
ABSTRACT

Title of dissertation: ANISOTROPIC HARMONIC ANALYSIS
AND INTEGRATION OF
REMOTELY SENSED DATA

James M. Murphy, Doctor of Philosophy, 2015

Dissertation directed by: Dr. John J. Benedetto
Department of Mathematics

Dr. Wojciech Czaja
Department of Mathematics

This thesis develops the theory of discrete directional Gabor frames and several

algorithms for the analysis of remotely sensed image data, based on constructions

of harmonic analysis. The problems of image registration, image superresolution,

and image fusion are separate but interconnected; a general approach using trans-

form methods is the focus of this thesis. The methods of geometric multiresolution

analysis are explored, particularly those related to the shearlet transform. Using

shearlets, a novel method of image registration is developed that aligns images based

on their shearlet features. Additionally, the anisotropic nature of the shearlet trans-

form is deployed to smoothly superrsolve remotely-sensed image with edge features.

Wavelet packets, a generalization of wavelets, are utilized for a flexible image fusion

algorithm. The interplay between theoretical guarantees for these mathematical

constructions, and their effectiveness for image processing is explored throughout.



ANISOTROPIC HARMONIC ANALYSIS AND INTEGRATION
OF REMOTELY SENSED DATA

by

James Michael Murphy

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Dr. John J. Benedetto, Co-Chair
Dr. Wojciech Czaja, Co-Chair
Dr. Kasso Okoudjou
Dr. Radu Balan
Dr. David Mount
Dr. Jacqueline Le Moigne



c© Copyright by
James Michael Murphy

2015



Dedication

This thesis is dedicated to my parents, Michael and Lisa, and to my brother,

William. Thank you for supporting me on this path.

ii



Acknowledgments

I would like to start by thanking my thesis advisors, Dr. Wojciech Czaja

and Dr. John J. Benedetto. I arrived at the University of Maryland with interests

in geometry, but those quickly evaporated after taking the first year sequence in

the subject. Real analysis, on the other hand, was wonderful. In particular, I

enjoyed my professor, Wojtek Czaja, and we started meeting regularly to discuss

mathematics. I was encouraged by Wojtek to take a topics class with John, and

I soon found a home in the Norbert Wiener Center for Harmonic Analysis and

Applications. My interactions with Wojtek and John opened up a beautiful world of

pure mathematics, but perhaps their most significant contribution to my education

and training was encouraging me to move beyond esoteric analysis into more down-

to-earth applications. I refused at first, but eventually relented. Thankfully, they

were more convincing than I was stubborn. As this thesis attests, I found great

joy in developing applications with mathematics. For this, I am most grateful to

Wojtek and John.

Dr. Kasso Okoudjou and Dr. Radu Balan have also contributed to my edu-

cation in the Norbert Wiener Center. I developed a diverse mathematical palette,

in no small part through the courses and seminars I have taken with them. From

graph theory to sparse signal representations, I feel comfortable in the larger millieu

of harmonic analysis, beyond the work emphasized in this thesis. I owe this breadth

to what I have learned from them.

I have had the great fortune to be mentored outside the University of Mary-

iii



land. Dr. Jacqueline Le Moigne and Dr. David Harding of NASA’s Goddard Space

Flight Center taught me much during summer 2014 and beyond. My knowledge of

programming mathematical algorithms and the role of mathematics in earth science

has expanded immeasurably through my interactions with them. Moreover, they

were warm and welcoming to me at NASA, and helped me find projects suitable for

my skills. I am very thankful for their influence on my graduate career.

I would also like to thank the staff in the mathematics department, for their

help in navigating the bureaucratic nightmares of graduate school. In particular,

thank you to Celeste Regalado for helping me through the degree requirements, espe-

cially my language exam, and to Linette Berry for correcting my errors in scheduling

seminar talks.

During my time at Maryland, I have collaborated with several colleagues on

research papers. I would like to thank Dr. Timothy Doster, Dr. Benjamin Manning,

Kevin Stubbs, and Daniel Wienberg for the opportunity to work together, and for

their camaraderie.

I have had many wonderful friends in the mathematics department. My cur-

rent and former roommates Chae Clark, David Darmon, Stefan Doboszczak, Ryan

Hunter, and Matthew Guay have suffered my various eccentricities and have been

loyal friends to share this long experience with. I’ve had plenty of good times
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Chapter 1: Summary of Results

This thesis presents new results in pure and applied harmonic analysis. Its fo-

cus is on anistropic generalizations of the Fourier transform and their application to

algorithms for the analysis of remote sensing data. Anisotropic methods emphasize

directionality, and the harmonic analysis detailed in this thesis focuses on represen-

tation systems that incorporate some amount of directional content. In Chapter

2, a survey of classical, isotropic harmonic analysis is presented, as well as some

relevant material on shearlets, which have risen to preeminence amongst anisotropic

transform methods. A survey of the theory of optimal dictionary representations is

also presented, to give some indication of how anisotropic methods are theoretically

optimal for certain signal classes. A brief survey of the theory of wavelet packets is

also developed.

Chapter 3 charts the development of directional Gabor systems, as pioneered

by Grafakos and Sansing. Their method is essentially continuous, and did not

generate discrete frames. We present several results suggesting reasonable spaces

of functions which such a discrete frame could represent, before stating sufficient

conditions for the generation of such a frame. This is pursued by adapting classical

methods of Hernandez, Labate and Weiss to the anisotropic setting. A construction
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of a basic directional Gabor frame is given, which, along with a sufficient condition,

provides a general method for constructing discrete directional Gabor frames. The

theory presented in this chapter resolves some open questions regarding directional

Gabor theory, and brings the subject closer to efficient numerical implementation,

by giving specific examples of discrete directional Gabor frames.

After developing this theory for directional Gabor theory, we delve into the

use of anisotropic systems for numerical analysis of data. Isotropic transform meth-

ods, such as Fourier techniques and wavelets, are classical and pervasive in signal

and image processing. The power to decompose a complicated signal into simpler

atoms, along with an inversion tool to reconstitute the original signal, has long been

understood as necessary for efficient transmission and processing of data. In the

particular case of image data, most signals of interest contain strong directional

features, in the form of natural and man-made edges. The efficient representation of

these features via anisotropic harmonic analysis allows for more robust and accurate

algorithms, and more effective integration of disparate data sources. The remaining

chapters of this thesis exploit this theory to develop several efficient algorithms for

the integration of image data.

The field of remote sensing provides a useful class of image data to analyze.

The variety of features displayed, along with the multitude of disparate data types

collected, makes the class of remotely sensed images flexible and challenging for the

development of novel algorithms. Chapters 4,5, and 6 develop algorithms pertaining

to remotely sensed images. Image registration and superresolution using shearlet

methods are detailed in Chapters 4 and 5, respectively, and an image fusion algo-
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rithm using wavelet packets is the content of Chapter 6. In each chapter, heuristic

arguments are deployed to justify the idea of using harmonic analytic methods, and

competitive numerical results are shown to confirm their efficacy.

3



Chapter 2: Mathematical Preliminaries

2.1 The Classical Fourier Transform

The Fourier transform is a classical object of harmonic analysis. The original

use of Fourier methods in the natural sciences were in Lagrange’s study of partial

differential equations modeling string vibration [10]. Since those early days, the

Fourier transform has offered engineers and physicists a powerful computational

tool, and mathematicians a rich and subtle subject of study.

The Fourier transform is naturally defined for functions defined on L1(Rd). It

produces a function defined on the dual group of Rd, which is denoted R̂d. It can

be shown that R̂d = R̂d ∼= Rd [91].

Definition 2.1.1. The Fourier transform of f ∈ L1(Rd) is the function f̂ ∈

L∞(R̂d) ∩ C(R̂d) given by the formula:

f̂(γ) :=

∫
Rd
f(x)e−2πi〈x,γ〉dx.

When considering the Fourier transform in a physical or engineering context,

f is often understood to be a signal. We shall take this approach in later chapters,

where f is understood to be an idealized image signal.

Intuitively, the value of f̂(γ) is the extent to which the frequency γ is found in

4



f . As a heuristic, consider the case g(x) = e2πi〈γ0,x〉 for a fixed γ0. Then extending

the above definition in a distributional sense [4], we would find ĝ(γ) = δγ0(γ) the

Dirac delta centered at γ0. This makes sense given our intuitive understanding,

since g(x) would be a “pure frequency”, so its Fourier transform should be perfectly

localized at this frequency.

Note that the Fourier transform may be extended to f ∈ L2(Rd), in a classical

manner that does not appeal to modern distribution theory:

Theorem 2.1.2. (Plancherel) [4] There is a unique linear bijection F : L2(Rd) →

L2(R̂d) such that:

1. ∀f ∈ L1(Rd) ∩ L2(Rd), ∀γ ∈ R̂d, f̂(γ) = Ff(γ).

2. ∀f ∈ L2(Rd), ‖f‖L2(Rd) = ‖Ff‖
L2(R̂d)

.

3. ∀f ∈ L2(Rd), ∃{fn}∞n=0 ⊂ L1(Rd) ∩ L2(Rd) for which

lim
n→∞

‖fn − f‖L2(Rd) = 0, lim
n→∞

‖f̂n −Ff‖L2(R̂d) = 0.

The Fourier transform, while useful for a variety of problems, suffers from

several deficiencies. Two of them are of particular interest, and we shall address

them in this chapter:

1. The Fourier transform gives information about the frequency content of a

signal f ∈ L1(Rd) with respect to stationary signals. These stationary signals

are the complex exponentials eγ(x) := e−2πi〈γ,x〉.

2. The Fourier transform is isotropic, meaning it has no sensitivity to direction.

5



The issue of stationary signals can be understood intuitively by considering

the behavior of the complex sinusoidal functions eγ(x) = e−2πi〈γ,x〉; see Figure 2.1.
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Figure 2.1: Plot of the imaginary parts of the complex exponential f(x) = e5ix, x ∈

R. Notice the behavior of the signal is stationary; it does not change as one moves

along the x-axis.

These are 1-periodic, and are not localized in space at all. Indeed, their peri-

odicity ensures there is no distinction between their local and global behavior. As

such, local features of a function f ∈ L1(Rd) needn’t be captured by the coeffi-

cient 〈f(x), e−2πi〈γ,x〉〉. As mentioned above, the distributional Fourier transform of

eγ(x) = e−2πi〈γ,x〉 is δ0(γ), which is perfectly localized as a distribution on R̂d. This

dichotomy of awful localization in space and excellent localization in frequency is of

great significance in the design of efficient waveforms for signal processing, and is

a classical illustration of the Heisenberg uncertainty principle. This result is often

stated in elementary physics courses in the context of quantum mechanics:

6



“The position and momentum of a particle cannot be known simultaneously”

This physical notion can be formalized by mathematically describing quan-

tum mechanics; we shall not investigate this. We are interested in a mathematical

formulation of the uncertainty principle: intuitively, a signal cannot be extremely

well-localized in both the time domain and the frequency domain. Indeed, there is

a precise limitation on how localized it can be in both.

Theorem 2.1.3. (Heisenberg Uncertainty Principle) Let f ∈ L2(R), a, b ∈ R.

Then: (∫
R
(x− a)2|f(x)|2dx

) 1
2
(∫

R̂
(γ − b)2|f̂(γ)|2dγ

) 1
2

≥ 1

4π
‖f‖2

2.

Equality holds if and only if f is a scalar multiple of e2πib(x−a) · e
−π(x−a)2

c , for some

a, b ∈ R, some c > 0.

In the above theorem, the first factor is a measure of localization in space

around the point a; the second factor is a measure of localization in frequency

about the point b. Note that this result generalizes not only to functions in L2(Rd)

for d > 1, but to general Hilbert spaces [49]:

Theorem 2.1.4. Let A,B be self-adjoint operators on a Hilbert space H, not nec-

essarily bounded. Then for all f ∈ dom(AB) ∩ dom(BA) and for all a, b ∈ R, we

have the following:

‖(A− a)f‖H · ‖(B − b)f‖H ≥
1

2
|〈[A,B]f, f〉H| .

Equality holds if and only if (A− a)f = ic(B − b)f , for some c ∈ R.

7



As Theorem 2.1.3 illustrates, the Gaussian has optimal time-frequency local-

ization. It is worth nothing that a classic calculation [4] shows that the Gaussian is

invariant under the Fourier transform.

A useful abstraction in Fourier analysis is the time-frequency plane, namely

the Cartesian plane with the time/space variable on the x-axis and the frequency

variable on the y-axis. With this in mind, the Gaussian has, in some sense, min-

imal support in the time-frequency plane, as evidenced by its minimization of the

Heisenberg uncertainty principle. In the quest to move beyond stationary Fourier

bases, it is natural to ask whether functions that have good localization in both time

and frequency can generate representation systems. A first question in this regard

is whether translates and modulates of the Gaussian span L2(Rd); this question was

first addressed by Nobel Laureate Dennis Gabor [45], and led to the study of Gabor

theory and time-frequency analysis [49].

2.2 Gabor Systems

With this analysis in terms of uncertainty principles in mind, we shall replace

the stationary harmonics e−2πi〈γ,x〉 with windowed harmonics g(x)e−2πi〈γ,x〉 for some

suitable window g(x).

Dennis Gabor, 1971 Nobel laureate in Physics, was interested in the case where

the window function g is assumed to be Gaussian, but we shall consider a general

g ∈ L2(Rd). Noting the family of functions

{e−2πi〈m,x〉}m∈Zd (2.1)

8
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Figure 2.2: Plot of the real part of the windowed harmonic function f(x) =

e2πixe−
x2

10 . Notice that the signal is non-stationary; its behavior changes as one

moves along the x-axis.

forms an orthonormal basis for L2(Td) (via Fourier series for Td), it is of interest to

know when g ∈ L2(R) is such that

{g(n− x)e−2πi〈m,x〉}m,n∈Zd (2.2)

is a basis for L2(Rd). In order to address this question satisfactorily, we shall consider

a broader class families generated from g, and also a weaker notion of representing

family than orthonormal basis.

Definition 2.2.1. Let g ∈ L2(Rd). Let α, β > 0. The family of functions

G(g, α, β) := {g(x− nα)e−2βπi〈m,x〉}m,n∈Zd (2.3)

9



is a regular Gabor system. Let Λ ⊂ R2d be discrete. The family of functions

G(g,Λ) := {g(x− λ)e−2πi〈γ,x〉}(γ,λ)∈Λ (2.4)

is an (irregular) Gabor system.

In the study of regular Gabor systems, the parameters α, β play a crucial role,

as we shall see. Note that regular Gabor systems (2.3) are a special case of irregular

Gabor systems (2.4), corresponding to Λ = αZd × βZd.

The notion of orthonormal basis is too restrictive for many applications, in-

cluding transmission of signals. Consider the problem of signal transmission in the

following paradigm: a signal f is to be encoded into coefficients {c(f)n}n∈Z. This

countable set of coefficients is transmitted to a receiver, where they are used to

recover the signal f .

In the case that c(f)n = 〈f, φn〉 for some orthonormal basis {φn}n∈Z, the cor-

ruption of even a single coefficient by noise can be problematic. This is because none

of the other coefficients can replace the information lost in the noisy corruption. The

consequent reconstruction of f could be terrible. Thus, we consider a more flexible

construction, one that allows for a degree of redundancy in signal representation.

This notion is due originally to Duffin and Schaeffer, who introduced it in 1952 in

the course of their study of non-harmonic Fourier series [37].

Definition 2.2.2. Let H be a Hilbert space. A discrete set {φi}i∈I ⊂ H is called a

(discrete) frame for H if there exist constants 0 < A ≤ B <∞ such that:

∀f ∈ H, A‖f‖2
H ≤

∑
i∈I

|〈f, φi〉H|2 ≤ B‖f‖2
H.

10



The optimal choices of A,B are the frame bounds. A frame is said to be tight if

A = B. It is Parseval if A = B = 1.

Of course, all orthonormal bases are Parseval frames. A frame for H offers

a system for representing elements of H that is weaker than an orthonormal basis.

More precisely, frames represent f ∈ H redundantly, which makes frames useful for

many signal processing applications. The theory of frames is rich and well-studied

[18], [59], [15] but we shall not make use of much of the general theory. We shall

consider the case H = L2(Rd).

Determining when a Gabor system forms a frame is a difficult problem; a

survey of the history of this problem may be found in [58]. We consider a few

classical results in the field, to give a flavor for what about g, α, β are relevant to

the problem. A well-known result provides a complete characterization of regular,

one-dimensional Gabor systems for certain window functions g [31].

Theorem 2.2.3. Let g ∈ L∞(Rd) be supported on [0, L]d, L > 0. Then G(g, α, β)

is a frame with frame bounds β−da, β−db if and only if

a ≤
∑
k∈Zd
|g(x− αk)|2 ≤ b almost everywhere.

A more precise result requires some additional notation.

Definition 2.2.4. Let g ∈ L∞(Rd). We say g is an element of the Wiener space,

denoted W = W (Rd), if

‖g‖W :=
∑
n∈Zd

ess supx∈[0,1]d |g(x+ n)| <∞.

11



Naturally enough, the Wiener space was introduced by the great Norbert

Wiener, in the context of his study of Tauberian theorems [106]. Intuitively, W

may be thought of as the space of functions that are locally bounded but globally `1.

The Wiener space is a useful class of functions to consider as windows for Gabor

systems. To give conditions on which g ∈ W produce regular Gabor systems for

certain parameters α, β, we must consider correlation functions associated with g.

Definition 2.2.5. Let g, α, β be as above. The nth correlation function correspond-

ing to these choices of g, α, β is

Gn(x) = G(α,β)
n :=

∑
k∈Zd

g

(
x− n

β
− αk

)
g(x− αk).

These correlation functions yield a sufficient condition for G(g, α, β) to be a

frame [103]:

Theorem 2.2.6. Suppose g ∈ W (Rd), and that α > 0 is such that there exist

constants 0 < a ≤ b <∞ such that:

a ≤
∑
k∈Zd
|g(x− αk)|2 ≤ b <∞ almost everywhere.

Then there exists a number β0 = β0(α) > 0 such that G(g, α, β) is a frame for all

β ≤ β0. More precisely, if β0 > 0 is chosen such that:

∑
n∈Zd\{0}

‖G(α,β0)
n ‖∞ < ess infx∈Rd|G0(x)| = ess infx∈Rd

∑
k∈Zd
|g(x− αk)|2,

then G(g, α, β) is a frame for all β ≤ β0, with frame bounds

A =β−d

a− ∑
n∈Zd\{0}

‖G(α,β)
n ‖∞

 ,

B =β−d
∑
n∈Zd
‖G(α,β)

n ‖∞.

12



The theory of Gabor systems extends well beyond this, including a theory

of irregular Gabor systems. This theory is quite subtle, and notions of density

are of paramount importance; see [58] for an overview. Multiple window functions

g1, g2, ..., gN may also be considered [113]. There is also a continuous theory of Gabor

systems, which review briefly.

Definition 2.2.7. Let g ∈ L2(Rd). The short-time Fourier transform of a function

f : Rd → C with respect the window function g is the function Vg(f) : R2d → C

given by:

Vg(f)(t,m) := 〈f,M−mTtg〉 =

∫
Rd
f(x)g(x− t)e−2πi〈m,x〉dx, t,m ∈ Rd.

The short-time Fourier transform is also called a “sliding window Fourier trans-

form,” [49] or “voice transform,” for its connections to speech processing [48]. The

window function g may be chosen with desired regularity and localization properties.

In the case of discrete Gabor frames, we are interested in recovering the original

signal f from its Gabor coefficients. In the case of the short-time Fourier transform,

the original function, f , is recovered from Vg(f) by integrating against translations

and modulations of any ψ ∈ L2(Rd) such that 〈ψ, g〉 6= 0:

f =
1

〈ψ, g〉

∫
Rd

∫
Rd
Vg(f)(t,m)ψm,tdm dt, m, t ∈ Rd, (2.5)

where ψm,t(x) := e2πi〈m,(x−t)〉ψ(x − t) = TtM−mψ(x) and convergence is pointwise

almost everywhere [49].

The short-time Fourier transform is a continuous frame:

Definition 2.2.8. Let H be a separable Hilbert space, X a locally compact Hausdorff

space equipped with a positive Radon measure µ such that supp(µ) = X. A family

13



F = {ψx}x∈X is a continuous frame with respect to µ for H if there exist constants

0 < A ≤ B <∞ such that:

∀f ∈ H, A‖f‖2
H ≤

∫
X

|〈f, ψx〉H|2dµ(x) ≤ B‖f‖2
H.

Discrete frames are contained in the broad class of continuous frames, by

taking µ to be a counting measure. This definition generalizes Definition 2.2.2 by

allowing for a continuous indexing of the frame elements. In the study of continuous

frames, the discretization problem arises naturally: when can a continuous frame

be discretized to acquire a discrete frame? That is, when can a continuous index-

ing set be replaced by a discrete indexing set, and the continuous measure with

a counting measure? The most prominent abstract approach to the discretization

problem involves the coorbit space theory of Feichtinger and Gröchenig [41], [42].

This method considers the representations induced by the group structure of the

indexing set X. Thus, coorbit space theory is most effective when the continuous

frame is parametrized by a group. This is the case for shearlet systems, as we shall

see in Section 2.4.

Beyond being of mathematical interest, Gabor systems have proven useful for

a variety of applications, including denoising [79], speech recognition [77] and image

analysis [75]. However, a Gabor system is fundamentally isotropic. The family is

generated from a window function g, through modulations and translations, without

emphasis on directional content. The problem of incorporating directionality into

discrete Gabor frames is studied in Chapter 3.
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2.3 Wavelets

Another approach to localized representation systems is to consider systems

generated by dilations and translations of a base function. The study of such func-

tions and the induced bases and frames is the content of wavelet theory. Wavelets

revolutionized harmonic analysis and image processing. Their rich theory opened

new avenues for constructing bases and frames, and their numerical implementation

generated efficient methods for image compression [16], segmentation [99], fusion

[88], and registration [108].

Definition 2.3.1. Let ψ ∈ L2(R). The (one-dimensional) discrete wavelet system

generated by ψ is the family of functions

{ψj,m(x) := D2−jTmψ(x) = 2
j
2ψ(2jx−m)}j,m∈Z.

The associated Discrete Wavelet Transform is the mapping

f 7→ {〈f, ψj,m〉}j,m∈Z, f ∈ L2(R).

It is possible to choose ψ appropriately so that the associated discrete wavelet

system is an orthonormal basis or tight frame. This can be done through the mul-

tiresolution analysis (MRA) technique, pioneered by Yves Meyer and Stéphane Mal-

lat [82], or through direct constructions [31]. Wavelet systems have a greater degree

of localization than simple Fourier series. In particular, ψ may be chosen to be

compactly supported and to have a high degree of smoothness.

For the problem of image analysis, the one-dimensional wavelet systems defined

above are insufficient; image data is generally two-dimensional, but is sometimes of
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even higher dimension, in the case of lidar data, for example. A generalization to

higher dimensional spaces is required. To construct wavelet systems in Rd, d > 1,

certain algebraic notions are required.

We shall begin with a survey of the continuous theory of wavelet systems,

before developing a theory of discrete wavelet orthonormal bases. Although our

interests ultimately lie in discrete wavelet systems, the continuous theory provides

some helpful motivation.

2.3.1 Continuous Wavelet Systems

Definition 2.3.2. Let ψ ∈ L2(Rd), G ⊂ GLd(R). The continuous affine system

associated with G, ψ is the family of functions

{ψM,t(x) := TtDM−1ψ(x) = | detM |
1
2ψ(M(x− t))}(M,t)∈G×Rd .

This system is denoted Ad = Ad(G,ψ).

We wish to understand conditions on ψ such that the induced continuous affine

system is a continuous frame, or if an arbitrary f ∈ L2(Rd) can be recovered from

the coefficients {〈f, ψM,t〉}(M,t)∈G×Rd . To this end, we endow the indexing set of this

system with a group structure:

Definition 2.3.3. The affine group on Rd, denoted Ad, is the group structure on

GLd(R)× Rd with multiplication given by:

(M1, t1) ·Ad (M2, t2) := (M1M2, t1 +M1t2).

17



Reconstruction from the continuous affine system is possible, so long as a

certain condition on ψ is satisfied. The notion of an admissibility condition for ψ is

pervasive in wavelet theory, and will be important in shearlet theory as well.

Definition 2.3.4. Let ψ ∈ L2(Rd), and let dµ be a left-invariant Haar measure on

G ⊂ GLd(R). We say ψ is an admissible wavelet if:

∀γ ∈ Rd,

∫
G

|ψ̂(MTγ)|2| detM |dµ(M) = 1. (2.6)

Theorem 2.3.5. Let G ⊂ GLd(R). Let dµ be a left-invariant Haar measure on G,

and dλ a left-invariant Haar measure on Ad. Furthermore, suppose that ψ ∈ L2(Rd)

is admissible. Then for all f ∈ L2(Rd), we have the following weak convergence

representation of f in terms of its coefficients under the continuous affine system:

f =

∫
Ad
〈f, ψM,t〉ψM,tdλ(M, t).

Taking the special case G := {aId}a>0 where Id is the d × d identity matrix,

corresponding to the case of isotropic dilations, the admissibility condition for ψ

simplifies to:

∫ ∞
0

|ψ̂(aγ)|2da
a

= 1.

The associated affine system can, in the case d = 1, be discretized to produce

discrete wavelet systems. The same notion is valid for dimensions d > 1, to produce

discrete wavelet systems in any dimension. We now examine such discrete wavelet

systems.
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2.3.2 Discrete Wavelet Systems

For simplicity, we consider in this subsection only the one-dimensional case.

With some work, the theory may be generalized to arbitrary Euclidean space [107].

The theory in Section 2.3.1 is continuous, and thus ill-suited to applications.

We seek instead a discrete theory for wavelets. The problem at the heart of this

theory is the construction of discrete wavelet orthonormal bases and frames, i.e.

families

{ψm,n(x) = 2
m
2 ψ(2mx− n)}m,n∈Z,

which form orthonormal bases or frames, for some wavelet function ψ ∈ L2(R); this

set-up is easily generalized to high dimensions [107].

One of the key results related to discrete wavelet systems is the MRA theorem

of Meyer and Mallat [82]. We shall state it shortly, after introducing the crucial

machinery.

Definition 2.3.6. A multiresolution analysis on R is a sequence of subspaces {Vj}j∈Z

together with a scaling function φ ∈ L2(R) with the following properties:

1. Vj ⊂ Vj+1, ∀j ∈ Z.

2.
⋂
j∈Z Vj = {0}.

3.
⋃
j∈Z Vj = L2(R).

4. f(x) ∈ V0 if and only if D2jf(x) = 2
j
2f(2jx) ∈ Vj.

5. The set {Tnφ}n∈Z is an orthonormal basis for V0.
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The following lemma states the two-scale property of φ, which is crucial for

the constructions that follow.

Lemma 2.3.7. Suppose φ is a scaling function for an MRA. Then there exists a

sequence of coefficients {h0[n]}n∈Z such that:

φ(x) =
∑
n∈Z

h0[n]φ(2x− n).

A multiresolution analysis is often abbreviated MRA. Theorem 2.3.8 states

how a wavelet orthonormal basis is generated from an MRA.

Theorem 2.3.8. Let {Vj}j∈Z be an MRA with scaling function φ. Define a filter

h1[n] = (−1)nh0[1− n], and a function ψ ∈ L2(R) by the formula

ψ(x) =
∑
n∈Z

h1[n]φ(2x− n).

Then the family

{ψm,n(x) = ψ(2mx− n)}m,n∈Z

is an orthonormal wavelet basis for L2(R), i.e. a discrete wavelet systems that is

also an orthonormal basis. Such a ψ is called a wavelet function.

The function ψ is thus a wavelet function. While there are other methods for

constructing discrete wavelet systems, the MRA method has the benefit of general-

izing from Euclidean space to general locally compact abelian groups and beyond

[5]. Moreover, it provides a setting to define wavelet packets ; see Section 2.6.
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2.3.3 Numerical Wavelet Implementations

Suppose {ψm,n}m,n∈Z is an orthonormal wavelet basis. Then any f ∈ L2(R)

may be written as:

f =
∑
m,n∈Z

〈f, ψm,n〉ψm,n. (2.7)

Several schemes have been proposed to discretize (2.7). In this thesis, Simoncelli

filters and spline wavelet decompositions are used in Chapter 4. These have the

benefit of translation invariance and fast implementation in the C programming

language. Additional details will be given in Chapter 4.

2.4 Shearlets

Wavelets have a rich mathematical theory, and have numerous practical uses.

One weakness they possess, however, is their isotropy. More precisely, wavelets

are not able to represent functions with curve-like discontinuities optimally. This

inhibits their performance in image processing, since many images possess curve-

like discontinuities, which are better known as edges. A detailed discussion of the

inefficiency of wavelets for representing anisotropic signals is in Section 2.5.

The idea of generalizing wavelets to be anisotropic has yielded several repre-

sentation systems with rich theory, for example the contourlets of Do and Vetterli

[33], the curvelets of Donoho and Candès [13], and shearlets, pioneered by Labate,

Kutyniok, King, and their collaborators [70], [39], [51], [65], [26]. Of these methods,

shearlet systems have the benefit of requiring only a single generating function, and
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of admitting fast numerical implementations. For these reasons, they are well-suited

for applications, which are discussed in Chapters 4 and 5 of this thesis. We note

that the shearlet construction to be presented is a specific case of the more gen-

eral theory of composite wavelets, developed by Weiss, Wilson, Manning, and their

collaborators [52], [83].

Shearlet systems generalize wavelets by introducing a directionally sensitive

dilation term as follows.

Definition 2.4.1. Let Aa, Ss be the matrices given by

Aa :=

 a 0

0 a
1
2

 , Ss :=

 1 s

0 1

 .

We shall first consider continuous shearlet systems, before developing a discrete

theory. We consider shearlets in two dimensions, though they generalize to three

[71].

2.4.1 Continuous Shearlet Systems

For ψ ∈ L2(R2), the continuous shearlet system SH(ψ) is the family of func-

tions:

SH(ψ) := {ψa,s,t(x) := TtDAaDSsψ(x) = a
3
4ψ(A−1

a S−1
s x− t)}a>0,s∈R,t∈R2 .

The matrix Da is no longer isotropic; it emphasizes a particular direction. The

shearing matrix Ss selects that direction. As a → 0, the anisotropy of Aa will

force a particular direction to be overemphasized to such a degree that only local

information in that direction is captured by the corresponding shearlet coefficient.
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By selecting s appropriately, one can tune a to capture precise information in a

specified direction. This emphasis on directional information will prove useful in

the image registration and superresolution algorithms presented in Chapters 4 and

5.

As in the case of wavelets, which were associated with the affine group, shear-

lets are associated with an algebraic object:

Definition 2.4.2. The shearlet group, denoted S, is the semi-direct product (R+×

R) oR2 with multiplication given by the rule

(a1, s1, t1) ·S (a2, s2, t2) := (a1a2, s1 + s2

√
a1, t1 + Ss1Aa1t2).

We shall now write a continuous shearlet system in terms of a representation

of the shearlet group. Let U(L2(R2)) be the group of unitary operators on L2(R2).

Noting that da
a3
dsdt is a left-invariant Haar measure on the shearlet group, we may

define a unitary representation σ : S→ U(L2(R2)) by:

σ(a, s, t)ψ := ψa,s,t = TtDAaDSsψ.

This representation may be made irreducible by extending it by symmetry to (R∗×

R) oR2. For the remainder of this chapter, we consider this irreducible representa-

tion.

With this notation, we see that:

SH(ψ) = {σ(a, s, t)ψ}(a,s,t)∈R∗×R×R2 .
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This algebrically-induced structure of shearlet systems lends itself to the coorbit

theory of Feichtinger and Gröchening [41], [29]. Indeed, we shall see shortly that

SH(ψ) forms a continuous frame. This gives one approach to discretizing continuous

shearlet systems to acquire discrete frames [29].

The mapping that sends a signal to its shearlet coefficients is of great signifi-

cance. Indeed, these coefficients allow the reconstruction of a signal from its shearlet

information.

Definition 2.4.3. For ψ ∈ L2(R2), the continuous shearlet transform of f ∈ L2(R2)

is the mapping

f 7→ {〈f, σ(a, s, t)ψ〉}(a,s,t)∈S.

As in the case of wavelets, a shearlet basis function must satisfy a certain

admissibility condition in order for the corresponding continuous shearlet system to

have a reproducing formula.

Definition 2.4.4. A function ψ ∈ L2(R2) is an admissible shearlet if∫
R̂2

|ψ̂(γ1, γ2)|2

γ2
1

dγ2dγ1 <∞. (2.8)

Condition (2.8) should be compared to the corresponding wavelet admissibility

condition (2.6). A canonical example of an admissible shearlet is a so-called classical

shearlet function:

Definition 2.4.5. Let ψ ∈ L2(R2) be defined by the formula

ψ̂(γ) = ψ̂(γ1, γ2) := ψ̂1(γ1)ψ̂2

(
γ2

γ1

)
,

where ψ1, ψ2 satisfy the following conditions:
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• ψ1 ∈ C∞(R) satisfies the discrete Calderón condition:

∑
j∈Z

|ψ̂1(2−jγ)|2 = 1, for almost every γ ∈ R.

• supp(ψ̂1) ⊂ [−1
2
,− 1

16
] ∪ [ 1

16
, 1

2
].

• ψ2 ∈ C∞(R) is a bump function, i.e. satisfies

1∑
k=−1

|ψ̂2(γ + k)|2 = 1, for almost every γ ∈ [−1, 1].

• supp(ψ̂2) ⊂ [−1, 1].

Such a ψ is called a classical shearlet function.

As in our discussion of continuous frames, we are interested in when a general

f ∈ L2(R2) can be reconstructed from its shearlet coefficients {〈f, ψa,s,t〉}(a,s,t)∈S. A

sufficient condition for ψ to generate a system from which f may be recovered from

its shearlet coefficients is when the coefficient mapping

f 7→ {〈f, σ(a, s, t)ψ〉}(a,s,t)∈S (2.9)

is an isometry, i.e.

‖f‖2
2 =

∑
(a,s,t)∈S

|〈f, σ(a, s, t)ψ〉|2.

Necessary conditions for (2.9) to be an isometry may be formulated in terms of

certain integrals [28]:

Theorem 2.4.6. Let ψ ∈ L2(R2) be an admissible shearlet. Define

C+
ψ =

∫ ∞
0

∫
R

|ψ̂(γ1, γ2)|2

γ2
1

dγ2dγ1, C−ψ =

∫ 0

−∞

∫
R

|ψ̂(γ1, γ2)|2

γ2
1

dγ2dγ1.

If C+
ψ = C−ψ = 1, then (2.9) is an isometry.

Thus, in certain cases, a continuous shearlet system forms a continuous frame.
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2.4.2 Discrete Shearlet Systems

For applications purposes, continuous shearlets are insufficient; a discrete sys-

tem is required. As mentioned, one approach to the discretization of continuous

shearlet systems is coorbit theory. This is possible because shearlet systems form a

square-integrable irreducible representation of S. We proceed directly, however, to

produce discrete shearlet systems [68].

Definition 2.4.7. Let ψ ∈ L2(R2) and Λ ⊂ S. A regular discrete shearlet system

associated with ψ, denoted SH(ψ), is the family of functions

SH(ψ) := {ψj,k,m(x) = 2
3j
4 ψ(SkA2jx−m)}j,k∈Z,m∈Z2 .

An irregular discrete shearlet system associated with ψ and Λ, denoted SH(ψ,Λ),

is the family of functions

SH(ψ,Λ) := {ψa,s,t(x) = a−
3
4ψ(A−1

a S−1
s (x− t))}(a,s,t)∈Λ.

Of course, regular discrete shearlet systems are a special case of irregular

discrete shearlet systems. Indeed, taking

Λ = {(2−j,−k, S−kA2−jm)}j,k∈Z,m∈Z2

yields a regular discrete shearlet system.

The value of classical shearlets is clear from the following result:

Theorem 2.4.8. Let ψ ∈ L2(R2) be a classical shearlet. Then the regular discrete

shearlet system associated with ψ, SH(ψ), is a Parseval frame for L2(R2).
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Note that since a classical shearlet ψ is constructed to be well-localized, we

conclude there exist well-localized discrete shearlet frames. Moreover, ψ may taken

to be compactly supported [69]; this requires development different from classical

shearlets, since classical shearlet functions are compactly supported in the frequency

domain, and thus cannot be compactly supported in the time domain. The existence

of highly regular shearlet frames provides a powerful tool for signal analysis, as

signals can be decomposed into directionally sensitive shearlet coefficients, which

can then be manipulated.

2.4.3 Numerical Implementations of Shearlets

In the past few years, several numerical shearlet implementations have been

released. The algorithms used in Chapters 4 and 5 of this thesis make use of the

Fast Shearlet Transform MATLAB library [54], which is available at http://www.

mathematik.uni-kl.de/imagepro/software/ffst/.

2.5 Sparsity in Dictionaries

One of the greatest strengths of harmonic analysis for data processing is in

its ability to convert data from one domain to another. In the new domain, the

data may take a particularly convenient representation. In particular, data is often

sparse in the transformed domain, meaning it is represented with respect to a basis

or collection of frame elements with coefficients that are mostly zero. Computation

and analysis can then be performed in the transformed domain, where the data is
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Figure 2.4: The plot of the function f(t) = sin(2t) − 2 cos(3t) + 4 sin(7t). Being

the linear sum of sinusoids, f is sparse in the Fourier domain.

simple and more readily processed. We shall examine objects which are sparsely

represented by some of the systems we have encountered: Fourier series, discrete

wavelet systems, and discrete shearlet systems. For example, Figure 2.4 depicts a

signal that is sparse in the Fourier domain.

In order to relate these systems to the sparse representation of signals, we

introduce some notation. We consider data modeled as a function f : Ω → M

where Ω is some domain, and M is a manifold. This data may be given explicitly, or

implicitly as F (f) = 0 for some operator F . The implicit case may be understood as

modeling an operator equation or inverse problem. A dictionary is a set of functions

Φ with which a collection of signals C may be decomposed.

Our ambition is to find a dictionary {φi}i∈I of functions such that each signal
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f in a given signal class C may be represented as a sparse linear combination of

dictionary elements:

f ∼
∑
i∈J

ciφi, |J | = N <<∞. (2.10)

In the case that f is not given explicitly, but rather implicitly via an inverse problem

F (f) = 0, our dictionary ought to diagonalize the operator F . A notion of such

diagonalization can be seen in the works of Meyer and Coifman [86].

A canonical example of such a sparse dictionary in practice is the JPEG 2000

algorithm, which represents an image signal sparsely in a wavelet basis [105].

It is important to have a mathematical description of what types of signals

we shall represent with our dictionary. One standard class of signals is the class of

cartoon-like images :

Definition 2.5.1. The set of cartoon-like images in R2 is

E := {f | f = f0 + χBf1, fi ∈ C2([0, 1]2), ‖fi‖C2 ≤ 1, B ⊂ [0, 1]2, ∂B ∈ C2([0, 1])}.

The space of cartoon-like images is a quantitative definition of signals that

represent images. That is, although images are discrete, if we are to consider only

continuous signals, then E represents the class of signals corresponding to images.

We shall present the theory of dictionary representations generally, and con-

sider arbitrary Euclidean spaces. In order to develop a notion of dictionary quality,

we fix ideas: C ⊂ L2(Rd) is a signal class for some integer d ≥ 1 an integer.

Φ = {φi}i∈I is a dictionary.

Definition 2.5.2. For a fixed positive integer N , the set of N -term approximations

29



with Φ is

∑
N

(Φ) :=

{∑
i∈J

ciφi
∣∣ J ⊂ I, |J | = N

}
.

For a fixed f ∈ C, the N -term error of f in the dictionary Φ is

σN(f,Φ) := inf
g∈
∑
N

(Φ)
‖f − g‖2.

Definition 2.5.3. For a dictionary Φ and signal class C, we set

As(Φ) := {f ∈ L2(Rd) | σN(f,Φ) ≤ KN−s},

s∗(C,Φ) := sup
s>0
{C ⊂ As(Φ)},

where K is fixed constant independent of N, s.

The set As(Φ) is the set of L2 functions f whose N -term approximation in the

dictionary Φ converges to f at a rate of order 1
Ns . The number s∗(C,Φ) measures

the worst-case approximation rate for the set of functions C with respect to the

dictionary Φ.

The larger s∗(C,Φ) is, the better the dictionary Φ is at representing the signal

class C. To illustrate, suppose Φ is a dense subset of L2(Rd), for example the space

of Schwartz functions S(Rd). Then given a precision ε and function f ∈ C, one can

always find a single element g ∈ Φ such that ‖f − g‖2 < ε. Thus, s∗(C,Φ) = +∞.

This is good, in the sense that Φ represents C very well; this is of course in agreement

with the intuition of a dense set.

However, the utility of Φ = S(Rd) as a computational dictionary is essentially

nil. Indeed, there is in general no way of efficiently computing which element of
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Φ is a good approximation of f ∈ C. Moreover, even if such an approximation

could be known easily, there is not a simple way of storing it. The space S(Rd)

does not admit a finite dimensional parametrization. One would need to know the

approximation values on a set of infinite cardinality to store an approximation with

respect to this gigantic dictionary, which is of course computationally infeasible.

This brings us to a clarification of our goal. We want to find dictionaries Φ such

that s∗(C,Φ) is large enough, while the N -term approximations in this dictionary

can be computed and stored efficiently. More precisely, we take as our indexing set

I = N, and search for the best N -term approximation

fN =
N∑
k=1

cσ(k,f)φσ(k,f),

where σ(k, f) ≤ π(k) for a polynomial π. In other words, we want to consider only

approximations that can be determined in polynomial time. This re-formulated

notion of dictionary quality shall be denoted s∗poly(C,Φ).

Definition 2.5.4. Set

s∗(C) := sup
Φ a dictionary

{s∗poly(C,Φ)}.

A dictionary Φ is said to be optimal for a signal class C if s∗(C,Φ) = s∗(C).

In order to begin an analysis of rates of approximation in dictionaries, we

review some pioneering work of Donoho and his collaborators [35]. Consider the

following definitions.

Definition 2.5.5. A class of functions C ⊂ L2(Rd) contains an embedded orthog-

onal hypercube of dimension m and side lengths δ if there exists f0 ∈ C and an
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orthonormal family {ψi}mi=1 such that the collection of hypercube vertices

H(m; f0; {ψi}) :=

{
h = f0 +

m∑
i=1

εiψi
∣∣ εi ∈ {0, 1}}

is contained in C.

Definition 2.5.6. A class of functions C contains a copy of `p0, p > 0, if there exists

a sequence of orthogonal hypercubes {Hk}k∈N of dimensions {mk}k∈N, embedded in

C, of dimensions mk and side lengths δk, such that δk → 0 and for some K > 0,

mk ≥ Kδ−pk , ∀k ∈ N.

These notions allow us to derive an upper bound on how well an arbitrary

dictionary can represent a signal space:

Theorem 2.5.7. Suppose C ⊂ L2(Rd) is uniformly L2-bounded and contains a copy

of `p0. Then

s∗(C) ≤ 2− p
p

.

In order to better understand optimal dictionaries for E , we consider certain

spaces of smooth functions.

Definition 2.5.8. For α = (α1, ..., αd), αi ∈ Z, αi ≥ 0, the space

Cα := {f ∈ Cα([0, 1]d) | ‖f‖Cα ≤ 1}

is the closed unit ball in Cα([0, 1]d), where

‖f‖Cα :=
∑

0≤β≤α

‖Dβg‖L∞([0,1]d),

for multi-indices β.

32



Theorem 2.5.9. Suppose Cα contains a copy of `p0 with p = 2
2α
d

+1
. Then s∗(Cα) ≤ α

d
.

It can be shown that in dimension 2, Cα contains a copy of `
2
3
0 . Thus, in the

case d = 2, C2 ⊂ E and s∗(C2) ≤ 1 by above. In particular, s∗(E) ≤ 1. Thus, the

best N -term approximation rate we can achieve for E is of order N−1. Whether this

theoretically optimal rate can be realized is a separate matter entirely. To do so, we

shall examine how several dictionaries represent E .

Definition 2.5.10. For a sequence of complex numbers {ci}i∈N, we define the weak

`p-norm to be:

‖{ci}‖w`p := inf
K>0
{|c∗n| ≤ Kn−

1
p},

where {c∗n} is a non-decreasing re-arrangement of {ci} and K is a constant inde-

pendent of n.

It is worth noting that ‖{ci}‖w`p ≤ ‖{ci}‖`p , which implies the weak `p norm

is indeed weaker than the `p norm.

The next result requires the notion of a dual frame, which is classical in frame

theory.

Definition 2.5.11. Let {φi}i∈I be a discrete frame for the Hilbert space H. A dual

frame for {φi}i∈I is a set of vectors {φ̃i}i∈I ⊂ H such that:

∀f ∈ H, f =
∑
i∈I

〈f, φ̃i〉φi.

Intuitively, a dual frame is a set of functions which can be used along with the

original frame coefficients to precisely reconstruct our signal. With this in mind, we
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can relate the weak `p convergence of frame coefficients to the approximation rate

in that dictionary [50] :

Theorem 2.5.12. Let Φ = {φi}i∈I be a frame for L2(Rd) with dual frame Φ̃ =

{φ̃i}i∈I . Suppose that

‖{〈f, φ̃i〉}‖w`p <∞.

Then, with s = 1
p
− 1

2
, we have f ∈ As(Φ) and∥∥∥∥∥f −∑

i∈IN

〈f, φ̃i〉φi

∥∥∥∥∥
2

≤ CN−s.

2.5.1 Point Singularities: Fourier Series and Wavelets

We shall now begin our analysis of convergence rates for certain dictionary

representations of important classes of functions. The classes of functions are intu-

itively related to classes of images, but are described in a continuous, rather than

discrete, language. We are ultimately interested in E , but we shall first consider

slightly more basic signal classes.

We begin by examining how one-dimensional singularities can be resolved by

certain dictionaries.

Definition 2.5.13. For α ≥ 0, define

Dα := {f ∈ L2([0, 1]) | f = f1χ[0,a] + f2χ(a,1], ‖fi‖Cα ≤ 1, a ∈ [0, 1]}

to be the set of Cα functions with a point singularity.

The Gibbs phenomenon [4] can be used to show that Fourier series poorly

represent the signal class Dα:
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Theorem 2.5.14. Let F = {e2πinx}n∈Z be the dictionary of Fourier basis elements.

Then s∗(Dα,F) = 1
2
, for all α.

This theorem must be understood in light of the theoretical optimum s∗(Dα,Φ) =

α for Φ a dictionary in the class we consider, guaranteed by Theorem 2.5.9. For

α = 1 in particular, the theoretical optimal is s∗(D1,Φ) = 1, whereas s∗(D1,F) = 1
2
.

An intuitive explanation for this sub-optimality is that elements of the Fourier basis

are globally supported, making them ill-suited for resolving singularities, which are

local.

In order to show that the theoretical optimum is actually attainable, we con-

sider wavelet systems. Using a slightly different convention than in Section 2.3,

consider a fixed α ∈ R, scaling function φ(x), and mother wavelet ψ(x). The corre-

sponding wavelet system is:

W(φ, ψ, α) := {φ(x− αk)}k∈Z ∪ {2
j
2ψ(2jx− αk)}j,k∈Z.

For simplicity’s sake, consider the case α = 1. Daubechies et al. showed that φ, ψ

may be chosen to be compactly supported and very smooth [31]. Let

ψj,k(x) := 2
j
2ψ(2jx− k);

intuitively, 〈f, ψj,k〉 extracts frequency information about f on an interval of length

proportional to 2−j.

In order to state the next theorem [44], we consider a particular orthonormal

wavelet basis:

Definition 2.5.15. The orthonormal basis of Meyer wavelets is the collection of
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functions {φ(x−k)}k∈Z∪{2
j
2ψ(2jx−k)}j,k∈Z, where φ, ψ are defined in the frequency

domain as:

ψ̂(γ) =



1√
2π

sin
(
π
2
ν
(

3|γ|
2π
− 1
))

e
iγ
2 , |γ| ∈ (2π

3
, 4π

3
).

1√
2π

cos
(
π
2
ν
(

3|γ|
4π
− 1
))

e
iγ
2 , |γ| ∈ (4π

3
, 8π

3
).

0, else.

φ̂(γ) =



1√
2π
, |γ| ∈ [0, 2π

3
).

1√
2π

cos
(
π
2
ν
(

3|γ|
2π
− 1
))

, |γ| ∈ (2π
3
, 4π

3
).

0, else.

and where the auxiliary function ν is defined as:

ν(x) =


0, x ∈ (∞, 0].

x, x ∈ (0, 1).

1, x ∈ [1,∞).

Theorem 2.5.16. Suppose Φ is the orthonormal basis of Meyer wavelets p = (1 +

α)−1. Then:

sup
f∈Dα

‖{〈f, ψj,k〉}‖w`p <∞.

In particular,

s∗(W(φ, ψ, 1),Dα) = s∗(Cα) = α.

In other words, wavelets provide optimal approximation of functions with point

singularities. Indeed, the approximation given by the Meyer wavelets is as efficient

as if the singularities were not present.
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However, the efficiency of wavelets in representing singularities does not extend

to higher dimensions [44]. Indeed, let α, φ, ψ be as above and letW2D(φ, ψ, α) denote

a 2D-wavelet system generated in the natural way by tensor products of φ, ψ, i.e.

using translations and dilations of the functions {ψi(x, y)}4
i=1 given by:

ψ1(x, y) = φ(x)φ(y),

ψ2(x, y) = φ(x)ψ(y),

ψ3(x, y) = ψ(x)φ(y),

ψ4(x, y) = ψ(x)ψ(y).

Theorem 2.5.17. s∗(E ,W2D(φ, ψ, 1)) = 1
2
.

From a computational standpoint, this a dreadful result. Indeed, if we wish

to approximate f ∈ E with 2D tensor wavelets to an error of 10−5, i.e. if we wish to

find an N -term approximation of f in the 2D tensor wavelet dictionary, call it fN ,

such that

‖f − fN‖ ≤ 10−5,

We must take N = 1010, which is infeasible. If the optimal approximation rate

of 1
N

is achieved, we would only need N = 105. This would significantly ease the

computational burden of using these dictionaries for data processing. Note that this

sub-optimality also holds for more elaborate 2D wavelet schemes, not just tensor

wavelets.
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2.5.2 Geometric Frames: Curvelets and Shearlets

Our goal is to construct a tight frame for L2(R2) that has theoretically optimal

representation properties for E , i.e. for all f ∈ E ,

‖f − fN‖2 ≤ CN−1,

where fN is the reconstruction from the N -largest frame coefficients and C is a

constant independent of N .

The problem with wavelets in the case of resolving singularities in R2 is that

wavelets are supported in isotropic quadrilaterals of width ∼ 2j; too many such

quadrilaterals are needed to cover a curve singularity. This argument is explicitly

detailed in [44].

To rectify this, we consider dictionary elements supported on anisotropic rect-

angles with width ∼ 2
j
2 and length ∼ 2j. This is the basic idea behind the curvelet

construction of Donoho and Candès [13]. This was the first frame construction to

exploit the parabolic scaling regime in order to acquire near-optimal representation

systems for E . We give a rough sketch of their construction; details are in [13], [12].

We seek to construct systems of the form

{φj,`,k(x) := 2
3j
k ψ(D2jRθj,`x− k)}j,`∈Z,k∈Z2 ,

where

Da :=

 a 0

0 a
1
2

 , Rθ :=

 cos(θ) sin(θ)

sin(θ) − cos(θ)

 , θj,` ∼ 2
−j
2 `2π.
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To perform this construction, we partition frequency space into parabolic wedges

of aspect ratio length∼ width2. We associate to this a partition of unity {Vj,`}
j∈N,`∈

{
−2

j
2 ,...,2

j
2

}.
We build a dictionary in frequency space by modulating the partition functions:

φ̂j,`,k(γ) := 2
−3j
4 e

2πiR−1
θj,`

D
2−j kγVj,`(γ), j ∈ N, ` ∈ {−2

j
2 , ..., 2

j
2}.

Collecting all the indices into the set Λ, we acquire a dictionary {φλ}λ∈Λ, which is

actually a Parseval frame [13]:

Theorem 2.5.18. The dictionary {φλ}λ∈Λ is a Parseval frame for L2(R2), i.e.

‖f‖2
2 =

∑
λ∈Λ

|〈f, φλ〉|2,

and

f =
∑
λ∈Λ

〈f, φλ〉φλ.

Theorem 2.5.19. Curvelets are optimal for cartoon-like images:

s∗(E , {φλ}λ∈Λ) = s∗(E) = 1.

While curvelets are theoretically optimal [13], from a computational stand-

point, they are insufficient; they don’t preserve the digital grid. While there have

been numerical implementations of curvelets [12], they rely on countably many gen-

erating functions and are slower than desirable for many scenarios. Shearlets were

developed after curvelets, partially in response to this criticism [70]. As we have

seen in Section 2.4, shearlets are more simply generated than curvelets, and preserve

the digital grid, in the sense that the shearing matrix preserves the integer lattice,

making them more suitable for applications.
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Following the literature of dictionary representations, we give a slightly dif-

ferent shearlet construction than the one in Section 2.4. For this construction, we

consider the index set

Λσ := {(ε, j, `, k) ∈ Z2 × Z4 | ε ∈ {0, 1}, j ≥ 0, ` = −2b
j
2
c, ..., 2b

j
2
c, k ∈ Z2}.

The associated shearlet system generated by φ, ψ0, ψ1 ∈ L2(R2) is

Σ := {σλ | λ ∈ Λσ},

where

σ(ε,0,0,k)(x) := φ(x− k), σ(ε,j,`,k)(x) := 2
3j
4 ψε(Dε

2jS
ε
`,jx− k).

Here,

D0
a = Da, D

1
a =

 a
1
2 0

0 a

 , S0
`,j :=

 1 `2−b
j
2
c

0 1

 , S1
`,j = (S0

`,j)
T .

Theorem 2.5.20. Shearlets are optimal for cartoon-like images: for a band-limited

shearlet frame Σ (i.e. φ̂, ψ̂ are compactly supported), we have

s∗(E ,Σ) = s∗(E) = 1.

Thus, shearlets achieve the optimal rate of approximation for the space of

cartoon-like images. This suggests their use for image processing. Shearlet sparsity

and optimality for anisotropic images shall be exploited for image registration and

superresolution in Chapters 4 and 5 of this thesis.
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2.6 Wavelet Packets

2.6.1 Wavelet Packets: Completing the Tree

This chapter provides the theoretical background, now classical, necessary for

the material in Chapter 4. We construct wavelet packets in one dimension, a pro-

cess which easily generalizes to higher dimensions. Our work in Chapter 4 analyzes

remotely sensed data with wavelet packets, which requires a two-dimensional gen-

eralization.

Consider a multiresolution analysis {Vj}j∈Z, φ, with corresponding wavelet

function ψ as guaranteed by the Meyer-Mallat algorithm; see Theorem 2.3.8. Then

{Tnφ}n∈Z is an orthonormal basis for V0 and {Tnψ}n∈Z is an orthonormal basis for

W0, where W0 is the unique closed subspace of V1 such that V0 ⊕ W0 = V1. In

general, Wk is the unique closed subspace of Vk+1 such that Vk ⊕Wk = Vk+1.

Besides {Tnφ}n∈Z, the set { 1√
2
φ
(
t
2
− n

)
, 1√

2
ψ
(
t
2
− n

)
}n∈Z is an orthonormal

basis for V0 = V−1⊕W−1. This procedure allows us to construct many orthonormal

bases for V0. Indeed,

V0 = V−m ⊕W−m ⊕W−m+1 ⊕ ...⊕W−1.

So, orthonormal bases for Wk, k ≤ −1, may be incorporated into a basis for

V0. More precisely, the set

{φ−m,n, ψ−m,n, ψ−m+1,n, ..., ψ−1,n}n∈Z

is an orthonormal basis for V0 for all m ≥ 1. As usual, fm,n(t) = 2
m
2 f(2mt− n).
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Considering the associated tree of subspaces, we see that there is an incom-

pleteness. The left-most branch of the tree is deep, but as one moves further right,

branches cut off prematurely. The tree for m = 5 is depicted in Figure 2.5.

V0

V−1

V−2

V−3

V−4

V−5 W−5

W−4

W−3

W−2

W−1

Figure 2.5: The “incomplete” tree produced by the Meyer-Mallat algorithm, iterated

to 5 levels. The leftmost path has maximal depth.

One way of understanding the notion of wavelet packets is as an attempt to

complete this tree by having all branches be of equal depth. We now pursue this

idea rigorously.
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2.6.2 The Main Construction

Letting ψ and φ with associated filters H0, H1 be our wavelet and scaling

function, it is clear from the Meyer-Mallat algorithm that:

{
φ−1,n(t) =

1√
2
φ

(
t

2
− n

)}
n∈Z

is an orthonormal basis for V−1,{
ψ−1,n(t) =

1√
2
ψ

(
t

2
− n

)}
n∈Z

is an orthonormal basis for W−1. (2.11)

More precisely, we introduce the notation

φ =
∑
n∈Z

h0[n]φ1,n, φ1,n ∈ V1,

ψ =
∑
n∈Z

h1[n]φ1,n, φ1,n ∈ V1,

which implies

φ̂(γ) =
1√
2
φ̂
(γ

2

)
H0

(γ
2

)
,

ψ̂(γ) =
1√
2
φ̂
(γ

2

)
H1

(γ
2

)
.

Applying the Fourier transform to (2.11), we have that:

{φ̂−1,n(γ) =
√

2e2πinφ̂ (2γ)}n∈Z is an orthonormal basis for V̂−1,

{ψ̂−1,n(γ) =
√

2e2πinψ̂ (2γ)}n∈Z is an orthonormal basis for Ŵ−1.

Recall that since V−1 = V−2 ⊕W−2, we have that

{
1

2
φ

(
t

4
− n

)
,
1

2
ψ

(
t

4
− n

)}
n∈Z

is an orthonormal basis for V−1.
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Setting φ−2,n(t) = 1
2
φ
(
t
4
− n

)
and taking the Fourier transform, φ̂−2,n(γ) =

2e4πinφ(4γ). Recall by the scaling equation of the Meyer-Mallat algorithm,

2φ̂(4γ) =
√

2φ̂(2γ)H0(2γ) = φ̂(γ)H0(γ)H0(2γ).

Similarly,

2ψ̂(4γ) = φ̂(γ)H0(γ)H1(2γ).

This decomposition of φ̂ and ψ̂ in terms of the filters H0, H1 suggests the

following definition:

Definition 2.6.1. Let {Vj}j∈Z, φ be an MRA with wavelet ψ and filters H0, H1.

The wavelet packet filters associated with this MRA is the sequence of products

r∏
j=1

Hεj(2
j−1γ), r ≥ 1, εj ∈ {0, 1}.

This idea can be understood in terms of bit reversal permutations. This notion

is classical [63], and can be defined inductively. Indeed, let N = 2r. At level

r = m, suppose the set {0, 1, ..., 2m−1} has bit reversal ordering (b0, b1, ..., bM), where

M = 2m−1. At level r = m+1, the bit reversal ordering of the set {0, 1, ..., 2m+1−1}

is the set {2b0, 2b1, 2b2, ..., 2bM−1, 2b0 + 1, 2b1 + 1, 2b2 + 1, ..., 2bM−1 + 1}. Setting the

bit reversal of {0} to be {0}, all other reversals are well-defined by induction.

For example, the bit reversal of some small sets are:

{0, 1, 2, 3} 7→ {0, 2, 1, 3},

{0, 1, 2, 3, 4, 5, 6, 7} 7→ {0, 4, 2, 6, 1, 5, 3, 7}.
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To relate bit reversal to wavelet packets, we shall consider a tree of subspaces

{Xr
n}Nn=0, where r is the depth of the tree and N = 2r. To define these subspaces,

we recall that all integers 1 ≤ n ≤ 2r − 1 may be written uniquely as:

n =
r∑
j=1

εj2
j−1, εj ∈ {0, 1}.

We may thus identify the indices n of the Xr
n with binary r-tuples. For example, if

r = 4:

3 7→(1, 1, 0, 0),

11 7→(1, 1, 0, 1).

Consider Figure 2.6

X0
0

X1
(0)

X2
(0,0) X2

(0,1)

X1
(1)

X2
(1,0) X2

(1,1)

Figure 2.6: An example of a subspace tree of depth 2, with subspaces at the bottom

level indexed by binary pairs.

At level r− 1, the space Xr−1
(ε1,ε2,...,εr−1) is the single parent of Xr

(ε1,ε2,...,εr−1,0) and

Xr
(ε0,ε1,...εr−1,1). Making the identification X0

0 = V0, it follows that at level 1,

X1
0 =V−1,

X1
1 =W−1,
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and at level 2,

X2
(0,0) =V−2,

X2
(0,1) =W−2.

However, a creative choice must be made to determine X2
(1,0) and X2

(1,1).

In terms of our filters,

X2
(0,0) = V−2 ↔ H0(γ)H0(2γ),

X2
(0,1) = W−2 ↔ H0(γ)H1(2γ).

It is thus natural to set our unknown spaces in correspondence with these filters

based on their indices:

X2
(1,0) ↔ H1(γ)H0(2γ),

X2
(1,1) ↔ H1(γ)H1(2γ).

Therefore, we define θ1,0 and θ1,1 as:

2θ̂1,0(4γ) =φ̂(γ)H1(γ)H0(2γ),

2θ̂1,1(4γ) =φ̂(γ)H1(γ)H1(2γ).

Hence,

X2
(1,0) = span

{
1

2
θ1,0

(
t

4
− n

)}
n∈Z

,

X2
(1,1) = span

{
1

2
θ1,1

(
t

4
− n

)}
n∈Z

.

To summarize the construction, given an MRA {Vj}j∈Z, φ with Meyer-Mallat

wavelet ψ, filters H0, H1 from the Meyer-Mallat theorem, we construct a perfect

binary tree of subspaces {Xr
m}r≥1, m=0,1,...,2r−1 and X0

0 = V0, with the properties:
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• Each Xr
n is a closed linear subspace of L2(R).

• Xr
m, r ≥ 1, is determined by the function

θ̂ε1,...,εr(2
rγ) = 2−

r
2 φ̂(γ)Hε1(γ)Hε2(2γ)...Hεr(2

r−1γ), (2.12)

where m =
r∑
j=1

εj2
j−1, εj ∈ {0, 1}. By determined, we mean the set

{
2−

r
2 θε1,...,εr

(
t

2r
− n

)}
n∈Z

is an orthonormal basis for Xr
m.

• For any fixed integer r ≥ 0, V0 =
⊕2r−1

m=0 X
r
m.

We can define a more general class of wavelet packets based on this principle:

Definition 2.6.2. A sequence {wi}∞i=0 ⊂ L2(R) is a sequence of wavelet packets

corresponding to filters H0, H1 if ∀i ≥ 0,

w2i(t) =
∑
n∈Z

h0[n]
√

2wi(2t− n),

w2i+1(t) =
∑
n∈Z

h1[n]
√

2wi(2t− n).

The sequence {wi,j,k}i≥0, j,k∈Z, defined by

wi,j,k(t) := 2
j
2wi(2

jt− k),

is a sequence of generalized wavelet packets corresponding to H0, H1.

Generalized wavelet packets modify a wavelet packet with additional dilations

and translations.
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Let us consider this construction in the specific context of the Haar MRA. In

this case, the scaling function is φ = χ[0,1], h0[0] = h0[1] = 1√
2
, h0[k] = 0, k 6= 0, 1.

This forces H0(γ) = 1√
2
e−πiγ cos(πγ). Since h1[k] = (−1)kh0[1− k], we compute

H1(γ) = 1√
2
e−πiγ sin(πγ).

Thus, by the Meyer-Mallat algorithm, the wavelet function for the Haar MRA

is ψ = χ[0, 1
2

) − χ[ 1
2
,1). In order to find the wavelet packets corresponding to H0, H1,

we must solve the following equations:

w0(t) =w0(2t) + w0(2t− 1), (2.13)

w1(t) =w0(2t)− w0(2t− 1).

Notice that w0 = φ,w1 = ψ solve these equations. To show these are unique in some

sense, we apply the Fourier transform to (2.13):

ŵ0(γ) =
1

2

(
1 + e−πiγ

)
ŵ0

(γ
2

)
.

Thus,

ŵ0(γ) =
1√
2
H0

(γ
2

)
ŵ0

(γ
2

)
=

1√
2
H0

(γ
2

)( 1√
2
H0

(γ
4

))
ŵ0

(γ
4

)
=
∞∏
j=1

(
H0

(
γ
2j

)
√

2

)
ŵ0(0)

=
∞∏
j=1

e
−πiγ
2j cos

(πγ
2j

)
=e
−πiγ

∞∑
j=1

2−j
∞∏
j=1

cos
(πγ

2j

)
=e−πiγ · sin (πγ)

πγ
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=φ̂(γ).

The penultimate line follows from Viète’s formula.

Thus, the unique L1 solution of (2.13) such that
∫
Rw0 = 1 is w0 = φ. In

particular, we can compute the wavelet packets

w2(t) = w1(2t) + w1(2t− 1),

w3(t) = w1(2t)− w1(2t− 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1
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0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 2.7: Plots of w2, w3, respectively.

Theorem 2.6.3. For a given level r ≥ 1, the function θε1,...εr as defined in (2.12)

is a wavelet packet wk, where for m =
r∑
j=1

εj2
j−1, εj ∈ {0, 1} k,m are related by the

bit-reversal map

(0, 1, ..., k, ..., 2r − 1) 7→ (b0, ..., b2r−1),

k 7→ bk = m.

2.6.3 Relationship to Walsh Functions

The theory of wavelet packets can be traced back to Haar [53].
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Definition 2.6.4. The sequence {Rn}∞n=1 of Rademacher functions on T is defined

by:

∀n ≥ 1, Rn(t) := sgn(sin(2nπt)).

The nth Rademacher function has 2n−1 cycles, each of length 1
2n−1 on [0, 1].

The value of R on the first half of each cycle is 1; the value is −1 on the second half.
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Figure 2.8: Plots of Rn for n = 1, 3 respectively.

Note that the family {Rn}∞n=1 is orthonormal, but not an orthonormal basis.

For example, the function cos(2πx) cannot be represented by this family, since∫
R

cos(2πx)Rn(x)dx = 0, ∀n.

The following notion is due to Paley, though was popularized by Walsh, and

hence bears his name:

Definition 2.6.5. The sequence {Wn}∞n=0 of Walsh functions on T is defined by

W0 ≡ 1, and

Wn(t) :=
∏

j such that εj=1

Rj(t), where 1 ≤ n =
∞∑
j=1

εj2
j−1, εj ∈ {0, 1}.
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Figure 2.9: Plots of Wn for n = 3, 9 respectively.

Note that W2k = Rk.

Theorem 2.6.6. Given the Haar MRA {Vj}j∈Z, φ of L2(R), where φ = χ[0,1), and

∀n ∈ Z, h1[n] = (−1)nh0[1− n],

the wavelet packets {wj}∞j=0 defined in terms of H0, H1 correspond to the Walsh

functions in a manner that can be made precise, by re-ordering the Walsh functions.
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Chapter 3: Directional Gabor Systems

3.1 Background on Gabor Ridge Systems

An anisotropic generalization of Gabor systems was developed by Grafakos

and Sansing in [47]. They introduced directional sensitivity by considering inner

products against elements of the unit sphere Sd−1. This method is related to the

ridgelet constructions of Do and Vetterli [34]. Unlike the theory of Gabor frames

articulated above, which is based on finding a discrete representation for L2(Rd),

their theory is continuous. That is, instead of considering countable sums of coef-

ficients, they consider integrals over uncountably many coefficients. The theory of

this work has been applied abstractly to problems in tomographic image analysis

[43], [19], as well as problems in classical analysis [20], [7]. However, for use in

concrete applications such as signal processing, a discrete theory is required. We

shall give some results in this direction at the end of this section. We begin with

some relevant notions from continuous Gabor theory, as well as from the theory of

continuous frames.

We shall consider adding a directional component to Gabor systems in a man-

ner parametrized by Sd−1. It is natural that the Radon transform, in particular the

Fourier slice theorem, shall play a crucial role in what is to come.
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Definition 3.1.1. Let f ∈ S(Rd). The Radon transform of f is a function R(f) :

Sd−1 × R→ C given by the formula

R(f)(u, s) :=

∫
〈u,x〉=s

f(x)dx, u ∈ Sd−1, s ∈ R.

The operator R : f 7→ R(f) can be extended beyond the Schwarz class to be

a continuous operator that maps L1(Rd) into L1(R) uniformly in u ∈ Sd−1 [60]. It

is thus natural to consider the Fourier transform’s relation to the Radon transform.

The Fourier slice theorem describes a basic property of this relation. The notation

Ru(f) = R(f)(u, ·) shall be used in what follows.

Theorem 3.1.2. (Fourier slice theorem) Let f ∈ L1(Rd). Then the Fourier trans-

form of f and Ru(f) are related in the following way:

R̂u(f)(γ) = f̂(γu).

One of the tools used in the construction of Grafakos and Sansing is the weight-

ing of a base function in the frequency domain:

Definition 3.1.3. For α > 0, define the differential operator Dα of order α for

functions h : R→ C to be:

Dα(h) := (ĥ(γ)|γ|α)∨.

Here, we generalize the classical interplay between polynomial multiplication

in the frequency domain and differentiation in the time domain. This definition

naturally extends to real, non-negative multi-indices α = (α1, ..., αd) for functions

h : Rd → C.
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Recall that for g ∈ L2(R), gm,t ∈ L2(R) is the function defined by:

gm,t(s) = e2πim(s−t)g(s− t) = TtM−mg(s), m, t ∈ R.

Definition 3.1.4. Let g ∈ S(R) be a R-valued, non-zero window function. For

d ≥ 1 an integer and m, t ∈ R, we define:

Gm,t(s) := D d−1
2

(gm,t)(s) = (ĝm,t(γ)|γ|
d−1
2 )∨(s), s ∈ R.

The weighted Gabor ridge functions are

Gm,t,u(x) := Gm,t(〈u, x〉) = (ĝm,t(γ)|γ|
d−1
2 )∨(〈u, x〉), x ∈ Rd.

The convention of using capital letters to refer to the weighted Gabor ridge

function shall be maintained throughout this section [47].

It is clear that a weighted Gabor ridge function is constant along any hyper-

plane {x ∈ Rd | 〈u, x〉 = C} for u,C constant. Along the direction u, these functions

modulate like a one dimensional Gabor function. The weighting in the Fourier do-

main allows us to reconstruct a signal f from the coefficients {〈f,Gm,t,u〉}m,t∈R,u∈Sd−1 .

Weighted Gabor ridge functions yield a continuous reproducing formula that is anal-

ogous to (2.5), with an additional integral to account for the directional character

of the ridge function construction.

Theorem 3.1.5. Let g, ψ ∈ S(R) be two window functions such that 〈g, ψ〉 6= 0.

Suppose f ∈ L1(Rd) and f̂ ∈ L1(R̂d). Then:

f =
1

2〈g, ψ〉

∫
Sd−1

∫
R

∫
R
〈f,Gm,t,u〉Ψm,t,udm dt du,

with convergence in the pointwise almost everywhere sense.
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Here, we are recovering our original signal f from the coefficients {〈f,Gm,t,u〉}m,t∈R,u∈Sd−1 ;

this is a continuous reproducing formula for weighted Gabor ridge system.

Note that without the weights in the Fourier domain, the reconstruction for-

mula does not hold [47] . Indeed, let gm,t,u(x) = gm,t(〈u, x〉), and R∗ the adjoint of

the Radon transform:

R∗g(x) =

∫
Sd−1

g(〈u, x〉, u)du.

Theorem 3.1.6. Let f ∈ L1(Rd), f̂ ∈ Lp(Rd) for some 1 < p < d. Then for

g, ψ ∈ S(R) with 〈g, ψ〉 6= 0, we have the following identity:

R∗(R(f)) =
1

〈g, ψ〉

∫
Sd−1

∫
R

∫
R
〈f, gm,t,u〉ψm,t,udm dt du.

Thus, instead of reconstructing f itself, we reconstruct the weighted back-

projection R∗(R(f)). In general, R∗(R(f)) 6= f . This is the root of many issues in

tomographic applications based on Radon transforms. There is also a Parseval-type

formula for Gabor ridge functions:

Theorem 3.1.7. Let f, g be as above. There exists a constant Cg, depending only

on g, such that:

‖f‖2
L2(Rd) = Cg

∫
Sd−1

∫
R

∫
R
|〈f,Gm,t,u〉|2dm dt du.

We note that Theorem 3.1.7 expresses the fact that the Gabor ridge functions

{Gm,t,u}(m,t,u)∈R×R×Sd−1 form a continuous frame for f ∈ L1(Rd) ∩ L̂1(Rd), with the

usual inner product.

In the case of d-dimensional Gabor ridge systems, the continuous frame is

indexed by the set Sd−1 × R × R. In general, this set does not admit a non-trivial
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group structure. Indeed, the only spheres which admit a non-trivial group structure

are S0, S1 and S3 [62]. This means the co-orbit theory of Feichtinger and Gröchenig

[41] does not apply easily. We shall prove some results regarding the discretization

problem for Gabor ridge systems, but using ideas from classical Gabor theory, rather

than coorbit theory.

As a starting point, consider the following semi-discrete representation formula

for Gabor ridge systems [47]:

Theorem 3.1.8. There exist g, ψ ∈ S(R) and α, β > 0 such that for all f ∈

L1(Rd) ∩ L2(Rd), we have have:

A‖f‖2
2 ≤

∫
Sd−1

∑
m∈Z

∑
t∈Z

|〈f,Gαm,βt,u〉|2du ≤ B‖f‖2
2, (3.1)

where the constants A,B depend only on g, α, β and du is the Lebesgue measure on

Sd−1. Moreover, for this choice of g, ψ, we have:

f =
1

2

∫
Sd−1

∑
m∈Z

∑
t∈Z

〈f,Gαm,βt,u〉Ψαm,βt,udu.

3.2 Negative Results and a Toy Example

The representation (3.1) is called semi-discrete because there are two discrete

sums, but also an integral over Sd−1. A first, somewhat naive, approach to develop-

ing a fully discrete directional Gabor system would be to start with the semi-discrete

representation and choose certain points on the unit sphere, i.e. to discretize the

integral in (3.1) as a finite sum. We show this approach never generates a frame for

any reasonable class of functions.
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We begin by noting that once discretized, the frequency weights used in the

weighted Gabor ridge construction are not needed. So, we seek a discrete system of

the form:

{gm,t,u}(m,t,u)∈Λ,

along with a space of functions for which this set will be a discrete frame. The

nomenclature used to describe such a system shall be discrete directional Gabor

frame.

A first, somewhat naive, approach to developing a discrete directional Gabor

frame could be to start with the semi-discrete representation and choose certain

points on the unit circle at which to sample. This would essentially be replacing

the integral in (3.1) with a finite sum. To investigate this approach, we consider

systems of the form:

{gαm,βt,u}(m,t,u)∈Z2×Q,

where α, β are fixed real numbers and Q ⊂ Sd−1 is a fixed set of finite cardinality.

Note that since Sd−1 is compact, Q is finite if and only if it is discrete. We show

that such a system cannot be a frame for L2(Rd) ∩ L1(Rd).

Theorem 3.2.1. Let Q ⊂ Sd−1 be finite. Then there exists f ∈ S(Rd) such that

‖f‖L2(Rd) = 1 and

‖Ru(f)‖2
L2(R) = 0, ∀u ∈ Q.

Proof. Note that

‖Ru(f)‖2
L2(R) =

∫
R

∣∣∣ ̂Ru(f)(γ)
∣∣∣2 dγ
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=

∫
R
|f̂(γu)|2dγ.

These equalities follow from Parseval’s identity and the Fourier slice theorem, re-

spectively. We can choose f ∈ S(Rd) of unit L2 norm whose Fourier transform is

supported off of the lines {γu}γ∈R,u∈Q. Such an f has the desired properties.

Corollary 3.2.2. Let g ∈ W be an element of the classical Wiener class of func-

tions, and let α, β > 0, Q ⊂ S1 be a fixed set of finite cardinality. Then the system

{gαm,βt,u}(m,t,u)∈Z2×Q

is not a frame for any subspace of L2(R2) which contains S(R2). In fact, it cannot

even be Bessel.

Proof. Note that 〈f, gαm,βt,u〉 = 〈Ru(f), gαm,βt〉. Since g ∈ W , classical Gabor theory

[49] guarantees that we may find α1, β1 such that {gα1m,β1t}(m,t)∈Z2 is a Bessel system

for L2(R). Choose α1, β1 sufficiently small so that α is an integer multiple of α1 and

β is an integer multiple of β1. Then:

∑
u∈Q

∑
m∈Z

∑
t∈Z

|〈f, gαm,βt,u〉|2

≤
∑
u∈Q

∑
m∈Z

∑
t∈Z

|〈f, gα1m,β1t,u〉|2

=
∑
u∈Q

∑
m∈Z

∑
t∈Z

|〈Ru(f), gα1m,β1t〉|2

≤B
∑
u∈Q

‖Ru(f)‖2
L2(R).
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By Theorem 3.2.1, we may find f̃ ∈ S(R2), ‖f̃‖L2(R2) = 1, such that

∑
u∈Q

‖Ru(f̃)‖2
L2(R) = 0.

Noting that this forces

∑
u∈Q

∑
m∈Z

∑
t∈Z

|〈f̃ , gαm,βt,u〉|2 = 0,

the result is shown.

An even stronger negative result is possible. In essence, we cannot have a

discrete directional Gabor system for any function space that includes S(Rd).

Theorem 3.2.3. Let {gm,t,u}(m,t,u)∈Λ be any discrete directional Gabor system. Then

there exists a sequence of Schwartz function {φn}∞n=1 ∈ S(Rd) such that

1. lim
n→∞

‖φn‖2 = 0.

2.
∑

(m,t,u)∈Λ

|〈φn, gm,t,u〉|2 ≥ 1,∀n.

Thus, {gm,t,u}(m,t,u)∈Λ cannot be a frame for any function space containing

S(Rd).

Proof. We will show that φn may be chosen with the property that

|〈φn, gm,t,u〉|2 ≥ 1,

for a fixed (m, t, u) ∈ Λ. By rotating φn as needed, we may assume WLOG that

u = (1, 0, ..., 0) ∈ Sd−1. Then we compute:

|〈φn, gm,t,u〉|2 =|〈Ruφn, g
m,t〉|
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=|〈φ̂n(uγ), ĝm,t(γ)〉|

=

∣∣∣∣∫
R̂
φ̂n(uγ)ĝm,t(γ)dγ

∣∣∣∣ .
Now, let us choose φn such that

φ̂n(γ) = φ̂n(γ1, γ2, ..., γd) = ψ̂n(γ1) · η̂n(γ2, ..., γd),

where ψ̂n ∈ C∞(R) is chosen such that ‖ψn‖2 is uniformly bounded in n, and such

that: ∣∣∣∣∫
R̂
φ̂n(uγ)ĝm,t(γ)|dγ

∣∣∣∣ =

∣∣∣∣∫
R̂
ψ̂n(γ)ĝm,t(γ)dγ

∣∣∣∣ = 1,

and choose η̂n ∈ C∞c (Rd−1) such that ‖η̂n‖2 → 0. This implies that ‖φn‖2 → 0,

giving the desired result.

So, it is clear that in order to discretize a directional Gabor system to acquire

a discrete frame, infinitely many directions on the sphere must be incorporated, and

our space of functions must be chosen very specifically. In particular, the space of

functions must not contain all of S(Rd). Note also that no weights are used in this

construction; these weights were introduced to account for the change of variables

in the continuous integrals, and are not needed for discrete sums.

3.3 A Toy Example

We now give a positive result, showing that it is possible to produce a discrete

directional Gabor system. For clarity, we take d = 2, i.e. we consider discrete

directional Gabor systems for functions R2.
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Definition 3.3.1. Let V be the subset of L2(R2) of functions supported in B 1
2
(0).

Theorem 3.3.2. Let g(x) = χ[− 1
2
, 1
2

](x). Let Γ ⊂ S1 × R be such that the mapping

ψ : Γ → Z2 given by (u,m) 7→ mu is a bijection. Set Λ = {(m, t, u)|(u,m) ∈ Γ, t ∈

Z}. Then we have:

∑
(m,t,u)∈Λ

|〈f, gm,t,u〉|2 = ‖f‖2
2,

for all f ∈ V.

Proof. We compute:

∑
(m,t,u)∈Λ

|〈f, gm,t,u〉|2 =
∑

(u,m)∈Γ

|〈f, gm,0,u〉|2

=
∑

(u,m)∈Γ

∣∣∣∣∫
R2

f(x)χ[− 1
2
, 1
2

](〈u, x〉)e2πim〈u,x〉dx

∣∣∣∣2

=
∑

(u,m)∈Γ

∣∣∣∣∣∣
∫
B 1

2
(0)

f(x)e2πi〈mu,x〉dx

∣∣∣∣∣∣
2

=
∑
n∈Z2

|f̂(n)|2

=‖f‖2
2.

Note that in this proof, we make no use of the translations in the directional

Gabor system gm,t,u, since we consider functions f supported only on the ball B 1
2
(0).

It is of interest if this parameter set can be exploited non-trivially, to produce more

interesting examples of discrete directional Gabor systems. Moreover, the support

of g could be extended, and the support of functions in V increased, at the cost of

having a frame which is not Parseval.
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3.4 Sufficient Conditions for a Discrete System

Definition 3.4.1. Let U be the subset of S(R2) of functions supported in [−1
2
, 1

2
]2.

We emulate the approach in [61], in which the authors use the theory of ab-

solutely convergent Fourier series to provide necessary and sufficient conditions for

certain classes of functions to be frames. Among the classes of functions they char-

acterize are classical discrete Gabor and discrete wavelet systems.

Definition 3.4.2. For g ∈ L2(R), (u,m) ∈ S1 × R, define a function on R2 by

g(u,m)(x) := e2πim〈u,x〉g(〈u, x〉).

For h ∈ L2(R2) and n ∈ Z, define

T (u,m)
n h(x) := h(x− αu,mnu),

where αu,m is a constant assigned to the parameter (u,m).

In the arguments related to the existence of a discrete directional Gabor sys-

tem, it is sufficient to take αu,m = 1, ∀(u,m). However, we shall state certain

lemmas as generally as possible.

Lemma 3.4.3. Let f ∈ S(R2). Then for fixed (u,m) ∈ S1 × R,

∑
n∈Z

|〈f, T (u,m)
n g(u,m)〉|2 =

1

|αu,m|2

∫
1

αu,m
[0,1]

∣∣∣∣∣∑
n∈Z

f̂

((
γ +

n

αu,m

)
u

)
ĝ

(
γ +

n

αu,m
−m

)∣∣∣∣∣
2

dγ.

Proof. Notice that:

T (u,m)
n g(u,m)(x) =e2πim〈u,x〉−miαu,mng(〈u, x〉 − αu,mn)
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=gm,αu,mn(〈u, x〉)

=gm,αu,mn,u(x).

So, by Lemma 1 in [47],

〈f, T (u,m)
n g(u,m)〉 = 〈Ruf, g

m,αu,mn〉

=

∫
R̂
f̂(γu) ̂gm,αu,mn(γ)dγ

=

∫
R̂
f̂(γu)ĝ(γ −m)e−2πiαu,mnγdγ.

Now, periodize this integral with respect to αu,m:

=
1

αu,m

∫
1

αu,m
[0,1]

∑
m∈Z

f̂

((
γ +

m

αu,m

)
u

)
ĝ

(
γ −m+

m

αu,m

)
e−2πiαu,mnγdγ.

Thus,

∑
n∈Z

|〈f, T (u,m)
n g(u,m)〉|2

=
∑
n∈Z

∣∣∣∣∣ 1

αu,m

∫
1

αu,m
[0,1]

∑
m∈Z

f̂

((
γ +

m

αu,m

)
u

)
ĝ

(
γ −m+

m

αu,m

)
e−2πiαu,mnγdγ

∣∣∣∣∣
2

=
1

|αu,m|2

∫
1

αu,m
[0,1]

∣∣∣∣∣∑
n∈Z

f̂

((
γ +

n

αu,m

)
u

)
ĝ

(
γ −m+

n

αu,m

)∣∣∣∣∣
2

dγ.

To transition from the penultimate to the last line, notice we are summing the

Fourier coefficients with respect to the orthonormal basis {e2πiαu,mnγ}n∈Z of the

function

γ 7→
∑
m∈Z

f̂

((
γ +

m

αu,m

)
u

)
ĝ

(
γ −m+

m

αu,m

)
.

This is equal to the square of the L2 norm of the function by Parseval’s formula,

which appears on the final line.
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Let f ∈ U , Λ ⊂ S1 × R as before. We proceed by considering the function

w(x) :=
∑

(u,m)∈Λ

∑
n∈Z

|〈Txf, T (u,m)
n g(u,m)〉|2.

We shall show that w may be written as an absolutely convergent Fourier series,

and exploit the properties of this special class of functions.

Definition 3.4.4. For (u,m) ∈ S1 × R fixed, set

H(x) :=
∑
n∈Z

|〈Txf, T (u,m)
n g(u,m)〉|2.

Lemma 3.4.5. H(x) is a trigonometric series of the form

H(x) =
∑
k∈Z

Ĥ(k)e
2πi k

αu,m
〈u,x〉

,

where the coefficients are given by

Ĥ(k) =
1

αu,m

∫
R̂
f̂(γu)ĝ(γ −m)f̂

((
γ +

k

αu,m

)
u

)
ĝ

(
γ +

k

αu,m
−m

)
dγ.

Proof. Substituting Txf into Lemma 3.4.3, we compute:

H(x) =
1

|αu,m|2

∫
1

αu,m
[0,1]

∣∣∣∣∣∑
n∈Z

f̂

((
γ +

n

αu,m

)
u

)
ĝ(γ +

n

αu,m
−m)e

−2πi(γ+ n
αu,m

)〈u,x〉

∣∣∣∣∣
2

dγ

=
1

|αu,m|2

∫
1

αu,m
[0,1]

∣∣∣∣∣e−2πiγ〈u,x〉
∑
n∈Z

f̂

((
γ +

n

αu,m

)
u

)
ĝ

(
γ +

n

αu,m
−m

)
e
−2πi n

αu,m
〈u,x〉

∣∣∣∣∣
2

dγ

=
1

|αu,m|2

∫
1

αu,m
[0,1]

∣∣∣∣∣∑
n∈Z

f̂

((
γ +

n

αu,m

)
u

)
ĝ

(
γ +

n

αu,m
−m

)
e
−2πi n

αu,m
〈u,x〉

∣∣∣∣∣
2

dγ

=
1

|αu,m|2

∫
1

αu,m
[0,1]

∑
`,m∈Z

e
−2πi m

αu,m
〈u,x〉

f̂

((
γ +

m

αu,m

)
u

)
ĝ

(
γ +

m

αu,m
−m

)

× e−2πi `
αu,m

〈u,x〉
f̂

((
γ +

`

αu,m

)
u

)
ĝ

(
γ +

`

αu,m
−m

)
dγ

=
1

|αu,m|2

∫
1

αu,m
[0,1]

∑
`,m∈Z

e
2πi `−m

αu,m
〈u,x〉

f̂

((
γ +

m

αu,m

)
u

)
ĝ

(
γ +

m

αu,m
−m

)
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× f̂
((

γ +
`

αu,m

)
u

)
ĝ

(
γ +

`

αu,m
−m

)
dγ

=
1

|αu,m|2

∫
1

αu,m
[0,1]

∑
k,m∈Z

e
2πi k

αu,m
〈u,x〉

f̂

((
γ +

m

αu,m

)
u

)
ĝ

(
γ +

m

αu,m
−m

)

× f̂
((

γ +
k +m

αu,m

)
u

)
ĝ

(
γ +

k +m

αu,m
−m

)
dγ

=
1

|αu,m|2

∫
R̂

∑
k∈Z

f̂(γu)ĝ(γ −m)f̂

((
γ +

k

αu,m

)
u

)
ĝ

(
γ +

k

αu,m
−m

)
e2πi k

αum
〈u,x〉dγ.

To go from the penultimate to ultimate line, we sum over m and exploit the

periodization. Since f is Schwartz class, we may interchange the integral and sum.

This gives the result.

Lemma 3.4.6. Let g ∈ L2(R) have supp(ĝ) ⊂ K compact. Suppose Λ = {(m,u)} ⊂

R× S1 is such that the map ψ : (u,m) 7→ mu is a bijection between Λ and Z2. Set

w(x) :=
∑

(u,m)∈Λ

∑
n∈Z

|〈Tx, T (u,m)
n g(u,m)〉|2.

Then w(x) is an absolutely convergent Fourier series.

Proof. Set wu,m to be the sum over fixed (u,m):

wu,m(x) =
∑
n∈Z

|〈Tx, T u,mn g(u,m)〉|2

=
∑
k∈Z

Ĥ(u,m)(k)e2πik〈u,x〉,

where the coefficients of this trigonometric series are:

Ĥ(u,m)(k) =

∫
R̂
f̂(γu)ĝ(γ −m)f̂((γ + k)u)ĝ(γ + k −m)dγ.

We want to show {Ĥ(u,m)(k)}Λ×Z ∈ `1(Λ× Z), that is,

∑
(u,m)∈Λ

∑
k∈Z

∣∣∣∣∫
R̂
f̂(γu)ĝ(γ −m)f̂((γ + k)u)ĝ(γ + k −m)dγ

∣∣∣∣ <∞.
65



Well,

∑
(u,m)∈Λ

∑
k∈Z

∣∣∣∣∫
R̂
f̂(γu)ĝ(γ −m)f̂((γ + k)u)ĝ(γ + k −m)dγ

∣∣∣∣
=
∑

(u,m)∈Λ

∑
k∈Z

∣∣∣∣∫
K

f̂((γ +m)u)ĝ(γ)f̂((γ + k +m)u)ĝ(γ + k)dγ

∣∣∣∣
≤

 ∑
(u,m)∈Λ

∑
k∈Z

∫
K

∣∣∣f̂((γ + k +m)u)ĝ(γ)χK(γ + k)
∣∣∣2 dγ

 1
2

×

 ∑
(u,m)∈Λ

∑
k∈Z

∫
K

∣∣∣f̂((γ +m)u)ĝ(γ + k)
∣∣∣2 dγ

 1
2

.

Let us consider the first factor. By positivity of the summands, we may inter-

change the order of summation integration. For a fixed k ∈ Z, consider:

∑
(u,m)∈Λ

∫
K

∣∣∣f̂((γ + k +m)u)ĝ(γ)χK(γ + k)
∣∣∣2 dγ

=

∫
K

∑
(u,m)∈Λ

∣∣∣f̂((γ + k +m)u)ĝ(γ)χK(γ + k)
∣∣∣2 dγ.

Let

F (k) = Fγ(k) :=
∑

(u,m)∈Λ

|f̂((γ + k +m)u)|2.

If ∀k, F (k) < ∞, then ĝ ∈ L2(R̂) together with K compact gives the boundedness

of the first factor. To see F (k) <∞, ∀k, notice that since f ∈ S(R2), for all α > 0,

there exists a constant C > 0 such that:

|f̂(γu)| ≤ C

‖γ‖α
. (3.2)

Then let M > 0 be such that K ⊂ BM(0). Then:

∑
(u,m)∈Λ

|f̂((γ + k +m)u)|2
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=
∑

(mu)∈BM (0)

|f̂(γ + k +m)u|2 +
∑

(mu)/∈BM (0)

|f̂((γ + k +m)u)|2.

The first sum is finite because there are only finitely many lattice points in BM(0).

To see the second sum is finite, use (3.2). Indeed, for all mu /∈ BM(0):

|f̂(γu+ ku+mu)| ≤ C

|‖mu‖ − ‖γu+ ku‖|α

≤ C

|‖mu‖ − (M + k)|α

≤ C ′

‖mu‖α
,

which is clearly `2 summable over the integer lattice for α sufficiently large.

Since χK(K + k) ≡ 0 for k sufficiently large, the first factor is finite. The

second factor is finite by the same argument. Thus, the coefficients of our series are

summable and the series is absolutely convergent, i.e. w is an absolutely convergent

Fourier series.

Note that with Λ as above, the sampling set Λ× Z is indeed discrete. We are

now prepared to give a sufficient condition for a discrete Gabor ridge system.

Theorem 3.4.7. Let g ∈ L2(R) be such that supp(ĝ) ⊂ K ⊂ (−1
4
, 1

4
) compact.

Then with Λ as above, {gk,m,u}k∈Z,(u,m)∈Λ is a frame for U .

Proof. Let

w(x) =
∑
(u,m)

∑
n∈Z

|〈Txf, T (u,m)
n g(u,m)〉|2

=
∑
(u,m)

∑
k∈Z

Ĥ(u,m)(k)e2πi〈ku,x〉,
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where

Ĥ(u,m)(k) =

∫
R
f̂((γ +m)u)ĝ(γ)f̂((γ + k +m)u)ĝ(γ + k)dγ.

Lemma 3.4.6 implies w(x) is an absolutely convergent Fourier series, and thus con-

tinuous. It thus suffices to show that there exists 0 < A ≤ B <∞ such that:

A‖f‖2
2 ≤ w(0) ≤ B‖f‖2

2.

Notice that if k 6= 0, then:

Ĥ(u,m)(k) =

∫
R
f̂((γ +m)u)ĝ(γ)f̂((γ + k +m)u)ĝ(γ + k)dγ = 0,

due to the fact that [−1
4

+ k, 1
4

+ k] ∩ [−1
4
, 1

4
] = ∅, ∀k 6= 0. Thus,

w(0) =
∑

(u,m)∈Λ

Ĥ(u,m)(0)

=
∑

(u,m)∈Λ

∫
R
f̂((γ +m)u)ĝ(γ)f̂((γ +m)u)ĝ(γ)dγ

=
∑

(u,m)∈Λ

∫
R̂
|f̂((γ +m)u)|2|ĝ(γ)|2dγ

=
∑

(u,m)∈Λ

∫
[− 1

4
, 1
4

]

|f̂(γ +m)u)|2|ĝ(γ)|2dγ

=

∫
[− 1

4
, 1
4

]

|ĝ(γ)|2
∑

(u,m)∈Λ

|f̂((γ +m)u)|2dγ.

Notice that

|f̂((γ +m)u)|2 =

∫
[− 1

2
, 1
2

]2
f(x)e−2πi〈(m+γ)u,x〉dx.

Now, because {mu}(u,m)∈Λ = Z2 and ‖(m + γ)u −mu‖2 = |γ| < 1
4
, it follows

from Kadec’s theorem [95] that for each fixed γ ∈ K, {e−2πi〈(m+γ)u,·〉}(m,u)∈Λ is a
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Riesz basis for L2([−1
2
, 1

2
]2), in particular for U . Thus, for each γ ∈ K:

Aγ‖f‖2
2 ≤

∑
(u,m)∈Λ

|f̂((γ +m)u)|2 ≤ Bγ‖f‖2
2.

Note that because K is bounded uniformly away from [−1
4
, 1

4
],

A := inf
γ∈K

Aγ > 0,

B := sup
γ∈K

Bγ <∞.

Thus,

∫
[− 1

4
, 1
4

]

|ĝ(γ)|2 ·B‖f‖2
2dγ ≤ w(0) ≤

∫
[− 1

4
, 1
4

]

|ĝ(γ)|2 · A‖f‖2
2dγ.

We conclude:

(A‖g‖2
2)‖f‖2

2 ≤ w(0) ≤ (B‖g‖2
2)‖f‖2

2,

as desired.

This result relies on Kadec’s theorem, which assumes nothing about the type

of perturbation in the sampling set, only that the pairwise distances are sufficiently

small. In this problem, we have rather precise knowledge concerning the pertur-

bation, which may render Kadec’s theorem too crude. This could be explored, to

allow for ĝ of larger support. Note that the frame bounds A, B can be precisely

estimated, in accordance with Kadec’s theorem.

Having shown the existence of discrete Gabor frames, along with precise es-

timates on the associated frame bounds, it is of interest to consider numerical im-

plementations. Such implementations could be applied to many of the problems
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in image processing that are studied in Chapters 4,5, and 6 of this thesis. It is

also of interest to investigate what class of functions are optimally represented by

directectional Gabor systems.
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Chapter 4: Image Registration with Shearlets

4.1 Introduction

The process of image registration seeks to align two or more images of approx-

imately the same scene, acquired at different times or with different sensors [11].

A variety of scientific fields make use of image registration, including biomedical

imaging [80], microscopy [23], and remote sensing [72]. The purpose of studying

image registration in all of these disciplines is to develop robust, accurate, and

computationally efficient algorithms to align the relevant images. This can be for

comparative purposes, or as a first step in a more general program. For example,

many techniques for image fusion require registered images. In particular, fusion

methods based on wavelets [74] and wavelet packets [25] require registered images.

Chapter 6 shall give a more thorough treatment to image fusion.

Image registration is fraught with complications. Given the broad class of

variations between types of images, degree of noise present in images, and initial

knowledge of misregistration, an image registration technique could perform ad-

mirably in one set of circumstances and poorly in another. As such, the pursuit of a

highly flexible, robust algorithm is valuable to the communities that rely on image

registration.
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This ambition has been pursued at the NASA Goddard Space Flight Center for

some time. An automatic image registration technique was developed there [108],

[73], based on wavelets and wavelet-like pyramids. This algorithm proved useful on

a variety of remotely sensed image data, but sometimes failed to be robust to the ini-

tial registration guess. More precisely, if the initial guess for registration is very far

from the truth registration, the algorithm could fail to converge to the correct regis-

tration transformation. This often happens if the images are severely misregistered

to begin. Indeed, most registration techniques employ an optimization algorithm

that requires an initial seed value; the optimization technique aligns the images by

searching for a global minimizer to a non-linear least-squares problem. If the initial

guess is too far from the global minimizer, the algorithm will converge to a local

minimizer, rather than the global minimizer. This is a common issue with a large

class of fitting algorithms to non-linear least squares problems [3]. It is important

to have an image registration algorithm that is robust to initial guess, since many

geophysical applications that require image registration have severely misregistered

images. Providing distinct, sparse features for the optimization algorithm to use is

a natural way to increase robustness of a registration algorithm.

In the years since this wavelet-based registration technique was developed, the

mathematical discipline of harmonic analysis experienced a renaissance. The wavelet

transform has been generalized to a growing family of transforms emphasizing differ-

ent aspects of a signal. In particular, the shearlet transform generalizes the wavelet

transform by providing increased directional sensitivity [39], [70]. Shearlet Theory

was extensively reviewed in Chapter 1 of this thesis. Edge-like features such as
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roads, rivers, mountain ridges, and land cover boundaries are very well-emphasized

by the shearlet transform, both theoretically and in practice.

Our goal was to improve the wavelet automatic registration algorithm by reg-

istering images according to their shearlet features. Given the distinct features this

mathematical technique produces, our expectation was the robustness of the algo-

rithm would be improved. Theoretically, these sparse, well-defined features should

allow a poorer initial guess, and still acquire accurate convergence, even in the case

of severe misregistration. We justify this heuristic in Section 4.3. Our algorithm

exploits this by first registering with shearlet features, then refining the registra-

tion by registering with wavelet features. This two-stage algorithm provides strong

robustness, from the shearlet stage, and strong precision, from the wavelet stage.

After describing our algorithms in detail in Section 4.4, we tested them on a

variety of remotely sensed data. In Section 4.5, we synthetically generated input

data for which we had perfect knowledge of the transformation between the images.

These experiments are useful, but are somewhat unrealistic, because of the limited

variety in feature size, shape and contrast. Thus, in Section 4.6, we experiment on

real, multimodal data. The first set of experiments involved registering a shaded-

relief lidar image to an optical image of approximately the same scene. The second

set of experiments involved registering one band of a multispectral urban scene to

a panchromatic image of approximately the same scene. The lidar-to-optical regis-

tration is of particular interest, because the information content differences between

elevation data and optical radiometric images render many pixel-based registration

techniques ineffective. Registration of lidar-derived data, such as vegetation height
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and radiometric images, such as solar reflectance, enable novel fusion studies of land

cover properties and processes. Our automatic lidar-to-optical registration tech-

nique provides a solution for these disparate data sources. This makes the results of

this chapter of significant interest to remote sensing scientists in the earth sciences

community.

4.2 Background on Image Registration

The process of image registration aligns two images, called an input image and

reference image. The reference is understood to be fixed, and the input image is

transformed to match the reference image. Image registration may be viewed as the

combination of four separate sub-processes [11]:

1. Selecting an appropriate search space of admissible transformations. This will

depend on whether the images are at the same resolution, and what type of

transformations will carry the input image to the reference image, i.e. rotation-

translation (RT), or polynomial warping.

2. Extracting relevant features to be used for matching. These could be individ-

ual pixels or groups of pixels that are known to be in correspondence between

the two images, or could be global structures in the images, such as roads,

buildings, rivers, and textures.

3. Selecting a similarity metric, in order to decide if a transformed input image

closely matches the reference image. This metric should make use of the
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features which are extracted from the image, be they specific pixels or global

structures.

4. Selecting a search strategy, which is used to match the images based on max-

imizing or minimizing the similarity metric.

The process of image registration aligns two images, called an input image and

reference image. The reference image is understood to be fixed, and the input image

is transformed to match the reference image. Image registration may be viewed as

the combination of four separate sub-processes [11]:

1. Selecting an appropriate search space of admissible transformations. This will

depend on whether the images are at the same resolution, and what type of

transformations will carry the input image to the reference image, i.e. rotation-

translation (RT), or polynomial warping.

2. Extracting relevant features to be used for matching. These could be individ-

ual pixels or groups of pixels that are known to be in correspondence between

the two images, or could be global structures in the images, such as roads,

buildings, rivers, and textural regions.

3. Selecting a similarity metric, in order to decide if a transformed input image

closely matches the reference image. This metric should make use of the

features which are extracted from the image, be they specific pixels or global

structures.
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4. Selecting a search strategy, which is used to match the images based on max-

imizing or minimizing the similarity metric.

Perhaps the most straightforward, yet inefficient, approach to image registra-

tion is manual registration. This involves a human examining the images to be

registered and selecting pixel matches between the two images. That is, one se-

lects a pixel or group of pixels in each image that are in correspondence, based on

the features they represent and their location relative to other pixels. In remotely

sensed images, these matching pixel pairs are called ground control points (GCPs).

Once a suitable number of GCPs have been selected, a transformation can be found

between the images by minimizing the least squares distance between GCPs. There

are commercial software products, such as ENVI, that compute a registration based

on user-selected GCPs. Unfortunately, manual registration has many drawbacks.

It requires human resources and is time-consuming. Moreover, in the case of two

images with vastly different information content, it may be very difficult to identify

GCPs that correspond exactly to one another.

In distinction to manual registration is automatic registration: registration

that requires no human selection of GCPs or features. Types of automatic regis-

tration can be broken into two classes: pixel-based and global feature-based. Pixel-

based automatic registration techniques are very similar to manual registration, in

that individual pixels or groups of pixels are selected to compute the image regis-

tration. In this case, however, the GCPs are selected based on an algorithm; the

scale invariant feature transform (SIFT)-algorithm [78] is very popular in this re-
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gard. While speed is no longer an issue with pixel-based automatic registration, the

difficulties of registering multimodal images remains. In particular, if there are no

obvious pixels in the input image to match with ones in the reference image, this

scheme will suffer. We will examine a lidar-to-optical image experiment in Section

4.6, in which this problem is manifest.

A second class of automatic image registration algorithms is those that take

into account the entire image, not just prioritized GCPs. The basic idea behind

these algorithms is to apply a feature-extraction algorithm to the input and ref-

erence image, that ideally isolates multi-pixel features common to both images.

These features are then matched with an optimization scheme. Wavelet features

and wavelet-like features, such as Simoncelli pyramids [94], have proven effective for

this type of image registration [108], [96], [97], [22]. However, wavelets often fail to

find the most robust features in an image. Roads, rivers, and other edge-like features

are not well-captured by wavelet algorithms. This is because wavelets are essentially

isotropic, meaning they are the same in all directions. Consequently, textural rather

than directional features are emphasized by wavelets [30]. This lack of directional

sensitivity leads to a lack of robustness in the corresponding registration algorithms:

the feature space is too homogenous for the optimization scheme to avoid local min-

imizers near the global minimizer. To counter this, we have developed a feature

extraction algorithm that has a strong directional emphasis, yielding a more robust

registration solution.

We summarize our image registration algorithm in terms of the four compo-

nents described in [11]:
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1. Search Space: All of our examples feature images at the same scale, so ef-

fectively, we chose the search space to be restricted to the space of compo-

sitions of rotations and translations (RT). In future work, we shall examine

incorporating polynomial transformations in our algorithm to address more

complex, spatially varying distortions within images. Such images could in-

clude remotely sensed images which have not been ortho-rectified to remove

distortions due to topography.

2. Features : Wavelet features in one case and shearlet features coupled with

wavelet features in another.

3. Similarity Metric: Unconstrained least squares. That is, if FR and FI are

the reference and input features, N the number of relevant pixels, (xi, yi) the

integer coordinate of the ith pixel, and Tp the transformation associated to

parameters p, we seek to minimize the similarity metric given by:

χ2(p) :=
1

N

N∑
i=1

(FR(Tp(xi, yi))− FI(xi, yi))2 .

4. Search Strategy: Modified Marquadt-Levenberg method of solving non-linear

least squares problems [84], [96].

4.3 Harmonic Analysis for Image Registration

Numerical wavelet algorithms decompose an image according to scale and

translation. This has three principle benefits for image registration. First, it extracts

features that are easier to match than the initial images, making search algorithms
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more accurate and robust. Second, wavelet and wavelet-like algorithms often contain

an iterative decimation step, which reduces the number of pixels in the images to

be matched. This allows for faster computation time, when compared to methods

without decimation [108]. Finally, wavelet algorithms represent textures very well,

which can be very useful features for accurate image registration.

While wavelets and wavelet-like algorithms have had success in automatic

image registration [108], they are lacking in certain regards. Indeed, the features

they produce are often textural in nature [17]. Instead of producing sparse, distinct

edges, wavelets produce soft, somewhat noisy looking features. As such, image

registration techniques based on wavelets often suffer from a lack of robustness to

initial transformation, since the lack of sharp features means there will be many

local minimizers to the optimization algorithm. This is related to the isotropic

nature of wavelets. These problems have been well-documented [104], and led to the

burgeoning sub-discipline of harmonic analysis known as geometric multi-resolution

analysis.

The shearlet construction adds a new parameter of decomposition to classical

wavelet methods: direction. This means that shearlet coefficients {〈f, ψi,j,k〉}(i,j,k)

will contain information about a signal’s behavior in different directions, which is

not present in wavelet coefficients. This property makes shearlet coefficients opti-

mally sparse for a broad class of signals, as has been discussed in Chapter 2. This

anisotropy makes shearlets well-suited for problems in image processing, including

image fusion [87], image denoising [38], and image in painting inpainting [66], [24].
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4.3.1 Numerical Implementations of Wavelets and Shearlets

Wavelets have been numerically implemented in a variety of ways, and are

pervasive in image processing. The wavelet features used in our algorithm are com-

puted in C, but could just as easily have been computed in MATLAB or another

high level programming language. The major difference between computing the

features in C, as opposed to MATLAB, is speed; C is much faster. The shearlet

features for our algorithm are computed in MATLAB. The algorithm that produces

these features for a given image makes use of a recent MATLAB library [54], mod-

ified for computational purposes pertaining to optimization search strategies. For

a given image, the toolbox in [54] is used to compute shearlet features in a variety

of directions and scales. These are then thresholded and combined at each scale, to

provide distinct features to be used in our optimization algorithm. Details of the

precise construction are in Section 4.4.

As an demonstration of how wavelet and shearlet features differ, consider Fig-

ure 4.1, which features a 256 × 256 optical image of Washington state; the image

contains many features which could be used for matching by an automatic image

registration algorithm, such as textures from vegetation and edges from land cover

boundaries.

To illustrate the directional character of discrete shearlet algorithms, and their

utility for image registration, we show in Figure 4.2 the images produced by a MAT-

LAB discrete wavelet algorithm using the ‘db2’ wavelet, and the shearlet feature

algorithm we have developed.
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Figure 4.1: A grayscale optical image of Washington state containing both textural and

edge-like features. The image is courtesy of Dr. David J. Harding of NASA Goddard

Space Flight Center.

The features produced by the isotropic wavelet transform are composed of

diffuse speckle and the almost total absence of edge-like features. By contrast, the

features produced by the shearlet transform highlight the distinct, linear features

oriented in all directions. In the following sections, we demonstrate the improved

registration performance of our shearlet approach using a variety of image sources.

4.4 Algorithms to be Tested

We conducted experiments with six algorithms. As a control, we consider the

three algorithms used in [108], namely image registration based on feature-matching

with spline wavelet pyramids, Simoncelli low-pass pyramids, and Simoncelli band-
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Figure 4.2: Wavelet (top) and shearlet (bottom) features extracted from Figure 4.1.

pass pyramids. We note that the Simoncelli features are derived from rotation-

invariant and translation-invariant filters [94], and all three of these wavelet-like

methods have the advantage of being translation-invariant. This means if an image I

has wavelet features WI , then the image Tx,y(I) has wavelet features Tx,y(WI), where

Tx,y is a translation by the coordinates (x, y). Intuitively, if an image is shifted,

then translation-invariant wavelet features will shift in exactly the same manner.

Translation invariance is a very useful property for getting precise registration, but
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does not contribute to robustness. The construction of these wavelet-like pyramids

is beyond the scope of this article; we refer to [94], [100], and [108] for details.

These three classical algorithms are collectively referred to as wavelet registration

techniques. We compare these algorithms with a two-stage registration algorithm.

First register with shearlet features to acquire a registration transformation. Then,

set this registration as the initial guess and run the optimization algorithm again

with each of the three wavelet techniques. These three two-stage techniques shall

be collectively referred to as hybrid shearlet+wavelet registration techniques.

The motivation for this two-step registration algorithm is that using shearlet

features for optimization should provide a highly robust, but less accurate registra-

tion. The shearlet algorithm is not translation invariant, resulting in small errors

in registration computation. Thus, sub-pixel accuracy is not assured. Our two-step

algorithm corrects for this by first providing a first stage registration, which is sub-

sequently refined by the classical wavelet registration algorithms. This combines the

strong robustness of shearlet features with the high precision provided by wavelet

features. Note that both the wavelet and shearlet transforms are multi-scale, mean-

ing each image is decomposed into sub-images with features of progressively finer

scales. The key difference between the wavelet and shearlet algorithms is that a di-

rectional component is included in the latter but not the former. We summarize our

hybrid algorithm below. θ denotes a counterclockwise rotation, Tx, Ty translations

in the x and y directions respectively.

1. Input a reference image, Ir, and an input image I i. These will be the images
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to be registered.

2. Input an initial registration guess (θ0, Tx0 , Ty0).

3. Apply shearlet feature algorithm and wavelet-like feature algorithm to Ir and

I i. This produces a set of shearlet features for both, denoted Sr1 , ..., S
r
n and

Si1, ..., S
i
n, respectively, as well as a set of wavelet features for both, denoted

W r
1 , ...,W

r
n and W i

1, ...,W
i
n. Here n refers to the level of decomposition chosen.

In general, n is bounded by the resolution of the images as

n ≤
⌊

1

2
log2(max{M,N})

⌋
,

where Ir, Ii are M ×N pixels. All our experiments are for 256× 256 images,

and we set n = 4.

4. Match Sr1 with Si1 with a least-squares optimization algorithm and initial guess

(θ0, Tx0 , Ty0) to get a transformation T S1 . Using T S1 as an initial guess, match

Sr2 with Si2, to acquire a transformation T S2 . Iterate this process by matching

Srj with Sij using T Sj−1 as an initial guess, for j = 2, ..., n. At the end of

this iterative matching, we acquire our final shearlet-based registration, call it

T S = (θS, T Sx , T
S
y ).

5. Using T S as our initial guess, match W r
1 with W i

1 with a least-squares opti-

mization algorithm to acquire a transformation TW1 . Using TW1 as an initial

guess, match W r
2 with W i

2, to acquire a transformation TW2 . Iterate this pro-

cess by matching W r
j with W i

j using TWj−1 as an initial guess, for j = 2, ..., n.
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At the end of this iterative matching, we acquire our final hybrid registration,

call it TH .

6. Output TH = (θH , THx , T
H
y ).

The wavelets-only algorithm is the same as above, without step 4.) and using

(θ0, Tx0 , Ty0) as the initial guess in step 5.).

As mentioned, the wavelet component of the algorithm is based on software

coded in C, which is detailed in [108]. To produce the shearlet features for an image

I, we proceed as follows:

1. Apply MATLAB script known as the fast finite shearlet transform (FFST)

[54], which is part of the FFST library.

2. Perform hard thresholding on each shearlet coefficient to set the bottom 90%

of coefficients in magnitude to 0. An example of these thresholded coefficients

is in Figure 4.3.

3. Combine all the coefficients of a particular scale. Output the resulting n

shearlet features, S1, ..., Sn, where n is as above.

In addition to wavelet and shearlet features, we tested image registration with

edge features produced by the classical edge detection algorithms of Canny [32] and

Sobel [102]. These algorithms use discrete gradient methods to identify regions of

sharp transition, which are then labeled as edges. Registration experiments with

these algorithms were performed, with extremely negative results. Indeed, unless

the truth registration is within a pixel or two of the initial guess for each parameter,
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Figure 4.3: Intermediate results of MATLAB shearlet features algorithm applied to

Figure 4.1. Notice each image emphasizes a different direction. These can be combined to

produce the shearlet image seen in Figure 4.2.

these features could not be used to successfully register the images; the optimization

algorithm immediately became trapped in a local minimum. Because of their very

poor performance, we do not include the numerical results for these experiments.

The failure of classical edge detectors, which often produce many very thin

features, in automatic image registration illustrates an interesting principle: that

features ought to be substantial and relatively sparse in order to produce a robust

registration algorithm. Indeed, although our shearlet algorithm also emphasizes

edge-like features, only the most extreme global edges are produced. Our results

corroborate this, as our experiments with shearlets indicate their effectiveness in pro-
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ducing a highly robust registration algorithm, in stark contrast to the experiments

with gradient-based edge detectors.

All of the registration algorithms tested were evaluated by computing the root-

mean-square error (RMSE) between the truth registration parameters and those

computed by the algorithms. In the case of our synthetic experiments, the truth

registration parameters are the parameters of the misregistration we applied to the

images. In the case of our lidar-to-optical experiments, the truth registration was

computed using manual registration assisted by the software package ENVI. In the

case of the multispectral-to-panchromatic experiments, the truth registration was

a known, artificial misregistration. The details of the computation of RMSE are

given in [108]. In each of our experiments, a different number of experiments are

performed. The number of experiments was chosen to emphasize the robustness

limits of the wavelets-only and hybrid shearlets+wavelets algorithms for each set of

images.

We note that although we tested our algorithm only on images of the same res-

olution, the optimization scheme is capable of registering images of different resolu-

tions. This is possible because our harmonic analysis algorithms perform resolution-

decreasing decimations, which eventually bring the image of high resolution close to

the resolution of the other image.
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4.5 Experiments on Synthetically Generated Datasets

Our first set of experiments involved synthetic test images. We fixed a source

image, then extracted a fixed reference image from this. We then rotated and

translated this reference image within the larger source image, in order to acquire a

collection of input images to register against the reference image. A diagram of this

process is shown in Figure 4.4. The input images are these deliberately misregistered

versions of the reference image.

Figure 4.4: In order to produce synthetic input images, we rotated and translated

our reference image within the larger source image and extracted the resulting image.

This extracted input image (right) is registered against the extracted reference image

from the original image (left).

This process has the benefit of simple error computation. Because we knew the
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exact transformation that was applied to the reference image to acquire the input

image, we could compare our registration result directly to these values. Moreover,

since we are essentially comparing an image to a transformed version of itself, a

convergent registration algorithm should be expected to produce sub-pixel accuracy.

Thus, we expected to see very small RMSE values for the synthetic experiments.

Sub-pixel accuracy should be attained to signify strong performance in this case,

which is indicated by a RMSE value less than 1.

For ease of comprehension, we coupled the translation and rotation parame-

ters together. We examined images that had been rotated and translated in the x

and y direction by the same value. This joint parameter was denoted RT. For ex-

ample, if RT= 5.5, then the image was rotated counter-clockwise by 5.5 degrees and

translated in the x and y directions by 5.5 pixels. Nearest neighbor interpolation

was used for rotations and non-integer translations. Letting RT increase from 0,

we considered input images that were increasingly misregistered from the reference

image. Consequently, the larger RT was, the more difficult it was for an optimiza-

tion algorithm to derive the correct registration parameters. We were interested in

allowing for larger values of RT, while maintaining good registration accuracy; this

is the problem of robustness.

We performed synthetic experiments using as the source image a 1024× 1024

image extracted from Band 4 of a Landsat Thematic Mapper scene of the Mount

Hood National Forest; see Figure 4.5. We then extracted the center 256 × 256

sub-image to serve as the reference. To produce the input images, we rotated and

translated the reference image within the source by a range of RT values.
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Figure 4.5: Landsat-TM scene of Pacific Northwest used as source image for syn-

thetic experiments. The image has been converted to grayscale. The image is cour-

tesy of Dr. Jacqueline Le Moigne of NASA Goddard Space Flight Center.

The RT parameter ranged from 0 to 40, with increments of 0.2. We per-

formed 200 corresponding registration experiments, in which we used each of our

six registration algorithms to find a registration transformation. Such a registra-

tion transformation is parametrized as a triple of rotation and translation values

(θ, Tx, Ty). To analyze the quality of our algorithms, we computed the RMSE be-

tween the truth registration parameters and the computed registration parameters.

Table 4.1 displays the number of converged experiments, the percentage of con-
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Registration Technique
Number of Converged

Experiments (out of 200)
Percentage of Converged Experiments RMSE Relative Improvement

Spline Wavelets 108 54.00% .0019 -

Simoncelli Band-Pass 21 10.50% .0045 -

Simoncelli Low-Pass 113 55.50% .0040 -

Shearlet+ Spline Wavelets 154 77.00% .0058 42.59%

Shearlet+ Simoncelli Band-Pass 154 77.00% .0080 633.33%

Shearlet + Simoncelli Low-Pass 154 77.00% .0081 36.28%

Table 4.1: Comparison of registration algorithms for Landsat-TM synthetic experiment.

verged experiments, and the average RMSE in converged cases. In the case of the

hybrid shearlet+wavelet algorithms, the relative improvement in the number of con-

verged experiments as compared to the corresponding wavelets-only technique was

computed using the formula:

Relative Improvement :=
CVs+w − CVw

CVw
,

where CVs+w denotes the number of converged experiments with shearlet and wavelet

features, and CVw denotes the number of converged experiments with wavelets alone.

The RMSE between each wavelets-only technique and the corresponding hy-

brid technique for each RT iteration are displayed graphically in Figure 4.6. An

experiment is considered convergent if its RMSE is less than 1, indicating sub-pixel

registration was achieved. This is a very high degree of precision for synthetic ex-

periments.

Our results indicate, based on the number of wavelets-only converged experi-

ments, the Simoncelli low-pass features offer the most robust image registration of
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Figure 4.6: Comparison of wavelet and shearlet+wavelet algorithms for Landsat-TM

image synthetic experiments (top left: splines; top right: Simoncelli band-pass, bottom:

Simoncelli low-pass); blue is wavelets, green is hybrid shearlets+wavelets.

the wavelet methods, while Simoncelli band-pass features perform far worse than

the others. All three offer strong accuracy when convergent. The hybrid shear-

let+wavelet algorithms, however, offer substantially increased robustness at a very

small error increase over the convergence set. Indeed, sub-pixel accuracy is achieved

in all convergent cases. It is interesting to note that all three of the shearlet algo-

rithms have the same number of converged experiments. This can be justified by

recalling that the first stage of all three of the algorithms involves acquiring a first

stage registration, based on shearlets. Thus, when one of the hybrid algorithms fails

to converge, it is likely because the shearlet feature matching step fails to converge.
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This failure would be the same for all algorithms which begin with a shearlet feature

matching, since it is highly unlikely that the second-stage wavelet feature matching

would compensate sufficiently. We conclude that for these synthetic experiments,

the hybrid shearlet-wavelet registration algorithms provide increased robustness over

the classical wavelets algorithms.

4.6 Experiments on Multimodal Images

We next considered experiments registering two real images with different

modalities. This represented a more realistic test of the functionality of our algo-

rithms, since in reality, image registration will be between two different images, not

an image and a synthetic misregistration of itself. Moreover, many image regis-

tration problems in the geosciences involve registering images of different modali-

ties, so our present experiments are relevant to an important class of registration

problems. In particular, the modal differences can make finding GCPs exceedingly

difficult. This renders pixel-based automatic registration algorithms, such as SIFT,

sub-optimal.

As an illustration of this, consider two data sources for a WA state mixed land-

cover scene: one lidar and the other optical. These images are shown in Figure 4.7.

The lidar data was acquired in 2003 by Terrapoint, Inc., under contract to NASA,

using a multi-return airborne laser swath mapping (ALSM) instrument. The optical

data is a natural color aerial photograph, presented as a grey-scale image, collected

in 2006 and obtained by Google from the United States Geological Survey. These
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data sources have fundamentally different, but related, information content. A lidar

image, commonly referred to as a digital elevation model (DEM), is a measure

of the elevation of the components making up the surface. The data we used is

a highest surface DEM. This represents vegetation canopy tops where vegetated,

and ground, roads, and building tops where not vegetated. On the other hand,

an optical image records solar radiance reflected from the surface. The latter is a

function of the reflectance of the surface components and their three-dimensional

organization. Together these define the patterns and brightness of illuminated and

shadowed patches seen in optical images. The features in the two image types are

markedly different and thus are not well suited for GCP identification.

We partially overcome this problem by generating a synthetic shaded-relief im-

age by artificially illuminating the lidar elevation image with a light source directed

in the same orientation as the solar illumination in the optical image as shown in

Figure 4.7. Similar patterns of illuminated and shadowed patches are produced but

the correspondence is not exact for the following reasons:

1. The lidar elevation image is not a perfect representation of the surface.

2. The shaded-relief modeling used is not a perfect representation of solar illu-

mination.

3. There can be surface change between the times of lidar and optical image ac-

quisition. The discrepancies between the images can cause erroneous selection

of GCPs.

As an experiment, a MATLAB SIFT algorithm [101] was applied to these images,

94



Figure 4.7: Lidar ALSM elevation image (top left), the derived shaded relief image

(top right) and aerial photograph for a scene in WA state (bottom). The shaded

relief image, illuminated in the same direction as in the optical image, depicts some

similar patterns of textures and edges. The images are courtesy of Dr. David J.

Harding of NASA Goddard Space Flight Center.

which computes pairs of points to use for pixel-based registration. This code is

courtesy of Andrea Vedaldi, and is available at http://www.robots.ox.ac.uk/

~vedaldi/code/sift.html. The results of this algorithm appear in Figure 4.8,

where the corresponding pixels are linked with a green line. There are far more
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incorrect pixel pairs than correct, making this method ineffective for image registra-

tion. This highlights a pitfall of automated SIFT for the registration of multimodal

images: the visual similarity of features must be very high.

Figure 4.8: The pixels computed by SIFT in the lidar shaded-relief (left) and optical

(right) images of WA, connected by green lines. Note the lack of correspondence;

such points are unusable for a registration algorithm.

It is important to note that when conducting experiments to assess the accu-

racy of registration algorithms using multimodal images, knowing the truth registra-

tion between the images is not as straightforward as in synthetic image registration.

In our synthetic experiments, we knew the truth registration of the input images
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with respect to the reference image perfectly, since we designed the misregistration

that produced the input images. Thus, we easily computed the RMSE between the

truth registration and computed registration. In our multimodal image experiments,

we did not know a priori the truth registration. We established this via manual se-

lection of between 15 and 25 GCPs using the ENVI image processing software and

applying its rotation-translation transformation solution.

However, as mentioned, this is very difficult for certain image pairs, as there

is often little local pixel-to-pixel correspondence near key features. Indeed, consider

the images in Figure 4.9. These images are subsets of the WA state lidar and optical

images, depicting the same alignment of trees. However, there is little pixel-to-pixel

correspondence. These images demonstrate that features in multimodal images can

have global correspondence, but not pixel-to-pixel correspondence. Thus, estab-

lishing the truth registration using our manual GCP method was difficult in these

circumstances. As such, the margin for the lidar-to-optical experiments should be

increased from that used in the synthetic experiments, to account for approxima-

tions made in computing the truth registration. Near sub-pixel accuracy is the goal,

corresponding to a RMSE of less than 2.

For these experiments, we tested for algorithm robustness by allowing the

initial registration guess for the optimization algorithm to vary according to the RT

parameter. The truth registration was modified by RT to produce the initial guess

for the algorithm. So, if RT= 5.5, then the initial guess of the registration algorithm

is a counterclockwise rotation of 5.5 degrees and a translation in both the x and

y directions by 5.5 pixels, on top of the truth registration. This tests robustness
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Figure 4.9: The same alignment of trees in the lidar shaded-relief (left) and optical

(right) images of WA. Although there is clear correspondence at the macroscopic

level, it is difficult to find pixel-to-pixel correspondences.

in a slightly different way than did the synthetic experiments. For the synthetic

experiments, the initial guess was always set to 0, but the images themselves were

synthetically misregistered to be increasingly far apart. Here, the images are at a

fixed misregistration, and the initial guess is changed. We use this test for robustness

because the images are not synthetic misregistrations of one another, but two distinct

images that may or be not be co-registered. The RT applied to the truth registration

shall be denoted RTIG to indicate this RT parameter was not applied to create a

synthetic input image, but was applied to the initial guess of the algorithm.

4.6.1 Lidar to Optical Registration Experiments

Our first set of multimodal experiments involved registering our WA state lidar

shaded-relief image and optical image of approximately the same scene. The truth

registration for these images was computed using our manual ENVI method to be

(θ, Tx, Ty) = (2, 1,−3).
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Registration Technique
Number of Converged

Experiments (out of 101)
Percentage of Converged Experiments RMSE Relative Improvement

Spline Wavelets 55 54.46% 1.3439 -

Simoncelli Band-Pass 61 60.40% 1.5862 -

Simoncelli Low-Pass 86 85.15% 1.4868 -

Shearlet + Spline Wavelets 60 59.41% 1.3144 9.09%

Shearlet + Simoncelli Band-Pass 65 64.36% 1.5836 6.56%

Shearlet + Simoncelli Low-Pass 88 87.13% 1.4861 2.33%

Table 4.2: Comparison of registration algorithms for lidar-to-optical experiment.

In this experiment, we allowed the initial RTIG parameter to vary from −25

to 25, with increments of .5. These RTIG parameters are applied to the truth

registration of (2, 1,−3) to produce the initial guess. We then performed 101 image

registration experiments with each of the six algorithms, then computed the RMSE

between the algorithm solutions and the truth registration along with the number

of converged experiments. The results appear in Table 4.2 and Figure 4.10.

Our results in this case show Simoncelli low-pass features to provide the best

robustness out of the three wavelet algorithms, spline wavelets the least so. The hy-

brid shearlet+wavelet algorithms offer some improvement over the classical wavelets,

but not to the same degree as with the synthetic image experiments. The increased

RMSE in all experiments, when compared to the synthetic experiments, is attributed

to both the visual differences between these images, and the fact that the truth reg-

istration was approximated using the imperfect method of manual registration via

GCP selection.
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Figure 4.10: Comparison of wavelet and shearlet+wavelet algorithms for WA lidar-

to-optical experiment (top left: splines; top right: Simoncelli band-pass; bottom:

Simoncelli low-pass); blue is wavelets, green is hybrid shearlets+wavelets.
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4.6.2 Multispectral to Panchromatic Registration Experiments

Our second set of multimodal experiments involved registering two bands of a

multispectral image. These images of Hasselt, Belgium were acquired by the Landsat

7 Enhanced Thematic Mapping Plus (ETM+) sensor in 1999 and distributed as part

of the IEEE Geoscience and Remote Sensing Society 2000 data fusion contest. The

first seven bands of the sensor are multispectral, and produce images covering the

visible and infrared spectra; the eighth band is panchromatic. We considered the

registration of band 1 to band 8. Band 1 has a narrow spectral resolution of 450-515

nm, while band 8 has a broad spectral resolution of 520-900 nm. These images

appear in Figure 4.11.

These images were artificially misregistered to have truth registration of (θ, Tx, Ty) =

(5, 10, 10). We let the initial RTIG parameter vary from -50 to 50, incrementing by 1.

We then performed 101 corresponding image registration experiments with each of

the six algorithms, then computed the RMSE and number of converged experiments.

Results from this experiment appear in Table 4.3 and Figure 4.12.

Our results indicate that among the three wavelet algorithms, Simoncelli band-

pass features are the most robust, spline wavelets the least so. In all three cases, the

shearlet registration algorithm outperforms the standard wavelet registration algo-

rithm. The average RMSE is consistent among all the algorithms, and is higher than

in the synthetic experiments of Section 4.5, but lower than for the lidar-to-optical

experiments. This is attributed to the fact that features in the multispectral and

panchromatic images are more similar than the features in the lidar-to-optical ex-
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Figure 4.11: Multispectral band 1 (top) and panchromatic band 8 (bottom) images

of Hasselt, Belguim acquired by Landsat ETM+. The images have been converted to

grayscale. A subset is extracted from these images to ease computation. The images

are courtesy of the IEEE 2000 GRSS Data Fusion Contest.

periments, but are less similar than in the synthetic experiments. Indeed, the RMSE

for the multispectral-to-panchromatic experiments falls in between the RMSE for

the synthetic experiments and the RMSE for the lidar-to-optical experiments.
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Figure 4.12: Comparison of wavelet and shearlet+wavelet algorithms for panchromatic

to multispectral experiment (top left: splines; top right: Simoncelli band-pass; bottom:

Simoncelli low-pass); blue is wavelets, green is hybrid shearlets+wavelets.
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Registration Technique
Number of Converged

Experiments (out of 101)
Percentage of Converged Experiments RMSE Relative Improvement

Spline Wavelets 8 7.92% .6376 -

Simoncelli Band-Pass 19 18.81% .7534 -

Simoncelli Low-Pass 14 13.86% .6034 -

Shearlet + Spline Wavelets 20 19.80% .5185 150.00%

Shearlet + Simoncelli Band-Pass 27 26.73% .6494 42.11%

Shearlet + Simoncelli Low-Pass 20 19.80% .5513 42.86%

Table 4.3: Comparison of registration algorithms for panchromatic to multispectral ex-

periment.

4.7 Summary and Conclusions

We have demonstrated in synthetic and real experiments, with both unimodal

and multimodal images, that shearlet features can be used to increase robustness of

image registration algorithms. In our synthetic experiments, the hybrid algorithms

produced an average increase of 237.40% in number of converged experiments. When

comparing the best wavelet algorithm to its corresponding hybrid algorithm, the

increase was 36.28%. In our lidar-to-optical registration experiment, the hybrid

algorithms produced an average increase of 5.99% in number of converged exper-

iments. When comparing the best wavelet algorithm to its corresponding hybrid

algorithm, the increase was 2.33%. In the multispectral-to-panchromatic registra-

tion experiments, the hybrid algorithms produced an average increase of 78.32%.

When comparing the best wavelet algorithm to its corresponding hybrid algorithm,

the increase was 42.11%.
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Although registration robustness was improved in all three image experiment

sets by the use of the hybrid algorithm, the extent of improvement varied. In partic-

ular, the improvement was noticeably lower in the lidar-to-optical experiments than

in the synthetic experiments or the multispectral-to-panchromatic experiments. In

both the Landsat image used for the synthetic experiments and the multispectral

bands, edge features were dominant. These edges are optimally represented the-

oretically by shearlets, and the improvement in robustness for these experiments

manifests this. Conversely, the lidar shaded-relief and optical images have fewer

common edges and many more isotropic textures. These textures are not strongly

directional, and are not theoretically optimized by shearlets. That the lidar and op-

tical images display fewer shared edge features is clear from examining the shearlet

features produced by our algorithm; see Figure 4.13.

Figure 4.13: Shearlet features produced for the lidar (left) and optical (right) images of

WA, respectively. Notice that the strongest edge-like features in each image are emphasized:

a diagonal of trees for lidar and and land-cover change near the top for optical. Due to

the information content differences between lidar and optical data, these features are not

represented in both images. Some edges are shared by both, but not all.
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Consequently, it is reasonable that shearlets would offer comparatively little

improvement over wavelets in terms of registration robustness for these type of

images, as they lack the strong, shared directional features shearlets are known to

optimize.

We conclude that the experiments performed are practical confirmation of the

theoretical properties of shearlets. While they are an effective tool for registering

images with strong edge features, they are somewhat less effective for registering

images that are texturally dominant. Our hybrid algorithms produce a solution to

this difference, by incorporating shearlets to capture edge features, and also wavelets,

to capture textural features.

In light of the success of the current experiments, it would be of interest to

test other directionally-sensitive representation systems in place of shearlets, such as

curvelets or contourlets. These systems produce sparse features that represent edge

optimally, in a manner theoretically similar to shearlets. How they would perform

for image registration, compared to shearlets, is not clear. They are numerically

implemented by not one basis function ψ, but by a finite family of functions. This

variety of generating functions is often considered a disadvantage, but could offer

flexibility in registering a wide variety of images, with basis functions adapted for

certain non-linear edge features found in images.

It is also of interest to apply these harmonic analytic techniques to the reg-

istration of more complicated data types, such a three-dimensional representations

of data, extending beyond the two-dimensional images considered in this article.

For example, lidar measures the three-dimensional distribution of vegetation com-
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ponents from which the two-dimensional highest surface DEM used in this article

was derived; see Figure 4.7. Registration in the z direction, as well as x, y, of

multi-temporal 3D lidar cubes could aid in the identification of areas of vertical

vegetation change due to processes such as growth, tree mortality, fire and human

land use activities. This approach could also be applied to hyperspectral image

cubes in which the z dimension is a record of spectral absorption features. 3D regis-

tration of multi-temporal data could aid in the identification of locations that have

undergone spectral change. Three dimensional shearlet implementations exist [71],

and could be applied to this problem.

In addition, developing more efficient techniques for registering extremely large

images is of interest, since the methods described in this article become computa-

tionally burdensome for large images. An approach of partitioning the image into

a few sub-images, each containing many features, then running the algorithm de-

scribed in this article on these sub-images, shall be investigated in future work.
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Chapter 5: Superresolution with Shearlets

This chapter develops a novel algorithm for the superresolution of images. A

superresolution algorithm increases the resolution of an image, while attempting to

preserve smoothness and important information in the image, and without intro-

ducing artifacts. There may be additional information incorporated into the new

superresolved image, such as lower resolution sub-pixel shifts of the same scene, or

images of different modalities. Many classical methods for superresolution employ

an interpolation scheme, based on some form of weighted local averaging [64]. More

sophisticated methods exploit the geometry inherent in the image to augment these

interpolation schemes by improving smoothness [8].

In order to analyze the geometry of an image, anisotropic harmonic analysis

techniques are useful. These methods provide directionally sensitive computational

tools for decomposing an image, and efficiently and accurately encoding its most

salient features. In particular, the construction of shearlets offers a computationally

efficient method for analyzing the directional content of an image. This information

can be used to provide smoother superresolved images, as our algorithm’s results

demonstrate; see Section 5.3.

The structure of this chapter is as follows. We begin with relevant background
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on the problem of image superresolution in Section 5.1. Our shearlet-based super-

resolution algorithm is detailed in Section 5.2, and is tested on a remotely sensed

image in Section 5.3 [27], [9]. We conclude and explore future work related to this

algorithm in Section 5.4.

5.1 Background on Superresolution

The problem of superesolution is significant in image processing. The goal of

superresolution is to increase the resolution of an image I, while preserving detail

and without producing artifacts. The outcome of a superresolution algorithm is an

image Ĩ, which is of the same scene as I, but at a higher resolution. We restrict

ourselves here to greyscale images, hence we can consider our images as real-valued

matrices. Let I be an M×N matrix and Ĩ an M̃×Ñ matrix, with M < M̃, N < Ñ .

We consider the common case where M̃ = 2M and Ñ = 2N , which corresponds

to doubling the resolution of the original image in both the horizontal and vertical

directions.

Superesolution can be done by using information in addition to I, such as

low resolution images at sub-pixel shifts of the scene [90], or images of the scene

with different modalities. The latter method is related to the specific problem of

pan-sharpening [25]. Alternatively, superresolution can be performed using only I.

The first type of superresolution requires additional data, and is thus less desirable

than the second type. In this chapter, we shall develop a superresolution method of

the second type, which requires as input only a single image.
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There are several standard approaches to superresolving I without using ad-

ditional information. Among the most common are nearest neighbor interpolation

and bicubic interpolation. Let us consider the superresolved version of I = {am,n},

denoted Ĩ = {ãi,j}. Here, the values ãi,j and am,n may be understood as entries of a

real matrix representing the images. We must compute each pixel value in the new

image, namely ãi,j, from the pixel values of the original image, am,n.

In the case of nearest neighbor interpolation, new pixel values are computed

simply by replicating current pixel values. This method is simple and computation-

ally efficient, but leads to extremely jagged superresolved images. It is unsuitable

when a high-quality, smooth Ĩ is required. Other methods involve convolving the

image with an interpolation kernel, which amounts to taking a weighted average of

pixel values within some neighborhood. For example, bicubic interpolation deter-

mines Ĩ by computing each ãi,j as a weighted average of the 16 nearest neighbors in

I; the weights are chosen to approximate the derivative values at the pixels being

analyzed. A precise description of the algorithm may be found in [64].

A novel method for improving the smoothness of images superresolved using

these methods was demonstrated in [8]. In this algorithm, local dominant directions

are computed using tight frames derived from circulant matrices. After using nearest

neighbors or bicubic upsampling, a motion blur filter is applied in the dominant

direction. Areas with low variance are assumed to have no dominant direction. This

method resulted in superresolved images with much smoother edge features when

compared to the interpolation techniques alone. This method proved effective, but

required new tight frames to be computed for each application of the algorithm,
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depending on the image size and the structure of the features present, thus limiting

its efficacy. Essentially, this method uses frame theory to compute locally dominant

directions; we shall compute locally dominant directions in another, more efficient

manner.

The aim of this chapter is to develop a superresolution algorithm that com-

putes dominant directions efficiently and accurately, using the harmonic analytic

construction of shearlets; see Chapter 2. This method is quite general, and can be

applied to images of any size, and has few tunable parameters.

5.2 Description of Shearlet Superresolution Algorithm

The goal of our algorithm is to exploit the directional sensitivity of shearlets

to efficiently find the location and orientation of edges in images, which are then

superresolved smoothly. Our algorithm for shearlet-based superresolution is coded

in MATLAB. It is described below. Consider an M × N image matrix I; the

superresolved image shall be denoted Ĩ as above.

1. Apply the Fast Finite Shearlet Transform [56], [55] to I. This produces shearlet

coefficients up to
⌊

1
2

log2(max{M,N})
⌋

scales. If we label the scales from

coarsest to finest scale starting at j = 1, we have 2j+1 matrices of size M ×

N at the jth scale, each corresponding to a different direction from 90◦ to

(90 + 180(1 − 1/2j+1))◦, equally spaced. Denote these directional matrices

D1, ..., D2j+1 . For the experimental images, we used the j = 3 scale since it

best captured the edges, giving us 16 directions. This parameter may be set
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differently depending on the size of the image under analysis.

2. Upsample by a factor of 2 each of D1, ..., D2j+1 , using the upsampling method

of bicubic interpolation to acquire D̃1, ..., D̃2j+1 . These contain the directional

information that will be used later.

3. Upsample by a factor of 2 the original image I, using the upsampling method

of bicubic interpolation to acquire Ĩ. This upsampled Ĩ will be modified using

the directional information present in D̃1, ..., D̃2j+1 .

4. Assign each pixel in Ĩ a local direction based on which matrix contained the

shearlet coefficient of largest magnitude, i.e. which entry in that location is

maximal among D̃1, ..., D̃2j+1 . Pixels which have no dominant direction are

determined by one of the following three methods:

(a) Pixels whose maximum coefficients were in the bottom 10% of all max

coefficients were assigned no direction.

(b) Apply a standard deviation filter of size 5 to Ĩ to acquire Ĩσ. If a pixel in

Ĩσ has value less than .05, this pixel is assigned no dominant direction.

Intuitively, pixels with low Ĩσ value are locally constant, and should not

be assigned a dominant direction. The parameter .05 can be tuned as

needed.

(c) Apply the Canny edge detector with default parameters to Ĩ, then thicken

the edges using the MATLAB function ‘imdilate’. Apply this mask to

each of D̃1, ..., D̃2j+1 and proceed as in a.) This has the effect of pick-
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ing no dominant direction if a pixel is far from an edge-like feature, as

determined by the Canny edge detector.

5. Apply a motion blur filter of length ` in each of the 2j+1 directions Ĩ, to

produce Ĩ1, ..., Ĩ2j+1 . The parameter ` is tunable, and was set to ` = 5 for our

experiments.

6. Replace the pixel values of Ĩ by their corresponding blurred version based on

the previously assigned local direction, i.e. with the pixel value in Ĩm where

the pixel has dominant direction corresponding to m.

7. Output the superresolved image Ĩ.

5.3 Experiments and Results

We test our algorithm against standard bicubic interpolation by running both

superesolution algorithms on a remotely sensed image. Our test image is from an

aerial view of the University of Mississippi-Gulf Park near Gulfport, acquired with

a CASI-1500 sensor with spectral range 375 − 1050 nm in 72 bands. The image is

courtesy of Paul Gader, Alina Zare, Ryan Close, J. Aitken, and G. Tuell [46]. We

choose to analyze the 30th band, due to its relatively high contrast. The image has a

spatial resolution of 1 m and consists of 325×337 pixels. We perform our algorithm

on the full spacial image, though we extract a 125 × 125 subset for visualization

purposes; this subset is shown in Figure 5.1.

The 250 × 250 image produced from a simple bicubic interpolation is shown
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Figure 5.1: Original 125× 125 image of Gulfport, MS. This is I in the algorithm

as described in algorithm description.

in Figure 5.2.

Figure 5.2: Superresolved 250× 250 image with bicubic interpolation. Notice that

the edge-like features are jagged.

We consider three shearlet-based superresolved images, based on the three

methods for determining the pixels with no dominant direction (see Step 4 in algo-

rithm description). In the interest of space, we show only the results for methods

a.) and c). The superresolved images using our algorithm are shown in Figures 5.3
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and 5.4.

Figure 5.3: Superresolved 250× 250 image using our algorithm with a.) in Step 4.

Figure 5.4: Superresolved 250× 250 image using our algorithm with c.) in Step 4.

Figures 5.5 and 5.6 illustrate the local directions chosen by our algorithm

with methods a.) and c.) for determining pixels with no dominant direction (see

Step 4 in description of our algorithm). In these images, the colors vary from dark

blue (corresponding to a dominant direction of 90◦) to dark red (corresponding to

a dominant direction of 258.75◦). In the case of method a.), only a few pixels,

indicated by the darkest blue, were not assigned a direction. Some of these pixels
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Figure 5.5: Assignment of local directions, based on maximal shearlet coefficients

and a.) in Step 4. Direction varies from dark blue (90◦) to dark red (258.75◦). The

darkest blue corresponds to no assigned direction.

Figure 5.6: Assignment of local directions, based on maximal shearlet coefficients

and c.) in Step 4. In this case, a Canny edge detector is applied to determine which

pixels have no dominant direction. Direction varies from dark blue (90◦) to dark red

(258.75◦). The darkest blue corresponds to no assigned direction.

can be seen in the lower left corner of the figure. In the case of method c.), far

more pixels were not assigned a direction. Method c.) seems to be more accurate
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in finding all edges, when compared to method b.), which is not pictured in this

chapter.

5.4 Conclusions and Future Work

Our shearlet algorithm produces smoother superresolved images with fewer

artifacts, when compared to bicubic interpolation. Notably, the method using c.)

in Step 4 in the description of our algorithm, namely using a Canny edge detector

to find areas with no dominant direction, provided very good results. In particular,

the dominant direction map seen in Figure 5.6 is quite convincing in this case. We

would like to find a quantitative measure that demonstrates the superiority of our

algorithm over bicubic interpolation, which is clear visually. Towards this end, we

cut out a 125× 100 subset out of the top left of each superresolved image, an area

consisting mainly of edges and flat regions. See Figure 5.7 for this region in the

superresolved image using bicubic interpolation.

We then averaged the length of the gradient vector over all pixels. The idea is

that jagged edges lead to longer edges and hence larger gradients. Smaller gradient

vectors are then associated with smoother, more accurate edges. Under this metric,

the bicubic upsampling did the worst with an average gradient length of 0.0244.

Methods b.) and c.) performed better, averaging 0.0218 and 0.0213, respectively.

Method a.) performed the best with an an average gradient of 0.199. Recall,

however, that we restricted ourselves to an area with primarily edges and flat regions.

For more complicated areas, method a.) tends to blur excessively, so we conclude
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that method c.) is the best overall. The images used for this quantitative analysis

appear in Figures 5.7, 5.8, and 5.9.

Figure 5.7: The upper left 125×100 pixels of the superresolved image using bicubic

interpolation. Average gradient is 0.0244.

Figure 5.8: The upper left 125 × 100 pixels of the superresolved image using our

algorithm with a.) in Step 4. Average gradient is 0.199.
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Figure 5.9: The upper left 125 × 100 pixels of the superresolved image using our

algorithm with c.) in Step 4. Average gradient is 0.0213.

Generalizing this approach by using other anisotropic representation systems

beyond shearlets, such as curvelets [12] and composite wavelets [52], is of interest.

In addition, finding more sophisticated ways to implement the local directional in-

formation, beyond motion blurring, has the potential to improve superresolution

results. This could be done through a variety of cutting-edge interpolation tech-

niques [81], [1].
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Chapter 6: Image Fusion with Wavelet Packets

Image fusion is, broadly construed, the merger of two or more images with

different features in order to obtain a single image with the most desired features

of each. A particular paradigm in the broad field of image fusion is that of pan-

sharpening. The ambition in this case is to imbue the the low spatial resolution

image with details from the high spatial resolution image, while retaining the spec-

tral qualities of the low spatial resolution image. These images could be registered

using the techniques developed Chapter 4, or could be a priori co-registered because

both sensors are part of the same device, so that the images are captured almost

simultaneously. Often, one considers co-registered multispectral and pan-chromatic

images, and the ambition is to sharpen the multispectral images with details from

the pan-chromatic band. Many contemporary satellite imaging systems produce co-

registered multispectral and pan-chromatic images, including IKONOS, Quickbird,

GeoEye and Landsat, making pan-sharpening a significant field of research. To cre-

ate pan-sharpened multispectral images there are several well known algorithms,

including IHS [98], [14], [57], PCA [93], [92], Brovey [110], Compressive Sensing

[112], [76], and Framelet [40] based. For this study we concentrate on wavelet based

methods and see what improvements can be realized using the wavelet packet trans-
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form.

It has been known for some time that wavelet-based methods offer a powerful

technique for image fusion [67], [111]. In wavelet-based image fusion, the images to

be fused are decomposed according to a wavelet algorithm, for example, the Meyer-

Mallat algorithm [105] which was discussed at a theoretical level in Chapter 2. Then,

certain wavelet coefficients from one image decomposition are combined with those

from the other image. The inverse wavelet algorithm is then applied, yielding a new

image. If the coefficients to be mixed are chosen wisely, relevant features from one

image can be integrated into the other image, giving a fused image that has features

from both.

One situation that lends itself particularly well to wavelet-based approaches

is the problem of pan-sharpening by fusing one image of high spatial resolution

and another of lower resolution spatial resolution. After performing the wavelet

decomposition, the high-pass coefficients from the high spatial resolution image

are put in place of the high pass coefficients for the low spatial resolution image.

This allows us to retain the textural features of the lower spatial resolution image,

while adding high-pass features, thus sharpening the image. Many approaches to

general image fusion have some degree of success in the specific problem of pan-

sharpening, but suffer from color-distortion issues. Wavelet-based methods have

the benefit of avoiding these distortions, and can be flexibility integrated with other

fusion methods [2]. Wavelet-based pan-sharpening approaches have also given rise to

techniques that counteract the electromagnetic spectral responses of sensors during

the fusion process, thus circumventing a major technological stumbling point of
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image fusion [89].

6.1 Wavelets for Image Fusion

Wavelets generated from the multiresolution analysis method have proved

particularly significant in image processing applications. In practice, the discrete

wavelet transform decomposes an image into high-pass and low-pass coefficients,

then iteratively decomposes the high-pass coefficients. One thus acquires a coeffi-

cient tree, in which high and low pass features are represented, as seen in Figure

6.4. The node labels (a, b) correspond to the ath level and the bth node within the

level. We note here that we are considering two dimensional signals, so at each level,

our tree bifurcates into 22 = 4 branches, as opposed to the 21 = 2 branches in the

examples in Chapter 2.

(0,0)

(1,0)

(2,0) (2,1) (2,2) (2,3)

(1,1) (1,2) (1,3)

Figure 6.1: An example of a 2D level 2 wavelet tree.

Coifman, Meyer, and Wickerhauser addressed this issue in extending the dis-

crete wavelet transform to decompose both the high and low pass coefficients at
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each step, leading to the concept of the discrete wavelet packet transform. This is

in distinction to the standard discrete wavelet transform, in which only the high

pass coefficients are decomposed. One thus acquires a coefficient tree that is flat, in

contradiction to the wavelet coefficient tree, as seen in Figure 6.2.

(0,0)

(1,0)

(2,0) (2,1) (2,2) (2,3)

(1,1)

(2,4) (2,5) (2,6) (2,7)

(1,2)

(2,8) (2,9) (2,10) (2,11)

(1,3)

(2,12) (2,13) (2,14) (2,15)

Figure 6.2: An example of a 2D level 2 wavelet packet tree.

Now any subset of the coefficients adhering to a disjoint dyadic decomposition

will produce a wavelet basis. The best basis algorithm [21] developed by Wicker-

hauser gives us the ability to choose an optimal ONB, according to some entropy,

to choose for the appropriate wavelet packet family. The best basis algorithm essen-

tially works by recursively ascending the wavelet packet from the lowest level and

furthest node to the first level and checking whether the parent or the collection of

children nodes have a lower information cost. This yields a subset of the wavelet

packet coefficient tree, as seen in Figure 6.3.
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(0,0)

(1,0)

(2,0) (2,1) (2,2) (2,3)

(1,1) (1,2) (1,3)

(2,12) (2,13) (2,14) (2,15)

Figure 6.3: An example of a 2D level 2 best basis wavelet packet tree.

Building on the idea of Coifman and Wickerhauser, in [6], Benedetto, Czaja,

and Ehler introduce the joint best basis algorithm. This algorithm sought a way to

find the best basis representation among a collection of wavelet packet trees. To do

this, first a joint entropy must be defined. The joint entropy E for a collection of

wavelet packet trees T = {T1, . . . , TD} is defined through a weighted `p norm:

E :=
D∑
i=1

wi|Ei|p,

where 0 < p ≤ 2 and {wi}Di=1 is a collection of non-negative weights. Now with

a joint entropy defined, the best basis algorithm can find an optimal basis for the

collection of wavelet packet trees.

6.2 Wavelet Packets for Pan-Sharpening

Our approach [36] is to allow for significantly greater flexibility in wavelet-

based fusion, by using wavelet packets instead of standard wavelets. The wavelet
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packet tree has many coefficients that represent high pass features, so we can seek

a more optimal way to infuse this information into the low spatial resolution image.

While image fusion using wavelet packets has been studied [109], it is not at all

clear how to optimally choose which coefficients to use in the fusion. We consider

two variations of how to fuse using wavelet packets, depending on which coefficients

to manipulate. The differing algorithms produce different pan-sharpened images,

depending on which coefficients we choose to mix.

There is a natural question of how to choose which coefficients to change in

the process of pan-sharpening. The wavelet decomposition iteratively decomposes

the high-pass coefficients, so there is a natural coefficient to fuse with, as seen in

Figure 6.4.

(0,0)

(1,0)

(2,0) (2,1) (2,2) (2,3)

(1,1) (1,2) (1,3)

Figure 6.4: An example of a 2D level 2 wavelet fusion. The boxed node is taken

from the MS data, and unboxed nodes are taken from the panchromatic data

In the case of wavelet packets, there are many coefficients that contain some

degree of high pass information: those that represent high pass components of de-
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composed low pass coefficients, and the decompositions of high pass components.

The case in which we swap all coefficients that involve high frequencies shall be

called WP2 fusion which is depicted in Figure 6.5; the case in which we swap only

the high pass coefficients at the bottom of our tree shall be called WP1 fusion and

is depicted in Figure 6.6.

(0,0)

(1,0)

(2,0) (2,1) (2,2) (2,3)

(1,1)

(2,4) (2,5) (2,6) (2,7)

(1,2)

(2,8) (2,9) (2,10) (2,11)

(1,3)

(2,12) (2,13) (2,14) (2,15)

Figure 6.5: An example of a 2D level WP1 fusion. Boxed nodes are taken from

the MS data and unboxed nodes are taken from the panchromatic data.

(0,0)

(1,0)

(2,0) (2,1) (2,2) (2,3)

(1,1)

(2,4) (2,5) (2,6) (2,7)

(1,2)

(2,8) (2,9) (2,10) (2,11)

(1,3)

(2,12) (2,13) (2,14) (2,15)

Figure 6.6: An example of a 2D level WP2 fusion. Boxed nodes are taken from

the MS data and unboxed nodes are taken from the panchromatic data.

It is not clear a priori that one of these fusion flavors should be optimal, we will

look at the analysis of a remote sensing data set to illustrate the benefits inherent

in both WP1 and WP2.
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6.2.1 Algorithms to be Tested

Given a data set containing a set of D multispectral bands, MS = {MSi}Di=1

with corresponding panchromatic band, P , we seek a pan-sharpened version MS+ =

{MS+
i }Di=1. Our general algorithm is summarized below for a chosen wavelet packet

level ` and wavelet and scaling function pair ψ and φ.

1. Upsample MS to be the same spatial resolution of P . Denote this new collec-

tion of bands as M̃S = {M̃Si}Di=1. The upsampling method can be chosen by

the user; in our experiments, bicubic interpolation is used because it is simple,

effective, and implemented on MATLAB.

2. For i = 1, . . . , D, create a histogram matched version Pi of P in relation to

M̃Si.

3. For i = 1, . . . , D, find the level ` 2D wavelet packet decomposition of M̃Si us-

ing ψ and φ. Denote the collection of wavelet packet trees as TMS = {T iMS}Di=1.

4. For i = 1, . . . , D, find the level ` 2D wavelet packet decomposition of Pi using

ψ and φ. Denote the collection of wavelet packet trees as TP = {T iP}Di=1.

5. For i = 1, . . . , D, mix the wavelet packet coefficients from T iMS with T iP ac-

cording to either WP1 or WP2. Denote the fused tree as Ti.

6. For i = 1, . . . , D, find the inverse 2D wavelet packet transform for each Ti.

Denote the pan-sharpened image as MS+
i .
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Optionally, we could also concentrate the spectral information by using the

best basis algorithm and PCA to find a pan-sharpened spectrally concentrated rep-

resentation which we denote as MS+∗ = {MS+∗
i }di=1. The authors in [6] explore

how spatial/spectral fusion may be accomplished using wavelet packets and the joint

best basis algorithm. Given a collection of wavelet packet trees, T , and a joint best

basis representation for the trees, T̄ , we can collect the wavelet packet coefficients

from T̄ into a D × NT matrix C. D is the number of the wavelet packet trees

which corresponds to the number of dimensions in the original data set. NT is the

number of wavelet packet coefficients, which is dependent on the size of the image

decomposed by the wavelet packet algorithm and the type of wavelet used. Now a

dimension reduction algorithm, such as PCA, can be used to reduce the dimension-

ality from D to d. The reduced dimension coefficients can now be reassembled into

a tree format and then the inverse wavelet packet transform can be used to return

the data to its original space. The algorithm for this method is summarized below

1-5. Same as steps 1-5 above.

6. Find the joint best basis representation of the collection of trees {Ti}Di=1 and

denote as {TBi }Di=1.

7. Collect the coefficients from the terminal nodes of {TBi }Di=1 into a NT × D

matrix C where NT is the number of coefficients in terminal nodes for each

tree.

8. Using PCA followed by a projection down to d ≤ D dimensions, find the lower

dimensional representation of C, denoted C ′.
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9. Create new wavelet packet trees {T ∗i }di=1 with the joint best basis structure

and coefficients corresponding C ′.

10. For i = 1, . . . , d, find the inverse 2D wavelet packet transform for each T ∗i and

denote the pan-sharpened spectrally concentrated image as MS+∗
i .

6.3 Experiments and Results

6.3.1 Data

In conducting our experiments, we used the 2000 Data Fusion Contest data,

which consisted of images taken over Hasselt, Belgium in 1999. The image was

acquired from the Landsat 7 Enhanced Thematic Mapped Plus (ETM+). The data

set contains seven multispectral bands covering the visual and infrared spectra,

denoted bands 1-7, and one panchromatic band denoted band 8. The spectral

windows and spatial resolution for the bands can be found in Table 6.1 and gray

scale images for each band can be found in Figure 6.7.
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Band Number Spectral Window (nm) Spatial Resolution (m) Entropy

1 450-515 30 3.9904

2 525-605 30 4.3416

3 630-690 30 4.8394

4 750-900 30 6.0074

5 1550-1750 30 5.8962

6 1040-1250 60 3.5980

7 2090-2350 30 5.5004

8 520-900 15 4.8442

Table 6.1: Spectral window, spatial resolution, and band entropy for Hasselt data

set.

Figure 6.7: The collection of bands from the Hasselt data set. On the left is

the panchromatic band and then left to right top to bottom are multispectral bands

1,2,3,4,5,and 7. The data is courtesy of the 2000 IEEE GRSS Data Fusion Contest.
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6.3.2 Pan Sharpening Experiment

We shall perform our experiments by fusing multispectral bands 1, 2, 3 with

the panchromatic band 8. Bands 1, 2 and 3 have a spatial resolution of 30 meters and

band 8 has a spatial resolution of 15 meters, so that our fusion can be understood

as pan-sharpening.

Ideally, the quality of the fused results would be evaluated by classification

against ground truth. No ground truth is available for this data, so we must use

numerical results to judge the fusion algorithms. One approach to evaluating the

quality of a fused image in the absence of ground truth is the use of correlation with

the original image and entropy of the image [85], in order to indicate the extent to

which the spectral quality of the bands was preserved by the fusion, and the extent

to which additional spatial information was added. The spectral preservation quality

was computed by measuring the correlation of a fused band with the original band;

the higher this correlation, the more faithfully the spectral properties are preserved.

To measure spatial information, entropy of the original image can be compared with

the entropy of the fused images. We computed this entropy by first converting our

images to grayscale, then computing the Shannon entropy ε :=
∑
i

pi log2(pi), where

pi denotes the probability of a pixel being in the ith bin.

We performed our decompositions by computing 6 and 7 levels of wavelet

packet coefficients using the Daubechies wavelet of length 4. We then performed

the coefficient mixing according to either the WP1 or WP2 algorithms, followed by

an inverse wavelet packet transform. For reference, we also computed the entropy
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of the original bands, and the correlation and entropy values for standard wavelet

fusion at levels 6 and 7.

(a) Original Band 3 (b) Pan-sharpened band 3 with wavelets.

(c) Pan-sharpened band 3 with WP1. (d) Pan-sharpened band 3 with WP2.

Figure 6.8: A comparison of the wavelet, WP1, and WP2 fusion methods for band

3.
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(a) Original composition of bands 1,2, and 3 (b) Pan-sharpened with wavelets.

(c) Pan-sharpened with WP1. (d) Pan-sharpened with WP2.

Figure 6.9: A comparison of the wavelet, WP1, and WP2 fusion methods for

composition of bands 1, 2, and 3.

Our results indicate that WP1 fusion achieves superior correlation and entropy

values in all cases when compared to wavelet-based fusion. The WP2 fusion improves
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upon the entropy of band 1 at level 7, but fails to match the increase given by wavelet

fusion and WP1 fusion. However, the WP2 fusion gives very high correlation with

the original bands, thus indicating excellent spectral preservation quality.

Band # Correlation w/ Wavelet Correlation w/ WP1 Correlation w/ WP2

1 .4114 .5364 .9739

2 .5749 .6610 .9746

3 .4414 .5531 .9791

Table 6.2: Correlation values for fusion at level 6

Band # Original Entropy Wavelet Entropy WP1 Entropy WP2

1 3.9904 4.2385 4.3777 4.0338

2 4.3416 4.4898 4.5749 4.2926

3 4.8394 4.9821 5.0896 4.7680

Table 6.3: Entropy values for fusion at level 6

Band # Correlation w/ Wavelet Correlation w/ WP1 Correlation w/ WP2

1 .3760 .5074 .9794

2 .5524 .6400 .9807

3 .4112 .5296 .9834

Table 6.4: Correlation values for fusion at level 7
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Band # Original Entropy Wavelet Entropy WP1 Entropy WP2

1 3.9904 4.1855 4.3727 4.0680

2 4.3416 4.4523 4.5848 4.3204

3 4.8394 4.9744 5.0668 4.8128

Table 6.5: Entropy values for fusion at level 7

6.3.3 Spectrally Concentrated Pan-sharpening

For this experiment we looked at producing pan-sharpened versions of the

seven multispectral bands then spectrally concentrating the information using PCA,

as detailed above. In Figure 6.10 we see the first 3 principle components, together

with a false-color image produced by combining these three principle components.
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(a) PC 1 (b) PC 2

(c) PC 3 (d) False Color RGB

Figure 6.10: Principle components 1,2, and 3, and a false color RGB rendering

using the principle components.

136



6.4 Conclusions and Future Directions

Wavelet packets offer a flexible approach to image fusion, particularly pan-

sharpening. Our experiments have shown that wavelet packet WP1 fusion outper-

forms wavelet-based fusion by achieving superior spectral preservation quality and

increased spatial information. While WP2 fusion was unable to achieve the same

increased spatial information, it had excellent preservation of spectral preservation

quality. The mixed results for WP2 suggest that the optimal wavelet packet fu-

sion approach for pan-sharpening applications might be a mix between the WP1

algorithm and the WP1 algorithm, where some of the high pass coefficients are

chosen but others are not. An implementation of an optimal wavelet packet fusion

algorithm would offer a powerful new tool to the study of pan-sharpening.
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[44] H. Führ, L. Demanet, and F. Friedrich. Document and image compression. In

Beyond wavelets: New image representation paradigms, pages 179–206. 2006.

143



[45] D. Gabor. Theory of communication. Part 1: The analysis of information.

Journal of the Institution of Electrical Engineers-Part III: Radio and Com-

munication Engineering, 93(26):429–441, 1946.

[46] P. Gader, A. Zare, R. Close, J. Aitken, and G. Tuell. Muufl gulfport hyper-

spectral and lidar airborne data set. REP 2013-570, University of Florida,

Gainesville, FL,, 2013.

[47] L. Grafakos and C. Sansing. Gabor frames and directional time–frequency

analysis. Applied and Computational Harmonic Analysis, 25(1):47–67, 2008.

[48] D. Griffin and J. S. Lim. Signal estimation from modified short-time Fourier

transform. IEEE Transactions on Acoustics, Speech and Signal Processing,

32(2):236–243, 1984.
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