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Abstract

In this paper we discuss some initial results on the adaptive tracking of MIMO nonlinear
systems which do not have a well defined vector relative degree. First, we consider systems
that are right-invertible with linear parametric uncertainty in their dynamics. Second, we
consider the case where the system is not necessarily invertible. Simulation results for both

schemes are presented.

I. Introduction

There has been considerable research on the application of nonlinear adaptive control
theory for improving the feedback linearization in the input-output response of nonlinear
systems under parameter uncertainties. Most of the current research is based on linearization
by means of coordinate changes and assumes the existence of a (vector) relative degree
at a point of interest. The nonlinear systems to which these systems can be applied are
characterized by very restrictive coordinate-free geometric conditions [KKM91a, KKM91b,
TKKS91, CB90, Akh89, KKM89, MKK90, TKMK89, SI89, NA88, SC86], with primary focus

on SISO systems.

It is known that the possibility of using state feedback for input-output linearization is
not restricted to systems with a certain relative degree, but holds for a broader class of
nonlinear systems [Isi89]. In particular, one can utilize the well-known structure algorithm
developed by Hirschorn and Singh for the inversion of multi-input multi-output nonlinear

systems and construct a right-inverse system. The inverse system then can be used as a



decoupling prefilter that i)roduces the input to the original system such that the outputs
track a desired path. Moreover, using output feedback and precompensation, asymptotic
functional reproducibility can be achieved. In this paper, we present a new adaptive control
scheme for MIMO nonlinear systems which is based on the inversion algorithm developed

by Hirschorn [Hir79] and Singh [Sin81].

II. Adaptive Control of InvertibleAMIMO Nonlinear Systems

Consider the following nonlinear system with m inputs and ! outputs with [ < m:

#(t) = A(z)+ i’lﬁ - Bi(z) reM -
y(t) = C(=()

where the state space is a connected, n-dimensional, real analytic manifold; A, B; € V(M)
is the real vector space of the real analytic vector fields on M, u; € U is the class of real
analytic functions from [0 oo) into R, and C(-) : M — R' is a real analytic mapping. The
output of this system can be made to track various signals depending on controls u; and the
choice of initial states. We are interested in deriving a control law v = (ug, uz,...,un) for
asymptotic tracking of a given signal y,, = f(-) under parametric uncertainty in (1) so that

the output y(t,u,xo) of (1) converges to y,, as t — oo.

The inversion algorithm, developed by Hirschorn [Hir79] and Singh [Sin81], gives a
systematic scheme to obtain a sequence of systems associated with (1). These systems are
derived by performing a series of simple operations such as differentiation, row ordering, and

row reduction on the output y(-) of system (1). In what follows, we skip the details of the



algorithm and summarize the end results. Associated with (1), we construct a sequence of

systems in the form of the following system &:

(1)

z(t) = Ci(z) + Di(z).u

A(z) + B(z).u T € My

(2)
where B(z) = (B, Bs,...,Bn), M is an open dense submanifold of M, D(z) has all but
the first r; rows zero and has rank ry for all £ € M. The tracking order 8 of the system (1)
is defined as the least positive integer k such that ry = [ or 8 = oo if rp < [ for all k > 0.
Hence, Dg(z) is an [ x m matrix with rank ! (I < m) for all z € Ms. Therefore, if 8 < oo,
any given analytic function f(-) is functionally reproducible in the sense of [Sin84] by system

B. zi(t) is partitioned in the form:
at) = - ¥ alt) 3)

where rank Dy (x) = ry, for all z € My, and 2,(t) and Ci(z) consist of the first r; elements
of zx(t) and Ci. zi(t) can also be written in terms of the derivatives of the output y(t,, To)

up to kth order:

where:
Yi(t) = [(yM)F, (yO)T, ..,y W)T)T
The system 3 is:
t(t) = A(z)+ B(z)u T € Mg

z3(t) = Cslz)+ Ds(z).u



with
24(t) = Hp(z) - Y5(?) (6)
and Jg(z) = 0. We can rewrite this as:

B 1
yi™)
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-3
N

2(t)=N(=)| : |+ M)

y™

where n; and N; are the lowest and highest order derivatives of ) appearing in (6),

. N T
g = [umt, ey g0y (8)

and N(z) is an [ X [ nonsingular matrix with determinant of N(z) = %1 for all = € Mj.

With perfect knowledge of A, B and C in (1), (5) and (7) can be utilized to achieve

asymptotic tracking by applying the following control law introduced in [Sin84]:

u(t) = Df(z) - {~Cp(z) + M(2)j + N(z) - K} (9)

where:
ny—1

:
Y (™) + ZP (¥m = 437 + v (2)

i

K

ny—~1

Y™+ 3 Py — y?) + ui(t)

L 7=0

and Dg(ac) is the pseudoinverse of Dg(z), pi; are some constant coefficients, and v;(t) is a

servocompensator of the form:

v = Yio(ym:(t) — yi(t))



for robustness against disturbances in the system. Coefficients p;; and «;o are chosen such

that all the roots of the corresponding characteristic polynomial have negative real parts:

ni+1

Z')’ij'sj:o i=1,...,l
=0

with vi; = pij_1,7=1,...,n; + 1.

Control law (9) does not guarantee the internal stability of system (1) under this feedback.
For the states remain bounded, all the unobservable modes of the system under such feedback
must remain stable, and of course, all the states must remain in Mj. These conditions must

also hold for adaptive version of the above control law discussed bellow.

We are interested in solving the decoupling/tracking problem under parametric uncer-
tainty in the original system, i.e. in A(z), B(z), or C(z). Consider system (1) under para-
metric uncertainty:

x(t) = A(:IJ,H) + iui . B,(III,O) reEM
i=1 (10)

y(t) = C(z(t),06)

where § represents the vector containing unknown parameters. Recall that following the
above inversion algorithm, system (k) in (2) was obtained by a sequence of linear operations
(row ordering and reduction) on the original system. Hence, the 3 system under parametric

uncertainties will be:

(t) = A(z,0)+ B(z,0)-u z¢€ Mj
(11)
Zﬁ(t) = Cpy(z, é) + Dﬁ(.’l), é)u '

where 6 is now possibly a new vector of unknown constants that is related to the original

vector 6, but it may be of higher dimension, and

zp(t) = Hp(z(t),0) - Ya(t) (12)



which may be rewritten in the form:
25(t) = N(z(t),0) - § + M(z(1),0) - § (13)
where § was defined in (8) and:
= bl "

and, as before, n; and N; are the lowest and highest order derivatives of y!) appearing in (12).
Recall also that N(z(t),8) is an [ x [ nonsingular matrix with determinant of N(z(t),6) = £1
for all z € Mz. We now make the following assumption, which together with the algorithmic
assumptions made above ( ! < m and # < oo ) represents the class of smooth nonlinear

MIMO systems that our adaptive tracking scheme is applicable to.

Assumption 1 The wvector fields Cps(z(t),8), Ds(z(t),0) and Hp(z(t),0) in (11) and

(12) depend linearly on the unknown parameters 0.

Next, we introduce the following control law which is the same as the control law in-
troduced in [Sin84] for asymptotic reproducibility of nonlinear systems, except that the
uncertain parameters 6 in system (10) have been replaced by the adjustable parameters
f that are on line estimates of the true parameters § with some updating rules yet to be

determined:

u(t) = Di(z,0) - [~Co(z,0) + M(,0)§ + N(z,6) - K| (15)



where:
i ny—1 ]

ym™) + Zpu Ymi) — yi)

K

(16)

ni—1
ymfnl) + ZPU ymgj) - yI(J))

=0

where Dg(:v) is the pseudoinverse of Ds(z), and p;; are some constant coeflicients such that
the roots of the corresponding characteristic polynomials have negative real parts. Using
Lyapunov stability theory, we will now derive a suitable updating rule for the adjustable

parameter vector # such that output tracking is achieved.

From assumption (1), we have:

Cp(z(),8) = Y Cpi(z)-0; + Cpo(z) = Cp(z) - 0 + Cpo(x)

=1

p
Dg(z(t),0)-u = ZDQ;(x, u)-0; + Dgo(z,u) = Dg(z,u) -0 + Dgo(z,u)

=1

M(.T(t),é) Y= ZMi(ma ?7) : 0_,' + Mﬂ(x’g) = M(x’g) ' §+ MO(:E737) (17)
1=1

N(z(t),0)-§ = > Ni(z,9) 0+ No(z,§) = N(z,§) -8 + No(z,9)
=1

Substituting (15) into (11) and using (13) for Zﬂ(t) gives:

N(z(t)vé)g + M(z(t),é)ﬂ = Cﬁ(x(t)v é) + Dg(:l:(t),é)u
N(z,8)[K - 3] = Cp(z)- & + Dg(z,u) - & - M(,§) ¢ - N(z,§) -
N(z,0)[K - §] = W(z,u,§,7) - ¢ (18)

A — A

where ¢ = § — 0. Since N(z,0) is nonsingular by construction with determinant +1, we

have:

(K —§] = N7 (e,6) - W(z,u,§,9) - 6 = W3(z,u,y,8) - 6 (19)



Now let € = [eq, €1, .. .,egm_l),eg, - .,e}"’_l)]T and choose p;; such that the corresponding

characteristic polynomials Z;":Bl pij+s* = 0 are asymptotically stable. Consider the following

Lyapunov candidate function:

V = " Re + ¢ Q¢

where 07 = Q = diag(1/¢;) > 0 and R = RT > 0 is the solution of the Lyapunov equation:
R-P+PT.R=-Q

for some @ = QT > 0 and:

P = diag(P;)
( 0 1 0 . 0
0 0 1 0
P, =
—Pio —Pa v —Pim,-1 /
Note that: i . X .
€1 0
. e§"l‘” w2 .
e=P- + - =Pe+Wo (20)
€9 0
egnz—l) VVf

Then, the derivative of V evaluated along the solution trajectories of the error equation (20)
1s:

V=-Qe+ 2eT RW (2, u, y, 9)¢ + 2606



Taking parameter update laws as:
p=—01. WT.R.-¢ (21)

gives:

V=-"Qe< —|ef? <0

This proves that V is bounded. Hence e; and é; are bounded, and V is bounded and
integrable. If, moreover, the system is internally stable, then ||e;|| — 0 as t — co. Of course,
for the systerﬁ be internally stable under such feedback, all the unobservable modes must
remain stable. In fact, if the zero dynamics of the system is not asymptotically stable then
it is possible that for some reference signals, the tracking control law producing a linéar
iﬁput—output response may result in unbounded unobservable states. To achieve asymptotic
tracking for all reference signals, sufficient conditions are typically too restrict and often
hard to meet. GiveI} a specific class of reference signals one might search for bounded-input
bounded-state (BIBS) property of the unobservable subsystem under the above decoupling
feedback control, treating the oufput y as input. This is a generalization of BIBS assumption
in [KKM91b]. This subsystem -is obtained using the generalized normal form transformation

of [Isi89]. The following theorem summarizes the main result of this section:

Theorem 1 Suppose that the system described by (10) has a finite tracking order (8 < o),
has at least as many inputs as there are outputs (I < m), and that assumption 1 holds
(linear parameter dependence). Then given any smooth bounded signal ym = [Ymys- - - > Ymi]
with bounded derivatives up to order n; — 1, with the control law (15) and (21), and p;;

chosen such that the corresponding characteristic polynomials are asymptotically stable, if



the resulting unobservable subsystem is BIBS with respect to output as its input, the output

y(-) of (10) approaches y,,.

Theorem (1) is the adaptive version of tracking theorems of [Sin84, Hir81, Sin80] which are
based on constructing a right inverse system and hold for finite time. In order to guarantee
the output tracking with internal stability, it is possible to modify control law (9) and its
adaptive counterpart, (15) and (21), using generalized normal transformation of [Isi89]. This
transformation is readily given by the structure algorithm discussed above. Results based

on this approach are given in another paper [GB92].

To illustrate the proposed design technique, in the next section we will consider its
potential application to the control of nonlinear system arising in the outer-loop design of

an aircraft.

II1. Applications to Aircraft Control Problem

Consider the nonlinear system arising in the outer-loop design of an aircraft [Ass73,

Sin80]:
T9 O 0
0 01
. U1
T 0 T ]10
U2
(5%)- Sin®(z1) + z3Cos(z,) 0 0
(355) - Sin(2z1) + z3Sin(2:) 00

10



T4
Ts
with:

T = (¢7P, Qs ¢)T

where ¢ is roll angle, p is the roll rate, ¢, is the wind referenced pitch rate, v is the ver-
tical path ﬁight angle, and v is the horizontal path flight angle of the airplane. g'is the
gravitational constant, and vg is the air speed. The objective of the outer-loop design is to
decouple v and . It is desired to design a robust control law w(?) = [uq, ug)T such that
under parametric uncertainty and slow variations in vg, 7 and ¢ will remain decoupled and

follow pilot command inputs.

Let’s define 8; = (g/2vo) and using the structure algorithm, one gets:

—xq - (201 Sin(2z,) + z3Sin(z1))

Zg(t) =
z3z2? tan(z,)sec(zy)
cos(x1) 0 Uy
+
Tosec(xy) 207 + z3sec(xy) Ug
25(t) = Co(e,0) + Ds(w, O (23)
Also:
1 0 g3 0
z3(t) = : + y§3)
—zasec(zy) 1 y§3) —tan(z,)
a(t) & N(@)j+ M(z)j (24)

11



In view of (15), let’s choose the following control law:

u(t) = D3\ (z,0) - [~Cs(x,0) + M(z) - §+ N(z) - K] (25)
where:
. cos(z1) 0
Dy(z,0) 2
Tysec(zy) 20, + rasec(zq) A
. —QéleS'in(Za:l) + zyz3S5tn(z4)
Cs(z,0) 2 (26)
r374? tan(z,)sec(z;)
and:
ymgz) + ag1€1 + aqpeq
K = (27)

3) . .
Yma =+ Qg€ + (1€ + (€2

where ¢ £ y,, — y. Applying (25) to (23), using (24) for z53(t) and regrouping terms gives:

€1 + a11€1 + ager —2x25in(2z1)
= - ¢ (28)

egg) + tg9€y + 9169 + agpen —229%sin(2z )sec?(zy) + 2uy
where ¢ 2 0, —6;. Now let € = [e1, 1, €2, 2, €2)T and choose ay; such that the corresponding

characteristic polynomials are asymptotiéally stable, for example:
o1 = 20, ajo = 100, ag = 30, ag; = 300, ayg = 1000
which results in five poles on s = —10. Consider the following Lyapunov candidate function:
V=cRe+1/g-¢" ¢

where g > 0 is the adaptation gain for parameter 8, and R = RT > 0 is the solution of the

Lyapunov equation:

R-P+PT.R=-Q

12



with Q) = QTV > 0 chosen for our simulation to be Q £ 1000 - I5 where I5 is the 5 x 5 identity

matrix, and:

~100 -20 0 0 0
P = 0 0 0 1 0 (29)

0 0 0 0 1

0 0 -—1000 —-300 -30

Using (28), we have the following relationship:

0.
—2z,81n(2z4)

e=P e+ 0 62 P.e+W(z,u) ¢ (30)

0

\ —2x92sin(2z1)sec?(x1) + 2u, )

The derivative of V' along the solution trajectories of (22) is:
V=-Qec+2" R W(x,u)-¢+29¢-q'$
The design procedure of last section applied to this system results in the updating law:
p==1/g-WT-R-e (31)

The generalized normal form for this system is obtained with new coordinates as (£ =

(€1,--,&)7):
f = (h4af4a h5’f57¢)T
with ¥ 2 ~tan(X,) - Lfs + Lfs where the transformation ® given by z — ¢ is a local

diffeomorphism. This system does not have any zero dynamics and the BIBS condition of

13



theorem (1) is automatically satisfied. Hence, since é; and e; are bounded and |le;|| € Lo,

we conclude that ||e;|| — 0 as ¢ — oo, and consequently: y; — y,,; as t — oo.

Figures (1) and (2) show the vertical and horizontal flight path angles tracking the
command inputs. Figure (3) indicates that the errors (€) converge to zero. Figure (4)
shows the response (all the states) of the closed-loop aircraft to pilot command inputs. It is

clear that the responses are stable and decoupled, and adaptive output tracking is achieved.

IV. Noninvertible Systems

We now extend our results to MIMO nonlinear systems that do not necessarily have a
finite tracking order 8, hence not invertible in the sense defined in [Hir79, Sin81]. Consider
the nonlinear system given in (10) with m inputs and ! outputs and assume [ < m. We

obtain the following system by differentiating y:

o= 9(t) = des(d(1))
= deo (A(x,0)+-§:u;-l%(z,0)) (32)‘
= (AC)(z,0) + f}ui(BiC)(x, 9)
Define D(z,8) £ [B,C(-), B,C(-), ..., BnC(-)], an | x m matrix for cach ¢ € M, and with

this notation we write:

y = AC(2,0)+ D(z,0)u zeM (33)

where 6 represents the vector containing unknown parameters in the system, @ is a new

vector of unknown constants that is related to the original vector 8 in (10), possibly of

14



higher dimension, and it is assumed that #'s appear linearly in (33). Note that this was the
first step in the structure algorithm used in section (/1) with ry = mazgepm{rankD(z,0)}.
If r; = I, then we have the case where 3 = 1, and one can apply the design scheme developed
in section (/1) to this system since the I x m matrix D(z,0) is of full rank on M, 2 {z :
rankD(z,0) = r;} and D - D' = I on M,, where D' is the pseudoinverse of D. In the
case where r; < [, the structure algérithm would continue to the next step as explained
before since D' no longer exist. However, consider a matrix f)(:l:,é,lg) where 9 is a vector

A

of some “fictitious” parameters appearing linearly in D(x,é,ﬁ) and are injected in D(z,8)
such that rankD(z,8,9) = I for all € M with J an estimate of 9. So: D(z,8,0) = D(z,8).
Define § to be the estimates of the vector n = [6—?T,19T]T and ¢ 24~ n. The idea now is
to find updating laws for § such that y; — ym; while rank D(z,6) remains constant. To
do this we will assign small values to the gains corresponding to 9, the estimates of the
fictitious parameters, so that they change very slowly. Moreover, one can use a suitable
projection algorithm in order to prevent the convergence of these parameters to their true
values (usually zero) and rank D(z, 0) remains constant. The control will then be based on
estimates of the fictitious parameters with updating rules determined such that the stability

is preserved and the tracking is achieved. This procedure can also be viewed as a dynamic

state feedback control.

With this in mind consider (33) and in view of (15)

A

u(t) = D'(a,0) - [~C(2,0) + fim + 1€ + age (34)

where 8 are estimated parameters with updating laws to be determined, and e = Ym — Y.

15



Applying (34) to (33) gives:

A~

é+aié+ace = [D(z,0) - D(z,0)] - u+C(z,0) - C(s,0)

€ = —a1&— oge+ Wl(a:,u,(;) ) (35)
We have: i _ .
€y 0
é Wi
e=P-| ¢ | + 0 |-¢=Pe+W¢ (36)
€1 Wi
N : AT
where € = [eq, é1,€3,...,¢] and:
P = diag(P;)
0 1
P =
—Qp —0

Consider the following Lyapunov candidate function:
V = ' Re + ¢TQ¢
where QT = Q = diag(1/¢g;) > 0 and R = RT > 0 is the solution of the Lyapunov equation:
R-P+PT.R=-Q

for some Q = QT > 0. Taking the derivative of V evaluated along the solution trajectories

of (36) and the updating laws:

bo—0 V. WT.R.e (37)

16



gives:

V=-elQe< —1e]* <0

Hence, since ¢; and e; are bounded and ||e;|| € Lo, we conclude that [le;]| — 0 as ¢ — co.

Consequently: y; — ym; as t — oco.

Of course, as in any adaptive control strategy, the matrix D(m, é) has to be monitored,
on line, to remain nonsingular as long as there are nonzero errors in the system. Assuming
these adjustable parameters for the fictitious parameters do not converge to their true values

(zero), we can state the following theorem:

Theorem 2 Suppose that (33) is linear in 8;. Then given any smooth bounded signal y,, =
(Wmis - - - »Ym] with bounded derivatives such that the estimates of ¥; do not converge to zero
(nonpersistently exciting signal), with the control law (37) and (34), n; > 2, and p;; chosen
such that the corresponding characteristic polynomials are asymptotically stable, the output

y(+) of (10) tracks y.., for all zo € M.

Note that if one chooses n; = 2 in (34), then the control law (34) with (37) is of a PID type"
controller coupled with state feedback. In order to have asymptotic tracking with internal
stability, zo and y., need to be such that all the states remain in a compact subset of Mz in
the operating region of interest. Sufficient conditions to globally achieve this are typically
very restrictive in general. The application of this theorem is, however, more useful for a
given nonlinear system where the boundedness of states can b\e shown explicitly under this
feedback, or where the operating region of interest is known to be contained in the domain

~of internal stability of our system. An example, where this is easily the case is treated in

17



the next section. It is also possible to use other Lyapunov type functions to guarantee that

the estimates J; do not converge to zero. We refer to [GB92] for further detail.

V. Example 2

Although the proposed schemes here are intended more for MIMO nonlinear systems,
for the sake of comparison and to illustrate the design procedure, we apply the scheme
developed in the last section to the problem considered in [KKM91b] in which the output y

of the system:

21 = 294022

Zy = z3+Uu (38)
z3 = —z3+y

y = 2z

is required to track the reference signal y, = 0.1sin(t). Differentiating y gives (from (32)):
Y = z2 + 022 (39)

where D = 0, and we introduce a fictitious parameter in (39) with true value zero and

estimate 05, and apply in view of (34):
1 A .
u(t) = 0 {-—Zz — 6122 + Y + (Y — y)} (40)
2
to (38)-with a > 0. We have from (35) and (39):

¥ o= z 4022 —fu+ {—22 — 0122 + o + &A(Ym — y)}

¢ = —ae+22p + udy

Hp

¢ = —ae+ [zf,u] = —a-e+ W(z,u) ¢ (41)

18



where ¢; £ (6, — 9), ¢ 2 0y, and ¢ 2 [¢1, d2]. From (37), we have:

¢ = -0t wl.e
b1 = —qizte=—g19*(ym — y)
<7.52 = —gaue (42)

Clearly boundedness of y = z; is guaranteed. In fact, in systems of this type, where all the
observable states are chained as in [KKM91b], it suffices to go up to the first derivative of the
output in thé control law. In practice, this can be easily and effectively. implementied using
PID controllers. Note that since the unobservable subsystem z3 is BIBS with y regarded as
input, boundedness of z3 follows. Moreover, the boundedness of z; is clear from (38) with

the control law (40) in place. Hence, é is bounded and y — y,, as ¢ — oo for any initial

condition y(0).

For simulation, we chose @ = 100, g; = 1,9, = 1074, 0 = 1,@1(0) = 0.6, and 92(0) =0.03.
The results of the simulation, shown in Fig(5) and Fig(6), indicate that the tracking error
converges to zero as predicted. Compare to the results claimed in [KKM91b], the raté of
con;fergence is fast, a;ld the results hold for any initial conditions as shown in [KKM91b].
In [KKM91b], this problem was also solved, for comparison, using another adaptive scheme

developed in [SI89], and it was shown that the later scheme works only locally when e(0) <

0.45.

VI. Conclusion

In this paper, we have described some initial results of a research on adaptive control in

19



MIMO nonlinear systems where the vector relative degree is not defined. For right-invertible
systems, we utilized the structure algorithm of Hirschorn and Singh for the inversion of the
nonlinear input-output map under parametric uncertainty such that adaptive tracking was
achieved. For non-invertible systems, we presented an algorithm based on introducing some
fictitious parameters and update laws such that tracking was achieved. The resulting control

law could also be considered as a dynamic feedback control for the original system.

20
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