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In my thesis I develop a theoretical model of interdependent choices and an

estimation strategy which I apply to model patent renewal. The model and the

estimation are not confined to my application, but rather can have other applications

in which firms or people are making strategic and simultaneous decisions. Chapter

1 is the introduction which contains a brief description of the structure of the thesis.

Chapter 2 provides a literature review of studies that have focused on spatial

dependence with discrete choice dependent variables; recent contributions include

Pinkse and Slade (1998), LeSage (2000), Kelejian and Prucha (2001), Beron and

Vijverberg (2004), and Wang et al. (2009). A major difficulty in the estimation of

spatially dependent discrete choice models is computational intensity.

Chapter 3 is a Monte Carlo study that investigates the small sample proper-

ties of an estimator for spatially dependent discrete choice models which is com-

putationally simple. The analogue of a linear probability can be formulated as a

spatial autoregressive Cliff and Ord (1973, 1981)-type model. The sets of Monte



Carlo experiments show that the parameters of the model can be estimated without

bias using a spatial 2SLS estimator.

Chapter 4 is a study is on the determinants of patent renewal, using US patents

for Computer Hardware and Software granted between 1994 and 1997. Patent pro-

tection is important in that it encourages innovation by allowing firms to rely on

patents to appropriate the returns to their R&D efforts. Returns to patents are

modeled to depend on the firm’s willingness to pay the patent renewal fees by, e.g.,

Harhoff et al. (2003), Serrano (2006), and Bessen (2008, 2009), and typically ignored

potential interdependences in the decision making. Liu et al. (2008) showed that

patent renewal was more likely if the patent was part of a firm’s sequence of citing

patents. I elaborate on their result and formulate a model in which the decision to

renew a patent is dependent on the decisions of other firms to renew technologically

similar patents. The theoretical model implies for the probability to renew a patent

to depend on the probabilities to renew other patents, where the extent of interde-

pendence is modeled based on a measure of similarity for patents. By making use of

the estimation strategy from Chapter 3, I find that indeed the decision to renew a

patent is dependent on the decision to renew related patents. Results in the litera-

ture which ignored this interdependence may hence suffer from specification biases.

One plausible explanation for the interdependence I find is defensive patenting in

the form of patent fencing, patent blocking and patent thickets. In the latter case,

litigation and negotiation can impose high costs to society and their anticipation

can lead to a hold up problem, which could deter investment in R&D.
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Chapter 1

Introduction

My dissertation links a spatial discrete choice estimation model and a struc-

tural interdependent choice model to analyze patent renewal. The analysis uses a

new estimation methodology that of a spatial linear probability model (SLPM). I

show the small sample properties of this estimator and then I use this econometric

framework to investigate strategic behavior behind patent renewal.

Chapter 2 is a review of the discrete choice models in the spatial literature. The

review includes parametric, simulation and Bayesian methods that were considered

for estimation of the spatial models. As opposed to the linear model I investigate

in the Chapter 3, most of the existing methods in the literature have a high com-

putational burden or only include estimation for models with spatially correlated

errors, but do not allow for models with spatially lagged dependent variables. The

chapter extends into the peer effects literature and presents the identification issues

that concern linear in means models, as well as how nonlinearities can be used to

solve these issues.

Chapter 3 examines the small sample properties of the SLPM. This model

is specified with an endogenous spatial lag in the dependent variable. The SLPM

model can be estimated in two steps. The first step is a two stage least squares

procedure as in Kelejian and Prucha (1998, 2010), with instruments that are stan-
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dard for the spatial literature. In the second step I used an IV estimator, where the

optimal instrument is constructed based on first step estimates. The Monte Carlo

experiments show that the parameter estimates for the model are unbiased both

under uncorrelated and under correlated choice variables.

Chapter 4 includes an application of the estimator to patent renewal. Patent

protection is important in that it encourages innovation by allowing firms to rely

on patents to appropriate the returns to their R&D efforts. Formally, I consider a

simultaneous choice single equilibrium discrete model. The model involves individ-

uals playing a game in which they maximize their individual utilities while taking

into account the synergies coming from strategic interactions. The model is based

on an assumption made after Heckman and Snyder (1997) that the random utility

components have a uniform distribution in order to linearize the choice probabilities.

It turns out that this model can express the probability of making a choice in term of

the probabilities of one’s neighbor of making the same choice and can be estimated

by means of spatial linear probability model. I confirm that there is strategic be-

havior and positive interdependence in renewal for patents on similar technologies.

Results in the literature which ignored this interdependence may hence suffer from

specification biases. One plausible explanation for the interdependence I find is de-

fensive patenting in the form of patent fencing, patent blocking and patent thickets.

In the latter case, litigation and negotiation can impose high costs to society and

their anticipation can lead to a hold up problem, which could deter investment in

R&D.
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Chapter 2

Spatial Discrete Choice Models Literature Review

2.1 Introduction

The purpose of this chapter is to review some the existing literature on spatial

discrete choice models, and occasionally draws parallels with non-spatial literature,

mostly from time series. More specifically it mainly examines properties and po-

tential problems of one of the binary outcome models, the spatial probit model.

Further, it will analyze cases of departure from the normal error structure and ex-

tensions to multinomial models. Afterwards, this chapter will include models of

social interaction which examine different specifications, estimations and identifica-

tions strategies.

2.2 Some Spatial Binary Choice Models

There are two specification for the binary choice spatial model that define

the underlying latent variable. One model is the spatial autoregressive error, while

the other is the spatial autoregressive lagged dependent variable model. One might

encounter the need to estimate either model, or a combination of the two.

The spatial autoregressive error (SAE) model is:

y∗i = xiβ + ui (2.1)
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where y∗i is an unobserved latent variable, X is an n× k matrix of regressors, with

rows of the form xi, and β is the corresponding parameter vector. As opposed to

the standard probit model the errors ui do not have an independent and identically

distributed (i.i.d.) structure. Instead the errors have a correlated structure of the

form:

ui = ρ
n∑
j=1

wijuj + εi (2.2)

where εi are zero mean i.i.d. error terms, ρ is the spatial autoregressive parameter

that encompasses the degree of correlation in the errors, while wij is the typical

element in row i and column j of the proposed spatial weight matrix W . In spatial

models the weight matrix W is namely some type of exogenous measure of inverse

distance, while in social interaction models group membership offers another possible

structure for the weight matrix.

The spatial autoregressive lagged dependent variable (SAR) model has the

structure:

y∗i = λ
n∑
j=1

wijy
∗
j + xiβ + εi (2.3)

where εi are i.i.d. error terms, λ is the spatial autoregressive parameter that encom-

passes the interdependence, while wij are again spatial weights.

For both models the underlying latent variable is not observed, but a trunca-

tion of it is observed such that

yi =


1 if y∗i > 0

0 otherwise

(2.4)
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By rearraging the error structure u = (I − ρW )−1ε the SAE model becomes

y∗ = Xβ + (I − ρW )−1ε. (2.5)

Analogously, the SAL model can be rewritten

y∗ = (I − λW )−1Xβ + (I − λW )−1ε. (2.6)

If a multivariate normal distribution is assumed for the error terms, ideally,

according to Fleming (2004) the models would be estimated parametrically by max-

imizing the likelihood function:

L(θ) = P (Y1 = y1, ..., Yn = yn) =
∫ ∫

A
φ(ε)dε (2.7)

The limits of integration are over the set A = ×ni=1Ayi where

Ayi =


(−∞, 0] if yi = 0

(0,∞) if yi = 1.

The multivariate normal pdf is of the form φ(ε) = (2π)−n/2 |Ω|−1/2 exp(−1
2
ε′Ω−1ε)

where for the SAE we have Ω = σ2
ε(I − ρW )−1(I − ρW )−1 while for the SAL we

have Ω = σ2
ε(I − λW )−1(I − λW )−1.

These spatial models differ substantially from the non-spatial specifications be-

cause the spatially correlated covariance structure does not allow the simplification

of the multivariate distribution into the product of univariate distributions.

In terms of parametric estimation Lee (2004) investigates the asymptotic prop-

erties of the maximum likelihood estimator (MLE) and the quasi-maximum likeli-
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hood estimator (QMLE) for the SAR model under the normal distributional specifi-

cation. The author shows that the estimator consistency and asymptotic normality

under some under some regularity conditions on the spatial weights matrix. How-

ever, the theory is developed for continuous dependent variables, which excludes the

probit maximum likelihood.

To obtain consistent and efficient estimates for the βs and the spatial param-

eters, we need to solve for these parameters from the first order conditions of the

full likelihood. However, these first order conditions are quite complicated and we

need to solve them numerically. In practice this might not be attainable due to

computational limitations.

If we attempted to estimate the spatial model, we would need to deal with the

structure of the variance covariance matrix Ω, which implies a high degree of corre-

lation and heteroskedasticity. Ignoring heteroskedasticity in a linear representation

causes only a decrease in efficiency, while in the context of parametric non-spatial

discrete choice models Yatchew and Grilitches (1985) warn that it leads to incon-

sistency of the estimates.

2.3 Maximum Likelihood Estimates Adjusted for Heteroskedasticity

2.3.1 Explicit Adjustment for Heteroskedasticity in the Probit Model

Since the standard probit model under heteroskedasticity and non normality

produces inconsistent estimates. Case (1992) normalizes the variance, while assum-
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ing independence, of her SAR model specification

y∗ = λWy∗ +Xβ + ε (2.8)

where y∗ is the unobserved expected profits, and W is an adjacency neighborhood

matrix, and the errors ε are i.i.d. This model is used to explain the adoption of an

agricultural technology. The technology is adopted, i.e. di = 1, if it passes a certain

threshold

di =


1 if y∗i > 0

0 otherwise

After the transformation the model in (2.8) becomes

y∗ = (I − λW )−1Xβ + v (2.9)

where v = (I − λW )−1ε.

For any district with n observations we have In − λWn = [1 + λ/(n− 1)]In −

λ/(n− 1)ee′ = θ1In − θ2ee
′ and by inverting it

(In − λWn)−1 = (1/θ1)[In + θ2/(θ1 − nθ2)ee′]. (2.10)

Making use of the expansion in (2.10) the model becomes y∗ = (1/θ1)[Xβ+θ2/(θ1−

nθ2)X̄β] + v where X̄ is the matrix of mean household characteristics.

The covariance matrix structure Ω = (I − λW )−1(I − λW ′)−1σ2
ε introduces

heteroskedasticity and correlation into the model. Consequently, Case (1992) nor-

malizes the variance of the model in (2.9) to control for heteroskedasticity and

transforms the model:

y∗∗ = (D∗−1)y∗ = (D∗−1)(I − λW )−1Xβ + (D∗−1)(I − λW )−1ε (2.11)
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= (D∗−1)(I − λW )−1Xβ + (D∗−1)(I − λW )−1ε (2.12)

where

D∗ = diag(Ω)1/2 = diag(E(vv′))1/2

= (1/θ1)[1 + 2θ2/(θ1 − nθ2) + nθ2
2/(θ1 − nθ2)2]1/2I

Since Pr(di = 1) = Pr(y∗i > 0) after normalization in (2.12) through premul-

tiplcation by D∗−1, is equivalent to Pr(y∗∗ > 0), leading to an ordinary probit (OP)

estimation.

This correction for heteroskedasticity method for the SARAR(1,1) model can

be obtained similarly:

y∗ = (I − λW )−1Xβ + v (2.13)

with

v = (I − λW )−1(I − ρW )−1ε (2.14)

based on the covariance matrix

E[vv′] = σ2
ε(I − λW )−1(I − ρW )−1(I − ρW ′)−1(I − λW ′)−1 (2.15)

= σ2
ε [(I − λW ′)(I − ρW ′)(I − ρW )(I − λW )]

−1
(2.16)

The standard deviation is not identified, so one would normalize it, i.e. σ2
ε = 1.

The heteroskedasticity correction is done by pre multiplying the model in (2.13)

by D∗−1 = diag (E(vv′))−1/2 and estimating the transformed model by maximum

likelihood assuming incorrectly observational independence:

lnL =
∑
i

yi ln Φ (X∗i β) + (1− yi) ln [1− Φ (X∗i β)] (2.17)
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where X∗ = D∗−1 (I − λW )−1X and Φ (.) is the standard normal cumulative distri-

bution function. Case (1992) offers no proof on why this pseudo likelihood function

in (2.17) produces consistent estimates.

2.3.2 Maximum Likelihood Equivalence to Nonlinear Weighted Least

Squares

Another correction for heteroskedasticity was done by McMillen (1992), who

looks at the case of heteroskedasticity and no autocorrelation, in a framework related

to the spatial literature. The SAE model based on (2.1), (2.2) and (2.4) could be

expressed as

yi = xiβ + ui (2.18)

where the heteroskedasticity in the spatially correlated error term ui can be modeled

using the spatial expansion method. This expansion is similar to the one in Case

(1992), which replaces the parameters of the model with functional forms of the

weights, e.g. σui = g(Ziγ). The observation specific standard deviation is not

identified, so one would normalize it for a certain part of the subpopulation and

estimate the rest of the terms in the variance matrix based on the normalization.

The objective function that is being maximized is of the form

lnL =
∑
i

yi ln Φ (Xiβ/g(Ziγ)) + (1− yi) ln [1− Φ (Xiβ/g(Ziγ))] (2.19)

If the heteroskedasticity is specified correctly, McMillen (1992) state without

proof that the maximum likelihood (ML) estimates, βML and γML, are consistent,

even if the underlying errors are spatially autocorrelated. Moreover, the estimators

9



are efficient if the errors are not autocorrelated. McMillen (1992) show that the

ML estimator for θ = (β′, γ′)′ is equivalent to a nonlinear weighted least squares

estimator (NLWLS) such that

θ = (R′H ′HR)−1R′H ′Hy (2.20)

where Ri. =
[
φi
gi
Xi,−g′iφig−2

i XiβZi
]

with φi = φ(Xiβ/g(Ziγ)) and gi = g(Ziγ), also

H is a diagonal weight matrix which has entries of the form [Φi(1− Φi)]
−1/2 such

that Φi = Φ(Xiβ/g(Ziγ)).

McMillen (1992) suggests to use an iterated WLS procedure to estimate the

SAE model. To compare this iterated WLS estimator to the OP estimator McMillen

(1995) performs a Monte Carlo study. McMillen (1995) estimates the heteroskedas-

ticity corrected model by maximizing the likelihood specified in (2.19). In the spec-

ification of the experiment the author introduces heteroskedasticity of the form

σi = exp(γ0zi + γ1z
2
i ). Based on Dubin (1992), the author defines spatial autocor-

relation of the form Ωij = exp
(
− |xi−xj |

λ

)
in the model defined by (2.1) and (2.4).

The homoskedastic probit model holds when γ0 = γ1 = λ = 0. In this model the

variance increases in γ0 penalizing the heteroskedasticity adjusted probit, by fitting

the data poorly. The value of λ changes between 0 to 0.01, while γ0 varies between 0

and 1. γ1 changes to maintain Eσi = 1. The number of replications is 400, which is

low, in order to compromises the large computational costs of estimating a nonlinear

model. Additionally, in the MC experiments the sample sizes reported are 200, 500

and 800. McMillen (1995) study shows that the OP estimator is preferable, due

to smaller variance, to the more complicated heteroskedasticity adjusted estimator,
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when sample sizes and the degree of heteroskedasticity are small. Once the sample

increases to 500 there is little gain for the OP estimator, holding the variances con-

stant. The experiment also show that when the errors are truly homoskedasticity,

the MSE of the standard probit is lower for any sample size. Autocorrelation has

little effect on the results in small sample, when the errors are assumed incorrectly

to be independent.

The author claims without proof that the standard probit model provides

inconsistent estimates when γ0 6= 0 and γ1 6= 0. Similarly, McMillen (1995) claims

in this case the heteroskedastic probit model provides consistent estimates of β, γ0,

and γ1. Moreover he states without proof that imposing the restriction of no spatial

autocorrelation, i.e. λ = 0, incorrectly does not result in inconsistent estimates in

small samples. McMillen (1995) also show that the Lagrange Multiplier (LM) test

has low power in small samples, and that one does better by using the Likelihood

Ratio (LR) to test for heteroskedasticity.

2.3.3 Partial MLE Spatial Bivariate Probit: Theory and Simulation

Results

Wang et al. (2009) are concerned with estimation of the SAE model with dis-

crete choice dependent variable and define a partial maximum likelihood estimator

for their model. They focus on a probit model, but their approach generalizes to

other discrete choice models (e.g. logit). The idea in the paper is to divide spa-

tial dependent observations into many small groups in which adjacent observations

11



belong to a group. They motivate this approach by claiming that adjacent obser-

vations account for the most important spatial correlations between observations.

They specify conditional joint distributions within groups, which utilizes more in-

formation of spatial correlation. By estimating their model by Partial Maximum

Likelihood (PML) they obtain estimates that are consistent and more efficient than

the GMM estimators discussed before.

To define the bivariate distribution, they partition the sample pairwise, and

define n groups for 2n observations. The authors let the latent variables for each

group g be {Y ∗g : g = 1, ..., n}, and the observed binary response variables for pair

g be: Yg = (Yg1, Yg2).

The authors define the partial likelihood function for the SAE model in the

bivariate case as

L(θ) =
n∑
g=1

Yg1Yg2 logP 11
g + Yg1 (1− Yg2) logP 10

g

+ (1− Yg1)Yg2 logP 01
g + (1− Yg1) (1− Yg2) logP 00

g

where Pij
g = Pg(Yg1 = i, Yg2 = j|Xg), with i, j ∈ {0, 1} is the conditional bivariate

probability. They prove consistency and asymptotic normality of the estimator.

Rather then using ”in fill” asymptotics, they impose the restriction that the sampling

area is increasing uniformly at a rate
√
n, essentially the process needs to be mixing

in a spatial sense.

Since a full likelihood is not specified they use only information across groups.

Rather than assuming group independence, they limit the degree correlation be-

tween groups. The key assumption of α−mixing they employ is that the dependence
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among groups decays sufficiently quick, as the distance between groups increases.

Further, Wang et al. (2009) proposed an estimation method for the variance covari-

ance matrix.

They simulate the partial maximum likelihood estimator (PMLE) and show

it is more efficient than the GMM estimator of Pinkse and Slade (1998), and less

computationally demanding relative to the full information methods. The moment

conditions constructed based on the generalized residuals of the heteroskedastic pro-

bit only use information on the diagonal elements, while the PMLE uses additional

on the off diagonal information between two closest neighbors.

2.3.4 Maximum Likelihood Estimator: Spatial Bivariate Probit

In their paper Pinkse and Slade (2007) look at an estimator for a binary choice

spatial model where the spatial endogeneity is defined in terms of the probabilities of

other expected choices. The estimator can be used for games with a rich set of choices

that are correlated across decision makers. However, the bivariate probit model

they suggest applies only to models with two rival players. For a larger number

of players the likelihood function becomes intractable. The model I will discuss in

Chapter 4 assumes a uniform distribution rather than a normal distribution for the

errors so that it allows for a game with a multitude of players. Pinkse and Slade

(2007) model the binary decisions as functions of covariates and rival’s probabilities

of making certain choices, not of their actual choices, removing the possibility of

having multiple equilibria of each period game. In Pinkse and Slade (2007) the
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decisions are made simultaneously, while in Pinkse et al. (2006) the decision was

based on past observed choices. Pinkse and Slade (2007) apply the estimator to a

dynamic game of price competition, decision to advertise and choice of aisle display.

The latent variable model in Pinkse and Slade (2007)

Y ∗bst = α
∑
b′ 6=b

Pb′st(vst, θ) + x′bstβ + γvst − ubst (2.21)

where Y ∗bst represents the benefits from advertising brand b, in store s, and at time

t. Pb′st(vst, θ) is the conditional probability of advertising of rival brand b′ given

known information to brands in the store s, vst, with θ = (α, β′, γ)
′
. Moreover the

private information to brand b is ubst. The stochastic components vst and ubst are

normally distributed, with ubst independent across b, and vst creating dependence

between brands in the same store.

The probability of advertising based on known v is Pbst(v, θ) = P (Y ∗bst ≥

0|vst, Xst; θ) = Φ
(
α
∑
b′ 6=b Pb′st(vst, θ) + x′bstβ + γvst

)
.

In the case of a duopoly, since the decisions are made simultaneously, four

joint probabilities need to be specified of the form

P (Ybst = 1, Yb′st = 1|Xst) = P 11
bb′st(θ) =

∫
Pbst(v, θ)Pb′st(v, θ)φ(v)dv

Pinkse and Slade (2007) specify the likelihood function

L̂(θ) =
∑
bst

lbb′st(θ) (2.22)

lbb′st(θ) = YbstYb′st logP 11
bb′st(θ) + Ybst (1− Yb′st) logP 10

bb′st(θ)

+ (1− Ybst)Yb′st logP 01
bb′st(θ) + (1− Ybst) (1− Yb′st) logP 00

bb′st(θ)
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under the assumption of independence across time and store, and they correct for

the spatial correlation by adjusting the standard errors in the next step. The asymp-

totics of the estimator that maximizes (2.22), based on previous work of Pinkse et

al. (2006), are of the form

√
n(θ̂ − θ)→ N(0,Γ−1(θ)Ω(θ)Γ−1(θ))

where Γ(θ) = limn→∞
1
n

∑
bb′st

(
E ∂2lbb′st

∂θ∂θ′
(θ)
)

and, the variance covariance Ω(θ) is

estimate based on the Newey-West type spatial weights, which corrects for the bias

caused by the spatial correlation:

Ω(θ) = lim
n→∞

1

n

∑
bb′stb̃b̃′s̃t̃

E

(
∂lbb′st
∂θ

(θ)
∂lb̃b̃′s̃t̃
∂θ′

(θ)

)
.

2.3.5 Spatial Panel Probit Model: with Assumed Non-Endogeneity.

Egger and Larch (2008) define one latent variable model for preferential trade

agreements

y∗t = ρWt−5yt−5 +Xt−5β + ρ̄W̄ ȳ + X̄β̄ + εt

yt = I(y∗t > 0)

where bars indicate time averages. Under their assumptions Wt−5yt−5 is sequentially

exogenous, i.e. the past outcome cannot be determined by a future outcome, they

estimate the model as a probit with heteroskedastic disturbances.
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2.4 Generalized Method of Moments (GMM) Estimators

2.4.1 Probit Model in Time Series

In the time series literature Gourieux et al. (1984) consider the case of ho-

moskedastic and weakly autocorrelated disturbances and show that the ordinary

probit (OP) estimates, i.e. established under assumption of independence, are con-

sistent and asymptotically normal, but inefficient. These results come as an exten-

sion, for the probit model, from the ordinary Tobit results in Robinson (1982), which

hold under certain regularity conditions. Poirier and Ruud (1988) develop a com-

putationally simple estimator that improves upon the OP estimator in the presence

of serial correlation. They show that a consistent estimator in the homoskedastic

case is a solution to the moment conditions of the form X′ {E [u|y]} = 0.

The moments result from the first order conditions of the maximization of the

likelihood function, and their solution constitutes the ML estimator. The moment

conditions are based on the expectation with respect to all y’s, while in the OP case

ui is defined conditional on yi Consequently, the ML estimates are more efficient

than the OP ones. This estimator and others such as Avery et al. (1983) are part of

what are known as orthogonality condition (OC) estimators for the probit model.

Avery et al. (1983) show that the quasi ML estimator under the incorrect assump-

tion of no serial correlation is a special case of their OC estimator. Given this,

it is not surprising that when spatial correlation is limited in the SAE model, the

pooled probit that accounts for the heteroskedasticity in the marginal distribution

is generally consistent for spatially correlated data.
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2.4.2 GMM based on Generalized Residuals

Similarly to McMillen (1992), Pinkse and Slade (1998) analyze a broader class

of heteroskedastic discrete choice models, which includes the SAE model specified

by (2.1), (2.2) and (2.4). Pinkse and Slade (1998) build a GMM estimator based on

the generalized residuals spatially corrected for heteroskedasticity

ũi (β0, ρ0) = E (ui|yi; β0, ρ0)

=
yi − Φ (Xiβ0/σi(ρ0))

Φ (Xiβ0/σi(ρ0)) [1− Φ (Xiβ0/σi(ρ0))]
φ (Xiβ0/σi(ρ0))

Pinkse and Slade (1998) propose using the ML score vector for the discrete

choice model as a set of moment conditions for the GMM model. Further, they

prove consistency and asymptotic normality of the M-estimators of β and ρ that

minimize the objective function

Q(β0, ρ0) =
[
ũ (β0, ρ0)′ Z

]
M [Z ′ũ (β0, ρ0)] (2.23)

where Z is a matrix of instruments and M is a positive semidefinite matrix. The

regularity conditions required for the proof to hold are that the variances are finitely

bounded. However, Lahiri (1996) shows that the GMM estimators based on spatial

data are inconsistent under infill asymptotics, since they converge to non-degenerate

limiting random vectors. When ρ is unknown the GMM model has to estimate β

and ρ jointly, requiring the evaluation of the variance covariance matrix Ω for any

candidate of ρ. This can be computationally difficult since the nonlinear optimiza-

tion involves inverses of n × n matrices. The authors do not report the covariance

estimates, since the asymptotic results might not hold in small sample.
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2.4.3 GMM Framework

Further, Pinkse et al. (2006) look at a binary choice model allowing for generic

spatial and time series dependence in the errors and prove that the GMM Continuous

Updating Estimator (CUE) is consistent and asymptotically normal. They apply

their technique to estimate the impact that price, operating costs, reserves, capacity,

price volatility, and prior state have on Canadian mines yearly decision whether to

operate or not. The decisions are not interdependent in their model.

In a dynamic space-time framework Pinkse et al. (2006) consider a discrete-

choice with fixed effects model:

yit = I(x′it1θ0 − εit1 ≥ 0)yi,t−1 + I(x′it0θ0 − εit0 ≥ 0)(1− yi,t−1) + ηi + u∗it

where yit represents the binary choice for firm i at time t, u∗it’s are errors, x′its are

regressors vectors, and ηi are the fixed individual effects that enter linearly the

decision of the firm. The interpretation of the fixed effects will have to be according

to this specification.

The error terms εits are distributed normally, independent of yi,t−1 and of past

and current x′its. There is assumed to be a vector of instruments zit independent of

εits such that

E(yit|zit) = E(I(x′it1θ0 − εit1 ≥ 0)yi,t−1|zit)

+ E(I(x′it0θ0 − εit0 ≥ 0)(1− yi,t−1)|zit) + E(ηi|zit)

= E(Φ(x′it1θ0)yi,t−1|zit) + E(Φ(x′it0θ0)(1− yi,t−1)|zit) + E(ηi|zit)

To cancel the fixed effects the model is differenced E[yit−yi,t−1−Φ(x′it1θ0)yi,t−1+

Φ(x′i,t−1,1θ0)yi,t−2 − Φ(x′it0θ0)(1 − yi,t−1) + Φ(x′i,t−1,0θ0)(1 − yi,t−2)|zit] = 0 and the
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moment condition is derived

0 = git(θ) = zit(yit − yi,t−1 − Φ(x′it1θ0)yi,t−1 + Φ(x′i,t−1,1θ0)yi,t−2

−Φ(x′it0θ0)(1− yi,t−1) + Φ(x′i,t−1,0θ0)(1− yi,t−2))

such that Egit(θ0) = 0, for any i, t.

The CUE of Pinkse et al. (2006) is θ̂ = arg minθ∈Θ Ω̂n(θ) based on the ob-

jective function Ω = ḡ′n(θ)Ŵn(θ)ḡn(θ) where the sample moments are ḡn(θ) =

1
n

∑n
i=1 gni(θ), where gni is some vector-valued function, while the weight matrix is of

the form: Ŵn(θ) = ΨnV̂
−1
n (θ). The CUE is similar to the two-step GMM estimator,

with the weight matrix Ŵn(θ) parametrized immediately. In small sample the weight

matrix Ŵn(θ) is based on: V̂n(θ) = 1
n

∑n
i,j=1 λnij(gni(θ) − ḡn(θ))(gni(θ) − ḡn(θ))′.

The Ψns in Ŵn(θ) are scalars and do not affect the estimates, and are taken to be

equal to the maximum row sum of the location matrix Λn. The general element in

column i and row j of Λn is λnij and is taken to be close to one when observation i’s

location is close to j’s. Convergence is shown in n, where n is N or NT depending

if T is fixed or not.

While the two step GMM estimator and the GMM CUE have the same asymp-

totic distribution. The CUE estimator is a GEL (Generalized Empirical Likelihood)

and unlike in the two step GMM a second order, i.e. n−1, bias correction is possible.

The bias correction improves performance in moderate sample sizes. The bias cor-

rection in Pinkse et al. (2006) is based on the one provided by Iglesias and Phillips

(2008).
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2.4.4 Expectation Maximization (EM) Algorithm

The SAE model was developed to account for the autocorrelation in the error

terms, but it implicitly introduced heteroskedasticity. McMillen (1992) offer without

proof of consistency an estimator that takes into account both heteroskedasticity and

spatial autocorrelation resulting from the SAE, as well as the SAL case.

In the SAE case:

y∗i = Xiβ + v1i (2.24)

with v1i =
∑
j δ1ijεj with δ1ij a typical element of (I−ρW )−1, while in the SAL case

y∗i =
∑
j

δ2ijXjβ + v2i (2.25)

with v2i =
∑
j δ2ijεj with δ2ij a typical element of (I−λW )−1. Based on the assump-

tions v1i and v2i are distributed normally with heteroskedastic variances of the form

σ2
v1i = σ2

ε

∑
j δ

2
1ij, and respectively σ2

v2i = σ2
ε

∑
j δ

2
2ij. A standard assumption needed

for identification is σ2
ε = 1.

McMillen (1992) suggest using the EM algorithm to estimate the models in

(2.24) and (2.25). The author shows no proof for the consistency or asymptotic

properties of the resulting estimators. Dempster et al. (1977) introduce an ap-

proach of iterative computation of maximum-likelihood estimates under incomplete

data. Their algorithm is called EM, since each iteration of the algorithm consists

of an expectation step followed by a maximization step. Dempster et al. (1977)

show that convergence of the algorithm implies a stationary point of the likelihood.

Convergence is defined in practice as a small change in the parameters, Levine and

Casella (2001), or in the log-likelihood function, Weeks and Lange (1989) and Aitkin
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and Aitkin (1996). Other criteria that involve the gradient and the Hessian, such

as in Ruud (1991), are computationally harder to implement.

In the probit case the method involves replacing the binary dependent variable

by the expectation of the continuous underlying latent variable. The formulas used

by McMillen (1992) to construct the two continuous variables for the SAE model

are

E(y∗i |yi = 1) = Xiβ + σv1i
φ (Xiβ/σv1i)

Φ (Xiβ/σv1i)

E(y∗i |yi = 0) = Xiβ − σv1i
φ (Xiβ/σv1i)

1− Φ (Xiβ/σv1i)
,

while for the SAL are

E(y∗i |yi = 1) = X∗i β + σv2i
φ (X∗i β/σv2i)

Φ (X∗i β/σv2i)

E(y∗i |yi = 0) = X∗i β − σv2i
φ (X∗i β/σv2i)

1− Φ (X∗i β/σv2i)
,

based on a prior estimate of β, ρ, and λ. Using these expectations as continuous

dependent variables one can construct the likelihood function that needs to be max-

imized. The new parameter estimates are used to calculate a new expectation, and

the process is repeated until convergence. Since the likelihood involves n integrals, it

makes the calculation of the information matrix to obtain the VC matrix intractable.

Consequently, for the empirical part in order to get the standard errors of the es-

timates McMillen (1992) interprets the probit model as NLWLS. The covariance is

estimated conditional on knowing ρ and λ. For the SAE model

V C(β) =
(
F ′1Ω−1

1 F1

)−1

F1i = (φiXiβ/σv1i)Xi
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and the VC matrix Ω1 has a typical element ij of the form Φ2 (Xiβ/σv1i, Xjβ/σv1j, τ 1ij)−

Φ (Xiβ/σv1i) Φ (Xjβ/σv1j) where τ 1ij is an element of [(I − ρW )′(I − ρW )]−1.

For the SAL model

V C(β) =
(
F ′2Ω−1

2 F2

)−1

F2i = (φiXiβ/σv2i)Xi

and the VC matrix Ω2 has a typical element ij of the form Φ2

(
X∗i β/σv2i, X

∗
j β/σv2j, τ 2ij

)
−

Φ (X∗i β/σv2i) Φ
(
X∗j β/σv2j

)
where τ 2ij is an element of [(I − λW )′(I − λW )]−1.

The author claims without proof that the EM estimates are consistent. Never-

theless, he states that the standard errors may be too small, and the unconditional

estimates of ρ and λ are biased.

2.5 Simulation

In the spatial probit case there is no closed-form solution for the likelihood

estimates and the n-dimensional integration makes the estimation unfeasible for a

large sample. Simulation methods have been proposed to solve this computational

burden. One of the methods is the maximum simulated likelihood (MSL) procedure.

This method of estimation is the same as the ML but the choice probabilities are

being replace with smooth simulated probabilities. Properties for simulations meth-

ods outside the spatial literature were derived by Gourieroux and Monfort (1993),

Lee (1995), and Hajivassiliou and Ruud (1994).

Another method is that of maximum simulated moments (MSM) covered in a

non spatial context by McFadden (1989) and Pakes and Pollard (1989), which is the
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typical generalized method of moments. In this method, for the error-instrument

orthogonality condition, the errors are replaced by the difference between the depen-

dent variable and the simulated probabilities, rather than the exact probabilities.

Lee (1992) shows that in the non spatial multinomial model, with a large number

alternatives, MSL has computational advantages to its counterpart the MSM. Since

in the MSM case each alternative needs to be simulated, while in the MSL case only

the chosen alternative needs to be simulated.

2.5.1 Maximum Simulated Likelihood with Spatial Dependence

Hautsch and Klotz (2003) look at a limited dependent variables in the context

of spatial dependence on the past decisions of others. There is no simultaneous

interdependence in the decision process. The binary decision for each one of the N

individuals depends on their own characteristics, on his own decision with respect

to the same problem in a prior period and on the decisions of the other decision

makers in that prior period.

Individual’s ith decision yi depends on the latent variable y∗i which is modeled

as:

y∗i = α + x′iβ + y−i γ + κ−i + ui, i = 1, ..., N

where y−i represents the observed binary choice of individual i in last period and κ−i

reflects the neighborhood impact of all other individuals on decision maker i:

κ−i =
∑N
j=1j 6=i

{[
a1 exp(−δ∗ijb1)y−j

]
+
[
a0 exp(−δ∗ijb0)

(
1− y−j

)]}
where a1, a0 are the scale rates and b1, b0 are the decay rates. δ∗ij depends on the
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distance between the individuals. In their paper the social distance, δ∗ij, is based on

the Euclidean distance among each of the D social characteristics of the individuals

i and j. The error terms ui are i.i.d. N(0, σ2) and E[κ−i ui] = 0.

When the estimates for the parameters a, b are found to be jointly significant,

there is proof of spatial dependence on past observed choices. The model is simulated

for sample sizes of 50 to 400. They notice no convergence problem even for small

samples. The variance decreases as the sample size increases. There is a small

sample bias, in the form of overestimation in absolute value. The estimates with

the largest bias are for γ and the spatial scaling parameter a1, while the estimates

of the decay parameter b1 has the lowest bias. The size of the bias and the variance

are too large for samples under 100. Their model is also generalized to a multiple

choice with S alternatives and errors with a multivariate normal distribution.

2.5.2 Geweke-Hajivassiliou-Keane Simulator

The Recursive Importance Sampling (RIS) simulator constitutes a method to

evaluate an n-dimensional normal probability. In the multinomial case Bolduc et

al. (1997) combine the MSL method with the Geweke-Hajivassiliou-Keane (GHK)

simulator to obtain estimates in a model with spatial correlation among the choices

of an individual. The GHK simulator is a particular case of a RIS simulator, in

Vijverberg (1997) and Beron et al. (1997), with a standard normal kernel.

In the multinomial choice model of Bolduc et al. (1997), spatial correlation

is in the unobserved utility term and relates the choices an individual faces, while
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the choices of different individuals are not spatially correlated. The model includes

N individuals who each face J choices. The utility function for an individual n for

each available option j is expressed in terms of the exogenous characteristics for

each individual n of each of the choices j.

Bolduc et al. (1997) construct the empirical expectation of the probability that

individual n chooses alternative j, by averaging over the R simulated probabilities:

fn(j) = 1
R

∑R
r=1

J−1∏
l=1

Φ (anrl) , where under the GHK simulator Bolduc (1999) derive

the exact form of anrl.

The estimation method is based on the maximization of the logarithm of the

simulated likelihood function, over some coefficients on exogenous characteristics of

the choices of each individual that help parameterize the utility function:

L =
N∑
n=1

ln fn(j) =
N∑
n=1

ln
1

R

R∑
r=1

J−1∏
l=1

Φ (anrl) . (2.26)

Another model that is more closely related to the model that I will be dis-

cussing in Chapter 3 is that of Beron and Vijverberg (2004). The authors simulate

the SAE and SAL RIS estimators for the discrete dependent variable. The SAE

model is specified as in (2.1), (2.2) and (2.4), and the SAL model is specified as in

(2.3) and (2.4). They perform Monte Carlo simulation for the sample sizes of 50,

100 and 200 and they use a real state-distance matrix, as well as a random one.

Under no spatial correlation, i.e. ρ = 0 and λ = 0, the estimates of ρ and

λ have a positive bias. The authors show that the standard probit gives biased

estimate of β depending on the nature of the data, with a negative bias for a

spatial lag dependence. The estimates for β are more biased under a spatial error
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autocorrelation structure, even when the correct model is used. The RMSE is

lowest for the standard probit, and largest for the SAE model, regardless of the

data structure. Under true SAE structure, SAL is a mis-specification, but when

attempting to estimate a SAL model one would get positive estimates of λ.

Beron and Vijverberg (2004) results show that comparing models based on

the likelihood ratio test is quite reliable, when spatial dependence is not weak. The

LR test has low power in small sample. They conclude that it is harder to observe

spatial error autocorrelation than spatial lag structures.

2.5.3 Spatial Linear Probability Model: Monte Carlo Experiment

Beron and Vijverberg (2004) compare the linear probability model (LPM)

estimator with the RIS estimator for the SAE and SAL models. In their specification

the linear SAE model, based on the observed choices, is

y∗ = Xβ + u

u = ρWu+ ε,

while the linear SAL model

y∗ = λWy∗ +Xβ + ε

where y∗ is the latent variable and y = I(y∗ > 0) is the observed binary variable.

The SAL model of Beron and Vijverberg (2004) has a different data generating

process and it imposes more structure on the errors terms then the model I will be

introducing in Chapter 3.
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In a model where there is no spatial autocorrelation of any kind and the

weights are based on the contiguity of US states, the likelihood ratio test based

on the linear estimator picks this up only 74%, while their spatial probit picks

up the lack of a spatial component 90% of the time. In the presence of a spatial

component the linear model favors a decision suggesting a spatially correlated error

alternative over a lag model. By comparison for larger values of λ and ρ, the spatial

probit model distinguishes between the lag and the error model alternative, while

the linear probability model favors a decision suggesting an SAE model over a SAL

model. Under simulated weights the spatial linear model is able to separate the

spatial error and spatial lag model as well as the spatial probit model would. The

randomization offsets some of the otherwise possible extreme values that might occur

in Wy and Wu. Moreover, when correlation exists and they use a real state based

weights matrix, the linear spatial model outperforms the spatial probit model by

rejecting correctly the null of no spatial component more times.

2.6 Bayesian: Gibbs Sampler

Bayesian statistical technique are used to avoid the computation of high dimen-

sion integrals. Two of these techniques are the Gibbs Sampler and the Metropolis

Hastings, also known as Markov Chain Monte Carlo techniques. In the case of multi-

nomial distributed variables draws come from a conditional distribution instead of

the joint density, this sampling method is known as Gibbs. Similarly to the EM

algorithm the likelihood is formulated as if the dependent variable were continuous.
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According to Bolduc et al. (1997) who apply the Gibbs sampler to the SAE

multinomial probit model with spatially correlated choices. Bolduc et al. (1997)

want to estimate a joint unconditional posterior distribution of the parameters that

enter the utility and the coeficient for the spatial correlation in alternatives.

The process is based on drawing alternatively from conditional densities using

the Metropolis technique. Once the sequence of random draws converged, the mean

of this chain is a consistent estimator of the posterior mean of the parameters of

interest. Bolduc et al. (1997) claim that numerical errors are on average less than

1% of the estimated posterior means.

Further, LeSage (2000) incorporates heteroskedastic errors terms independent

of spatial error dependence, extending the SAL and SAE model. While Egger and

Larch (2008) apply Gibbs sampling based on the conditions derived by LeSage (2000)

for the cross-sectional SAL binary choice model: y∗ = ρWy∗ + Xβ + ε where y =

I(y∗ > 0) is the existence of a preferential tax agreement.

The advantage over the EM algorithm of the Gibbs Spatial Sampler of Bolduc

et al. (1997) and LeSage (2000) is that consistent standard errors are derived from

the posterior distribution. The Gibbs algorithm is computationally and conceptually

preferred over the RIS simulator, Bolduc et al. (1997).

2.7 Spatial Logit Adjusted For Dependence

Another discrete choice model is that of Smirnov (2008) who looks at a spatial

random utility model for n agents selecting over J alternatives. The author defines
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the multinomial discrete choice yij to be equal to one for individual i if his utility

from alternative j is highest. The utility vector of the n individuals from alternative

j is

uj = ρWuj + vj(β) + εj

where vj(β) is the vector of private deterministic component, W is the individ-

ual interaction weight matrix, and εj is the vector of private stochastic component

assumed to come from an extreme value type I distribution.

The reduced form model is of the form

uj = Zvj(β) + Zεj

such that Z = (I − ρW )−1. Notice that the spatial correlation is again in the

unobserved component and among the alternatives as in the similar model of Bolduc

et al. (1997). Further Smirnov (2008) decomposes the multiplier matrix Z into

private effects of shocks (i.e. the effect of a shock in the individual utility on the

utility of the same individual), D, and social effects of shocks (i.e. the effect of a

shock in the individual utility on the utilities of other individuals), Z−D such that

uj = Zvj(β) +Dεj + (Z −D)εj.

This transformation facilitates the estimation of the model by a pseudo max-

imum likelihood, which is equivalent to estimating the likelihood of the alternative

utility

ũj = Zvj(β) +D(ρ)εj,

which ignores the term (Z−D)εj. The latter model is easier to estimate by maximum

likelihood since the errors are independently distributed. Further Smirnov (2008)
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simulates the model for 8 alternatives and uses a linear deterministic utility vj(β) in

two explanatory exogenous variables. The results show the smallest bias and RMSE

for the estimates of ρ. Larger values of ρ cause larger biases and RMSE for the

estimates of the β’s.

2.8 Models of Social Interaction

2.8.1 Identification in Spatial Models

The seminal paper that discusses identification in linear in means models is

that of Manski (1993). Manski (1993)’s original model of social interactions is:

y = α + βE(y|x) + E(z|x)′γ + z′η + u

E(u|x, z) = x′δ

where y is a scalar outcome (e.g. a youth’s achievement in high school), x is vector

of attributes characterizing an individual’s reference group (e.g. a youth’s school or

ethnic group), and z, u are vectors of attributes that directly affect y (e.g. socioe-

conomic status and ability). A researcher observes a random sample of realizations

of (y, x, z), but does not observe u. Also, (α, β, γ, δ, η) is a parameter vector.

The author labels E(y|x) to be the endogenous effect, E(z|x) the contextual

effect, and x′δ the correlated effect. In proposition one Manski states the conditions

that insure that a social effect exists (e.g. endogenous or contextual), and is iden-

tified from the unobserved correlated effects. While in proposition two he lists the

conditions for identification of a pure endogenous effect.
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In one of the sections Manski (1993) looks at spatial correlation models to

discuss models of endogenous effects, with no contextual or correlated effects, of the

form

yi = βWiNY + z′iη + ui

where Y = (yi, i = 1, ...N) is the N ×1 vector of sample realizations of y and WiN is

a specified 1×N weighting vector whose elements add up to one. The disturbances

are normally distributed and independent of the x’s.

The spatial model above assumes that an endogenous effect is present within

the researcher’s sample rather than within the population from which the sample

was drawn. Manski (1993) says that this makes sense in the case of small group

interaction, when all the members know each other. However, this model does not

make sense in cases of large group social effect, where the samples are randomly

chosen individuals. The theory can be applied for large groups if in the first step

they estimate EN(y|xi) = WiNY non parametrically, and then using z and EN(y|xi)

as independent variables in the second stage of the regression. While EN(y|xi) is

in most cases independent of [1, z], the model is unidentified since E(y|xi) is a

function of [1, z]. This produces a point estimate of β even when this parameter

is unidentified. In contrast to the linear in means model, if the probit model is

specified the nonlinearity introduced facilitates identification.

Similarly to Manski (1993), in Moffitt (2001)’s model peer effects are also not

identified. As opposed to Manski (1993)’s model which includes the individual in

the mean of the group, Moffitt (2001) does not include the individual in the mean
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of the group and considers groups of the same size.

In contrast, the model of Lee (2007) considers interactions in groups with

different sizes, and the individual is also excluded from the mean. He finds that

variations in group sizes can yield identification. Bramoulle et al. (2009) generalizes

the result of Lee (2007) by considering an extended version of the linear-in-means

model where interactions are structured through a social network. They assume

that correlated unobservables are either absent, or treated as network fixed effects.

They provide easy-to-check necessary and sufficient conditions for identification.

Moreover, Graham and Hahn (2005) focus on identification of endogenous

social effects from unobserved group characteristics under the assumption that ex-

ogenous social effects are not present. They reinterpret the linear-in-means model as

a quasi-panel data model, where the cross sectional dimension equals the number of

observed social groups and the time series dimension equals the number of sampled

individuals within each group. Using the quasi-panel reinterpretation, it is straight-

forward to see that Manskis first non-identification result for the linear-in-means

model is analogous to the inability of a standard fixed effects regression to identify

coefficients on group-invariant regressors. The authors identify the between-group

variation that contains information on the social multiplier (Manski (1993); Glaeser

et al. (2002)). The identification relies on the existence of instruments generating

exogenous between-group variation.

Brock and Durlauf (2001a) characterize the equilibrium of a theoretical model

for social global interaction. The authors specify a model for which the people’s

equilibrium choice is mathematically equivalent to a logit regression. They use a
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binary logit framework, where each agent i makes observed choices ωi = {−1, 1}

that gives him the utility

V (ωi) = u(ωi) + S(ωi, µ
e
i (ω−i)) + ε(ωi) (2.27)

The first term represents the private deterministic part of the utility, while the sec-

ond term represents the social part of the utility, with µei (ω−i) being the conditional

probability measure agent i places on the choices of others at the time of making

his own decision. The last term represents the random payoff term. The µei (ω−i)

measure is replaced by the average of the subjective expected value of individual j′s

choice as seen by individual i m̄e
i = 1

I−1

∑
j 6=im

e
i,j.

Brock and Durlauf (2001a) pick two functional forms for the social component

of the utility S(ωi, m̄
e
i ) = Jωim̄

e
i for a proportional spillover case, and S(ωi, m̄

e
i ) =

−J
2

(ωi − m̄e
i )

2 that penalizes deviations far from the mean more strongly. Also,

they linearize the private utility component to u(ωi) = hωi + k.

The random part of the utility in (2.27) are independent error terms distributed

extreme value, such that Pr(ε(−1)− ε(1) ≤ x) = 1
1+exp(−βx)

Consequently the joint probability measure over all choices is

Pr(ωi) =
exp(β(hωi + Jωim̄

e
i ))∑

vi∈{−1,1} exp(β(hvi + k + Jvim̄e
i ))
. (2.28)

When J = 0 is the standard logit case, when J 6= 0 is the standard form

augmented by social interactions, which characterizes the effects of the interac-

tions on community behavior. The mean expectation is E(ωi) = tanh(βhωi +

βJ 1
I−1

∑
j 6=im

e
i,j).
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By imposing rational expectations me
i,j = E(ωj) and by the fixed point theo-

rem they prove that there is a self consistent equilibrium that solves

m∗ = tanh(βh+ βJm∗). (2.29)

Brock and Durlauf (2001a) show that if βJ > 1 and h = 0, there exist a

positive, zero and a negative equilibrium value. If βJ > 1 and h 6= 0, there exists a

threshold H (depending on βJ) such that for |βh| < H there exists three roots to

(2.29) and one has the sign of h, while the others have opposite signs. On the other

hand if |βh| > H, there exists a unique root with the sign of h.

In the econometric model identification holds because of the nonlinearity the

binary choice model introduces. Brock and Durlauf (2001a) parameterize the utility

such that hi = k + c′Xi + d′Yn(i) where Xi are individual observables and Yn(i) are

neighborhood exogenous observables, since n(i) implies neighborhood of individual

i. Assuming that the errors follow a logit distribution the model can be solved by

maximizing

L(ωI |Xi, Yn(i),m
e
n(i)) =

∏
i

Pr(ωi = 1|Xi, Yn(i),m
e
n(i))

(1+ωi)/2

Pr(ωi = −1|Xi, Yn(i),m
e
n(i))

(1−ωi)/2

∼
∏
i

exp(βk + βc′Xi + βd′Yn(i) + βJme
n(i))

(1+ωi)/2

∏
i

exp(−βk − βc′Xi − βd′Yn(i) − βJme
n(i))

(1−ωi)/2

where β is normalized to 1 for identification. The rationality condition, of how

people form their global neighborhood expectations, is

me
n(i) =

∫
tanh(k + c′Xi + d′Yn(i) + Jmn(i))dFX|Yn(i)
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=
∫
ωidF (ωi|k + c′Xi + d′Yn(i) + Jmn(i))dFX|Yn(i)

.

Parallel to Manski’s Reflection Problem, Brock and Durlauf (2001a) show that

identification of k, c, d, J is possible, while in the linear-in-means model of Manski

(1993) the model is not identified since mn(i) =
c′E(Xi|Yn(i))+dYn(i)

1−J and E(Xi|Yn(i)) is

linear in Yn(i). The difference from the linear-in-means case is that the binary choice

imposes a nonlinearity between group characteristics and group behaviors. Manski

(1993) mentions that further difficulties in empirical work arise from having to infer

the social structure as well as the strength of the interaction within neighborhoods.

Further, papers that discuss identification in models of social interaction under

other various assumptions are Brock and Durlauf (2001b), Brock and Durlauf (2007)

Brock and Durlauf (2002) and Blume and Durlauf (2002).

2.8.2 Simulated Likelihood with Randomized Choice Over Multiple

Equilibria

Soetevent and Kooreman (2007) estimate a discrete choice model with social

interactions by using simulation methods. Agents maximize a utility functions of the

form V(yi, xi, y−i, εi(yi)) = u(yi,, xi)+S(yi, xi, y−i)+εi(yi), with the vector of binary

choices for the n individuals being y = (yi, y−i) where y−i = (y1, ..., yi−1, yi+1, ..., yn)′.

The deterministic private part is u(1, , xi) − u(−1, xi) = βxi, the social part is

S(yi, xi, y−1) = γ
2N−2

yi
∑N
j=1,j 6=i yj, and the random private utility εi(yi).

The derived latent variable model in this case is

y∗i = β′xi + si + εi (2.30)
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where y∗i is defined as the difference in utilities from choosing yi = 1 as opposed to

yi = −1, such that the observed choice variable is

yi =


1 if y∗i > 0

0 y∗i ≤ 0

(2.31)

and the endogenous social effect is

si =
γ

N − 1

N∑
j=1,j 6=i

yj (2.32)

The model assumes no contextual effects.

To deal with multiplicity of equilibria the authors calculate the number of

possible Nash Equilibria denoted by:

Q(β, γ, x, ε,N) =

=
2N∑
t=1

I
εi > −β′xi − γ

N − 1

N∑
j=1,j 6=i

yj


1+yi

2

I

εi ≤ −β′xi − γ

N − 1

N∑
j=1,j 6=i

yj


1−yi

2


When γ = 0 the model becomes the standard binary choice formulation without

externalities and thus with a unique equilibrium, i.e. Q(β, 0, x, ε, N) = 1.

In the application the authors make a randomization assumption: whenever

the model generates multiple equilibria they assume that one of them will occur

with probability equal to one over the number of equilibria. They simulate R times

the number of equilibria Er that exists in the region W (y, θ), which is the support

space of y in ε space defined by

εi > −β′xi − si if yi = 1

εi ≤ −β′xi − si if yi = −1
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for i = 1, ..., N with si defined in (2.32).

In Soetevent and Kooreman (2007) the simulated likelihood function is based

on P (y) the simulated probability that we observe the choice pattern y defined as

P (y) = P (ε ∈ W (y, θ))
1

R

R∑
r=1

1

Er
.

2.8.3 Subjective Expectation

Li and Lee (2006) modify the models by Manski-Brock-Durlauf by replacing

the rational expectation with the observed subjective expectation and apply it to

model voting decisions between two candidates.

The latent variable model

y∗i (1) = x′iβ1 + z′(i)δ1 + ϕ1u(i) −
1

2ni
θ
ni∑
j=1

(1− µij)2 + εi(1)

y∗i (−1) = x′iβ2 + z′(i)δ2 + ϕ2u(i) −
1

2ni
θ
ni∑
j=1

(−1− µij)2 + εi(−1)

with the contextual effects linear in individual i’s group characteristics z′(i); the un-

observed group effects u(i) is distributed standard normal; the deterministic private

utility depending linearly on i’s known characteristics, xi; the deterministic social

utility measured by the distance between i’s choice (1 or -1) and his expectation on

the social choices, denoted by µi = {µij, j = 1, ..., ni}, where µij is individual i’s

expectation on his jth discussants choice, and ni is the number of his discussants;

and εi(1)− εi(−1) follows i.i.d logistic distribution.

Assuming rational expectations the probabilities of making one choice or the
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other are:

Pr(yi = 1|xi, z(i)) =
∫ 1

1 + exp(−2xiβ − 2z′(i)δ − 2ϕu(i) − 2θm(i))
dF (u(i))

Pr(yi = −1|xi, z(i)) =
∫ 1

1 + exp(2xiβ + 2z′(i)δ + 2ϕu(i) + 2θm(i))
dF (u(i))

where β = 1
2
(β1 − β2), δ = 1

2
(δ1 − δ2) and ϕ = 1

2
(ϕ1 − ϕ2)etc.

The endogenous effects for individual i is defined as: mi = 1
ni+1

∑
tanh(x′iβ +

z′(i)δ+ θmi) where µij is the expectation of person’s j decision viewed by i, typically

different from +1 or -1.

In their empirical voting model respondent i′s objective expectation on his/her

jth, discussant vote intention, i.e. µij, is replaced by subjective expectation , i.e.

eij. At the same time the group mean becomes pi = 1
ñi

∑ñi
j=1 eij, where ñi is the

number of i’s discussants whose expected choices are non zero. In their model the

standard contextual effects are insignificant, instead Li and Lee (2006) build two

contextual variables, a group average partisanship and a frequency of disagreement

in discussion. In the model using subjective expectations one cannot identify the

unobserved group variable u(i), even though it could be done in the rational ex-

pectation model. They also develop a framework for testing rational expectations,

and show that expectation on average social choice is rational in their voting model

application.

2.9 Conclusion

In the reviewed literature there is little theoretical evidence for the consistency

of estimators for spatial discrete choice models. While for the SAE model consistency
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is proved for some estimators, there is no theory to show consistency in the SAL

model case. Several estimators have been proposed and their small sample properties

were shown through Monte Carlo Simulations.

In the spatial literature, the hardest part is implementing some of these es-

timators for the probit case. Unlike the logit case, the normal distribution lacks a

closed-form mathematical expression.

The decision to implement one method or another to estimate the spatial

probit model depends on the trade-off between the computational burden and ac-

curacy. Out of the estimation methods reviewed in this chapter the RIS simulator

has the highest computational costs, while the nonlinear least squares methods are

the least computationally intensive. The estimates of the standard errors for the

spatial parameter are more accurate in larger samples for all models, except for the

EM models and nonlinear SAE model which give biased estimates.

The social interaction models appear as a separate part of the literature, even

though it is strongly related to the spatial models. Extensive theory is available on

identification of the parameters, the multiplicity of equilibria and their characteriza-

tion. The results are based on nonstandard law of large numbers, and central limit

theorems. In these models the endogenous social effect is computed as an average

of rational or subjective expectation of others decision. Some Monte Carlo studies

were done to show properties of the ML estimators of the social interaction models.

In future work, the spatial and social interaction areas of research should be unified

under a common framework.

There is a gap in the spatial literature is gap for consistent and computation-

39



ally tractable estimation techniques for the SAL model. Consequently, in the next

chapter I will discuss a spatial linear probability model and the estimation strategy

for this model.

2.10 Discrete Choice Games of Incomplete Information

2.10.1 Estimation based on Constrained Optimization

Su and Judd (2010) propose an approached called Mathematical Program

with Equilibrium Constraints (MPEC) for structural estimation. The approach

consists of choosing structural parameters and endogenous economic variables so as

to maximize the likelihood (or minimize the moment conditions) of the data subject

to the constraints that the endogenous economic variables are consistent with an

equilibrium for the structural parameters. This approach is computationally faster

than others since it only needs to solve exactly for the equilibrium associated with

the final estimate of parameters.

The authors introduce a two player discrete choice game with both observed

and unobserved heterogeneity. The players are a and b with their respective binary

choices to stay active or not being da and db. The ex-post utility functions for player

a and b are:

ua(da, db, xa, εa) = θada,dbxa + εa(da)

ub(da, db, xb, εb) = θbda,dbxb + εb(db),

where xa is the observed type of player a and εa is the unobserved type of player a,
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while θada,db measures the effect of the type xa on the utility of player a and is based

on the joint decision of both players (da, db). The parameters and other terms are

similarly defined for player b. εa and εb are considered independent.

Let pa be player’s b belief of the probability of player a being active. Given

his belief pa, player’s b expected utility from taking action db is

Ub(db, xb, εb) = paub(1, db, xb, εb) + (1− pa)ub(0, db, xb, εb)

= paθ
b
1,db
xb + (1− pa)θb0,dbxb + εb(db)

The probability that player b stays active is

pb = Prob{db = 1}

= Prob{εb|Ub(1, xb, εb(1)) > Ub(0, xb, εb(0))}

≡ Ψ(pa, pb, xb; θ
b)

where εb has an extreme value distribution.

The Bayesian Nash equilibrium equations can be rewritten as:

p = Ψ(p, x; θ)

where x = (xa, xb), p = (pa, pb) and Ψ = (Ψa,Ψb).

The model is then extended to M markets where the players’ decisions in one

market do not depend on their decision in other markets. Then the Bayesian Nash

equilibrium can be defined for each market m:

pm = Ψ(pm, xm; θ)

withxm = (xma , x
m
b ) and m = 1, ...,M .
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The researcher observes the players’ types xm = (xma , x
m
b ) and the players’

decisions dmt = (dmta , dmtb )Tt=1 over T periods. Let Xm denote the data observd in

market m:

Xm = {xm = (xma , x
m
b ), dmt = (dmta , dmtb ), fort = 1, ..., T}.

The MPEC approach for estimation involves the augmented log likelihood

function in market m

L(Xm, pm, θ) =
T∑
t=1

dmta log(pma ) + (1− dmta )log(1− pma )

+
T∑
t=1

dmtb log(pmb ) + (1− dmtb )log(1− pmb )

and for all markets

L(θ, P ) =
M∑
m=1

L(Xm, pm, θ)

where P is the collection of the probabilities pm for all M markets.

The MPEC estimator is the solution to

max
θ,P

=
1

M
L(θ, P )

subject to P = Ψ(P, x, θ).

2.10.2 Computing Equilibria using All-Solution Homotopy

Bajari et al. (2010) propose a numerical algorithm to compute the entire set of

equilibrium for private information games. An equilibrium to a private information

game is a fixed point that can be represented in closed form. The system of equations

characterizing the equilibrium choice probabilities is generated by a logit model. The
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authors adapt the all solution homotopy to find as many roots at possible to private

information games. The authors find that the majority of games with incomplete

information have only one equilibrium, and that the equilibrium set of outcomes

depends on the incomplete information assumption.

Bajari et al. (2010) present a game of entry where player i’s decision to enter a

particular market is ai = 1 and ai = 0 denotes the decision to not enter the market.

The payoff for player i is:

πi(ai, a−1, s; θ) =


s′β + δ

∑
j 6=i 1{aj = 1} if ai = 1

0 if ai = 0.

,

where s is a vector of state variables.

The errors εi(ai) capture shocks on the profitability of entry that are private

information to firm i and are assumed to be distributed extreme value. Then the

profit maximization by firm i implies the choice probability of entry:

σi(ai = 1|s) =
exp(s′β + δ

∑
j 6=i σj(aj = 1|s))

1 + exp(s′β + δ
∑
j 6=i σj(aj = 1|s))

(2.33)

A fixed point equilibrium existing for this model a finite s.

The authors propose getting a first set of estimates σ̂i(ai = 1|s) assuming that

markets always play the same equilibrium through the observed time period. This

set of estimates could be done using a strategy such as a linear probability model.

The second stage would consist of estimating the logit model. This estimation

method works when there is a unique solution to the system in (2.33) or when only

one fixed point of this system gets realized in the observed data.
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Further, the authors propose an homotopy method for estimation when the

multinomial logit choice model has multiple equilibria.
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Chapter 3

A Spatial Linear Probability Model

3.1 Introduction

The aim of this paper is to provide some evidence on the finite sample proper-

ties for a spatial linear probability model corresponding to a model where probabili-

ties are determined as the solution to an analogue of a spatial autoregressive model.

As shown in Chapter 4 this model arises in many empirical applications. The case

of interest here is a Cliff and Ord (1973, 1981) type model that contains a binary

dependent variable, a spatial lag in the dependent variable, exogenous variables,

and disturbance terms with known or unknown correlation structure.

The linear model I consider is a spatial autoregressive lag (SAR) model. How-

ever, a large part of the spatial discrete choice literature focuses only on the spatial

autoregressive error (SAE) model, in which only the errors are spatially correlated.

The model I consider can be estimated by an instrumental variable technique and

a heteroskedastic and autocorrelation consistent (HAC) estimator for the variance

covariance matrix. Thus the estimation approach does not lead to inconsistent

estimates, as may be the case with other estimation approaches that ignore het-

eroskedasticity in binary parametric models, and that lead to inconsistent estimates

as Yatchew and Griliches (1985) point out. In the spatial literature, Case (1992) and

McMillen (1992) consider the model with spatially correlated errors (SAE) and pro-
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pose an explicit adjustment for heteroskedasticity and estimate the transform model

by maximum likelihood and nonlinear least squares, respectively. Similarly, Pinkse

and Slade (1998) analyze a broader class of heteroskedastic discrete choice models

with spatially correlated errors. The authors are the first to prove the consistency

and asymptotic normality of GMM estimates based on generalized residuals spa-

tially corrected for heteroskedasticity. Moreover, Wang et al. (2009) suggest using a

maximum likelihood estimator under spatially correlated errors and show it is con-

sistent. They specify the partial maximum likelihood function for a bivariate spatial

probit and use the information within groups to gain in efficiency. Rather than as-

suming group independence, they limit the degree of correlation between groups.

The assumption is that the dependence across groups decays sufficiently quick as

the distance between groups increases. They simulate the partial maximum likeli-

hood estimator (PMLE) and show it is more efficient than the GMM of Pinkse and

Slade (1998), and less computationally demanding relative to the full information

methods. The moment conditions constructed based on the generalized residuals

of the heteroskedastic probit only uses information only on the diagonal elements,

while the PMLE uses additional off diagonal information between two closest neigh-

bors. All these papers ignore the interesting case of spatial interdependence in the

decisions, which I consider in my model.

Some work has been done for a model with a spatial lag in the discrete depen-

dent variable using simulation and Bayesian techniques. An alternative to integrat-

ing the likelihood function is the Recursive Importance Sampling (RIS) simulator.

The method simulates the maximum likelihood function and is used to estimate
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discrete choice models where there is spatial correlation and/or spatial dependence,

in Bolduc et al. (1997), Beron and Vijverberg (2004). The latter is a Monte Carlo

study that compares the SAE and SAL RIS models to the spatial linear probability

model. In case of correlation the linear spatial model outperforms the spatial probit

model by rejecting correctly the null of no spatial component many times.

Bayesian statistical techniques are also used to avoid the computation of high

dimension integrals. Two of the techniques implemented in spatial models are the

Gibbs Sampler in Bolduc et al. (1997) and LeSage (2000) and the Metropolis Hast-

ings, also known as the Markov Chain Monte Carlo. Bolduc et al. (1997) notes that

the Gibbs sampler algorithm is computationally and conceptually preferred over

the RIS simulator. Even though these techniques to estimate discrete choice SAL

models exist, the Bayesian and simulation methods are computationally extremely

demanding, and the statistical properties of those estimators have not yet been fully

explored.

I consider a theoretical model where the probabilities of making a decision

are interdependent. That is the probability of an individual making a decision is

expressed as a function of the probability of the decisions of its neighbors and its

own exogenous characteristics. As a result, the decision making process is modeled

of the form :

P = λWP +Xβ,

where P denotes the N × 1 vector P = [P1, . . . , PN ]′ = [P (y1 = 1), . . . , P (yN = 1)]′,

X denotes an N × k matrix of non-stochastic regressors, W is the N × N spatial
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weight matrix, λ is the spatial autoregressive coefficient, and β is the k × 1 vector

of coefficients.

As shown below, this model is then converted into a spatial linear probability

model

y = λWy +Xβ + u

where the vector of choices is y = [y1, y2, ..., yN ]′ and where the error terms u’s are

spatially correlated and heteroskedastic.

In terms of the estimation, I will later show that Kelejian and Prucha (1998,

2010) have an estimation method for such a model, and that I use it to estimate

the spatial linear probability model. Kelejian and Prucha (1998, 2010) propose in-

strumental variable (IV) consistent estimators for the regression parameters of the

model with a spatial lag and with autoregressive homoskedastic or heteroskedastic

innovations. Further, to estimate the variance covariance matrix consistently one

can use the spatial heteroskedasticity and autocorrelation consistent (HAC) estima-

tion of the variance covariance matrix developed by Kelejian and Prucha (2007).

Their estimator is a weighted sum of sample covariances with weights depending

on the relative distances, for some bandwidth parameter. Kim and Sun (2010) de-

rive the optimal bandwidth parameter, based on the asymptotic truncated MSE

criterion, and suggest its data dependent estimation procedure using a parametric

plug-in method.

The advantages of the model I investigate with respect to the ones that already

exist in the spatial discrete choice literature are that the estimation technique is easy
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to implement and that the computational burden of the estimation is very small even

for large data sets.

3.2 Model Specification and Estimator

Let yi be a choice variable taking values of 1 and 0. Now suppose that spatial

discrete choice model is given by:

P (yi = 1) = λ
∑
j

wijP (yj = 1) + xiβ, (3.1)

or in matrix notation

P = λWP +Xβ.

Since P = Ey model (3.1) can also be written equivalently as

Ey = λWEy +Xβ.

Now define

ε = y − Ey,

so that the spatial linear probability model becomes:

y = λWy +Xβ + u (3.2)

= Zδ + u (3.3)

u = (I − λW )ε,

with Z = [X,Wy] and δ = [β′, λ]′.

Given that by construction ε = y − Ey, we have Eε = 0, thus also Eu = 0.

By letting Ωε and Ωy denote the variance covariance matrix of ε and y, respectively,
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then clearly Ωε = Ωy. The model in (3.1) does not restrict the correlation between εi

and εj or equivalently yi and yj, except that Ωε = Ωy has to be positive semidefinite.

Solving for P from the data yields:

P = (I − λW )−1Xβ,

with the resulting variances of εi and yi given by Pi(1− Pi).

Kelejian and Prucha (2011) discuss some sufficient conditions which will insure

that the model is correctly specified and that it has a solution such that 0 ≤ Pi ≤ 1.

In particular, Kelejian and Prucha (2011) show that since maxi |Pi| ≤ 1
1−|λ| maxi µi

with µi =
∑
k βkxik ≥ 0 a sufficient condition for 0 ≤ Pi ≤ 1 in the case when

wij > 0 and λ ∈ [0, 1) is:

min
i

∑
k

xikβk ≥ 0

and

max
i

∑
k

xikβk ≤ 1− λ,

or even more restrictive

xik ≥ 0, βk ≥ 0

and

max
i
xik

∑
k

βk ≤ 1− λ.

The estimation procedure for the cross-section spatial autoregressive model in

(3.2) is done in two steps.
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The right hand sideWy is clearly endogenous E(Wyε′) = W (I−λW )−1Ωε 6= 0.

The ideal instrument for Wy is E(Wy). For our model it holds that E(Wy) = WP ,

and alternatively by expansion:

E(Wy) = E(W (I − λW )−1Xβ)

= W [I + λW + λ2W 2 + . . .]Xβ

= WXβ +W 2X(λβ) +W 3X(λ2β) + . . .

The estimator in the first step is the two-stage least square estimator (2SLS)

as suggested by Kelejian and Prucha (1998). H is the feasible non-stochastic N × p

matrix of instruments used in the 2SLS procedure for Z = [X,Wy]. Since E(Wy) is

a linear combination of WX,W 2X, etc, H contains the linearly independent columns

of [X,WX,W 2X].

The first step estimator is defined as:

δ̂2SLS = (Ẑ ′Z)−1Ẑ ′y (3.4)

where Ẑ = H(H ′H)−1H ′Z.

The second step estimator is based on the constructed ideal instruments Z̃ =

[X,WP̂ ] where P̂ = (I − λ̂2SLSW )−1Xβ̂2SLS
1 such that:

δ̂IV = (Z̃ ′Z)−1Z̃ ′y. (3.5)

1λ̂ and β̂ come from the first estimation step
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3.3 Small Sample Properties: A Monte Carlo Experiment

3.3.1 Monte Carlo Design

For each Monte Carlo experiment I perform a total of M = 1000 iterations

using M generated sets of Y ’s and one set of X’s. I let X = [e, x] consist of a

constant, e, and a regressor, x that is generated by drawing from the Uniform(0,1)

distribution. Given X and λ, β = (β0, β1) are selected such:

max
i
xi,k ∗

∑
k

βk < 1− λ,

and

xik ≥ 0, βk ≥ 0

where k = 0, 1 and i = 1, ..., N . These are sufficient condition so that 0 ≤ Pi ≤ 1.

The true parameter values for these experiments are λ = 0, 0.3, 0.5, 0.8, while the

intercept, β0 = 0.04, will be set to be one fourth of the slope, β1 = 0.16.

The spatial units are assumed to be located on a regular square grid with coor-

dinates {(r, s) : r, s = 1, 2, ...,m} such that there are a total of N = m2 observations.

The sample sizes are taken to be N = 400, 1024. The distance dij between observa-

tions i and j is given by the Euclidean distance: dij =
√

(ri − rj)2 + (si − sj)2 As in

Baltagi et al. (2003 ) the weights matrix W is a N×N rook matrix, which considers

that two units i and j are neighbors if the Euclidean distance is less than or equal to

one. On a regular grid, consider an arbitrary interior unit (r∗, s∗), then the neigh-

bors of this unit are (r∗ + 1, s∗), (r∗ − 1, s∗), (r∗, s∗ + 1) and (r∗, s∗ − 1). Units on

the borders have fewer neighbors that can be defined analogously. The contiguity

52



matrix W has zeros on the main diagonal and is normalized so that the weights

in each row sum to one. Define the i, j-th element of W as: wij = w∗ij/
∑n
j=1 w

∗
ij

where, based on the distance measure,

w∗ij =


1 if 0 < dij ≤ 1

0 else

Since the model in (3.1) allows for independent and correlated outcomes, it

makes sense to study the two cases separately.

1. Independent Outcomes

GenerateM vectors y = (y1, ..., yN)′ with independent yi distributedBernoulli(Pi),

where Pi is the ith element of the vector:

P = (I − λW )−1Xβ,

The method involves getting (ζ1, ..., ζN), an N × 1 vector containing pseudorandom

values drawn from the standard uniform distribution on the open interval (0, 1), and

letting:

yi =


1 if ζ i ≤ Pi

0 else

Use the M sets of y’s and one set of X’s to estimate the model in (3.2).

2. Correlated Outcomes

The correlation between yi and yj is a function of the Euclidean distance:

corr(yi, yj) = exp(−
√

(ri − rj)2 + (ci − cj)2/γ)
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where yi is located on the grid in column ci and row ri. Similar to Dubin(1992) and

McMillen(1995) who define the spatial autocorrelation:

corr(yi, yj) = exp(−||zi − zj||p/γ)

where ||· ||p is the Euclidean norm in <p. Notice that the correlation in outcomes

increases in the parameter γ and decreases in the Euclidean distance between the

units.

A valid positive definite covariance matrix Ωy, with the correlation imposed

above, has elements of the form:

Cov(yi, yj) = corr(yi, yj)
√
var(yi)

√
var(yj)

I generate draws from the multivariate Bernoulli with variance covariance ma-

trix Ωy using Krummenauer (1998) algorithm as described next.

The first step is performed before the simulation. In step 1) I solve the equa-

tions

Φ(uPi
, uPj

; θij) = Pij, 1 ≤ i ≤ j ≤ N

to obtain the parameters θij, 1 ≤ i ≤ j ≤ N, where Φ(x, y; ρ) stands for the cumu-

lative distribution function of the standard binormal distribution with mean vector

(x, y) and correlation ρ. Also, Pijs are derived from the covariance matrix such that

Pij = Cov(yi, yj) + PiPj. And uPi
is the Pi-th quantile of the univariate normal

distribution. Since θii is a correlation it will be equal to 1. Note, that a unique col-

lection of solution parameters θij will exist for any consistent choice of covariances

due to the strict monotonicity of Φ(x, y; .).
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The next two steps are repeated M times in the simulation to get M sets of

outcomes y = (y1, ...yN)′.

In step 2) generate a N -normal random vector (ζ1, ..., ζN) with mean vector

(0, ..., 0) and correlation matrix (θij)1≤i≤j≤N .

In step 3) obtain the N -variate Bernoulli vector y = (y1, ..., yN)′ with marginals

yi distributed Bernoulli(Pi) and covariances Pij−PiPj for 1 ≤ i ≤ j ≤ N by setting:

yi =


1 if ζ i ≤ uPi

0 else

for any 1 ≤ i ≤ N .

Then use the M sets of y’s and one set of X’s to estimate the model in (3.2).

3.3.2 Monte Carlo Results

The results of the simulations for the independent y’s case are in Table 3.1

and Table 3.2. When the sample size is 400, see Table 3.1, the bias of λ̂2SLS, the

first step estimator of the spatial autoregressive parameter, is quiet large and it

increases in absolute value with λ. For positive λ and large first step bias, the bias

of the second step estimators, i.e. λ̂IV and β̂IV , decrease substantially. However,

the Root-Mean-Square Error (RMSE) increases in the second step suggesting that

the major component of the RMSE is the variance of the estimator, not the bias.

When the sample size is increased from 400 to 1024, the bias for λ̂2SLS, see

Table 3.2, decreases relative to the bias for λ̂2SLS in Table 3.1. In Table 3.2, there

is an even further decrease in the bias of the estimates in the second step of the
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estimation, while the RMSE stays almost unchanged between the two steps. A

comparison between Table 3.1 and Table 3.2 shows that RMSE declines with an

increase in the sample size, providing simulation evidence for the consistency of the

procedure.

Further, I show results of the simulations with various degrees of dependence

in the y’s in Table 3.3, Table 3.4, Table 3.5 and Table 3.6. By comparing the

results for both sample size 400 and 1024, the first step bias the estimator λ̂2SLS

is noticeably larger when γ = 0.1, i.e. the dependence is smaller, and when λ is

positive. However, when there is no spatial interdependence, i.e. λ = 0, the bias of

the first step estimator λ̂2SLS is larger for higher dependence in y’s , i.e. γ = 0.5.

In most cases there is significant improvement in the bias while RMSE moderately

increases, for all the estimates in the second step.

Again, by comparing Table 3.3 with Table 3.4 and Table 3.5 with Table 3.6,

the bias in the coefficients decreases systematically as the size of the sample increases

from 400 to 1024.
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Table 3.1: Independent y’s: N=400

True Parameter Values
λ 0 0.3 0.5 0.8
β0 0.04 0.04 0.04 0.04
β1 0.16 0.16 0.16 0.16

Bias and RMSE Bias and RMSE Bias and RMSE Bias and RMSE
λ
First Step -0.0344 0.6105 -0.0988 0.6712 -0.1670 0.7018 -0.1857 0.5097
Second Step -0.0528 0.7216 -0.0418 0.8139 -0.0366 0.7677 -0.0426 0.4895

β0

First Step -0.0029 0.0784 0.0110 0.1120 0.0317 0.1607 0.0946 0.2799
Second Step -0.0003 0.0933 -0.0022 0.1318 -0.0088 0.1612 0.0202 0.2441

β1

First Step -0.0093 0.0538 -0.0073 0.0669 -0.0038 0.0767 0.0100 0.1009
Second Step -0.0122 0.0611 -0.0102 0.0727 -0.0076 0.0833 0.0026 0.1090

Table 3.2: Independent y’s: N=1024

True Parameter Values
λ 0 0.3 0.5 0.8
β0 0.04 0.04 0.04 0.04
β1 0.16 0.16 0.16 0.16

Bias and RMSE Bias and RMSE Bias and RMSE Bias and RMSE
λ
First Step 0.0122 0.4070 -0.0493 0.4506 -0.0888 0.4499 -0.0895 0.3184
Second Step 0.0294 0.4690 -0.0094 0.5064 -0.0082 0.4880 0.0003 0.3104

β0

First Step -0.0034 0.0478 0.0066 0.0699 0.0162 0.0978 0.0460 0.1731
Second Step -0.0057 0.0518 -0.0027 0.0785 -0.0052 0.1037 -0.0043 0.1517

β1

First Step -0.0046 0.0360 -0.0027 0.0446 -0.0006 0.0510 0.0005 0.0668
Second Step -0.0053 0.0369 -0.0050 0.0491 -0.0030 0.0567 -0.0021 0.0717
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Table 3.3: Dependent y’s: N=400, γ=0.1

True Parameter Values
λ 0 0.3 0.5 0.8
β0 0.04 0.04 0.04 0.04
β1 0.16 0.16 0.16 0.16

Bias and RMSE Bias and RMSE Bias and RMSE Bias and RMSE
λ
First Step -0.0185 0.6093 -0.1223 0.6667 -0.1896 0.6717 -0.2187 0.5430
Second Step -0.0124 0.7644 -0.0189 0.8536 -0.1004 0.8038 -0.0539 0.5682

β0

First Step -0.0020 0.0781 0.0139 0.1136 0.0336 0.1540 0.1190 0.3020
Second Step -0.0079 0.0962 -0.0051 0.1334 0.0103 0.1709 0.0262 0.2796

β1

First Step -0.0131 0.0587 -0.0115 0.0667 -0.0049 0.0747 0.0024 0.0957
Second Step -0.0174 0.0641 -0.0160 0.0724 -0.0076 0.0838 -0.0036 0.1113

Table 3.4: Dependent y’s: N=1024, γ=0.1

True Parameter Values
λ 0 0.3 0.5 0.8
β0 0.04 0.04 0.04 0.04
β1 0.16 0.16 0.16 0.16

Bias and RMSE Bias and RMSE Bias and RMSE Bias and RMSE
λ
First Step -0.0192 0.4180 -0.0326 0.4644 -0.0805 0.4290 -0.1086 0.3229
Second Step 0.0045 0.4680 0.0193 0.4890 0.0100 0.4726 -0.0214 0.2950

β0

First Step 0.0004 0.0519 0.0045 0.0739 0.0165 0.0924 0.0567 0.1752
Second Step -0.0036 0.0559 -0.0079 0.0789 -0.0063 0.0981 0.0048 0.1477

β1

First Step -0.0055 0.0387 -0.0040 0.0431 -0.0008 0.0511 0.0048 0.0647
Second Step -0.0059 0.0395 -0.0050 0.0440 -0.0025 0.0541 0.0026 0.0704
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Table 3.5: Dependent y’s: N=400, γ=0.5

True Parameter Values
λ 0 0.3 0.5 0.8
β0 0.04 0.04 0.04 0.04
β1 0.16 0.16 0.16 0.16

Bias and RMSE Bias and RMSE Bias and RMSE Bias and RMSE
λ
First Step 0.1063 0.6060 0.0126 0.6696 -0.0656 0.6326 -0.1493 0.5257
Second Step 0.0436 0.7857 0.0593 0.8126 0.0041 0.7927 -0.0218 0.5337

β0

First Step -0.0224 0.0826 -0.0060 0.1049 0.0078 0.1400 0.0729 0.2881
Second Step -0.0152 0.0990 -0.0140 0.1269 -0.0125 0.1674 0.0016 0.2780

β1

First Step -0.0103 0.0603 -0.0116 0.0690 -0.0130 0.0804 -0.0035 0.0909
Second Step -0.0135 0.0655 -0.0152 0.0747 -0.0174 0.0867 -0.0109 0.1014

Table 3.6: Dependent y’s: N=1024, γ=0.5

True Parameter Values
λ 0 0.3 0.5 0.8
β0 0.04 0.04 0.04 0.04
β1 0.16 0.16 0.16 0.16

Bias and RMSE Bias and RMSE Bias and RMSE Bias and RMSE
λ
First Step 0.0662 0.4157 0.0223 0.4477 -0.0142 0.4436 -0.0753 0.3127
Second Step 0.0137 0.4898 0.0201 0.4969 0.0378 0.4820 -0.0113 0.2762

β0

First Step -0.0106 0.0536 -0.0068 0.0752 0.0005 0.0987 0.0352 0.1614
Second Step -0.0067 0.0627 -0.0077 0.0849 -0.0142 0.1032 -0.0003 0.1412

β1

First Step -0.0057 0.0351 -0.0034 0.0405 -0.0030 0.0485 0.0023 0.0616
Second Step -0.0071 0.0372 -0.0045 0.0418 -0.0066 0.0518 0.0008 0.0647
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3.4 Conclusion

The spatial linear probability model that I discussed includes in addition to

most models spatial interdependence in the choices, and is computationally more

tractable than the Bayesian or Simulation methods. Further, the Monte Carlo

experiment I performed suggests that the two step estimator for the spatial linear

probability model has reasonable finite sample properties with a small bias that

decreases with an increase in the sample size under both dependent and correlated

outcomes.
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Chapter 4

A Model Of Interrelated Patent Renewals

4.1 Introduction

The patent system was established in order to offer incentives for innovation

and technological progress by allowing for temporary monopolistic rents. These

rents arise from the possibility to exclude other firms from the market of prod-

ucts, which utilize the patented technology, and/or from the licensing or selling of

the patent. Patents are a source of economic returns to research and development

(R&D), which is important for economic growth. Theoretical studies have explored

the impact of R&D on strategic interaction among firms and long run growth.1

While R&D spending is related to the inputs that go into the innovative process,

patents and their value are indicators of the output and the quality of innovative ac-

tivity. A better understanding of the determinants of the economic value of a patent

helps policy makers improve the rules governing the patent system to foster R&D

investment, and target Government funding to high risk projects in technological

areas of high patent return. Moreover, the value of a patent provides investors with

a dollar measure for the value of innovation, an otherwise intangible asset.

Under the current United States patent policy, the level of protection declines

1See, for example, Romer (1990), Aghion and Howitt (1992), Spence (1984), and Reinganum

(1989); and Griliches (1992) and Keller (2004) for surveys of the literature.
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suddenly at the end of the patent’s statutory life unless the patent is renewed.2

In order to renew a patent, the patent owner must pay periodically non trivial

maintenance fees. Starting with Pakes and Schankerman (1984) this feature of

the patent system has been used in studies to estimate the returns to patented

innovations.3 Patent renewal reveals the implicit returns to a patent, since the patent

holder assesses whether the returns exceed the maintenance fees or not, when making

the choice to keep a patent in good standing or let it expire. The existing empirical

literature focuses on estimating returns based on renewal fees and proxy variables

that capture the quality of the patent.4 This literature assumes that patent-holders

make the decision to renew a patent as independent from renewal decisions regarding

other patents. The assumption that renewal decisions are made independently may

not hold when strategic effects are in place. As a result, the existing estimates in the

literature that are based on models assuming independence between an assignee’s

decision to renew a patent and other assignees’ decisions to renew similar patents

may exhibit biases, and hence be misleading.

In this paper, I introduce an economic model that allows for the renewal de-

cisions for, say, n patents to be interdependent, and where firms renew a patent

if the expected revenues exceed expected costs. The economic model implies that

the probability of renewing patent i will depend on the probabilities of renewing

2Hopenhayn et al. (2006) show that the life of a patent should only end if something better

replaces the existing patent, for optimal R&D investment.
3See Lanjouw et al. (1998) for a review of this literature. More recent additions include Serrano

(2006) and Baudry and Dumont (2006).
4See Lanjouw and Schankerman (2004), Harhoff et al. (2003) and Bessen (2008).
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technologically similar patents and other covariates. In my case, patents are consid-

ered technological more or less similar based on the number of overlapping citations

made. Patent citations can offer a detailed description of the technology patented

and can relate patents that build upon the same underlying technological trajectory.

This is a widespread idea originating in Jaffe et al. (1993) and further investigated

in Jaffe et al. (2000). Jaffe et al. (1993)’s experiment on the geographic localization

of spillovers, used citations as a paper trace for knowledge flows from cited inventors

to citing inventors.

My model of interrelated renewal decisions is a better representation of reality

when patented innovations can be considered strategic complements. Survey evi-

dence shows firms interacting strategically and using patenting and patent renewal

to enforce proprietary rights and appropriate additional returns.5

To empirically implement my model for the probabilities of patent renewal I

show that it can be recast in terms of a interdependent linear probability model.

This in turn can be viewed as a spatial Cliff and Ord (1973, 1981) type model, where

space refers to technological space rather than geographical space. More specifically,

the model can be estimated as a linear probability model with a spatial lag. In my

estimation, I use the instrumental variables technique to try to overcome spuri-

ous dependence in renewal arising from: obsolescence, unobserved heterogeneity in

demand and cost factors, or information flows from predecessor to successive inven-

tions. I find that there is significant positive dependence in the renewal decisions

5According to Cohen et al. (2000) the main explanations for strategic renewal are the prevention

of copying, patent blocking, use of patents in negotiations and prevention of law suits.
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for patents related at origin.

A possible explanation for the interdependence in renewals that I find in this

study is that it is driven by firm strategic behavior. Under asymmetric information,

an established firm may have better knowledge of market demand. In this case, the

firm may find optimal to renew a patent as a signal to deter an entrant, even if

immediate returns do not exceed the maintenance fees. My theoretical framework

permits estimation in the case of asymmetric information about the demand in a

certain market. Under perfect information, Cohen et al. (2000) discusses scenarios

where a firm would use renewal to protect its own market. As a defensive tactic

in order to enforce its own innovation a firm might patent several substitutes to

its product, known as patent “fencing”. Alternatively, a firm may build up a large

patent portfolio or “thicket” to prevent a rival firm from entering the market alto-

gether, which is a strategy called patent blocking. Further, thickets of patents are

used to force innovators to share rents through cross-licensing. Anecdotal evidence

exists about firms building large patent thickets and using them in negotiations and

the prevention of lawsuits .6 All these cases predict dependence in renewals, which

when ignored leads to biased estimates of the impact proxies for patent quality have

on the renewal decision.

The organization of the paper is as follows. The next section defines the

model, discusses some related literature and the meaning of dependence in this

6Firms in semiconductors, electronics and computers negotiate based on the relative heights

of the stacks of all their related patents and they license entire portfolios for a technology field,

Grindley and Teece (1997) and Hall and Ziedonis (2001)
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paper. Section 3 introduces the econometric framework, and Section 4 presents the

data and introduces the estimation model for my application. Section 5 presents

the econometric results, and Section 6 concludes.

4.2 A Model For Patent Renewal Under Interdependence

4.2.1 Background

My work contributes to the empirical strand of literature that uses patent

renewal to uncover characteristics of the value of intellectual property.7 Economists

are interested in private returns to patents since they represent incentives firms

face for undertaking investments in R&D. Bessen and Meurer (2008) compare the

estimated gross private benefits of patents to litigation costs. The authors show

that by the end of the 1990s the two were of the same magnitude, and call for

some improvement in property protection to reduce litigation costs. Investors are

also interested in private returns to patents since this information helps them make

investment decisions. Bessen (2009) and Hall et al. (2005) try to evaluate empirically

the knowledge stock of firm, which is an intangible asset. The authors proceed by

estimating the impact of patent rents and other knowledge assets on the firm’s

market value. Bessen (2009) find a 6% increase in market value coming from patent

7The patent renewal literature falls generally into two categories: the theory of optimal policy

for incentive schemes to promote investment in R&D, and the empirical estimation of the return

to R&D. My work does not focus on the former strand which includes Kremer (1998), Scotchmer

(1999) Cornelli and Schankerman (1999), and Baudry and Dumont (2006). These authors study

methods to implement incentives to R&D by requiring maintenance fees.

65



rents per R&D, which is a measure of the subsidy that patents provide to R&D,

in the computers and other machinery industry. Hall et al. (2005) find that if the

”quality” of patents of a firm increases so that on average these patents receive one

additional citation, the market value of the firm would increase by 3%.

Most studies use “hedonic” econometric models to estimate patent returns,

where observed patent and owner characteristics proxy the quality of a patent.

In addition, the decision to pay the renewal fee is used to pin down the dollar

counterpart for these estimates. These models start with Schankerman and Pakes

(1986) who assume that the likelihood of renewal should increase with the associated

profit to the patent at any age. Pakes and Schankerman (1984) show that renewal

establishes a rough correspondence to how appropriable revenues are to R&D. This

literature considers returns to patent rights as a form of “subsidy” to R&D. Lanjouw

et al. (1998) use renewal and application data and measure the value of patent

protection without offering an upper bound for the returns to patents expiring at the

maximum term. Harhoff et al. (2003) do not have the upper truncation limitation,

since they use survey data instead when modeling the value of patents. Other

work of Bessen (2008), based on patent renewal data across countries, determined

the extent of monopolistic patent rents to be 3% of R&D. In a later study Bessen

(2009) finds that the weighted mean return across industries is 18% of R&D, when

adjusting for the upper tail bias, with an extreme of 80% for the pharmaceutical

industry. Baudry and Dumont (2009) show that the cost to society of patenting

is ten-fold the amount collected in patent renewal fees.8 In the above mentioned

8It is worth mentioning that a patent need not be a source of incumbency rents, when the
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empirical studies, as well as in Lanjouw and Schankerman (2004) and Hall et al.

(2005), the value of patents is examined through proxy variables for “quality” such

as: the number of references made and of citations received, the patent’s outcome

in litigation and the size of their international patent family. I will be using some

of these standard proxies for patent quality in my estimation.

A common approach in the previous literature is to model the firm’s decision

to renew a patent as independent of the decision to renew other patents. One

study in the patent renewal literature of Liu et al. (2008) draws upon evolutionary

economics and shows that patent renewal is more likely if the patent belongs to

a sequence of patents. The authors consider patents to be part of a sequence if

they are “related patents”.9 The authors show that sequential innovation within a

firm is an additional mechanism that enhances the value of US pharmaceutical and

biotechnology patents. A study outside the renewal literature where the connection

between patents matters is that of Belenzon (2006) who looks at the private market

value of R&D spillovers. He finds evidence that private returns to innovation increase

when spillovers feed back into the sequential research of the initial investor, but

opportunity cost equals its value (e.g. if it can be resold for a price that equals the value to the

owner.)
9The authors use the USPTO definition for related patents: a focal patent, its divisional patents

(if applicable), and its continuation-in-part patents (if applicable). When a company files an appli-

cation that contains technologies appropriate for more than one patent, and the patent examiner

asks the company to divide the application into multiple applications to obtain divisional patents.

While, continuation-in-part patents cover innovations that build upon, but also add substantially

new knowledge to the innovations of the original parent patents.
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if others benefit from the advancements returns decrease. Firms who internalize

spillovers from innovations are found to invest more in R&D. Another study where

the closeness among patents matters is that of Bloom et al. (2007). The authors

use a range of firm performance indicators (market value, patents, productivity, and

R&D) and show that both technology and product market spillovers are significant.

However, using a data panel of US firms over 1980-2001 they find under-investment

in R&D from the social perspective, since the technological spillovers exceed market

rivalry effects.

4.2.2 Dependence

Liu et al. (2008) is the only previous study that shows that the decision to

renew a patent takes into account other related patented innovations. In their

study the renewal probability increases if the patent is part of a sequence of related

patented innovations within the firm. I consider how renewal depends on the decision

to renew, and implicitly returns, of other genealogically related patents within and

across firms. My approach brings new insights into the decision process showing that

assignees choose to renew patents interdependently. To capture the interdependence

in renewal I make use of Spatial Autoregressive Model (SAR). The SAR model

consists of introducing in a linear model a spatial lag of the dependent variable to

be used as an explanatory variable. The spatial lag is a weighted average of the

other patents’ renewal status based on a distance metric. In my case, the distance

metric captures similarity between patents’ scope, and not geographical location.
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The distance between patent i and j, dij, is defined in the following manner:

dij =
(citations made by patent i + citations made by patent j)/2

overlapping citations made between patent i and patent j
(4.1)

The more overlap in the number of citations made exists between two patents, the

“closer” they are found to be by my metric.

This structure, based on “prior art”, relates patented innovations and is par-

ticularly appropriate for my setting: the computers and data processing system

industry. Firms in this industry are engaged in rapidly advancing cumulative tech-

nologies. Due to the pace of the development, it is very likely that a new product

overlaps with technologies previously or simultaneously patented by the same or

external parties. This metric is in line with Liu et al. (2008)’s finding that patents

are more likely to be renewed if they are part of a citation sequence. They show in

their analysis that the likelihood of renewal for each patent in a citation-determined

sequence is correlated, as high as 0.98, with the renewal of the previous patent.

Bloom et al. (2007) define technological closeness based on the firms’ distribution

of patenting over technological fields, and product market closeness based on the

industries of the firms’ sales activity. The measures of technological and product

closeness they provide are more broad since these measures are at the firm level.

My work on the other hand uses a more detailed measure of similarity at the patent

level.

Moffitt (2001) raised a criticism about there being an identification problem

between correlation of outcomes within a group arising from interaction, and corre-

lations arising for other reason, in particular correlated unobservables. Lee (2007)
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addresses this criticism and shows that the parameter on the spatial lag is identified

when different groups have different number of members. In my case there is varia-

tion in group size, but the identification might be weak when the number of group

members is large. Moreover, disregarding interdependence in empirical models can

lead to biased estimates and incorrect inference regarding the parameters of interest.

4.2.3 Model

This section introduces a static model for patent renewal behavior, in which

firms’ renewal decisions are interdependent. The model corresponds to a game

where the renewal decision for a patent depends upon the renewal decision of similar

patents. In this game one player’s decision affects the incentives of other players.

The measure of “closeness” capturing similarity of patents is based on the overlap

in references made to respective patents, and will be discussed in more detail below.

The set up of the game considers simultaneous patent renewal decisions of two or

more players. Such games where players’ decisions mutually reinforce, rather than

offset, one another have the supermodularity propriety.

Suppose there are n patents, and let R = (r1, r2,..., rn)′, with ri ∈ {0, 1}

denote the vector of patent renewal choices, where ri = 1 if the i-th patent has

been renewed. While some firms are assigned more than a patent, I assume that

the decision to renew patent i is made at the patent level.

Further, I consider the genealogy of patents and I make parametric assump-

tions over the form of the metric that describes how close patents are in the innova-
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tion space. I measure the technological “closeness”, between patents i and j to be a

function of the number of common references made. This metric describes patents

to be assigned for an innovation with a similar underlying functionality if they cite

directly the same patent. Intuitively, the more overlap there is in the patents’ ci-

tations made, the closer the patents are in the technological space and the more

similar the innovations are considered to be. The network structure is described by

an n × n matrix W = (wij) with wii = 0, and where the weights wij reflect the

“closeness” between patent i and j. I define the weights

wij =
overlap in citations made by patent i and patent j∑
j overlap in citations made by patent i and patent j

for i 6= j (4.2)

which ensures that the weights are increasing in the inverse distance metric.

The realized profits for patent i are a function of its renewal decision ri and the

renewal decisions for other patents. It proves convenient to introduce the notation

R−i = (r1, . . . , ri−1, ri+1, . . . , rn)′. The revenue, Revi, and the cost, Ci, of renewal of

the i-th patent are, respectively, given by

Revi = Revi(ri, R−i, ξ
ri
i ) =

{
ai + b

∑
j 6=iwijrj + ξ1

i if ri = 1

ξ0
i if ri = 0

,

Ci = Ci(ri, ε
ri
i ) =

{
ci − ε1i if ri = 1
ε0i if ri = 0

,

or more compactly

Revi = airi + b
∑
j 6=i

wijrjri + ξrii ,

Ci = ciri − εrii

where ai and ci are fixed (non-stochastic) and observed by all patent-holders and

the econometrician. One pays these renewal costs ci and obtains benefits ai and b
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only if renewal happens ri = 1. If the revenues and costs for each patent i, e.g.

ai and respectively ci, were determined exclusively by the patent’s own quality and

characteristics it would be the case that b = 0. However, if patents are strategic

complements we would expect to have b > 0 and the returns to patent i to increase

in the renewal of the other patents.

In the above, ai measures revenues based on proxies for the quality of the

patent such as citations received, citations made, claims, and also based on other

observed characteristics such as origin of inventor, size of entity, R&D spending,

technological class fixed effects, time fixed effects etc.; while, ci is a measure of the

non-stochastic renewal costs such as legal and royalty fees that apply; b measures the

strategic effect;10 and wij are weights measuring similarity or technological closeness

as defined by (4.2).

The patent and decision specific random components ξrii and εrii are unobserved

by the econometrician or other patent-holders. Assignee i knows only his own ξrii

and εrii , but he does not observe ξ
rj
j and ε

rj
j for j 6= i. I assume that the stochastic

components ξrii and εrii are independent of ξ
rj
j and ε

rj
j for j 6= i. Further, I assume

that Eξrii = 0, Eεrii = 0 and that ξrii and εrii are identically distributed. Even though

ξ0
i and ε0i can be set to zero, I am following the random utility theory and allow for

the errors to be non null.

Profits associated with the i-th patent are then given by

Πi(ri, R−i, ξ
ri
i , ε

ri
i ) = Revi(ri, R−i, ξ

ri
i )− Ci(ri, εrii ) (4.3)

10Alternatively, in a non strategic model b is ”just a reflection of spatially correlated technological

opportunities” as stated by Griliches (1998)
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=

{
ai − ci + b

∑
j 6=iwijrj + ξ1

i + ε1i if ri = 1

ξ0
i + ε0i if ri = 0

, (4.4)

or more compactly

Πi(ri, R−i, ξ
ri
i , ε

ri
i ) = airi + b

∑
j 6=i

wijrjri − ciri + ξrii + εrii . (4.5)

According to Bulow et al. (1985), if the inventors regard the innovations as strate-

gic complements marginal profits have to be increasing in the decision variable of

the others. A positive interdependence in renewals, e.g. positive b, insures that

this condition holds.11 The case of strategic complements arises when there are

sufficient strong aggregate increasing returns to scale and/or the demand curves for

the firms’ products have a sufficiently low own-price elasticity to allow for Bertrand

competition.

In this model, as in other discrete choice literature, player heterogeneity is

captured by private information. Let Fi = σ(ξ0
i , ξ

1
i , ε

0
i , ε

1
i ) be the patent-holder’s

information set for the i-th patent. This information is revealed before any action is

made, and is observed only by the ith patent assignee and not by assignee j, j 6= i,

or by the econometrician.12 Under incomplete information, the players make the

decision simultaneously without observing rival choices. The assignee evaluates the

returns to patent i and makes its decision ri by maximizing the conditional expected

11Under strategic complementarity, in a two player game one needs to check that the following

condition holds: ∂2Πi

∂ri∂rj
= b is positive. For simplicity of notation, in the latter formula I am using

renewal as a continuous variable to check the condition, even though renewal is a discrete variable.
12Langinier (2004) studies strategic patent renewal under asymmetric information; while Pakes

(1986) and Lanjouw et al. (1998) study post-patent learning duration under incomplete informa-

tion.
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payoff of renewing patent i:

EΠi(ri, R−i, ξ
ri
i , ε

ri
i |Fi) = ERevi(ri, R−i, ξ

ri
i |Fi)− ECi(ri, ε

ri
i |Fi). (4.6)

Observe that

ERevi(ri, R−i, ξ
ri
i |Fi) = airi + b

∑
j 6=i

wijE(rj|Fi)ri + ξrii , (4.7)

and that ECi(ri|Fi) = ciri + εrii . Renewal happens when:

EΠi(ri = 1, R−i, ξ
1
i , ε

1
i |Fi) ≥ EΠi(ri = 0, R−i, ξ

0
i , ε

0
i |Fi) (4.8)

or equivalently

ai + b
∑
j 6=i

wijE(rj = 1|Fi)− ci + ξ1
i + ε1i ≥ ξ0

i + ε0i (4.9)

since EΠi(ri = 0, R−i, ξ
0
i , ε

0
i |Fi) = ξ0

i + ε0i , by functional form. Due to the binary

nature of the renewal variable E(rj|Fi) = Pr(rj = 1|Fi) so that

ai + b
∑
j 6=i

wij Pr(rj = 1|Fi)− ci + ξ1
i + ε1i ≥ ξ0

i + ε0i . (4.10)

In Appendix B it is shown that

Pr(rj = 1|Fi) = Pr(rj = 1). (4.11)

The intuition in equality (4.11) is that the content of the information set Fi is

sufficient to permit player i to determine objectively the unconditional probability

assessments for the possible value of rj, but that player i has no additional infor-

mation that is private to player j.
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Substituting (4.11) into (4.10) yields

ξ0
i − ξ1

i + ε0i − ε1i ≤ ai + b
∑
j 6=i

wij Pr(rj = 1)− ci. (4.12)

The above equation can furthermore be rewritten as

ηi ≤ ai + b
∑
j 6=i

wij Pr(rj = 1)− ci (4.13)

where ηi = ξ0
i − ξ1

i + ε0i − ε1i . By previous assumptions the ηi are statistically inde-

pendent in i and identically distributed. Also, observe that under the maintained

assumptions ai + b
∑
j 6=iwij Pr(rj = 1)− ci is non-stochastic.

Now, let G(.) denote the c.d.f. of ηi, then it follows from (4.13) that the

probability of patent i being renewed is

Pr(ri = 1) = Pr(ηi ≤ ai + b
∑
j 6=i

wij Pr(rj = 1)− ci)

= G(ai + b
∑
j 6=i

wij Pr(rj = 1)− ci)

Motivated by Heckman and Snyder (1997), we need ηi to be i.i.d. uniformly dis-

tributed which is satisfied under the assumption that ξrii and εrii are i.i.d . Since

Eηi = Eξ0
i − Eξ1

i + Eε0i − Eε1i = 0, it follows that if ηi is uniformly distributed, it

has to be distributed symmetrically around 0. Suppose ηi is uniformly distributed

in the interval [−M,M ], then

G(z)=

{
z+M
2M

for −M ≤ z ≤M
0 or 1 else

so that

Pr(ri = 1) =


0 for ai + b

∑
j 6=i

wij Pr(rj = 1)− ci ≤ −M
a∗i + b∗

∑
j 6=i

wij Pr(rj = 1)− c∗i + 1
2

for −M ≤ ai + b
∑

j 6=i
wij Pr(rj = 1)− ci ≤M

1 for ai + b
∑

j 6=i
wij Pr(rj = 1)− ci ≥M

with a∗i = (ai)/(2M), b∗ = b/(2M) and c∗i = ci/(2M). Consequently, the parameters

in the model can only be identified up to the scale M .
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It is sufficient for the scale parameter M to satisfy

M ≥ max
i

∣∣∣∣∣∣ai + b
∑
j 6=i

wij Pr(rj = 1)− ci

∣∣∣∣∣∣
to guarantee that

a∗i + b∗
∑
j 6=i

wij Pr(rj = 1)− c∗i +
1

2
∈ (0, 1). (4.14)

Now let b∗ = λ and a∗i − c∗i + 1
2

= xiβ, and rewrite the model

Pr(ri = 1) = λ
∑
j 6=i

wij Pr(rj = 1) + xiβ (4.15)

where xi is a vector of observed exogenous and non-stochastic characteristics of

patent i. The patent characteristics in xi and the constant are used to model

linearly the benefits ai and the costs ci.

On a side note, the model can be written as a∗i −c∗i + 1
2

= (1−λ)G(xiβ), where

G(.) was defined above as the uniform c.d.f., to satisfy the condition Pr(ri = 1) ∈

(0, 1).

4.3 Estimation Methodology

The discrete choice model that I am estimating, i.e.,

Pr(ri = 1) = λ
n∑

j=1,j 6=i
wij Pr(rj = 1) + xiβ, i = 1, . . . , n, (4.16)

represents a linear simultaneous equation system. The solution it generates is

unique, provided that I − λW is non-singular.13 More specifically, let P = [Pr(r1 =

13The linear model in this case has a single equilibrium, while a nonlinear discrete choice model

describing strategic complements can have multiple equilibria.
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1), . . . ,Pr(rn = 1)]′, and let X = [x′1, x
′
2, ..., x

′
n]′, then P = (I − λW )−1Xβ. One suf-

ficient condition for I − λW to be non-singular is that the spatial weights matrix is

row normalized and that λ is ∈ (-1,1); for more general conditions see, e.g., Kelejian

and Prucha (2010).

For estimation we reformulate model (4.16) as an interdependent linear prob-

ability model. For that purpose let

ui = ri − P (ri = 1) = ri − E(ri = 1) (4.17)

then Eui = 0 and V ar(ui) = P (ri = 1)(1 − P (ri = 1)). Model (4.16) can then be

re-written as the regression equation ri − ui = λ
∑
j 6=iwij(rj − uj) + xiβ, or

ri = λ
∑
j 6=i

wijrj + xiβ + vi (4.18)

with vi = ui − λ
∑
j 6=iwijuj. It proves helpful to rewrite the above model in matrix

notation as:

R = λWR +Xβ + v (4.19)

v = (I − λW )u (4.20)

where R = [r1, . . . , rn], v = [v1, . . . , vn], and u = [u1, . . . , un]. By construction

Eu = 0, Euu′ = Ωu = (ωij,u) with ωii,u = P (ri = 1)(1−P (ri = 1)). The theoretical

model leaves the covariances ωij,u for i 6= j unspecified. Observe further that R =

(I − λW )−1Xβ + u = P + u, and that ER = P , and V C(R) = V C(u) = Ωu.

In the generalized linear probability model (4.19) the interdependence in re-

newal decisions is reflected by R = WR. Model (4.19) is essentially of the form

of a SAR model considered in Kelejian and Prucha (2007), with Ev = 0, Evv′ =
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(I−λW )Ωu(I−λW ′). In the spatial literature the r.h.s. variable R = WR is called a

spatial lag. Note that COV (R, v) = E [Wuu′(I − λW ′)] = WΩu(I−λW ′) 6= 0, i.e.,

R is endogenous. To estimate the model we apply the generalizes spatial two stage

least squares (GS2SLS) estimator of Kelejian and Prucha (1998, 2007), and refer

to (4.19) as a spatial linear probability model (SLPM). As suggested in the above

cited literature, I will use H = (X,WX,W 2X) as instruments, which include, in

addition to the covariates X first and second order spatial lags (weighted averages)

of the covariates. Maintaining assumptions as in Kelejian and Prucha (1998, 2007)

the GS2SLS estimator provides consistent estimates for the vector of unknown pa-

rameters θ = (λ, β′)′. Furthermore, the estimator is asymptotically normal, and the

asymptotic variance covariance matrix of the GS2SLS estimator can be estimated

consistently by

Φ̂ = n2(Ẑ ′Ẑ)−1Z ′H(H ′H)−1Ψ̂(H ′H)−1H ′Z(Ẑ ′Ẑ)−1

where Z = [WR,X], Ẑ = H(H ′H)−1H ′Z and Ψ̂ is a spatial heteroskedasticity and

autocorrelation consistent (SHAC) for Ψ = n−1H ′Evv′H as discussed in Kelejian

and Prucha (2007) and Kim and Sun (2010). In more detail, the typical element

of Ψ is ψrs = n−1∑n
i=1

∑n
j=1 hirhjsσij,where σij = Evivj, while the typical element

of its estimate Ψ̂ is: ψ̂rs = n−1∑n
i=1

∑n
j=1 hirhjsv̂iv̂jK(dij/d) where v̂i denote 2SLS

residual, K(.) is a kernel function, and the dij denotes the distance defined in (4.1).

I use

K(x) =

{
(1− x)2 , for 0 ≤ x ≤ 1
0 , otherwise,
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as my kernel function and the bandwidth is chosen such that d = [n1/3].14

Moreover, the error term in equation (4.19) is derived based on the expecta-

tion of the unobserved renewal decisions made by other patent-holders. When the

decision of some to renew is observed, the expectation becomes the actual decision

and the error uj is zero, for those j patent-holders. In the extreme case, when i’s

decision to renew comes after that of all the other holders of similar patents, the

regression equation becomes: ri = λ
∑
j 6=iwijrj + xiβ + ui such that the errors in

(4.18) are instead vi = ui. Nevertheless, the estimation procedure from above still

holds.

4.4 Data Description and Empirical Model

In the follow I apply the above model and estimation strategy to analyze a

subset of US patented inventions. The underlying patent data are available to the

public on the United States Patent and Trademark Office (USPTO) website. The

USPTO is the US government agency responsible for examining patent applications

and issuing patents. My sample consists of 28,138 US utility patents issued from

1994 through 1997.15 My sample ends in 1997, since it is the last year, at the time of

14[z] stands for nearest integer less than or equal to z.
15There are three patent categories: Utility, Plant and Design. Utility patents is the largest

category of issued patents out of the three. Section 101 of the U.S. Patent Act sets forth the

general requirements for a utility patent: “Whoever invents or discovers any new and useful process,

machine, manufacture, or composition of matter, or any new and useful improvements thereof, may

obtain a patent, subject to the conditions and requirements of this title.” Design patents differ

from utility patents in that a design patent covers only the ornamental appearance of a useful

79



this writing, for which I can observe the final renewal decision for the patents. My

data includes only patents classified under technological classes denoting computers

and related innovations, which are listed in the Appendix A1. These twenty out

of over 400 technology classes were selected according to the category Computer

Hardware and Software in Hall et al. (2001).

One part of my data consists of data that I collected on patent renewal status,

entity type and a detailed listing of citations to present date, from the USPTO

website.16 The other source of data is the NBER patent data archive, which provided

me with additional claims and assignee specific information already collected from

the USPTO.17 18

For an invention to be patentable it must be statutory, new, useful, and non-

obvious. In the US a patent is awarded for a maximum of 20 years from the appli-

cation date. In some cases the lifetime can be extended if the issuance process was

unnecessarily lengthy. While 20 years is the maximum legal protection, a US patent

is required to be renewed three times over its lifetime to maintain its validity. All

utility patents issued from applications filed after December 12, 1980 are subject

product. Plant patents are a small category of patents which protect certain types of botanical

plants, such as flowers, fruits, shrubs and vines.
16The data consists of Patent Number, International Class, Inventors, Status, Field of Search,

Entity, Assignee, Application Number, Application Date, Issue date, Expiration, US Class, Refer-

ences Made, References Received
17See http://www.nber.org/patents/ for the 1999 NBER data, and

https://sites.google.com/site/patentdataproject/Home/downloadsfor the 2006 NBER data.
18I have not used some of the data found in previous studies (e.g. measure of originality, measure

of generality), since it would have decreased the size of my sample.
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to fees that keep the patent in force. These maintenance fees are due by 3 1/2,

7 1/2, and 11 1/2 years after the patent is granted, to remain in force after 4, 8,

and respectively 12 years. In case of a missed payment, the assignee can petition

and have the patent reinstated for a penalty fee in addition to the maintenance

one. I will be modeling the decision to renew a patent, at each of the three renewal

stages, based on patent and assignee characteristics, as well as the renewal decision

for other similar patents. The binary variable indicating renewal can be constructed

based on the patent issue and expiration date. In case the patent expired at 4, 8 or

12 years, then the renewal decision becomes zero from that stage and on. There is

sufficient variation in patent renewal in my sample, such that 11,262 out of 28,138

patents expired by 2010, see Table 4.1.19

Table 4.1: Sample Summary Statistics

Variable Obs Mean Std. Dev. Min Max

Renewed at age 4 28138 .9144929 .2796399 0 1
Renewed at age 8 28138 .7475656 .4344168 0 1
Renewed at age 12 28138 .5997583 .4899559 0 1
Cites received 28138 26.89356 37.3611 0 1015
Claims 28138 16.17208 13.65686 1 309
Cites made 28138 10.29483 10.72908 1 270
Entity large 28138 .8959059 .305388 0 1
Unassigned 28138 .0544815 .2269693 0 1
Assignee: US non-Gov 28138 .5640415 .4958905 0 1
Assignee: non-US non-Gov 28138 .3656621 .4816239 0 1
Assignee: US individual 28138 .0028076 .0529132 0 1
Assignee: non-US individual 28138 .0014926 .0386066 0 1
Assignee: US Gov 28138 .009951 .0992587 0 1
Assignee: non-US Gov 28138 .0015637 .0395137 0 1
Log R&D scaled by patent count 14061 -.3924817 .797324 -6.319969 1.941478

The US fee schedule was created with the purpose to support the US Patent

19See Figure 1. and Figure 2. for year and age at expiration
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Office and protect small entities. A small entity is an independent inventor (or

inventors), a small business, or a non-profit. The normal government definition of a

small business is a company with fewer than 500 employees. So many high tech start-

ups are small entities. A non-profit could be for example a university, a scientific

organization, or many other educational organizations. The fees are differentiated

based on the size of the entity to which it is issued, e.g. small or large, and also the

age of the patent, see Appendix A2 for how fees are structured today.

In my model for patent renewal (4.18) I use patent and owner characteristics

as covariates, see Table 4.1 for Summary Statistics. I follow the literature that

has considered claims, citations received, citations made, and technological classes

as proxies for the quality of a patent, and that has used entity size, institutional

classification of the owner, and country of origin of the first inventor as other factors

which make renewal more likely. In my sample, on average a patent cites 10 patents,

receives 26.5 citations, and shares some feature with 69.7 other patents.20 Further,

I discuss each of the covariates I use when modeling the decision to renew a patent

or not.

From the NBER source I use data on the number of claims for each patent to

measure the extent of the innovation. Claim data is an important tool that describes

the scope of the protection conferred by a patent and is used during prosecution

and litigation. Moore (2005) suggest that the more claims a patent has the broader

the degree of protection. Lanjouw and Schankerman (2004) show for the majority

20See Figure 3, Figure 4. and Figure 5. for the distribution of the number of backwards

references, forward references and connectivity.
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of industries, including the computer industry, the number of claims is the most

important indicator of research quality. In case corrections are made on claims that

are too narrow or too broad, a patent is reissued. Other cases under which a patent

is reissued are failure to correctly reference prior documents. I eliminate from my

sample patents that were reissued.

Individual patent data contains high quality information on the network struc-

ture citations create. Citations are informative links between patents, and are used

as an indicator of knowledge spillovers in Caballero and Jaffe (1993) and Hall et

al. (2001). Researchers are required to cite patents upon which they build. Others

are also allowed to suggest additional references to an existing patent. The list of

references conveys how a specific technology infringes on the rights of others. Ulti-

mately the decision on which patents to cite is made by the patent agent during the

examination.

I use the collected data on count of citations received by each patent until 2010

as an indicator for the cited patent’s importance, impact or even revenues. These

citations are identified by parties other than the citing inventor and may convey

valuable information about the size of the technological ”footprint” of the cited

patent. Jaffe et al. (2000) provide evidence that there is a significant correlation

between the number of citations a patent received and its importance (both economic

and technological) as perceived by the inventor. According to the statement of the

Office of Technology Assessment and Forecast (OTAF) from the USPTO (1976):

“[...] if a single document is cited in numerous patents the technology revealed

in that document is apparently involved in many developmental efforts. Thus the
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number of times a patent document is cited may be a measure of its technological

significance.”

In terms of empirical evidence, Lanjouw and Schankerman (2004) use citation

counts as weights to create quality adjusted measures of patents counts. The authors

show that an index of research quality is more correlated with R&D than patent

counts alone. Citations counts are inherently truncated, for some patents even after

50 years. In another study by Hall et al. (2005) the number of subsequent citations

received by a firm’s patent was used to get a measure of R&D success. The authors

claim that the prime citation years are roughly 3 to 10 and that those years give

an accurate estimate of lifetime citations. In light of this study, I can assume the

truncation problem to be negligible since I count citations over 13 to 16 years from

the issue date.

Also, I include the count of citations made as another proxy variable for the

quality and costs of a patent, see Jaffe et al. (2000) for evidence from a survey of

inventors on the role of citations.21 One could argue that patents citing less are

more reliant, and perhaps more ”original”. Moreover, Harhoff et al. (2003) note

that lawyers say a patent application seeking to protect an invention with broad

scope might induce the examiner to delineate the patent claims by inserting more

references to the relevant patent literature. A counter point is that an assignee

21Tranjenberg et al. (1997) build a measure of originality referring to the percentage of citations

made by a patent that belong to a certain patent class, out of all technology classes. By this measure

if a patent cites previous patents that belong to a narrow set of technologies the originality score

will be low.
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might have to pay more royalty fees when citing patents granted to other firms.

Given these arguments, it is not clear whether the impact on renewal of the number

of citations made should be positive or negative.

The scope of a patent may be an important determinant of the efficacy of

patent protection. While it is difficult to measure, in my estimation, I use 3-digit

technology classes to control for the technological opportunities which would make

patents granted in those technological areas more valuable. In my regressions, I

include cohort fixed effects, namely dummy variables for the year the patent was

granted, to eliminate the effect of possible changes in legislation that would disrupt

returns to patents and costs of renewal.

I include characteristics of the patent owner such as institutional status, and

geographical location of the first inventor (i.e. country) to isolate some of the effect

of intra institution and intra country propensity to cite. Finally, I control for the

size of the entity. Table 4.2 summarizes that large entities have a higher propensity

to renew their patents, even though renewal fees are higher for such entities. While

this could imply that larger entities have higher quality patents, it could also be that

the renewal fees are negligible. If the latter is true there should be a more optimal

restructuring of the fees. However, this latter explanation does not seem to be

supported by facts, since the total renewal fees amount to more than 7,500 USD for

large entities and the average firm in my sample is granted 100-150 patents per year.

Moreover, for the sample I analyze some firms have granted more than 700 patents

in one year. These numbers are an underestimate for the total number of patents

granted to a firm, since they do not include the patents in the other technological
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classes. Renewal fees could add up to millions of dollars over the lifetime of a cohort

and therefore would not be negligible for a firm with hundreds of patents.

Table 4.2: Renewal Summary Statistics by Entity Size

Variable Large Entity Small Entity

First renewal .9287556 .7917378
Second renewal .7725019 .5329464
Last renewal .627395 .3618983
No. obs. 25209 2929

These covariates do not take into account that patented innovations share the

same functionality with other patents and are likely to have interdependent renewal

values. My sample consists of patents that have at least one citation in common

with another patent.22 Explicitly, I include the weighted average of the renewal

decisions as a determinant of patent renewal. The weighted average of the renewal

decisions captures returns to a patent resulting from the specific interaction with

other patents described as related at origin.

4.5 Empirical Results

In Table 4.3, I report results on patent renewal at each of the three stages

depending on the decision to renew of other patent assignees. For comparison, in

Table 4.4 I show the results for a model where the decision to renew a patent is

22I excluded 1010 patents from the original sample that did not meet this criterion.
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taken independently from other similar patent. 23 Table 4.3 shows 2SLS parameter

estimates of the spatial linear probability model in (4.18) for patents’ “contempo-

raneous” renewal decisions. The estimates in the second and third columns of the

table are conditional on having renewed the patent at the previous stage. Therefore,

the estimation sample includes only patents that have not expired. Moreover, the

renewal of patents is only dependent on decisions made for patents that have also

renewed at the previous stage, i.e. have not yet expired.

In Table 4.3 the explanatory variable of interest is the weighted average of the

observed and unobserved decision to renew patents that are related technologically.

The weighted average of other similar patents renewal explains a large percentage,

14% to 28%, of the propensity to renew a patent. Graphs of the predicted proba-

bilities from these regressions can be found in the Appendix A in Figure 6, Figure

7 and Figure 8. For these 2SLS regressions, I computed the F-statistic against the

null that the excluded instruments are irrelevant in the first-stage regression. The

F-statistics are unilaterally larger than 10 in my case, and show no evidence that

the instruments are weak.24

In order to put these estimates in context, I include a model that assumes

independent renewal decisions, see the estimates in Table 4.4. In most cases, the

absolute value of the coefficients are larger than in the model with interaction in

23Renewal timing is exogenous, since renewal follows every four years from the issue date of

a patent. While the application date could be endogenous, the issue date will be exogenously

determined by the patent office.
24This is Staiger and Stock (1997) rule of thumb for models with one endogenous regressor.
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renewals. I stress the existence of an upward bias in the estimation of the coefficients

of a model that assumes independent decision making.

Table 4.3: Renewal Decisions under Dependence

Renewal 1st 2nd 3rd

W*renewal 0.28026*** 0.18386*** 0.14637***
(0.07449) (0.03242) (0.02254)

Cites received 0.00029*** 0.00067*** 0.00064***
(0.00004) (0.00006) (0.00006)

Cites made 0.00042*** -0.00029 -0.00008
(0.00011) (0.00019) (0.00022)

Claims 0.00086*** 0.00124*** 0.00121***
(0.00010) (0.00015) (0.00017)

Entity Large 0.13179*** 0.17428*** 0.15426***
(0.00922) (0.01106) (0.01285)

Unassigned -0.02795* -0.05527** -0.07004***
(0.01356) (0.01716) (0.01935)

US non-Gov -0.01055 -0.04686*** -0.03163*
(0.00937) (0.01290) (0.01430)

US indiv 0.02283 -0.07423 0.03271
(0.03674) (0.05281) (0.05191)

Non-US indiv -0.06929 -0.06949 -0.02469
(0.06304) (0.08207) (0.09760)

US Gov -0.35202*** -0.41567*** -0.43614***
(0.03403) (0.04157) (0.05952)

Non-US Gov -0.04658 -0.02456 0.12694*
(0.05687) (0.07440) (0.05622)

1st Stage F-stat 14.89 79.08 295.38
R-squared 0.059 0.052 0.068
N 28138 25732 21035

country FE country FE country FE
cohort FE cohort FE cohort FE

tech class FE tech class FE tech class FE

* p<0.05, ** p<0.01, *** p<0.001,
HAC standard errors are reported in parenthesis.

A consequence of my model with interdependent renewals is that the average

marginal effect is different from the model that does not consider this interdepen-
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Table 4.4: Renewal Decisions under Independence

Renewal 1st 2nd 3rd

Cites received 0.00031*** 0.00070*** 0.00067***
(0.00004) (0.00006) (0.00006)

Cites made 0.00048*** -0.00024 0.00001
(0.00011) (0.00020) (0.00022)

Claims 0.00087*** 0.00126*** 0.00123***
(0.00010) (0.00015) (0.00018)

Entity Large 0.13584*** 0.17901*** 0.15798***
(0.00842) (0.01114) (0.01303)

Unassigned -0.03149* -0.05794*** -0.07160***
(0.01307) (0.01730) (0.01956)

US non-Gov -0.01111 -0.04738*** -0.03190*
(0.00924) (0.01300) (0.01437)

US indiv 0.02038 -0.07833 0.02670
(0.03598) (0.05312) (0.05416)

Non-US indiv -0.06609 -0.06983 -0.03685
(0.06400) (0.08308) (0.09831)

US Gov -0.36248*** -0.42687*** -0.44273***
(0.03082) (0.04113) (0.06022)

Non-US Gov -0.04482 -0.03289 0.12409*
(0.05813) (0.07353) (0.05692)

R-squared 0.053 0.043 0.061
N 28138 25732 21035

country FE country FE country FE
cohort FE cohort FE cohort FE

tech class FE tech class FE tech class FE

* p<0.05, ** p<0.01, *** p<0.001,
Robust standard errors are reported in parenthesis.

dence. Consider my model in (4.16) and rewrite it as:

P (ri = 1) =
K∑
k=1

Si.(W )x.kβk

S(W ) = (In − λW )−1

Unlike in a model without a spatial lag , i.e. λ = 0, where the marginal effect or

the derivative of ri with respect to xik is βk, in the interdependent renewal model

this effect is not constant: ∂P (ri=1)
∂xik

= S(W )iiβk, where S(W )ii is the element in the
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ith column and ith row of S(W ). The effect includes the “feedback loops” where

observation i affects observation j also affects observation i as well as longer paths

which might go from observation i and j to m and back to i. Another implication of

the model under interdependence is that a change in the characteristic for a single

patent can also affect the renewal for all other patents, i.e. ∂P (ri=1)
∂xjk

= S(W )ijβk 6= 0.

In Table 4.5, I compare the average marginal effects for the model with interde-

pendence in renewal with the marginal effects for the non-spatial linear probability

model. The first three columns contain the average over all patents of the total

impact that an equal change in the characteristic k of each patent has on the prob-

abilities of renewing the patents:

n−1ιn′S(W )ιnβk = n−1
∑
i

∑
j

S(W )ijβk, (4.21)

while the last three columns include straightforwardly the ordinary least squares

coefficient estimates. The average marginal effects for the model with independent

renewal are underestimated in absolute terms since the model ignores the network

effect.

The coefficients on claims and citations received are positive, and stay sig-

nificant and comparable across regressions. We can infer that these two quality

measures are significantly associated with the private value of patents. Claims, as

discussed, describe the patent quality in terms of breadth of property law protec-

tion. Citations received allows me to control for the depreciation of the innovation.

In case of obsolescence it would happen that newer technologies replace older tech-

nologies, and that the latter receive fewer citations. In terms of marginal effects, an
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Table 4.5: Average Marginal Effects under Dependence and Marginal Effects under

Independence

SLPM SLPM SLPM LPM LPM LPM
Renewal 1st 2nd 3rd 1st 2nd 3rd

Cites received 0.00040 0.00082 0.00075 0.00031 0.00070 0.00067
Cites made 0.00058 -0.00036 -0.00009 0.00048 -0.00024 0.00001
Claims 0.00119 0.00152 0.00142 0.00087 0.00126 0.00123
Entity Large 0.18311 0.21347 0.18050 0.13584 0.17901 0.15798
Unassigned -0.03883 -0.06770 -0.08196 -0.03149 -0.05794 -0.07160
US non-Gov -0.01466 -0.05740 -0.03701 -0.01111 -0.04738 -0.03190
US indiv 0.03172 -0.09092 0.03828 0.02038 -0.07833 0.02670
Non-US indiv -0.09627 -0.08512 -0.02889 -0.06609 -0.06983 -0.03685
US Gov -0.48909 -0.50915 -0.51034 -0.36248 -0.42687 -0.44273
Non-US Gov -0.06472 -0.03008 0.14854 -0.04482 -0.03289 0.12409

additional 100 citations received, at the mean, result in a 4-8.2% percent increase

in the predicted probability of renewal; while an additional 100 claims is required

for an increase of 11.9-15.2% in the same probability.

I include citations made as a proxy for the costs resulting from the payment of

royalty fees. I find that the count of citations made have a positive impact at first

renewal, and no effect at the next two stages. Since no negative significant effect is

found, it would suggest that royalty fees per citations are insignificant on average.

A plausible explanation for the positive coefficient at first renewal can be that of an

assignee who wrongly believes his invention is valuable, documents well the patent,

and also renews it initially, to learn later on about its low value.

One variable with a large explanatory power that is missing from many of the

empirical studies is the size of the entity. Being a large firm impacts the probability

of renewal by up to 21.3%. A result which supports Bessen (2008)’s finding that
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small entities have patent with values that are on average less than half as large as

the values obtained by large corporations. It is not surprising given the summary

statistics in Table 4.2 showing large companies to be more likely to renew their

patents at any stage. Besides the explanation that large entities own higher quality

patents since they invest more in R&D, some other potential explanations for this

higher propensity to renew are that large entities face cheaper legal and royalty cost,

and/or build patent patent portfolios that serve strategic purposes. As discussed

in the previous section, I believe that there is strong evidence against total renewal

fees being modest. Additionally, large entities are known to commercialized more

products resulting from patents, and therefore make those patents more profitable.

Further, when a small entity licenses a patent to a large entity to increase the returns

on that patent, the small entity is required to pay large entity fees.

In terms of the assignee status, patents that are unassigned or assigned to the

US Government have a much lower probability to renew, holding the other factors

fixed, compared to foreign corporations. While at the second and last renewal, US

corporation also have significant lower propensity to renew their patents relative

to the foreign counterparts. However, it is expected that US patents assigned to

foreign corporations are of a higher value, since most likely they are the result of a

selection rather than a random patent application from that foreign country.

A plausible story for the observed dependence in renewals is that of strategic

effects from holding patents on the same technology. Since patents enforce market

power, a typical oligopolistic price competition with two substitute goods that are

strategic complements would explain the result. Furthermore, firms could act strate-
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gically about renewal: cross citation used in negotiation and patent infringement

lawsuits, patent fencing, patent blocking, etc.

While the spatial lag could capture an omitted variable bias reflecting demand,

costs or obsolescence, an instrumented approach would eliminate this a bias. Now,

I will relate the dependence found to the time series literature. Heckman (1981)

notes that persistence in outcome can be the result of true state dependence or spu-

rious state dependence. In my case, an omitted variable story translates into spu-

rious dependence, and the strategic effects translate into true dependence. It holds

under both true and spurious state dependence that: Pr(ri|xi, R−1) 6= Pr(ri|xi).

However, under spurious dependence the difference in probabilities is caused by un-

observed heterogeneity. When conditioning on the unobserved heterogeneity behind

patent i, denoted by ζ i, the dependence on the renewal of other patents disappears:

Pr(ri|xi, R−1, ζ i) = Pr(ri|xi, ζ i), Since heterogeneity is unobserved and cannot be

controlled for, the latter equality could also be achieved by using a set of instru-

ments. Therefore, my identification strategy relies on the instrumental variable

technique and provides evidence for the existence of true state dependence.

To disentangle strategic effects, I consider the case when the renewal decision

for each patent is made on one hand with respect to the renewal decisions for patents

owned by its own firm, and on the other hand with respect to the renewal decisions

for patents owned by other firms, see Table 4.6. For this I defined two spatial lags

one taking into account only the renewal of patents owned by other firms, Wext ∗R,

and one for the renewal of patents owned by the same firm, Wint ∗ R. Dependence

is significant with respect to patents of other firms at every stage of renewal, and
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Table 4.6: Interdependent Renewal Decisions Between Firms and Within a Firm

Dep. Variable 1st Renewal 2nd Renewal 3rd Renewal

W ext*Renewal 0.09602* 0.12596*** 0.14398***
(0.04151) (0.02886) (0.02185)

W int*Renewal 0.00019* 0.00038** -0.00037*
(0.00007) (0.00013) (0.00018)

Cites Received 0.00030*** 0.00068*** 0.00064***
(0.00004) (0.00006) (0.00006)

Cites Made 0.00044*** -0.00028 0.00004
(0.00012) (0.00019) (0.00022)

Claims 0.00087*** 0.00125*** 0.00122***
(0.00010) (0.00015) (0.00018)

Entity Large 0.13478*** 0.17748*** 0.16014***
(0.00875) (0.01121) (0.01323)

Unassigned -0.03203* -0.06624*** -0.09803***
(0.01287) (0.01730) (0.01989)

US non-Gov -0.01120 -0.04678*** -0.02893*
(0.00922) (0.01314) (0.01412)

US individual 0.01956 -0.08429 -0.00928
(0.03508) (0.05313) (0.05583)

Non-US individual -0.07632 -0.06220 0.00061
(0.06572) (0.08547) (0.09660)

US Gov -0.36072*** -0.42219*** -0.44006***
(0.03103) (0.04118) (0.05896)

Non-US Gov -0.04489 -0.02572 0.12579*
(0.05964) (0.07392) (0.05674)

R-squared 0.053 0.043 0.062
N 28077 25680 20989

country FE country FE country FE
cohort FE cohort FE cohort FE

tech class FE tech class FE tech class FE

* p<0.05, ** p<0.01, *** p<0.001.
HAC standard errors are reported in parenthesis.

smaller than for the whole sample. Moreover, dependence in renewals within the

firm is much smaller and of low significance level.

Some interpretations of the within firm dependence for patent renewal, in

the context of strategic behavior to preempt entry, are: patent fencing or patent

blocking. It is not surprising that within firm renewal dependence is weak, since
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when a patent expires it does not lose its value but can still protect the company

against imitation. By law if another company copies the design of a product even

after the patent expires, that company can be sued for trade dress infringement by

the “holder” of the expired patent.

While, the interpretation for strategic interaction in patent renewal between

firms is patent thickets. Patent thickets occur when each product may involve many

patents, and when there is excessive patenting for that product to induce cross-

citation with related products owned by other firms. Consequently, thickets can

be used as threat of litigation in negotiation to extract rents from rival innovators.

This type of patenting is abusive and imposes transaction costs, holdup or vertical

monopoly problems, mentioned by Shapiro (2001).

Further, I merged the patent data with balance sheet data on R&D from the

Compustat database. My sample size decreases since it includes only publicly traded

US companies. My next set of results in Table 4.7 show much more interdependence

in renewals for this sample. I joined the data sets based on the NBER file that

matches assignees to Compustat corporate entities. These regressions include per

patent research spending one year prior to patent grant. As a measure of research

inputs, I used log annual R&D scaled by the resulting patent count granted in the

four years following the R&D spending.25 I am making the assumption that the

returns to one year R&D spending come from rents to patents granted over the

25I chose this scaling knowing that the recipients NIST Technology Innovation Program

and Advanced Technology Program Grants are funded for 3-5 years per project. See

http://www.nist.gov/tip/faqs.cfm
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Table 4.7: Returns to per patent R&D spending made one year prior to patent grant

Dep. Variable 1st Renewal 2nd Renewal 3rd Renewal

W*renewal 0.46367*** 0.35154*** 0.26416***
(0.10033) (0.09869) (0.07972)

Cites Received 0.00028*** 0.00076*** 0.00077***
(0.00005) (0.00008) (0.00009)

Cites Made 0.00021 -0.00031 -0.00039
(0.00017) (0.00034) (0.00043)

Claims 0.00071*** 0.00143*** 0.00173***
(0.00014) (0.00023) (0.00027)

Entity Large 0.02182 0.11648** 0.05222
(0.02532) (0.03960) (0.04747)

US non-Gov -0.04100* -0.04856 -0.00111
(0.01762) (0.02546) (0.02884)

log Scaled R&D 0.01097*** 0.02785*** 0.02114***
(0.00238) (0.00396) (0.00446)

1st Stage F-stat 9.05 9.73 17.22
R-squared 0.019 0.043 0.077
N 14061 13111 10724

country FE country FE country FE
cohort FE cohort FE cohort FE

tech class FE tech class FE tech class FE

* p<0.05, ** p<0.01, *** p<0.001.
HAC standard errors are reported in parenthesis.

following 4 years. Liu et al. (2008) used another measure of research intensity which

is the log value of the R&D expenditure scaled by the total revenues. Notice that

the significance of the entity size variable disappears in this regressions since only

about 100 small entities were left in the sample. By employing the log of scaled

R&D I get an estimate of 1-2.8% over different renewal stages. Implying that at

the mean of 0.675 million dollars R&D per patent, an increase of 100% increases

the probability of renewal by 2-4.3%, when taking into account the multiplier effect.

This result confirms the study of Bessen (2008) who finds that the ratio of patent
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value to R&D – a measure of the subsidy that patents provide to R&D investment

– is only about 3%. My results are robust when scaling R&D by the patent count

granted over only two years following the spending, see Table B.1 in the Appendix

B. For another robustness check in Table B.2 in the Appendix B, I used scaled R&D

spending made two years before patent grant and I find returns to be smaller and

less precisely estimated.

4.6 Conclusion

In this paper, I introduce a semi structural model of interdependent renewal

decisions that can be estimated as a spatial linear probability model. I show that

the returns to a patent are not only a function of patent and owner characteristics,

but also of the renewal decisions for related patented innovations. Previous studies

that ignored the interrelatedness of patent renewal decisions are likely to have bi-

ased results. My estimation methodology does not make assumptions on the error

term distribution, while other studies which make parametric assumptions could

use misspecified models, e.g. probit, logit, ordered probit. Ultimately, I suggest

firm strategic behavior, consisting of patent fencing, patent blocking and patent

thickets, to be a potential explanation for the positive dependence in renewals that

I find. This type of strategic behavior can impose large costs to society when it

brings about property rights lawsuits between rival companies. To reduce litigation

costs policy makers should consider awarding less patents for products or processes

that are not highly differentiated. Another case when interdependence in renewals
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would also arise is if the patent owner is uncertain about the value of its patent.

Thus if related patents are being renewed, it may indicate to the patent holder that

its patent is worth renewing as well which would result in interdependent renewals

for similar patents. Moreover, when it comes to estimating the intangible value

of a transfer of patents from one firm portfolio to another, the taxpayers and the

IRS should also take into account additional returns coming from the interaction

between the patents in the traded portfolio.
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Chapter 5

Conclusion

The literature review from Chapter 1 covers different spatial discrete models.

I present some consistency results for estimators of discrete choice models with spa-

tially correlated unobserved components, e.g. Pinkse and Slade (1998) and Wang et

al. (2009). The estimator of Pinkse and Slade (1998) adjusts for the spatially intro-

duced heteroskedasticity, while the one of Wang et al. (2009) is a partial maximum

likelihood estimator. For models with spatial dependence in the observed discrete

choices there are various Bayesian estimators, e.g. Bolduc et al. (1997) and LeSage

(2000), and Simulations estimators, e.g. Beron and Vijverberg (2004), whose small

sample properties are investigated. There is still no formal theory for the consistency

of these latter estimators where discrete choices are made interdependently. Chapter

3 proposes a model that can be consistently estimated using Kelejian and Prucha

(1998, 2007) techniques from the spatial literature with a continuous dependent

variable.

The Spatial Linear Probability Model (SLPM) discussed in Chapter 3 has

a different specification from the models that already exist in the spatial discrete

choice literature. Rather than having the interdependent discrete choices be a result

of a truncation in some latent variable, the model is formulated based on the prob-

ability of making interdependent choices. I investigate the small sample properties
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of a two step estimator where the binary outcomes are generated independently

and dependently. The results show a considerable bias for the first step estimator.

However, the bias decreases significantly for the second step estimator. Moreover

both the bias and root mean squared errors decrease with an increase in the sample

size offering evidence for the consistency of the procedure.

Chapter 4 presents a game among patent holders who make the decision to

renew technologically similar patents interdependently and simultaneously. It turns

out that this model for the probability of renewing a patent can be cast as the SLPM

in Chapter 3. In terms of the estimation strategy for the patent renewal model, I

applied the first step estimator from the previous chapter. The simulation results

in Chapter 3 show good small sample properties for the first step estimator even

when the Monte Carlo sample size is less than one tenth of the sample size used in

the application of Chapter 4. I find that there is positive interdependence in the

renewal decision for patents and that ignoring it would lead to biased coefficient and

underestimated marginal effects. The positive interdependence can be explained by

positive network effects, as well as strategic behavior behind patent renewal.

The theoretical model of interdependent choices that I developed and the es-

timation strategy are not confined to my application, but rather can have other

applications in which firms or people are making strategic and simultaneous deci-

sions.
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Appendix A

Data Description
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Figure A.1: Expiration Years

Figure A.2: Expiration Stages
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Figure A.3: Frequency of Cited References

Figure A.4: Frequency of Citations Received
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Figure A.5: Frequency of Number of Patents to which One is Similar to

Figure A.6: Frequency of Predicted Probabilities of First Renewal
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Figure A.7: Frequency of Predicted Probabilities of Second Renewal

Figure A.8: Frequency of Predicted Probabilities of Third Renewal
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A.1 Appendix A1

TECHNOLOGY CLASSES FOR CALCULATORS, COMPUTERS, OR DATA

PROCESSING SYSTEMS

341. Coded Data Generation or Conversion

380. Cryptography

382. Image Analysis

395. Information Processing System Organization

700. Data Processing: Generic Control Systems or Specific Applications

701. Data Processing: Vehicles, Navigation, and Relative Location

702. Data Processing: Measuring, Calibrating, or Testing

704. Data Processing: Speech Signal Processing, Linguistics, Language Trans-

lation, and Audio Compression/Decompression

705. Data Processing: Financial, Business Practice, Management, or Cost/Price

Determination

706. Data Processing: Artificial Intelligence

707. Data Processing: Database and File Management or Data Structures

708*. Electrical Computers: Arithmetic Processing and Calculating

709. Electrical Computers and Digital Processing Systems: Multicomputer

Data Transferring

710. Electrical Computers and Digital Data Processing Systems: Input/Output

711. Electrical Computers and Digital Processing Systems: Memory

712. Electrical Computers and Digital Processing Systems: Processing Archi-
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tectures and Instruction Processing (e.g., Processors)

713. Electrical Computers and Digital Processing Systems: Support

714. Error Detection/Correction and Fault Detection/Recovery

718. Electrical Computers and Digital Processing Systems: Virtual Machine

Task or Process Management or Task Management/Control

719. Electrical Computers and Digital Processing Systems: Interprogram

Communication or Interprocess Communication (IPC)
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A.2 Appendix A2

POST-ISSUANCE FEES IN 2010

Maintenance fees

For maintaining an original or reissue patent, except a design or plant patent,

based on an application filed on or after after Dec. 12, 1980, in force beyond 4 years;

the fee is due by three years and six months after the original grant:

By a small entity $490.00

By other than a small entity $980.00

For maintaining an original or reissue patent, except a design or plant patent,

based on an application filed on or after Dec. 12, 1980 in force beyond 8 years; the

fee is due by seven years and six months after the original grant:

By a small entity $1,240.00

By other than a small entity $2,480.00

For maintaining an original or reissue patent, except a design or plant patent,

based on an application filed on or after Dec. 12, 1980 in force beyond 12 years; the

fee is due by eleven years and six months after the original grant:

By a small entity $2,055.00

By other than a small entity $4,110.00

Late Payment Penalties

Surcharge for paying a maintenance fee during the 6 month grace period fol-

lowing the expiration of three years and six months, seven years and six months,

and eleven years and six months after the date of the original grant of a patent
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based on an application filed on or after Dec. 12, 1980:

By a small entity $65.00

By other than a small entity $130.00

(i) Surcharge for accepting a maintenance fee after expiration of a patent for

non-timely payment of a maintenance fee where the delay is shown to the satisfaction

of the Commissioner to have been:

(1) unavoidable $700.00

(2) unintentional $1,640.00

Source: http://www.uspto.gov/web/offices/com/sol/og/1997/week50/patmfee.htm
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Appendix B

Derivations and Tables

In light of (4.9) the probability of renewal of patent j is given by:

Pr(rj = 1) = Pr

ξ0
j − ξ1

j + ε0j − ε1j ≤ aj + b
∑
j 6=i

wjkE(rk = 1|Fj)− cj

 . (B.1)

Recall that Fj = σ(ξ0
j , ξ

1
j , ε

0
j , ε

1
j), and thus E(rk = 1|Fj) = gk(ξ

0
j , ξ

1
j , ε

0
j , ε

1
j) for some

measurable function gk(.). The probability of renewal of patent j, conditional on

the information set Fi, is thus given by:

Pr(rj = 1|Fi) = Pr

ξ0
j − ξ1

j + ε0j − ε1j ≤ aj + b
∑
j 6=i

wjkE(rk = 1|Fj)− cj

 |Fi


= Pr

ξ0
j − ξ1

j + ε0j − ε1j − b
∑
j 6=i

wjkgk(ξ
0
j , ξ

1
j , ε

0
j , ε

1
j) ≤ aj − cj

 |Fi
 .

Since ξ0
j , ξ

1
j , ε

0
j , ε

1
j and ξ0

i , ξ
1
i , ε

0
i , ε

1
i are assumed to be independent it follows further

that

Pr(rj = 1|Fi) = Pr


ξ0

j − ξ1
j + ε0j − ε1j − b

∑
j 6=i

wjkgk(ξ
0
j , ξ

1
j , ε

0
j , ε

1
j) ≤ aj − cj


= Pr(

ξ0
j − ξ1

j + ε0j − ε1j ≤ aj + b
∑
j 6=i

wjkE(rk = 1|Fj)− cj

 = Pr(rj = 1),

i.e., Pr(rj = 1|Fi) = Pr(rj = 1)as claimed.
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Table B.1: Returns to log R&D spending made a year prior to patent grant scaled

by the number of patents awarded in the following 2 years
SLPM SLPM SLPM

Dep. Variable 1st Renewal 2nd Renewal 3rd Renewal

W*renewal 0.43862*** 0.33658*** 0.25852**
(0.10227) (0.09765) (0.07927)

Cites received 0.00028*** 0.00077*** 0.00077***
(0.00005) (0.00008) (0.00009)

Cites made 0.00021 -0.00027 -0.00042
(0.00017) (0.00031) (0.00039)

Claims 0.00071*** 0.00141*** 0.00172***
(0.00013) (0.00022) (0.00026)

Entity large 0.02706 0.13102** 0.05146
(0.02682) (0.04046) (0.04474)

US non-Gov -0.03955* -0.05087* -0.00066
(0.01715) (0.02542) (0.02803)

Log scaled R&D 0.01413*** 0.02735*** 0.02158***
(0.00236) (0.00391) (0.00440)

R-squared 0.024 0.043 0.076
N 14062 13116 10717
p<0.05, ** p<0.01, *** p<0.001

country FE country FE country FE
cohort FE cohort FE cohort FE

tech class FE tech class FE tech class FE
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Table B.2: Returns to log R&D spending made two years prior to patent grant

scaled by the number of patents awarded in the following 4 years

SLPM SLPM SLPM
Dep. Variable 1st Renewal 2nd Renewal 3rd Renewal

W*Renewal 0.52473*** 0.42650*** 0.25232**
(0.10835) (0.09912) (0.08044)

Cites received 0.00028*** 0.00076*** 0.00075***
(0.00006) (0.00008) (0.00009)

Cites made 0.00023 -0.00028 -0.00054
(0.00017) (0.00032) (0.00039)

Claims 0.00074*** 0.00151*** 0.00156***
(0.00013) (0.00023) (0.00026)

Entity large 0.02204 0.12266** 0.07741
(0.02742) (0.04103) (0.04711)

US non-Gov -0.04656** -0.05996* -0.02120
(0.01718) (0.02559) (0.02575)

Log scaled R&D 0.00532* 0.01953*** 0.00697*
(0.00226) (0.00362) (0.00294)

R-squared 0.016 0.039 0.073
N 13705 12779 10991
p<0.05, ** p<0.01, *** p<0.001

country FE country FE country FE
cohort FE cohort FE cohort FE

tech class FE tech class FE tech class FE
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