An Accurate Time-management Unit for Real-time
Processors®

Krishnan K. Kailas Ashok K. Agrawala

Department of Electrical Engineering Institute for Advanced Computer Studies

Department of Computer Science

University of Maryland
College Park, MD 20742, USA

{krish, agrawala} @cs.umd.edu

TECHNICAL REPORT

Abstract

Time management is an important aspect of real-time computation. Traditional high
performance processors provide little or no support for management of time. In this report,
we propose a time-management unit which can greatly help improve the performance
of a real-time system. The proposed unit can be added to any processor architecture
without affecting its performance. We also explain how the unit helps to solve the clock
synchronization problems in a distributed real-time network.

*This work is supported in part by ONR and ARPA under contract N66001-95-C-8619 to the Computer
Science Department at the University of Maryland. The views, opinions, and/or findings contained in this report
are those of the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency, ONR or the U.S. Government.

An Accurate Time-management Unit for Real-time Processors 2

1 Introduction

Accurate time management functions are required for scheduling real-time tasks to meet their
deadlines. Time-based scheduling techniques [15] make use of the worst-case execution time
estimates of the tasks to generate deterministic schedules for hard real-time systems. With the
advent of fast processors which can execute millions of instructions per second, considerable
amount of computations can be done in a very short period of time. This in turn, demands
accurate timing mechanisms for scheduling real-time tasks to achieve better processor utiliza-
tion. A fast and accurate time keeping mechanism, such as a system clock with fine granularity
is essential to implement such precise time-based scheduling algorithms. Fast internal clock
of the modern processors can be made use of to implement a system clock with fine granular-
ity. However, the support provided by the traditional high performance processor architectures
are not often useful to implement these ideas even though the hardware may support a fast
system clock. Some of the embedded microprocessors such as Intel 80x196, Intel386 EX, and
commercial high performance processors such as Pentium and Pentium Pro [7] provide on-chip
timers driven by the processor clock to implement system clocks with better time granularity.
Computers that do not use such processors usually use an external hardware timer [6], [3] on
the processor bus. But, these timers have been known to “lose time” during operation [19]. For
example, in order to set a new value for the timer, usually a register has to be updated. But
certain operations such as DMA and high priority interrupts can preempt time management
functions. This can cause a delay in updating the timer register and make the system clock to
lose time.

By moving all the time management functions into the processor, one can alleviate the
above mentioned problems and provide a more flexible solution for the management of time.
We believe that the time management functions should be made an essential feature of the
processors used in real-time systems. In this report, we propose a hardware architecture of an
accurate time management unit for such processors. The following are the basic functionality
required for such an accurate time management unit.

e A mechanism to implement a monotonic clock. The monotonicity of clock is very im-
portant because distributed applications assumes that time-stamps produced by a clock
always increases monotonically [11].

e An automatic mechanism to register the time of occurrence of user-defined events. This
property is essential to accurately time-stamp events in a real-time system.

e A deterministic and atomic mechanism to read and update the system time.

e A hardware register to hold system time to the required resolution and a mechanism to
increment the system time without any software intervention.

e A mechanism to compensate for the drift (internal and external) to maintain a consistent
global time.

A fast and accurate time keeping mechanism can also be of help in implementing robust
real-time distributed computing systems. Solutions to several design problems in distributed
computing can be simplified if a global time base is available in the system [12]. Maintaining a
consistent global notion of time in a distributed computing environment involves synchronizing
all the local clocks. Clock synchronization problem has been studied extensively in the past and
several solutions have been proposed [9], [16], [5], [13], [14], [1]. But, most of these solutions
either depend on special purpose hardware or complicated protocols. This will add extra
processing overhead and complexity to the system, there by increasing the clock skews in a

An Accurate Time-management Unit for Real-time Processors 3

distributed system. The time management unit architecture we have proposed here is designed
taking these aspects into consideration and can be used to achieve very accurate synchronization
of local clocks with little overhead.

Distributed real-time systems such as process control and data acquisition systems often
demand an additional capability to accurately time stamp data and events. For example, in a
distributed process control system, in order to analyze and take appropriate corrective actions
to deal with “alarm conditions”, knowledge about the exact sequence of events that caused
the alarm condition and their time of occurrence is essential. Hence, in order to resolve the
precedence of such close events, a time-stamping mechanism with fine granularity is essential.
The availability of a fine granularity clock and the support provided for accurate time-stamping
in the proposed time management unit can be used for identifying and time-stamping the events
with better resolution.

The rest of this report is organized as follows. In section 2, drawbacks of the traditional
time management techniques employed in real-time systems is explained. The architecture of
the proposed time management unit is described in section 3. We explain how our solution
helps to solve the clock synchronization problem in section 4. In section 5, a review of the
related work done by other researchers is given.

2 Time management in Real-Time Systems

The heart of a real-time system is the scheduler that makes important decisions such as, which
one of the ready tasks is to be scheduled next, when and how long each of these tasks are
to be executed. The performance of such a real-time scheduler depends on it’s capability to
ensure that the real-time deadlines of the system are always satisfied, and to achieve high
processor utilization at the same time. Most of the schedulers make use of some type of time-
out mechanism to preempt the currently executing task and schedule the next task in the ready
list, based on the scheduling algorithm used. Clearly, this timing mechanism should be very
accurate, otherwise the tasks will be scheduled to run early or late and/or the task will be
executed for longer or shorter amount of time than required. In other words, the correctness of
the scheduling scheme directly depends on the timing mechanism used to implement it. Often
the same timing mechanism is used to maintain the local (time-of-day or -year) clock of the
system.

clock source

system clock
interrupt interrupt ./

Memory

-
!

LAN Processor ‘
Controller Timer

data/address bus

Figure 1: A node of a typical distributed real-time system

A typical node of a distributed real-time system makes use of an external timer chip as
shown in figure-1 for time management. The most common timing technique is based on a
system clock (software counter) in the memory updated by the timer-tick interrupts generated
by a fixed interval timer [17, 2]. The main disadvantage of this method is that the coarse
granularity of the system clock, the software timing mechanism, is limited to the order of
milliseconds. This limitation arises because of the overheads associated with the timer-tick
interrupt processing, which involves saving and restoring the processor registers, updating the

An Accurate Time-management Unit for Real-time Processors 4

S I

interrupt X .
K start of interrupt processing
// system clock updated
| | |
< |

= ‘ clock cycle 4>‘

Time

interrupt latency
jitter due to frequency drift delay in updating system clock

Figure 2: Timing diagram of external timer-based time management

system clock and checking the ready task list. Another disadvantage with this approach is
that there is a possibility of missing the timer interrupts if the interrupts were disabled or
the interrupt processing gets delayed due to operations such as DMA. The main factors that
constitute the delay in updating the system clock are the following:

1. jitter in the timer interrupt signal due to frequency drifts,
2. the interrupt latency of the processor, and
3. the execution time of the interrupt service routine.

The figure-2 shows the timer interrupt signal and these delays in a typical external timer-based
system. Moreover, on modern high performance processor architectures, the interrupt latency
and the execution time of the interrupt service routine itself is often hard to predict[8].

An alternative to this approach is to use a programmable interval timer, which is commonly
used for scheduling tasks in time-based real-time operating systems [15]. In this approach, an
interval timer is loaded at each task scheduling instance with a new interval equal to the task’s
execution time-slot duration. Timer generates an interrupt at the end of the interval to invoke
the scheduler again to schedule the next task from the ready list. The main advantage of this
method over the timer-tick approach is the better time granularity of the scheduling clock,
because the granularity depends only upon the frequency of the clock signal used to drive the
timer and width of the timer register. However, this scheme also has similar disadvantage of
losing the time between the initiation of the timer interrupt service routine and reloading of
timer register with new interval, due to DM A operations or higher priority interrupt processing.
A possible solution to this problem is to modify the timer to allow the new interval value to
be added to the current count-down register contents [19]. Another solution is to use a second
register to automatically load the next interval value to the timer register, as in the VAX-11
computer systems [18]. In addition to the errors that can occur in the time keeping mechanisms
as mentioned above, the basic source used to drive the timer itself can generate errors due to
drift. Even though the add-timer and second register method apparently solve the problem
of updating the system clock for scheduling purposes, these solutions do not address problems
such as providing the current time to the applications at any instant for time-stamping purposes
and compensating for the drifts.

It is clear from the above discussion that the existing time management approaches are
not satisfactory in performance to provide the fine time granularity, accuracy and flexibility
demanded by the real-time computing systems of today. The problem with the existing so-
lutions is that they address and solve the problems separately, resulting in solutions that are
not comprehensive. Hence these solutions, as discussed above, often fail to provide guaranteed
error-free performance always. We strongly believe that in order to provide a comprehensive
solution to meet all the above requirements, the solution should be based on hardware, and
must be implemented within the processor. Moving the time management functions to the

An Accurate Time-management Unit for Real-time Processors 5

processor level has several advantages which can not be achieved otherwise. For example, with
the traditional temer-tick approach, the resolution of time measurement is limited to the coarse
granularity of the fimer-ticks. The granularity of the proposed hardware time management
unit, as explained later, is much higher than that can be achieved with timer-tick approach.
The time management unit also set free the processor from interacting with external hardware
to implement time management functions and there by providing more bus bandwidth and
computing resources to other tasks. Most of the time management functions can be made inde-
pendent of other CPU activities, and thus they can be carried out in parallel. This can provide
substantial improvements in the performance of time management functions and can be used
of to implement accurate clock synchronization algorithms and other distributed applications.

3 Time Management Unit Architecture

The proposed time-management unit works in parallel with the processor, without using any of
the computational resources of the CPU. This allows the time-management unit to provide very
accurate time management functionality without affecting the performance of the processor.
The architecture of the time management unit is shown in figure-3. It consists of a set of
registers accessible to the CPU, a Limii register and associated logic. A drift-free clock signal
is derived from the clock source using a Rate Adjustment Unit. The clock source can be the
internal clock used in the processor itself or a stable external clock source such as a crystal
oscillator. The Rate Adjustment Unit consists of a frequency divider (counter) for scaling down
the input clock source frequency and a phase adjustment counter to apply corrections for small
changes in frequency. The Rate Adjustment Unit makes necessary corrections to nullify any
changes in the frequency of the clock source due to drift (see the next section for a detailed
description about the functioning of this unit).

The system time is maintained in the Physical Tume register, which is a 64-bit counter
incremented at a rate specified by the output clock frequency of the Rate Adjustment Unit.
The granularity of time maintained by the system is therefore defined by the output clock
frequency of the Rate Adjustment Unit. For example, a 64-bit register can represent a time
span of millions of years and provide a time granularity of the order of 1/10th of micro seconds
with a 10 MHz clock derived using the Rate Adjustment Unil. The Physical Time register can
be accessed by system software as a CPU register to read or modify it’s contents. The system
time Tg is compared with a Limat register 7T at each processor clock cycle and an interrupt
is generated when the condition Tg > 77 is satisfied. This interrupt signal can be used for
real-time task scheduling and precisely initiating time-based events. The interrupt signal will
be reset only when the Limit register is modified.

The user accessible registers of the proposed time management unit is shown in figure- 4.
All the registers except the Rate Diwvisor register and Mode Selector register are 64-bit registers.
There are 3 modes of operation for the proposed time management unit, based on the way in
which the Limit register content is updated. The modes can be selected by writing appropriate
control words in the Mode Selector register. The three modes of operations is described below:

Absolute time mode: This mode may be used for scheduling tasks precisely at a given abso-
lute time. The time at which the interrupt is to be generated is specified in the Absolute
time register, which is accessible to the CPU. In this mode, the Limit register is loaded
with the contents of Absolute time register and at each processor clock cycle it is compared
with the current physical time.

AT mode: This mode is intented for generating precise delays by emulating a one-shot timer.
The desired delay time is specified in the AT register. In this mode, the Limit register

An Accurate Time-management Unit for Real-time Processors 6

Absolute Time Reg.

Ly
-
Limit Register | A
- - processor
AT Register [H—= COMPARATOR | _jnicrt
AsB logic
= B

Physical Time
Register

> Event Time
Registers

READ signal4f L

Interrupt input

Rate Adjustment Mode Se_lector
Unit Logic

clock source
Processor Data Bus

Figure 3: Time Management Unit Architecture

will be loaded with the sum of the current contents of the Physical Time register and
AT register, in the next clock cycle after the the AT register is updated. The idea is to
prevent any loss of time as in timer tick-based approach.

Auto-reload mode: In this mode, after generating the interrupt, the Limit register i1s auto-

matically loaded with a new value similar to the AT mode. The new value of the Limat
register is generated by adding the current contents of Lim:i register and the AT register.
For example, if T is the physical time (the contents of the Limit register) at the instant
when the interrupt is generated, and AT 1s the delay time, then the comparator will gen-
erate the next interrupt after Ts + AT seconds. The main difference between this mode
and the AT mode is that in this mode the changes in AT register will be effective in the
cycle after the interrupt. The idea is to eliminate the delays (refer to figure-2) that would
have occurred in the AT mode if the same functionality is implemented making use of
the timer interrupt service routine to load a new time interval after each interrupt. This
mode can be used to implement very accurate time-based schedulers such as the one used
in the Maruti hard real-time operating system [15].

The proposed time-management unit also provides an accurate mechanism to time-stamp

events that occur in the system. This is made feasible because, at any processor cycle using a

single register transfer instruction, the current physical time can be read into one of the Event

Tume registers. The same operation can also be initiated by an external interrupt signal. This

An Accurate Time-management Unit for Real-time Processors 7

Absolute Time
AT
Physical Time
Event Time #0
Event Time #1

Rate Divisor Compare current time with:

Mode Selector Absolute Time register
E Physical time + AT
Limit register (Auto-reload mode)

Figure 4: Time Management Unit Registers

facilitates accurate time-stamping of external events without interfering the CPU computations.
In the next section, we explain how to make use of this feature to implement accurate clock
synchronization algorithms.

4 Support for Clock Synchronization

The essential requirements of a clock synchronization algorithm for distributed real-time sys-
tems can be found in [9, 19]. A common characteristic of all clock synchronization algorithms
is that each node computes periodically the deviation of its local clock from a global time
base [16]. These clock synchronization algorithms make use of the knowledge about the local
clocks of other nodes or a master node in the system to compute the corrections to the local
clock. Time stamped packets are used for exchanging the current time of the local clocks in the
system. But, in a distributed system, there is a large variability in the time taken by a packet
from the instant it is submitted for transmission at the sender node to the time it is processed
at the receiver node. This jitter associated with the message passing may be attributed to the
dynamics of the network and the processing delays at the sender and destination nodes. For ex-
ample, the ethernet protocol can introduce certain amount of uncertainty which increases with
the network traffic [10]. However, by choosing protocols such as TDMA to pre-allocate slots
for time message packets, the variability due to the network dynamics can be bounded [4, 15].
However, the jitter persists due to the unpredictable processing delays at the nodes resulting
from operations such as non-preemptible interrupt processing and DMA. It is clear from the
above discussion that regardless of the algorithm used for clock synchronization, the accuracy of
the technique is affected by time stamping operation at the sender and receiver nodes. Clearly,
a mechanism is needed to accurately time-stamp the packets just before they are transmitted
at the sender and as soon as they arrive at the receiver. The proposed time management unit
provides such a mechanism to solve this problem by automatically time-stamping the packets.
The packets are time stamped on arrival making use of the interrupt signal from the network
interface card without any processor intervention. The current physical time will be latched in
the Event Time register by the interrupt signal, which can be made use of to accurately time-
stamp the arrival-time of the packets. The Physical time register can be read for time stamping
the packet just before they are sent. Thus, with the help of the proposed time management
unit, without using any external hardware, the packets can be accurately time-stamped to im-
plement clock synchronization algorithms. Moreover, the Absolute Time mode of the proposed
time management unit can be used for precisely scheduling the send time of time messages.
In addition to the errors that occur due to the jitter in the message passing, the basic clock
source itself can generate errors due to drift. This drift in frequency of the clock source is due to

An Accurate Time-management Unit for Real-time Processors 8

Processor Data Bus

| Rate Divisor Register

15 1

Phase Adj.
Counter

Clock__,.| Frequency to Physical
Source F Divider f Time register

Figure 5: Rate Adjustment Unit

temperature variations and aging, and must be corrected. A discrete correction applied to the
Physical Time register can cause the local clock to instantaneously leap forward or be set back
and then run at the previous rate, thereby violating the monotonicity property. This problem
can be avoided by amortizing (i.e., spreading out) the correction continuously over a time
interval and this clock adjustment technique is called amortization [16]. The Rate Adjustment
unit implements this technique in hardware to avoid any abrupt jumps in the local clock.

A frequency divider making use of a simple binary counter may not be sufficient to derive
the desired output frequency accurately from the clock source. This is because of the truncation
errors in the approximation of the scaling factor to an integer value. However, it 1s possible to
derive fairly accurate output clock signal by changing the width of a few clock pulses out of a
fixed number of clock pulses periodically, so that the average frequency of the output signal is
very close to the required value. The Rate Adjustment unit makes use of this technique to derive
the desired clock frequency. The unit consists of a frequency divider (counter) for scaling down
the input clock source frequency and a phase adjustment counter! to apply phase corrections
as shown in figure-5. Very small changes in output frequency is taken care of by re-loading
the frequency divider with a slightly higher or lower count than the normal count at a rate
specified by the phase adjustment counter. If F'is the frequency of the clock source and f is
the desired output clock frequency, then the normal scaling factor of the frequency divider is
given by n = [F/f]. If F'/f is not an integer, then one out of every 1/m output clock cycles,
the frequency divider is loaded with a modified scaling factor n’ = n & k, where k is an integer
(note that & = 0 if F'/f is an integer). The phase adjustment rate m, may be computed using
the following relationship.

F

(1—m)n+mn' = —

Most of the time, at the time of re-synchronization, only the phase adjustment count, n’ and
the phase adjustment rate, m, needs to be updated. The parameters n, n’ and m are made
accessible to the software at the Rate Divisor register.

5 Related Work

The importance of time management in real-time systems has been identified by researchers
for quite some time. The problems with the interval based timing mechanisms and the lack
of coordination between the hardware timers and software were discussed by Volz and Mudge

1The counter is called the phase adjustment counter because the counter changes the width or the phase of
the output signal by a small amount.

An Accurate Time-management Unit for Real-time Processors 9

in [19]. They suggested the use of absolute time as a solution and proposed an instruction
level timing mechanism to accomplish this. They have also mentioned the idea of placing the
timing functions on the CPU chip for scheduling applications. In contrast, the architecture we
have proposed here is more versatile and generic in nature — the support for instruction-level
scheduling is one of the features supported by the proposed architecture. The architecture we
have proposed does not explicitly specify the format in which the time is represented, though
the architecture supports the absolute time representation mentioned in [19, 20]. The reason
for making it a generic architecture is to make it easy to adapt with minimal modifications to
the existing applications and to easily adapt to new time representation formats that may come
up in the future.

The Mars project [4, 9] make use of proprietary network interface logic based on a clock
synchronization unit chip, to automatically generate time-stamps. The scheme they have pro-
posed provides most of the functionality required by a time management unit. However, the
portability of their solution to other platforms is highly restricted because it 1s based on exter-
nal hardware. Whereas our solution is transparent to most of the hardware and the network
interface logic used in the system, there by making it easily portable to other platforms. The
basic idea of the rate adjustment scheme for deriving clock signal proposed in this report is
similar to the adjustable rate clock proposed by Volz et al. for clock synchronization in IEEE
896 Futurebus+ systems [20]. The differences are mainly of hardware implementation details.

Another hardware-based clock synchronization technique for synchronizing the clock signals
can be found in [1]. This technique implements a modified version of the interactive conver-
gence algorithm CNV [13] and assumes that the actual clock signals are available for skew
measurements. However, this scheme is not suitable for large distributed system because of the
problems associated with distributing the clock signal over large distances.

The hardware-assisted software clock synchronization scheme proposed by Ramanathan
et al.[14] make use of an algorithm similar to CNV for a distributed system with point-to-point
interconnection topology. They emphasize on the algorithmic aspect than the implementation
of the hardware support required. The resolution of their technique for applying corrections to
the logical clock at nodes is limited by the frequency of the clock source and the scaling factor of
their scheme can only assume one fixed integer value. As a result of which their scheme can not
compensate for very small variations in frequency. Moreover, the architecture proposed here is
aimed at providing mechanisms for efficient implementation of distributed clock synchronization
algorithms with minimum software overheads and better accuracy, rather than implementing a
specific algorithm in hardware.

6 Conclusion

In this report we have proposed an accurate time-management unit architecture for real-time
processors. Qur design is motivated by the lack of support provided for time management
in the modern processors. The proposed time management unit can be incorporated into any
processor architecture with little extra logic. With the recent developments in VLSI technology,
such a time management unit with nanoseconds resolution can be easily implemented. The basic
idea behind the proposed time management unit is to exploit the parallelism between the time
management functions and normal computing operations of the processor, at the same time
providing an instruction-level mechanism to access the system time. We believe that moving the
time management functionality into the processor will greatly help to generate better solutions
in terms of performance, simplicity and maintainability.

An Accurate Time-management Unit for Real-time Processors 10

7 Future Work

In order to support the proposed on-chip time-management unit, the processor architecture
must provide a deterministic instruction-level mechanism to interact with the time-management
unit hardware. In the modern multiple-issue processors supporting out-of-order execution of
instructions, it is hard to predict the delay between instruction issue and retirement. Therefore,
on such processors a special instruction for reading the current physical time into the event
time register is not sufficient, unless there is a mechanism to ensure that the instruction can
be executed within a deterministic time interval. We would like to address this problem in our
future research. At present, as a first step towards understanding the problem, we are looking
at the timing issues and temporal accuracy of one of the commercial off the shelf modern
processors.

Acknowledgment

Intel386 EX, Pentium and Pentium Pro are registered trademarks of Intel Corporation.

References

[1] Y. Baek, H-K. Lee, and H. Yoon. New hardware-based clock synchronization for the
Byzatine fault. Electronics Letters, 28(21):2018-2019, October 1992.

[2] Dipto Chakravarty. POWER RISC System/6000: Concepls, facililies, and architecture,
chapter 14. McGraw-Hill, Inc., New York, 1994.

[3] Product Data book, chapter 6. Dallas Semiconductor Corporation, Dallas, TX, 1992-93.

[4] Hermann Kopetz et al. Distributed Fault-tolerant Real-Time Systems: The Mars Ap-
proach. IEEFE Micro, pages 25-40, February 1989.

[5] Flaviu Cristian. Probabilistic Approach to Distributed Clock Synchronization. In 9tk
International Conference on Distributed Computing Systems, pages 288-296. IEEE, 1989.

[6] Microprocessor and Peripheral Handbook, volume II, chapter 6. Intel Corporation, Santa
Clara, CA, 1989.

[7] Pentium Pro Family Developer’s Manual, volume 1-3. Intel Corporation, Mt. Prospect,
IL, 1996.

[8] P. Koopman. Perils of the PC Cache. Embedded Systems Programming, 6(5):26-34, May
1993.

[9] Hermann Kopetz and Wilhelm Ochsenreiter. Clock Synchronization in Distributed Real-
Time Systems. IEEE Transactions on Computers, C-36(8):933-940, August 1987.

[10] James F. Kurose, Mischa Schwartz, and Yechiam Yemini. Multiple-Access Protocols and
Time-Constrainted Communication. ACM Computing Surveys, 16(1):43-70, March 1984.

[11] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed system. Commu-
nications of ACM, 21(7):558-565, July 1978.

[12] L. Lamport. Using time instead of timeout for fault-tolerant distributed systems. ACM
Transactions on Programming Languages Syst., 6(2):254-280, April 1984.

An Accurate Time-management Unit for Real-time Processors 11

[13] L. Lamport and P.M. Meilliar-Smith. Synchronizing Clocks in the presence of Faults.
Journal of the ACM, 32(1):52-78, January 1985.

[14] P. Ramanathan, Dilip D. Kandalur, and Kang G. Shin. Hardware-Assisted Software Clock
Synchronization for Homogeneous Distributed Systems. ITEEE Transactions on Computers,

39(4):514-524, April 1990.

[15] M. Saksena, J. da Silva, and Ashok K. Agrawala. Design and Implementation of Maruti-II.
In Sang H. Son, editor, Principles of Real-Time Systems. Prentice Hall, Englewood Cliffs,
N.J., 1995. Also available as University of Maryland CS Tech Report CS-TR-3181.

[16] Frank Schmuck and Flaviu Cristian. Continuous clock amortization need not affect the
precision of a clock synchronization algorithm. Technical Report RJ 7290 (68547), IBM
Almaden Research Center, San Jose, CA, 1990.

[17] Andrew S. Tanenbaum. Modern Operating Systems, chapter 5. Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1992.

[18] VAX hardware handbook, chapter 20. Digital Equipment Corporation, Maynard, Mass.,
1982.

[19] Richard A. Volz and Trevor N. Mudge. Instruction Level Timing Mechanism for Accurate
Real-Time Task Scheduling. ACM Transactions on Computers, C-36(8):988-993, August
1987.

[20] Richard A. Volz, Lui Sha, and Dwight Wilcox. Maintaining Global Time in Futurebus+.
The Journal of Real-Time Systems, 3:5-17, 1991.

