. 4.23). In (b), we find
that the structures along k = k′ is similar with the ones in Luttinger Liquid calculations,
however, the structures along k = −k′ is negative, different from the Luttinger Liquid
predictions (see also Fig. 4.2). The difference may be understood as a result of different
boundary conditions used for the finite-size calculations: the numerical calculations use
a “hard-wall” boundary condition, whereas the Luttinger Liquid calculations assume a
periodic boundary condition.
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Superfluid and Mott insulator

For the Hamiltonian of Eq. 3.1, in the non-interacting case, U12 = 0, SF and MI are the

only two possible orders. In the interacting case, SF and MI orders are still encountered,

when the inter-species interaction is weak. For the Hamiltonian of Eq. 3.1 with t � U ,

the MI state exists for any |U12| . U , until the occurrence of collapse (U12 . −U ) or phase

separation (U12 & U ). The SF state however exists only when |U12| � U . In either of SF

or MI phases, the quasi-order is formed in each individual species and the cross-species

correlation is weak.

For the MI state (Fig. 4.3 (a)) we find that G11(k′, k) shows strong correlations along

the direction k′ = k, in agreement with the LL theory result shown in Fig. 4.1 (a). We

also find that the correlations along k′ = k are not uniform and that the peak along k′ =

k resembles a Lorentzian distribution in k imposed upon a constant. This Lorentzian is

due to the characteristic scale of the correlation functions. This contribution was ignored

in the before-mentioned approximation in the LL calculation, but could be included in a

straightforward manner. The cross-species noise correlation, G12(k, k′), on the other hand,

is essentially zero, indicating the absence of cross-species correlations in the MI state. For

the SF state (Fig. 4.3 (b) and Fig. 4.4), we consider the case where there is weak repulsion

between the two species (Table 4.1 (2)). The Luttinger parameters are KA = 1.03 and

KS ' 0.96, which were extracted from the correlation functions RS and RA by numerical

fitting. From the upper panel in 4.3 (b), we see that G11 has the characteristic features of

a quasi-condensate [35]: the positive correlations along k = −k′, which indicate pairing;

the negative correlations between k = 0 and finite k′, as well as between k′ = 0 and

finite k; and a δ-function like correlation along k = k′, corresponding to bosonic bunching.

The lower panel in Fig. 4.3 (b), we see G12, which shows similar features, except for the

δ-function along k = k′, which is "softened" into a power-law divergence and a slight

negative value at k = k′ = 0. For a system of two non-interacting superfluids, i.e. U12 = 0,

we have KS = KA, and G12 = 0.
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Figure 4.5: Left : The correlation function C11(q), as defined in Eq. 4.2; right: the structure
factor S(k) for a quasi-supersolid state. The parameters are given in example (5) of Table.
4.1. The Luttinger parameters are KA ≈ 1.4 and KS ≈ 0.57. The filling fraction is ν = 0.2,
hence the "Fermi wave vector" kF is π × 0.2. At momentum 2kF , both quantities develop
cusps, indicating the presence of CDW order.

Paired superfluid and counter-flow superfluid

We now discuss the noise correlations of the PSF and CFSF states. The noise correlation

G12(k, k′) is particularly important for these two phases, because it can verify the existence

of PSF and CFSF orders. Unlike SF and MI states, PSF and CFSF states are characterized

by order parameters that contain both species and therefore cannot be reflected in any

single-species observables, such as the single-particle Green’s function,Ga(x) or the single-

particle momentum distribution [70]. The noise correlation function G12(k, k′) measures

the correlations between the momentum occupancies of the two species, and thus provides

a direct probe of these orders. We have shown in the previous section, that the peak along

k = −k′ in G12(k, k′) indicates the PSF order and that along k = k′ indicates the CFSF order.

These features are verified in our numerical calculation of G12 from the ground state.

In Fig. 4.3 (c), we show the noise correlations in the PSF state. The parameters are listed

in (c) of Tab. 4.1. The existence of PSF order is - as usual - determined by the behavior of

the RS(x) and RA(x). RA(x) decays exponentially and RS(x) algebraically with Luttinger

parameter KS ' 1.3. For the noise correlation function G12(k, k′), we find that a peak is

formed along k = −k′, which is a consequence of the pairing correlations. In Fig. 4.3 (d),

we show our numerical results for the CFSF example (d) in Table 4.1. Based on the behavior

of the RS(x) and RA(x) we verify that the system is in a CFSF state with KA ' 1.2, and an
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exponentially decaying RS(x). For G12 we find that a peak is formed along the diagonal

direction, as a result of correlations of anti-pairs (b1b
†
2). These findings are consistent with

the predictions of LL theory (see Fig. 4.1). We note that G12(k, k′) is enhanced in magnitude

in the PSF and the CFSF phase compared to the MI and the SF phase, with a strongly

altered functional form.

Charge density wave

In certain parameter regimes of the phase diagram, charge density wave (CDW) order can

coexist with each of the three superfluid orders, SF, PSF and CFSF. In Sect. 4.2, we use LL

theory to show that CDW order can be reflected in the function G11 and that the behavior of

G11 around k = k′±2kF resembles the structure factor S(k). The reason for the resemblance

can be understood in a simple way, by recalling the definition of the structure factor

S(k) =
1
N

∑
j1,j2

e−ik(j1−j2)(〈nj1nj2〉 − 〈nj1〉〈nj2〉). (4.25)

As mentioned in Sect. 4.1 the density correlation function is "contained" in the noise corre-

lations and the term ,

N∑
j1,j2=1

〈b†1,j1b1,j2b
†
1,j2

b1,j1〉ei[k(j1−j2)+k′(j2−j1)],

is part of the full sum that needs to be taken for G11. This term can also be written as a

function of the density operator, nj = b†jbj , as

N∑
j1,j2=1

〈nj1nj2〉e−i(k
′−k)(j1−j2) + δ(k − k′)〈nj1〉e−i(k

′−k)j1

This shows that G11 and S(k) (Eq. 4.25) have the same Fourier transform of the density

correlation function. If S(k) develops cusps at ±2kF , where kF = πν [70], when CDW

order is present, we expect G11 to have similar cusps at k = k′ ± 2kF . In Fig. 4.5, we show

one example of a quasi-supersolid (SS) state [39], where CDW order coexists with SF order.
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The parameters are listed in (e) of Table 4.1. In the plot, the correlation function C11(q), an

integration of G11(k, k′) along the direction k = k′ (Eq. 4.2), is compared with the structure

factor S(k) of the same state. In both functions, we can see cusps appearing at ±2kF .

4.3.2 Trapped systems

We now discuss how the different types of order are affected by the presence of a trapping

potential. To simulate the effect of a trap, we add a harmonic potential, Ω(j−jc)2(n1,j+n2,j)

to the Hamiltonian in Eq. 3.1, where j is the site index and jc is the index at the center of

the system. We then use the TEBD method to calculate the ground state. We also increase

the system size to 80 lattice sites, and choose the total number of particles and the trap

frequency to ensure that the boundary effect is negligible.

One interesting feature of a trapped system is that different orders can coexist in the

trap. A well-known example is the MI plateau at the center of the trap surrounded by a

SF at the edge [72]. For repulsive inter-species interaction, we find coexistence of a CFSF

plateau with a SF at its edge and a MI plateau with PSF at the edges for attractive inter-

species interactions [70]. Despite the potential complication of coexistence of orders, we

find clear signals for the pairing correlations of the PSF phase and the anti-pairing correla-

tions of the CFSF phase.

In Fig. 4.6, we show the behavior of G12(k, k′) in four different cases, where the orders

at the center of the trap are SF, MI, PSF and CFSF respectively. We find that the general

behavior of the noise correlation in a trap is very similar to its homogeneous counterpart.

In Fig. 4.6 (c) and (d), G12 shows clearly the feature of pairing correlations in the PSF state

and the anti-pairing correlations in the CFSF state. In addition, we see some minor features

attributed to the coexisting orders. In the case of CFSF in a trapped system, we can see the

"dip" along k = 0 and k′ = 0 because of the coexistence with the SF order. On the other

hand, in the case of a MI in a trap, we can see pairing correlations as a result of the residual

PSF state at the edges. This pairing signal is much smaller than when the whole system is

in the PSF state.

To show that the peaks along k = k′ and k = −k′ in G12 are detectable in experiments,
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Figure 4.6: Noise correlations in the trapped system. The system size is 80 sites and t/U =
0.02. In (a), the system is in the SF state. The particle number of each species is 30, the trap
frequency 8 × 10−5U and U12/U = 0.01. In (b), the particle number of each species is 40,
the trap frequency 1×10−4U and U12/U = −0.11. The system has both MI and PSF orders.
The MI state forms a plateau at unit-filling at the center of the trap and the PSF is formed
at the edge. The PSF state at the edge causes the small peak along the k = −k′ direction,
similar to the one in (c). However, this peak is at a much smaller amplitude than the one
shown in (c), where the whole system is a PSF state. In (c), the particle number of each
species is 20, the trap frequency 1 × 10−5U and U12/U = −0.11. The whole system is in
the PSF state. A strong pairing correlation is formed along k = −k′ direction. In (d), the
particle number of each species is 30, the trap frequency is 8×10−5U and U12/U = 0.2. The
system has both CFSF and SF order. The CFSF order forms a plateau at half-filling at the
center of the trap and the SF state towards the edges of the trap. The CFSF order causes a
strong anti-pairing (particle-hole) correlation along k = k′direction. At the same time, the
SF order adds to the "dips" along k = 0 and k′ = 0.
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Figure 4.7: Correlations C12(q) and D12(q) for the states that are described in Fig. 4.7. In
(a), we show the behavior of C12(q) (Eq. 4.2) in SF, MI, PSF and CFSF states. The strong
anti-pairing (particle-hole) correlations in the CFSF state gives a strong signal around q = 0
in C12(q). This strong signal is also unique to the CFSF state and therefore can be used to
detect to the CFSF order. In (b), we show the behavior of D12(q) (Eq. 4.3) in SF, MI, PSF
and CFSF states. The strong pairing correlation in the PSF state is the reason for the high
peak around q = 0 in C12(q). This suggests measuring C12(q) is a good way of detecting
the PSF order.
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Figure 4.8: Noise correlationC11(q) and structure factor S(k) in a PSF/CDW state. The sys-
tem size is 80 sites and there are 20 particles of each species (ν = 0.25). The trap frequency
is Ω = 10−5U , the hopping t = 0.02U and the inter-species interaction is U12 = −0.11U .
The density at the center of the trap is roughly 0.45 per site and the cusps are developed
around ±0.9π. The inhomogeneity of a trapped system means that the “Fermi wave vec-
tor” kF is no longer πν, where ν is the average filling of the system. Instead, kF can be
evaluated as πncenter, where ncenter is the density at the center of the trap,
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we also calculate C12(q) (Eq. 4.2) and D12(q) (Eq. 4.3) for the four states. In the correlation

C12(q) (Fig. 4.7 (a)), a high peak at q = 0 only appears in the case of the CFSF state. This

peak corresponds to the peak in G12 along k = k′ in the CFSF state and is a reflection of

the anti-pair correlation in the CFSF state. Similarly, in D12(q), the high peak at q = 0 only

appears in the PSF state, as a result of the strong pairing correlations in the PSF state. A

similar measurement has been performed for fermionic mixtures to detect the pairing of

fermions [33].

In addition to the PSF and CFSF order, we also look for the signal of CDW order in

G11(k, k′) in the trapped system. In a trapped system, the CDW order is more difficult to

establish especially in the PSF and SF states, because the varying local density makes the

"Fermi wave vector" πn a spatially varying quantity. However, we can still see weakened

cusps forming at the momentum roughly corresponding to 2πncenter, where ncenter is the

density at the center of the trap. This may indicate that in the trapped system, the CDW

order in PSF and SF states has a wave vector corresponding to the density at the center

of the trap. For the CFSF state, because the system has a plateau at half filling, the wave

vector 2kF is π/aL. Compared to the homogeneous case, this feature is slightly diminished

due to the effect of the coexisting SF state in the trapped system. In Fig. 4.8, we show one

case where CDW order coexists with PSF order in a trap. The system size is 80 sites and

there are 20 particles of each species. The trap frequency Ω = 10−5U , t = 0.02U and

U12 = −0.11U . The density at the center of the trap is roughly 0.45 per site. The cusps are

developed around ±0.9π, which is roughly 2πncenter.

4.3.3 Determination of Luttinger parameters from experimental data

Another important question is whether we can use the noise correlation G12 to measure the

Luttinger parameters,KS andKA, in the PSF and CFSF regimes. The LL calculation shows

that as the system size approaches infinity, the noise correlation G12 approaches a power

law decay with the power −1/KS in the PSF regime and with −1/KA in the CFSF regime

(see Eqs. 4.20 and 4.21). In our numerical results for C12(q) and D12(q), we indeed find

that the decay from the peak at q = 0 satisfies the algebraic decay. To find out the power
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of the algebraic decay, we fit the function C12(q) in the PSF regime and D12(q) in the CFSF

regime with the fitting function,

F (q) = A|sin(2q)|−1/K +B, (4.26)

where B is the minimum value of C12(q) or D12(q) and A and K are the fitting parameters.

In the PSF case (U12/U = −0.11), we find that K is 1.3 ± 0.1. This is indeed very close

to the value of KS , which is estimated at 1.4 ± 0.1 obtained by the algebraic fit of RS .

In the CFSF case (U12/U = 0.2), we find that K is roughly 1.48 ± 0.1, while the value of

KA extracted from the algebraic fit of RA is also at 1.48 ± 0.12. Because of the singularity

at q = 0, a reasonable values of K can be obtained by a simple algebraic decay function,

Aq−1/K+B, around small q. This shows that even in a trapped system, one can still assume

a algebraical relationship predicted in the LL theory (Eqs. 4.20 and 4.21) and estimate the

values of the Luttinger parameters by studying the power of the decay from the peak at

q = 0.

4.4 Summary

What’s most interesting in the behavior of the noise correlation is that it provides a complete

set of signatures for all the phases that can possibly exist in the 1D binary Bose mixtures.

These includes distinctive signatures for SF, MI, PSF, CFSF and CDW orders. In particu-

lar, we show the direct measurement of pairing order and the anti-pairing order through

noise correlations, which can not be detected through the averaged time-of-flight density

distribution. These features still can be observed even for a harmonically trapped system

and we show that the modifications induced by the inhomogeneity understood in terms

of the results for the homogeneous system. Even with the presence of a trap, the noise

correlations in the PSF/CFSF regime still have distinctive peak structure that are being re-

lated with the Luttinger parameters, KS/ KA . This suggests that one can use the noise

correlation to estimate the Luttinger parameters in these two regimes.
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Chapter 5

One dimensional binary Bose mixtures in optical lattices (III):

transport properties

In [73], the transport property of an one-dimensional single-species Bose gas in a harmonic

trap and a periodic potential is studied through the dipole oscillation of the center of mass

of the atoms excited by suddenly displacing the total harmonic trap of the gas. Depending

on the depth of the periodic potential, the dipole oscillation can change from undamped

when the periodic potential is zero, to heavily damped when the periodic potential is rel-

atively weak and the gas is in the strongly interacting superfluid (SF) state, and to over-

damped when the periodic potential is strong. In [74, 75], the dipole oscillation of 1D Bose

gas is studied numerically and have found good agreement with the experiment.

Here, we consider the transport properties for one-dimensional binary Bose mixtures.

As studied in the two previous chapters, there are two additional phases in the mixtures:

the paired superfluid and the counter-flow superfluid. In addition to their distinctive sig-

nals in the noise correlation (Chap. 4), we will show that the pairing (anti-pairing) mech-

anism in PSF (CFSF) states leads to very different transport properties. For the PSF state,

because the particles are bounded as pairs, two species tend to behave the same way un-

der perturbations, even when the kinetic energy injected into the two species are different.

This is reflected as the suppression of the relative motion and the enhancement of the total

motion of the particles. The opposite case can be found for the CFSF state, where because

of the anti-pairing correlation, different species tend to avoid each other and move in ex-

actly the opposite directions. The total motion in this state is strongly suppressed and the

relative motion much enhanced.

It also important to notice that the pairing and anti-pairing ordering can exist in other

systems as well. If we assume that each particle carries the same amount of charge and the

two species are distinguished by up and down spins, the total (relative) motion discussed
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here corresponds to the charge (spin) mobility of the system. If we consider the case that

the two species are distinguished by their location (like the case atoms localed on different

lattice planes interacting through dipolar interactions [60]), the total (relative) motion here

corresponds to the correlated (anti-correlated) motion between planes.

5.1 Dynamics after a trap displacement

5.1.1 Model and parameters

We consider two independently controllable traps for the two species and let Ωa be the

trapping frequency of species a and ja,c(t) are the location of the trap minimum, which we

allow to be time dependent. This corresponds to a time-dependent term in the Hamilto-

nian (Eq. 3.1),

N∑
j=1

∑
a=1,2

Ωa(j − ja,c(t))2na,j . (5.1)

Here, na,j is the number operators and j is the lattice site with index j. For this calculation,

we assume a system of 80 lattice sites and both traps are initially centered at the trap,

ja,c(t = 0) = 40.5. The displacement is the location of the trap with regard to the center of

the lattice,

Da(t) = ja,c(t)− ja,c(0). (5.2)

Both Da(t) and ja,c(t) are written in units of the lattice site. The parameter J is used to

replace the hopping parameter t in the Hamiltonian of Eq. 3.1 to avoid the confusion with

time t.

We consider four parameter sets as listed in Table 5.1. The sets correspond to the SF,

PSF and CFSF states respectively. The hopping parameters are rather large in the PSF and

CFSF region. This choice is made in order to exclude the influence of the CDW order that

coexists with the PSF and CFSF order for smaller hoppings. The inter-species interactions

are based on the phase diagram in Figs. 3.7 and 3.8. The particle number and the trap

frequency of either species are chosen to make sure that the density at the center of the
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SF PSF CFSF
U12/J -0.1 -5.6 5.6
Ωa/J 2× 10−3 2× 10−4 8× 10−3

Na 20 20 21
Na(Fig. 5.3) 10 10 21

Table 5.1: Parameters used to represent the SF, PSF and CFSF states. The hopping param-
eter is set at U/J = 8 for all cases. The particle number of each species is the same and
denoted as Na. stands for the particle number of either species.

trap can not be greater than 1 and the density is far from the edge of the lattice to minimize

the boundary effects. The particle number and trap frequency chosen for the CFSF state

also ensure that the density at the center can be higher than 0.5. We also consider one

additional low density case for the PSF state in order to present the general feature of the

PSF for all different fillings.

5.1.2 Simulation of the real time evolution

The initial state for the time evolution is the ground state of the system generated by the

imaginary time propagation of the TEBD method. Details about the method can be found

in Chap. 2. The trap is displaced at t = 0 and the real-time propagation with the TEBD

method is used. Even although the Hamiltonian is time dependent, it is a close system and

we can assume that for the propagation step from t to t+ δt, where δt is sufficiently small,

the Hamiltonian is time independent,

|Ψ(t+ δt)〉 = e−i~H(t)δt|Ψ(t)〉. (5.3)

This real-time propagator is applied on to the state in the same way as the imaginary-time

propagation (see Chap. 2 for details), except that the time step now is real. Similar to

the imaginary-time propagation calculation, we use the second order Trotter-expansion to

decompose the propagator for a small time step δt. Here, δt is set as δtJ/~ = 0.05, where ~

is the Plank constant and is set to 1 in the simulation. The error introduced the expansion is

estimated as ∼ O
[
(δtJ/~)3

]
∼ 10−4. The real time propagator is a unitary transformation

and the total number and total energy are constant during the propagation. Because of
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the Trotter-expansion, however, errors are introduced. We use the number conservation

algorithm (explained in Chap. 2) in the propagation to ensure that the total number is

conserved. The total energy is monitored during the propagation and we find it stays

closely to a constant, with fluctuations on the order of the expansion error, throughout the

whole propagation.

In addition to the total energy, several other observables, such as the density and corre-

lations, are calculated along the propagation. In this chapter, we focus on the behavior of

the density distribution 〈na,j(t)〉 as a function of time. To capture the collective behavior

of each species, we calculated the center of mass for each species, defined as

xc,a(t) =
∑
j

j〈na,j(t)〉
Na

. (5.4)

At t = 0, both centers of mass are at the center of the trap, xc,a(t = 0) = 40.5. After the

displacement, the center of mass starts oscillating, which is a reflection of the collective

response to the displacement of the corresponding species.

5.2 Result

In Chap. 3, we have discussed our numerical calculation of the density distributions in the

SF, PSF and CFSF states in a trap (see Fig. 3.9). We have shown that both PSF and SF are

compressible, while the CFSF state is incompressible. For a trapped system, the PSF order

exists for the whole system. The CFSF state, however, exists only near the center of trap

where a plateau at half-filling is formed and a SF state coexists with the CFSF state at the

edge of the trap.

To probe the dynamical response of the PSF and CFSF state to an external perturbation,

we consider two different type of the displacement. The first is a very brief displacement

and the trap is brought back to the center. The second is a small displacement and the

traps are placed in the new position for the rest of the time-evolution. Physically speaking,

the brief displacement is like inject a small impulse and the constant displacement is like

placing the system in a new potential configuration.
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Figure 5.1: Dipole oscillation in the CFSF state. Note that time t is in the unit of ~/J for
all plots. At t = 0, the density distributions of both species have the same plateau at half-
filling and then the trap of species 1 is briefly perturbed by a displacement of one lattice
site [see Fig. 5.2 (a)]. In (a) and (b), we show the density distributions of species 1 and 2
as a function of time after the brief displacement. Species 1 and 2 have exactly opposite
oscillation. In (c), we show the time evolution of the total density of both species. There
is no oscillation in the total density and the plateau at the center is fixed at one. In (d),
we show the time evolution of the relative density between the two species. The relative
density reflects the oscillatory motion in species 1 and species 2.

5.2.1 Brief displacement

In this section, we would like to start the discussion with a compelling example for the

counter-flow property in the CFSF phase (In Fig. 5.1). Here, only the trap of species 1 is

displaced for a very brief time ∆t (see Fig. 5.2(a)). The species 1 response to the displace-

ment with oscillations that can be observed in its density distribution 〈n1,j〉. Interestingly,

atoms of species 2 instantaneously start to move in exactly the opposite way, even though

their trap has not been displaced. What’s more interesting is that the distribution of the

total density in the CFSF state stays unchanged throughout [Fig. 5.1 (c)] and the oscilla-

tory motion is completely captured in the relative motion [Fig. 5.1 (d)]. This mechanism

of moving with fixed total density can be understood intuitively from the anti-pairing (or

particle-hole) order. The particle-hole pairing requires that the local density of individual
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Figure 5.2: (a) Trap displacement as a function of time. Only the trap of species 1 is dis-
placed at t = 0. The displacement is one lattice site and is removed at t = 1J/~. (b)-(d)
Dipole oscillation of the center of mass in SF, PSF and CFSF states induced by the displace-
ment of species 1’s trap. In the SF state (b), only species 1 are excited at t = 0 as a result of
displacement. In PSF (c) and CFSF (d) states, both species are excited at t = 0 as a result
of their pairing and anti-pairing order respectively. The red(green) color stands for species
1(2) for all plots in this chapter.
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species satisfy nj,1 = 1−nj,2 , where 1−nj,2 represents the density of the hole of species 2 for

at site j. This relationship does not restrict the behavior of the individual species, rather it

puts a condition on the collective behavior of the two species.

Although the density distribution gives an intuitive picture of the oscillation, the am-

plitude of the oscillation can be too small to be visible in the density distribution. To study

the oscillatory motion systemically, we consider the motion of the center of mass. In Fig.

5.2, we show the time-evolution of the center of mass for individual species in the SF, PSF

and CFSF states. The trap displacement considered here is the same as the one in the pre-

vious paragraph. In Fig. 5.2 (b) we show the response of a SF state. Here, we see the

excitation of only species 1 in the beginning. As a result of weakly attraction between the

two species interact, the oscillatory motion of species 2 is induced gradually in a later time.

In Fig. 5.2 (c), we show the response of the PSF state. In this case, due to the pairing or-

der, both species start moving instantaneously and the time evolution of the two centers of

mass are identical. The energy injected into species 1 is transformed into the total motion

of both species. In Fig. 5.2 (d), we consider the CFSF case, the density distribution of which

is discussed in the previous section. From the center of mass motion, we can clearly see

that the oscillatory motion of species 1 is perfectly matched by an counter-flowing motion

of species 2 and the total center of mass xc,1(t) + xc,2(t) is kept almost constant.

From Fig. 5.2 c) and d) it is apparent that a characteristic feature of the transport in the

CFSF (PSF) phase is that the total (relative) density oscillations are strongly suppressed. If

we adopt a pseudo-spin language in which species 1 corresponds to spin-up and species

2 to spin-down, we can say that in the PSF state, the perturbation of the system leads

to excitations in the charge sector of the system and in the CFSF state, the perturbation

leads to excitation in the spin sector. If we apply the opposite type of impact for the two

phases, i.e. total motion excitation for the CFSF state and relative motion excitation for the

PSF state, the motion of the atoms will be entirely inhibited. To illustrate such effects, we

consider displacing the traps in the same and opposite directions. The same displacements

only excite the total motion. In this case, we expect only the PSF state be excited. For the

opposite displacement, all energy is injected in the relative motion. Therefore only the

CFSF state is excited. This is indeed what we find in our simulation. In Fig. 5.3, we show
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Figure 5.3: (a) Trap displacement as a function of time. Here, two traps are displaced by 1
lattice site at t = 0 and brought back to the original place at t = J/~. (b) Dipole oscillation
in the PSF state after the same displacement. (c) Trap displacement as a function of time.
Here, two traps are displaced by ±1 lattice site from the center and brought back to the
center at t = J/~. (d) Dipole oscillation of center of mass in the CFSF state after the
opposite displacement. The parameters used are shown in Table. 5.1. Note that there
is no dipole oscillation for the CFSF state under the same displacement and for the PSF
state under the opposite trap displacement.
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Figure 5.4: (a) Trap displacement as a function of time. Both traps are displaced by 1 lattice
site at t = 0. In (b), the system is at SF state. Both species show the heavily damped dipole
oscillation. In (c), the system at the PSF state and the two species show identical heavily
damped dipole oscillations. In (d), the system is in a CFSF state. The dipole oscillation is
overdamped in this case and the center of mass stays near the original equilibrium position
before the displacement.

an example of the excitation of the total motion of the PSF state and the relative motion

of the CFSF state under the same and opposite oscillation respectively. The inhibition of

motion is also found in the constant displacement, which is discussed in the following

section.

5.2.2 Constant displacement

Besides a brief, temporary displacement of the trap to impart an impulse on the atoms, we

also consider displacing the trap permanently. To demonstrate the CFSF and PSF orders,

we consider simultaneous displacements in the same and in opposite directions. In Fig.
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Figure 5.5: (a) Trap displacement as a function of time. The traps are displaced in the
opposite direction by 1 lattice site at t = 0. (b) Dipole oscillation of the center of mass
induced by the trap displacement. In this case, the PSF state prohibit the separation of
the two species and the center of mass stays at the original equilibrium position of the
trap before the displacement. For both CFSF and SF states, the center of mass of each
species moves apart from each other under the displacement. In the SF case, the oscillation
converges to the new equilibrium position of the traps after the displacement. But, in the
CFSF case, each species keep moving away from each other, until they reach the edge of
the CFSF state. In (c)-(e), we show the density distribution at different times for the CFSF
state.
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5.4 we consider the time-evolution under a constant displacement of the same amplitude.

The response of three phases is markedly different. Both the SF and the PSF state exhibit

oscillatory motion around the new minimum of the trap. However, the frequencies differ

not only because of the different trapping frequencies but also because of the higher ef-

fective mass of the pairs in the PSF state. The motion of the CFSF state is almost entirely

inhibited. The atoms stay essentially at the original location and the transport of the total

density is suppressed. The small oscillations that are visible in the time evolution of xc,1(t)

and xc,2(t) are due to oscillations of the superfluid fraction at the edges.

In Fig. 5.5 we consider displacing the traps in opposite directions. For the SF state, the

two atomic species oscillate around the new trap minimum. The PSF state shows essen-

tially no response, because the formed pairs are not broken up by the force imparted by the

trap displacement. The most dramatic response is in the CFSF state. Here, the displace-

ment of one lattice site leads to roughly ten-lattice-site relative displacement of the center

of mass of each species. The small displacement in opposite directions is enhanced by the

counter-propagating character of anti-pairing. To illustrate the response of the state fur-

ther, we show density distributions of each of the two species as well as the total density.

The total density distribution is again essentially fixed throughout the entire evolution. It

is worth noting that the separation between the two species is limited by the size of the

trap. It is reasonable to expect that the equilibrium position for the two species after the

trap displacement will always be at the opposite edges of the CFSF plateau. If the one di-

mensional lattice is connected like a ring, this may lead to persistent counter-propagating

flow.

5.3 Summary

The different responses of the PSF and CFSF states to a potential shift (Figs. 5.4 and 5.5),

as well as to impulses (Fig. 5.2 and 5.3) vivid illustrate the defining features of the PSF and

CFSF order, where the cross-species correlation leads to novel transport properties of the

system. Under certain perturbations, the suppression of the individuality leads to similar

transport properties as a Mott insulator state of a single-species system. However, for other
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perturbations, the PSF and CFSF states manifests their superfluid transport properties.

Because such a selective excitation pattern is purely the result of pairing and anti-pairing

ordering, it is reasonable to expect that very similar transport properties can be found

for all the systems where the pairing (or anti-pairing) order is dominant. We therefore

consider the transport properties based on the total/relative motion be generically true

for PSF/CFSF order and is not limited for 1D binary Bose mixtures. Because the trap

displacement can be easily controlled in the experiment, the transport properties predicted

here should be realizable in the experiments once the PSF/CFSF order is present in the

system. By increasing the displacement amplitude in the opposite way for the PSF state,

it could potentially break pair ordering and therefore recover the individual oscillation.

The displacement amplitude then becomes an indicator of the binding energy of the pairs.

Similarly, large displacements in the same direction can break the anti-pairs in the CFSF

state and provide information about the energy spectrum in the CFSF state.
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Chapter 6

Two dimensional Bose-Fermi mixtures in optical lattices:

pre-formed molecules and novel thermometry

6.1 Introduction

In Chaps. 3-5, we focus on discuss the new orders induced by the inter-species interaction

in a mixture of bosonic atoms. Here, we would like to consider another different systems

and the work discussed here is mostly motivated by the growing interests of ultra-cold

polar molecules [76],

as they have the promise for being a new state of quantum degenerate matter, with

unique properties. In order to have a large dipole moment, the polar molecules must be

in their rovibrational ground state, where further cooling can ultimately lead to quantum

degenerate dipolar matter [77]. Such polar molecules can have long-range, anisotropic

or three-body interactions [78], which may lead to novel quantum phases [58, 80] and

new applications in quantum information science [81]. In most ultra-cold polar molecule

experiments, one starts with a mixture of ultra-cold gases of atoms of different species, for

example various isotopic combinations of K and Rb [85, 84, 86, 83, 82]. These atoms can

form a weakly bound state through a magnetic field sweep over the Feshbach resonance

[87, 86]. To create molecules with significantly higher dipolar moments, the loosely bound

Feshbach molecules are coherently transferred to a ground state with very high efficiency

through stimulated Raman adiabatic passage (STIRAP) [88, 89, 90, 91].

Although the rate of transferring a Feshbach molecule to the ground state is very high,

the overall efficiency for forming dipolar molecules is still low due to the low efficiency

of forming the loosely bound Feshbach molecules during the field sweep. In Ref. [90], the

fermionic 40K and the bosonic87Rb atoms are trapped by an optical trap. The efficiency to

form the Feshbach molecule depends on the phase-space density of the two species. But,
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because the Fermi cloud stops shrinking once it reaches the quantum degenerate regime,

and the Bose cloud continues to shrink as it Bose condenses, this phase space density is

low at low temperature, and never reaches appreciable sizes at higher temperatures, as

the clouds become more diffuse. On the other hand, if the mixture is first loaded onto an

optical lattice, the motion of the atoms can be more strongly confined, and it is possible

to create a large area where exactly one atom of each species sits at the same lattice site,

leading to a reduced three body loss [87] and almost unit efficiency [92] for pre-forming

the molecules.

When mixtures of 40K and 87Rb are loaded into an optical lattice, the atoms of each

species are influenced by the optical lattice differently[?]. With the same optical lattice

depth, the heavy atoms usually have much lower tunneling rate than the light atoms be-

cause of their significantly larger mass. In Ref. [92], it was shown that for sufficient lat-

tice depths, the hopping rate of Rb is more than an order of magnitude less than that of

K. It is therefore reasonable to ignore the quantum effects of the tunneling of the heavy

bosonic atoms while allowing the light fermionic atoms to hop between nearest neighbors

(a classical effect of the motion of the Rb atoms is taken into account by averaging over all

energetically favorable distributions of Rb atoms). Such systems can be described by the

Fermi-Bose Falicov-Kimball model [93, 94, 95]. Using this model, we quantitatively deter-

mine the probability of having exactly one atom of each species per lattice site in order to

optimize the formation of dipolar molecules.

For the Falicov-Kimball model, the phenomena of pre-forming molecules has been dis-

cussed for Fermi-Fermi mixtures or Fermi-hard-core-Bose mixtures [96] on a homogeneous

lattice and Fermi-Fermi mixtures in a harmonic trap [97]. In previous work [92], we consid-

ered the Fermi-soft-core-Bose mixtures in a harmonic trap and determined the efficiency

for pre-forming molecules as the probability to have exactly one atom of each species per

site. We used inhomogeneous dynamical mean-field theory (IDMFT) and Monte Carlo

(MC) techniques to calculate the efficiency as well as the density profile and the entropy

per particle. Both of these methods have advantages and disadvantages. The IDMFT

approach is approximate for two-dimensional systems, but it can calculate both the effi-

ciency and the entropy per particle. The MC method is numerically exact after it reaches
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thermal equilibrium, but it can not calculate the contributions to entropy coming from the

heavy particles. Both methods require large computational times to calculate properties of

a trapped system of reasonable size. Using these methods, we have shown that the effi-

ciency is significantly increased by first loading onto an optical lattice before forming the

molecules and near unit efficiency can be achieved with parameters that are realistic for

current experiments.

The efficiency of pre-formed molecules is also likely to be affected by the heating (the

temperature increase) induced by loading onto an optical lattice [1, 99, 98]. Considering

that thermal fluctuations generally destroy the ordering and the localization of the parti-

cles, it is reasonable to expect that the efficiency of having exactly one Rb atom and one K

atom per site should be reduced if the temperature becomes too high. On the other hand,

if the temperature is low enough, the presence of the lattice significantly increases the ef-

ficiency, almost to unity in the case of deep lattices. The temperature of the lattice system,

however, remains difficult to measure in experiment [104, 100, 102, 103, 101]. Instead, it

is often assumed that the process of loading atoms onto optical lattices is adiabatic and

therefore the total entropy of the system is conserved [98, 106, 1, 99, 105]. Determined

based on the thermal properties of the gas before adding lattices, the entropy per particle is

then used as an effective temperature scale for the lattice system [107, 1]. There are also

several proposals for directly determining the temperature for systems of bosonic atoms

[109, 108, 110], fermionic atoms [111] or the magnetic systems [112]. In Ref. [104], a general

thermometry scheme is derived based on the fluctuation-dissipation theorem. Through

quantum MC simulation, this proposal is shown to be applicable to the non-interacting

fermionic systems [104] and interacting bosonic systems [113].

In our paper, we discuss light-Fermi-heavy-Bose mixtures in optical lattices based on

the strong-coupling (SC) expansion method (perturbation theory in the hopping). The cal-

culation is oriented to develop an efficient way of estimating the efficiency of pre-forming

molecules for a given experimental system. With the SC expansion method, we obtain

analytical expressions for the efficiency of pre-forming molecules, the entropy per parti-

cle and the local charge compressibilities. The behavior of the efficiency is studied both

as a function of entropy per particle and temperature. The determination of temperature
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is further studied by applying the thermometry proposal in Ref. [104] to the Fermi-Bose

mixture. To benchmark the accuracy, we compare the SC calculation with the IDMFT and

MC calculations for all parameters considered. Overall, we find excellent agreement be-

tween the three methods. Such agreement even extends to the low temperature region

when the interaction is strong enough. This is particularly useful, given the fact that the

SC expansion calculation is significantly faster than the IDMFT and MC calculations. Such

a speedup makes it possible to consider much larger lattice sizes to eliminate the bound-

ary effects, to scan the large parameter space for optimal parameter regions for pre-formed

molecules and to estimate the density fluctuations and other properties.

6.2 Fermi-Bose Falicov-Kimball model

For mixtures of heavy bosons and light fermions, such as 87Rb/40K mixtures, the hopping

parameter for the heavy bosons (87Rb) is usually more than an order of magnitude less

than the hopping parameter for the light fermions (40K) when one takes reasonable lattice

depths (greater than 15 Rb recoil energies) [92]. In this case, we can ignore the quantum-

mechanical effects of the hopping of the heavy bosons and describe such mixtures with the

Fermi-Bose Falicov Kimball model in the presence of a trap potential. The Hamiltonian of

this model is written as

H = H0 +Hh =
∑
j

H0j +Hh, (6.1)

with

H0j = (Vj − µf )f †j fj + Ubff
†
j fjb

†
jbj

+ (Vj − µb)b†jbj +
1
2
Ubbb

†
jbj(b

†
jbj − 1), (6.2)

and

Hh = −
∑
jj′

tjj′f
†
j fj′ . (6.3)
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Here, j, j′ label the sites of a two-dimensional square lattice, with a lattice constant, a.

The symbols f †j and fj denote the creation and annihilation operators for the fermions

at lattice site j, respectively. The symbols b†j and bj denote the creation and annihilation

operators for the bosons at lattice site j, respectively. The fermionic operators satisfy the

canonical anticommutation relation {fj , f †j′} = δj,j′ and the bosonic operators satisfy the

canonical commutation relation [bj , b
†
j′ ] = δj,j′ . The quantity Vj is the trap potential, which

is assumed to be a simple harmonic-oscillator potential centered at the center of the finite

lattice. We assume that the jth site has the coordinate (xj , yj), so that Vj can be written as

Vj = t

[
~Ω
2ta

]2 (
x2
j + y2

j

)
, (6.4)

where Ω is the trap frequency. The quantity µf is the chemical potential for fermions and

µb is the chemical potential for bosons. Combining the trap potential and the chemical

potentials, we can define an effective position dependent local chemical potential for the

fermions, µf,j = µf − Vj , and for the bosons, µb,j = µb − Vj . Ubf is the interaction en-

ergy between fermions and bosons and Ubb is the interaction energy between the soft-core

bosons. The symbol −tjj′ is the hopping energy for fermions to hop from site j′ to site j.

We consider a general tjj′ for the formal developments in the earlier part of the next sec-

tion, but later specialize to the case of nearest-neighbor hopping with amplitude t, which

we will take to be the energy unit. We also set the lattice constant, a equal to one.

The efficiency for pre-forming molecules is defined as the averaged joint probability of

having exactly one boson and exactly one fermion on a lattice site,

E =
1
N

∑
j

〈P̂ j1,1〉 =
1
N

∑
j

Tr
(
P̂ j1,1e

−βH
)
, (6.5)

with β = (kBT )−1 the inverse temperature. We define the projection operator P̂ j1,1 for

having exactly one boson and one fermion at site j,

P̂ j1,1 = |nb,j = 1, nf,j = 1〉〈nb,j = 1, nf,j = 1|, (6.6)
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and N is the smaller value in the total numbers of bosons and fermions, Nb and Nf . In our

case, we assume equal number of bosons and fermions, therefore N = Nb = Nf .

In general, one can obtain E directly from Eq. (6.5) for a readily diagonalized Hamilto-

nian. In our case, the efficiency E is derived by distinguishing the contribution from terms

corresponding to nb,j = 1 in the expression for the density of fermions. We assume that

the density of bosons and fermions at site j, ρb,j and ρf,j , can be both be written as a series

in terms of the occupation number of bosons at site j in the following way,

ρb,j = 〈b†jbj〉 =
∑
nb,j

Wj(nb,j)nb,j , (6.7)

and

ρf,j = 〈f †j fj〉 =
∑
nb,j

Wj(nb,j)ñf,j(nb,j). (6.8)

Here nb,j is the occupation number of bosons on site j, nb,j = 0, 1, .... The coefficient

Wj(nb,j) is the probability of having exactly nb,j bosons at site j and the coefficient ñf,j(nb,j)

is the probability for having one fermion on site j for the occupation number nb,j . The joint

probability of having exactly one boson and one fermion at site j can be written as

Ej =Wj(nb,j = 1)ñf,j(nb,j = 1), (6.9)

and the efficiency E is the average of Ej over all sites,

E =

∑
j Ej
N

=

∑
jWj(nb,j = 1)ñf,j(nb,j = 1)

N
. (6.10)

It can be shown that the expression for the efficiency obtained in this way is the same as

from Eq. (6.5). Now, the efficiency is obtained directly from the density of bosons and

fermions, which can be easily derived from the partition function Z by taking derivatives
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with respect to the appropriate chemical potentials,

ρb,j =
1
β

∂ln(Z)
∂µb,j

, (6.11)

and

ρf,j =
1
β

∂ln(Z)
∂µf,j

. (6.12)

To study the behavior of the efficiency as a function of the entropy per particle, we

evaluate the entropy per particle by dividing the total entropy by the total number of

particles,

s = S/(Nb +Nf )

=
(
kBln(Z)− βkB

∂ln(Z)
∂β

)
/(Nb +Nf ). (6.13)

It is worthwhile noticing that the formalism development in this section is based on

the grand-canonical ensemble. This ensemble is appropriate because we assume that in

the lattice system both the energy and the number of particles fluctuate. This may seem

in contradiction with the use of the entropy per particle as an effective temperature scale,

because strictly speaking entropy is used as a parameter only for the micro-canonical en-

semble. This contradiction is resolved because the entropy per particle is assumed to be

conserved during the process of turning on the optical lattice. It is a conserved quantity

when comparing the systems before and after turning on the optical lattice, which is par-

ticularly useful from the experimental point of view, since the experiments often start with-

out the optical lattices. For the lattice system itself, assuming it is in thermal equilibrium, it

is more reasonable to consider it with the grand-canonical ensemble, allowing the energy

and number fluctuations. The difference between the different ensembles of course is not

problematic if we assume the system is large enough to be in the thermodynamical limit,

where all three ensembles are equivalent.
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6.3 Strong coupling expansion formalism

In this section, we explain the SC expansion formalism. We first discuss the evaluation

of the partition function Z , approximated by the second-order expansion in terms of the

hopping, Hh. From the partition function, we derive the expressions for the density of

fermions shown in Eqs. (6.32) to (6.34), the density of bosons in Eqs. (6.35) to (6.37), the

efficiency in Eqs. (6.38) to (6.40) and the entropy per particle in Eqs. (6.44) to (6.47). For

readers who prefer to see the final expressions, we suggest skipping the following deriva-

tion and referring to the equations listed above for the corresponding quantities.

The evaluation of the partition function in the SC approach starts with the exact so-

lution of the atomic Hamiltonian H0. Hence, we use an interaction picture with respect

to H0, where for any operator A, we define the (imaginary) time-dependent operator

A(τ) = eτH0Ae−τH0 . The partition function is written using the standard relation,

Z = Tr
(
e−βH

)
= Tr

(
e−βH0U(β, 0)

)
. (6.14)

Here, U(β, 0) = Tτ exp
[∫ β

0 Hh(τ)dτ
]

is the evolution operator with Tτ being the time-

ordering operator for imaginary times. Expanding the exponential in U(β, 0) up to second

order in Hh(τ) and evaluating the resulting traces with respect to equilibrium ensembles

of H0, we have

U(β, 0) ' 1 +

+
1
2

∫ β

0
dτ1

∫ β

0
dτ2TτHh(τ1)Hh(τ2). (6.15)

Here, we note that the first order correction to the partition function vanishes because the

hopping connects different sites. Substituting Eq. (6.15) into Eq. (6.14), we can write the

partition function as,

Z = Z(0)(1 + Z(2)), (6.16)
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where Z(0) is the partition function in the atomic limit (t = 0),

Z(0) = Tr
(
e−βH0

)
, (6.17)

and Z(2) corresponds to the second-order term in the expansion of U divided by Z(0),

Z(2) =
1

2Z(0)
Tr
[
e−βH0

∫ β

0

∫ β

0
dτ1dτ2TτHh(τ1)Hh(τ2)

]
. (6.18)

To simplify the notation, we introduce µ̄f,j(nb,j) to represent the negative of the fermionic

part of the Hamiltonian H0j [Eq. (6.2)] when there is a fermion at site j,

µ̄f,j(nb,j) ≡ µf − Vj − Ubfnb,j , (6.19)

and µ̄b,j(nb,j) for the negative of the bosonic part of the Hamiltonian H0j ,

µ̄b,j(nb,j) ≡ (µb − Vj)nb,j − Ubbnb,j(nb,j − 1)/2. (6.20)

Both µ̄f,j and µ̄b,j depend on the number of bosons at site j. The effective fugacities for

bosonic and fermionic particles can then be written as the exponential of µ̄f,j and µ̄b,j

respectively,

φf,j(nb) = exp [βµ̄f,j(nb,j)] , (6.21)

and

φb,j(nb) = exp [βµ̄b,j(nb,j)] . (6.22)

The atomic partition function Z(0) can then be written in terms of the effective fugacities

as,

Z(0) = ΠjZ(0)
j , (6.23)
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where Z(0)
j is the atomic partition function at site j,

Z(0)
j =

∑
nb,j

φb,j(nb,j)(1 + φf,j(nb,j)). (6.24)

Now we evaluate the second term in the partition function, Z(2) of Eq. (6.31). To satisfy

the total number conservation, only terms with j = k′ and j′ = k in Hh(τ1)Hh(τ2) are non-

zero after the trace andZ(2) is reduced into a sum of products of the fermionic annihilation

and creation operators at the same site,

Z(2) =
1
2

∫ β

0

∫ β

0
dτ1dτ2

∑
jk

tjktkj

×Tr
[
Tτe−βH0jf †j (τ1)fj(τ2)

]
/Z(0)

j

×Tr
[
Tτe−βH0kfk(τ1)f †k(τ2)

]
/Z(0)

k . (6.25)

Using the cyclic permutation relationship of the trace, the products can be represented by

the local atomic Green’s function,

Gjj(τ) = −Tr
[
Tτe−βH0jfj(τ)f †j (0)

]
/Z(0)

j , (6.26)

and Z(2) is expressed as integrations of the atomic Green’s functions in terms of their rela-

tive times,

Z(2) = −1
2

∫ β

0

∫ β

0
dτ1dτ2

∑
jk

tjktkjGkk(τ1 − τ2)Gjj(τ2 − τ1). (6.27)

Solving the Heisenberg equation of motion for the annihilation operator fj(τ ),

∂fj(τ)
∂τ

= eH0τ [H0, fj ] e−H0τ (6.28)

one easily finds the expression for the annihilation operator fj(τ ) in the interaction picture,

fj(τ) = eµ̄f,j(nb,j)τfj(0), (6.29)
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Substituting Eq. (6.29) into Eq. (6.26), we obtain the atomic Green’s function in terms of the

effective fugacities as,

Gjj(τ) =


−
∑

nb

φb,j(nb)

Z(0)
j

eτµ̄f,j , τ > 0∑
nb

φb,j(nb)φf,j(nb)

Z(0)
j

eτµ̄f,j , τ < 0
(6.30)

We now perform the integration over τ1 and τ2 in Z(2) and obtain the final expression

for Z(2),

Z(2) =
1
2

∑
jk

tjktkj
∑

nb,jnb,k

φb,j(nb,j)φb,k(nb,k)

Z(0)
j Z

(0)
k

β(φf,j(nb,j)− φf,k(nb,k))
µ̄f,j(nb,j)− µ̄f,k(nb,j)

. (6.31)

Note that the partition function we derived here is not limited to the case of nearest-

neighbor hopping with a uniform hopping parameter t. Eq. (6.31) can be applied to de-

scribe hopping between arbitrary sites j and k and the hopping parameter tjk can vary

over different sites of the lattice.

Observables are evaluated by taking appropriate derivatives of the partition function.

In calculating the derivatives, we truncate all final expressions to include only terms through

the order of t2jk. Also note that because sites j and k are different sites, we do not normally

have denominators equal to zero in Eq. (6.31), but in any case, the formulas are always

finite as can be verified by l’Hôpital’s rule. During numerical calculations of the observ-

ables, the denominator, µ̄f,j(nb,j) − µ̄f,k(nb,j), can become too small and cause numerical

errors. In our calculations, we use the Taylor expansion in terms of µ̄f,j(nb,j) − µ̄f,k(nb,j)

around zero when the absolute value of µ̄f,j(nb,j)− µ̄f,k(nb,j) is less than 10−5.

The density distribution is evaluated by taking the derivative of the partition function

with respect to the appropriate local chemical potential [Eqs. (6.12) and (6.11)]. For the den-

sity of fermions at site j, the expression constitutes two terms corresponding to derivatives

from Z(0) and Z(2),

ρf,j =
1
β

∂In(Z)
∂µf,j

= ρ
(0)
f,j + ρ

(2)
f,j , (6.32)
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where ρ(0)
f,j is the density of fermions in the atomic limit,

ρ
(0)
f,j =

1
β

∂In
(
Z(0)
j

)
∂µf

=

∑
nb,j

φf,j(nb,j)φb,j(nb,j)

Z(0)
j

, (6.33)

and ρ
(2)
f,j is the total contribution to the density at site j from particles hopping from all

possible sites,

ρ
(2)
f,j =

∑
k

tjktkj
∑

nb,jnb,k

{
φb,j(nb,j)φb,k(nb,k)

Z(0)
j Z

(0)
k

×

β (1− ρ(0)
j,k)φf,j(nb,j) + ρ

(0)
j,kφf,k(nb,k)

µ̄f,j(nb,j)− µ̄f,k(nb,j)

+
φf,k(nb,j)− φf,j(nb,k)

[µ̄f,j(nb,j)− µ̄f,k(nb,j)]2

]}
. (6.34)

Similarly, the density of bosons at site j is written as a sum of the atomic density and the

hopping contribution as,

ρb,j =
1
β

∂ ln(Z)
∂µb,j

= ρ
(0)
b,j + ρ

(2)
b,j , (6.35)

where

ρ
(0)
b,j =

1
β

∂In
(
Z(0)

j

)
∂µb,j

=

∑
nb,j

nb,jφb,j(nb,j) [1 + φf,j(nb,j)]

Z(0)
j

, (6.36)

and

ρ
(2)
b,j =

∑
k

tjktkj
∑

nb,jnb,k

[
(nb,j − ρ

(0)
b,j )

φb,j(nb,j)φb,k(nb,k)

Z(0)
j Z

(0)
k

×
β[φf,j(nb,j)− φf,k(nb,k)]
µ̄f,j(nb,j)− µ̄f,k(nb,j)

]
. (6.37)

The expression for the efficiency is obtained from the density distributions of the fermions

and bosons. Similar to the expression for the densities, the efficiency consists of two terms,

one corresponding to the atomic limit and one corresponding to the contributions from the
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hopping,

Ej = E(0)
j + E(2)

j , (6.38)

where

E(0)
j =

φb,j(nb,j)φf,j(nb,j)|nb,j=1

Z(0)
j

, (6.39)

and

E(2)
j =

∑
k

∑
nb,j ,nb,k

φb,j(nb,j)φb,k(nb,k)

Z(0)
j Z

(0)
k

×−
(
φb,j(n′b,j)φf,j(n

′
b,j)

Z(0)
j

)
n′b,j=1

×
β [φf,j(nb,j)− φf,k(nb,k)]
µ̄f,j(nb,j)− µ̄f,k(nb,j)

+δnb,j ,1

[
β

φf,j(nb,j)
µ̄f,j(nb,j)− µ̄f,k(nb,j)

+
φf,k(nb,j)− φf,j(nb,k)

[µ̄f,j(nb,j)− µ̄f,k(nb,j)]2

]}
. (6.40)

For the trapped system, the local chemical potential µj includes both the global chem-

ical potential µ and the trapping potential Vj . The derivatives with regard to the local

chemical potential or the chemical potential leads to different physical quantities. For

the Fermi-Bose mixture considered here, the cross-derivatives should also be evaluated.

Specifically, the derivative with regard to the global chemical potential (µb + µf ) corre-

sponds to the total number fluctuations,

κ =
∂2 lnZ

∂2(µb + µf )

= β〈
(
N̂f + N̂b

)2
〉 − 〈N̂f + N̂b〉2. (6.41)

Here we define the total number operators, N̂f =
∑

j f
†
j fj and N̂b =

∑
j b
†
jbj . The global

compressibility is introduced as the response of the local density to the change of the global
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chemical potentials,

κgj =
∂2 lnZ

∂(µf,j + µb,j)∂(µb + µf )

= β
[
〈
(
f †j fj + b†jbj

)(
N̂f + N̂b

)
〉

−〈f †j fj + b†jbj〉〈N̂f + N̂b〉
]
. (6.42)

And the local compressibility, or the onsite number fluctuation, is determined from the

derivatives with regard to the local chemical potential,

κlj =
∂2 lnZ

∂2(µb,j + µf,j)

= β

[
〈
(
f †j fj + b†jbj

)2
〉 − 〈f †j fj + b†jbj〉

2

]
. (6.43)

Both the global and local compressibilities are derivatives of the density distributions and

can be obtained from the density expressions above.

Finally, we obtain the expression for the entropy per particle defined in Eq. (6.13) by

averaging the total entropy of the system and we again write the entropy per particle in

terms of the atomic limit expression and the contributions from the hopping,

s =
1
N

∑
j

S
(0)
j +

1
N

∑
j

S
(2)
j . (6.44)

Here S(0)
j is the entropy at site j in the atomic limit,

S
(0)
j /kB = ln

(
Z(0)
j

)
− βεj , (6.45)

where the parameter εj corresponds to the onsite energy at site j in the atomic limit,

εj =
∂ ln(Z(0))

∂β

=
1

Z(0)
j

∑
nb,j

{µ̄b,j(nb,j)φb,j(nb,j) [1 + φf,j(nb,j)]
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+ µ̄f,j(nb,j)φb,j(nb,j)φf,j(nb,j)} . (6.46)

The averaged contributions from the hopping at site j is S(2)
j ,

S
(2)
j /kB = ln(1 + Z(2))− β∂ ln(1 + Z(2))

∂β

= −β
2

2

∑
k

∑
nb,jnb,k

φb,j(nb,j)φb,k(nb,k)

Z(0)
j Z

(0)
k [µ̄f,j(nb,j)− µ̄f,k(nb,j)]

×{[φf,j(nb,j)− φf,k(nb,k)]

× [µ̄b,j(nb,j) + µ̄b,k(nb,k)− εj − εk]

+ µ̄f,j(nb,j)φf,j(nb,j)− µ̄f,k(nb,k)φf,k(nb,j)} . (6.47)

This ends the discussion on the derivation of the SC expansion method formulas. In

general, the expressions obtained above are accurate in the case when the hopping is much

smaller than interaction strength and the temperature is very high (βt is small). In this pa-

rameter region, the SC method can evaluate physical quantities, like the density distribu-

tion, efficiency, compressibility and entropy, very efficiently. The total number of particles

is fixed by varying the chemical potentials, µb and µf . To maximize the efficiency and

reduce three body loss, we consider the low density region with attractive interspecies

interactions and repulsive bosonic interactions. For other strong-coupling regions, the for-

mulas developed above are equally applicable but not further discussed in this paper.

6.4 Results

6.4.1 Comparison with the IDMFT and MC calculations

For a perturbative method like the SC expansion method, it is always necessary to de-

termine the parameter regions where the approximation is valid. Here, we use the pre-

vious results obtained from IDMFT and MC methods [92] as a reference to determine

the accuracy of the SC calculation. It is also worthwhile to notice that the three meth-

ods require substantially different computational times. The SC calculation usually takes
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Figure 6.1: (Color on-line) Efficiency E as a function of temperature calculated by the SC
(red cross), IDMFT (blue triangle) and MC (green circle) methods. The interaction param-
eters, Ubb and Ubf , are shown in each plot. In (a), the SC calculation differs from the other
two methods for T < 1t/kB . For this region, the SC expansion formulas derived here are
no longer accurate. In (b)-(f), all three methods give almost identical results. These cal-
culations also show that almost 100% efficiency is reached for relatively strong attraction,
Ubf ≥ −6t, at low temperature, T < t/kB .
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less than 1 CPU hour while for the same system the IDMFT calculation takes on the or-

der of 105 CPU hours. We consider all the parameters used in the previous work [92].

The lattice is 50 × 50 square lattice with the trap frequency Ω for both species fixed at

~Ω/2ta = 1/11. The parameters Ubf and Ubb are chosen based on a typical experimental

setup : Ubf/t = −8, −12, −16 for Ubb/t = 11.5 and Ubf/t = −2, −6, −10 for Ubb = 5.7. The

total number of bosons and fermions are set to be 625. We consider the temperature range

0.05t/kB to 20t/kB.

In Fig. 6.1, we show the efficiency as a function temperature calculated with the three

methods. Overall, we find excellent agreement between the SC result and the IDMFT

and MC calculations and it is clear that high (unit) efficiency can be achieved when the

temperature is low (T ∼ 0.1t/kB) and the interaction is large compared with t. In the

case of Ubf = −2t and Ubb = 5.7t, the SC calculation starts to deviate greatly from the

IDMFT and MC calculation when T ≤ 1t/kB . It is worth noting that for T > 1t/kB , the SC

calculations agree nicely with the other methods even for a relatively weak cross-species

interaction, Ubf = −2t.

The difference between the SC calculation and the other two methods can be under-

stood from the fact that the SC method is a perturbative method based on the atomic limit

of the Hamiltonian, t = 0 and that the properties derived from the SC expansion are dom-

inated by the atomic-limit behavior with relatively small corrections from the hopping. In

the atomic limit, bosons and fermions are completely localized and the only density fluc-

tuations are due to thermal fluctuations. For the low density case considered here, the

bosons always form a plateau of unit filling at the center of trap at low temperature and

the fermions are attracted by the bosons one by one and form an almost identical plateau.

The efficiency therefore always converges to unity as temperature deceases. In Fig. 6.1,

we indeed find the efficiency from the SC calculation always goes to one at low tempera-

tures. The convergence to unity is also true for the IDMFT and MC calculations for all the

parameters except for Ubf/t = −2 and Ubb/t = 5.7. That’s where the SC calculation differs

from the IDMFT and MC calculation. It is reasonable to assume that the SC calculation can

be applied to the region where the ground state of the system is a localized, Mott insulator

like state.
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Figure 6.2: (Color on-line) (a) Entropy per particle as a function of temperature T . The SC
calculation is marked with red crosses and the IDMFT calculation by the blue line. We find
excellent agreement between the SC calculation and the IDMFT calculation.
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Figure 6.3: (Color on-line) Efficiency as a function of entropy per particle for different
interaction parameters. Note here that we didn’t include the case of Ubf = −2t, because it
is already shown in Fig. 6.1 that the SC calculation is not accurate for low temperatures in
this case. In (a) and (b), we consider two different bosonic interaction strengths and five
different inter-species interaction strengths. For all parameters, the efficiency reaches 100%
when the entropy is very low. For an intermediate entropy, with an entropy per particle
around 1kB , the efficiency is around 80%.
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The SC calculation of the entropy per particle is also compared with the IDMFT and MC

calculations for all the parameters using Eqs. (6.44-6.47). The conclusion of the comparison

is similar with the efficiency calculation, that the SC calculation is accurate except forUbf =

−2t. In Fig. 6.2 we use one example, Ubb = 11.5t and Ubf = −16t, to represent all the cases

where the SC calculation agrees with the IDMFT calculation. As the temperature increases,

the entropy per particle starts to saturate at around ∼ 2.3kB . In the next section, we will

show that this saturation is actually the result of finite-size effects.

In Fig. 6.3, we show the behavior of the efficiency as a function of the entropy per

particle. This figure can be compared with Fig. 2 in Ref. [92], where the IDMFT calculation

is discussed. We verify the findings from the previous work that for strongly attractive

inter-species interactions, an efficiency of 100% can be achieved at low temperature (low

entropy) region. For an entropy per particle around 1kB , a 80% efficiency can still be

reached. This efficiency is much higher than what has been achieved in experiment [90].

In the following discussion on the SC calculation result, we no longer consider the case

of Ubf = −2t. This is also based on the consideration that the interaction of Ubf = −2t is

too weak to achieve the desired high efficiency of pre-formed molecules and therefore is

not in the parameter region of the main interest in this paper.

6.4.2 Finite-size effects

In our calculations, we always assume a hard-wall boundary condition at the edge of the

lattice. In experiments, however, the atoms are confined only by the trapping potential.

This additional confinement imposed by the boundary condition can potentially affect the

accuracy of our calculation. This finite-size effect can be neglected if the system is so large

that the atoms trapped by the trapping potential almost never reach the edge the system.

This, however, is not always the case for the 50 × 50 lattice. This problem is difficult to

address with the IDMFT and MC methods, because of the high computational costs. The

SC method, on the other hand, can calculate much larger systems for a fraction of the cost.

In this section, we discuss our calculation for different lattice sizes and discuss finite

size effects for different lattice sizes. To benchmark the SC calculations, the trap frequency
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Figure 6.4: (Color on-line) Finite-size effects on the radial density profile. We assume a two-
dimensional N × N square lattice with hard-wall boundary conditions. The dotted lines
indicate the boundaries of different lattices.The interaction parameters are Ubf = −16t,
Ubb = 11.5t. We use the density distribution of the fermionic particle to represent the
general dependence of density on the lattice size. In (a), we consider the case of low tem-
perature, T = t/kB . Here, the density distribution is concentrated at the center of the trap
and there is no difference between different lattice sizes. In (b), we consider the case of
high temperature at T = 20t/kB . Here, the density is confined mainly by the size of the
lattice. For N = 50, the density is confined at the edge of the lattice, r = 25. For N = 100,
the density is again confined at the edge, r = 50. For both N = 200 and 300, the density
goes to zero before reaching the edge of the lattice and the two distributions overlap with
each other. We estimate that finite-size effects are eliminated for the 300×300 square lattice
for the trap frequency and number of particles considered here.
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Figure 6.5: (Color on-line) Finite-size effects on the entropy per particle and the efficiency.
We assume a two-dimensional N ×N square lattice with hard-wall boundary conditions.
The interaction parameters are Ubf = −16t, Ubb = 11.5t. In (a), we show the behavior of
the entropy per particle as a function of temperature for different system sizes. We see the
entropy is significantly affected by the finite size when the lattice is smaller than around
200× 200. The finite-size effect is not noticeable at lower temperature (T < 1t/kB).
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Figure 6.6: (Color on-line) Efficiency as a function of entropy per particle for a 300 × 300
square lattice system. We consider 625 atoms for each species. Compared with Fig. 6.3,
the efficiency is significantly higher for the same value of the entropy per particle in the
300 × 300 lattice system when the entropy per particle is large. On the other hand, the
behavior is similar in both lattice systems when the entropy per particle is less than 1kB .
The unit efficiency is reached roughly when the entropy per particle is less than 0.5kB.
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and the total number of particles are fixed for all different lattice sizes. We assume the

largest lattice sizes are sufficient to neglect the finite-size effects. In Fig. 6.4, we show

the density profile as a function of the lattice size at two temperatures, T = t/kB (a) and

T = 20t/kB (b). Here Fig. 6.4 (a) represents the scaling behavior in the low temperature

region, where there is no significant difference between different lattice sizes and Fig. 6.4

(b) represents the scaling behavior in the high-temperature region, where the system of

small lattice size is highly affected by the boundary effect. Note that the horizontal axes

are different scales in the two panels. The parameters used in the plots are Ubf = −16t and

Ubb = 11.5t. We find similar behavior of the density profile for all the other parameters.

In Fig. 6.5 (a), we show entropy per particle as a function of temperature at different

lattice sizes. In this plot, we find that for small lattices, the entropy per particle becomes

saturated at high temperature, while for large lattices it keep increasing as the temperature

increases. The saturation is understood as the result of the finite-size effects. When the

temperature is high, atoms tend to expand to a larger area in the trap, which leads to a

large cloud size and higher entropy. When atoms expand to the edge of the lattice, the

possible occupied sites are now constrained and the entropy stays similar even though the

temperature increases, hence the saturation. When the lattice is sufficiently large, atoms

can freely expand as the temperature increases and the entropy keeps increasing.

The confinement of the atomic cloud in high temperature also affects the efficiency

calculation. In Fig. 6.5 (b), we find that the efficiency saturates to a higher value for smaller

lattices. This is because the confinement increases the density overlap between the two

species. In the low temperature region, the atoms are close to unit filling at the center of

the trap and the efficiency is similar for all difference lattice sizes.

We find that a lattice of 300× 300 sites is sufficient to eliminate the finite size effects for

our parameter regions. Hence, we use this lattice size for the efficiency and entropy per

particle calculations. In fig. 6.6, we show the result for the efficiency as a function of the

entropy per particle. We estimate the calculation result from the 50× 50 lattice is accurate

when the temperature is around or below T = 1.25t/kB .
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6.5 Thermometry

6.5.1 Temperature and Density fluctuations

Based on the fluctuation-dissipation theorem, the compressibility can be related to the den-

sity fluctuations as [104],

κ =
∂ρ(r)
∂µ

=
1

kBT
〈ρ(r)N〉 − 〈ρ(r)〉〈N〉, (6.48)

where ρ(r) is the radial density profile, µ is the chemical potential and N is the total num-

ber of particles. For a system with a spherically symmetric harmonic trapping potential,

−Vtr2, the local chemical potential at a radial distance r is µ−Vtr2. Within the local density

approximation, the trapping potential is interpreted as a variance in the chemical potential

and the compressibility in the trapped system can be re-written as a function of the density

gradient,

∂ρ(r)
∂µ

= − 1
2Vtr

∂ρ(r)
∂r

. (6.49)

These two equations lead to a simple relationship between the density gradient and the

density fluctuations in the trapped system,

− 1
2Vtr

∂ρ(r)
∂r

=
1

kBT
(〈ρ(r)N〉 − 〈ρ(r)〉〈N〉) . (6.50)

Based on this relationship, one can determine the temperature from the independently

measured density gradient and density fluctuations. For a two dimensional system, a

simplified relationship can be found by integrating the above equation over all the two

dimensional plane,

π

Vt
ρ(0) =

1
kBT

(
〈N2〉 − 〈N〉2

)
. (6.51)

Here, ρ(0) stands for the density at the center of the trap.

With the development of in situ measurements, it is now possible to measure the den-
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Figure 6.7: (Color on-line) Density fluctuations averaged over different numbers of sam-
ples. The density fluctuations shown here are the total density fluctuations divided by the
input temperature, T = 2tk−1

B . All the fluctuations are compared with −(2Vtr)−1∂(ρb +
ρf )/∂r. According to Eq. (6.50), these two quantities should equal to each other. In (a)-(c),
the total number of configuration generated is 2× 105, with a different sampling strategy.
In (a), one sample is taken at every 103 configurations, which gives a total of 200 samples
to average over. The statistical error in this case is very large. In (b), one sample is taken
at every 100 configurations, which gives a total of 2000 samples. The statistical error is
reduced compared with (a). In (c), the total number of samples is 2 × 104. The statistical
error is the smallest among (a) to (c). In (d), a total of 2× 106 configurations are generated
and 2× 104 samples are taken at every 100 configurations.

sity gradient and the fluctuations [111, 47] in experiment and this thermometry scheme

has shown promise to be a reliable way of estimating the temperature [104, 113]. Here we

test this method for the Bose-Fermi mixtures and Eqs. (6.50 and 6.51) are extended to mix-

tures by considering the density as the total density of both species and the total number

as the total number of both species. With the SC method, we calculate the density gradient

directly from the density profile expressions. To simulate the fluctuations measured in the

experiments, we use a simplified MC simulation explained in the next section.

6.5.2 Fluctuation calculation

The MC simulation method generates a large collection of states (or configurations) that

satisfies the thermal equilibrium criteria. Such collection of states constitutes a thermal
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ensemble. In the ensemble, each state (or configuration) gives one density distribution,

analogous to one single shot image of the density in the experiment. By averaging over

all configurations, one obtains the averaged distribution of particles. Deviations between

different configurations are the fluctuations. In our simplified MC method, we use the SC

method to determine the density distribution for a given temperature and then use the

probability as a reference for configuration generation. The ensemble of configurations is

decided to be large enough if it can reproduce the input probabilities.

Determining the joint probability : the joint probability, P jn,m, is the joint probability of

having n bosons and m fermions at site j. For m = 1, the joint probability of having

n bosons and 1 fermion at site j can be found from the fermionic density distribution,

similar to the calculation of the local efficiency Ej (indeed, Ej = P j1,1),

P jn,1 = P
j(0)
n,1 − P

j(1)
n,1 + P

j(2)
n,1 , (6.52)

where we again write the probability as a sum of the probability in the atomic limit,

P
j(0)
n,1 =

φb,j(n)φf,j(n)

Z(0)
j

, (6.53)

and the contributions from the hopping,

P
j(1)
n,1 = β

∑
k

φb,j(n)φf,j(n)

Z(0)
j

×

∑
nb,j ,nb,k

[
φb,j(nb,j)φb,k(nb,k)

Z(0)
j Z

(0)
k

×
φf,j(nb,j)− φf,k(nb,k)
µ̄f,j(nb,j)− µ̄f,k(nb,k)

]
(6.54)

P
j(2)
n,1 =

∑
k

∑
nb,k

φb,j(n)φb,k(nb,k)

Z(0)
j Z

(0)
k

×
[

βφf,j(n)
µ̄f,j(n)− µ̄f,k(nb,k)
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+
φf,k(n)− φf,j(nb,k)

[µ̄f,j(n)− µ̄f,k(nb,k)]2

]
. (6.55)

Once the joint probability P jn,1 is determined, the complementary probability P jn,0 is found

based on the relationship in the atomic limit,

∑
n

[
P
j(0)
n,1 +

φb,j(n)

Z(0)
j

]
= 1. (6.56)

Taking into the account the hopping contributions, we can write P jn,0 as,

P jn,0 =
φb,j(n)

Z(0)
j

+ P
j(1)
n,1 − P

j(2)
n,1 . (6.57)

We assume each lattice site is independent and the joint probability at site j is sufficient to

determine the density distribution at site j. The joint probabilities are evaluated for all the

lattice sites and stored in a table before the MC procedure.

Simulation procedure: we use a random number generator to generate configurations

with reference to the joint probability table. Specifically the simulation includes the fol-

lowing steps:

1) Create a table for the values of P̃ jn,m corresponding to the sum of the joint probability

of having up to n bosons and up to m fermions at site j = 1, i.e.

P̃ jn,m =
n∑
k=0

m∑
l=0

P jk,l. (6.58)

2) Generate a random number x between 0 and 1.

3) Find the smallest P̃ jn′,m′ that is larger than x. The number of bosons and fermions at

site j is then equal to n′ and m′.

4) Repeat steps (2) and (3) to another site, j = 2, until all the lattice sites are considered.

Store the configuration.

5) Repeat steps (2)-(4) N times to generate N configurations.

131



To avoid auto-correlation between adjacent configurations, we choose every otherM�

1 configurations as samples. The total number of samples is then Ns = N/M. Averaging

over all the samples, we obtain the fermionic and bosonic part of the density fluctuation as

δf(b)(r) = 〈ρf(b)(r)(Nf +Nb)〉 − 〈ρf(b)(r)〉〈Nf +Nb〉, (6.59)

and the total density fluctuation is the sum of δf and δb. The total number fluctuation is

defined as

∆ = 〈(Nf +Nb)
2〉 − 〈Nf +Nb〉2. (6.60)

Here the bracket stands for the averaging over all samples in analogy to the experimental

measurement of the fluctuations.

6.5.3 Results

The fluctuation calculation is carried out for a 300× 300 lattice with all five sets of param-

eters. Overall we find very similar behavior for all the parameters and we use parameters

Ubb = 11.5t and Ubf = −16t as an example. In our simulation, the fluctuations between

different configurations are from both the random number generator and the thermal fluc-

tuations. The difference between them is that the thermal fluctuations are independent of

ensemble sizes and the sampling size. We find that the correct thermal fluctuation calcula-

tion requires a large number of samples (∼ 104) and large ensemble sizes (∼ 106). Because

of the similarity between the simulation and experimental measurement, this may suggest

that a large number of shots are needed in the experiments to obtain the correct thermal

fluctuations. Note that we consider here the results from a single plane as one shot, not the

averaged results over many planes as reported in Ref. [113].

In Fig. 6.7, we discuss the sampling effects by comparing the fluctuations obtained

from different samples with the compressibility calculated from the density gradient. When

the number of samples are small, the fluctuations are largely random deviations from the

average value. In Fig. 6.7 (a), the fluctuations can be equally positive and negative, which

does not even satisfy the condition that the total fluctuations should be always positive. As
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Figure 6.8: (Color on-line) Extracted temperature as a function of the input temperature.
The fluctuations are obtained from 2 × 104 samples out of 2 × 106 configurations. The
value of T1 is the mean of T1(r) averaged over 12 < r/a < 25 and the error-bar for T1 is
the standard deviation in T1(r) [Eq. (6.61)]. The value of T2 is obtained through Eq. (6.62).
The input temperature T is drawn as a straight blue line in both plots. In (a), we show
our result for the full range of the input temperature, from T = 0.2t/kB to 20t/kB . In this
plot, we find very good overall agreement of T1 and T2 with the input temperature for the
temperature range considered, particularly for T > 1t/kB . In (b), we blow-up the area
inside the black square in (a), which corresponds to the low temperature region, where
T = 0.2t/kB to 0.5t/kB . In this region, we find that T1 shows large relative fluctuations
(deviation) from the mean value and the mean value of T1 differs relatively greater from
T . The extracted temperature T2 however still shows excellent agreement with the input
temperature.

133



the number of samples grows, the random noise starts to be averaged out and the fluctua-

tions start to agree with the fluctuation-dissipation theorem. In Fig. 6.7 (c), the fluctuations

agree very nicely with the relationship predicted by Eq. (6.50). To show that 104 samples

are sufficient, we consider an even larger ensemble, with 2×106 configurations [Fig. 6.7(d)]

and find that the two ensembles produce almost identical results. This shows that the fluc-

tuation calculations obtained in this way are independent of the ensemble size and should

correspond to the thermal fluctuations of the system.

With Eqs. (6.50) and (6.51), we define two extracted temperatures, T1 and T2. Let T1(r)

be the extracted temperature obtained in terms of the density fluctuations and the density

gradient,

kBT
′
1(r) =

δf (r) + δb(r)
(2Vtr)−1∂(ρf (r) + ρb(r))/∂r

, 12 < r/a < 25. (6.61)

Here, we choose the radial distance to be larger than 12 lattice sites because the quantity

(2Vtr)−1∂(ρf (r) + ρb(r))/∂r diverges as r → 0 for a finite density gradient and for small

r, it goes to zero as the density develops a plateau at unit filling at low temperature. The

radial distance is less than 25 lattice sites, because the density is almost zero in the outer

regions and that increases the relative error. Together, we find that r between 12 and 25

sites to be the best region to fit the fluctuations and the compressibility with each other.

We also note that Eq. (6.50) still holds if one considers just the fermionic or bosonic part of

the system, i.e. keep only the index f or b in δ and ρ.

The temperature T2 is obtained based on Eq. (6.51), which translates into the following

expression for the Bose-Fermi mixture,

kBT2 =
∆

πV −1
t [ρf (0) + ρb(0)]

. (6.62)

Here ρf (0) is the density of fermions at the center of the trap and ρb(0) the density of

bosons at the center of the trap.

In Fig. 6.8, we show T1 and T2 as a function of input temperature. Overall, we find very

good agreement between T1 and T2 with the input temperature [Fig. 6.8 (a)]. We also find
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in the low temperature region, T2 generally fits better with the input temperature [Fig. 6.8

(b)]. This finding suggests that the statistical error introduced by the numerically gener-

ated ensemble is lower in the calculation of T2 and this could be because the calculation of

T2 only involves the first-order observable, the density and the total number fluctuation,

whereas, for the calculation of T1, we need to calculate the second-order observable, the

density fluctuation, which may be more susceptible to statistical errors in the numerical

simulation.

6.6 Summary

The SC expansion method is a very efficient way of studying thermal properties of strongly

interacting systems. Through comparison with the IDMFT and MC calculations, we show

that the strong coupling expansion method can be used for a wide range of parameters

even at low temperature when the attractive interaction between the two species is rela-

tively strong. We use the SC method to evaluate the finite-size effects in our previous calcu-

lations. This leads to important modifications of the efficiency and the entropy per particle

at high temperature. The SC calculation also provides a way to simulate experimental

measurements of the fluctuations. Based on the simulation, we find that the thermometry

proposal based on the fluctuation-dissipation theorem is accurate for heavy-bose-light-

fermi mixtures. This scheme suggests an effective thermometry scheme that works in the

extreme low temperature in the deep lattice region. Overall, our work shows a promising

way of creating strongly interacting quantum degenerate dipolar matter by loading the

mixtures onto an optical lattice before the molecule formation. In addition to higher effi-

ciency, the molecules created in this way are already situated in the optical lattice and can

be directly adjusted to realize the novel quantum phases that require the presence of a lat-

tice. It is also worth noting that the SC approach can be used to study other mixtures with

modifications. For Fermi-Fermi mixtures like 6Li-40K, it would require just truncating the

heavy bosonic states. For Bose-Bose mixtures like 87Rb-133Cs, the modification requires

allowing for the superfluid order to occur.
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Chapter 7

Conclusion and further discussions

From the Luttinger liquid theory to the TEBD method to the SC expansion, we have used

both theoretical and numerical methods to study quantum many-body phenomena in

atomic mixtures in optical lattices.

We start our discussion with a binary bosonic mixture in an optical lattice. We use

the Luttinger liquid theory to solve the model in one dimension and determine all the

quasi-long range orders that can exist in this model as well as the asymptotic behavior

of the correlation functions. The Luttinger liquid calculation is compared with the TEBD

calculation which evaluates the exact ground state of the one dimensional system. The

study leads to two phase diagrams which include the parameter regions for all the quasi-

long range orders.

Using large-scale parallel computing, we are able to calculate the noise correlation

functions exactly. We find that every order has its distinctive signals in the noise corre-

lation functions. The result shows again the importance of the fluctuations in studying

the higher-order correlations and it is particularly useful in experiment for the detection of

orders that can not be detected in the time-of-flight image.

Transport properties of the mixtures are also very different from the single species

system because of the inter-species correlation. Here, interesting transport properties are

found in the paired superfluid state as a result of the pairing order and in the counter-flow

superfluid state as result of the anti-pairing order.

For the last part of the discussion, we consider the light-Fermi-heavy-Bose mixture in

an optical lattice. We use a grand canonical ensemble to describe the system and derive an-

alytical expressions for various thermal quantities based on the strong coupling expansion

method. By studying the joint probability of having exactly one boson and one fermion on

one site as a function of the temperature, the inter-species interaction and the lattice depth,
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we show how the presence of the optical lattice can significantly increase the efficiency

of binding bosonic and fermionic particles. The result also illustrates the phenomena of

pre-formed molecules as a many-body effect.

In both mixtures, we find interesting many-body phenomena that can not be explained

on the single-particle or few-particle level. Such many-body phenomena are crucial for un-

derstanding the behavior of ultra-cold atoms, especially when the interactions are strong.

Such many-body phenomena also lead to new properties that have not been observed be-

fore. With the rapid experimental progress, many new many-body phenomena are waiting

to be explored and new theoretical methods are waiting to be developed.

First, the realization of the synthetic vector potential field [114] and the creation of polar

molecules with long range interactions [90] have shown great promise that the atomic sys-

tems can simulate novel condensed matter models. From a theoretical point of view, this

leads to great interests of predicting novel phase transitions and novel dynamical proper-

ties by transforming the condensed matter models into models more applicable for cold

atoms. The TEBD method can be easily applied to many of such models in one dimen-

sion or quasi-one dimension. Studying the model with a synthetic vector potential field

for example is likely to reveal very intriguing many-body energy spectrum and interesting

long-range correlations.

Another direction would be to remind ourselves that the system of cold atoms in op-

tical lattices is after all a system of interactive atoms situated in optical and magnetic

fields and background thermal gas. The ultra-cold atom experiment is intrinsically a non-

equilibrium process. To study the many-body phenomena in such process, one needs to

understand the underlying atomic and optical physics. And there are many questions

that need to be addressed. For example, is the cold atom system truly a system at the

thermal dynamical limit? What kind of role the optical field can play if we treat them

dynamically, rather than assume it as a static potential? How to study the loss and other

non-equilibrium properties of such systems?

Even although it is difficult to solve the non-equilibrium dynamics of ultra-cold atoms

exactly, it is possible to develop various approximated non-equilibrium methods. Numer-

ically for example, it is possible to reconstruct the TEBD method in the reduced density
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matrix basis to study open quantum systems and thermal properties [115]. Theoretically,

various predictions are made about the non-equilibrium steady states that can be realized

in ultra-cold atoms.

The extremely accurate control on the atomic level also leads to one other possible di-

rection related to quantum chemistry, that the atoms can be manipulated into bounded

states of the lowest rovibrational level and form molecules. Such production of artifi-

cial molecules in the extremely low temperature can lead to a series of interdisciplinary

questions between chemistry and atomic physics. The study on synthetic molecules pro-

ductions can also benefit from the understanding of the many-body correlations between

the interacting particles, which can lead to the reduction of three-body loss, the increased

probability of pre-form molecules, etc.

To summarize, many-body phenomena in ultra-cold atom systems need to be studied

with atomic physics, quantum optics and condensed matter physics combined. But to truly

combine these fields of physics is not easy. From the point of view of condensed matter

physics, the microscopic details of the system can be neglected and only the collective be-

havior is concerned. From the point of view of atomic physics and optics, the microscopic

mechanism of the interactions and the effects of the external fields are important, while

the many-body aspects are neglected. The challenge is how to develop models that are

simple (from the many-body theory perspective) and sufficient (from the atomic physics

perspective) to capture the complex nature of ultra-cold atoms. The truly new many-body

phenomena in ultra-cold atoms are still waiting to be discovered.
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