
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Bicriteria Product Design Optimization: An Efficient Solution
Procedure using AND/OR Trees

by S. Raghavan, Michael O. Ball, Vinai S. Trichur

TR 2001-8

Bicriteria Product Design Optimization: An Efficient Solution

Procedure Using AND/OR Trees

S.Raghavan∗ Michael O.Ball† Vinai S. Trichur‡

August 2000

Abstract

Competitive imperatives are causing manufacturing firms to consider multiple criteria when designing

products. However, current methods to deal with multiple criteria in product design are ad hoc in

nature. In this paper we present a systematic procedure to efficiently solve bicriteria product design

optimization problems. We first present a modeling framework, the AND/OR tree, that permits a

simplified representation of product design optimization problems. We then show how product design

optimization problems on AND/OR trees can be framed as network design problems on a special graph—

a directed series-parallel graph. We develop a solution algorithm for the bicriteria problem that requires

as a subroutine the solution of the parametric shortest path problem. Although this problem is hard

on general graphs, we show that it is polynomially solvable on the series-parallel graph. As a result we

develop an efficient solution algorithm for the product design optimization problem that does not require

the use of complex and expensive linear/integer programming solvers. As a byproduct of the solution

algorithm, sensitivity analysis for product design optimization is also efficiently performed under this

framework. We illustrate our model and solution algorithm on a complex design problem at a FORTUNE

100 company.

∗The Robert H. Smith School of Business, Van Munching Hall, University of Maryland, College Park, MD 20742; e-mail:
sr141@umail.umd.edu

†The Robert H. Smith School of Business and the Institute for Systems Research, Van Munching Hall, University of Maryland,
College Park, MD 20742; e-mail: mball@rhsmith.umd.edu

‡I2 Technologies, One Cambridge Center, Cambridge, MA 02142; e-mail: Vinai Trichur@i2.com

1

1 Introduction

Manufacturing firms today are faced with an increasing array of choices and decisions when designing a

product. Furthermore, competitive imperatives are causing firms to shift their strategic focus from one of

excellence on a single front (for instance, being a low cost producer, or being a high quality producer) to one

where different objectives are prioritized and traded off, in an effort to better fit narrower market niches. This

shift in focus has resulted in the need to explicitly incorporate an increasing number of typically downstream

product life cycle considerations (such as, design costs and manufacturing yields) into the decision making

process at the design stage. Thus, the product design problem, which was traditionally concerned only with

the functionality of the product, is now more accurately modeled as a multicriteria discrete optimization

problem.

In this paper we describe a modeling framework for product design that permits product managers to

efficiently approximate the set of Pareto optimal solutions for the bicriteria product design problem. In

the context of bicriteria optimization the term efficient, or Pareto optimal, solutions refers to the set of

solutions that are not dominated by any other solution in both criteria. As an example in the manufacturing

application described in this paper the two criteria under consideration are cost, that we wish to minimize,

and manufacturing yield, that we wish to maximize. In this situation a solution S with cost CS and yield YS

is Pareto optimal to the bicriteria problem if there is no other feasible solution R to the problem with both

a lower cost and a higher manufacturing yield (i.e., CR ≤ CS and YR ≥ YS and (CR, YR) 6= (CS , YS)). Such

solutions are important in multicriteria analysis due to the fact that irrespective of how a decision maker

trades off various criteria, one of these Pareto optimal solutions will be optimal. In bicriteria optimization

one is interested in presenting decision makers the set of Pareto optimal (or efficient) solutions.

Bicriteria optimization problems are often solved by modeling them as parametric (objective) optimiza-

tion problems. This is achieved by setting up a parameter λ, that varies from 0 to 1, that combines the two

criteria into a single objective function. When λ = 0 the objective function represents one criterion, and

when λ = 1 it represents the other criterion. Values of λ between 0 and 1 represent convex combinations

of the two objectives. For the example involving cost and yield, the parametric objective (that we wish to

minimize) is setup as λCS − (1− λ)YS . In parametric optimization problems one is interested in identifying

the set of (non-degenerate) optimal solutions as λ varies from 0 to 1. It is well-known that the optimal

solutions to the parametric optimization problem are Pareto optimal solutions to the bicriteria problem.

If the decision maker trades off the various objectives linearly, i.e., has a linear utility function (this is a

reasonable assumption in many instances), then the solutions to the parametric problem and the Pareto

optimal solutions coincide. Otherwise the solutions to the parametric problem are a subset of the Pareto

2

optimal solutions and serve as an approximation to the efficient frontier.1

We begin our presentation by reviewing a simple model, the AND/OR tree, first introduced in the context

of product design by Trichur and Ball [10]. This model makes explicit the decisions involved in designing a

product, without specific reference to either the consequences of these decisions, or the interactions between

them. We then show an equivalent network representation of the AND/OR tree, by transforming the

AND/OR tree into a directed series-parallel graph. Further, we establish a one to one correspondence

between feasible solutions to the product design optimization problem modeled using the AND/OR tree and

paths between two specified nodes on the directed series-parallel graph. As a result, we show how product

design problems utilizing this framework can be cast as a network design problem—either a shortest path

problem or a more complex variant of it where the path cost is a function of the arcs on the path.

The shortest path connection allows one to devise computationally efficient solution techniques for bi-

criteria product design problems modeled via this approach. The solution procedure models the bicriteria

design problem as a parametric optimization problem. It is based on the observation that fixing some of the

choice variables in the product design problem results in a shortest path problem. Thus, it enumerates these

choice variables, and so the core of the solution procedure calls for the repeated solution of the parametric

shortest path problem. The parametric shortest path problem is known to be hard on general graphs in the

sense that there may be upto O(|V |log|V |) paths that must be found to solve the parametric problem [4],

where V is the number of vertices in a graph. Thus, for general graphs, it is not polynomially solvable

irrespective of whether P = NP (since the size of the output in not polynomial). In this paper, we will

show that the parametric shortest path problem can be solved efficiently in O(|A|2) time, where |A| is the

number of arcs, on a directed series parallel graph.

Our approach has several advantages. First, it provides a systematic way to describe explicitly the deci-

sions involved in designing a product. Second, the AND/OR tree and its corresponding network formulation

provide additional insight into the problem structure, allowing for the development of efficient algorithms

for product design problems that are modeled using our framework. Third, bicriteria analysis of the product

design problem can be efficiently performed within this framework (either exactly under the assumption that

product managers have linear utility functions or as an approximation otherwise). Fourth, since sensitivity

analysis is essentially a parametric optimization problem, (objective function) sensitivity analysis for product

design optimization can be efficiently carried out under this framework. Finally, our approach allows for the

development of algorithms that do not require the use of commercial LP or IP solvers which can in many

instances significantly drive down the cost of a software product.
1In certain cases, like bicriteria linear programming problems, there is a one to one correspondence between the solutions to

the parametric problem and the Pareto optimal solutions. However, for discrete optimization problems, like the product design
optimization problem or even the shortest path problem, this does not generally hold.

3

B

DC

A1 A4A2

A5 A6E

A3

‘‘AND-Node’’

F

Figure 1: Modeling a hierarchical system via an AND/OR tree.

To demonstrate the applicability of our approach, and for ease of exposition, we present our results in

the context of a complex real-world application. In §2 we describe the AND/OR framework for product

design and establish the correspondence between AND/OR trees and directed series parallel graphs. In

§3 we describe the application of this framework to the design of printed circuit board assemblies at a

FORTUNE 100 company. We also outline the solution procedure that requires, as a subroutine, the solution

to a parametric shortest path problem. In §4 we present our polynomial time solution algorithm to the

parametric shortest path problem on a directed series-parallel graph, thereby providing the core algorithm

for the solution procedure to the bicriteria product design problem. We conclude in §5 with a discussion on

some suggested extensions and directions for further research. In particular we discuss the extension of the

solution procedure to multicriteria (i.e., with more than two objectives) product design problems.

2 Modeling Product Design Problems: AND/OR Trees and Di-

rected Series Parallel Graphs

In order to develop the basic model of a generic product, we utilize a structure known as an AND/OR

tree. This is a special case of more general structures, AND/OR graphs, that have been studied in the

computer science literature (see Nilsson [6]). An AND/OR tree is a natural starting point for representing

a hierarchical system (one that can be decomposed in a top down fashion into subsystems, subsubsystems,

and so forth) in the presence of alternatives for some/all of the subsystems/atomic elements (elements that

cannot be decomposed further). Figure 1 illustrates this concept. Here, the system, B, contains subsystems

C and D (indicated by the “AND-node”). C can be decomposed further in two alternative ways; thus, C

contains either subsystem E, or subsystem F . E contains atomic units A1 and A2, F contains A3 and A4,

and D contains either A5 or A6.

Observe that in Figure 1, each node is either an AND-node, whose selection necessitates the selection

of all of its child nodes, or an OR-node, whose selection necessitates the selection of exactly one of its child

4

Basic function of the product

Function 2Function 1

Function 3 Function 4 Function 5

Assembly 1

Assembly 5Assembly 4

Assembly 3Assembly 2

Assembly 6 Assembly 7

Assembly

GC-1 GC-2 GC-N

C-1 C-2

GP-2GP-1

P-2P-1

GC: Generic Component

 C: Component

GP: Generic Process

 P: Process

A: Function Block Representation B: Decomposition of an Assembly Block

Figure 2: Decomposition of a product.

nodes—B, E and F are AND-nodes, while C and D are OR-nodes. Notice that the OR, in the AND/OR

tree is an exclusive OR. In the rest of the paper, we use OR to denote an exclusive OR. It might appear that

AND and OR nodes are insufficient to model logical conditions such as (A1 AND A5) OR A6. However, it is

easy to see that by decomposing this expression into its constituent AND and OR parts, we may represent

this on an AND/OR tree by using an AND node, say Ni, to represent (A1 AND A5), and then an OR

node to represent Ni OR A6. We refer to this case as the standard form, and henceforth assume that the

AND/OR tree is of this form.

In order to use AND/OR trees to model a product, we note that any product is designed to satisfy a

certain function; this basic function can then be recursively decomposed into subfunctions. These function

blocks are, thus, abstract representations of what a product must do in order to accomplish its function.

With a function block representation of a product, designers can postulate alternate function blocks that

achieve the same function. The decomposition process continues until the function blocks become ‘concrete’

enough, i.e., until it becomes possible to map a function block on to an assembly/component that can

be manufactured/purchased. Figure 2(A) illustrates this idea. Each of the terminal assembly nodes in

Figure 2(A) can be decomposed into its constituent components. Each of these components will have

alternatives; moreover, each component will have a set of processes that need to be performed on it, and

each of these processes will also have alternatives. Figure 2(B) shows this decomposition of an assembly

into its constituent components and processes. The generic component and generic process nodes serve as

dummy nodes that cast the AND/OR tree into the standard form.

We note that it is possible for an assembly to satisfy multiple functions and thus occur multiple times on

the leaves of the AND/OR tree. We assume that an assembly used on a product may only satisfy a single

functionality at a time. In other words, using an assembly that can provide two functionalities requires

multiple installations of the assembly on the product. However, if an assembly could simultaneously satisfy

5

multiple functions (such assemblies would typically be few and much more expensive), we can modify the

AND/OR tree to model this situation and satisfy our assumption. As an example, suppose a product has

two functions F1 AND F2. Further, F1 may be provided by assembly A1 OR A2 OR A3, while F2 may

be provided for by A3 OR A4 OR A5. If using A3 for F1 as well as for F2 requires two installations of

A3, then we leave the AND/OR tree unchanged. If A3 can simultaneously be used to provide functions F1

and F2, and thus only a single installation of A3 is required, we modify the AND/OR tree as follows. We

create a new dummy function F3 that represents the use of assemblies that can simultaneously provide both

functionalities F1 and F2. F3 has a single child or assembly, A3. Our tree then replaces the expression (F1

AND F2), by the appropriate creation of AND/OR nodes, by the new expression F3 OR (F1 AND F2). As

might be inferred, a systematic way to transform the tree to the required form may easily be obtained by

considering assembly blocks that can simultaneously satisfy multiple functionalities.

We now establish a correspondence between AND/OR trees and directed series parallel graphs. A

directed series-parallel graph is a directed acyclic graph (a graph that contains no directed cycles) that can

be constructed solely by series and parallel operations starting from a single arc. A series operation replaces

a single arc by two or more arcs in a linear chain. A parallel operation replaces a single arc by two or more

parallel arcs between the two end points of the arc.

Figure 3 illustrates this correspondence. The graph shown in Figure 3(d) is constructed by starting with

a single arc B between the nodes s and t. First a series operation is applied where the arc B is replaced by

two arcs C and D in a linear chain (i.e., the tail of arc C is identical to the tail of arc B, the head of arc

C is connected to the tail of arc D, and the head of arc D is identical to the head of arc B). Next parallel

operations are applied to arcs C and D. Arc C is replaced by arcs E and F , in parallel, between the end

points of arc C. Similarly, arc D is replaced by arcs A5 and A6. Finally, series operations are applied to

arcs E and F . Arc E is replaced by arcs A1 and A2 in a linear chain, and arc F is replaced by arcs A3 and

A4 in a linear chain.

Looking at Figures 1 and 3 the correspondence between an AND/OR tree and a directed series-parallel

graph is now apparent. A directed series-parallel graph is constructed from an AND/OR tree as follows.

Start the construction by introducing a single arc (s, t) representing the root node of the AND/OR tree.

Next, scan the AND/OR tree in a breadth first search [3] manner: applying a series operation when an AND

node is encountered, by replacing the arc corresponding to the AND node, by arcs in series corresponding

to the ordered children of the AND node (the order is from the leftmost child to the rightmost child of

the AND node); and applying a parallel operation when an OR node is encountered, by replacing the arc

corresponding to the OR node, by arcs in parallel corresponding to the children of the OR node.

Observe that by construction the directed series-parallel graph corresponding to the AND/OR tree has

6

ts

s t

B

C

s t

D

E A5

A6

s t

A1 A2

A3 A4

A5

A6

(a)

(d)

(b)

(c)

F

Figure 3: Construction of a Directed Series Parallel Graph.

a unique node, denoted by s, with no incoming arc that we refer to as the origin; and a unique node with

no outgoing arc, denoted by t, that we refer to as the destination. We now show that, by construction,

any path from the origin s to the destination t in the directed series-parallel graph corresponds to a feasible

choice of leaf nodes (or atomic units) in the original AND/OR tree. By a feasible choice, we mean that if the

leaf nodes corresponding to the arcs in the s-t path are selected in the AND/OR tree, then the conditions

represented by the AND/OR tree are satisfied. In our example, consider the s–t path A3− A4− A5. This

corresponds to the selection of atomic units A3, A4, and A5 on the AND/OR tree. A3 and A4 represent

the selection of subsystem F . Notice that since subsystem C is composed of either subsystem E or F , this

implies subsystem C is represented. The selection of A5 indicates the selection of subsystem D, together

with the selection of subsystem C represents that system B can be feasibly constructed by the choice of

atomic units (leaves) A3, A4 and A5.

In what follows let T denote the AND/OR tree, and GT denote the directed series-parallel graph con-

structed from the AND/OR tree. We call the number of nodes on the (unique) path from the root (the

parent node of the AND/OR tree, i.e., the node on the tree with no parent) of the tree to a particular node

the depth of the node. Thus, the root node has depth 1, the children of the root node have depth 2, and so

on. We refer to the maximum depth of all nodes in the AND/OR tree as the depth of the tree. Additionally,

for convenience in the rest of the paper, since we always consider directed series-parallel graphs, we drop the

qualifier directed and refer to a directed series-parallel graph as a series-parallel graph.

Lemma 1 A feasible set of leaf nodes on the AND/OR tree T corresponds to an s–t path on the series-

parallel graph GT .

Proof:

7

To simplify our proof, without loss of generality, we impose the following structure on the AND/OR tree.

Every alternate level of the AND/OR tree, consists solely of OR nodes, or solely of AND nodes. In other

words, until we reach the leaves of the tree, children of AND nodes are OR nodes, and children of OR nodes

are AND nodes.

The proof of equivalence is by induction on the depth of the AND/OR tree. It is trivially true for a tree

of depth 1. Suppose it is true for AND/OR trees of depth k, and consider an AND/OR tree T of depth

k + 1. Observe that the AND/OR tree Td obtained by deleting the leaves at depth k + 1 from T is a tree of

depth k. Consider GTd the series-parallel graph constructed from the truncated tree Td. By the induction

assumption the equivalence holds between Td and GTd the series-parallel graph constructed from it. Now

consider the complete tree T . To obtain GT , the series-parallel construction process replaces arcs in GTd

corresponding to non-leaf nodes of T with depth k, by arcs corresponding to their children that are leaf

nodes with depth k + 1.

If the non-leaf nodes at depth k are AND nodes, then an arc corresponding to one of these nodes in GTd

is replaced by a set of arcs, corresponding to the AND node’s children, in a linear chain to obtain GT . Thus

any path between nodes s and t in GTd that includes an arc corresponding to an AND node of depth k now

includes in GT all of its children. Consequently if the correspondence holds for AND/OR trees of depth k

it must hold for AND/OR trees of depth k + 1, where the non-leaf nodes with depth k are AND nodes.

Now suppose that the non-leaf nodes at depth k are OR nodes. Then the series-parallel construction

process replaces the arcs in GTd corresponding to non-leaf nodes with depth k by parallel arcs corresponding

to their children, that have depth k + 1, to obtain GT . Any path from s to t in GTd that includes an arc

corresponding to an OR node of depth k now includes exactly one of the arcs corresponding to the OR node’s

children. As a result if the equivalence holds for trees of depth k it holds for trees of depth k + 1, where the

non-leaf nodes of depth k are OR nodes. �

As a consequence of Lemma 1, we note that the problem of choosing a feasible set of nodes on an AND/OR

tree may be modeled as a problem of finding a path from s to t on the corresponding series-parallel graph.

Depending on the costs associated with the choices, and their interactions, the problem may be modeled

either as a shortest path problem, or as a more complex network design problem of finding a feasible s-t

path with minimum cost.

Before we conclude this section, we make an observation that will prove useful in the development of

our solution procedure to the parametric shortest path problem in §4. An alternate bottom-up view of the

construction process of a series-parallel graph is as follows. The leaves of the AND/OR tree, that we denote

L(T), represent arcs that are building blocks of the series-parallel graph. Each node i of the AND/OR

tree represents a series-parallel graph obtained in a bottom-up construction process. For any i ∈ T , let C(i)

8

s t

A1 A2

A3 A4

A5

A6

B

DC

A5 A6

A1 A2

E

A4A3

F

s t
A1 A2

t

A5

A6

s

ts
A1

ts
A2

ts
A3 ts

A4

s t
A3 A4

ts
A5

ts
A6

s

A1 A2

A3 A4

t

Figure 4: Bottom-up view of AND/OR tree. The series-parallel graph corresponding to each node on the
AND/OR tree is located above each node.

denote its children on the AND/OR tree, and let GT
i denote the series-parallel graph it represents. Let s(Gi)

denote the origin of series-parallel graph Gi and t(Gi) denote the destination. A parallel composition of two

or more series-parallel graphs G1, G2, . . . , Gk is obtained by coalescing the origins s(G1), s(G2), . . . , s(Gk)

together and coalescing the destinations t(G1), t(G2), . . . , t(Gk) together. A series composition of two or

more series-parallel graphs G1, G2, . . . , Gk is obtained by coalescing in order t(G1) with s(G2), t(G2) with

s(G3), . . ., t(Gk−1) with s(Gk).

The bottom-up construction process starts at the leaves L(T) of the AND/OR tree and works its way

up the tree until it reaches the root. At a leaf node i ∈ L(T), GT
i is simply an arc. Elsewhere on the tree if

i is an AND node, GT
i is obtained by a series composition of its children GT

j for j ∈ C(i), and if i is an OR

node, GT
i is obtained by a parallel composition of its children GT

j for j ∈ C(i). Observe that, if r denotes

the root of T , GT
r = GT . As an example Figure 4 shows the series parallel graphs represented by the nodes

on the AND/OR tree under this viewpoint.

3 An Application: The T/R Module Design Problem

We now review the application [1, 5] of the above framework to the design of transmitter/receiver (T/R)

modules—printed circuit board assemblies that are a component of radar systems. The specific metrics that

we seek to optimize are a cost metric and a manufacturing yield metric. The basic input to the problem

consists of an AND/OR tree description of the T/R module, similar to Figure 2. Given this description,

9

Table 1: Notation

the design problem is to choose among the alternative function blocks, assembly blocks, components, and

processes for each component, such that the resulting design is efficient with respect to the cost and manu-

facturing yield metrics.

In our model, we make a few assumptions that allow us to decompose the product design problem by

its constituent sub-assemblies (the leaves of the AND/OR tree in Figure 2(A)). First, for ease of exposition,

we assume that the sub-assemblies are manufactured independently. Second, we do not consider the impact

of component commonality between sub-assemblies. Third, given the first two assumptions, we may now

assume that the two metrics, cost and yield, are decomposable by assembly block. That is, the cost/yield

contribution of an assembly block is assumed to depend only upon the decisions made within that assembly

block. Later in this section we discuss the consequences of relaxing the first assumption.

For any sub-assembly, Table 1 describes the input data for the problem. Key attributes such as ma-

terial costs, run times, setup times, process yields, and material defect rates are assumed to be known for

components, processes, and component-process combinations.

We now describe the mathematical formulation of the problem and then show the equivalent network

10

representation. First we define the following decision variables:

xj =




1 if component j is selected, j ∈ Vk, k ∈ V

0 otherwise.

yp =




1 if process p is used in the assembly, p ∈ P

0 otherwise.

xpj =




1 if process p is selected for component j,

0 otherwise. (j ∈ Vk, k ∈ V, p ∈ Pji, i ∈ Pj)

The expressions for design cost, which we seek to minimize, and manufacturing yield, which we seek to

maximize, are as follows:

C = Unit cost + Runtime cost + Setup cost =
∑

i

cixi + l
∑
p,j

tpjxpj +
l

b

∑
p

tpyp (1)

Y =
∏
p

(βp)yp

∏
j

(1− αj)
xj (2)

The cost expression, (1), is computed as the cost per unit in the batch. Thus, the unit cost, and runtime

cost, do not include the batch size, while the setup cost is spread over the batch. The yield expression, (2),

consists of the product of the component defect rates and process yields. We can linearize (2) to get

Y ′ = log Y =
∑

p

yp log βp +
∑

j

xj log (1− αj) . (3)

The problem we wish to solve is the following bicriteria integer program (P):

minimize




C

−Y ′




subject to
∑
j∈Vk

xj = 1 k ∈ V (4)

∑
p∈Pji

xpj = xj ∀j, i ∈ Pj (5)

yp ≥ xpj ∀p, j (6)

xj , yp, xpj ∈ {0, 1} ∀ j, p (7)

Constraints (4) and (5) capture the AND/OR tree structure of the problem. Constraint (4) tells us that we

11

should choose exactly one component among all the components representing generic component k. Similarly

constraint (5) tells us that if component j is selected then for each generic process that acts on it, exactly

one of the alternatives for this generic process should be selected. Constraint (6) tells us that a process

may be used on a component (xpj) only if the process has been selected for use in the manufacture of the

assembly (yp). We note that even the single criteria version of this integer program is known to be NP-hard

via a reduction from the uncapacitated facility location problem [9].

To obtain Pareto optimal solutions to the bicriteria problem we solve the parametric problem Pλ:

minimize Z(λ) = λC − (1− λ)Y ′ (8)

subject to constraints (4)-(7)

where the parameter λ ranges over the interval [0, 1]. As discussed earlier, this gives all the Pareto optimal

solutions when the decision makers’ utility function is linear. Otherwise we have a subset of the Pareto

optimal solutions.

We now develop the network representation for problem Pλ that we wish to solve. In order to do so,

we first transform the AND/OR tree corresponding to Pλ into an equivalent series parallel graph, using the

procedure described in §2. This would lead to a graph similar to the one in Figure 3(d). Since the arcs in

the series parallel graph correspond to the leaf nodes (i.e., the process nodes) in the AND/OR tree, each

arc in the graph represents a specific component-process combination. Thus, the series parallel graph lists

all the possible component-process combinations, and each s− t path in this graph corresponds to a feasible

solution to Pλ. Each arc will have associated with it, an arc weight given by the following expression:

Wa(λ) = λ(
cj

|Pj |
+ ltpj)− (1− λ)

log(1− αj)
|Pj |

(9)

where j and p are the component and process corresponding to arc a. In other words, the arc weight

captures the costs specific to the particular component-process combination. Since component j requires

|Pj | generic processes, and since for each generic process exactly one specific process alternative is selected

(recall that process alternatives are represented by arcs in parallel), we can spread out the cost of component

j, cj , across the component-process arcs corresponding to j in the manner described in equation (9); it is

necessary to do so in order to avoid incurring the cost cj multiple times (else we will incur this cost for each

component-process arc corresponding to j).

We now turn to the fixed costs associated with each process p, given by FC(p) = λltp/b− (1− λ) log βp.

Since the arcs in the series parallel graph represent component-process combinations, it is clear that each

12

process can be viewed as a set of arcs in the graph. For instance, in Figure 3(d), arcs A1 and A4 might

represent the same process, and so forth. Consequently, FC(p) can be viewed as a fixed charge that is

incurred (exactly once) should any of the arcs corresponding to process p be selected (irrespective of the

number of such arcs selected). The problem of finding efficient solutions to problem P, i.e., that of solving Pλ

for different values of λ, can thus be viewed as that of finding shortest s− t paths through the corresponding

series parallel graph for different values of λ, where the cost of a path includes the fixed charges associated

with the processes selected by the path.

3.1 Outline of Solution Algorithm to Parametric Problem Pλ

The solution procedure that we propose begins with the observation that the number of processes involved

in T/R module design is quite small. Further, selecting a set of processes P ′ corresponds to fixing yp = 1

for p ∈ P ′ in the integer program, or may be correspondingly viewed as deleting the arcs corresponding to

processes not in P ′ from the series-parallel graph. We denote by Pλ(P ′) the reduced problem associated

with a given set of selected processes P ′. Notice that, to solve Pλ(P ′), since the set of processes are fixed

and all other costs are decomposable by the arcs selected on a path, we need to solve a parametric shortest

path problem on the reduced graph.

Our solution procedure, enumerates all process combinations: this is computationally viable since there

are a small number of process alternatives. Observe that some process combinations may be infeasible, i.e.,

there is no path from node s to node t in the series-parallel graph (in practice only a small set of process

combinations are feasible). For each feasible process combination P ′, it then solves the parametric problem

Pλ(P ′), corresponding to the selection of processes P ′ for the assembly. It then combines these parametric

solutions for all process combinations to obtain the overall parametric solution.

3.2 Relaxing the Independent Manufacture Assumption

Earlier in this section we assumed that sub-assemblies are manufactured independently. This was one of the

assumptions that allowed us to decompose the product design problem by sub-assembly. Suppose different

sub-assemblies could be acted upon simultaneously during a single setup of a process. Then, to model the

problem, rather than consider each sub-assembly independently we could consider the AND/OR tree for the

entire product. In our model this simply means working on a larger series-parallel graph.

13

4 Polynomial Time Algorithm for Parametric Shortest Path Prob-

lem

In order to make our solution procedure for biciriteria product design optimization problems work we need an

algorithm to solve the parametric shortest path problem. As we have indicated earlier the parametric shortest

path problem is hard on general graphs. We now describe a polynomial time algorithm for the parametric

shortest path algorithm on series-parallel graphs. Our description follows in three parts. First we consider

the non-parametric problem (i.e., λ is fixed), and describe an O(|A|) dynamic programming algorithm. Next,

we develop some intuition concerning the parametric analysis, by describing how to combine the parametric

analysis of two subproblems. We then modify the dynamic programming algorithm, and solve the parametric

problem in O(|A|2) time.

4.1 Dynamic Programming Algorithm for Non-Parametric Problem

While the shortest path problem is polynomially solvable by Dijkstra, or other alternatives, we describe a

dynamic programming approach that utilizes the AND/OR tree representation. This approach enables an

easy extension to the parametric case.

To simplify the analysis of the running time of the algorithm, we use a binary AND/OR tree representation

(the running time results hold even if we use the original AND/OR tree representation of the problem). In

a binary AND/OR tree each node in the AND/OR tree, except for the leaf nodes, has two children. It is

easy to see that any AND/OR tree can be transformed into a binary AND/OR tree. Figure 5 provides an

example. The procedure for the transformation is a top-down procedure on the AND/OR tree. Whenever

an OR node or an AND node has more than two children the procedure replaces the poly-ary tree structure

by a binary tree structure as shown in Figure 5. Notice that the number of leaves in the binary AND/OR

tree is identical to the number of leaves in the original AND/OR tree. The number of operations required to

perform this transformation is proportional to the number of nodes in the binary AND/OR tree. Lemma 2,

described later in this section, shows that a binary tree with |L(T)| leaves has 2|L(T)| − 1 nodes, and thus

the transformation takes O(|L(T)|) time.

For a series-parallel graph, Gi, let O(Gi) denote the cost of the shortest path from s(Gi) to t(Gi). For

convenience, when obvious, we will drop the superscript T in the notation GT
i for i ∈ T .

The following two simple observations provide the necessary ingredients for the dynamic programming

recursion.

Observation 1 If i is an AND node on T , then the shortest path from s(Gi) to t(Gi) is obtained by taking

14

C

(a)

B

D E F

B

C

D

E F

(b)

Figure 5: Transformation to a binary AND/OR tree. (a) An OR node with four children, and (b) its binary
counterpart.

the union of the shortest paths of the children of i. In particular O(Gi) the cost of the shortest path is

obtained as the sum of the costs of the shortest paths of the children of i (i.e., O(Gi) =
∑

j∈C(i) O(Gj)).

Observation 2 If i is an OR node, the shortest path from s(Gi) to t(Gi), is obtained by finding the lowest

cost path among the children of i. In particular the minimum cost path is obtained by finding the least cost

path among the shortest paths from s(Gj) to t(Gj) for j ∈ C(i).

The dynamic programming algorithm starts from the leaves of the AND/OR tree setting O(Gi) equal to

the cost of the arc for i ∈ L(T) and works its way up to the root using the following equations.

O(Gi) =
∑

j∈C(i)

O(Gj) if i is an AND node (10)

O(Gj) = min
j∈C(i)

O(Gj) if i is an OR node (11)

To keep track of the shortest path, we observe that choices among competing alternatives are made solely

at OR nodes. Thus to keep track of the shortest path, at OR nodes, we keep track of the child (or children,

if there is more than one child that gives the minimum) that gives the minimum in Equation 11.

At each node on the tree the algorithm either finds the minimum of the objective values of the two

children, or sums the objective values of the two children (since we are using a binary tree representation).

Both of these operations take O(1) time. Thus the total running time, as well as the space required, is

bounded by the number of nodes in the tree. The following lemma provides a linear bound on the number

of nodes in the binary tree representation as a function of the number of leaves in the tree (recall that the

leaves of the tree correspond to arcs in the series-parallel graph), thus showing the algorithm runs in O(|A|)

time, and requires O(|A|) space.

15

Lemma 2 A binary tree T with |L(T)| leaves contains 2|L(T)| − 1 nodes, and has depth less than or equal

to |L(T)|.

Proof:

The proof is by induction on the depth of the binary tree. We prove the first part of the statement, noting

that the proof bounding the depth is similar. It is trivial for a binary tree of depth 1. Now assume that it is

true for binary trees of depth k. Consider a binary tree T of depth k + 1. Let V k+1(T) denote the nodes at

depth k + 1 on T . Consider the binary tree Td obtained from T by deleting the nodes at depth k + 1. By

the induction assumption the number of nodes in Td is equal to 2|L(Td)|−1. Notice, T has V k+1(T)/2 more

leaves than Td, and V k+1(T) more nodes than Td. That is for every additional leaf there are two additional

nodes, and thus the induction holds. �

As one might suspect researchers have previously studied several network design problems, including the

shortest path problem, on series-parallel graphs [2, 11]. Interestingly, the algorithms developed therein are

similar, in the sense that the algorithms use a tree representation of a directed series-parallel graph (with

nodes representing series operations and parallel operations) and then use a similar bottom-up dynamic

programming approach on the tree. However, these researchers do not seem to have considered the parametric

problem on series-parallel graphs.

4.2 Parametric Analysis Preliminaries

In this section we develop some observations regarding parametric analysis that are essential to our dynamic

programming algorithm. Since these observations are well developed in the computational geometry litera-

ture, we provide an informal analysis of these observations to motivate the dynamic programming algorithm

for the parametric problem.

In the parametric problem, let Ca and Ya denote the cost and yield terms respectively of arc a in

Equation 9. Thus Wa(λ) = λCa − (1 − λ)Ya. Let Q denote the set of paths from s(GT) to t(GT). For a

particular path Q ∈ Q, let C(Q) =
∑

a∈Q Ca and let Y (Q) =
∑

a∈Q Ya. Observe that for a path Q ∈ Q and

a fixed λ, its cost is given by (C(Q) + Y (Q))λ− Y (Q). The objective function of the parametric problem is

obtained by finding the lower envelope of the set of lines (C(Q) + Y (Q))λ− Y (Q) (where λ ∈ [0, 1]) for all

Q ∈ Q.

Observation 3 The lower envelope of a set of straight lines is a piecewise linear and concave function.

Furthermore, it can contain at most as many segments as the number of lines.

The above observation follows immediately from the definition of a lower envelope, and is illustrated in

Figure 6(a). From this observation we may infer that the objective function corresponding to the bicriteria

16

(a) (b) (c)

λ λ λ

f(λ) f(λ) f(λ)

Figure 6: Parametric analysis with linear functions. The (a) minimum of a set of linear functions, (b) sum of
two piecewise linear and concave functions, and (c) minimum of two piecewise linear and concave functions,
are piecewise linear and concave functions.

shortest path problem is a continuous, piecewise linear and concave function (note that concavity implies

the function is continuous). Further we may observe, by concavity, that if a path Q is optimal for λ = λ1

and λ = λ2, then it is optimal for all λ ∈ [λ1, λ2].

The breakpoints, and slopes and intercepts between breakpoints, completely specify a piecewise linear

function. Let Bi = {b1
i , b

2
i , b

3
i , . . . , b

|Bi|
i } denote the ordered breakpoints of a piecewise linear function fi

(i.e., b1
i < b2

i < . . . < b
|Bi|
i). Let mr

i denote the slope, and dr
i denote the intercept, between breakpoints br

i

and br+1
i . In our analysis, λ varies from 0 to 1, and thus the leftmost breakpoint λ = 0 and the rightmost

breakpoint λ = 1 are common to all functions. Notice that the number of segments in a piecewise linear

function fi is equal to |Bi| − 1.

The following two observations provide the necessary ingredients for the parametric analysis at OR and

AND nodes in the dynamic programming algorithm.

Observation 4 When we add two piecewise linear and concave functions, say fi with breakpoints Bi, and fj

with breakpoints Bj, the resulting function is also piecewise linear and concave. Furthermore, the number of

breakpoints in the resulting function is at most the sum of the number of breakpoints in the original functions,

and this operation can be carried out in O(|Bi|+ |Bj |) time.

Remark:

The first part of this observation is self-evident, and is illustrated in Figure 6(b). Now, we describe the

second part of the observation.

To obtain the sum fk of two piecewise linear functions fi and fj , we create its ordered set of breakpoints

Bk = Bi ∪ Bj from the ordered lists of breakpoints Bi and Bj . To determine the slope mt
k and intercept

dt
k between breakpoints bt

k and bt+1
k , let br

i denote the largest breakpoint in Bi that is less than or equal to

17

bt
k, and bs

j denote the largest breakpoint in Bj that is less than or equal to bt
k. Then mt

k = mr
i + ms

j , and

dt
k = dr

i + ds
j .

Since the lists Bi and Bj are sorted, it takes O(|Bi|+ |Bj |) time to create the ordered list of breakpoints

Bk. It then takes O(|Bk|) time to determine the slopes and intercepts between these points, thus the addition

of two piecewise linear function takes O(|Bi|+ |Bj |) time. �

Observation 5 The minimum (lower envelope) of two piecewise linear and concave functions, say fi with

breakpoints Bi, and fj with breakpoints Bj, is also a piecewise linear and concave function. Furthermore, the

number of breakpoints in the lower envelope is at most the sum of the number of breakpoints in the original

functions, and can be determined in O(|Bi|+ |Bj |) time.

Remark:

This observation might not be so readily apparent. However, it follows when one realizes that a segment

in one of the original functions cannot appear at two different locations in the lower envelope, due to the

concavity of the original functions. Figure 6(c) illustrates this observation. Since the number of segments

in the lower envelope is at most the sum of the number of segments in the original functions, the total

number of breakpoints in the lower envelope is at most the sum of the number of breakpoints in the original

functions.

We now describe how the lower envelope of two piecewise linear and concave functions can be determined

in O(|Bi|+ |Bj |) time. The algorithm, referred to as a sweep line algorithm, scans the breakpoints in Bi∪Bj

in increasing order. In doing so, it stores a left sweeppoint (λls) and a right sweeppoint (λrs). Initially,

the left sweeppoint is the smallest breakpoint in Bi ∪ Bj and the right sweeppoint is the second smallest

breakpoint in Bi ∪ Bj . Let br
i denote the largest breakpoint in Bi that is less than or equal to λls, and bs

j

denote the largest breakpoint in Bj that is less than or equal to λls. Let t denote a counter, with t = 1

initially, for the breakpoints Bk of fk = min{fi, fj}.

Notice that between the left and right sweeppoints the slope of the piecewise linear functions fi and

fj are unchanged. The algorithm determines at the left sweeppoint, the smaller of the function values

fi(λls) = mr
i λls + dr

i and fj(λls) = ms
jλls + ds

j . For the moment assume that there is no tie. If the slope

of the line with the smaller function value has changed at the left sweeppoint (i.e., it is different to the left

of λls), then the left sweeppoint is added to Bk by setting bt
k = λls and adding it to Bk. It also sets mt

k

and dt
k to the slope and intercept of the line with the smaller function value, and increments t by 1. It then

determines the value of λ where the two lines intersect (this is given by λint = (dj
s − di

r)/(mi
r − mj

s)). To

the left of λint, the line with the larger slope is lower, and to the right of λint the line with the smaller slope

is lower. If λint lies strictly between the left sweeppoint and right sweeppoint, then it adds it to the list of

18

breakpoints Bk by setting bt
k = λint. It also sets mt

k and dt
k to the slope and intercept of the line with the

smaller slope, and increments t by 1. It then makes the right sweeppoint the left sweeppoint, and makes the

next point on the combined list Bi ∪Bj the right sweeppoint.

If there is a tie between fi(λls) and fj(λls), we observe that λls must be a breakpoint in the piecewise

linear lower envelope. Further since both lines intersect at the left sweeppoint the line with the lower slope

must belong to the lower envelope in the interval [λls, λrs]. Consequently in the case of a tie, the algorithm

sets bt
k = λls and adds it to Bk. It also sets mt

k and dt
k to the slope and intercept of the line with the smaller

slope, and increments t by 1. It then makes the right sweeppoint the left sweeppoint, and makes the next

point on the combined list the right sweeppoint.

This procedure continues until the left sweeppoint is 1. Observe that the number of additions, com-

parisons, and updates that the algorithm performs between changes in sweeppoints is bounded by a con-

stant. Since the lists are already sorted it takes O(1) time to find the next sweeppoint. Therefore it takes

O(|Bi|+ |Bj |) time. �

With these observations in hand we are now ready to develop the dynamic programming algorithm for

the parametric shortest path problem.

4.3 Algorithm for solving the parametric shortest path problem

The dynamic programming algorithm to solve the parametric problem works using a bottom-up approach

on the AND/OR tree. At the leaves of the AND/OR tree the parametric problem is simple. The cost of the

shortest path as a parameter of λ is (Ca + Ya)λ− Ya for λ ∈ [0, 1], and the path is the arc a corresponding

to the leaf node.

From our observations in the preceding sections, at an OR node, corresponding to a parallel composition,

we wish to find the minimum of piecewise linear and concave functions representing the parametric shortest

path for each of the children of the OR node. Observation 5 shows that this can be done in O(|Bi|+ |Bj |)

time where Bi and Bj are the breakpoints of the two children of the OR node. Similarly, at an AND node

we wish to find the sum of two piecewise linear and concave functions representing the parametric shortest

path for each of the children of the AND node. From Observation 4 this can be done in O(|Bi| + |Bj |)

time. The dynamic programming equations are identical to equations (10) and (11), except that O(Gi) now

represents the parametric objective function.

We now discuss the running time of the dynamic programming algorithm. Observe that the number of

operations at any node i ∈ T is equal to O(
∑

j∈C(i) |Bj |). Therefore the total number of operations at nodes

19

at depth k on the AND/OR tree is:

∑
i∈V k(T)

O(
∑

j∈C(i)

|Bj |) = O(
∑

i∈V k(T)

∑
j∈C(i)

|Bj |),

= O(
∑

j∈V k+1(T)

|Bj |+
∑

i∈L(T),i∈V k(T)

1).

Using the recursion between nodes at depth k and depth k + 1 shown in the above equation we find

∑
i∈V k(T)

O(
∑

j∈C(i)

|Bj |) = O(|{i : i ∈ L(T), i ∈ V l(T) for some l ≥ k}|).

In other words the number of operations at nodes at depth k on the AND/OR tree is bounded by a constant

times the number of leaves at depth k or greater, which is itself bounded by O(|L(T)|). The depth of the

tree is bounded by |L(T)|, thus bounding the running time of the algorithm by O(|L(T)|2). Noting that

|A| = |L(T)| we can now state the result.

Theorem 1 The parametric shortest path problem on a series-parallel graph with A arcs can be solved in

O(|A|2) time.

So far we have discussed how to obtain the parametric objective function. We now discuss how to keep

track of the parametric shortest paths. It is important to distinguish whether the product managers are

interested in (i) all the parametric solutions, or (ii) the set of non-degenerate parametric solutions (i.e., a

minimal set of parametric solutions that contain an optimal solution for each λ ∈ [0, 1]). The distinction

is that the latter set does not include any ties. In particular, in the latter set each solution is the unique

optimal solution for some value of λ ∈ [0, 1], and collectively contains a set of solutions such that one of

them is optimal for any λ ∈ [0, 1]. Usually, in parametric analysis, decision makers are interested in the set

of non-degenerate parametric solutions.

To ascertain the parametric shortest paths, at each OR node i, in the execution of the algorithm, we

keep track of the child (or children in case of ties) that gives the minimum between the breakpoints Bi of fi.

Thus we need O(|Bi|) space at each node i, or O(|A|2) space over the entire tree, to keep track of the paths.

To obtain the shortest path for a particular value of λ, we simply traverse down the tree in a top-down (or

breadth first search) fashion, following the appropriate child indicated by the OR node for the value of λ to

obtain the shortest path. Note that this traversal takes O(|A|) time since it is bounded by the number of

nodes in the AND/OR tree.

To obtain the set of all non-degenerate parametric shortest paths, observe that if a path is optimal for λ,

such that bi
r < λ < bi+1

r where r is the root of the tree, then the path is optimal for all λ ∈ [bi
r, b

i+1
r]. Thus

20

to enumerate a set of non-degenerate parametric solutions we simply repeat the procedure discussed above

for fixed λ repeatedly for b1
r < λ < b2

r, b
2
r < λ < b3

r, . . . , b
|Br|−1
r < λ < b

|Br|
r . In other words, we repeat the

procedure |Br| − 1, or equivalently |A| times, to find the parametric solutions in O(|A|2) time.

Before we conclude this section we make a few additional observations. In general the set of all parametric

shortest paths (i.e., including ties) on a series-parallel graph may be exponentially sized. Our arguments

have shown that a series-parallel graph contains at most |A| non-degenerate parametric shortest paths (on

general graphs this set may have as many as |V |log |V | paths). If we are interested in all parametric solutions,

then it is possible to modify the dynamic programming algorithm, by keeping track of all ties, and implicitly

store all parametric shortest paths with O(|A|2) space. Of course, the enumeration of the actual paths may

take exponential time (since the set may be exponentially sized).

5 Discussion

This paper has presented a framework for product design that permits the consideration of multiple objectives

at the design stage. The model is general enough to accommodate many different application settings, and

results in network formulations that, in the bicriteria case, can be efficiently solved via dynamic programming.

As part of the solution procedure in this paper, we also presented a polynomial time algorithm for solving

the parametric shortest path problem on series parallel graphs.

We now discuss some consequences and extensions of our work. In industrial settings cost sensitivity

analysis is quite important. For example, product managers often want to know the impact of the cost of a

component, as this could be used in negotiating contracts with suppliers. Cost sensitivity analysis involves

varying the objective function coefficient of a single variable in the design problem and observing the change

in solution as a function of that parameter. This is easily modeled as a parametric optimization problem,

and thus cost sensitivity analysis is easily performed under this framework.

While we have considered the bicriteria case in this paper, the AND/OR tree framework can be used to

model multicriteria problems as well. For example, suppose the product manager has d criteria (g1(), g2(.), . . . , gd(.))

under consideration. Then, the problem of finding Pareto optimal solutions to the multicriteria problem may

be modeled (with the usual proviso on linear utility functions) as a parametric optimization problem with

the objective λ1g1(.) + λ2g2(.) + . . . + λdgd(.), with the additional constraint
∑i=d

i=1 λi = 1. Using the ap-

proach of partially fixing variables outlined in this paper, one obtains a parametric shortest path problem

with multiple parameters (that we refer to as a multi-parametric shortest path problem); a significantly

more complicated problem. By using some more advanced ideas from the field of computational geometry,

Davenport-Schinzel sequences to be specific [8], it is also possible to solve this multi-parametric shortest

21

path problem in polynomial time.

Another extension of our research deals with the economic lot sizing problem, one of the most fundamental

problems in supply chain management, that can be modeled as a network design problems on series parallel

graphs [11]. The dynamic programming procedure described in this paper can be adapted to derive a

polynomial time algorithm to solve the parametric network design problems on series-parallel graphs [7].

References

[1] M. Ball, J. Baras, S. Bashyam, R. Karne, and V. Trichur. On the selection of parts and processes

during design of printed circuit board assemblies. INRIA/IEEE Symposium on Emerging Technologies

and Factory Automation, 3:241–248, 1995.

[2] W. W. Bein, P. Brucker, and A. Tamir. Minimum cost flow algorithms for series-parallel networks.

Discrete Applied Mathematics, 10:117–124, 1985.

[3] S. Even. Graph Algorithms. Computer Science Press, Rockville, MD, 1979.

[4] D. Gusfield. Sensitivity analysis for combinatorial optimization. Technical Report UCB/ERL M80/22,

Electronics Research Laboratory, University of Califonia, Berkeley, 1980.

[5] D. Nau, M. Ball, J. Baras, A. Chowdhury, E. Lin, J. Meyer, R. Rajamani, J. Splain, and V. Trichur.

Generating and evaluating designs and plans for microwave modules. AI in Engineering Design and

Manufacturing, 2000. to appear.

[6] N. Nilsson. Problem Solving Methods in Artificial Intelligence. McGraw Hill, New York, 1971.

[7] S. Raghavan. Parametric network design on series-parallel graphs. In preparation, 2000.

[8] M. Sharir and P. Agarwal. Davenport-Schinzel Sequences and their Geometric Applications. Cambridge

University Press, 1995.

[9] V. Trichur. Integer Programming Models for Product Design. PhD thesis, The Robert H. Smith School

of Business, University of Maryland, College Park, MD, 1999.

[10] V. Trichur and M. O. Ball. A multi-objective integer programming framework for product design.

Technical Report 98-60, Institute for Systems Research, University of Maryland, College Park, MD,

1998.

[11] J. A. Ward. Minimum-aggregate-concave-cost multicommodity flows in strong series-parallel networks.

Mathematics of Operations Research, 24:106–129, 1999.

22

