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ABSTRACT

An accurate approximation is obtained for the average probability of error in an
asynchronous binary direct-sequence spread-spectrum multiple- access communications
system operating over nonselective and frequency- selective Rician fading channels. The
approximation is based on the integration of the characteristic function of the multiple-
access interference which now consists of specular and scatter components. For non-
selective fading the amount of computation required to evaluate this approximation
grows linearly with the product KN, where K is the number of simultaneous
transmitters and N is the number of chips per bit. For frequency-selective fading the
computati_onal effort grows linearly with the product KN2. The resulting probability of
error is also compared with an approximation based on the signal-to-noise ratio. Numer-

ical results are presented for specific chip waveforms and signature sequences.
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I. INTRODUCTION

This paper is concerned with the average probability of error for
asynchronous binary direct-sequence spread-spectrum multiple-access
(DS/SSMA) communications over nonselective and frequency-selective Rician
fading channels. The results presented represent a generalization of the
analysis of [7] which considered only additive white Gaussian noise (AWGN)
channels,

The system model is described in detail in [6]. Throughout this paper
we restrict attention to binary DS/SSMA systems with phase-shift-keyed (PSK)
modulation and chip waveforms which are pulses of arbitrary shape with
duration equal to the inverse of the chip rate. However our results can be
extended (using the results of [7T]) to include other forms of direct-
sequence modulation like quadriphase-shift-keying (QPSK), offset QPSK, and
minimum-shift-keying (MSK).

The channel model considered in this paper is the Rician or specular-
plus-Rayleigh fading channel model described in [1] for nonselective fading,
and in [5] for selective fading. 1In the second case the fading is assumed
to be frequency-selective [3]. Although our results can be extended to
time-selective, as well as doubly-selective wide-sense-stationary
uncorrelated-scattering (WSSUS) fading channels ([2]1, [5]), we restrict
attention to frequency-selective channels, since these channels often arise
in practice and, as shown in [5], single user DS/spread-spectrum systems
outperform biphase PSK systems over such channels.

In [5] the average signal-to-noise ratio at the output of the receiver
of a binary DS/SSMA system operating over time and frequency-selectlve

Rician fading channels was evaluated. In [4] the moment space bounding



technique of [12] was applied to bound the probability of error of such
systems. However the results were limited because of unsurpassable
difficulties in evaluating high order moments of the interference. For the
same reason, the approximation based on the Gauss Quadrature Rule, which was
used in [10] - [11] for DS/SSMA systems over AWGN channels, is not
computationally attractive in this case, since it requires calculation of
moments which involve high order channel autocovariance functions that may
not be measureble or otherwise available. Similarly, the bounds of [13]
were based on convexity properties of the complementary error function which
are valid only in the AWGN case. Finally, the results for two users of [14]
for nonselective fading channels and [15] for time-selective fading channels
appear difficult to extend so that they provide an efficient and accurate
computational method for the multi-user case,

In this paper we obtain an approximation with a computational
requirement which for nonselective fading is linear in the product KN and
for frequency-selective fading is linear in the product KN2, where K is the
number of simultaneous transmitters and N is the number of chips per bit.
This approximation is based on the integration of the characteristic
function of the multiple-access interference component of the output of the
correlation receiver, This component consists now of a fixed (or specular)
part and a random (or scatter) part. This method, which we refer to as the
characteristic-function method, was applied to DS/SSMA systems in [7] and
DS/SS systems with specular multipath fading in [9] where it was shown toO
provide very accurate approximations to the average probability of error.
Moreover, as shown in [8], any prespecified degree of accuracy can be

achieved by using this approximation to obtain an expansion point for a



Taylor series representation of the actual probability of error. In the
selective fading case, however, it is computationally untractable to
evaluate the moments of the interference required for the series expansion
method, therefore, in the sequel we consider only the characteristic-
function method.

We should also point out at this point that the DS/SSMA system under
consideration employs conventional matched filter receivers*%ombat rather
than utilize the interference (multiple-access faded and nonfaded
components) by discriminating against it. This is in contrast to the work
of [17] - [18] where diversity reception is used to combine the
contributions of the faded (reflected in those cases)paths and use them in
the binary decision.

This paper is organized as follows. Nonselective Riclan channels are
considered in Section II, and frequency-selective Rician channels are
treated in Section III. In each of these sections the fading channel model
is first presented. Next the characteristic-function method is applied to
each particular model and the computational requirements are considered.
Finally a simpler approximation which is based on the average signal-to-
noise ratio is cited for the sake of comparison, In Section IV numerical

results are presented for specific chip waveforms and signature sequences.



II. PERFORMANCE OF DS/SSMA COMMUNICATIONS OVER NONSELECTIVE RICIAN FADING
CHANNELS

A. A System and Channel Model

The system model is described in detail in [6] and [9]. Here we repeat the
basic elements of this model so that the concepts and notation which are
necessary for the rest of the paper are introduced.

The k-th transmitted signal for a binary DS/SSMA sy;stem with PSK
modul ation and arbitrary chip waveform can be expressed as

Sk(t) = Re{xk(t) exp(j2nfct)} (D
where Re stands for real part, j = /:T, fC is the common carrier frequency,
and the DS-spreaded signal xk(t) is given by

xk(t) = Y2p bk(t)W(t)ak(t) exp(jek). (2)

In (2) P is the power in each of the K transmitted signals; the equal power
assuption is made for convenience in presenting numerical results, it is not
necessary for the methods considered in this paper. The phase angle

Gk introduced by the modulator is uniformly distributed in [O,Zn]. The
shaping waveform ¥(t) that appears in (2) is periodic with period TC (the
duration of a chip), it is defined by ¥(t) = Y(s) for s = t(mod TC) where ¥(s)
is a chip waveform of arbitrary shape (see [6] and [9]) which satisfies a
time-limiting constraint and an average energy constraint. The data signal
bk(t) consists of rectangular pulses of duration T which take values +1 and -1
(k)
L

with equal probability. The £-th pulse has amplitude b . The information

s equence (bgk)) is modeled as an i.i.d. sequence. The code waveform ak(t) is

a periodic sequence of rectangular pulses of amplitude +1 or -1 and duration

(k)

TC, The j—th code pulse has amplitude a . We assume that there are N code

N
pulses in each data pulse (T = NTC) and that the period of the signature

k
s equence (a§ )) is N.



For a system with K asynchronous simultaneous transmitted signals, the
infevested
received signal at a receiver which isYin the i-th signal is given by‘
K
r(t) = } ¥ (e=1) + n(t) (3)
k=1
In (3) Ty is the time delay for the commnication link between the k-th
transmitter and the i~th receiver. The process n(t) is a white Gaussian noise
process with two~sided spectral density NO/Z. Finally, yk(t) is the fading

channel output to input Sk(t)'

A Rician nonselective fading channel is described by the following

input-output relationship

yk(t) = sk(t) + Re{YkAgk)exp(jOik))xk(t) exp(janCt)} (4)

for 2T <« £t < (4 + 1DT. In (4) Yk is a nonnegative real number and the
(k)

nonnegative random variable Ag satisfies the normalization constraint
k) 2
B[4 1%} = 1. 5)

The attenuation of the signal strength due to the fading during the time

interval [QT, (% +1)T) is thus represented by YkAgk), and the phase shift due to

the fading is denoted by Ogg). Therefore, for Yie > 0 the output signal is the

sun of a nonfaded version of the input signal (specular component) and a

nondelayed faded version of the input signal (scatter component). For A;k)

Rayleigh distributed and OS£) uniformly distributed in [O,Zﬂ] this model is
discussed in [1]. MNotice that from (4) and (3) the channel model reduces to the
AWGN model if Yy T 0. Similarly for Yk + « (very weak specular component in
comparison to the faded component) the channel reduces to the Rayleigh

nonselective channel.

Regarding the statistical dependence of the attenuation in different data

0 _ L)

bit intervals, we will consider the cases: (i) Ag Am for several values



of adjacent £ and m (the length of the burst is immaterial for our analysis as

;k) and A(k) are

long as it is longer than three adjacent bits) and (ii) A 0

independent if & # m. Case (i) corresponds to a system with no interleaving

(or partial interleaving) and a channel with fading statistics which remain
invariant over the duration of several data bits. An example of case (ii)
arises in a system which is fully-interleaved or a fast fading channel. Similar
restrictions are imposed on the phase sequence (@gk)).

The i-th receiver is matched to the i~th transmitter signal; it is assumed
capable of acquiring time and phase synchronization (coherent demodulation) with
the nonfaded component of the i~th signal. Therefore, we may measure time
delays and phase angles relative to T and ei, respectively, and thus set
T4 = Gi = 0. If there is not a nonfaded component we assume that the phase of
the faded component of the Rician nonselective fading channel [see (3)] changes

very slowly so that the receiver can again acquire time and phase synchroniza-

(1) _
o = 0.

tion. In this case we should let ei + 0
Once time and phase acquisition is completed the received signal is passed
through a correlation receiver which outputs
T

f r(t)W(t)ai(t) cos(ZﬂfCt)dt. (6)
0

N
e
il

1f Zi is positive the receiver will decide that a 1 was sent, otherwise it will
output a -1, In practical spread~spectrum systems, the common carrier frequency
fc and bit duration T are such that fC >> T_l; consequently, the double-frequency
terms in the integrand of (6) may be ignored.

Finally, concerning the interaction among the different communication links
between the users, we may measure the delays qugespect to Ti, set Ti = 0, and

assune that for k # i T (mod T) is uniformly distributed in [O,T]. Then the



(k)

2 ) are assumed to be

delays Ty? the phase angles ek, and the data streams (b

mutually independent for a given k, as well as for any two different transmit-

ters. Finally, we assume that all communication links fade independently; there-

fore, all the random variables and/or random processes which characterize the

fading are independent for any two different links.

B. Evaluation of Error Probability via the Characteristic-Function
Method

By ignoring the double-frequency terms in (6) we may write Zi as

1/2

(1)
z, = (1/2 E.T) (by™" + my +[i), (7)

In (7) Eb 4 PT is the received energy per bit for the nonfaded component,
the first term inside the parenthesis is the desired signal component (i.e.,
the 1-th information signal for O i Lt <TY, ni represents the normalized
contribution of the AWGN and of the faded component of the i-th signal, and
Zi stands for the normalized multiple-access interference (which now has
nonfaded and faded components) due to all the other users besides the i-th
user., We actually have that

n, =7 + YiFi (8)

and

I,

1

YT, . Y F ), (9)
k#1

I

where n 1s a zero-mean Gaussian random variable with variance NO/ZEb, Fi is

the normalized interference due to the faded component of the i-th signal,
Ik i and Fk i represent normalized interference due to the nonfaded and
H H

faded components of the k-th (k#i) signal.

Due to the additive Form of the multiple-access interference [see (9)],
the characteristic-function method is recommended for the evaluation of the
probability of error for the DS/SSMA systems under consideration, As in

[7]1 we can write 56 i the average probablility of error for the i-th
7



receiver (the averge to be considered with respect to all te random
variables introduced by the transmitters and the channel) as
= (1) (i)
o = 172 Pz, < N o -

1/2 = 1/2P{-1 <y + L <) (10)

o
[

= +1} + 1/2P{Z, > 0|b -1}

it

where Ny and ]i were defined above. Let ¢n and ¢i denote the
i

characteristic functions of the random variables of ny and li’ respectively.

-

Since the distributions of ny and li considered in this paper are

symmetric, the characteristic functions ¢q and ¢i are real-valued even
i

functions. Therefore as in [7]1 - [9] we can write

Ee,i = 52’1 + n‘1fz u*1(sinu) ¢ni(u) [1—¢i(u)]du (11)

-0
where Pe i is the average probability of error in the absence of multiple-
access interference (i.e., when [i =0 or K =1). Because of (9) and the

independence assumptions of Section II.A above we can write for each real u

¢i(u) = kzi E{exp[ju(lk,i + Yka,i)]}, (12)

which facilitates the computation of the characteristic function of the
multiple-access interference.
For the Rician nonselective fading channel of Section II.A we can

easily derive that

_ (), ()

(1)
Fi = by A, COS(GO ), (13a)
=10, (k) (k)2 N
Ik,i =T [b1 Rk,i(Tk> + b, Rk’i(Tk)]coue s (13b)
and
-1 (k) (k) ' (k)
iy =T by A7 R (g icos(ey + 0,77)
+ bék)Aék> Rk’i(wk)cos(ek + Oék))], (13e)
where

1 - —_ Fa)
Gk SK ZHLCT




Recall that T = ei = 0 so that ei = 0. The arguments of the partial

continuous crosscorrelation functions Rk i and Rk i (defined in [61) should
’ 9
be considered modulo T. Let pk= (bik), b;k)) denote the pair of the

(Ak-1)—th and Ak—th consecutive data bits (suppose that for

k#12T <7 ;k)'s

K < (Ak + 1)T). If, for simplicity, we assume that the A

(k)
L

k

are Rayleigh distributed in [0, 27], then since e& + 0 (mod 27) is also

uniformly distributed in [0, 2w] the random variables Fi and F,_ . are

k,1
(i)

conditionally zero-mean Gaussian when conditioned on bO

and (b, , 7,.),
respectively.
Next we proceed to the evaluation of the characteristic functions of n;

and l; which are necessary for the computation in (11). Let of denote the

variance of ng defined by (8), then

of - (2Eb/NO)"1 + 1/2Y§, (14)
Po ;= Aoy ), (15)
where Q is the complementary error function, and
¢n‘(u) = exp(—1/2u205). (16)
] Gau

To proceed further we need to evaluate the variance of the conditionally

ssian random variable Fk : given by (13c). It turns

out that for (i) constant fading

e _ w20, (k) (k)2 2
Vdr{rk’ilgk,Tk} =1/2 T “[b, Rk’i(rk) + b, Rk’i(Tk)] , (17
and for (ii) independent fading
2.2, "2
Var{Fk’ilTk} = 1/2T {Rk,i(fk) + Rk’i(Tk)}. (18)

For QTC <1< (2+1)TC and any arbitrary function h define

Cun, <) = 1/2 T—g[h(%+1)Rw(T) . n(z)ﬁw(x>12, (19)
oi’i(Q;T) = 1/2 T-ZERi,i(T) + &i’i(T)], (20)

and
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f‘(u;SZ,,h;T) = Tgr J'Tr/2 OOS{%[h(SLH)R

O e h(g)éw(mcose}de. (21)

In (19) and (21) R, and R, are the continuous partial autocorrelation

v v

functions of the chip waveform. The functions Rk i and Rk i depend on them

and on the discrete crosscorrelation function of the k-th and i-th signature

sequences Ck i Then after some straightforward but cumbersome

manipulations, (12) becomes

N1, T

1
) T
2=0 °©

2

J © {f(u;l,e .y1)exp[-1/2u ch?
0 K,1i K

o, (w) = T {(aN)” “(%,8

" i;r)]

K,

2 2

v F(u30,0. . 3T)expl-1/2u°Y262(,6. . 31)}dt)
k k,1

K,i
(22a)

for (i) constant fading, and
SgNst T N n
o, (W = I (2N LT, j [F(u;R,0, 31) + Fusg,o
k#1 =0 0 !

K i;T)]

2

sexpl-1/2u Yio (L) ]de} (22b)

2
k,1
for (ii) independent fading.

If the channel encountered by the i-th transmitted signal is a Rayleigh
nonselective fading channel (i.e, there is no non-faded component of the
i-th signal) we need to modify the above results in the following way. We

start with finite Yi and define Eb é (1 + Y?)PT to be the total received

energy at the i-th receiver in the absence of AWGN and multiple-access

i

interference (i.e., K = 1), and ?2 (1 + Yi)/(1 + Yf) to be the ratio of

k
tne total received energy from the k-th signal to the total recelived energy
from the i-th signal. For large Yi’ we assume (see Section II.A) that the

receiver acquires time and phase synchronization with the faded component of

the i-th signal, so thal we may set ei + Oél) = 0 and together with the

definitions above write (7) and (8) - (9) as
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. . . Y
7. = (17281 V2 [nr —— (0 cosg v 0 AUy K (1 v R 1.
i b > 0 i 10 0 Wii T3 k,i kk,i

J1+Y° ey

i k
(23)

If we fix Eb and let Yi + o (23) reduces to
) = 1720, (1), (1)

z, = (/2B 1) "Clo,tagt e g+ 1)) (24)

(1)

where AO is Rayleigh distributed (with second order moment 1), n; =n is
zero—-mean Gaussian with variance NO/ZEb, and Z} is given by
I 'k
(= kzi > (Ik’i + Yka,i) (25)
J1sy
k
where I, . and F, ., are as defined in (13b) - (13e).
k,i k,i

A discussion of the computational requirements for formulas of the type
of (11) can be found in [7] - [8] and since the situation here is very
similar with that treated there, it will not be repeated. However, it is
worth observing that since there is a summation of N terms and a product of
K terms in (22a) - (22b) the computational effort for this method grows
linearly with the product KN.

(i)

Starting from (24) and proceeding as for (10), we find that Pe i(A0

1

)

(1)

the conditional probability of error given AO can be expressed initially
as
(1) L (1) r (1) .
Py By ) = /2 = 1/2 P=AgT <oy Ly <y, (26)

and finally [ef. (11)] as
(1)

(i) 0 (i)
Pe,i(AO ) = Pe,i(AO 0

u)¢n.(u)[1 - ¢i(u)]du.

) o+ n—1 Jm u—1sin(A
0 i

(27
Since ni is now zero-mean Gaussian with variance

2 =
o7 = (2B, /N) (28)



¢n (u) is given by (16) with of defined by (28) and
i
0 (i)y _ (i)
Pe,i(Ao ) = QA" o). (29)

To obtain the average probability of error Ee . we should average the second

s 1

member of (27) with respect to the Rayleigh distributed random variable

Aél). The result (see Appendix A of [9] for the proof) is

- -0 -1/2 o 2

Poy = Pgy * Vem fo exp(-1/lu )¢ni<u>[1 - ¢, (W)ldu (30)
where

PO _y01-[1 + (Eb/NO>"]"1/2} (31)

e,i

and ¢i(u) is given by (22a) and (23b) for case (i) constant fading and (ii)

independent fading, respectively, evaluated [because of (25)] at ?ku//1+Y§
instead of u.

C. Approximation Based on Average Signal-to-Noise Ratio

For the sake of comparison we next cite an approximation based on SNRi

the average signal-to-noise ratio at the output of the i-th receiver. As

suggested in [6]

SNR 4 E{Zi}/[VaP{Zi}]1/2 (32)

which in our case becomes

-1/2
SNR; = [Var{ni} + kéi Var(Ik,i + Yk,iFk,i)] . (33)

For Rician nonselective fading (33) reduces to

- B -1 2 2,73 (1,172
SNR, = {(2E /N)) = + 1/2Y] + Z' (1+Y) )T [“k,i(O)m¢+“k,i<1)mw]}
K# 1
(34)
and the resulting approximation to the average error probability is
=G
Poy = QSNR ). (35)

bl

12
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In (34) the function My i(n) (see [6]) depends on the discrete

crosscorrelation function Ck i while mw and mb (again see [6]) depend on R

and Rw. For Rayleigh nonselective fading (33) becomes

v

- -1 =2 -3 v o172
SNR; = {(E /N~ + kzi T T [uk,i(o)mwwk’im)mw]} (36)
and the resulting approximation is
132 ;= 1/2{1-[1+(SNR1)—2]—1/2}. (37)

’

Notice that, in contrast to the approximation based on the characterisitic-
function method, the approximations obtained via the signal-to-noise ratio
do not ditinguish between the constant and independent fading cases

considered in Section II.A.



14

ITI. PERFORMANCE OF DS/SS COMMUNICATIONS OVER FREQUENCY-SELECTIVE RICIAN
FADING CHANNELS

A. Channel Model

The input-output relationship for a wide-sense-stationary uncorrelated-

scattering (WSSUS) frequency-selective fading channel can be expressed as

!

yk(t) sk(t) + Re{uk(t—va)exp[j2nfc(t—va)]} (38)

where

il

u (t) = ¥ J” n, (t,0)x%, (t-c)de. (39)

K -
The fading process hk(t,c) (which can be thought of as the time-varying
impulse response of a low pass filter) is a zero-mean complex Gaussian
random process wich has autocovariance

Efh, (t,0)h¥(s,8)} = g, (g)6(g-£), (40a)

and satisfies the normalization constraint

jm g, (£)dg = 1, (40b)

—
and the necessary condition for stationary bandpass processes (see [2], and
the discussion in Section 2.2 of [4])

E(n, (t,0)n, (s,6)} = 0. (40¢c)

The first term of (38) is again termed the specular component while the
second term in (38) is now called the diffuse faded component. If Yy is a
positive real number, the channel is a Rician fading channel. 1f Yk > ®
the faded component becomes dominant and the channel is a Rayleigh fading
channel. This model is basically described in detail in [2] - [3], in
particular the Rician fading channel is described in [4] - [5]. Here we
consider a slightly more general model since for the Rician case we allow

[see (38)] an average delay va (v, 1s a nonnegative integer) between the

k

nonfaded specular component and the diffused faded component.
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The WSSUS fading model can be thought of arising when the transmitted
signal encounters a slowly-moving scattering random medium which can be
modeled as a layered scatterer consisting of a large number of layers of
infinitesimal thickness. 1It, is therefore, a frequency-selective channel,
i.e., it is dispersive only in frequency. The high-frequency (HF)
ionospheric and the microwave tropospheric scatter channels fit the above
description; Section 2.1 of [4] provides more examples of such channels.

We impose a limitation on the selectivity of the channel in order to
facilitate subsequent analysis. In particular, as in [5] and [3] it is
assumed that

g () =0 for |z| > T (41)
which is a constraint on the frequency selectivity of the channel that
allows us to restrict attention to the intersymbol interference from the two
adjacent data bits.

With regard to the average delay va between the nonfaded specular
component and the faded scatter component of yk(t) in (38), we will consider
the two extreme cases (i) v, = 0 (no delay) and (ii) vy z 3 (large delay).

K

The choice of the integer 3 as the lower bound for Vi in (ii) is justified

by the fact that, in view of (41), it uncorrelates the contributions of the

nonfaded and faded components at the output of the receiver.

B, Evaluation of Error Probability via the Characteristic-Function
Method

The output of the matched filter Zi is again given by (7) where n; and
Ii are given by (8) and (9), respectively. The random variable n in (8) is
again zero-mean Gaussian with variance NO/ZEb; the nonfaded component of the

interference (due to the k-th signal) Ik i is given by (13b), but the faded



components Fi and Fk i of (8) - (9) are now found [combine (38) - (39) with,

(3) and (6)] to be

F. = Re{ﬁi}, (42a)
F, - T me n, (t=v,T,0)T, (£, T4y T)exp(J2,)dzdt, (42b)
Foi~ Re{ﬁk’i}, (42¢)
ﬁk,i 2] IT Jm hk(t-Tk-va,C)Fk’i(t,C+Tk+va)eXp(j¢k)d§dt, (42d)

Q0 7~

where
rk’i(t,c) = ak(t—c)ai(t)bk(t—c)bi(t)‘P(t—g)l{J(t)
and

®k = Bk - 2nfc(1k+va).

The function T,
i,1

is denoted by ri. Since hk is a complex Gaussian random
field, the random variables Fi and Fk,i are conditionally Gaussian random
variables (conditioned on time delays, phase angles, and data streams).
Recall that va (1 < k< K) accounts for the average delay between the

nonfaded and the diffused components of the channel output (see Section
III.A)

Next, we proceed to the evaluation of the average error probability

Pe i via the characteristic-function method. As in the nonselective fading

y

case, we need to evaluate EP i ¢n , and s for use in (11). We follow the
2, i

same steps as before. The random variable Fi is zero-mean conditionally

Gaussian with conditional variance

i

~ ~%
1
var{F, [b!} = 1/2 E(F;F ]

_ - -
¢ jz 5. ()0 R2(D) + R2(p)+(oit el D)

bé})) denotes the pair of the (v ,-1)-th and v;-th

)Ri(c)Ri(C)]dC. (43)

It

(1)
1

consecutive data bits of the i-th data stream. To derive (43) we used

where D! = (b

16



(L42a), (42b), (40a) - (40c), and (41). The Gaussian random variable ny has

then conditional variance

-1 p)
Var{n,|b!} = (2E /N,) = + Y{Var{F, |b!}. (by)
Then, if we define
foy")1% = (er )" ¥ G AGEHOR (452)
[oi21% e )™ 1?7 g ()R ()R (1) PPa (450)
0
[o031% = (e m )7 YfT'ij g, (DR, (2)-R (1) )4z, (450)
We can write
3
Ple 1 et (46)
e, i .
j=1
and
3 (3),2
6 = ) c. exp{- 1/2[uc 17} (47
n, . j
i J=1
where ¢, = 1/2 and ¢. = ¢ = /4. Note that these two results are

1 2 3

independent of the events v, = 0 (no delay: case (i) of Section III.A or

Vi o> 3 (large delay: case (ii) of Section III.A.

The next step is to evaluate ¢, through (12) with I, . and F,_ . given
¢1 k,1i kK,1

by (13b) and (42c¢) - (42d), respectively. We first compute the conditional

variance of F, ., this turns out to be

k,i
Var{ lb',T} /2T—2{JT gk(c—r+T)[b§%) (c)+b(k) i(a)]2dc
O 7
T (0 (k)7 2
+jo 8, (cm Dby R (2) + bR ()1%dE
T g eenbg R, (@) 0 0R, ()%,
T
(48)
In (48) p& = (b1,(k), bz,(k), b3,(k), bu,(k)) (k # 1) is the qguadruple which

consists of the (uk‘2)‘th, (u,-1)-th, pk~th, and (uk+1)—th consecutive bits

> =
x~

of the k-th data stream, Ay oV

K K and 1 = Tk(mod T) where

kl

17



QTO 5 1 < (2+1)Tc. The conditional variance about takes on 8 different
(J)

values which we denote by [o (2; T)] and [c(J) (% T)] for j = 1,2,3,4.

Then the characteristic function ¢i is derived as

-1 N-1 -1 T (J)
¢i(u) = 1 {{8N) ) Tc j [f(u;%,6 i,T) Z exp{—1/2[uY (2 T)] }
k=1 2=0 0
S d ~(3)
+ Blusn,e, 51 T exp(-1/2[uY,o le(Q 0)1%) 1d1}
’ J 1

(h49a)

for (i) no delay (vk 0, all k), and

p () = 1 {em!

N-1 T _ ~
_ ) T, f Ef(u;ﬁ,ek,i;r) + f(u;i,ek,i;t)]
k=1 2 0

[exp{*1/2[uY O(J)

1
. exp{—wxztukaﬁji (2;1)71%) Jdt} (49p)

(251)1%)

.
o~ =

J

for (ii) large delay (vk > 3, all k). In case (i) I i [given by (13b)]

(k) (k) (k) s
t =
and Fk,i above are correlated [pk (b1 K )], In case (ii) Ik,i

and Fk ; are uncorrelated (pk and p& have no components in common). These
’

» D

facts are reflected in the form of ¢, in (49a) and (49b) (the function f and

the sum with the four terms are the characteristic functions of Ik i and

Fk i given 1 respectively). The function f is as defined in (21).
H

To see on the computational effort grows linearly with KN2, notice that
in (49a) - (49b), besides the product of K-1 terms and the summation of N

terms, the integrals split into summations with a total of N terms as well

=1 (n+1)T
[e.g., jr = 7 o JT , for 4T < 1 < (a+1)T 1.
0 n=0 nTc QTC

C. Approximation Based on the Average Signal-to-Noise Ratio

The average signal-to-noise ratio in this case is given by [cf. (34)]

18
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siR, = ([ol")1% + ] (1+Yi)[uk’i(0)mw . uk’i(1)m¢]}_1/2 (50)

. K#1i
(1)

where 0 is given by (45a) above. This is a slight generalization of the
results of [5] for arbitrary chip waveforms. Notice that SNRi and the
resulting approximation (35) cannot distinguish between cases (i) and (ii)

(no delay versus large delay) of the fading model of Section III.A.



IV. NUMERICAL RESULTS AND CONCLUSIONS

All the signatures sequences employed in this section are AO/LSE m-
sequences of lengths N=31 and 127. In particular, for a DS/SSMA system with
K users the first K sequences of Figures A.1.(a) (N=31) and A.1.(b) (N=127)

of [15] are used.
For Ee i,the approximation to the error probability which is based on
H

the characteristic-function method,we use Simson's integration technique

-14

with the same parameters as in Section III of [7] (L=20, <10 , n, =10,

8

nT=1O, and n=20)., We set i=1 and consider Ee for the error probability of

s 1
the receiver matched to the first signal.

First,we present numerical results for DS/SSMA systems with

nonselective Rician and Rayleigh fading channels, In Table 1 the Gaussian

and the approximations ﬁéli a
s

obtained by the characteristic-function method are compared for a

-G
approximation to the error probability Pe nd

o 1
E(ll)
e, 1

DS/3SSMA system with sequences of length 31 and K = 2, 3, and 4 simultaneous
users. The communications link between the k-th transmitter and the
receiver matched to the first signal is a Rician nonselective fading channel

2 .2

with relative power of the faded component Yk=Y =.1, 1<k<K. The error

probabilities ﬁéli and Eéli) correspond to the cases of (i) slow fading and
’ ’

(ii) fast fading discussed in Section II.A. We observe that the Gaussian
approximation is somewhat optimistic when compared with the more accurate
approximations based on the characteristic function but still in good
agreement with them. Notice that slow fading causes a slightly worse
performance of the DS/SSMA system than fast fading. Recall that the
Gaussian approximation results in the same value of the error probability

for both slow and fast fading.

20



In Figure 1 we plotted both ﬁéf? (for slow fading) and 52,1versus Eb/NO
for a DS/SSMA system with K=3, N=31, and Rician nonselective fading. The
relative power of all faded components are Y2=.O1, .05, .1, .2, and 4.
Notice that as Y2 increases the system degrades gracefully. For a
nonselective fading channels D3S/SS modulation enables the matched filter
receiver to discriminate effectively against the nonfaded and faded
components of the interfering signals but not against the faded component of
the desired signal. This explains why the error probability is already

3 for Y2 = .1, .2, and 4. Finally, notice that the accuracy

larger than 10
of the Gaussian approximation improves as Y2 increases.

In Table 2 we compare the performance of DS/SSMA systems with

rectangular and sine chip waveforms. The sine chip waveform used is

Y(t) = /2 sin (wt/TC), 0 £t g Tof The system parameters are K=3, and
N=31. The Rician nonselective slow fading channel parameter takes on the
values Y2 = .01 and .1. For moderately heavy fading (Y2=.1) the rectangular
chip waveform results in a slightly better performance than the sine chip
waveform as both the Gaussian approximation EG and the more accurate

e,1
approximation 5(1)
e,

indicate. For light fading (Y2=.01) the Gaussian
approximation still shows better performance for the sine chip waveform for

all values of E,_/N

NARY: however, the more accurate approximation indicates that

the sine chip waveform outperforus the rectangular chip waveform only for
low signal-to-noise ratios; the situation is reversed for higher signal-to-
noise ratios.

In Table 3 we present results for a DS/SSMA system with K=3, N=31 and
Rayleigh nonselective fading channels with relative power of faded

. =2
components taking values Y =.01, .1, and .2, The system performance has now

21
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degraded considerably and higher signal-to-noise ratios were considered.
Notice that the Gaussian approximation is conservative and for large values
of ?2 1s off the actual value by one order of magnitude. On the other hand
the values of the accurate approximation for (i) slow fading and (ii) fast
fading do not differ in the first four significant digits.

Next, we consider DS/SSMA systems operating through Rician frequency-
selective channels. In Table 4 the Gaussian approximation is compared to
the approximation obtained via the characteristic-function method for the
cases (i) zero average delay between nonfaded and faded components and (ii)
large delay (see Section III.A) and DS/SSMA systems with K=3 and N=31 and
127. The relative power of the diffuse component is Y2=.M for all signals.
Notice that the system performance for case (ii)gives slightly lower error
probability than case (i) due to the more extensive randomization involved.
The Gaussian approximation results in an optimistic estimate of the error
probability for all cases but it is satisfactorily close to the more
accurate results. Recall that the Gaussian approximation takes the same
value for the aformentioned cases (i) and (ii).
and Eéf;

In Figure 2 Eg are plotted versus Eb/NO for DS/SSMA systems
’

1

with N=31 and K=2, 3, and 4. The autocovariance function of the frequency-
. .\ . . 1 ltl

selective WSSUS channel is triangular: g (1) = £(1 - +b) for [t| £ T and 0

otherwise. The relative power of all the faded components is Y2=.M. Notice

that for an error probability of 10'5 the Gaussian approximation is off by

almost 1 dB for K=3. For fixed Eb/NO the Gaussian approximation is

satisfactory for all cases as it is also indicated by the results of Table

b.



Finally, in Figure 3 we have plotted Eé%i versus Eb/NO for a DS/SSMA
system with K=3 and N=31 and relative power in the diffuse component taking
values Y2=O., .1, .2, .3, and .4, Notice the graceful degradation of the
system performance as Y2 increases., The value Y2=O. corresponds to DS/SSMA
with an AWGN channel. A comparison of Figures 1 and 3 verifies that DS/SS

meodulation is much more efficient against frequency-selective fading than

against nonselective fading.
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Table

Table

Table

Table

Table Captions

Probability of error for DS/SSMA systems with Rician

2
nonselective fading (N=31, vy =.1).

Probability of error for DS/SSMA systems with different chip
waveforms and Rician nonselective fading (K=3, N=31).

Probability of error for a DS/SSMA system with Rayleigh
nonselective fading (K=3, N=31).

Probability of error for a DS/SSMA system with frequency-selective

fading (K=3, y2=.4).



Table 1. Probability of error for DS/SSMA systems with Rician

2

nonselective fading (N=31, Y =.1).

K=2 K=3 K=Y
sG 0 s(1) $(ii) =G $(i) =z(ii) =G =(i) =(ii)
E /NO Pe,1 Pe,1 Pe,1 Pe,1 Pe,1 Pe,1 Pe,1 Pe, Pen
-2 -2 -2
6 1.04 1.04 1.04 (%10 ) 1.25 1.26 1.26 (x10 ) 1.53 1.54 1.54 (x10 )
- - -2
8  3.83 3.86 3.86 (x10 ) 5.27 5.37 5.35 (x10 3) 0.73 0.75 0.7h (x10 2
10 1.36 1.40 1.39 (x1073) 2.23 2.30 2.31 (x103) 3.58 3.80 3.76 (x10 )
12 5.18 5.43 5.37 (x10'“) 1.02 1.12 1.10 (x1073) 1.93 2.16 2.11 (x10°)
14 2.26 2.45 2.40 (x10° ) 5.37 6.25 6.05 (x10° ") 1.18 1.39 1.35 (x10 9)
16 1.17 1.32 1.28 (x10°H 3.29 4.0h 3.86 (x10 ") 0.82 1.02 0.97 (x10™2)
Table 2. Probability of error for DS/SSMA systems with different chip
waveforms and Rician nonselective fading (K=3, N=31).
Y- .01 Yoo
rect Sine rect sine
=G -(i) =G =(i) =G (1) =G (i)
Eb/NO(dB) Pe,1 Pe, Pe,1 P,, Pe,1 Pe,1 Pe,1 Pe,
6 5.19 5.25 4.92 4.99 (x10 °) 1.25 1.26 1.21 1.22 (x10 %)
8 1,06 1.11 0.95 1.02 (x105)  5.27 5.37 4.97 5.09 (x10 )
10 1.52 1,78 1.20 1.61 (x10 1) 2.23 2.34 2.04 2.17 (x10°3)
12 1.70 2.56 1.20 2,41 (x10 °)  1.02 1.12 0.91 1.03 (x10 2)
14 1.80 4.07 1.05 4.28 (x1o“6) 5.37 6.25 4,63 5,67 (x1o—”)
16 1.23 0.83 1.03 1.00 (x10_6) 3.29 4,04 2.76 3.66 (x10° 1)



Table 3.

Probability of error for a DS/SSMA system with Rayleigh

nonselective fading (K=3, N=31).

Y201 Y- ¥2=.2
- -G =(i) =(i1) -G =(i) =(ii) -G =(i) =(ii)
Eb/NO pe,1 Pe, Pe,1 Pe,1 P s 1 Pe,1 Pe,1 Pe,1 Pe,1
-2 -2 -2
10 6.42 6.43 6.43 (x10 7) 6.47 6.51 6.51 (x10 ) 6.53 6.60 6,60 (x10 ™)
20 2.35 2.34 2.34 (x10 2) 2.55 2.43 2.U43 (x10 2) 2.74 2.53 2.53 (x10 °)
30 0.85 0.78 0.78 (x10°2) 1.34 0.87 0.87 (x10 %) 1.72 0.98 0.98 (x10 )
40 4.37 2.59 2.59 (x10 3) 1.14 0.35 0.35 (x10 2) 1.56 0.46 0.46 (x10 °)
50  3.70 0.89 0.89 (x10 3) 11.2 1.83 1.83 (x10°3) 15.6 2.87 2.87 (x10 °)
® 36.2 1.07 1.07 (x10™%) 11.2 1.05 1.05 (x1073) 15.6 2.08 2.09 (x10 )
Table 4. Probability of error for a DS/SSMA system with frequency-
selective fading (K=3, Y2=.U).
N=31 N=127
- =G =(1) =(ii) -G -(i) =(ii)
bb/NO(dB> Pe,1 Pe, Pe,] Pe,1 Pe, Pe,1
6 6.30 6.40 6.40 (x105)  3.20 3.20 3.20 (x10 °)
8 1.57 1.62 1.62 (x105) 3.78 3.82 3.82 (xwo'”)
) -
10 3,10 3.42 341 (x10°H)  1.83 1.97 1.97 (x10°)
12 5.50 6.97 6.95 (x10°2) 3.31 3.89 3.89 (x10 1)
14 1.05 1.61 1.59 (x102) 1.91 3.22 3.20 (x10 %)
16 207 .75 4.73 (x10°0) 0.y 1.02 1.01 (x10 '0)



Figure 1.

Figure 2.

Figure 3.

Figure Captions

Probability of error for a DS/SSMA system with Rician
nonselective fading (K=3, N=31, and y2=.01, .05, .1, .2, and .4)

Probability of error for a DS/SSMA system with frequency-selective

fading (N=31, Y2=.4, and K=2,3, and 4).

Probability of error for a DS/SSMA system with frequency-selective
2
fading (K=3, N=31, and v =0., .1, .2, .4, and .6)
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