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1 IntroductionSorting is arguably the most studied problem in computer science, both because of its intrinsic theo-retical importance and its use in so many applications. Its signi�cant requirements for interprocessorcommunication bandwidth and the irregular communication patterns that are typically generatedhave earned its inclusion in several parallel benchmarks such as NAS [7] and SPLASH [34]. Moreover,its practical importance has motivated the publication of a number of empirical studies seeking toidentify the most e�cient sorting routines. Yet, parallel sorting strategies have still generally falleninto one of two groups, each with its respective disadvantages. The �rst group, using the classi�cationof Li and Sevcik [23], is the single-step algorithms, so named because data is moved exactly oncebetween processors. Examples of this include sample sort [21, 10], parallel sorting by regular sampling[31, 24], and parallel sorting by overpartitioning [23]. The price paid by these single-step algorithmsis an irregular communication scheme and di�culty with load balancing. The other group of sortingalgorithms is the multi-step algorithms, which include bitonic sort [9], column sort [22], rotate sort[25], hyperquicksort [28], 
ashsort [29], B-
ashsort [20], smoothsort [27], and Tridgell and Brent's sort[32]. Generally speaking, these algorithms accept multiple rounds of communication in return forbetter load balancing and, in some cases, regular communication.In this paper, we present a novel variation on the sample sort algorithm [19] which addresses thelimitations of previous implementations. We exchange the single step of irregular communication fortwo steps of regular communication. In return, we reduce the problem of poor load balancing becausewe are able to sustain a very high oversampling ratio at virtually no cost. Second, we e�cientlyaccommodate the presence of duplicates without the overhead of tagging each element. And we obtainpredictable, regular communication requirements which are essentially invariant with respect to theinput distribution. Utilizing regular communication has become more important with the advent ofmessage passing standards, such as MPI [26], which seek to guarantee the availability of very e�cient(often machine speci�c) implementations of certain basic collective communication routines.Our algorithm was implemented in a high-level language and run on a variety of platforms, includ-ing the Thinking Machines CM-5, the IBM SP-2, and the Cray Research T3D. We ran our code usinga variety of benchmarks that we identi�ed to examine the dependence of our algorithm on the inputdistribution. Our experimental results are consistent with the theoretical analysis and illustrate thescalability and e�ciency of our algorithm across di�erent platforms. In fact, it seems to outperformall similar algorithms known to the authors on these platforms, and its performance is indi�erent tothe set of input distributions unlike previous e�cient algorithms.The high-level language used in our studies is Split-C [14], an extension of C for distributedmemory machines. The algorithm makes use of MPI-like communication primitives but does notmake any assumptions as to how these primitives are actually implemented. The basic data transport2



is a read or write operation. The remote read and write typically have both blocking and non-blocking versions. Also, when reading or writing more than a single element, bulk data transports areprovided with corresponding bulk read and bulk write primitives. Our collective communicationprimitives, described in detail in [6], are similar to those of the MPI [26], the IBM POWERparallel [8],and the Cray MPP systems [13] and, for example, include the following: transpose, bcast, gather,and scatter. Brief descriptions of these are as follows. The transpose primitive is an all-to-allpersonalized communication in which each processor has to send a unique block of data to everyprocessor, and all the blocks are of the same size. The bcast primitive is used to copy a block of datafrom a single source to all the other processors. The primitives gather and scatter are companionprimitives. Scatter divides a single array residing on a processor into equal-sized blocks, each ofwhich is distributed to a unique processor, and gather coalesces these blocks back into a single arrayat a particular processor. See [3, 6, 4, 5] for algorithmic details, performance analyses, and empiricalresults for these communication primitives.The organization of this paper is as follows. Section 2 presents our computation model foranalyzing parallel algorithms. Section 3 describes in detail our improved sample sort algorithm.Finally, Section 4 describes our data sets and the experimental performance of our sorting algorithm.2 The Parallel Computation ModelWe use a simple model to analyze the performance of our parallel algorithms. Our model is based onthe fact that current hardware platforms can be viewed as a collection of powerful processors connectedby a communication network that can be modeled as a complete graph on which communication issubject to the restrictions imposed by the latency and the bandwidth properties of the network. Weview a parallel algorithm as a sequence of local computations interleaved with communication steps,where we allow computation and communication to overlap. We account for communication costs asfollows.Assuming no congestion, the transfer of a block consisting of m contiguous words between twoprocessors takes (� + �m) time, where � is the latency of the network and � is the time per word atwhich a processor can inject or receive data from the network. Note that the bandwidth per processoris inversely proportional to �. We assume that the bisection bandwidth is su�ciently high to supportblock permutation routing amongst the p processors at the rate of 1� . In particular, for any subset ofq processors, a block permutation amongst the q processors takes (� + �m) time, where m is the sizeof the largest block.Using this cost model, we can evaluate the communication time Tcomm(n; p) of an algorithm as afunction of the input size n, the number of processors p , and the parameters � and �. The coe�cientof � gives the total number of times collective communication primitives are used, and the coe�cient3



of � gives the maximum total amount of data exchanged between a processor and the remainingprocessors.This communication model is close to a number of similar models (e.g. [16, 33, 1]) that haverecently appeared in the literature and seems to be well-suited for designing parallel algorithms oncurrent high performance platforms.We de�ne the computation time Tcomp as the maximum time it takes a processor to perform all thelocal computation steps. In general, the overall performance Tcomp+Tcomm involves a tradeo� betweenTcomp and Tcomm. In many cases, it is possible to minimize both Tcomp and Tcomm simultaneously,and sorting is such a case.3 A New Sample Sort AlgorithmConsider the problem of sorting n elements equally distributed amongst p processors, where we assumewithout loss of generality that p divides n evenly. The idea behind sample sort is to �nd a set of p� 1splitters to partition the n input elements into p groups indexed from 1 up to p such that every elementin the ith group is less than or equal to each of the elements in the (i+ 1)th group, for 1 � i � p� 1.Then the task of sorting each of the p groups can be turned over to the correspondingly indexedprocessor, after which the n elements will be arranged in sorted order. The e�ciency of this algorithmobviously depends on how evenly we divide the input, and this in turn depends on how well we choosethe splitters. One way to choose the splitters is by randomly sampling the input elements at eachprocessor - hence the name sample sort.Previous versions of sample sort [21, 10, 17, 15] have randomly chosen s samples from the np elementsat each processor, routed these ps samples to a single processor, sorted them at that processor, andthen selected every sth element as a splitter. Each processor Pi then performs a binary search on thesesplitters for each of its input values and then uses the results to route the values to the appropriatedestination, after which local sorting is done to complete the sorting process. The �rst di�culty withthis approach is the work involved in gathering and sorting the samples. A larger value of s results inbetter load balancing, but it also increases the overhead. The second di�culty is that no matter howthe routing is scheduled, there exist inputs that give rise to large variations in the number of elementsdestined for di�erent processors, and this in turn results in an ine�cient use of the communicationbandwidth. Moreover, such an irregular communication scheme cannot take advantage of the regularcommunication primitives proposed under the MPI standard [26]. The �nal di�culty with the originalapproach is that duplicate values are accommodated by tagging each item with a unique value [10].This, of course, doubles the cost of both memory access and interprocessor communication.In our solution, we incur no overhead in obtaining np2 samples from each processor and in sortingthese samples to identify the splitters. Because of this very high oversampling, we are able to replace4



the irregular routing with exactly two calls to our transpose primitive, and, in addition, we are ableto e�ciently accommodate the presence of duplicates without resorting to tagging.The pseudocode for our algorithm is as follows:� Step (1): Each processor Pi (1 � i � p) randomly assigns each of its np elements to one of pbuckets. With high probability, no bucket will receive more than c1 np2 elements, where c1 is aconstant to be de�ned later.� Step (2): Each processor Pi routes the contents of bucket j to processor Pj , for (1 � i; j � p).Since with high probability no bucket will receive more than c1 np2 elements, this is equivalent toperforming a transpose operation with block size c1 np2 .� Step (3): Each processor Pi sorts at most ��1 np � c1np� values received in Step (2) using anappropriate sequential sorting algorithm. For integers we use the radix sort algorithm, whereasfor 
oating point numbers we use the merge sort algorithm.� Step (4): From its sorted list of �� np � c1np� elements, processor P1 selects each �j� np2�thelement as Splitter[j], for (1 � j � p � 1). By default, Splitter[p] is the largest value allowedby the data type used. Additionally, for each Splitter[j], binary search is used to determine thevalues FracL[j] and FracR[j], which are respectively the fractions of the total number of elementsat processor P1 with the same value as Splitter[j�1] and Splitter[j] which also lie between index�(j � 1)� np2 + 1� and index �j� np2�, inclusively.� Step (5): Processor P1 broadcasts the Splitter, FracL, and FracR arrays to the other p � 1processors.� Step (6): Each processor Pi uses binary search on its sorted local array to de�ne for each ofthe p splitters a subsequence Sj . The subsequence associated with Splitter[j] contains all thosevalues which are greater than Splitter[j � 1] and less than Splitter[j], as well as FracL[j] andFracR[j] of the total number of elements in the local array with the same value as Splitter[j� 1]and Splitter[j], respectively.� Step (7): Each processor Pi routes the subsequence associated with Splitter[j] to processor Pj ,for (1 � i; j � p). Since with high probability no sequence will contain more than c2 np2 elements,where c2 is a constant to be de�ned later, this is equivalent to performing a transpose operationwith block size c2 np2 .� Step (8): Each processor Pi merges the p sorted subsequences received in Step (7) to producethe ith column of the sorted array. Note that, with high probability, no processor has receivedmore than �2 np elements, where �2 is a constant to be de�ned later.We can establish the complexity of this algorithm with high probability - that is with probability5



� (1 � n��) for some positive constant �. But before doing this, we need to establish the results ofthe following lemmas.Lemma 1: At the completion of Step (1), the number of elements in each bucket is at most c1 np2with high probability, for any c1 � 2 and p2 � n3 lnn .Proof: The probability that exactly c1 np2 elements are placed in a particular bucket in Step (1) isgiven by the binomial distribution b(s; r; q) =  rs ! qs (1� q)r�s ; (1)where s = c1 np2 , r = np , and q = 1p . Using the following Cherno� bound [12] for estimating the tail ofa binomial distribution Xs�(1+�)rq b (s; r; q)� e� �2rq3 ; (2)the probability that a particular bucket will contain at least c1 np2 elements can be bounded bye�(c1�1)2 n3p2 : (3)Hence, the probability that any of the p2 buckets contains at least c1 np2 elements can be bounded byp2e�(c1�1)2 n3p2 (4)and Lemma 1 follows.Lemma 2: At the completion of Step (2), the total number of elements received by processorP1, which comprise the set of samples from which the splitters are chosen, is at most � np with highprobability, for any � � 1 and p2 � n3 lnn .Proof: The probability that processor P1 receives exactly � np elements is given by the binomialdistribution b �� np ;n; 1p�. Using the Cherno� bound for estimating the tail of a binomial distribution,the probability that processor P1 receives at least � np elements can be bounded by e�(��1)2 n3p andLemma 2 follows.Lemma 3: For each Splitter[j], where (1 � j � p), let SEj and SSj be respectively the sets of inputelements and samples that are both equal in value to Splitter[j], and let jSSj j � �j np2 . Then, withhigh probability, no SEj will contain more than Mj np elements, whereMj = (6�j + 1) +p12�j + 16 : (5)Proof: The set of input elements SEj = fxj1 ; xj2 ; :::; xjljg can have more than Mj np members only if�j np2 or less members are selected to be samples from the set SE0j = fxj1 ; xj2 ; :::; xj(Mj np )g, which is the6



set composed of the �rst Mj np members in SEj . However, since each element of SE0j is independentlychosen to be a sample with probability 1p , the probability of this event occurring is given byXs��j np b�s;Mj np ; 1p� : (6)Using the following \Cherno�" type bound [18] for estimating the head of a binomial distributionXs��rq b (s; r; q) � e�(1��)2 rq2 ; (7)where s � �j np2 , r = Mj np , and q = 1p , it follows that the probability that a set SEj among the p setsof input elements has more than Mj np is bounded byp�1Xi=0 e��1� �jMj �2Mjn2p2 : (8)Using the fact that p2 � n3 lnn , it is easy to show that the above sum can be bounded by n��, for some� > 0 and Mj = (6�j + 1) +p12�j + 16 : (9)The bound of Lemma 3 will also hold if we include the subsets of elements and samples whosevalues fall strictly between two consecutive splitters.Lemma 4: At the completion of Step (7), the number of elements received by each processor is atmost �2 np with high probability, for any �2 � 2:62 (�2 � 1:77 without duplicates) and p2 � n3 lnn .Proof: Let Q be the set of input elements to be sorted by our algorithm, let R be the set of samplesof Step (4) at processor P1 with cardinality � np , and and let S be the subset of R associated withSplitter[j], which we de�ne to be the samples in R with indices �(j � 1)�� np2�+ 1� through �j� np2�,inclusively. Let Q1 np , R1 np2 , and S1 np2 be respectively the number of elements in Q, R, and S withvalue equal to Splitter[j � 1], let Q2np , R2 np2 , and S2 np2 be respectively the number of elements in Q,R, and S with values greater than Splitter[j � 1] but less than Splitter[j], and let Q3 np , R3 np2 , andS3 np2 be respectively the number of elements in Q, R, and S with value equal to Splitter[j].According to Step (6) of our algorithm, processor Pj will receive��FracL[j]�Q1�+ Q2 + �FracR[j]�Q3�� np = �S1R1Q1 +Q2 + S3R3Q3� np (10)elements. To compute the upper bound �2 np on this expression, we �rst use Lemma 3 to bound eachQi np , giving us S1R1  (6R1 + 1) +p12R1 + 16 !+  (6S2 + 1) +p12S2 + 16 !+ S3R3  (6R3+ 1) +p12R3 + 16 !! np(11)7



Rearranging this expression, we get: S1 1 + 16R1 +s 13R1 + 136R21!+  (6S2 + 1) +p12S2 + 16 !+S3  1 + 16R3 +s 13R3 + 136R23!! np (12)Clearly, this expression is maximized for R1 = S1 and R3 = S3. Substituting these values andrearranging once again, we get:  (6S1 + 1) +p12S1 + 16 !+  (6S2 + 1) +p12S2 + 16 !+  (6S3 + 1) +p12S3 + 16 !! np (13)Since S1 + S2 + S3 = �, this expression is maximized for S1 = S2 = S3 = �3 : Since Lemma 2guarantees that with high probability � � 1, Lemma 4 follows with high probability for �2 � 2:62.Alternatively, if there are no duplicates, we can show that the bound follows with high probability for�2 � 1:77.Lemma 5: If the set of input elements is arbitrarily partitioned into at most 2p subsets, each of sizeXi np (1 � i � 2p), with high probability at the conclusion of Step (2) no processor will receive morethan Yi np2 elements from any particular subset, for Yi � (Xi +pXi) and p2 � n3 lnn .Proof: The probability that exactly Yi np2 elements are sent to a particular processor by the conclusionof Step (2) is given by the binomial distribution b(Yi np2 ;Xi np ; 1p). Using the Cherno� bound forestimating the tail of a binomial distribution, the probability that from M possible subsets anyprocessor will receive at least Yi np2 elements can be bounded byMXi=1 pe��1� YiXi �2 Xin3p2 (14)and Lemma 5 follows for M � 2p.Lemma 6: The number of elements exchanged by any two processors in Step (7) is at most c2 np2with high probability, for any c2 � 5:42 (c2 � 3:10 without duplicates) and p2 � n3 lnn .Proof: Let U be the set of input elements to be sorted by our algorithm, let V be the set of elementsheld by intermediate processor Pi after Step (2), and let W be the set of elements held by destinationprocessor Pj after Step (7). Let U1 np , V1 np2 , and W1 np be respectively the number of elements in U ,V , and W with values equal to Splitter[j � 1], let U2 np , V2 np2 , and W2 np be respectively the numberof elements in U , V , and W with values greater than Splitter[j � 1] but less than Splitter[j], and letU3 np , V3 np2 , and W3 np be respectively the number of elements in U , V , and W with values equal toSplitter[j]. 8



According to Step (6) of our algorithm, intermediate processor Pi will send��FracL[j]� V1�+ V2 + �FracR[j]� V3�� np2 (15)elements to processor Pj . To compute the upper bound c2 np2 on this expression, we �rst use Lemma5 to bound each Vk, giving us:��FracL[j]� �U1 +pU1��+ �U2 +pU2�+ �FracR[j]� �U3 +pU3��� np2 (16)Notice that since destination processor Pj receives respectively FracL[j] and FracR[j] of the elementsat each intermediate processor with values equal to Splitter[j � 1] and Splitter[j], it follows thatW1 = FracL[j]� U1 and W3 = FracR[j]� U3. Hence, we can rewrite the expression above as�W1U1 �U1 +pU1�+ �U2 +pU2�+ W3U3 �U3 +pU3�� np2 (17)Rearranging this expression, we get: W1 1 +s 1U1!+ �U2 +pU2�+W3  1 +s 1U3!! np2 (18)Clearly, this expression is maximized for U1 = W1 and U3 = W3. Substituting these values andrearranging, we get: �W1 +pW1 +W2 +pW2 +W3 +pW3� np2 (19)Since W1 +W2 +W3 = �2, this expression is maximized for W1 = W2 = W3 = �23 : Since Lemma 4guarantees that with high probability �2 � 2:62, Lemma 6 follows with high probability for c2 � 5:24.Alternatively, if there are no duplicates, we can show that the bound follows with high probability forc2 � 3:10.With these bounds on the values of c1, �2, and c2, the analysis of our sample sort algorithmis as follows. Steps (1), (3), (4), (6), and (8) involve no communication and are dominated bythe cost of the sequential sorting in Step (3) and the merging in Step (8). Sorting integers us-ing radix sort requires O �np� time, whereas sorting 
oating point numbers using merge sort requiresO �np log �np�� time. Step (8) requires O �np log p� time if we merge the sorted subsequences in abinary tree fashion. Steps (2), (5), and (7) call the communication primitives transpose, bcast,and transpose, respectively. The analysis of these primitives in [6] shows that with high proba-bility these three steps require Tcomm(n; p) � �� + 2 np2 (p� 1)��, Tcomm(n; p) � (� + 2(p� 1)�), andTcomm(n; p) � �� + 5:24 np2 (p� 1)��, respectively. Hence, with high probability, the overall complexityof our sample sort algorithm is given (for 
oating point numbers) byT (n; p) = Tcomp(n; p) + Tcomm(n; p)= O�np logn + � + np�� (20)9



for p2 < n3 lnn .Clearly, our algorithm is asymptotically optimal with very small coe�cients. But a theoreticalcomparison of our running time with previous sorting algorithms is di�cult, since there is no consensuson how to model the cost of the irregular communication used by the most e�cient algorithms.Hence, it is very important to perform an empirical evaluation of an algorithm using a wide varietyof benchmarks, as we will do next.4 Performance EvaluationOur sample sort algorithm was implemented using Split-C [14] and run on a variety of machines andprocessors, including the Cray Research T3D, the IBM SP-2-WN, and the Thinking Machines CM-5.For every platform, we tested our code on eight di�erent benchmarks, each of which had both a 32-bitinteger version (64-bit on the Cray T3D) and a 64-bit double precision 
oating point number (double)version.4.1 Sorting BenchmarksOur eight sorting benchmarks are de�ned as follows, in which n and p are assumed for simplicity tobe powers of two and MAXD, the maximum value allowed for doubles, is approximately 1:8� 10308.1. Uniform [U], a uniformly distributed random input, obtained by calling the C library randomnumber generator random(). This function, which returns integers in the range 0 to �231 � 1�, isseeded by each processor Pi with the value (21+1001i). For the double data type, we \normalize"the integer benchmark values by �rst subtracting the value 230 and then scaling the result by�2�30 �MAXD�.2. Gaussian [G], a Gaussian distributed random input, approximated by adding four calls torandom() and then dividing the result by four. For the double data type, we normalize theinteger benchmark values in the manner described for [U].3. Zero [Z], a zero entropy input, created by setting every value to a constant such as zero.4. Bucket Sorted [B], an input that is sorted into p buckets, obtained by setting the �rst np2elements at each processor to be random numbers between 0 and �231p � 1�, the second np2elements at each processor to be random numbers between 231p and �232p � 1�, and so forth. Forthe double data type, we normalize the integer benchmark values in the manner described for[U].5. g-Group [g-G], an input created by �rst dividing the processors into groups of consecutive pro-cessors of size g, where g can be any integer which partitions p evenly. If we index these groups in10



consecutive order from 1 up to pg , then for group j we set the �rst npg elements to be random num-bers between ���(j � 1) g + p2 � 1� mod p�+ 1� 231p and ����(j � 1) g + p2� mod p�+ 1� 231p � 1�,the second npg elements at each processor to be random numbers between���(j � 1) g + p2� mod p�+ 1� 231p and ����(j � 1) g + p2 + 1� mod p�+ 1� 231p � 1�, and so forth.For the double data type, we normalize the integer benchmark values in the manner describedfor [U].6. Staggered [S], created as follows: if the processor index i is less than or equal to p2 , thenwe set all np elements at that processor to be random numbers between �(2i� 1) 231p � and�(2i) 231p � 1�. Otherwise, we set all np elements to be random numbers between �(2i� p� 2) 231p �and �(2i� p� 1) 231p � 1�. For the double data type, we normalize the integer benchmark valuesin the manner described for [U].7. Deterministic Duplicates [DD], an input of duplicates in which we set all np elements at eachof the �rst p2 processors to be logn, all np elements at each of the next p4 processors to be log �n2 �,and so forth. At processor Pp, we set the �rst n2p elements to be log �np�, the next n4p elementsto be log � n2p�, and so forth.8. Randomized Duplicates [RD], an input of duplicates in which each processor �lls an arrayT with some constant number range (range is 32 for our work) of random values between 0 and(range�1) whose sum is S. The �rst T [1]S � np values of the input are then set to a random valuebetween 0 and (range� 1), the next T [2]S � np values of the input are then set to another randomvalue between 0 and (range� 1), and so forth.We selected these eight benchmarks for a variety of reasons. Previous researchers have used theUniform,Gaussian, and Zero benchmarks, and so we too included them for purposes of comparison.But benchmarks should be designed to illicit the worst case behavior from an algorithm, and in thissense the Uniform benchmark is not appropriate. For example, for n � p, one would expect thatthe optimal choice of the splitters in the Uniform benchmark would be those which partition therange of possible values into equal intervals. Thus, algorithms which try to guess the splitters mightperform misleadingly well on such an input. In this respect, the Gaussian benchmark is more telling.But we also wanted to �nd benchmarks which would evaluate the cost of irregular communication.Thus, we wanted to include benchmarks for which an algorithm which uses a single phase of routingwould �nd contention di�cult or even impossible to avoid. A naive approach to rearranging thedata would perform poorly on the Bucket Sorted benchmark. Here, every processor would try toroute data to the same processor at the same time, resulting in poor utilization of communicationbandwidth. This problem might be avoided by an algorithm in which at each processor the elementsare �rst grouped by destination and then routed according to the speci�cations of a sequence ofp destination permutations. Perhaps the most straightforward way to do this is by iterating over11



the possible communication strides. But such a strategy would perform poorly with the g-Groupbenchmark, for a suitably chosen value of g. In this case, using stride iteration, those processorswhich belong to a particular group all route data to the same subset of g destination processors. Thissubset of destinations is selected so that, when the g processors route to this subset, they choose theprocessors in exactly the same order, producing contention and possibly stalling. Alternatively, onecan synchronize the processors after each permutation, but this in turn will reduce the communicationbandwidth by a factor of pg . In the worst case scenario, each processor needs to send data to a singleprocessor a unique stride away. This is the case of the Staggered benchmark, and the result is areduction of the communication bandwidth by a factor of p. Of course, one can correctly object thatboth the g-Group benchmark and the Staggered benchmark have been tailored to thwart a routingscheme which iterates over the possible strides, and that another sequences of permutations might befound which performs better. This is possible, but at the same time we are unaware of any singlephase deterministic algorithm which could avoid an equivalent challenge. Finally, the DeterministicDuplicates and the Randomized Duplicates benchmarks were included to assess the performanceof the algorithms in the presence of duplicate values.4.2 Experimental ResultsFor each experiment, the input is evenly distributed amongst the processors. The output consists ofthe elements in non-descending order arranged amongst the processors so that the elements at eachprocessor are in sorted order and no element at processor Pi is greater than any element at processorPj , for all i < j.Two variations were allowed in our experiments. First, radix sort was used to sequentially sortintegers, whereas merge sort was used to sort double precision 
oating point numbers (doubles).Second, di�erent implementations of the communication primitives were allowed for each machine.Wherever possible, we tried to use the vendor supplied implementations. In fact, IBM does provideall of our communication primitives as part of its machine speci�c Collective Communication Library(CCL) [8] and MPI. As one might expect, they were faster than the high level Split-C implementation.Size [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]256K 0.019 0.019 0.020 0.020 0.020 0.020 0.016 0.016 0.0181M 0.068 0.068 0.070 0.070 0.070 0.069 0.054 0.054 0.0584M 0.261 0.257 0.264 0.264 0.263 0.264 0.202 0.226 0.21316M 1.02 1.01 1.02 1.02 1.02 1.02 0.814 0.831 0.82664M 4.03 4.00 4.00 3.99 4.03 4.00 3.21 3.20 3.27Table I: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-nodeCray T3D. 12



Size [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]256K 0.041 0.039 0.040 0.041 0.041 0.040 0.042 0.040 0.0411M 0.071 0.071 0.074 0.072 0.076 0.072 0.071 0.070 0.0704M 0.215 0.210 0.219 0.213 0.218 0.218 0.207 0.213 0.21316M 0.805 0.806 0.817 0.822 0.830 0.818 0.760 0.760 0.78364M 3.30 3.19 3.22 3.24 3.28 3.25 2.79 2.83 2.83Table II: Total execution time (in seconds) required to sort a variety of integer benchmarks on a 64-nodeIBM SP-2-WN. Size [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]256K 0.022 0.022 0.023 0.023 0.023 0.022 0.021 0.021 0.0211M 0.089 0.089 0.088 0.089 0.090 0.088 0.082 0.082 0.0834M 0.366 0.366 0.364 0.366 0.364 0.362 0.344 0.344 0.34116M 1.55 1.55 1.50 1.54 1.53 1.52 1.45 1.46 1.4764M 6.63 6.54 6.46 6.44 6.46 6.52 6.23 6.25 6.24Table III: Total execution time (in seconds) required to sort a variety of double benchmarks on a 64-nodeCray T3D.Tables I, II, III, and IV display the performance of our sample sort as a function of inputdistribution for a variety of input sizes. In each case, the performance is essentially independentof the input distribution. These tables present results obtained on a 64 node Cray T3D and a 64node IBM SP-2; results obtained from the TMC CM-5 validate this claim as well. Because of thisindependence, the remainder of this section will only discuss the performance of our sample sort onthe single benchmark [U].The results in Tables V and VI together with their graphs in Figure 1 examine the scalabilityof our sample sort as a function of machine size. Results are shown for the T3D, the SP-2-WN, andthe CM-5. Bearing in mind that these graphs are log-log plots, they show that for a �xed input sizen the execution time scales almost inversely with the number of processors p. While this is certainlythe expectation of our analytical model for doubles, it might at �rst appear to exceed our predictionof an O �np log p� computational complexity for integers. However, the appearance of an inverserelationship is still quite reasonable when we note that, for values of p between 8 and 128, log p variesSize [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]256K 0.056 0.054 0.059 0.057 0.060 0.059 0.056 0.056 0.0571M 0.153 0.152 0.158 0.156 0.163 0.156 0.151 0.146 0.1474M 0.568 0.565 0.576 0.577 0.584 0.575 0.558 0.571 0.56916M 2.23 2.23 2.24 2.28 2.26 2.25 2.20 2.22 2.2664M 9.24 9.18 9.24 9.22 9.24 9.23 9.15 9.17 9.21Table IV: Total execution time (in seconds) for required to sort a variety of double benchmarks on a 64-nodeIBM SP-2-WN. 13



Sample Sorting of 8M Integers [U]Number of ProcessorsMachine 8 16 32 64 128CRAY T3D 3.32 1.77 0.952 0.513 0.284IBM SP2-WN 2.51 1.25 0.699 0.413 0.266TMC CM-5 - 7.43 3.72 1.73 0.813Table V: Total execution time (in seconds) required to sort 8M integers on a variety of machines andprocessors using the [U] benchmark. A hyphen indicates that particular platform was unavailable to us.Sample Sorting of 8M Doubles [U]Number of ProcessorsMachine 8 16 32 64 128CRAY T3D 5.48 2.78 1.44 0.747 0.392IBM SP2-WN 7.96 4.02 2.10 1.15 0.635TMC CM-5 - - 6.94 3.79 1.83Table VI: Total execution time (in seconds) required to sort 8M doubles on a variety of machines andprocessors using the [U] benchmark. A hyphen indicates that particular platform was unavailable to us.by only a factor of 73 . Moreover, this O �np log p� complexity is entirely due to the merging in Step(8), and in practice, Step (8) never accounts for more than 30% of the observed execution time.Note that the complexity of Step 8 could be reduced to O(np ) for integers using radix sort, but theresulting execution time would, in most cases, be slower.The graphs in Figure 2 examine the scalability of our sample sort as a function of problem size,for di�ering numbers of processors. They show that for a �xed number of processors there is analmost linear dependence between the execution time and the total number of elements n. Whilethis is certainly the expectation of our analytic model for integers, it might at �rst appear to exceedour prediction of a O �np log n� computational complexity for 
oating point values. However, thisappearance of a linear relationship is still quite reasonable when we consider that for the range ofvalues shown logn di�ers by only a factor of 1:2.Next, the graphs in Figure 3 examine the relative costs of the eight steps in our sample sort.Results are shown for both a 64 node T3D and a 64 node SP-2-WN, using both the integer and thedouble versions of the [U] benchmark. Notice that for n = 64M integers, the sequential sorting andmerging performed in Steps (3) and (8) consume approximately 80% of the execution time on theT3D and approximately 70% of the execution time on the SP-2. By contrast, the two transposeoperations in Steps (2) and (7) together consume only about 15% of the execution time on the T3Dand about 25% of the execution time on the SP-2. The di�erence in the distribution between these twoplatforms is likely due in part to the fact that an integer is 64 bits on the T3D while only 32 bits on theSP-2. By contrast, doubles are 64 bits on both platforms. For n = 64M doubles, the sequential sorting14



Figure 1: Scalability of sorting integers and doubles with respect to machine size.and merging performed in Steps (3) and (8) consume approximately 80% of the execution time onboth platforms, whereas the two transpose operations in Steps (2) and (7) together consume onlyabout 15% of the execution time. Together, these results show that our algorithm is extremely e�cientin its communication performance.Finally, Tables VII and VIII show the experimentally derived expected value (E) and samplestandard deviation (STD) of the coe�cients c1, �1, c2, and �2 used to describe the complexity of ouralgorithm in Section 3. The values in Table VII were obtained by analyzing data collected whilesorting each of the duplicate benchmarks [DD] and [RD] 50 times on a 64-node Cray T3D. For eachtrial, the values recorded were the largest occurrence of each coe�cient at any of the 64 processors.By contrast, the values in Table VIII were obtained by analyzing data collected while sorting eachof the unique benchmarks [G], [B], [2-G], [4-G], and [S] 20 times. In every trial, a di�erent seedwas used for the random number generator, both to generate the benchmark where appropriate andto distribute the keys into bins as part of Step (1). The experimentally derived expected values inTable VII for c1, �1, c2, and �2 agree strongly with the theoretically derived bounds for duplicatekeys of c1 � 2, �1 � c1, c2 � 5:24, and �2 � 2:62 for p2 � n3 lnn . Similarly, the experimentally derivedexpected values in Table VIII for c1, �1, c2, and �2 agree strongly with the theoretically derivedbounds for unique keys of c1 � 2, �1 � c1, c2 � 3:10, and �2 � 1:77 for p2 � n3 lnn . Note that expectedvalues for c2 and �2 are actually less for duplicate values than for unique values, which is the oppositeof what we might expect from the computed bounds. This might simply re
ect our limited choice of15



Figure 2: Scalability of sorting integers and doubles with respect to the problem size, for di�ering numbersof processors. 16



Figure 3: Distribution of execution time amongst the eight steps of sample sort. Times are obtained forboth a 64 node T3D and a 64 node SP-2-WN using both the integer and the double versions of the [U]benchmark. 17



keys/proc E(c1) STD(c1) E(�1) STD(�1) E(c2) STD(c2) E(�2) STD(�2)4K 2.02 0.104 1.08 0.019 2.12 0.336 1.45 0.18316K 1.48 0.044 1.04 0.008 1.49 0.133 1.18 0.08964K 1.23 0.019 1.02 0.0003 1.24 0.062 1.09 0.044256K 1.11 0.009 1.01 0.002 1.12 0.026 1.04 0.0201M 1.06 0.005 1.00 0.001 1.06 0.015 1.02 0.012Table VII: Statistical evaluation of the experimentally observed values of the algorithm coe�cients on a64 node T3D using the duplicate benchmarks.keys/proc E(c1) STD(c1) E(�1) STD(�1) E(c2) STD(c2) E(�2) STD(�2)4K 2.02 0.091 1.08 0.017 2.64 0.935 1.55 0.18116K 1.48 0.044 1.04 0.007 1.65 0.236 1.25 0.07464K 1.23 0.021 1.02 0.0003 1.30 0.087 1.12 0.034256K 1.11 0.010 1.01 0.002 1.14 0.034 1.06 0.0191M 1.06 0.005 1.00 0.001 1.07 0.013 1.03 0.0108Table VIII: Statistical evaluation of the experimentally observed values of the algorithm coe�cients on a64 node T3D using the unique benchmarks.benchmarks, or it may suggest that the bounds computed for duplicate are looser than those computedfor unique values.4.3 Comparison with Previous ResultsDespite the enormous theoretical interest in parallel sorting, we were able to locate relatively fewempirical studies. Of these, only a few were done on machines which either were available to us forcomparison or involved code which could be ported to these machines for comparison. In TablesIX and X, we compare the performance of our sample sort algorithm with two other sample sortalgorithms. In all cases, the code was written in Split-C. In the case of Alexandrov et al. [1], thetimes were determined by us directly on a 32 node CM-5 using code supplied by the authors whichhad been optimized for a Meiko CS-2. In the case of Dusseau [17], the times were obtained from thegraphed results reported for a 64 node CM-5.Finally, there are the results for the NAS Parallel Benchmark [30] for Integer Sorting (IS). Thename of this benchmark is somewhat misleading. Instead of requiring that the integers be placed insorted order as we do, the benchmark only requires that they be ranked without any reordering, whichis a signi�cantly simpler task. Speci�cally, the Class A Benchmark requires ten repeated rankings of aGaussian distributed random input consisting of 223 integers ranging in value from 0 to �219 � 1�. TheClass B Benchmark is similar, except that the input consists of 225 integers ranging in value from 0to �221 � 1�. Table XI compares our results on these two variations of the NAS Benchmark with thebest reported times for the CM-5, the T3D, and the SP-2-WN. We believe that our results, which were18



[U] [G] [2-G] [B] [S]int./proc. HBJ AIS HBJ AIS HBJ AIS HBJ AIS HBJ AIS4K 0.049 0.153 0.050 0.152 0.051 1.05 0.055 0.181 0.049 y8K 0.090 0.197 0.090 0.192 0.092 1.09 0.094 0.193 0.087 y16K 0.172 0.282 0.171 0.281 0.173 1.16 0.173 0.227 0.175 y32K 0.332 0.450 0.330 0.449 0.335 1.34 0.335 0.445 0.338 y64K 0.679 0.833 0.679 0.835 0.683 1.76 0.685 0.823 0.686 y128K 1.65 2.02 1.64 2.02 1.64 2.83 1.64 1.99 1.64 y256K 3.72 4.69 3.71 4.59 3.71 5.13 3.70 4.56 3.71 y512K 7.97 10.0 7.85 9.91 7.93 9.58 7.95 9.98 7.95 yTable IX: Total execution time (in seconds) required to sort a variety of benchmarks and problem sizes,comparing our version of sample sort (HBJ) with that of Alexandrov et al. (AIS) on a 32-node CM-5.yWe were unable to run the (AIS) code on this input.[U] [B] [Z]int./proc. HBJ DUS HBJ DUS HBJ DUS1M 16.6 21 12.2 91 10.6 11Table X: Time required per element (in microseconds) to sample sort 64M integers, comparing our results(HBJ) with those obtained from the graphed results reported by Dusseau (DUS) on a 64 node CM-5.obtained using high-level, portable code, compare favorably with the other reported times, which wereobtained by the vendors using machine-speci�c implementations and perhaps system modi�cations.The only performance studies we are aware of on similar platforms for generalized sorting are thoseof Tridgell and Brent [32], who report the performance of their algorithm using a 32 node CM-5 on auniformly distributed random input of signed integers, as described in Table XII.5 ConclusionIn this paper, we introduced a novel variation on sample sort and conducted an experimental studyof its performance on a number of platforms using widely di�erent benchmarks. Our results illustratethe e�ciency and scalability of our algorithm across the di�erent platforms and appear to improve onall similar results known to the authors. Our results also compare favorably with those reported forthe simpler ranking problem posed by the NAS Integer Sorting (IS) Benchmark.We have also studied several variations on our algorithm which use di�ering strategies to ensurethat every bucket in Step (1) receives an equal number of elements. The results obtained for thesevariations were very similar to those reported in this paper. On no platform did the improvementsexceed approximately 5%, and in many instances they actually ran more slowly. We believe that asigni�cant improvement of our algorithm would require the enhancement of the sequential sorting andmerging in Steps (3) and (8), and that there is little room for signi�cant improvement in either the19



Comparison of NAS (IS) Benchmark TimesClass A Class BNumber Best Our Best OurMachine of Processors Reported Time Time Reported Time TimeCM-5 32 43.1 29.8 NA 12464 24.2 13.7 NA 66.4128 12.0 7.03 NA 33.0T3D 16 7.07 12.3 NA 60.132 3.89 6.82 16.57 29.364 2.09 3.76 8.74 16.2128 1.05 2.12 4.56 8.85SP-2-WN 16 2.65 10.3 10.60 46.632 1.54 5.97 5.92 25.564 0.89 3.68 3.41 13.6128 0.59 2.52 1.98 8.45Table XI: Comparison of our execution time (in seconds) with the best reported times for the Class A andClass B NAS Parallel Benchmark for integer sorting. Note that while we actually place the integers insorted order, the benchmark only requires that they be ranked without actually reordering.Problem [U]Size HBJ TB8M 4.57 5.48Table XII: Total execution time (in seconds) required to sort 8M signed integers, comparing our results(HBJ) with those of Tridgell and Brent (TB) on a 32 node CM-5.load balance or the communication e�ciency.6 AcknowledgementsWe would like to thank Ronald Greenberg of UMCP's Electrical Engineering Department for hisvaluable comments and encouragement.We would also like to thank the CASTLE/Split-C group at The University of California, Berkeley,especially for the help and encouragement from David Culler, Arvind Krishnamurthy, and Lok TinLiu.We acknowledge the use of the UMIACS 16-node IBM SP-2-TN2, which was provided by anIBM Shared University Research award and an NSF Academic Research Infrastructure Grant No.CDA9401151.Arvind Krishnamurthy provided additional help with his port of Split-C to the Cray ResearchT3D [2]. The Jet Propulsion Lab/Caltech 256-node Cray T3D Supercomputer used in this investiga-tion was provided by funding from the NASA O�ces of Mission to Planet Earth, Aeronautics, andSpace Science. We also acknowledge William Carlson and Jesse Draper from the Center for Comput-20
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