Performance of On-Line Learning Methods in Predicting
Multiprocessor Memory Access Patterns

Majd F. Sakh? Steven P. Levitsy Donald M. Chiarulff, Bill G. Horné', C. Lee Gile*

INEC Research Institute, 4 Independence Way, Princeton NJ 08540
2University of Pittsburgh, Electrical Engineering Department, Pittsburgh PA 15261
3University of Pittsburgh, Computer Science Department, Pittsburgh PA 15260

AUMIACS, University of Maryland, College Park, MD 20742

Technical Report
UMIACS-TR-96-59 and CS-TR-3676
Institute for Advanced Computer Studies
University of Maryland
College Park, MD 20742

Abstract

Shared memory multiprocessors require reconfigurable interconnection networks (INs) for scal-
ability. These INs are reconfigured by an IN control unit. However, these INs are often plagued by
undesirable reconfiguration time that is primarily due to control latency, the amount of time delay
that the control unit takes to decide on a desired new IN configuration. To reduce control latency,
a trainable prediction unit (PU) was devised and added to the IN controller. The PU’s job is to
anticipate and reduce control configuration time, the major component of the control latency.
Three different on-line prediction techniques were tested to learn and predict repetitive memory
access patterns for three typical parallel processing application®;Dhelaxation algorithm

matrix multiplyandFast Fourier TransformThe predictions were then used by a routing control
algorithm to reduce control latency by configuring the IN to provide needed memory access paths
before they were requested. Three prediction techniques were used and tested: 1). a Markov pre-
dictor, 2). a linear predictor and 3). a time delay neural network (TDNN) predictor. As expected,
different predictors performed best on different applications, however, the TDNN produced the
best overall results.

Keywords Prediction; Learning; Multiprocessors; Memory; Markov Predictor; Linear Predictor; Time Delay Neural Network

1 Introduction

Large scale multiprocessor systems will require low-cost, highly-scalable, and dynamically
reconfigurable interconnection networks (INs) [Siegel90]. Such INs offer a limited number of
communication channels that are configured on demand to satisfy required processor-memory
accesses. In this demand driven environment, a processor accessing a memory module makes a
request to an IN controller to establish a path (reconfigure the IN) that satisfies the processor’s
request. The controller is used to optimize the required IN configuration based on the set of cur-
rent processor requests. Hence, the end-to-end latency incurred by such INs can be characterized
by three componentsontrol time which is the time needed to determine the new IN configura-

tion and to physically establish the paths in theldhnch time the time to transmit the data into

the IN; andfly time the time needed for the message to travel through the IN to its final destina-
tion (Figure 1). Launch time can be reduced by using high bandwidth opto-electronic INs, and fly
time is relatively insignificant in such an environment since the end-to-end distances are relatively
short. Therefore, control time dominates the communication latency. However, in a multiproces-
sor system executing a parallel scientific application, the memory-access requests made by the
processors follow a repetitive pattern based on the application. Compilers can analyze an applica-
tion and attempt to predict its access patterns [Gornish90], but often the pattern is dynamic and
thus hard to predict. The goal of this work is to employ a technique that learns these patterns on-
line, predicts the processor requests, and performs IN configuration prior to the requests being
issued, thus hiding the control latency. The effect is a significant reduction in the communications
latency for multiprocessor systems.

Learning methods have been applied in various areas of computing and communication systems.
For instance, neural networks have been applied to learn both network topology and traffic pat-
terns for routing and control of communication networks [Fritsch91, Jensen90, Thomopoulos91].
Recent work on using neurocomputing in high speed communication networks was the subject of
a special issue dfommunicationgHabib95]. Other applications of neural networks are for the
control of switching elements of a multistage interconnection network for parallel computers
[Funabiki93, Giles95] and for learning the structure of interconnection networks [Goudreau95].
For multicomputer systems, genetic algorithms have been applied as a distributed task scheduling
technique [Wang95]. Solutions to the problem of mapping parallel programs onto multicomputer
systems to provide load balancing and minimize interprocessor communication have been pro-
posed using genetic algorithms [Seredynski94] and self organizing maps [Dormans95] as well as
variants of the Growing Cell Structures network [Tumuluri96]. In uniprocessor environments, Sti-
gal et. al. [Stigal91] propose a neural network cache replacement algorithm. Their technique pre-
dicts which cache block will be accessed furthest in the future and therefore should be replaced,
thus lowering the cache miss rate. In general, the literature on machine learning in computing and
communication systems has focused on how these techniques can be used to identify patterns of
communication in order to optimize the control of these systems.

The focus of this work is to study how three on-line learning methods perform at predicting pro-
cessor-memory access patterns in a multiprocessor environment. We use a Markov predictor, a
linear predictor and a time-delay neural network (TDNN) to learn and predict the memory access
patterns of three parallelized scientific applicatiors:arelaxation algorithmamatrix multiply

and al-D FFT. The next section presents the environment of our experiment where we describe a
shared memory multiprocessor model employing prediction units (PUs). In section 3, we describe
the three prediction methods used and in section 4 we present experimental results of the predic-
tors. The final section interprets our results and discusses future directions of research.

2 Multiprocessor Model

Shared memory parallel computers are commonly referredrntalliprocessorsystems [Bell85,
Kumar94]. Our shared memory multiprocessor (SMM) system consists of 8 processors (P0-P7),
32 memory modules (M0-M31), a reconfigurable IN and an IN controller (Figure 2). This SMM
model uses a state-sequence router [Chiarulli94] as the reconfigurable interconnection network
controller. In addition, we use a SMM simulator which allows us to record the memory access
traces of parallel applications.

In such systems witN processors and memory modules, the reconfigurable IN can be config-

ured to achieve any of tidK possiblepathsbetween a processor and a memory module; how-
ever, it can only provide a subset of these paths at any given time. A group of compatible (non-
blocking) paths are called an Bdnfigurationor astate Because of contention for paths, the IN

must be dynamically reconfigured to satisfy the set of current processor-memory accesses. This
SMM model employs an IN control system based orsthte sequence routif@SR) paradigm
[Chiarulli94] which takes advantage of the locality characteristics exhibited in memory access
patterns [Johnson92] and reconfigures the network through a fixed set of configurations in a repet-
itive manner. The IN controller, used for state sequence routing, consiststaik ggenerator

which is controlled by atate transformerThe state generator maintains a collection of configu-
rations, called atate sequencand periodically reconfigures the IN with a new configuration

from the set. Specifically, the state sequence is maintained in a cyclic shift register ok lesmgth
shown in Figure 2. With each register shift, an IN configuration is broadcast to the processors,
memory modules, and switching elements of the IN. The state sequence router exploits the mem-
ory access locality inherent in these patterns by re-using the sequence of states. The state trans-
former is responsible for determining the set of configurations contained within the state
generator based on processor requests. A processor that needs to access a memory module issues
a fault (or request) to the state transformer only if the current state sequence does not already
include the required path to a memory module. In response, the state transformer adds the
required path to the state sequence by removing the least recently used path.

Using SSR the average control laterigyincurred by each access can be shown to be:

K
L = (1—p)§+p(k+f) L)

wherep is the probability of a faulk is the sequence length, ahi$ the fault service time. If a
processor needs a path and it exists in the state sequence, there is no fault issued and the latency is
just the time for the path to come around in the sequence which on an avévageasvever if

the path does not exist afteroroadcasts, the processor issues a fault which must be serviced
before the memory access can occur. The SSR based IN controller needs only to establish the ini-
tial paths and respond to the changes in the memory access pattern; it is not required to respond to
individual memory access requests.

Our goal is to employ a technique that reduces the probability of a fault by predicting changes in
memory access patterns and informing the controller of a needed transformation before a fault
occurs. Thus, the controller will transform the state sequence to include the soon-to-be-needed
path, avoiding the latency incurred by the fault. As shown in Figure 2, a prediction unit (PU) is
used to learn the access pattern of each processor. The predictions made by the PU are used as
hints by the SSR while routing the memory accesses. Since, processor-memory access patterns
change dynamically and thus can be modeled as a time series, for this preliminary investigation,
we chose to study three simple on-line time series prediction methods: a Markov predictor, a lin-
ear predictor and a TDNN [Sakr95a].

3 Prediction Method Experiments

To evaluate the performance of various prediction methods, we test how well each technique can
predict the next memory access pattern as the SMM executes three typical parallelized scientific
applications. The first application is a parallel{32) 2-D grid-based temperature propagation/
relaxation algorithm; the second application is a repetitive124 12024) matrix multiply pro-

gram; the third is the memory access pattern generated from a repetitive 1D Fast Fourier Trans-
form (FFT) of a 16 sample vector.

Each experiment consists of three distinct phases: First, using the shared memory multiprocessor
(SMM) simulator, we generate the memory accesses of a parallel program assuming fixed latency
in the IN and memory modules. Using the raw memory accesses generated by the SMM simula-
tor, we extract the sequence of memory accesses of a single processor. This memory access is rep-
resented differently depending on the predictor used. For each experiment we use the 32 memory
module access pattern of a single processor, these patterns are shown in Figures 5a, 6a, and 7a.
The applications are symmetrically partitioned to execute the same code on all processors while
each processor uses different parts of the data [Sakr95b]. Hence, the access patterns of all other
processors are very similar to the one used. Second, we use the processor's memory access pat-
terns as input to the PU to perform on-line training and one-step ahead prediction of the next
memory access. Third, we evaluate the predictions by simulating the multiprocessor behavior
with and without the predictions and monitor the number of faults incurred. For each of the exper-
iments we use a relatively short state sequence lekigtAg can be seen from Equation 1, the
optimum sequence lengtk, is a trade off between increasikgo reduce faults, and keepikg

small to reduce waiting time. The valueskafrere chosen to minimize the faults for these appli-
cations, for the non-predictive case. We tested using the best 1, 2, 3 and 4 predictions as hints to
the SSR controller. The three prediction methods tested are considered appropriate for this
dynamic system since the training and prediction is performed on-line.

3.1 Markov Predictor

There are many ways one could consider using a Markov predictor [Isaacson76]. We consider
both a first and second order predictor which calculates the conditional proljabfliagcessing
memory moduleV; given processoPy has just accessed memory module i.e. p(M;|M;;Py).

Similarly, for the second order, we calculp(®|M;,My;P,) where the conditional probability is
conditioned on process® previously accessing memory modil, thenM;. Since in this

model we use one PU per processor, the input of the Markov prediction unit is the temporal
sequence depicting the memory access pattern of a processor (Figure 3). The probabilities are
stored in a probability transition matrix. For the first order predictor, probapjlggrresponds to

the probability of accessing memory modulé the processor is currently accessing memory
modulej. Similarly for the second order predictpq) corresponds to the probability of access-

ing memory moduléif the processor is currently accessing memory mqgdafier completing an
access to memory modudeEach entry in the transition matrix is updated and normalized on-line
as the application execution proceeds. For example, in the first order Markov predictor of proces-
sor Py, the probability of processdt, going fromM; to M, at time steq is calculated as the

number of transition® has performed frorvl; to M, divided by the total number of timé,
has accessell; from time O to timet. The number of parameters needed for the first order

Markov predictor is 1024 probabilities while the number of parameters for the second order
Markov is 32K probabilities. However, both first and second order predictors update 32 probabil-
ities on-line with every access since the next access could go to one of 32 memory modules. At
any given time, the non-zero probabilities are used as the predictions given as hints to the state
sequence router. However, the number of non-zero probabilities could be up to 32, therefore, a
fixed number of the most likely predictions is specified. We tested using the highest 1, 2, 3, and 4
probabilities as predictions. Table 1 shows the percentage of faults eliminated by the first and sec-
ond order Markov predictors while varying the number of predictions used as hints to the state
sequence router and the size of the state sequiendéé negative values in all tables indicate

that incorrect predictions are inserted in the state sequence, impairing performance. The shad-
owed cells are the parameter settings that produce the best results for each access pattern. These
results are discussed in more detail in the results section and depicted in Figures 5c, 6¢, and 7c
where we compare the performance of the Markov predictor to that of the Linear and TDNN.

3.2 Linear Predictor

For the Linear PU, the input data is transformed from a processor’s raw 32 memory module traces
into a sequence of 32 bit binary vectors [Sakr95b].i‘f‘rm)mponent of the binary vector is set to

1 when an access to tH& memory module takes place. All other values in that vector are set to
zero, this data encoding is shown in Figure 4.

For each value in the binary symbol vector we use a next step linear predictor which attempts to
predict the next access based on a linear combination of all the values in the vector and their his-
tory. Since there are 32 memory modules3a access vector) in the system tested, we use 32 lin-
ear predictors that predict the next access vector in parallel. In order to compare the results of this
predictor with that of the TDNN we use one bias weight for each output value, hence the Linear
predictor is actually an affine predictor [HechtN91]:

| 32
% (t+1) = z ZWijkxj (t-k) +wiy i=12..321=1510 @
k=0j=1

wherex is a binary vector of dimension 32denotes theh component an@ is the prediction.

Since we are implementing one-step-ahead prediction, the Linear predictor takes as input the cur-
rent binary vector and the pddtistory vectors and attempts to predict the vegtor at the next
time step (Equation 2). We tested the performance of the Linear predictot esing, and 10

past vectors. Therefore, the number of inputs for the three Linear predictors tested are 64, 192,
352 32 x (I + 1)) and the number of coefficients (weights) to update at each time step is 2080,
6176, 11296 respectively. The learning algorithm is a simple on-line gradient descent algorithm
using the following adaptiviearning rate[Maggini94], starting value is set to 0.01:

if (present error - previous error > previous epr@llowed % increment [default 10%]){
reduce learning rate (multiply by a decrease factor < 1 [default 0.5])
and move back in the weight space to the previous point}

else {
keep the updated weights and increase the learning rate
(multiply by an increase factor > 1 [default 1.1])}

The algorithm is performed on-line, so we make only one pass through the data. Furthermore, the
outputs (predictions) with values > 0.5 of which the largest values are selected as the predictions
which are passed along to the state sequence router as hints. We tested using 1, 2, 3 or 4 predic-
tions as hints to the SSR controller. Table 2 shows the percentage of faults eliminated for all the
parameters explored. Again, the shadowed cells are the parameter settings that produce the best
performance of the Linear predictor, these results are depicted in Figures 5d, 6d, and 7d.

3.3 Time Delay Neural Networ k

The data encoding of the memory accesses for the TDNN is the same as that of the Linear predic-
tor which is shown in Figure 4. Again, since we are implementing one-step-ahead prediction, the
TDNN takes as input the current binary vector and attempts to predict the access vector at the next
time step [Sakr96]. Therefore there are 32 inputs and 32 outputs for the network. For each input,
we experiment with a tapped delay line of length 1, 5 or 10. The total number of inputs to the
MLP section of the TDNN is 64, 192, 352 derived from (B@L input + # taps)). We tested the
performance of the TDNN using a single hidden layer of size 10, 20 and 30 neurons. Every output
node has an additional bias weight, we use tapped delay lines of sizes 1, 5 and 10. This gives
1002, 2282, 3882 total weights for the TDNN with 10 nodes in the hidden layer; 1972, 4532, 7732
total weights for the TDNN with 20 nodes in the hidden layer; and 2942, 6782, 11582 total
weights for the TDNN with 30 nodes in the hidden layer. Nodes in the hidden layer use a hyper-
bolic tangent activation function, while nodes in the output layer are affine. All of the weights
were initialized uniformly in the range [{/ 1/p], where@® is the number of connections that

enter a node (fan in). The learning algorithm is a simple on-line gradient descent algorithm using

the same adaptive learning rate used for the Linear predictor. Since the training and prediction is
performed on-line, we make only one pass through the data. Many prediction interpretations
could be used; we found that best performance was achieved if the output neurons with the largest
values are selected as predictions. We tested using 1, 2, 3 or 4 output neurons with the highest val-
ues as prediction hints to the SSR controller. Tables 3, 4 and 5 show the percentage of faults elim-
inated for the parameters explored for the 2D relaxation algorithm, matrix multiply and FFT
respectively. The percentage of eliminated faults is the average of five simulations using different
seeds to initialize the weights, the variance is given in parenthesis. The best performance of the
TDNN is shown in the shadowed cells, plots portraying the system performance using these
parameter settings are depicted in Figures 5e, 6e, and 7e.

4 Reaults

In this section we discuss in detail the performance of the three prediction units tested for the
three applications implemented on our SMM model. In order to compare the performance of the
prediction units, for each application we plot the memory access pattern followed by fault plots.
First we show the characteristic access pattern of each of the applications in Figures 5a, 6a, and
7a. Then the network faults incurred for the non-predictive case (Figures 5b, 6b, and 7b) followed
by the network faults incurred by the system using the PUs (Figures 5c-e, 6¢-e, and 7c-e).

4.1 2-D Relaxation

Figure 5a shows 8697 access vectors which depict the access behavior of the 2-D Relaxation
algorithm, the large discontinuity in the pattern is a no-memory-access period which is a charac-
teristic of the algorithm. The access patterns exhibit a stair-like behavior, where each stair discon-
tinuity reflects a change in the memory module access. For this access pattern the Markov
predictor (Table 1) performed the best of the three prediction units tested. The second order
Markov predictor shows improved performance over the first order only for the 1 prediction case.
In general, increasing the number of predictions used by the state sequence router enhanced per-
formance while increasing the size of the state sequéhc®és not for this particular applica-

tion. For the Linear predictor (Table 2), increasing the history or the number of predictions used
as hints does not enhance performance. On the other hand, inctebsipg increase the total
number of network faults eliminated. We tested many TDNN configurations (Table 3), the perfor-
mance of the TDNN in predicting this pattern relied heavily on the number of nodes in the hidden
layer. From Table 3, we can see that increasing the history used (tapped-delay line) does not
improve performance as much as increasing the size of the hidden layer. Usingkadaats®

crucial in fault elimination for this pattern. Figure 5b plots the network faults incurred as impulses
for the non-predictive case. The other fault plots show the best performance of the on-line predic-
tors for the 2-D relaxation algorithm. The Markov predictor performs best for this pattern since
the total number of non-zero probabilities is small (three), and using the top three probabilities is
enough to predict almost perfectly and eliminate all faults (Figure 5c). The Linear predictor needs
a few more training iterations before its predictions start to greatly reduce the number of faults

(Figure 5d). The TDNN with a hidden layer of 30 nodes and single node in each tapped delay line
produced its best result, shown in Figure 5e.

4.2 Matrix Multiply

The matrix multiply application exhibits a more complex pattern since each processor accesses
the memory modules in a less uniform fashion than the 2-D relaxation algorithm. Figure 6a shows
the 11561 vector access pattern. Since this application exhibits a complex access pattern the first
and second order Markov predictors cannot capture and predict the access pattern correctly.
Increasing the number of predictionskatoes not enhance overall performance. The performance

of the Linear predictor (Table 2) is similar to that of the Markov predictor for this application.
Varying the history, ok, or the number of predictions does not improve performance. On the
other hand, the TDNN (Table 4) produces marginally better results. The TDNN performs best
with a hidden layer of 10 nodes, using 2 predictions and akak@wever, increasing the size of

the hidden layer hinders the performance of the TDNN. Figures 6b-e show the best performance
of all three prediction units for this access pattern. In this case, the Markov predictor performs
poorly since the probabilities are of equal values which increases the number of wrong predic-
tions. The linear predictor is not able to find a linear combination of the past accesses to predict
the next access well. However, the TDNN still achieves a moderate reduction in the number of
faults.

4.3 Fast Fourier Transform

The FFT application produces the memory access pattern shown in Figure 7a. The Markov pre-
dictor is capable of capturing and predicting this pattern thus eliminating almost all the faults
incurred by the state sequence router. The second order Markov captures the pattern of access
thus producing better results compared to the first order Markov. Increasing the number of predic-
tions used is essential for good performance while incre&silogs not affect the percentage of

fault elimination for both the first and second order Markov predictors. The Linear predictor pro-
duces its best results when using the least history, the least number of predictiok®bsidea 6

(see Table 2). Increasing the history used or the number of predictions does not boost perfor-
mance. The TDNN is capable of learning and predicting the access pattern of the FFT. As shown
in Table 5, a hidden layer consisting of 10 nodes provides better performance than the TDNN with
a larger hidden layer. A number of predictions of either 2 or 3 wktbfaize 6 or 7 are needed for

good performance. Figures 7b-e show the best results from the shaded cells of tables 1, 2, and 5.
Since the FFT algorithm exhibits a simple access pattern, the Markov predictor is able to capture
the pattern and predict well using the top four predictions. The Linear predictor is capable of
eliminating some of the network faults. The TDNN (Table 5) performs better than the Linear pre-
dictor for this pattern but not better than the Markov.

5 Summary and Conclusions

Completely connected interconnection networks (INs) are not feasible in large scale multiproces-
sor systems because of their high complexity and soaring cost. Accordingly, we utilize less expen-
sive reconfigurable interconnection networks that scale well but suffer from high overhead due to
control latency. Control latency is the time delay incurred by the network controller to determine
a new desired IN configuration and to physically establish the paths in the network. Each recon-
figuration request (network fault) is triggered when the current network configuration fails to sat-
isfy a processor's memory access. These requests are performed on a demand driven basis.
However, memory access patterns of multiprocessor systems executing parallel scientific applica-
tions exhibit a lot of repetitiveness due to loops which are a characteristic of such applications.
Hence, in this work we study how three learning methods perform at learning and predicting these
access patterns on-line. Correct prediction of the access patterns allows anticipatory reconfigura-
tion of the IN and thereby satisfy the forthcoming memory accesses preventing a network fault.
Thus, the average control latericys hidden and consequently overall communication latency is
reduced.

The three on-line prediction methods tested are: a first and a second order Markov predictor; a lin-
ear prediction method; and a time delay neural network (TDNN). We train the prediction methods
using the access patterns of three parallel scientific applications: a 2D relaxation algorithm; a
matrix multiply; and a Fast Fourier Transform (FFT). The multiprocessor model used is an 8 pro-
cessor 32 memory module shared memory system with a state sequence router as the reconfig-
urable interconnection controller.

The experiments show that coupling state sequence routing with different types of on-line predic-
tion methods can decrease the number of memory access faults across different applications with
some methods being more effective than others. The best results of the prediction methods for the
access patterns tested are as follows. For the 2D relaxation algorithm the first order Markov pre-
dictor eliminates 95% of the faults; the Linear predictor prevents 95% of the faults; and the
TDNN removes 71% of the faults. While for the matrix multiply: the second order Markov pre-
dictor eliminates 6% of the faults; the linear predictor removes 1% of the faults; and the TDNN
prevents 30% of the network faults from taking place. Finally, using the access patterns of the
FFT: the second order Markov predictor prevents 95% of the network faults; the linear predictor
eliminates 34% of the faults; and the TDNN removes 45% of the network faults. As expected, dif-
ferent predictors perform best on different applications. From visual inspection of the access pat-
terns (shown in Figures 5a, 6a, 7a), one could say that the access patterns of different applications
vary in complexity from the 2-D relaxation being the most simple to the matrix multiply the most
complex. All prediction methods perform well on the applications with the simple access patterns.
On the other hand, for very complex patterns, the Markov and Linear prediction methods perform
very poorly and TDNN performs the best of the three.

Given the multiprocessing environment, different applications exhibit very different patterns and

a technique that will predict well across patterns is more appealing than a technique that performs
best for specific patterns. Thus, we hypothesize that the TDNN has the best chance of adapting to
different memory access patterns from the variety of real applications. However, it could be feasi-

ble to use all prediction methods in a mixture of experts model [Jordan94] and use the best predic-
tor available.

Our future work will address more realistic simulation of the multiprocessor environment, such as
the effects of incorporating runtime delays due to memory and network contention in the memory
access patterns and how these prediction methods affect actual performance. We plan to test the
performance of different machine learning techniques and other prediction methods. Also, it
would be interesting to investigate the applicability of prediction techniques to the general prob-
lem of latency hiding at all levels of the memory hierarchy. Another open question is how will
these prediction methods be efficiently implemented in hardware and their results effectively
used. For example how and what is the effect of memory fault prediction in the actual speedup of
applications on multiprocessor?

Acknowledgments

The authors would like to thank Marco Maggini for providing the on-line neural network simula-
tor. S. P. Levitan and D. M. Chiarulli would like to acknowledge support from AFOSR Grant F-
49620-93-1-0023 for work done at the University of Pittsburgh.

References

[Bell85] C.G. Bell, “Multis: A new class of multiprocessor computers,” Science, vol. 228, pp.
462-467, 1985.

[Chiarulli94] D.M. Chiarulli, S.P. Levitan, R.G. Melhem, C. Qiao, “Locality Based Control Algo-
rithms for Reconfigurable Interconnection Network&gplied Optics vol. 33, pp. 1528-1537,
1994.

[Dormans95] M. Dormans, H.-U. Heiss, “Partitioning and Mapping of Large FEM-Graphs by
Self-Organization,Proceedings Euromicro Workshop on Parallel and Distributed Processing
San Romeo, ltaly, pp. 227-235, 1995.

[Fritsch91] T. Fritsch, W. Mandel, “Communication Network Routing Using Neural Nets-Numer-
ical Aspects and Alternative ApproacheH;EE International Joint Conference on Neural Net-
works pp 752-757, 1991.

[Funabiki93] N. Funabiki, Y. Takefuji, K.C. Lee, “Comparisons of Seven Neural Network Models
on Traffic Control Problems in Multistage Interconnection NetworkSEE Transactions on
Computersvol. 42, no. 4, pp 497-501, April 1993.

[Giles95] C.L. Giles, M.W. Goudreau, “Routing in Optical Multistage Interconnection Networks:
a Neural Network Solution Journal of Lightwave Technologyol. 13, no. 6, June 1995.

[Gornish90] E.H. Gornish, E.D. Granston, A.V. Veidenbaum, “Compiler-directed Data Prefetch-
ing in Multiprocessors with Memory Hierarchie®foceedings of the 1990 International Confer-
ence on Supercomputingp. 354-368, Sep. 1990.

10

[Goudreau95] M.W. Goudreau, C.L. Giles, “Using Recurrent Neural Networks to Learn the
Structure of Interconnection Network$yeural Networksvol. 8, no. 5, pp. 793-804 (1995).

[Habib95] I.W. Habib, Guest editor of the Special Issue on Neurocomputing in High-Speed Net-
works, IEEE Communications Magazingl. 33 October 1995.

[HechtN91] R. Hecht-NielsemNeurocomputingAddison Wesley, 1991.

[Isaacson76] D.L. Isaacson, R.W. Madsémarkov Chains Theory and ApplicationR.E.
Krieger, 1976.

[Jensen90] J.E. Jensen, M.A. Eshera, S.C. Barash, “Neural Network Controller for Adaptive
Routing in Survivable Communication Network£EE International Joint Conference on Neu-
ral Networks pp 2693-702, 1990.

[Johnson92] K.L. Johnson, “The Impact of Communication Locality on Large-Scale Multiproces-
sor Performancé Computer Architecture Newsol. 20, pp 392-402, 1992.

[Jordan94] M.I. Jordan, R.A. Jacobs, “Hierarchical Mixtures of Experts and the EM Algorithm,”
Neural Computationvol. 6, pp. 181-214, 1994.

[Kumar94] V. Kumar, A. Grama, A. Gupta, G. Karypis, “Introduction to Parallel Computing,”
Benjamin/Cummings, CA, 1994.

[Maggini94] M. Maggini, Personal Communication, 1994.

[Sakr95a] M.F. Sakr” Predicting Multiprocessor Communication Patterns with Neural Net-
works,” M.S. ThesisElectrical Engineering Department, University of Pittsburgh, 1995.

[Sakr95b] M.F. Sakr, S.P. Levitan, C.L. Giles, B.G. Horne, M. Maggini, D.M. Chiarulli, “Predic-
tive Control of Opto-Electronic Reconfigurable Interconnection Networks using Neural Net-
works,” Proceedings of the Second IEEE International Conference on Massively Parallel
Processing Using Optical Interconnectiopg. 326-335, 1995.

[Sakr96] M.F. Sakr, C.L. Giles, S.P. Levitan, B.G. Horne, M. Maggini, D.M. Chiarulli, “On-Line
Prediction of Multiprocessor Memory Access Patt@rigsoceedings of the IEEE International
Conference on Neural Networksp. 1564-1569, 1996.

[Seredynski94] F. Seredynski, “Dynamic Mapping and Load Balancing with Parallel Genetic
Algorithms,” Proceedings of the First IEEE Conference on Evolutionary Computatbnl, pp.
834-839, 1994.

[Siegel90] H.J. Siegelnterconnection Networks for Large-Scale Parallel ProcesdihcGraw-
Hill, NY, 1990.

[Stigal91] P.D. Stigal, C.H. Dagli, C.F. SémA Neural Network Cache Controlleintelligent
Engineering Systems Through Artificial Neural NetwogksDagli, S. Kumara and Y. Shin edi-
tors, pp. 561-566, ASME Press, 1991.

[Thomopoulos91] S.C.A. Thomopoulos, L. Zhang, C.D. Wann, “Neural Network Application of
the Shortest Path Algorithm for Traffic Control in Communication NetworlsFE Interna-
tional Joint Conference on Neural Netwaorkg. 2693-702, 1991.

[Tumuluri96] C. Tumuluri, C.K. Mohan, A.N. Choudhary, “Unsupervised Algorithms for Learn-
ing Spatio-Temporal Correlations”, Syracuse University Technical Report #SU-CIS-96-1, 1996.

[Wang95] P.C. Wang, W. Korfhage, “Process Scheduling Using Genetic AlgoritRmsgeding
of the 7th IEEE Symposium on Parallel and Distributed Procespmg38-641, 1995.

11

Table 1. Markov Predictor: Percentage of faults eliminated

Fixed Parameters 15t Order, 32 States g Order, 1024 States
Number of Predictions 1 2 3 4 1 2 3 4
2D Relaxation
(k= 4) 0 93 96 94 35 93 96 96
2D Relaxation 0 93 96 96 35 93 96 96
(k=5)
2D Relaxation 0 93 96 96 35 93 96 96
(k=6)
2D Relaxation
k=7) 0 93 96 96 35 93 96 96
Matrix Multiply
(k= 4) -6 -85 -75 -74 0 -3 4 4
Matrix Multiply
(k=5) 0 -45 74 72 3 1 18 6
Matrix Multiply
(k=6) 0 3 -79 71 3 -7 -60 -15
Matrix Multiply
k=7 0 3 -40 -76 3 5 -2 -55
FFT
(k= 4) 11 32 31 94 31 53 63 95
FFT
(k=5) 11 43 53 94 31 53 74 95
FFT
(k=6) 11 43 63 85 21 63 85 95
FFT
k=7) 14 27 54 94 42 63 85 95

The percentage of faults eliminated by the Markov PU compared to the non-predictive case. This table
compares the performance of the first and second order Markov predictors while varying the number of
predictions used as hints to the SSR lafttie state sequence length). The positive values indicate elim-
ination of faults while the negative nhumbers are due to inserting incorrect predictions into the state
sequence.

Table 2: Linear Predictor: Percentage of faults eliminated

Fixed Parameters 32 Inputs, 32 Outputs, Learning Rate = 0.01
Tapped Delay line 1 5 10
Number of Predictions 1 2 3 4 1 2 3 4 1 2 3 4
2D Relaxation 93 93 91 91 88 71 67 50] 50 18 10 -28
(k=4)
2D Relaxation 93 94 93 92 90 84 77 73 56 45 16 5
(k=5)
2D '?f'f’g“on 93 | 95 | 94| 94| 90| 89| 82| 79| 8 61 39 21
2D Relaxation 93 | 95| 95| 95| 91| 92| 88| 83 58 671 51 37
(k=7)
Matrix Multiply o | a2 | 3| 3| 3| 7| 7| -8| -8| -200 21 -24
(k=4)
Matrix Multiply 0 - 3 3 1 4 5 5 2 10| -14| -14
(k=5)
Matrix Multiply
(k=6) 0 0 -1 -1 0 -2 3 -4 1 -5 -10 10
Matrix Multiply
(k=7) 0 0 0 0 0 0 2 -3 1 0 -6 -7
FFT
(k=4) 15 14 15 13 -1 -9 -8 -15 40 13 11 -2(
FFT
(k=5) 28 24 24 24 3 -3 -5 -6 -1 -6 -7 -8
FFT
(k=6) 34 33 32 32 6 2 -1 -2 1 0 -2 -6
FFT
k=7) 7 9 7 6 5 -2 -5 -8 -2 -6 -5 -10

The percentage of faults eliminated by the Linear PU compared to the non-predictive case. This table
compares the performance of the Linear predictor using different history values while varying the num-
ber of predictions used as hints to the SSRkatide state sequence length). The positive values indicate
elimination of faults while the negative numbers are due to inserting incorrect predictions into the state
sequence.

Table 3: TDNN: Percentage of faults eliminated for the 2D Relaxation

Tapped Delay line 1 5 10
Number of Predictions 1 2 3 4 1 2 3 4 2 4
Hidden Layer 32 Inputg,0 Hidden, 32 Outputs
k=4 0 -7 | -70 | 207} O | -17 | -115| -189| O | -37 | -125]| -211
- © | @ |7a|la2al ©0 |@22] 04| 2] 0 |@3.2)((31.2)(11.6)
k=5 0 2 | 37| 8] 0 -1 | 54 | -1271 O -3 | -64 | -130
© | (08| 14| @ © |04 1 | (78] (0 | (0.2)| (8.4)|(10.8)
K=6 0 4 | 12| 451 0 0 | 16| 81} O 0 -22 | -80
© | 1) |12 26)] O | O |(12)] 44] 0 |(02)] (3 |(14.8)
k=7 0 5 1 |-32] 0 0 2 | 4] o0 0 -4 | -44
© | @8)|©6)| @2 0 | © | 0 | ®.8] (0) | (0.2)] (0.6)]| (9.2)
Hidden Layer 32 Input0 Hidden, 32 Outputs
k=4 2 4 | -79 | 2241 0 | -30 | -145| -212| 0O | -53 | -155| -242
B 1) | @ |(9.6)|(11.4)] (0.2) [(25.6)| (13.8) (6.4)] (0.6) | (60) | (105)|(23.8)
k=5 3 29 | 38| 96| O 4 | -78 | -167| O 9 | -85 | -161
0.8)| (1.4)| (6.2)| (1.8)] (0) | 2.2)| (3.8)| (5.2)] (0.2) | (8.19)| (62.2)] (50.4)
k=6 3 39 | 2 | 471 0 0 | 35 |-104) O 0 -43 | -98
0.8)| 38)| (7.2)| 2 |(0.2)| (0.6)| (4.8)| (9.2)] (0.2) | (0.8) | (19.8)](15.2)
k=7 3 43 | 21 | 29| o 1 ;10| 64] 1 1 -14 | -64
- (0.8) | (5.8) | (2.2) | (2.8)] (0.2) | (0.2) | (1.2) | (2.4)] (0.6) | (0.8) | (6.2) | (17.6)
Hidden Layer 32 Inputs80 Hidden, 32 Outputs
k=4 12 | 17 | 81 | -224| 0 | -42 | -168| -216| -1 | -64 | -173| -253
B (1.2) | (6.2) | (5.2) |(32.4)] (1.4) | (13.2)[(19.8)| (33.2)] (0.4) | (5) |(15.6)|(42.2)
k=5 12 | 53 | 31| 99| 1 6 | -91 |-184| O | -15 | -97 | -180
16| Ga @8] G| @ | @ | @o|az2l 02| @) |126)13.8)
K=6 12 | 67 6 | 41| 2 5 | -45 | -118) O -2 | -56 | -116
@.8)| (M (8) B) 1(06) (3) | (3.8)[(10.4)) (O) | (0.6)]| (4.49)| (6.6)
k=7 12 | 71 | 33 | -19| 2 8 | -13| 65| O 0 23 | -75
(1.8)| 3.8)| (4) |(11.4)] (0.6)| (2.8)| (7.4)| (7) | (0.4)| (0.2)| (3) | (5.6)

The percentage of faults eliminated averaged over 5 simulation runs using different seeds to initialize the
weights of the TDNN. The variance is shown in parenthesis. This table compares the performance of the
TDNN predictor using different tapped delay line sizes and hidden layer sizes while varying the number
of predictions used as hints to the SSR larfthe state sequence length). The positive values indicate
elimination of faults while the negative numbers are due to inserting incorrect predictions into the state

sequence.

Table 4. TDNN: Percentage of faults eliminated for the Matrix Multiply

Tapped Delay line 1 5 10
Number of Predictions 1 2 3 4 1 2 3 4 2 4
Hidden Layer 32 Inputg,0 Hidden, 32 Outputs
k=4 5 | -9 | 92| 86| -5 | 94 |-101| 94| -3 | -39 | -103| -95
04| 4 |@2|@aa]©a| @ | B4 (26)]06)]| (54| (22| (2.8
k=5 0 11| 81| -78| 1 | 24| 87| 84] 1 -23 | -86 | -85
0.2) @ |08] @2]©2]| (54| 24| 28] ©2|®8)| (4 |(28)
K=6 1 2 | 29| 80| 2 15 | -39 | -74] 2 19 | 35 | -73
0) (0)) B | 1AH|O0a)| Q2D (24| (06)) 02| 28| 12| (B
k=7 1 5 1 | 53] 2 26 | 12 | 39] 2 30 | 17 | -34
© |02 @aa| @202 3) |08 3B2]02] @ | @4|112)
Hidden Layer 32 Input0 Hidden, 32 Outputs
k=4 6 | 92| 92| 90| 5 | -95 |-103| 99 | -5 |-101]| -105 | -103
06)| 1.4)| (2 | (26)](0.2)| (3.8) | (3.8) | (10.8)] (0.2) | (8.4) | (11.2)| (12.8)
k=5 0 -18| 84 | -79| 1 | 32| 94| 8] 1 -35 | -95 | -89
© | (G2 @2 @8)]04a]| 1) | 58| (5) | (0.4)] 4.8)|(17.6)| (11.6)
K=6 1 1 | 39| -83] 1 8 | 58| 84] 2 12 | 58 | -84
0.2)[0.2)]| (7.2)| @8] (02| 12| 46)| 52| 0.2 (2.8) | (18.9)| (22)
k=7 1 4 4 | 621 1 20 | -10 | 64] 2 26 | 5 | -61
© |©2)|@as|Ealo2| @ | 28] 6) |©04]| 22| 6.4 |(20.6)
Hidden Layer 32 Inputs80 Hidden, 32 Outputs
k=4 -7 | 98 | 96 | -94 | -5 |-102| -108| -108| -6 | -104| -107 | -106
02| @4)| 3 |) 104 @49 (34| (4] 0.2)]|(11.8)] (7.8) | (14.6)
k=5 0 27| 90 | 84| 0 | -39 |-102| 95| O | -42 | -100| -92
© | (44| 2 Q) 10442 249 (@4 (0 |(11.6)|(12.9)] 12
K=6 1 0O | 51| 871 1 6 | 73| 93] 1 7 -70 | -90
() | (0.4)| 3.6)| (0.6)] (0.2)| (1) | (0.4)| 2.8)] (0) | (2.8) | (15.6)| (12.4)
k=7 1 4 | 13| -70] 2 19 | 23| -79] 2 23 | -18 | -75
(0) | (0.2)] (2.2)| (0.8)| (0.4) | (1.4)| (1.6) | (2.8)] (0.6) | (0.6) | (10.6)| (16.4)

The percentage of faults eliminated averaged over 5 simulation runs using different seeds to initialize the
weights of the TDNN. The variance is shown in parenthesis. This table compares the performance of the
TDNN predictor using different tapped delay line sizes and hidden layer sizes while varying the number
of predictions used as hints to the SSR lrfthe state sequence length). The positive values indicate
elimination of faults while the negative numbers are due to inserting incorrect predictions into the state

sequence.

Table 5: TDNN: Percentage of faults eliminated for the FFT

Tapped Delay line 1 5 10
Number of Predictions 1 2 3 4 1 2 3 4 2 4
Hidden Layer 32 Inputg,0 Hidden, 32 Outputs
k=4 5 5 |15 30 1 4 | 15 | 17 | 4 2 -10 | -20
B (15.2)[(11.8)| (15.6)| (87.6)] (6) |(42.8)|(22.8)| (104)](42.6)| (183)| (146)| (107)
k=5 20 | 23 5 -7 8 23 9 -2 11 | 30 | 12 2
- (11.8)| (9.2) | (2.6) | (22.6)] (0.4) | (53.8)| (43.6)| (49.4)| (18.4) (99.6)| (126) | (62.6)
K=6 19 | 43 | 34 | 15 9 42 | 33 | 16 | 12 | 45 | 37 | 16
- (9.2) [(13.2)] (24.8)[(25.2)] (9) |(13.2)| (50.4)| (41.8)| (17) | (48.2)| (81.2)| (122)
k=7 3 27 | 44 | 24 5 40 | 40 | 18 9 41 | 43 | 17
- (3.8) | (48.6)| (23.6)| (42)](18.2)| (33) |(10.4)| (45.8)] (48.4)|(33.8)| (66.2)| (225)
Hidden Layer 32 Input0 Hidden, 32 Outputs
k=4 4 7 | 20| 41] O 4 | 18| 30| -1 -7 | -20 | -29
B (12.6)| (4.2) [(30.8)| (6) | (6.4) |(28.4)|(13.2)|(32.6)| (4.6) | (17.4)|(20.6)| (64.2)
k=5 25 | 16 | 6 | -17] 5 21 | 6 | 113] 6 19 | -8 | -14
- (1.4) | (5.6) | (41.2)| (10) | (@ |[(62.4)| (11) | (36.8)| (5.2) | (13.4)| (22.4)| (76.2)
K=6 28 | 39 | 15 | -6 7 45 | 14 | 9 8 38 | 14| 9
B (3) [(17.4)] (51) |(44.6)] (2.2) |(35.7)|(33.8)| (19) | (3.2) |(21.8)| (37) | (62)
k=7 6 32 | 17 | 14| 4 41 | 18 | 22| 3 34 | 15 | -21
- (4) |(18.2)| (44.8)| (50) | (3.4) | (45.2)| (25.4)| (40.8)] (19) | (35.7)| (122)| (94)
Hidden Layer 32 Inputs80 Hidden, 32 Outputs
k=4 11 | 13| 27 | 46| 3 | -19 | 33| 45| 4 | 19 | -32 | 41
B (19.8)| (46.8)| (59.6)| (45.8)] (8.6) |(34.2)| (76.6)| (67.8)| (5.4) | (21.2)| (74) |(30.2)
k=5 28 | 13 | 112 | 25| 2 8 | 24| 26] 1 5 -22 | -23
B (3) [(59.2)|(88.8)| (30) | (0.6) |(35.2)|(44.4)| (71.6)} (4.4) | (27) |(38.4)| (59)
k=6 30 | 34 8 | 15| 7 30| 5| -19] 4 22 | -5 | -20
- (10.6)| (16.4)| (104) | 37.6)] (1.4) | (5) | (26) |(84.6)| (5.8) | (19.6)| (39.6)| (65.4)
k=7 8 31 6 | 29| 2 24 | -7 | 40] -1 19 | -8 | -36
- (9) [(28.4)] (79) | (90) | (7.4) | (18.8)| (40.4)| (60.6)| (5.2) | (21.8)| (20.8)| (56.8)

The percentage of faults eliminated averaged over 5 simulation runs using different seeds to initialize the
weights of the TDNN. The variance is shown in parenthesis. This table compares the performance of the
TDNN predictor using different tapped delay line sizes and hidden layer sizes while varying the number
of predictions used as hints to the SSR larfthe state sequence length). The positive values indicate
elimination of faults while the negative numbers are due to inserting incorrect predictions into the state

sequence.

Control Launch Fly

Processor Request

Figure 1: The three components of the end-to-end communication latency; control
time, launch time and fly time. Control time dominates overall communication latency.

IN Controller based on the State Sequence Routing Paradigm

State Transform State Gener ator
S— 1 PyMg PrMiy Ps-Myy
2 PrMg PeMs Pr-May
Faults Predictions : ! _
[T I k IN Configurations
A J
XY Po {PU) N\ Mo
Ly Pl — Ml |
&Y
! Reconfigurable =
Interconnection
\ Network (IN) |
SY PG 1 /IDD —M30<
—{ P ——®0— T May—

Figure 2: An 832 shared memory multiprocessor system employing the SSR paradigm as the IN
controller and one on-line Prediction Unit (PU) per processor.

Pi-My Pj-My7 Pi-Myy

» Serial Memory References
(for Processor Pi)

Figure 3: Data encoding for the Markov predictor.

Pi- M,
| | | | | | - Serial Memory References
Pi
0 110
M 1 0 |0
3 3 1 Binary Access Vectors
0 0| |1
0 0/ [0

Figure 4: Data encoding for the Linear and TDNN PUs.

(c) Markov PU-
(d) Linear PU
(e) TDNN PU|

Q
Q S
o . E =
i E s i
1= m ,.
9
: :
0
; i
[
mo L|>|W ¢ L}
\ o N0 t
$ N 4@ o0 ot N0 M“lwown Ao
R 0 0 0 0
s)ne
Sjjne
syne ined g
T
| &
v
0900000000000 000660000 00004600600
0000000000000 0060 0000000006000 0
0000000000000 0060 090060000006 000
©000000000060606 00 0000000004000
©900009006000060600 0000000000000 Qg
T
©9000000000 9909009000040 *0eeH O
©000004000060000 ©0000006000606000d™
0000000000600 06 0 ©000000000606000
9000000000000 00660000 ©00000000
0800000000600 00 9290060000060 06000
0000000000606 06 0 0000000066000
0000000000600 060 0000600000000 %m =
T
©09000000000606.0.0 OOV T E 6 6 6 0 SE =
0000000000060 0606 0 0000600006000 0
0000000000060 0060 0000000000006 0
©9000000000006060 0900600000006 000
o
o
o
]
09000666 60606000000000006606000 ©000 63
0900009000000 000660000 0000000600
©000009000000060600000a0 00004600600
0000000000000 000660000 ©000000600
©90000900000000600600600 000060600
©00000000006006060060000 0000000600
©000000000060060006000a0 0000600600
0000000000000 060000600 00000000 o
o
o [T
o =t} =1
3 A 1

m_%co_\/_ Aloway

[[ber of
Fi 5: (a) The memory access pattern of the 2-D relaxation algorithm for Progeéispl Re num
igure 5:

[. (d)
i icti twork faults using the Markov PU. (
[thout predictions. (c) Number of ne the Markow P4, (¢
&?Jtynvgrekr ii‘urlwft\l/\r/]grlf(r;gﬂlglusing%he Linear PU. (e) Number of network faults using t

(b) no PU

Aod 0 0

syne

a|npo Alowap

D oy i
o)
: : 2
) s pa
= £ P .
@© | o §
= = { — ;
~ N P]
< =~ 2 O 2
M
! 1
N N
(]
2 £
= =
= 0 p
3 3
: :
W
d d
:
d d
T N 4 0 0 ¥ N 0 t N ..HEHHA.H,;HQ TN 4 8 0 v N0
44 ¢ 6 0 ¢ LI 6 0 0 0 d L
S)ljneH S)ljineH S)ljineH
[] v
00'.'0 ._-.
000."00 Q..
*o o ' .
('Y]
[
0.-00 .-..
00.'00 .. S
P
¢ e &
.'0000 .Q_- &
..ooo... ...
0'0 [
%0, ¢ ' [
® .
00.-00 .-..
00.'000 .._6
X d) 2
..a... '] %
0000..0 ... =
[2 [
®o, ¢ .
® .
00.'0 .-. ©
00.% .. —~
® '000 (] ._ m ha\
L) [
000.-0 ._-. ©
%04 043
%0, ¢ Y ¢
°]
00.'00 _-.
004, ...
%0 [
%04 ¢
®os *
L 2 ¢
'Qoeooo ..._m
® (] Py S
® 4 IS]
......Mw ...: S
®eoq .
8
° %0, ° w.
%0 [
[2Py]
° .
....o....
°
L) [R
o 0 o) o 1) o
(3ol N N - -

Time

Figure 6: (a) The memory access pattern of the matrix multiply for Procgsgb) Phe number of network faults
incurred without predictions. (c) Number of network faults using the Markov PU. (d) Number of network faults

using the Linear PU. (e) Number of network faults using the TDNN PU.

30

25

N
o

Memory Module

=
o

o © o o o O o o o o o o o o © © © o o ! o <G o
G R D D DD WD DD D WD D D B D D D B B D R D K
PO A GO GO BB B O GO (GO GO GO GO O GO GO GO GO GO GO D O O B Reod
W D W B W W W D W W W W W W G W W D> W W W W W W
WO W W0 WO G- -W WO W W
<© < Ros < < < <© © © kel < © © <© < © < < kel <© <©
R R R D DD D D R R R D ® B ® @ ® @ D X © B
& & o o o Lol o o o o Lol Lol & o Lol Lol o o & Lol
< < < © © < < < < © <© < <© bd kel © <© <© <© < kel < <
0 20000 40000 60000 80000 100000 120000 140000 160000
Time
(@)

Faults

Faults

Faults

(b) no PU |

N

Time
. (c) Markov PU |
I T T Time e
i (d) Linear PU |
T T Time T
(e) TDNN PU]
°°°°° “Time T T e e

Figure 7: (a) The memory access pattern of the FFT for Procesgb)y Phe number of network faults incurred
without predictions. (c) Number of network faults using the Markov PU. (d) Number of network faults using the
Linear PU. (e) Number of network faults using the TDNN PU.

