
ABSTRACT

Title of dissertation: DEBUGGING AND REPAIR

OF OWL ONTOLOGIES

Aditya Kalyanpur, Doctor of Philosophy, 2006

Dissertation directed by: Professor James Hendler

Department of Computer Science

With the advent of Semantic Web languages such as OWL (Web Ontology Lan-

guage), the expressive Description LogicSHOIN is exposed to a wider audience of

ontology users and developers. As an increasingly large number of OWL ontologies be-

come available on the Semantic Web and the descriptions in the ontologies become more

complicated, finding the cause of errors becomes an extremely hard task even for ex-

perts. The problem is worse for newcomers to OWL who have little or no experience

with DL-based knowledge representation. Existing ontology development environments,

in conjunction with a reasoner, provide some limited debugging support, however this is

restricted to merely reporting errors in the ontology, whereas bug diagnosis and resolution

is usually left to the user.

In this thesis, I present a complete end-to-end framework for explaining, pinpoint-

ing and repairing semantic defects in OWL-DL ontologies (or in other words, aSHOIN

knowledge base). Semantic defects are logical contradictions that manifest as either

inconsistentontologies orunsatisfiableconcepts. Where possible, I show extensions

to handle related defects such as unsatisfiable roles, unintended entailments and non-

entailments, or defects in OWL ontologies that fall outside the DL scope (OWL-Full).

The main contributions of the thesis include:

• Definition of three novel OWL-DL debugging/repair services:Axiom Pinpointing,

Root Error PinpointingandOntology Repair. This includes formalizing the notion

of precise justificationsfor arbitrary OWL entailments (used to identify the cause

of the error),root/derivedunsatisfiable concepts (used to prune the error space) and

semantic/syntacticrelevance of axioms (used to rank erroneous axioms).

• Design and Analysis of decision procedures (bothglass-boxor reasoner dependent,

andblack-boxor reasoner independent) for implementing the services

• Performance and Usability evaluation of the services on realistic OWL-DL ontolo-

gies, which demonstrate it’s practical use and significance for OWL ontology mod-

elers and users

DEBUGGING AND REPAIR
OF OWL ONTOLOGIES

by

Aditya Kalyanpur

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2006

Advisory Commmittee:

Professor James Hendler
Professor Ashok Agrawala
Professor Mark Austin
Professor Ian Horrocks
Dr. Ryusuke Masuoka

c© Copyright by

Aditya Kalyanpur

2006

ACKNOWLEDGMENTS

First, I would like to thank my advisor, James Hendler, for his continuous support,

encouragement and guidance over the years and for providing me the freedom to pursue

my interests and goals. I am also grateful to my committee members Ashok Agrawala,

Mark Austin, Ian Horrocks and Ryusuke Masuoka for their assistance and support, and a

special thanks to Ian for his detailed comments and suggestions.

I would like to especially thank Bijan Parsia for his endless help in all aspects of my

research. Besides being a tireless supporter of my work, and providing plenty of insight,

ideas and suggestions for improvement, Bijan has acted as my mentor as well, pushing

me to become a better researcher. On a similar note, I am also very grateful to Evren Sirin

and Bernardo Cuenca Grau with whom I have shared numerous helpful discussions and

have learnt a great deal from.

I have also received a lot of support from my MINDSWAP group members and I

am grateful for all their efforts. Thanks to Jennifer Golbeck, Ron and Amy Alford, David

Taowei Wang, Christian Halaschek, Vladimir Kolovski, Yarden Katz and others I may

have forgotten. It has been a pleasure working with all of you.

On the personal front, I am eternally grateful to my parents, Anand and Vidya

Kalyanpur, for their endless love and support in every step of life, and for providing me

with all the opportunities in the world to excel. I would also like to thank my brother,

Trushant Kalyanpur, who has been one of my closest friends and biggest supporters over

ii

the years. Finally, a very special thanks to my partner, Priya Joshi, who has been by my

side throughout the duration of my thesis, and whose tremendous love, care and patience

has been instrumental in the completion of this thesis.

iii

TABLE OF CONTENTS

List of Figures ix

1 Introduction and Overview 1

1.1 Introduction . 1

1.1.1 Semantic Web and OWL . 1

1.1.2 Motivation: Lack of OWL Debugging Support 3

1.1.3 Defects in OWL . 6

1.1.4 Debugging OWL Defects . 9

1.2 Contributions . 10

1.2.1 Scope and Limitations . 12

1.3 Organization of Thesis . 13

2 Foundations 16

2.1 Description Logics . 16

2.1.1 Syntax and Semantics ofSHOIQ(D) 21

2.2 Web Ontology Language (OWL) . 26

2.3 Reasoning Services for OWL . 30

2.4 Tableaux Algorithms . 31

2.4.1 Optimizations . 36

3 Related Work 39

3.1 Diagnosis in Reasoning Systems . 39

3.1.1 Debugging of Logic Programs 39

iv

3.1.2 Expert System Debugging and Maintenance 43

3.1.3 Repairing Integrity Constraint Violations in Deductive Databases 46

3.1.4 Proof Explanation in ATPs . 48

3.1.5 Description Logic (DL) Explanation and Debugging 49

3.2 Key Theories of Diagnosis and Revision 55

3.2.1 Reiter’s Theory of Diagnosis based on First Principles 55

3.2.2 AGM Belief Revision Postulates 56

4 Core Debugging Service: Axiom Pinpointing 58

4.1 Introduction and Background . 58

4.1.1 Justification of Entailments and MUPS 62

4.2 Computing a Single Justification . 64

4.2.1 Black Box: Simple Expand-Shrink Strategy 64

4.2.2 Hybrid: Tableau-based Decision Procedure (Tableau-Tracing) . . 66

4.3 Computing All Justifications . 74

4.3.1 The Hitting Set Problem and Reiter’s Algorithm 74

4.3.2 Hitting Sets and Axiom Pinpointing 75

4.3.3 A Simple Example . 76

4.3.4 Definition of the Algorithm . 79

4.3.5 HST Optimization . 80

4.4 Beyond Axioms: Finer-Grained Justifications 81

4.4.1 Splitting a KB . 82

4.4.2 Finding Precise Justifications . 86

v

4.4.3 Optional Post-Processing . 86

4.4.4 Example . 86

4.4.5 Optimizations . 88

4.5 Applications of Axiom Pinpointing . 90

5 Auxillary Debugging Service: Root Error Pinpointing 91

5.1 Introduction . 91

5.2 Dealing with Numerous Unsatisfiable Classes 92

5.2.1 Root and Derived . 92

5.2.2 Significance and Drawbacks of Root/Derived 95

5.2.3 Detecting Root/Derived: Using the Axiom Pinpointing Service . . 96

5.2.4 Alternate Detection of Root/Derived: Structural Analysis 99

5.3 Dealing with Inconsistent OWL Ontologies 107

5.3.1 Special Case: Reduction to Unsatisfiable Classes/Roles 109

5.4 Putting It All Together: Service Description 110

6 Ontology Repair Service 113

6.1 Introduction . 113

6.2 Repair Overview: Scope and Limitations 114

6.3 Axiom Ranking Module . 117

6.3.1 Semantic Relevance: Impact Analysis 118

6.3.2 User Test Cases . 124

6.3.3 Syntactic Relevance . 125

6.4 Solution Generation Module . 127

vi

6.4.1 Improving and Customizing Repair 128

6.5 Axiom Rewrite Module . 131

6.6 Putting It All Together: Service Description 132

6.7 Conclusion / Outlook . 133

7 Implementation and Evaluation 136

7.1 Deploying the Debugging & Repair Services 137

7.1.1 Implementing Axiom Pinpointing 137

7.1.2 Axiom Pinpointing: Performance Analysis 144

7.1.3 Implementing Root Error Pinpointing 150

7.1.4 Root/Derived Performance Analysis 151

7.1.5 Ontology Repair . 152

7.2 Usability Studies . 156

7.2.1 Evaluating Debugging . 157

7.2.2 Evaluating Repair . 163

8 Open Issues and Future Work 167

8.1 Enhancing Debugging and Repair Services 167

8.1.1 Improving Algorithmic Performance 167

8.1.2 Improving Output Explanation 169

8.1.3 Testing and Evaluating Repair 170

8.1.4 Debugging Non-Subsumptions 172

8.2 Exploring Extensions to other Logics . 175

8.3 Beyond Debugging . 177

vii

8.3.1 Reasoning over Dynamic Ontologies 177

A Appendix: Swoop – Web Ontology Browser/Editor 179

A.0.2 Explaining Concept Definition: Natural Language Paraphrases . . 179

A.0.3 Browsing, Comparing and Querying data 181

A.0.4 Change Management . 184

A.0.5 Collaborative Discussion Using Annotea 184

Bibliography 187

viii

LIST OF FIGURES

1.1 OWL version of the Tambis ontology as viewed in the Swoop editor and

tested using the Pellet Reasoner . 4

4.1 Tableau Tracing: Completion GraphsG1,G2 created after applying

non-deterministic rules and added as leaves ofT. 68

4.2 Finding all MUPS using HST: Each distinct node is outlined in a box

and represents a set inMUPS(C,K2). Total number of satisfiability tests

is 31. 77

5.1 Sample Error Dependency Graph . 98

6.1 Ontology Repair Service . 116

6.2 Uniform Cost Search: Generating a repair plan based on ranks of axioms

in the MUPS of unsatisfiable concepts. 128

7.1 Displaying the Justification Axioms as a Single Unordered List 138

7.2 Improved Presentation of the Justification 139

7.3 Displaying clash information using a property-path and variables to de-

note anonymous individuals. This example has been taken from the Mad-

Cow ontology used in the OilEd [8] Tutorials. 141

ix

7.4 Ordering and Indenting Justification Axioms. Example (A) has been

taken from the University OWL Ontology, whereas examples (B),(C) are

from the Tambis Ontology. 142

7.5 Justification example where ordering/indenting of axioms fails 143

7.6 Striking out parts of axioms that are irrelevant to the entailment 144

7.7 Evaluating Algorithms to Compute a Single Justification 145

7.8 Evaluating Algorithms to Compute All Justifications. Time scale is loga-

rithmic. 148

7.9 Comparison of DL reasoners to find Justifications 149

7.10 Root/Derived Debugging in Tambis using Structural Analysis 150

7.11 The classgene-part is unsatisfiable on two counts: its defined as an in-

tersection of an unsatisfiable class (dna-part) and an unsatisfiable class

expression (∃partof.gene), both highlighted using red tinted icons. . 151

7.12 Interactive Repair in Swoop: Generating a repair plan to remove all

unsatisfiable concepts in the University OWL Ontology 153

7.13 Analyzing Erroneous Axioms in a Single (Global) View 154

7.14 Displaying the Impact of Erroneous Axiom Removal 154

7.15 Results of the Debugging Usability Study 160

x

8.1 Finding minimal justification hard due to node merges 168

8.2 Axiom Pinpointing example where cause of unsatisfiability is hard to un-

derstand by looking at the asserted axioms 170

8.3 Open completion graph reflecting non-subsumption ofTexasWine byAmericanWine173

A.1 Natural Language: paraphrase describing the concept in the Wine OWL

Ontology. 180

A.2 The classKoala is unsatisfiable because (1)Koala is a subclass of∃isHardWorking.false

andMarsupials; (2) ∃isHardWorking.false is a subclass ofPerson; and (3)

Marsupials is a subclass of¬Person (disjoint). Note that the regions out-

lined in red are not automatically generated by the tool but are presented

here for clarity. 181

A.3 TheShow Referencesfeature (used along with the clash information and

the resource holder) is used to hint at the source of the highly non-local

problem for the unsatisfiable classOceanCrustLayer. 183

A.4 Using Annotea Client to Collaboratively Discuss and Debug Ontology . . 186

xi

Chapter 1

Introduction and Overview

1.1 Introduction

1.1.1 Semantic Web and OWL

The Semantic Web [12], [19] is an extension of the current World Wide Web in

which information is given precise meaning, making it easy to exchange, integrate and

process data in a systematic, machine-automated manner. Using standardized languages,

published as World Wide Web Consortium (W3C) recommendations, semantic web data

can explicitly describe the knowledge content underlying HTML pages, specify the im-

plicit information contained in media like images and videos, or be a publicly accessible

and usable representation of an otherwise inaccessible database.

The standardized languages which are the basis of the Semantic Web form a layered

stack, at the bottom of which lies the Resource Description Framework (RDF) [66]. RDF

is a simple assertional language that is designed to represent information in the form of

triples, i.e., statements of the form: subject, predicate, object. RDF predicates may be

thought of as attributes of resources and in this sense correspond to traditional attribute-

value pairs. RDF however, contains no mechanisms for describing these predicates, nor

does it support description of relationships between predicates and other resources. This

is provided by the RDF vocabulary description language, RDF Schema (RDFS [17]).

1

RDFS allows the specification of classes (generalized categories or unary relations) and

properties (predicates or binary relations), which can typically be arranged in a simple

taxonomy (hierarchy). In addition, it allows simple typing of properties by imposing

constraints on its domain and range.

The Web Ontology Language (OWL) [27], released as a W3C recommendation in

February 2004, is an expressive ontology language that is layered on top of RDF and

RDFS. OWL can be used to define classes and properties as in RDFS, but in addition, it

provides a rich set of constructs to create new class descriptions as logical combinations

(intersections, unions, or complements) of other classes; define value and cardinality re-

strictions on properties (e.g., a restriction on a class to have only one value for a particular

property) and so on.

OWL is unique in that it is the first ontology language whose design is based on the

Web architecture, i.e., it is open (non-proprietary); it uses Universal Resource Identifiers

(URIs) to unambiguously identify resources on the Web (similar to RDF and RDFS); it

supports the linking of terms across ontologies making it possible to cross-reference and

reuse information; and it has an XML syntax (RDF/XML) for easy data exchange.

One of the main benefits of OWL is the support for automated reasoning, and to this

effect, it has a formal semantics based onDescription Logics(DL). DLs are typically a

decidable subset of First Order Logic (FOL)1, being restricted to the 2-variable fragment

of FOL (L2) and including counting quantifiers (thereby corresponding to the logic C2),

and are formalisms tailored towards Knowledge Representation (KR) [3], i.e., they are

1There have been DLs considered which are not strict subsets of FOL. For example, DLs have been
enriched with the epistemic operator (K) in order to provide for nonmonotonic reasoning and procedural
rules that cannot be characterized in a standard first-order framework.

2

suitable for representing structured information about concepts, concept hierarchies and

relationships between concepts. The decidability of the logic ensures that sound and com-

plete DL reasoners can be built to check the consistency of an OWL ontology, i.e., verify

whether there are any logical contradictions in the ontology axioms. Furthermore, rea-

soners can be used to derive inferences from the asserted information, e.g., infer whether

a particular concept in an ontology is a subconcept of another (a.k.a.concept classifica-

tion), or whether a particular individual in an ontology belongs to a specific class (a.k.a.

realization). Popular existing DL reasoners in the OWL community include Pellet [97],

FaCT [50] and RACER [104].

In addition to reasoners, numerous OWL ontology browsers/editors such as Protege

[76], KAON [78] and Swoop [57] have been built to aid in the design and construction

of OWL ontology models. The latter - Swoop - has been developed as part of this disser-

tation. Most of these OWL tools have expanded their functionality beyond basic editing

to include features such as change management and query handling, and in a lot of cases

included a reasoner for consistency checking of the ontology. For example, Swoop has

integrated Pellet for reasoning and additionally provides the ability to automatically par-

tition, collaboratively annotate and version control OWL ontologies.

1.1.2 Motivation: Lack of OWL Debugging Support

While OWL tools have focused on various aspects of ontology engineering, the

support fordebuggingdefects in OWL ontologies has been fairly weak. Common de-

fects includeinconsistentontologies andunsatisfiableconcepts. An unsatisfiable concept

3

is one that cannot possibly have any instances, i.e., it represents the empty set (and is

equivalent to the bottom concept or in the OWL language,owl:Nothing). Both these

errors, inconsistent ontologies and unsatisfiable concepts, signify logical contradictions in

the ontology and can be detected automatically using a DL reasoner. However, reasoners

simply report the errors, without explainingwhythe error occurs orhowit can be resolved

correctly.

For example, consider the case of the Tambis OWL ontology, a biological science

ontology developed by the TAMBIS2 project. As shown in Figure 1.1, more than a third

of the classes in the ontology are unsatisfiable:

Figure 1.1: OWL version of the Tambis ontology as viewed in the Swoop editor and tested
using the Pellet Reasoner

Here, the tool has exposed the errors in the ontology, though understanding their

cause and arriving at a repair solution is left to the user. Also, the fact that there are so

2http://imgproj.cs.man.ac.uk/tambis/

4

many errors makes the debugging task seem all the more overwhelming.

When modelers encounter cases such as this, they are often at a loss at what to do.

This also has a negative general consequence which inhibits the adoption and effective use

of OWL – namely, ontology authors (especially newcomers to OWL) tend tounderspecify

their models to “avoid” errors. Typically, this is done by getting rid of negation in the

ontology since contradictions mainly arise due to it. For example, in the Tambis OWL

ontology, the unsatisfiable conceptsmetal andnon-metal are defined to be disjoint from

one another (using theowl : disjointWith construct), implying that an individual cannot

be a member of both concepts at the same time. In this case, there is an inherent negation

in the concept definitions, i.e.,metal is a subclass of the negation ofnon-metal. Here,

removing the disjointness between the two concepts eliminates numerous unsatisfiable

concept errors in the ontology, though this is probably undesired.

Thus, it is evident that OWL ontology tools have to go much further in organizing

and presenting the information supplied by the reasoner and existing in the ontology. For

example, tools used to debug unsatisfiable classes in ontologies could pinpoint the prob-

lematic axioms in the ontology responsible for the errors. By highlighting the minimal

set of axioms responsible for the error, the modeler is aware of a possible solution – edit

or remove any one of the possibly erroneous axioms.

Similarly, when there are a large number of unsatisfiable concepts in an ontology

(as is the case of the Tambis ontology seen earlier), tools can detect and highlight interde-

pendencies between unsatisfiable classes to help differentiate the root bugs from the less

critical ones, e.g., when a class is asserted to be a subclass of another unsatisfiable class,

automatically rendering it unsatisfiable, we need to focus on the latter concept which is

5

the actual source of the error.

Having found defects in the ontology, resolution can be non-trivial as well, requir-

ing an exploration of remedies with a cost/benefit analysis. For example, one cost metric

could be the impact on the ontology, in terms of the information lost, when a particular

axiom is removed from it as part of the repair solution. In this case, one would like to gen-

erate repair solutions that impact the ontology minimally. Also, the non-local effects of

axioms in an OWL ontology means modifications done to eliminate one inconsistency (by

editing certain axioms) can cause additional inconsistencies to appear somewhere else in

the ontology. Thus, particular care and effort must be taken to ensure that ontology repair

is carried out efficiently.

The goal of this dissertation is to develop a set of services for OWL (DL) that cater

towards debugging and repair, on the lines of the solutions mentioned above.

1.1.3 Defects in OWL

In this section, we briefly look at the various types of defects in OWL ontologies

and discuss factors that make them susceptible to errors.

Broadly speaking, defects in OWL fall into three main categories:

• Syntactic Defects: Syntactic issues loom large in OWL for a number of reasons

including the baroque exchange syntax, RDF/XML and the use of URIs (and their

abbreviations). Hence, any non well-formed XML ontology document is syntacti-

cally incorrect.

Additionally, the OWL language comes in three increasingly expressive sub-languages

6

or “species” - OWL-Lite, OWL-DL and OWL-Full, and detecting which species an

OWL document falls in is done strictly syntacticly, i.e., there are a number of re-

strictions imposed on the RDF graph form for it to count as an instance of a partic-

ular species. Thus, building an ontology that falls outside the desired species level

can be considered as a syntactic defect.

• Semantic (or Logical) Defects: Given a syntactically correct OWL ontology, se-

mantic defects are those which can be detected by an OWL reasoner. As noted

earlier, these include unsatisfiable classes and inconsistent ontologies. For exam-

ple, classA in an ontology is unsatisfiable if it is a subclass of both, classC and the

complement of classC (defined in OWL using theowl:complementOf opera-

tor), since it implies a direct contradiction. On the other hand, if an ontology asserts

that an unsatisfiable class contains an instance, the ontology itself is inconsistent.

• Style Defects: These are defects that are not necessarily invalid, syntactically or

semantically, yet are discrepancies in the ontology or unanticipated results of mod-

eling, which require the modelers’ attention before use in a specific domain or ap-

plication scenario. Examples includeunintendedinferences, andunusedclasses or

properties with no reference anywhere else in the ontology.

We now discuss factors specific to the nature and design rationale of OWL, which

makes it possible for errors to arise.

• Difficulty in understanding modeling: Note that OWL is based on an expressive DL

and thus one of the main causes for errors, especially semantic errors, is the diffi-

culty that comes from modeling accurately in an expressive and complex ontology

7

language. OWL users and developers are not likely to have a lot of experience

with description logic based KR, and without adequate tool support for training

and explanation, engineering ontologies can be a hard task for such users. As on-

tologies become larger and more complex, highly non-local interactions in the on-

tology (e.g., interaction between local class restrictions on properties and its global

domain/range restrictions) make modeling, and analyzing the effects of modeling

non-trivial even for domain experts.

• Interlinking of OWL Ontologies: The idea behind Web ontology development is dif-

ferent from traditional and more controlled ontology engineering approaches which

rely on high investment, relatively large, heavily engineered, mostly monolithic on-

tologies. For OWL ontologies, which are based on the Web architecture (charac-

terized as being open, distributed and scalable), the emphasis is more on utilizing

this freeformnature of the Web to develop and share (preferably smaller) ontology

models in a relatively ad hoc manner, allowing ontological data to be reused eas-

ily, either by linking models (using the numerous mapping properties available in

OWL) or merging them (using theowl:imports command).

However, when related domain ontologies created by separate parties are merged

usingowl:imports , the combination can result in modeling errors. This could

be due to ontology authors either having different views of the world, following

alternate design paradigms, or simply, using a conflicting choice of modeling con-

structs. An example is when the two upper-level ontologies, CYC and SUMO are

merged leading to a large number of unsatisfiable concepts due to disjointness state-

8

ments present in CYC [92].

• Migration to OWL: Since OWL is a relatively new standard, one can expect that

existing schema/ontologies in languages pre-dating OWL such as XML, DAML,

KIF etc. will be migrated to OWL, either manually or using automated translation

scripts. A faulty migration process can lead to an incorrect specification of concepts

or individuals in the resultant OWL version. For example, the OWL version of the

Tambis ontology seen earlier contains 144 unsatisfiable classes (out of 395) due to

an error in the transformation script used in the conversion process.

1.1.4 Debugging OWL Defects

Depending on the type of defect as seen in the previous section, there are different

ways to debug and resolve it. Syntactic defects are the easiest to fix, since most XML

parsers (e.g. Xerces3) or RDF validators4 directly pinpoint the line in the document (and

the specific characters in it) which make the document syntactically invalid. Thus, by

inspecting the exception log or trace, the ontology designer can easily fix such syntax

errors.

For detecting which species an OWL document falls in, there exists specialized

OWL Species Validationtools 5, which report the species level and the OWL language

constructs used in the document, or the RDF graph constraints violated that force it to be-

long to a particular species. An interesting facility is provided by the Pellet [97] reasoner,

which in addition to species validation, incorporates a number of heuristics to detect “DL-

3http://xerces.apache.org/xerces-j/
4RDF Validator: http://www.w3.org/RDF/Validator/
5OWL Validator: http://phoebus.cs.man.ac.uk:9999/OWL/Validator

9

izable” OWL-Full documents in order to repair them. The heuristics implemented in Pel-

let attempt to guess the correct type for an untyped resource, e.g., a resource used in the

predicate position is inferred to be a property. Using this feature, a user can automatically

add a set of triples to the document to bring it to the desired species level.

For style defects, effective debugging requires the expression of intent to the system

since defectiveness here is very dependent on the modeler’s intent. Thus,testingand test

cases form the right modality for dealing with some of these defects. There exist simple

lint-like debugging tools such as Chimaera [70], which are helpful for identifying some

style discrepancies in the KB (such as cycles in class definitions) but just as in the case of

syntactic defects, exposing the “bug” here is usually a direct pointer to the solution.

The hardest defects to debug and resolve correctly are semantic defects, just as

logical errors in programs are hard to understand and fix. The problem is compounded by

the fact that reasoners simply report them without providing any explanation. Thus, the

main focus of this dissertation is on debugging and resolving semantic defects in OWL

ontologies, and the goal is to formalize and build debugging services for them that are

useful and understandable to ontology modelers.

1.2 Contributions

In this thesis, I have developed a complete end-to-end framework for debugging

and repairing all types of semantic defects in OWL-DL ontologies. More specifically, I

have,

• Designed and evaluated a novel DL explanation service:Axiom Pinpointing

10

– Formalized the notion ofprecise justificationsfor arbitrary entailments in

OWL ontologies

– Devised a set of algorithms, both,glass-boxor reasoner dependent, andblack-

boxor reasoner independent, to find all the precise justifications (Axiom Pin-

pointing)

– Analyzed the computational complexity of Axiom Pinpointing algorithms

– Implemented the service in an OWL-DL reasoner (Pellet), performed a timing

evaluation of the service on a set of OWL Ontologies and demonstrated that

the service is practically feasible

– Provided a UI for the service in the context of an OWL Ontology Engineering

environment (Swoop) and performed a user-evaluation to test its effectiveness

• Designed and evaluated a novel DL debugging service:Root Error Pinpointing

– Formalized the notion ofroot andderivedunsatisfiable classes

– Devised a set of glass and black box algorithms to separate root/derived errors

– Analyzed the computational complexity of the algorithms and performed a

timing evaluation of the service on ontologies containing a large number of

unsatisfiable classes to demonstrate its significance

• Designed and evaluated a novel DL repair service:Ontology Repair

– Formalized the notion ofsemanticandsyntacticrelevance in the context of

axiom ranking

– Devised algorithms to compute axiom ranks and subsequently generate repair

11

solutions based on the ranks calculated. Modified the algorithm to incorporate

axiomrewritesin the final solution.

– Provided an interactive UI for the repair service and performed a user-evaluation

to test its effectiveness

1.2.1 Scope and Limitations

The scope of this thesis is the debugging and repair of semantic defects in OWL-

DL Ontologies. As noted earlier, semantic defects are mainly two types: unsatisfiable

classes and inconsistent ontologies, which result due to logical contradictions present in

the ontology.

Unsatisfiable roles, which are not as common as unsatisfiable classes, are easy to

detect as well using the techniques developed. This is because roles correspond to two-

place predicates in First Order Logic (FOL), while classes are one-place predicates. Thus,

given a roleR, the problem of checking the satisfiability ofR reduces to the problem of

checking the satisfiability of the class(≥ 1.R).

Also, while the techniques are applicable for OWL-DL which is the known de-

cidable sub-language of OWL, OWL-Full, which is the most expressive language of the

OWL family, is also decidable under contextual (orπ) semantics [73] with some addi-

tional constraints6. π semantics is essentially equivalent to the standard first-order se-

mantics, wherein the role of a symbol can be inferred from its position in a formula, so

the set of constant, function and predicate symbols need not be strictly disjoint. A DL

6Certain restrictions are required to yield a decidable logic, such as on simple roles in number restric-
tions [49]

12

reasoner can reason over certain OWL-Full ontologies successfully by enforcingπ se-

mantics. Thus, all the techniques described in this thesis for diagnosing and repairing

contradictions in an ontology are directly applicable in the OWL-Full case (given the

constraints) without any changes.

The techniques proposed in this thesis are of two types:glass-boxor reasoner de-

pendent, andblack-boxor reasoner independent. The black-box approach only relies on

the availability of a sound and complete reasoner for a DL, and is thus not restricted to

any particular logic. The glass-box algorithms are based on the expressive description

logic SHOIN (D), which is the basis of the language OWL-DL.

Note that the debugging of syntactic and style defects in OWL is beyond the scope

of the thesis. As mentioned earlier, there already exist tools providing support for such

defects, whose resolution is either straightforward or strongly depends on the modeler’s

intent.

1.3 Organization of Thesis

The thesis is organized as follows:

• In Chapter 2, we provide the formal background this work is grounded in. The

chapter discusses the the Web Ontology Language (OWL), the World Wide Web

Consortium (W3C) standard for creating ontologies on the Web; and briefly re-

views the field of Description Logics (DLs), with emphasis on the expressive logic

SHOIN (D) (which corresponds to the sub-language OWL-DL). Finally, it pro-

vides an overview of common reasoning services for description logics such as

13

consistency checking, classification etc., and describes tableau-based decision pro-

cedures used to implement these services.

• In Chapter 3, we review other related approaches in existing logic-based systems

such as logic programming systems, rule-based expert systems, deductive data-

bases, automated theorem provers and finally description logic-based knowledge

bases. We also look at two classical theories of diagnosis and revision, and de-

scribe the relation between these generic theories and the debugging/repair services

devised in this thesis.

• Chapters 4-6 constitute the main contribution of this thesis. In Chapter 4, we de-

scribe the Axiom Pinpointing Service that is used to find (precise) justifications for

arbitrary entailments in OWL-DL. Chapter 5 describes the Root Error Pinpointing

Service, which can be used to separate the root or critical errors in the KB from

the derived or dependent ones. Finally, Chapter 6 describes the Ontology Repair

Service which generates repair solutions based on various criteria for ranking erro-

neous axioms.

• Chapter 7 discusses implementation details of the debugging and repair services

formulated in Chapters 4-6, and presents results of performance and usability eval-

uations which demonstrate the practical significance of these services.

• Chapter 8 enumerates some of the open issues in our OWL debugging work and

outlines areas for future research. The latter includes some preliminary ideas to

deal with the problem of debugging non-subsumptions.

• Finally, the Appendix A discusses specific features in the OWL Ontology Editor,

14

Swoop [57], that are tailored towards the understanding and analysis of OWL on-

tologies.

15

Chapter 2

Foundations

2.1 Description Logics

Description Logics (DL) [4], [21] are a family of logic-based knowledge represen-

tation formalisms. They are typically used to represent terminological knowledge of an

application domain, where the data can be accessed and reasoned with in a principled

manner. DLs are usually a (decidable) subset of First Order Predicate Logic (FOL), and

thus have a well-defined, formal semantics.

The basic building blocks in DL are:

• atomic concepts: which correspond to 1-place (unary) predicates in FOL and de-

note a set or a class of objects, e.g.,Person(x), Male(x).

• atomic roles: which correspond to 2-place (binary) predicates in FOL and denote

relations between objects, e.g.,hasBrother(x, y).

• individuals: which correspond to constants in FOL, e.g.,Jack, John and denote

objects in the domain

A DL provides a set of operators, calledconstructors, which allow to form complex

concepts and roles from atomic ones. For example, by applying the concept conjunction

constructor (u) on the atomic conceptsPerson andMale, the set of all ‘Male People’

can be represented as follows:Person uMale.

16

The Boolean Concept Constructors are, apart from concept conjunction (u), con-

cept disjunction (t) and concept negation (¬). A Description Logic that provides, either

implicitly or explicitly, all the boolean operators is calledpropositionally closed. DLs

that are not propositionally closed are typically calledsub-boolean. In this work, only

propositionally closed DLs will be considered.

In addition to the booleans, DLs typically provide concept constructors that use

roles to form complex concepts. The basic constructors of this kind areexistential(∃)

and universal (∀) restrictions operators, which represent restricted (guarded) forms of

quantification. For example, we can describe a complex concept to denote fathers of only

male children:Father u ∀hasChild.Male; or mothers who have at least one female

child: Mother u ∃hasChild.Female.

Apart from concept and role constructors, which allow to define complex concepts

and roles, a DL also provides means for representing axioms (logical sentences) involving

concepts and roles. For example, we can specify a concept inclusion axiom of the form:

Father v Person, which states that a father is also a person.

Description Logic knowledge bases (KB) typically consist of:

• A TBox containing concept inclusion axioms of the formC1 v C2, where both

C1, C2 are concepts.

• A RBox containing role inclusion axioms of the formR1 v R2 with R1, R2 roles.

• An ABox containing axioms of the form C(a), called concept assertions and R(a,

b), called role assertions, where a, b are object names, R is a role and C a concept.

In its simplest form, a TBox consists of a restricted form of concept inclusion ax-

17

ioms called concept definitions: sentences of the formA v C or A ≡ C (whereA is

atomic), which describe necessary or necessary and sufficient conditions respectively for

objects to be members of A. Restricting a TBox to concept definitions, which are both

unique(each atomic concept appears only once on the left hand side of a concept inclu-

sion axiom) andacyclic (the right hand side of an axiom cannot refer, either directly or

indirectly, to the name on its left hand side) greatly simplifies reasoning [51].

However, TBox axioms can also be used to describe more complex sentences, i.e.,

general concept inclusionaxioms (GCIs). In a GCI of the formC1 v C2, the con-

ceptsC1, C2 are not restricted to be atomic. GCIs are typically used to represent gen-

eral constraints on the TBox, i.e. background knowledge. For example, the axiom:

Person u ∃hasChild.> v Father t Mother states that any person that has a child

is either a father or a mother. Here> is used to denote the ‘Top’ concept which represents

the universal set of all individuals in the domain (every concept in the KB is implicitly

contained in>).

Similar axioms can be used to represent assertions about roles in the RBox. For ex-

ample, the role inclusion axiom :hasSon v hasChild states that the relation represented

by hasSon is contained in the relation represented by the rolehasChild.

Finally, the ABox formalism provides means for instantiating concepts and roles.

A concept assertionC(a) states that the objecta belongs to the conceptC, e.g., the axiom

Father(Jack) states that Jack is a father; while a role assertionR(a, b) is used to state

that two objectsa, b are related by a roleR, e.g., the axiomhasBrother(Jack, John)

states that Jack and John are brothers.

The DL community has categorized various description logics by constructing mnemonic

18

names that encode the precise expressivity of the particular logic. For a list of mnemonics

with DL’s they characterize, see Table 2.1.

Mnemonic DL Expressivity
AL Attribute Logic [A, ¬A (atomic),C uD, ∃R.>, ∀R.C]
ALC Attribute Logic + Full Complement [allowingC tD and∃R.C]
R+ Transitive Roles
S ALCR+

H Role Hierarchy
I Inverse Roles
O Nominals (individuals used in class expressions)
N Unqualified Cardinality Restriction [≥ nR,≤ nR, = nR]
Q Qualified Cardinality Restriction [(≥ nR).C, (≤ nR).C, (= nR).C]
D Datatypes
F Functional Roles

Table 2.1: Mnemonics for DLs

The basic description logic that provides the boolean concept constructors plus the

existential and universal restriction constructors is calledALC. Many applications require

an expressive power beyondALC and thus several DL extensions have been defined on

top of it. For example,ALC allows GCIs in the TBox and concept and role assertions in

the ABox, however, it provides no role constructors and disallows role inclusion axioms,

hence forcing the RBox to be empty. The first obvious way for extendingALC is to

provide new concept and role constructors.

A prominent example of concept constructors that are available in all modern DL

systems are the so-called number restrictions [46] . In their most general form, number

restrictions are calledqualified number restrictions, which allow to build the complex

concepts≥ nR.C and≤ nR.C from a role R, a natural number n and a concept C.

Qualified number restrictions can be used to represent, for example, the women with less

than two daughters:Womanu ≤ 2hasChild.Woman.

19

Some DLs introduce a restricted form of number restrictions, calledunqualified

number restrictions that force the concept description C to be precisely the universal con-

cept>. Using unqualified number restrictions it is possible to describe, for example, the

persons who have more than 10 friends:Personu ≥ 10.hasFriend.

Finally, it is possible to restrict the expressivity of unqualified number restric-

tions by constraining the natural numbers that can be used in the constructor. In log-

ics providing functional number restrictions(denoted by the mnemonicF), the only

number restriction operators allowed are (≥ 2R) and (≤ 1R). For example, a per-

son with (strictly) more than one brother would be described by the following concept:

Personu ≥ 2hasBrother. The logic obtained fromALC by providing qualified num-

ber restrictions is calledALCQ. On the other hand, adding unqualified and functional

number restrictions toALC results in the logicsALCN andALCF respectively.

TheNominalconstructor [48], [89] transforms the object name o into the complex

concept o, which is interpreted as a singleton with o as its single element. Nominals can

be used to enumerate all the elements of a class: for example,

Continents ≡ {Africa,Antarctica, Asia, Australia, Europe, NorthAmerica, SouthAmerica}.

The logic obtained by extendingALC with nominals is calledALCO.

More expressive DLs can also be obtained by allowing new kinds of axioms in the

RBox. For example,transitivity allows role axioms to be interpreted as transitive binary

relations, e.g., if the rolelocatedIn is transitive and the assertionslocatedIn(CP,Maryland)

andlocatedIn(Maryland, USA) are contained in the ABox, then the assertionlocatedIn(CP,USA)

would be inferred from the knowledge base. The extension ofALC with transitive roles

is calledALCR+. This logic is also abbreviated asS because of the correspondence

20

betweenALCR+ and the multimodal logicS4.

Another useful role axiom isinversion, which allows the use of relations in ‘both

directions’. For example, if the relationshasChild and isChildOf are defined as in-

verses of each other, then given the assertionhasChild(Jack, Mary) in the ABox, one

can inferisChildOf(Mary, Jack).

Finally, several extensions of DLs [65], [64] have been investigated for describing

concepts in terms ofdatatypes, such as numbers or strings, which is crucial for many

applications. The main approach has been to provide DLs with an interface to ‘concrete’

domains , which consist of a set (such as the natural numbers or strings), together with a

set of built-in predicates, which are associated with a fixed extension on that set, such as

≥ +, ∗ for the natural numbers. The interface between the DL and the concrete domain is

achieved by defining a new kind of roles, called concrete roles, which relate objects from

the ‘DL-side” with data values from the concrete domain; and enriching the DL with

a new concept constructor associated to those concrete roles. Using these constructors,

it is possible, for example, to describe a set of all people whose weight is less than 50

kg: ∃weight. ≤20. The mnemonicD is used to represent DLs that have been extended

with datatype support. Note that the Web Ontology Language OWL-DL, which we shall

see later, is a syntactic variant of the description logicSHOIN (D) and thus is a very

expressive language.

2.1.1 Syntax and Semantics ofSHOIQ(D)

In this section, we describe the syntax and semantics of the logicSHOIQ(D).

21

We start with the definition of roles.

Definition 1 (SHOIQ(D)-roles)

Let VR, V c
R be the disjoint sets of abstract and concrete atomic roles respectively.

The set ofSHOIQ(D) abstract roles is the setVR ∪ {R−|R ∈ VR}. The set of concrete

roles is justV c
R. A role inclusion axiom is an expression of the formR1 v R2, where

R1, R2 are abstract roles or an expression of the formu1 v u2, whereu1, u2 are concrete

roles. A transitivity axiom is an expression of the formTrans(R), whereR ∈ VR. An

RBox is a finite set of role inclusion axioms and transitivity axioms.

Notation Remarks: In order to avoid considering roles of the formR−−, we

define the functionInv(R) that returns the inverse of an abstract role R. Let R be a

RBox; we introduce the symbolv∗R to denote the reflexive-transitive closure ofv on R

∪{Inv(R1) v Inv(R2)|R1 v R2 ∈ R}. We useR1 ≡R R2 as an abbreviation for

R1 v∗R R2 andR2 v∗R R1. Note that inverses cannot be defined on concrete roles.

We define the functionTr(S, R) that returnstrue if S is a transitive abstract role

(atomic or not). Formally,Tr(S, R) = true if, for some P withP ≡R S, Trans(P) ∈ R

or Trans(Inv(P)) ∈ R. The function returnsfalse otherwise. Note the difference be-

tween the function Tr(S,R), which maps roles to boolean values, and the axiom Trans(R),

which states that the atomic role R is transitive. A concrete role, on the other hand, cannot

be made transitive.

An abstract role R issimplew.r.t. the RBox R ifTr(S, R) = false for all S v∗R R.

Definition 2 (SHOIQ(D)-concepts and knowledge bases)

22

Let VC andVI be sets of atomic concepts and object names respectively, and letR

be an RBox. The set ofSHOIQ(D)-concepts is the smallest set such that:

• Every atomic conceptA ∈ VC is a concept.

• If C, D are concepts andR is a role, then (C uD) (Intersection), (C tD) (Union),

(¬C) (Negation), (∀R.C) (Universal Restriction) and (∃R.C) (Existential Restric-

tion) are also concepts.

• If n is a natural number andS is a simple role, then (≥ nS.C) (at-most Number

Restriction) and (≤ nS.C) (at-least Number Restriction) are also concepts.

• If Φ is a datatype andu a concrete role, then (∃u.Φ), (∀u.Φ) are also concepts.

• If a ∈ VI , the nominal{a} is a concept.

For C,D concepts, a concept inclusion axiom is an expression of the formC v D.

A TBox T is a finite set of concept inclusion axioms. The use of nominals allows the

encoding of ABox assertions as TBox axioms. Hence, aSHOIQ knowledge base, K,

simply consists of a TBox and an RBox, i.e.,K = (T ,R).

Definition 3 (SHOIQ(D) interpretations)

An interpretation I is a pair I = (W, .I), where W is a non-empty set, called the

domain of the interpretation, which is disjoint from the concrete domainWD, and .I is

the interpretation function. The interpretation function maps:

• Each atomic conceptA to a subsetAI of W

• Each abstract atomic roleR to a subsetRI of W ×W

• Each concrete atomic roleu to a subsetuI of W ×WD

23

• Each object namea to an elementaI of W

The interpretation can be extended toSHOIQ(D)-abstract roles as follows. Let

R be an abstract atomic role, then:

(Inv(R))I = (a, b) ∈ W ×W |(b, a) ∈ RI

The interpretation function is extended to concept descriptions as follows:

• (C uD)I = CI ∩DI

• (C tD)I = CI ∪DI

• (¬C)I = W − CI

• (∃R.C)I = {a ∈ W |∃b ∈ W with (a, b) ∈ RI andb ∈ CI}

• (∀R.C)I = {a ∈ W |∀b ∈ W if (a, b) ∈ RI , thenb ∈ CI}

• (≥ nR.C)I = {a ∈ W such that||{b|(a, b) ∈ RI andb ∈ CI}|| ≥ n}

• (≤ nR.C)I = {a ∈ W such that||{b|(a, b) ∈ RI andb ∈ CI}|| ≤ n}

• {a}I = {aI}

• (∃u.φ)I = {a ∈ W |∃φ ∈ WD with (a, φ) ∈ uI andφ ∈ ΦD}

• (∀u.φ)I = {a ∈ W |∀φ ∈ WD if (a, φ) ∈ uI thenφ ∈ ΦD}

• (≥ nu.φ)I = {a ∈ W such that||{φ|(a, φ) ∈ uI andφ ∈ ΦD}|| ≥ n}

• (≤ nu.φ)I = {a ∈ W such that||{φ|(a, φ) ∈ uI andφ ∈ ΦD}|| ≤ n}

The interpretation function is applied to the axioms in aSHOIQ(D) KB according

to the following definition:

24

Definition 4 (Semantics ofSHOIQ(D) Knowledge Bases)

TheSHOIQ(D) interpretation I satisfies the role inclusion axiomR1 v R2 if

(R1)
I ⊆ (R2)

I and it satisfies the inclusion axiomu1 v u2 if uI
1 ⊆ uI

2. The interpretation

satisfies a transitivity axiom Trans(R) if the following condition holds:

∀a, b, c ∈ W , if (a, b) ∈ RI and(b, c) ∈ RI , then(a, c) ∈ RI

The interpretation is a model of the RBox R, denoted byI |= R, if it satisfies all its

axioms.

An interpretation I satisfies a concept inclusion axiomC v D if CI ⊆ DI . The

interpretation is a model of the TBox T, denoted byI |= T , iff it satisfies every concept

inclusion axiom inT . Finally, the interpretation is a model of the knowledge baseK=

(T ,R), denoted byI |= K, iff I is a model of both the TBox T and the RBox R.

Thus aninconsistent KB K= (T , R) is one for whichthere exists no possible

model, i.e., there is no interpretationI that satisfies the semantics of all the axioms in

T andR. Inconsistent KBs are one of the key semantic (logical) defects considered in the

thesis (the other being unsatisfiable concepts as we shall see below).

Typical inferences inSHOIQ(D) are concept subsumption and satisfiability w.r.t.

a knowledge base:

Definition 5 (Inferences)

Let C,D be concepts, a, b object names andK a knowledge base. We say that C

is satisfiablerelative toKiff there is a modelIof K, such thatCI 6= ∅. We say that C

25

subsumesD relative toKiff, for every model I ofK, CI ⊆ DI .

Thus, anunsatisfiableconcept is one for which there exists no model, i.e., its in-

terpretation is the empty set in every model of the KB. Obviously, if the KB itself is

inconsistent then all the atomic concepts in it are unsatisfiable.

2.2 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [27], is an integral component of the Semantic

Web, as it can be used to write ontologies or formal vocabularies which form the basis for

semantic web data markup and exchange.

OWL is a fairly recent language, released as a W3C (World Wide Consortium)

recommendation in February 2004. As part of the Semantic Web stack of languages,

OWL is layered on top of RDF (basic assertional language) and RDFS (schema language

extension for RDF) which themselves are layered over XML [16]. From its relationship

with RDF comes the official OWL exchange syntax, namely RDF/XML [10]. In fact,

OWL shares many features in common with RDF such as the use of Universal Resource

Identifiers (URI) to unambiguously refer to web resources (as we shall see later).

From a modeling and semantic point of view, OWL shares a strong correspondence

with Description Logics borrowing many logical constructs as shown in Table 2.2. The ta-

ble lists the language constructs of OWL with the corresponding DL representation. Note

that in OWL terms,owl:class, owl:ObjectProperty, owl:DatatypeProperty,

owl:Individual andowl:Datatype correspond to concept, role, concrete role,

object and concrete domain respectively in DLs.

26

OWL Construct DL representation Example
owl:equivalentTo (C,D) C ≡ D (C v D andD v C) Person ≡ Human
rdfs:subClassOf (C,D) C v D Parent v Person

owl:complementOf (C,D) C ≡ ¬D (negation) Male ≡ ¬Female
owl:disjointWith (C,D) C v ¬D Father v ¬Mother

owl:intersectionOf (C,D) C uD (conjunction) Parent uMale
owl:unionOf (C,D) C tD (disjunction) Father tMother
owl:oneOf (I1, I2) {I1} t {I2} {Jack} t {Jill}

owl:someValuesFrom (P,C) ∃P.C (existential) ∃hasChild.Daughter
owl:allValuesFrom (P,C) ∀P.C (universal) ∀hasChild.Son

owl:hasValue (P,I1) ∃P.{I1} ∃hasChild.{Jill}
owl:cardinality (P,n) = n.P = 2.hasParent

owl:minCardinality (P,n) ≥ n.P ≥ 1.hasDaughter
owl:maxCardinality (P,n) ≤ n.P ≤ 2.hasChildren

Table 2.2: Correspondence between OWL and DL (Note:C, D refer to OWL Classes;P
refers to an OWL Property;I1, I2 refer to OWL Individuals; andn refers to a non-negative
integer.)

OWL comes in three increasingly expressivesub-languagesor “species”, OWL-

Lite, OWL-DL and OWL-Full.

• OWL-Lite : The motivation for OWL Lite is to support users primarily needing

a classification hierarchy and simple constraints. These expressivity limitations

ensure that it provides a minimal useful subset of language features, which are

relatively straightforward for tool developers to support.

Interestingly, OWL-Lite corresponds to an expressive description logicSHIF(D).

This is because while many of the constructs that are allowed inSHIF(D) (for

example, concept disjunction) are explicitly disallowed in the syntax of OWL-Lite,

they can be ‘recovered’ by encoding them using General Concept Inclusion Axioms

(GCIs).

• OWL-DL : OWL-DL supports those users who want the maximum expressiveness

27

of the language without losing decidability. It includes all the OWL language con-

structs, but they can be used only under certain restrictions such as strict type sep-

aration (a class cannot be treated as an individual or a property, for example) and

the inability to use transitive roles on number restrictions. OWL-DL corresponds

to the description logicSHION (D). Hence, the debugging and repair techniques

devised in this thesis have focused on this particular logic.

• OWL-Full : OWL-Full has the same vocabulary as OWL DL but it allows the free,

unrestricted use of RDF constructs (e.g., classes can be instances). OWL-Full is

thus a same syntax, extended semantics extension of RDF and is undecidable. Re-

cently, however, [73] showed that under certain conditions (assuming contextual

semantics), OWL-Full can be made decidable.

Finally, we discuss other key features of OWL that are important for its proper

understanding and use.

• OWL provides a special construct,owl:imports , which allows one to bring in

information from an external ontology. However, the only way that the construct

works is by bringing into the original ontologyall the axioms of the imported one.

Therefore, the only difference between copying and pasting the imported ontology

into the importing one and using anowl:imports statement is the fact that with

imports both ontologies stay in different files. As of now, there is no mechanism in

OWL for partial imports and this remains an interesting research problem.

• As noted earlier, OWL entities, ontologies and even the primitives of the language,

are denoted using a URI. Interestingly, the meaning of the URI is relative to a

28

particular RDF document [44]. In other words, the meaning of the same URI in

other documents is not considered at all unless the document is imported. This is

an important issue that OWL ontology modelers and users need to be aware of. For

example, if we were building an OWL ontology dealing with the medical domain

and wanted to reuse the conceptCancer defined in the OWL version of the National

Cancer Institute (NCI) Thesaurus, we cannot simply refer to theCancer URI in the

NCI ontology to capture the concept meaning, instead, we need to import the entire

NCI thesaurus into our ontology.

• OWL does not make the Unique Name Assumption (UNA). Given two object

names a, b, it is generally assumed that they denote different things under DL se-

mantics, i.e.,aI 6= bI for every interpretationI. In OWL, however, different names

could refer to the same object, which can lead to some non-intuitive inferences, e.g,

suppose an OWL ontology contains the assertionshasFather(Mary, Jack) and

hasFather(Mary, John), wherehasFather is a functional role, the resultant on-

tology is not inconsistent, but instead entails thatJohn and Jack are the same

object. To deal with the lack of UNA, OWL incorporates two additional primitives

owl:sameAs andowl:differentFrom which respectively state that two ob-

jects are the same or distinct. The implementation of the UNA in DL reasoners is

however quite straightforward.

• Since OWL semantics is based on DLs (which are usually subsets of FOL), OWL

makes the open world assumption (OWA). Under OWA, any information not spec-

ified in the OWL KB is assumedunknown(as opposed tofalseunder the closed

29

world assumption). While this allows for partial or incomplete information to be

represented, it can also lead to a source of confusion, especially for users familiar

with closed world reasoning (e.g., users working with databases, logic program-

ming, constraint languages in frame systems etc.). Consider the following example

(taken from [87]): the classMargheritaP izza v Pizzau∃hasTopping.Tomatou

∃hasTopping.Mozzarella is not classified as aV egP izza even though both its

specified toppings are vegetables. This is because, under OWA, we need to explic-

itly specify that theMargheritaP izza has those two toppingsonly and nothing

elsefor it to be classified correctly.

From a debugging standpoint, understanding the above features is key for ontology

authors as they represent crucial factors responsible for causing inconsistency errors and

unintended inferences in the ontology [87].

2.3 Reasoning Services for OWL

Reasoning services for OWL are typically the same as that for DLs, and include:

• Consistency Checking: Check whether an OWL ontologyO is logically consistent

• Class Subsumption: Given a pair of classesC, D in the ontologyO, check whether

O |= C v D. Also related is the notion ofclass satisfiability: C v ⊥; andclass

equivalence: C ≡ D, which impliesC v D andD v C

• Instantiation : Given an individuala and a classC in the ontologyO, check

whethera is an instance ofC, i.e.,O |= C(a). Also related is the notion ofre-

trieval , i.e., obtain all individuals of classC

30

In propositionally closed DLs, subsumption can be reduced to satisfiability, since C

subsumes D relative toO iff the conceptC u ¬D is unsatisfiable relative toO.

Similarly, the instance problem can be reduced to the consistency problem: the

objecta is an instance ofC relative toO iff the ontologyO′ obtained fromO by adding

to it the class assertion¬C(a) is inconsistent.

Finally, the concept satisfiability problem can be reduced to the ontology consis-

tency problem: the concept C is consistent relative to the ontologyO iff the knowledge

baseO′ obtained fromO by adding the concept assertion C(a) (witha a new object name)

is consistent.

To solve this key consistency checking problem for OWL-DL ontologies (i.e.,SHOIN (D)

knowledge bases), there exist sound and complete decision procedures based on tableaux

calculus [5].

2.4 Tableaux Algorithms

In this section, we briefly discuss the tableau algorithm for the DLSHOIN .For a

detailed description of the algorithm, we refer the reader to [52].

As noted earlier, the presence of nominals inSHOIN allows us to exclude the

ABox from consideration, i.e., the KBKconsists of a general TBoxT and a Role Hier-

archyR. Additionally, the presence of transitive roles and role hierarchies in the logic

allows reasoning with respect to generalT andR to be reduced to reasoning w.r.t.R

alone. This is because the entire TBox can beinternalized[49] into a single concept de-

scription. Thus, the tableau decision procedure checks the consistency of an internalized

31

conceptD w.r.tR.

DL tableau-based algorithms decide the consistency ofD w.r.tR by trying to con-

struct (an abstraction of) a model for it, called acompletion graph. Each nodex in

the graph represents an individual, labeled with the set of conceptsL(x) it has to sat-

isfy, i.e, if C ∈ L(x), x ∈ CI . Each edge(x, y) in the graph is labeled with a set

of role names, and represents a pair occurring in the interpretation of the role, i.e., if

L(x, y) = R, (x, y) ∈ RI .

The completion graph for aSHOIN KB is initialized as aforestof root nodes,

each representing a nominal (individual) asserted in the ontology. Then, a series ofex-

pansion rulesare applied in succession to build the graph, each adding new nodes or edges

(and/or labels resp.), in keeping with the semantics of the concept and role descriptions.

For example, if a conceptC u D is present in the label of a nodex, then the individual

thatx represents must be an instance of bothC andD and thusC, D are separately added

to L(x) as well (this is handled by theu-rule). Similarly, if the concept∃R.E is present

in the label of a nodey, then there must exist at least one R-edge from the individual rep-

resented byy to another (arbitrary) individual of typeE, and thus if no such edge already

exists, an edge is created from nodey to a new nodez and the conceptE is added to label

of z (this is handled by the∃-rule).

Note that the expansion rules arenon-deterministic. For example, if the disjunction

C tD is present in the label of a node, the algorithm chooses eitherC or D to be added

to the node label before proceeding. To account for this non-determinism, we consider

a tree of completion graphs∆ instead of a single graph, i.e., the application of a non-

deterministic rule results in the creation of a new completion graph, added to∆, for each

32

possible non-deterministic choice (for this purpose, we also maintain a setΣ of edges to

be added at the next level of the tree).

The expansion rules for theSHOIQ consistency checking algorithm are shown in

Table 2.31. A summary of the terminology used in the rules is as follows:

• If (x, y) is an edge in the completion graph, theny is called asuccessorof x andx

is called apredecessorof y. Ancestoris the transitive closure of predecessor, and

descendantis the transitive closure of successor. A nodey is called anR-successor

of a nodex if, for someR′ with R′ v∗R R, R ∈ L(x, y). A nodey is called a

neighbor (R-neighbor) of a nodex if y is a successor (R-successor) ofx or if x is a

successor (Inv(R)-successor) ofy.

For a role S and a nodex in G, we define the set of x’sS-neighborswith C in

their label,SG(x, C), as follows: SG(x, C) := {y| y is an S-neighbor ofx and

C ∈ L(y)}.

• A nodex is anominalnode ifL(x) contains a nominal. A node that is not a nominal

node is ablockablenode. An R-neighbory of a nodex is safeif (i) x is blockable

or if (ii) x is a nominal node andy is not blocked.

• In order to ensure termination when dealing with infinite models, the algorithm uses

a special condition known asblocking. A nodex is label blocked if it has ancestors

x0, y andy0 such that

1. x is a successor ofx0 andy is a successor ofy0,

2. y, x and all nodes on the path fromy to x are blockable,

1Note: In Table 2.3,Add(C, x) is an abbreviation forL(x) ← L(x) ∪ {C}, Add(S, 〈x, y〉) is an abbre-
viation forL(x, y)← L(x, y) ∪ {S}

33

3. L(x) = L(y) andL(x0) = L(y0), and

4. L(x′, x) = L(y′, y).

In this case, we say thaty blocksx. A node is blocked if either it is label blocked

or it is blockable and its predecessor is blocked; if the predecessor of a safe nodex

is blocked, then we say thatx is indirectly blocked.

• In some rules, e.g.,≤-rule, wemergeone nodey into another nodex. This involves

addingL(y) toL(x), ‘moving’ all the edges leading toy so that they lead tox and

‘moving’ all the edges leading fromy to nominal nodes so that they lead fromx

to the same nominal nodes; we then remove orpruney (and blockable sub-trees

belowy) from the completion graph. Details of the Merge and Prune operations are

in [52].

A completion graph in∆ is said to contain a clash if:

• both the conceptsC, ¬C are present in the label of the same node

• A node that contains the concept≤ nS (whereS is a role) has more thann distinct

S-neighbors

• A nominal nodeo which can only represent one distinct individual in a model is

said to belong to two distinct nodes in the graph, i.e.,o ∈ L(x)uL(y) wherex 6= y

Each time a clash is detected, the algorithm jumps to the next graph in∆ at the

same level. Once all the leaf graphs in∆ have been explored (i.e., all non-deterministic

choices have been considered) and/or no more expansion rules can be applied, the algo-

rithm terminates.

34

u-rule: if (C1 u C2) ∈ L(x), x not indirectly blocked, and{C1, C2} 6⊆ L(x),
Add({C1,C2}, x)).

t-rule: if (C1 t C2) ∈ L(x), x not ind. blocked, and{C1, C2} ∩L(x) = ∅,
Generate graphsGi := G for eachi ∈ {1, 2}
∆ := ∆ ∪ {G1,G2}; Σ := Σ ∪ {G ≺ G1,G ≺ G2}
Add(Ci, x) in Gi for eachi ∈ {1, 2}

∃-rule: if ∃S.C ∈ L(x), x not blocked, and no S-neighbory with C ∈ L(y)
Createy, Add(S, 〈x, y〉), Add(C, y)

∀-rule: if ∀S.C ∈ L(x), x not ind. blocked,y S-neighbor ofx andC /∈ L(y):
Add(C, y)

∀+-rule: if ∀S.C ∈ L(x), x not ind. blocked,y R-neighbor ofx with Trans(R) andR v S:
if ∀S.C /∈ L(y), Add(∀S.C, y)

≥-rule: if (≥ nS) ∈ L(x), x not blocked: and no safe S-neighborsy1, .., yn of x with yi 6= yj

Createy1, .., yn; Add(S, 〈x, yi〉); 6=(yi, yj)

≤-rule: if (≤ nS) ∈ L(x), x not ind. blocked,y1, .., ym S-neighbors of x,m > n:
For each possible pairyi, yj , 1 ≤ i, j ≤ m; i 6= j:

Generate a graphG′; ∆ := ∆ ∪ {G′}; Σ := Σ ∪ {G ≺ G′}
if yj a nominal node,Merge(yi, yj) in G′,
else ifyi a nominal node or ancestor ofyj , Merge(yj, yi),
elseMerge(yi, yj) in G′

if yi is merged intoyj , for each conceptCi in L(yi),

O-rule: if , {o} ∈ L(x) ∩ L(y) and notx ˙6=y, then Merge(x, y).

NN -rule: if (≤ nS) ∈ L(x), x nominal node,y blockable S-predecessor ofx and there is nom
s.t.1 ≤ m ≤ n, (≤ mS) ∈ L(x) and there existm nominal S-neighborsz1, ...zm of x
s.t. zi 6= zj , 1 ≤ i ≤ j ≤ m, then
Generate newGm for eachm, 1 ≤ m ≤ n, add∆ := ∆ ∪ {Gm}; Σ := Σ ∪ {G ≺ Gm}
and do the following in eachGm:

Add(≤ mS, x)
createy1, ...ym; Add yi 6= yj for 1 ≤ i ≤ j ≤ m.
Add(S, 〈x, yi〉); Add({oi}, yi):

Table 2.3: Tableau Expansion Rules forSHOIQ

35

If all the leaf completion graphs in∆ contain a clash or a contradiction, the al-

gorithm returnsinconsistentas no model can be found. Otherwise, any one clash-free

completion graph generated by the algorithm represents one possible model for the con-

cept and thus the algorithm returnsconsistent.

2.4.1 Optimizations

Non-deterministic tableau algorithms for expressive DLs are intractable (e.g., the

worst case complexity of theSHOIQ algorithm is 2NExpTime [103]). As a conse-

quence, there exists a significant gap between the design of a decision procedure and the

achievement of a practical implementation. Naive implementations are doomed to fail-

ure. In order to achieve acceptable performance, modern DL reasoners, such as RACER

[104], FaCT++ [50] and Pellet [97], implement a suite of optimization techniques [51],

[40], [39], [96]. These optimizations lead to a significant improvement in the empirical

performance of the reasoner and have proved effective in wide variety of realistic appli-

cations.

We briefly summarize some of the key optimizations for DL tableau algorithms:

• Pre-processing Optimizations:

– NormalizationandSimplification: Normalization is the syntactic transforma-

tion of a concept expression into a normal form. For example, in the negation

normal form (NNF), a negation appears only before an atomic concept. Any

concept can be converted to an equivalent one in NNF by pushing negations

inwards using a combination of DeMorgan’s Laws. Normalization helps dis-

36

cover contradictions easily, by syntactically comparing expressions in their

normal form, e.g.,C u ¬(C tD)→ (C u ¬C) u ¬D.

Sometimes, normalization can also include a range of simplifications so that

obvious contradictions and tautologies are detected; for example,(C u ⊥)

could be simplified to⊥.

– Absorption: Absorption is the process of eliminating certain kinds of General

Concept Inclusion axioms (GCI’s) by embedding them in primitive concept

definitions. The basic idea is to manipulate the GCI so that it has the form

of a primitive definitionA v D0, whereA is an atomic concept name. This

axiom can then be merged into an existing primitive definitionA v C0 to give

A v C0 uD0 which then replaces the GCI in the KB.

The significance of absorption is the following: From a reasoning standpoint,

the primitive definition axiomC v D can be used as amacroto expand the

label of a node which containsC – by directly addingD, while the same

does not hold for General Concept Inclusion Axioms (GCIs). Instead, a GCI

needs to be converted to the disjunctionD t ¬C that must be added toevery

node label in the completion graph, which leads to a non-deterministic search,

and is thus very expensive. Hence, the use of absorption can greatly reduce

reasoning times for KBs containing numerous (absorbable) GCIs (e.g. the

Galen medical ontology2).

• Optimizations during Tableau Expansion:

2http://www.cs.man.ac.uk/h̃orrocks/OWL/Ontologies/galen.owl

37

– Lazy Unfolding: Given an unfoldable KBT (consisting of unique, acyclic

concept definitions), and a conceptC whose satisfiability is to be tested with

respect toT , it is possible to eliminate from C all concept names occurring in

T using a recursive substitution procedure calledunfolding. The satisfiability

of the resulting concept is independent of the axioms inT and can therefore

be tested using a decision procedure that is only capable of determining the

satisfiability of a single concept.

An optimization usually enforced in reasoners islazy unfolding, i.e., unfolding

on the fly, using pointers to refer to complex concepts, and detecting clashes

between lexically equivalent concepts as early as possible, e.g., detecting a

clash between the complex concepts(C uD) and¬(C uD) before unfolding

them.

– Dependency Directed Backjumping: Dependency directed backjumping is an

optimization technique that adds an extra label to the type and property as-

sertions so that the branch numbers that caused the tableau algorithm to add

those assertions are tracked. Obviously, assertions that exist in the original

ontology and the assertions that were added as a result of only deterministic

rule applications will not depend on any branch. This means these assertions

are direct consequence of the axioms in the ontology and affect every inter-

pretation. If a clash found during tableau expansion does not depend on any

non-deterministic branch, the reasoner will stop applying the rule as it is ob-

vious that there is no way to fix the problem by trying different branches.

38

Chapter 3

Related Work

Diagnosis has been widely regarded as an integral component of (deductive) rea-

soning systems for many years. Logic programming systems, rule-based expert systems,

deductive databases and automated theorem provers (ATP) have all incorporated debug-

ging and explanation facilities of some sort.

In this chapter, we review other related approaches. In particular, in section 3.1, we

discuss the various types of debugging support found in existing logic-based systems; and

in section 3.2, we look at two classical theories of diagnosis and revision, and describe

the relation between these generic theories and the debugging/repair services devised in

this thesis.

3.1 Diagnosis in Reasoning Systems

We first discuss debugging support found in non-Description Logic (DL) based

deduction systems, and compare and contrast it to the DL case. We then enumerate recent

trends for explanation and debugging in DL systems.

3.1.1 Debugging of Logic Programs

Logic Programming (LP) is a well-known programming paradigm based on a sub-

set of First Order Logic–named Horn Clause Logic. LP has been extended with ex-

39

plicit negation (extended logic programming XLP [83]) and defaults giving rise to non-

monotonic reasoning. These programming languages have both, a proof-theoretic and a

model-theoretic semantics, with resolution-based algorithms for reasoning. Hence, the

debugging of LP and XLP programs is a related field we need to explore.

We discuss two different debugging paradigms for LPs,operationalanddeclarative

debugging.

The naive approach to interactive debugging (a.k.a.operationaldebugging) in-

volves instrumenting the program and exploring its execution trace [20], i.e., the user in-

serts appropriate break points in the program (e.g., between the expand and branch steps

of the algorithm, or after each step of the inference function) and is given control of how

many and what type of steps can be taken (e.g.,trace andspy commands in Prolog

work in this manner). Commands to these systems are typically broken into two cate-

gories,controlcommands that allow the computation to continue until a specified point is

reached or condition occurred, anddisplaycommands that allow the user to query the sta-

tus of atoms and rules within the current context. Numerous debugging systems work on

this methodology. However, debugging of this kind can be painstakingly difficult placing

a huge cognitive load on the user.

The analog from a DL debugging point of view is interesting to consider. Explain-

ing the trace of the tableau reasoner amounts to iterating through the expansion process of

generating the completion graph, and displaying the sequence of expansion rules that are

fired. However, there are several complications that need to be dealt with here. Firstly,

the reasoner heavily modifies the original axioms of the KB internally (using techniques

such as normalization, absorption etc.) and the labels of the nodes and edges in the graph

40

barely resemble the original terms. Though it is possible to extend the algorithm to keep

track of the axioms in the KB responsible for various tableau events (as done in Chapter

4), it places an additional burden on the user to correlate between the internal terms and

the asserted axioms. Secondly, the application of expansion rules modify the graph in

a variety of different ways, e.g., some rules cause a node merge, whereas others intro-

duce successors to anonymous nodes, and explaining such graph changes to the user can

be difficult, possibly requiring a flexible and scalable visual interface. Thirdly, even for

simple inferences, the number of steps in the reasoning process can be very large due to

many trivial steps, and thus isolating and identifyingcritical steps is important (besides

allowing the user to systematically skip steps). For example, the point where a non-

deterministic choice is introduced in the algorithm, or where the algorithm backtracks to

a previous choice point can be considered as key steps, besides the obvious critical step

when a contradiction is detected. Fourthly, it is not easy to retrace steps without caching a

large amount of data. Also, memory management is an important issue in general, given

that the size of the completion graph can blow up for complex inferences in large KBs.

Besides the above factors, it is assumed that the user is aware of the basics of tableau-

based reasoning. For all these reasons, to our knowledge, no effort has been made yet to

visualize the trace of the tableau reasoner in a meaningful and effective manner.

On the other hand,algorithmicor declarativedebugging introduced by Shapiro [94]

introduces a theoretical framework for debugging. The process briefly works as follows:

the debugging system builds an abstract model representing the execution trace of the

program and elicits feedback from anoracle (could be the user) to navigate the model

in a top-down manner till the faulty or erroneous component is reached. The declarative

41

notion comes from the fact that the semantics of the program are encoded in the oracle,

which needs to be able to differentiate between expected and unexpected behavior. The

underlying principle is that a correct and complete oracle will always find the error using

this algorithmic debugging procedure. The technique has been extended over the years.

For example, while the oracle in [94] could only give yes/no answers, later work [31]

allowed the oracle to provide assertions about the intended program behavior. Also, more

recently, techniques have been developed to improve the quality of the queries posed to

the oracle/user in debugging programs withAnswer Setsemantics [15] (also known as

query-baseddebugging).

We now discuss the possibility of building an analogous system to deal with expres-

sive DLs. The basic procedure would be to have the user start with the root inconsistency

condition and investigate its dependencies in a top-down manner until the source of the

problem is reached. Taking a simple example, if the contradiction or clash in the tableau

reasoner was because a conceptC and its negation were present in the label of some node

x, we would start by displaying this root clash information to the user in a sensible manner

(as done in Chapter 7). Suppose the user felt that¬C was mistakenly present, i.e., the in-

dividual represented by the nodex should not have been of type¬C, the next step would

be to display to the user, the conditions that caused¬C to occur inL(x). The process

would recursively continue until the user discovered a faulty premise (axiom). The main

challenge in this case lies in hiding the underlying details of the tableau reasoner and pre-

senting the conditions and its premises in a useful manner, while dealing with the fact that

a large number of inference steps may be present. In addition, there could be numerous

clashes in the completion graph generated by the reasoner and we need to focus on only

42

those clashes responsible for the inconsistency.

Finally, we also discuss a technique to diagnose and remove contradictions in XLP

programs. The common theme, described initially in [84] (and later extended in [25] etc.),

is to revise a contradictory program by changing the values of one or moredefaultliterals,

which otherwise due to Closed World Assumption (CWA) is assumed to betrue leading

to the contradiction. The revision changes the value of the defaults to eitherfalseor unde-

finedin order to regain consistency. The algorithm first determinesrevisables, i.e., literals

whose values can be changed. It then exhaustively computes all consequences of the pro-

gram containing contradictions and finds the sets of support (SOS) for each contradiction.

Finally, it uses Rieter’s Hitting Set [88] approach to arrive at minimal repair solutions in-

volving the revisable literals in the computed SOS. An advantage of this repair technique

is that it focuses on defaults, which provide an easy point for alteration. However, the

technique is not directly applicable to OWL-DL, since OWL is based on a monotonic

description logicSHOIN and hence lacks support for defaults. An interesting notion to

take from here is the possibility of ontology modelers providing a list of revisable axioms

or terms beforehand, which would act as a useful pointer to the debugging tool while

generating repair solutions.

3.1.2 Expert System Debugging and Maintenance

Rule-base verification (or validation) has been an important area of research in the

expert-system community. Verification criteria range from semantic checks for consis-

tency and completeness, to structural checks for redundancy, relevance and reachability.

43

Recent surveys can be found in [85], [2], [86].

Rule-based debuggers differ from programming language debuggers in that the for-

mer focus more on high-level details such as the interaction of rules with the underlying

facts in the knowledge base, the interaction among rules, and the rule-event interaction.

Early systems such as TEIRESIAS [26] (designed to work in conjunction with a com-

pleted MYCIN [95] rule base), and ONCOCIN [99] would generate a rule model showing

the conditions used to reach certain conclusions, and test the model for conflicts, redun-

dancy, subsumption, and missing rules or conditions. The significant problem with this

approach is the combinatorial explosion, in which an impossibly large number of com-

binations exist. To deal with this problem, heuristic approaches have been suggested in

Nyugen’s CHECK system [77] and Stachowitz’s EVA system [18]. CHECK builds re-

lational tables to represent rule-dependencies (determined by matching clauses in rules)

and generates a DAG from the generated tables. It inspects the DAG to find errors such

as circular rules and unreachable conclusions. Similar techniques to detect structural (or

styledefects as defined in Chapter 1) in description logic KBs can be seen in tools such

as Chimaera [70]. From a semantic point of view in DLs, heuristic approaches to detect

simple conflicts in axioms based on structural dependency analysis can be seen in Chapter

5 (Structural Analysis) and [105]. More details on these follow in Section 3.1.5.

In some expert systems, the user can enter into an interactive dialogue with the sys-

tem, and choose to focus on a specific executed part of the expert system so as to better un-

derstand its working. The explanations are provided using natural language paraphrases

(e.g., MYCIN [95], XPLAIN [100], ESS [101]) or using an appropriate visualization

scheme (e.g., Vizar [23]). In some systems, where there are a large number of low-level

44

rules, or complex problem-solving strategies, knowledge engineers are allowed to pro-

vide for higher-levelmeta-rules, or abstract representations of the strategies, which are

then used by the system to generate more concise explanations. Similarly, to help the

user understand the rationale behind some of the rules, the implicit domain knowledge

underlying the rules such as preferences for certain rules, tradeoff conditions etc. can be

explicitly encoded by the system designer, which is then available in the debugging phase.

From a repair point of view for DL-based ontologies, the analog of annotating rules

in the expert system could be useful. This would mean annotating axioms in the ontology,

or explaining the modeling philosophy behind a particular set of concept/role definitions

(e.g., by following the OntoClean [38] philosophy).Besides being used to explain the

rationale for the presence of a certain set of axioms, the annotations can be used to rank

axioms in the repair phase (see Chapter 6) and/or suggest revisions to the ontology which

are in keeping with the modeling methodology.

Finally, we also discuss recent trends involving the use of machine learning to detect

and resolve errors in rule-based expert systems. This has been seen in systems such as

KR-FOCL [82] and more recently in [106]. The idea here is to investigate the execution

trace of the system when used to learn a set of training cases containing positive and

negative tests in order to expose faulty clauses in rules, e.g., clauses with extraneous or

missing literals (similar form of diagnosis has also been proposed for logic programming

systems [22]). Revisions are based on various heuristics that check which clauses are

operationalized(come into effect) during the execution. If a clause is not operationalized

at all during the learning phase, it is treated as a redundant clause and is removed from

the system.

45

The analog in the DL case would be to devise a test suite for the ontology contain-

ing desired and undesired entailment tests and running the reasoner to see which tests

pass/fail. Then, knowing the justification sets for the desired (positive) entailment tests

that pass (using the Axiom Pinpointing service seen in Chapter 4), we can determine the

unusedaxioms which are not responsible for any entailment and flag them to the user.

Also, for the undesired (negative) entailment tests that pass, we can look at the corre-

sponding justification sets and consider appropriate revisions to the ontology (on the lines

of the repair strategies seen in Chapter 6). However, a more difficult problem is dealing

with the desired entailment tests thatfail. In this case, a trivial solution is tosimplyadd

the entailment as an axiom to the ontology, but this is probably not what the user expects.

The problem is compounded by the fact that explaining the cause of the non-entailment

to the user is hard, since in terms of the tableau-based refutation technique, it implies that

the reasoner is able to constructany onemodel representing the counter-example. Ex-

planations using counter-examples have been investigated in [67], where the author deals

with a much weaker description logic for which non-tableau based reasoning algorithms

are used. Extending this technique to tableaux calculus is, however, an open issue.

3.1.3 Repairing Integrity Constraint Violations in Deductive Databases

In this subsection, we briefly discuss automated repair strategies when dealing with

Integrity Constraint (IC) violations in deductive databases. ICs are certain rules (usu-

ally specified at database design time) that must be satisfied by the database under all

transactions to maintain integrity. In [75], an approach is presented where the designer

46

of the consistency constraints specifies a set of repair actions to be taken for each con-

straint. Once a consistency violation is detected, the system automatically selects one of

the repair actions for one of the violated constraints (possibly prioritized), performs it,

and restarts the consistency check.

While there exists no analogous technique for logic-based KBs, a similar theme

has been discussed in [11], where inconsistency resolution is considered in the context of

stratifiedpropositional KBs. In the DL case, the stratified KB, as carefully modeled by

the ontology designer, would contain alternate versions for each of axioms (each at a dif-

ferentstrataor layer), with the idea that when a particular erroneous axiom is found, it is

automatically replaced by the corresponding axiom in a lower strata until the consistency

of the KB is restored. Obviously, designing such a KB requires a lot of skill and effort on

the ontology modelers’ part.

An alternate approach to automated repair in deductive databases is presented in

[72], where the database consistency check is traced to obtain symptoms that violate the

constraints, and dependency analysis is done to identify potential and definite causes.

The causes are transformed into repair transactions and presented to the user. In order to

“clean up” repairs, various heuristics are used to eliminate unwanted solutions (e.g., facts

that derive an existing inference are not added) and sort due toplausibility (e.g., more

importance is given to shorter transactions, or those that minimally change the database).

Similar heuristics can be seen in our Ontology Repair service (Chapter 6), where we

determine the importance of a repair solution based on its size and impact on the ontology.

47

3.1.4 Proof Explanation in ATPs

We briefly review the proof-explanation literature to compare and contrast our ex-

planation support described in Chapter 4 (Axiom Pinpointing service implementation).

Most proof explanation facilities for ATPs are based on the following fundamental

principles described in [37]:“ (a) The exact way in which the knowledge is coded and

structured in the system is irrelevant to the user;(b) All information accidental to the

proof process should be omitted from the explanation;(c) The user himself must be able

to achieve the deduction steps in a simple and direct inferential process as long as he

knows the premises, in their correct order, and the conclusion;(d) The amount of infor-

mation contained in any explanation step should be limited to the amount that can be

simultaneously visualized and processed by a human being without great effort.”

The above principles translate into a set of transformations that need to be applied

to the proof to convert it into a human-oriented form. One common example (as seen

in [32], [53], [33] etc.) is the use ofproof treesas a flexible structure for the argument,

where the root of the tree is the main theorem, and every inference rule that proves the

theorem becomes a child of the root. The tree is recursively expanded by considering

the premises of each child inference rule. The use of the tree structure allows the user

to direct his attention to a particular fragment of the proof, focus solely on the relevant

conditions necessary to derive that fragment, and use the chain of inferences to understand

the broader reasoning step.

In our case, the main explanation generation component closely resembles the ap-

proach in [79], which generates arguments in FOL-based KBs based on the above prin-

48

ciples. Common ideas here include using an appropriate tree-style layout (indentation)

to construct an inference chain, suppressing irrelevant parts of the axioms that do not

contribute to the entailment, and the use of hypertext to support navigation across differ-

ent axioms (parts of the argument). In this manner, our system adheres to the principles

above, however, the main challenge for expressive DLs is due to the complex interaction

between the inference rules leading to the final conclusion, which makes it difficult to

order the steps of the deduction properly. We have explored workarounds as discussed in

Chapter 8 (e.g., by inserting intermediate inference steps in the proof), though generating

an easy-to-understand explanation chain for all cases remains an open issue.

3.1.5 Description Logic (DL) Explanation and Debugging

We divide this discussion into two parts – first we enumerate generic explanation

support for DLs, and then we focus specifically on the debugging and repair facilities

developed for DL KBs in recent years.

Explanations for DL, 1995 - present

One of the earliest works in the field of explanations for description logic (DL) sys-

tems is [69], where a deductive framework based on natural deduction style proof rules

is used to explain inferences in the CLASSIC [13]. CLASSIC is a family of knowledge

representation languages based on DLs and it allows universal quantification, conjunction

and restricted number restrictions. In [69], the authors argue that the standard implemen-

tation for reasoning in CLASSIC based on structural subsumption algorithms involves

49

steps such as normalization, graph construction and traversal etc., where the asserted in-

formation is modified to such an extent that explaining the inference by mirroring the

implementation and tracing the code directly is difficult for users to follow. Hence, they

propose a proof-theoretic form of explanation, whereby the reasoning procedures of the

system are encoded as natural deduction style inference rules (e.g. modus ponens). In

order to simplify explanations, they define the notion of atomic descriptions, atomic ex-

planations and explanation chains, and also decompose lengthy explanations into smaller

steps. However, there exist some drawbacks of this approach. Firstly, the authors ac-

knowledge that the definition of atomic descriptions is sufficient for CLASSIC, however,

it breaks for more expressive DLs (e.g. including role composition). Secondly, the rel-

ative simplicity of the inference rules results from the fact that the reasoning algorithms

are based on structural subsumption. However, structural subsumption is known to be in-

complete for expressive DLs, where tableaux algorithms are typically used. In such cases

(i.e., for more expressive DLs), explanation generation needs to be modified and natural-

semantics style inference rules corresponding to the tableaux expansion procedure need

to be derived, which adds a new level of complexity.

The authors take an alternate approach in [14] by introducing a sequent calculus to

explainALC subsumption. The motivation here is to use modified sequent rules to im-

itate the behavior of tableau calculus and that of human reasoning, and additionally use

quasi-natural-language paraphrases to explain the rule application. An advantage of se-

quent rules is that the original structure of the concepts is preserved and the concepts are

not shifted between the subsumer and subsumee positions in the proof. This principle has

been extended to definitorialALEHFR+ TBoxes (with global domain/range restrictions)

50

in [62] and implemented in the ontology editor OntoTrack [61]. While this explanation

technique is tied to the tableau algorithm, its main disadvantage is that most of the com-

mon tableau optimizations (except lazy unfolding) cannot be applied as they modify the

structure of the asserted axioms, which the explanation component is very sensitive to.

Hence, the performance penalty on the explanation generation is huge. In addition, the

authors of [62] acknowledge that extending the technique to say, generalized cardinality,

could blow up the explanation because of the potentially huge set of cardinality enforced

combinatorial changes. Finally, another drawback we see with this approach is that the

quality of the quasi-NL explanations is severely hampered by complex concept descrip-

tions, and it is an open question of how effective the NL can be forunderstandingthe

cause of the entailment. The lack of a user study in [62] is a concern in this respect.

In contrast to the earlier works, [6] describes a technique to find minimal sets of ax-

ioms responsible for an entailment (in this case, minimal inconsistent ABoxes) by labeling

assertions, tracking labels through the tableau expansion process and using the labels of

the clashes to arrive at a solution. The technique is applicable to the logicALCF . Similar

ideas can be seen in [91], where the motivation is debugging unsatisfiable concepts in the

DICE terminology. The main contribution of the paper is a formalization of the problem

including the specification of terms such as MUPS and MIPS, which are essentially min-

imal fragments of a KB responsible for a particular set of error(s) in it. We have extended

this work in [58] to the more expressive logicSHIF , which corresponds to OWL-Lite,

where we have presented a computationally more efficient algorithm to find the MUPS

by avoiding tableau saturation (which [91] proposes). Also, we show through a usability

evaluation that various UI enhancements to the display of the MUPS, such as highlighting

51

key entities, ordering/indenting axioms etc. (see Chapter 8) are useful for understanding

and debugging unsatisfiable concepts in OWL ontologies. We have further extended this

technique to explain arbitrary entailments in OWL-DL as discussed in Chapters 4, 7.

Finally, there has been recent work done on explaining DL reasoning inALC using

an FOL-resolution based approach [28]. The idea here is to translate the DL axioms into

FOL formulae or clauses, use a resolution-based theorem prover to derive the contradic-

tion (which is expected beforehand), and transform the resolution proof into arefutation

graph. The refutation graph being a more abstract representation of the proof is more

useful for explanation purposes, and traversing the graph in an appropriate manner helps

understand the cause of the various intermediate resolution steps leading to the ultimate

goal. The work is still in its infancy, with the authors presenting two simple examples

to demonstrate their technique. It is interesting to see whether the technique scales to

more complex examples containing many steps of resolution in a large proof. Challenges

include dealing with the problem of skolemization due to existential restrictions (which

blurs the gap between the asserted axioms and the FOL clauses), deriving a traversal of

the graph that is easy to follow/understand (since there could be many traversal options),

and determining through a usability evaluation, whether users find this technique of ex-

planation helpful.

We also note that having generated an explanation, theInference Web(IW) In-

frastructure [68] can be used to exchange them across reasoning systems and users. IW

comprises of a web-based registry for information sources, reasoners, etc., a portable

proof specification language (PML [24]) for sharing explanations, and a browser to view

and interact with the proof explanation in different formats.

52

In summary, though there exists various forms of explanation for inferences in DLs,

there is no generic solution. The success of the explanation depends on factors such as

skill, expertise and background knowledge of the user, and preference for a particular

kind of reasoning algorithm. For example, users exposed to resolution would prefer the

last approach as opposed to those more comfortable with tableaux-based reasoning. Also,

most of the explanation techniques have only been recently applied to DLs, which is not

surprising given that OWL became a W3C recommendation in 2004, and it is interesting

to see how the techniques evolve to cater to the needs to the OWL user community as it

gets more exposed to DL-based knowledge representation.

Recent Developments in Debugging/Repair of DL KBs

In this subsection, we review specialized techniques for debugging and repairing

errors in DL knowledge bases. We note that with OWL reaching recommendation status

only recently, the area of debugging OWL ontologies, in particular, is a largely unexplored

field.

In [70], the authors present a tool, Chimaera, which apart from supporting ontology

merging, allows users to run a diagnostic suite of tests across an ontology. The tests

include incompleteness tests, syntactic checks and taxonomic analysis, and the results are

displayed as an interactive log, which the users can study and explore. The focus here

is clearly on detecting style defects, whereas explanation support for semantic defects is

fairly weak.

Work has been done on a ‘Symptom Ontology’ [7] for representing errors and warn-

53

ings resulting from defects in OWL ontologies, and an implementation is provided in the

tool, ConVisor. The authors here do a good job of categorizing commonly occurring

symptoms and motivate the significance of creating and exchanging standardized bug re-

ports using a symptom ontology. However, just as in the previous case, their work does

not deal with pinpointing the cause of logical inconsistency.

For dealing with inconsistency in DL KBs, broadly two different approaches have

been taken. The first is the solution in [6], [91], as seen in the previous section, which

involves identifying the source of the inconsistency (MUPS) in the ontology and correct-

ing it manually. This technique has been extended in [93], [35] where the authors use

Reiter’s Hitting Set algorithm [88] (and subsequently a faster algorithm in [92]) to find a

diagnosisset, i.e., minimal set of axioms in the ontology whose removal turns it consis-

tent. However, the main drawback here is that the solution focuses simply on turning the

ontology coherent without considering the quality of the solution. Also, as noted earlier,

the tableaux-based technique to find the MUPS is limited to unfoldableALCF TBoxes.

The second approach is based on phrasing the problem as a belief revision as done

in [74]. [71] uses this idea to propose revising the knowledge base to get rid of the in-

consistency by rewriting the axioms to preserve semantics, e.g., introducing disjunctions.

On a similar note, [54] proposes tolerating inconsistent theories and using a non-classical

form of inference to derive meaningful results from a consistent sub-theory.

We propose a hybrid of both approaches, by developing techniques to identify all

sources of inconsistency and using metrics based on belief revision such asminimal im-

pact to arrive at meaningful repair solutions.

Finally, [105] describes a black-box heuristic approach for debugging OWL, which

54

is similar in principle to the structural analysis algorithms described in [58]. The idea

here is to use a pre-defined set of rules to detect commonly occurring error patterns in

ontologies based on extensive use-case data (for example, as enumerated in [87]). While

such a rule-based heuristic can be fast, it is clearly incomplete.

3.2 Key Theories of Diagnosis and Revision

In this section, we briefly look at two mature and widely accepted theories of di-

agnosis and revision that relate to the work described in this thesis – Reiter’s theory of

model-based diagnosis, and the AGM Belief Revision theory.

3.2.1 Reiter’s Theory of Diagnosis based on First Principles

In [88], Reiter developed a general theory of diagnosis based on the “first princi-

ples” approach, i.e., using a representation language based on first-order logic. A system

to be diagnosed is defined by a set ofCOMPONENTS, a system descriptionSD, and

a set of observations,OBS. A diagnosis for (SD,COMPONENTS, OBS) is defined

to be a minimal set∆ ⊆ COMPONENTS such that

SD ∪ OBS ∪ {¬AB(c)|c ∈ COMPONENTS −∆} ∪ {AB(c)|c ∈ ∆}.

is consistent, whereAB is a predicate indicating that a component is abnormal. Re-

iter proposes a characterization of a diagnosis which uses the concept of aconflict set. A

conflict set for (SD,COMPONENTS, OBS) is a set{c1, ..ck} ⊆ COMPONENTS

such thatSD ∪ OBS ∪ {¬AB(ci) ∪ .. ∪ ¬AB(ck)} is inconsistent. A conflict set is

minimal iff no proper subset of it is a conflict set. Finally, Reiter uses the notion of hitting

55

sets. A hitting set for a collection of setsC is a setH ⊆
⋃

S∈C S s.t.H ∩ S 6= ∅ for each

S ∈ C. A hitting set forC is minimal, iff no proper subset of it is a hitting set forC.

Two of the main results of Reiter’s work are: a theorem which states that the di-

agnosis for (SD,COMPONENTS, OBS) is a minimal hitting set for the collection of

conflict sets for (SD,COMPONENTS, OBS); and a technique to generate minimal

hitting sets using the notion of aHitting Set Tree(HST) that does not require the conflict

sets to be minimal.

We have used Reiter’s theory of diagnosis in the context of the Axiom Pinpointing

Service (Chapter 4), where we employ the HST concept to obtain all the justifications

for an arbitrary entailment of a DL KB. The idea here is that the justifications for the

unsatisfiability entailment correspond to minimal conflict sets in the general case, and an

algorithm that generates minimal hitting sets can also be used to find all minimal conflict

sets (by duality, see proof in Chapter 4, Theorem 4).

3.2.2 AGM Belief Revision Postulates

There has been a body of work on belief revision with roots at least as far back as

[36] and subsequently formulated in [1].

The AGM belief revision theory is concerned with formulating postulates to char-

acterize three operations of belief revision: adding a new assertion to a knowledge base

(“expansion”); removing an assertion from a knowledge base (“contraction”); adding a

new assertion to knowledge base that makes it inconsistent, and adjusting the result to

restore consistency (“revision”). Revision can be viewed as a contraction followed by an

56

expansion. The authors express these postulates in a very high-level way.

Two key revision postulates are (Gardenfors and Rott, 1995, p.38):

“(i) The amount of information lost in a belief change should be kept minimal.

(ii) In so far as some beliefs are considered more important or entrenched than others,

one should retract the least important ones”.

These two postulates are satisfied by our Ontology Repair Service (Chapter 6), i.e.,

(i) translates in our case to removing axioms which drop the least number of entailments

from the KB (minimal change), and(ii) translates to removing axioms that are of the least

rank (or importance), based on some manual or automated ranking criteria.

Note that an in-depth analysis of the applicability of the AGM theorem to DLs is

beyond the scope of this thesis. For more details, we refer the reader to [34], [60].

57

Chapter 4

Core Debugging Service: Axiom Pinpointing

4.1 Introduction and Background

As noted in Chapter 1, OWL-DL is a World Wide Web Consortium standard for rep-

resenting ontologies on the Semantic Web [27]. It is a syntactic variant of the Description

Logic SHOIN (D) [52], with an OWL-DL ontology corresponding to aSHOIN (D)

knowledge base.

DL systems typically offer a set of basic inference services, such as concept clas-

sification, concept satisfiability and knowledge base (KB) consistency checking, among

others. However, in order to be useful for real-world applications, a DL-based Knowledge

Representation (KR) system must expose to the user additional more-sophisticated ser-

vices. A typical example is the generation ofexplanationsfor the inferences performed

by the reasoner, such as inconsistencies in the KB and entailed subsumption relations in

the concept hierarchy. These services are critical, especially with the advent of the Se-

mantic Web, which has exposed Ontology Engineering to a broader audience of users and

developers.

A natural question is whether these services can be formalized asreasoningservices

in a way that is both useful and understandable to modelers. In this chapter, we present

a novel DL inference service,Axiom Pinpointing, that, given a KB and any of its logical

consequences, provides the set of all thejustificationsfor the entailment to hold in the KB.

58

In this context, we provide a formal notion of justification and propose a set of decision

procedures for the axiom pinpointing problem.

Roughly, given aSHOIN axiom (or assertion)α entailed by a knowledge baseK,

a justification forα in K is a minimal fragmentK′ ⊆ K responsible forα to occur. The

justificationK′ is minimal in the sense thatα is a logical consequence ofK′, on the one

hand, and any proper subset ofK′ does not entailα, on the other hand. In general, there

may exist various justifications forα in K.

We use a simple example to illustrate this notion. Consider a KBK composed of

the following axioms:

1. A v B u C

2. B v ¬E

3. A v D u ∃R.E

4. D v C u ∀R.B

In the KB above,A, B, C,D,E represent atomic concepts, andR represents an

atomic role. In what follows, we will use natural numbers to denote each of these axioms.

We find thatK |= (A v C). However, the minimal fragments ofK that entail the

same subsumption relationship areK1 = {1} andK2 = {3, 4}. We refer toK1 andK2 as

the justifications for the subsumption entailmentA v C.

Now, while the sample KB considered above is rather small, it is easy to see the

significance of the axiom pinpointing service when dealing with large KBs consisting

of hundreds or thousands of axioms. By specifying the minimal asserted axiom sets

responsible for an entailment, the service can be used to isolate, highlight and explain the

59

cause or basis of the entailment. This is crucial from a debugging standpoint, e.g., given

an unsatisfiable concept, the service exposes all and only the axioms that are responsible

for the error. In this case, obtaining all the justifications becomes necessary for resolving

the error, since at least one erroneous axiom in each of the justification sets needs to be

fixedin order to make the concept satisfiable.

However, the axiom pinpointing service discussed so far has an inherentgranularity

limitation: it works at the axiom level and does not distinguish the specificparts of the

axiomresponsible for the entailment. Taking our earlier example of the sample KBK,

the conceptB in the conjunctB u C in axiom 1 is, in some sense,irrelevant for the

subsumptionA v C, i.e., if the axiom was modified such that only the conceptB (in the

conjunct) was removed or replaced with another concept, sayE, the subsumptionA v C

would still hold. Similarly, the concept∃R.E and the concept∀R.B in axioms3 and4

respectively, are both irrelevant for the entailmentA v C. It is important to consider

parts of axioms that contribute to an entailment since in a lot of cases, repairing an error

involves editing axioms instead of simply removing them.

For this purpose, we introduce the notion of aKB splitting function. The idea is to

rewrite the axioms in the KB in a convenient normal form and split across conjunctions

in the normalized version, e.g., rewritingA v C uD asA v C, A v D. We then extend

the axiom pinpointing service to capture (precise) justifications in this split version of

the KB, which is equivalent to the original KB, though contains “smaller” axioms. In

the earlier case, the output of the extended service for the entailmentA v C becomes

K′1 = {A v C1} andK′2 = {A v D3, D v C4}, where the superscripts denote the

asserted axiom that each of the split axioms has been derived from.

60

We devise a set of algorithms for axiom pinpointing and provide proofs of correct-

ness and completeness. The algorithms are mainly of two types:

1. Reasoner dependent (or Glass-box)algorithms are built on existing tableau-based

decision procedures for expressive Description Logics. Their implementation re-

quires a thorough and non-trivial modification of the internals of the reasoner.

2. Reasoner independent (or Black-box)algorithms use the DL reasoner solely as a

subroutineand the internals of the reasoner do not need to be modified. The rea-

soner behaves as a “Black-box” that accepts, as usual, a concept and a KB as input

and returns an affirmative or a negative answer, depending on whether the concept

is satisfiable or not w.r.t. the KB. In order to obtain the justifications, the axiom pin-

pointing algorithm selects the appropriate inputs to the DL reasoner and interprets

its output accordingly.

Glass-box algorithms typically affect many aspects of the internals of the reasoner

and strongly depend on the DL under consideration.

Black-box algorithms typically require many satisfiability tests, but they can be

easily and robustly implemented, since they only rely on the availability of a sound and

complete reasoner for such a DL. Consequently, using a Black-box approach, the service

can also be implemented on reasoners that are based on techniques other than tableaux,

such as resolution.

Finally, we also investigatehybridalgorithms, which combine Glass-box and Black-

box approaches to obtain sound and complete solutions relatively easily, i.e., without

dealing with complicated implementation issues. The idea here is to use one of the ap-

61

proaches to reduce the problem space significantly and the other as a post-processing step

to obtain the correct solution.

The remainder of this chapter is organized as follows: in Section 4.1.1, we for-

mally define justification of entailments and show how it is closely related to the notion

of MUPS as described in [91]. We then present two versions (Black-box / Hybrid) of an

algorithm to compute a single justification (Section 4.2) and extend it to find all justifica-

tions (Section 4.3). In Section 4.4, we formally define precise justifications based on the

notion of splitting KBs and show how the algorithms described in the earlier sections can

be modified to enhance the output granularity.

4.1.1 Justification of Entailments and MUPS

In this section, we provide a formal definition of justifications and introduce the

notion of a MUPS, as described in [91]. Finally, we show how justifications and MUPS

relate to each other for the description logicSHOIN .

We start with the definition of justifications.

Definition 6 (JUSTIFICATION)

LetK |= α whereα is a sentence. A fragmentK′ ⊆ K is a justification forα in K

if K′ |= α, andK′′ 6|= α for everyK′′ ⊂ K′.

We denote byJUST (α,K) the set of all the justifications forα in K. Givenα and

K, theAxiom Pinpointinginferential service is the problem of computingJUST (α,K)

MUPS are formally defined as follows:

Definition 7 (MUPS) LetC be a concept, which is unsatisfiable w.r.t. a knowledge base

62

K. A fragmentK′ ⊆ K is a MUPS ofC inK if C is unsatisfiable inK′, andC is satisfiable

in everyK′′ ⊂ K′.

We denote byMUPS(C,K) the set of all the MUPS forC in K. When the KB we

are referring to is clear from the context, we will relax the notation and useMUPS(C)

instead.

The relationship between MUPS and justifications is established by Theorem 1.

The simple theorem is based on the following result [47]: given aSHOIN knowledge

baseK, for every sentence (axiom or assertion)α entailed byK, there is always a concept

Cα that is unsatisfiable w.r.tK. Conversely, given any conceptC that is unsatisfiable w.r.t.

K, there is always a sentenceαC that is entailed byK. Consequently, given aSHOIN

KB, the problem of finding all the MUPS for an unsatisfiable concept and the problem of

finding all the justifications for a given entailment can be reduced to each other.

Theorem 1 LetK be a knowledge base,α be a sentence and letCα be a concept s.t.:

For every KBK′ ⊆ K,K′ |= α⇔ Cα is unsatisfiable w.r.t.K′

Then,JUST (α,K) = MUPS(Cα,K)

Proof

Let K′ ∈ JUST (α,K), thenK′ |= α andK′′ 6|= α for everyK′′ ⊂ K′. From the relationship

betweenCα andα, we have thatCα is unsatisfiable w.r.t.K′ and it is satisfiable w.r.t. everyK′′ ⊂ K′ then,

by definition of MUPS,K′ ∈MUPS(Cα,K).

Conversely, letK′ ∈ MUPS(Cα,K), thenCα is unsatisfiable inK′ andCα is satisfiable in every

K′′ ⊂ K′. From the relationship betweenCα andα, we have thatK′ |= α andK′′ 6|= α for everyK′′ ⊂ K′

and thusK′ ∈ JUST (K, α)

63

2

In the remainder of this chapter, we shall restrict our attention, without loss of

generality, to the problem of finding all the MUPS for an unsatisfiable concept w.r.t to a

SHOIN KB.

Note: The notion of justifications can be easily extended to include justifications

for aninconsistentKB, i.e., minimal sets of axioms responsible for making a KB logically

inconsistent. Also, all the ensuing algorithms for finding justifications for unsatisfiability

entailments are directly applicable to finding justifications for inconsistency. This should

be no surprise as unsatisfiability detection is performed by attempting to generate an in-

consistent ontology.

4.2 Computing a Single Justification

4.2.1 Black Box: Simple Expand-Shrink Strategy

In this section, we describe a Black-box solution to the problem of finding a single

MUPS of an unsatisfiable concept. The algorithm we describe is reasoner-independent,

in the sense that the DL reasoner is solely used as an oracle to determine concept satisfi-

ability w.r.t. a knowledge base.

This algorithm, which we refer to as SINGLEMUPSBlack−Box(C, K), shown in

Table 4.1, is composed of two main parts: in the first loop, the algorithm generates an

empty KBK′ and inserts into it axioms fromK in each iteration, until the input concept

C becomes unsatisfiable w.r.tK′. In the second loop, the algorithm removes an axiom

64

fromK′ in each iteration and checks whether the conceptC turns satisfiable w.r.t.K′, in

which case the axiom is reinserted intoK′. The process continues until all axioms inK′

have been tested.

Algorithm : SINGLE MUPSBlack−Box

Input : KB K, Unsatisfiable conceptC
Output : KB K’
K′ ← ∅
while (C is satisfiable w.r.tK’) do

select a set of axiomss ⊆ K/K′
K′ ← K′ ∪ s

for eachaxiomk′ ∈ K′, do
K′ ← K′ − {k′}
if (C is satisfiable w.r.t.K′), then
K′ ← K′ ∪ {k′}

Table 4.1: Singe MUPS (Black Box)

Obviously, a key component of the algorithm above is selectingwhich axioms to

add intoK′ in the first segment of the algorithm. In our implementation, we start by

inserting the concept definition axioms intoK′ and slowly expand it to include axioms

of structurally related concepts, roles and individuals1. Moreover, while expanding the

fragmentK′ by iteratively considering a set of axiomss ⊆ K, we establish a small initial

limit on the size ofs and slowly increase this limit with each iteration.

Also, we have implemented an additional optimization that has proved effective:

after the first stage, we perform a fast pruning ofK′ before proceeding to the second

stage. The goal is to reduce the size of the input to the second stage. For this purpose,

we use a window ofn axioms, slide this window across the axioms inK′, remove axioms

fromK′ that lie within the window and determine if the concept is still unsatisfiable in the

newK′. If the concept turns satisfiable, we can conclude that at least one of then axioms

1In the case of an inconsistent ontology, we start by inserting individual assertions, especially consider-
ing axioms which assert distinctness of individuals. Note that in this case, there is no unsatisfiable concept
C input to the algorithm.

65

removed fromK′ is responsible for the unsatisfiability and hence we insert then axioms

back intoK′. However, if the concept still remains unsatisfiable, we can conclude that all

n axioms are irrelevant and we remove them fromK′.

4.2.2 Hybrid: Tableau-based Decision Procedure (Tableau-Tracing)

As seen in the previous section, the Black-box approach to find a single element

of MUPS(C,K) works by expanding an empty KB using axioms from the original KB,

till the concept is unsatisfiable in it, and then shrinking or pruning this KB to arrive at

a minimal set of axioms responsible for the unsatisfiability. Note that the second stage

(pruning) can be directly applied to the original KB itself, except that the approach may

be practically unfeasible for large KBs with thousands of axioms.

In this section, we present a Glass-box algorithm for obtaining a much smaller set

of axioms than the original KB in which the concept is unsatisfiable. This algorithm can

be used in place of the first step in the Black-box technique seen earlier to obtain a single

justification relatively quickly, thus making the complete solution an hybrid one.

The algorithm is based on the tableau decision procedure for concept satisfiability in

SHOIN recently presented in [52]. DL tableau-based algorithms decide the satisfiabil-

ity of a (possibly complex) conceptC w.r.t a KBK by trying to construct (an abstraction

of) a common model forC andK, called acompletion graph, which is constructed by re-

peatedly applying a set ofexpansion rules. DL tableau algorithms are non-deterministic.

Whenever a contradiction is encountered, a DL reasoner will either backtrack and select a

different non-deterministic choice, or report the inconsistency and terminate, if no choice

66

remains to be explored.

Obviously, in our problem, the goal is no longer constructing a model for the input,

but identifying which axioms in the input ontology are responsible for the contradictions

that prevent the model from being built.

Before we proceed to the formal description of the algorithm, we provide an exam-

ple to illustrate the main intuitions. We assume some familiarity of the reader with the

logic SHOIN as well as with tableaux-based reasoning algorithms for expressive DLs

as presented in Chapter 2.

An Example

Let us consider a KBK composed of the 10 axioms, denoted with natural numbers:

1. A v ∃R.D uB 6. C v ¬E

2. B v≥ 1.R 7. D v F

3. B v F 8. C v ∀R.¬D

4. F v ¬E 9. D v ¬B

5. A v C tD 10. E v ∀R.F

The conceptA is unsatisfiable w.r.tK, andMUPS(A,K) = {{1, 5, 8, 9}}. Our

strategy is to keep track of the axioms from the KB responsible for each change in the

completion graph, namely, the addition of a particular concept (or role) to the label of a

specific node (or edge), or the detection of a contradiction (clash) in the label of a node.

In the Figure, this is denoted by the superscript of each concept in the node labels. We

generically refer totracing as the process of tagging concepts, roles and clashes in the

completion graph with sets of axioms in the KB.

67

The algorithm works on a treeT of completion graphs. Given the inputA,K, the

tree is initialized with a single completion graphG0 containing a nodex with A in its

label. This initial graph is incrementally built using the set of availableexpansion rules. 2

The application of non-deterministic rules results in the addition of new completion

graphs as leaves ofT, one for each different non-deterministic choice. The algorithm

terminates when all the leaves of the tree contain a clash. Upon termination, the trace of

the detected clashes in the leaves ofT yield a smaller set of axioms that contain at least

one element ofMUPS(A,K).

Figure 4.1:Tableau Tracing: Completion GraphsG1,G2 created after applying non-
deterministic rules and added as leaves ofT.

In our example, the algorithm starts with graphG0 and applies theunfolding , u

rules to axiom1 which adds concepts∃R.D, B toL(x); then, it applies the∃ rule which

generates an R-successory of x, and adds conceptD to the label ofy.

The algorithm now applies theunfolding rule to axioms2, 3, 4, 5, the last of which

adds the disjunctionC tD to L(x). It is forced to make a non-deterministic choice due

to the application of thet rule. This creates two new completion graphsG1,G2 (shown

2For a full specification of the expansion rules, we refer the reader to the next Section.

68

in Figure 4.1) each containing a separate choice of the disjunctionC t D in axiom 3.

Both graphs are then added as leaves ofT. Since no more rules are applicable inG0 the

algorithm now starts expandingG1.

In G1, the presence ofC ∈ L(x) causes the application of theunfolding rule to

axioms6, 8, the latter yields a clash since bothD and its negation are present in the label

of nodey. The trace of this clash is computed by considering the axiom sets responsible

for adding bothD,¬D ∈ L(y), in this case the set{1, 5, 8}.

Since a clash is found inG1, the algorithm moves toG2 and starts expanding it. It

finds a new clash inG2 after applying theunfolding rule to axioms7, 9, as bothB and its

negation are present inL(x), and the trace of this clash is{1, 5, 9}. The algorithm now

concludes thatA is unsatisfiable since all the leaves of the tree contain a clash. The output

is computed by taking the union of the traces of all clashes present in the leaves ofT, i.e.,

{1, 5, 8, 9}. In this case, the output corresponds to a MUPS directly.

In order to ensure a smaller yet correct output, we impose an ordering among the

deterministic rules, i.e.,unfolding andCE rules are only applied whenno otherdeter-

ministic rule is applicable. The rationale for this strategy relies on the definition of justi-

fication that establishes minimality w.r.t. the number of axioms considered; the new rules

cause new axioms to be considered in the tracing process and additional axioms should

only be considered if strictly necessary.

Thus, we have introduced two main variations to the standard algorithm for concept

satisfiability: first, wekeep trackof axiom sets responsible for various changes on the

completion graphs and compute the output of the algorithm from the trace of each clash

found in the leaves of the tree; second, we establish additional conditions in the order of

69

rule application for ensuring the output is as small as possible.

Definition of the Algorithm

In this section, we provide a formal description of the tableau algorithm for com-

puting a single MUPS. The algorithm runs on a treeT = (W,≺) of completion graphs

and returns a setS ∈ MUPS(C,K).

A completion graph for a conceptC with respect toK is a directed graphG =

(V, E,L, ˙6=). Each nodex ∈ V is labeled with a set of conceptsL(x) and each edge

e = 〈x, y〉 with a setL(e) of role names. The binary predicate˙6= is used for recording

inequalities between nodes. If〈x, y〉 ∈ E, theny is called asuccessorof x andx a

predecessorof y. Ancestoris the transitive closure of predecessor anddescendantthe

transitive closure of successor. A nodey is an R-successor ofx as given in [52].

The setS is initially empty and the initial tree contains a single graphG = ({v0, ..., vl}, ∅,L, ∅),

whereL(vi) = {oi} for 1 ≤ i ≤ l ando1, ..., ol the individual names occurring inK and

C. The graphG is then expanded by repeatedly applying the rules in Table 4.2.

We keep a set∆ of completion graphs and a setΣ of edges to be added at the next

level of the tree. The application of a non-deterministic rule results in the creation of a

new completion graph, added to∆, for each possible non-deterministic choice. When all

the graphs in the current level ofT have been expanded, the algorithm determines which

graphs in∆ need to be added as leaves ofT, as follows: for eachG in the current level

of T that contains a clash and each edgeG ≺ G′ ∈ Σ, removeG′ from ∆ andG ≺ G′

from Σ; at the end of this process, if∆ = ∅, then the algorithm terminates; otherwise, the

70

algorithm adds the remaining graphs in∆ and edges inΣ to the tree, i.e.W := W∪∆ and

≺:=≺ ∪Σ and initializes again∆ andΣ to the empty set before starting the expansion of

the next level ofT. Since the input concept is unsatisfiable w.r.t. the input KB, the set∆

will become empty after exploring a finite number of levels inT and, thus, the algorithm

will terminate.

We have introduced two additional rules with respect to the ones presented in Chap-

ter 2: Theunfoldingrule adds the definition of a conceptC to the labelL(x) of a nodex

wheneverC is contained inL(x). The GCI rule (CE) adds the disjunction¬C tD to the

label of a nodex if the GCI C v D is contained inK. These rules are required in order

to identify which axioms inK are influencing the expansion ofG. The remaining rules

remain unaltered w.r.t.[52], except for the additional conditions to compute the tracing

functions. For ensuring termination, we establish the same priorities for rule application

as in [52]; concerning the additional rules, we enforce that theunfolding andCE rules are

only applied whenno othernon-deterministic rule is applicable, as seen in the example

of the previous Section. Finally, we adopt the same mechanism for cycle detection in the

graph expansion as in [52], namelypair-wise blocking.

The application of the expansion rules triggers a set ofeventsthat change the state

of the completion graph, or the flow of the algorithm:1: Add(C, x) is the action of adding

a conceptC to L(x); 2) Add(R, 〈x, y〉) inserts a roleR into L(〈x, y〉); 3) Merge(x, y) is

the action ofmergingthe nodesx, y; 4) 6=(x, y) adds the inequalityx ˙6=y; 5) Report(g)

represents the detection of a clashg. We denote byE the events recorded during the

execution of the algorithm.

The graphG contains aclash if either {C,¬C} ⊆ L(x) for some conceptC and

71

unfold-rule: if A ∈ L(x), A atomic, (A v D) ∈ K:
if D /∈ L(x), Add(D,L(x))
τ(D,x) := (τ(A, x) ∪ {A v D})

CE-rule: if (C v D) ∈ K , C not atomic,x not blocked,
if (¬C tD) /∈ L(x), Add(¬C tD,x)), τ((¬C tD), x) := {C v D}

u-rule: if (C1 u C2) ∈ L(x), x not indirectly blocked,
if {C1, C2} 6⊆ L(x), Add({C1,C2}, x)).
τ(Ci, x) := τ((C1 u C2), x)

t-rule: if (C1 t C2) ∈ L(x), x not ind. blocked,
if {C1, C2} ∩L(x) = ∅, generate graphsGi := G for eachi ∈ {1, 2}
∆ := ∆ ∪ {G1,G2}; Σ := Σ ∪ {G ≺ G1,G ≺ G2}
Add(Ci, x) in Gi for eachi ∈ {1, 2}
τ(Ci, x) := τ((C1 t C2), x)

∃-rule: if ∃S.C ∈ L(x), x not blocked,
if no S-neighbory with C ∈ L(y), createy, Add(S, 〈x, y〉), Add(C, y)
τ(S, 〈x, y〉) := τ((∃S.C), x)
τ(C, y) := τ((∃S.C), x)

∀-rule: if ∀S.C ∈ L(x), x not ind. blocked,y S-neighbor ofx:
if C /∈ L(y), Add(C, y)
τ(C, y) := (τ((∀S.C), x) ∪ τ(S, 〈x, y〉))

∀+-rule: if ∀S.C ∈ L(x), x not ind. blocked,y R-neighbor ofx with Trans(R) andR v S:
if ∀S.C /∈ L(y), Add(∀S.C, y)
τ((∀S.C), y) := τ((∀S.C), x) ∪ (τ(R, 〈x, y〉) ∪ {Trans(R)} ∪ {R v S})

≥-rule: if (≥ nS) ∈ L(x), x not blocked:
if no safe S-neighborsy1, .., yn of x with yi 6= yj , createy1, .., yn; Add(S, 〈x, yi〉); 6=(yi, yj)
τ(S, 〈x, yi〉) := τ((≥ nS), x)
τ(6=(yi, yj)) := τ((≥ nS), x)

≤-rule: if (≤ nS) ∈ L(x), x not ind. blocked,y1, .., ym S-neighbors of x,m > n:
For each possible pairyi, yj , 1 ≤ i, j ≤ m; i 6= j:

Generate a graphG′; ∆ := ∆ ∪ {G′}; Σ := Σ ∪ {G ≺ G′}
τ(Merge(yi, yj)) := (τ((≤ nS), x) ∪ τ(S, 〈x, y1〉).. ∪ τ(S, 〈x, ym〉))
if yj a nominal node,Merge(yi, yj) in G′,
else ifyi a nominal node or ancestor ofyj , Merge(yj, yi),
elseMerge(yi, yj) in G′

if yi is merged intoyj , for each conceptCi in L(yi),
τ(Add(Ci,L(yj)) := τ(Add(Ci,L(yi)) ∪ τ(Merge(yi, yj))
(similarly for roles merged, and correspondingly for concepts inyj if merged intoyi)

O-rule: if , {o} ∈ L(x) ∩ L(y) and notx ˙6=y, then Merge(x, y).
τ(Merge(x, y)) := τ({o}, x) ∪ τ({o}, y)
For each conceptCi in L(x), τ(Add(Ci,L(y)) := τ(Add(Ci,L(x)) ∪ τ(Merge(x, y))

(similarly for roles merged, and correspondingly for concepts inL(y))
NN -rule: if (≤ nS) ∈ L(x), x nominal node,y blockable S-predecessor ofx and there is nom
s.t.1 ≤ m ≤ n, (≤ mS) ∈ L(x) and there existm nominal S-neighborsz1, ...zm of x s.t. zi 6= zj , 1 ≤ i ≤ j ≤ m,
then generate newGm for eachm, 1 ≤ m ≤ n, add∆ := ∆ ∪ {Gm}; Σ := Σ ∪ {G ≺ Gm}
and do the following in eachGm:

Add(≤ mS, x), τ((≤ mS), x) := τ((≤ nS), x) ∪ τ(S, 〈y, x〉)
createy1, ...ym; Add yi 6= yj for 1 ≤ i ≤ j ≤ m. τ(6=(yi, yj)) := τ((≤ nS), x) ∪ τ(S, 〈y, x〉)
Add(S, 〈x, yi〉); Add({oi}, yi):

τ(S, 〈x, yi〉) := τ((≤ nS), x) ∪ τ(S, 〈y, x〉) τ({oi}, yi) := τ((≤ nS), x) ∪ τ(S, 〈y, x〉

Table 4.2: Modified Tableau Expansion Rules with Tracing

72

nodex, or the eventsMerge(x, y) and 6=(x, y) belong toE .

We introduce atracing function, which keeps track of the axioms responsible for

the changes in the graph to occur. Thetracing functionτ maps each evente ∈ E to

a fragment ofK. The functionτ is initialized as empty and defined by construction

using the expansion rules3. For a clashg of the form{C,¬C} ⊆ L(x), τ(Report(g)) =

τ(Add(C, x))∪ τ(Add(¬C, x)). The trace for a clash of the formMerge(x, y), 6=(x, y) ∈ E

is defined identically.

The algorithm terminates when all the leaves of the tree contain a clash and there

is no way to apply the non-deterministic rules to generate new leaves. Ifg1, ..gn are the

clashes in each of the leaves of the tree andτ(Report(gi)) = {sgi
}, the output of the

algorithm isS ′ =
⋃

i∈{1,...,n} sgi
, which is then pruned to give a final setS using the

Black-box approach seen in Table 4.1.

The output of the complete hybrid algorithm is guaranteed to be a MUPS(C,K), as

established by the following theorem:

Theorem 2 Let C be an unsatisfiable concept w.r.t.K and letS be the output of the

hybrid algorithm with inputC,K, thenS ∈ MUPS(C,K)

Proof (Sketch) We need to prove that the output of the tableau algorithmS′ (before it is pruned)

includes at least one MUPS(C,K), i.e.,C is unsatisfiable w.r.tS′.

Let E be the sequence of events generated by the tableau algorithm with inputsC,K. Now suppose

(C,S′) are inputs to the tableau algorithm and∆′, E ′ be the corresponding sets of completion graph and

events generated. For each eventei ∈ E , it is possible to performei in the same sequence as before inE ′.

3In the rules shown in Table 4.2, we have abbreviatedτ(Add(C, x) andτ(Add(R, 〈x, y〉)) by τ(C, x)
andτ(R, 〈x, y〉) respectively.

73

This is because for each eventei, the set of axioms inK responsible forei have been included in the output

S′ by construction of the tracing functionτ in Table 4.2. (Note that there are cases where additional axioms

are also included inτ , e.g., during the≤ n.R rule, where axioms responsible each of theR successor

edges are considered). Thus, givenE ′ = E , a clash occurs in each of the completion graphs in∆′ and the

algorithm findsC unsatisfiable w.r.tS′.

2

The complexity of concept satisfiability checking inSHOIN is 2NExpTime [103].

The changes we have introduced for axiom tracing occur in either constant or linear time.

Thus, the complexity of the tableau tracing algorithm minus the final pruning stage re-

mains the same.

4.3 Computing All Justifications

In this section, we describe a technique based on Reiter’s Hitting Set Tree Algo-

rithm that is used to compute all the MUPS of an unsatisfiable concept, assuming we

have a procedure to compute any one arbitrary MUPS.

In what follows, we briefly introduce Hitting Sets and Reiter’s algorithm and show

their applicability to our problem.

4.3.1 The Hitting Set Problem and Reiter’s Algorithm

Let us consider a setU , theuniversal set, and a setS ⊆ PU of conflict sets, where

P denotes the powerset operator. The setT ⊆ U is a hitting setfor S if eachsi ∈ S

contains at least one element ofT , i.e. if si ∩ T 6= ∅ for all 1 ≤ i ≤ n. We say that

74

T is aminimal hitting setfor S if T is a hitting set forS no T ′ ⊂ T is a hitting set for

S. TheHitting Set Problemwith inputS, U is to compute all the minimal hitting sets for

S. The problem is of interest to many kinds ofdiagnosistasks and has found numerous

applications.

Given a collectionS of conflict sets, Reiter’s algorithm constructs a labeled tree

calledHitting Set Tree(HST). Nodes in an HST are labeled with a sets ∈ S. If H(v) is

the set of edge labels on the path from the root of the HST to the nodev, then the label

for v is anys ∈ S such thats ∩H(v) = ∅, if such a set exists. Ifs is the label ofv, then

for each elementσ ∈ s, v has a successorw connected tov by an edge withσ in its label.

If the label ofv is the empty set, thenH(v) is a hitting set forS.

4.3.2 Hitting Sets and Axiom Pinpointing

In this section, we establish the relationship between the Hitting Set and the Axiom

Pinpointing problems.

Our approach is based on the following result:

Theorem 3 LetC be unsatisfiable w.r.tK and letK′ ⊂ K, withK′ = K −H, then:

1. C is satisfiable w.r.t.K′ if and only ifH is a Hitting Set forMUPS(C,K) w.r.t.K

2. H is a minimal Hitting Set forMUPS(C,K) w.r.t. K, if and only if there is no

H′ ⊂ H such thatC is satisfiable w.r.t.K −H′.

Proof

75

1. Suppose thatC is satisfiable w.r.t.K′ butH is not a hitting set forMUPS(K, C) w.r.t. K. Then,

by definition of hitting set, there is a setS ∈ MUPS(C,K) s.t. S ∩ H = ∅. Thus,S ⊆ K′ and,

by definition of MUPS,C is unsatisfiable w.r.t.S. By monotonicity,C is also unsatisfiable w.r.t.

K′, which yields a contradiction. Assume now thatH is a hitting set forMUPS(K, C), but C is

unsatisfiable w.r.t.K′. By definition of Hitting Set, for everyS ∈MUPS(C,K), S∩H 6= ∅. Thus,

there is noS ∈MUPS(C,K) s.t.S ⊆ K′ which implies thatC is indeed satisfiable w.r.t.K′.

2. SupposeH is a minimal Hitting Set forMUPS(C,K) w.r.t. K. Then, by definition of minimal

hitting set, noH′ ⊂ H is a Hitting Set. By 1)C is satisfiable w.r.t.K −H′ for everyH′ ⊂ H. The

converse is also straightforward.

2

The intuition behind the theorem relies on the fact that, in order to make a concept

C satisfiable w.r.t. a knowledge baseK, one needs to remove fromK at leastone axiom

from each of the elements ofMUPS(C,K).

Our aim is to use Theorem 3 and Reiter’s Hitting Set Trees to obtainMUPS(C,K)

out of a single setS ∈MUPS(C,K).

4.3.3 A Simple Example

In order to describe the main intuitions, let us consider a KBK2 with ten axioms

and some unsatisfiable conceptC. For the purpose of this example, we denote the ax-

ioms in K2 with natural numbers. Suppose that we are provided an algorithm SIN-

GLE MUPS(C,K) that retrieves an arbitrary element ofMUPS(C,K); an example of

such a procedure could be the tableau algorithm presented in Section 4.2. We now show

how to combine the use of Hitting Set Trees andSINGLE −MUPS(C,K) to compute

76

MUPS(C,K). Figure 6.2 illustrates the whole process for our example. We anticipate

that the expected outcome is the following:

MUPS(C,K2) = {{1, 2, 3}, {1, 5}, {2, 3, 4}, {4, 7}, {3, 5, 6}, {2, 7}}.

Figure 4.2:Finding all MUPS using HST: Each distinct node is outlined in a box and
represents a set inMUPS(C,K2). Total number of satisfiability tests is 31.

The algorithm starts by executing SINGLEMUPS(C,K2) and let us assume that

we obtain the setS = {2, 3, 4} as an output. The next step is to initialize a Hitting Set

TreeT = (V, E,L) with S in the label of its root, i.e.V = {v0}, E = ∅,L(v0) = S.

Then, it selects an arbitrary axiom inS, say2, generates a new nodew with an empty

label in the tree and a new edge〈v0, w〉 with axiom2 in its label. Finally, the algorithm

tests the satisfiability ofC w.r.t. K2 − {2}. If it is unsatisfiable, as in our case, we obtain

a MUPS forC w.r.t. K2 − {2}, say{1, 5}. We add this set toS and also insert it in the

label of the new nodew.

77

The algorithm repeats this process, namely removing an axiom, adding a node,

checking satisfiability and executing the SINGLEMUPS algorithm until the satisfiability

test turns positive, in which case we mark the new node with a checkmark‘
√′.

The algorithm also eliminates extraneous satisfiability tests based on previous re-

sults, e.g., once a hitting set path is found, any superset of that path is guaranteed to be

a hitting set as well, and thus no additional satisfiability tests are needed for that path, as

indicated by a‘X ′ in the label of the node. For example, in Figure 6.2, the first path in the

right-most branch of the root node is 4,3 and is terminated early since the algorithm has

already considered all possible paths (hitting sets) containing axioms{3,4} in an earlier

branch. Both‘
√′ and‘X ′ labeled nodes constitute leaf nodes ofT.

When the HST is fully built, the distinct nodes of the tree collectively represent the

complete set of MUPS of the unsatisfiable concept.

The correctness of this approach relies on the following key observations:

1. If a node is not a leaf ofT, then its label is an element ofMUPS(C,K)

2. If one takes the union of the labels of the edges in any path from the root ofT

to a leaf node marked with a
√

, then a Hitting Set forMUPS(C,K) w.r.t. K is

obtained. In fact, all the the minimal Hitting Sets forMUPS(C,K) w.r.t. K are

obtained when all the paths from the root to a leaf inT are considered.

In what follows, we provide a formal specification of the algorithm and show that

the above observations do hold in general.

78

Algorithm : MUPS HST(C,K)
Input : C,K, S, HS, w, α, p (default: all empty)
Output : S
if there exists a seth ∈ HS s.t. (L(p) ∪ {α}) ⊆ h, then
L(w)← ‘X ′

return
else ifC is unsatisfiable w.r.t.K, then

m← SINGLE MUPS(C,K)
S ← S ∪m
create a new nodew′ and setL(w′)← m
if w 6= null, then

create an edgee = 〈w,w′〉 with L(e)← α
p← p ∪ e

for eachaxiomβ ∈ L(w′) do
MUPS HST(A, (K − {β}), S, HS, w′, β, p)

else
L(w)← ‘

√′
HS ← HS ∪ L(p)

Table 4.3: Finding all MUPS using Reiter’s HST

4.3.4 Definition of the Algorithm

The MUPSHST algorithm is a recursive procedure that accepts as input a setS of

conflict sets (initially containing a single MUPS), a setHS of Hitting Sets, the last node

w added to the Hitting Set Tree, the last axiomα removed fromK and the current edge

pathp. Initially, the Hitting Set Tree is empty.

The procedure incrementally builds a Hitting Set Tree while the input conceptC is

unsatisfiable w.r.tK. The procedure works intuitively as sketched in the example of Sec-

tion 4.3.3; the interested reader should find little difficulty in going through the algorithm

using the example4

The correctness and completeness of this approach can be derived as a consequence

of the above results and of Theorem 3 in Section 4.3.

Theorem 4 (Correctness and Completeness)

4As a notation remark, we denote byL(p), for p a path in the tree, the union of the labels in all the edges
in p.

79

LetC be unsatisfiable w.r.t.K, then:

MUPSHST(C,K) = MUPS(C,K)

Proof

(⊆)

Let S ∈ MUPS HST(C,K), thenS belongs to the label of some non-leaf nodew in the Hitting Set

TreeT generated by the algorithm. In this case,L(w) ∈ MUPS(C,K′), for someK′ ⊆ K. Therefore,

S ∈ MUPS(C,K).

(⊇)

We prove by contradiction. Suppose there exists a setM ∈MUPS(C,K), butM /∈MUPS HST(C,

K). In this case,M does not coincide with the label of any node inT. Let v0 be the root ofT, with

L(vo) = {α1, ..., αn}. As a direct consequence of the completeness of Reiter’s search strategy, the algo-

rithm generates all the minimal Hitting Sets containingαi for eachi ∈ {1, .., n}. By Theorem 3, every

minimal hitting setU is s.t.U ∩M 6= ∅. This implies thatαi ∈M for 1 ≤ i ≤ n. Therefore,M ⊆ L(v0),

which implies thatM /∈MUPS(C,K), sinceL(v0) ∈MUPS(C,K) andM ⊆ L(v0).

2

The worst case of the algorithm arises when all the sets inMUPS(C,K) are mutu-

ally disjoint. In this case, if there aren disjointMUPS(C,K) each of sizek, the number

of calls to SINGLEMUPS (i.e., satisfiability tests involved) iskn.

4.3.5 HST Optimization

In addition to the optimizations that Reiter’s HST algorithm provides such as early

path termination, there is one definite area of improvement, namely, storing the comple-

tion graph generated by the tableau algorithm at every node of the tree andincrementally

80

modifyingthe graph for every change made (axiom removed). This saves the time re-

quired in building the graphs from scratch for each new node of the HST.

In order to incrementally modify the graph, we make use of the tableau tracing idea

seen in Section 4.2.2 as follows: we first extend the set of tableau events to include oper-

ations for the removal of nodes/edges and their labels in the completion graph. Secondly,

we extend the tracing function to capture a set of axiom sets instead of a single axiom

set responsible for the event. Finally, when removing an axiom from the ontology, we

remove only those portions of the graph that have been necessarily ‘introduced’ by the

axiom, i.e., whose trace includes the concerned axiom (in every set in the trace). We then

re-apply the tableau expansion rules to the current graph. The work is still in progress

[42], [43].

4.4 Beyond Axioms: Finer-Grained Justifications

As noted earlier, a main drawback of the justifications is that they work at the as-

serted axiom level, and hence fail to determine whichparts of the asserted axioms are

irrelevant for the particular entailment under consideration to hold. For instance, given

an axiomA v B u¬B u ∃R.E uD whereA is unsatisfiable, the conjuncts∃R.E andD

are irrelevant for the unsatisfiability ofA. Moreover, additional parts of axioms that could

contribute to the entailment aremasked, e.g., if we were to add the axiomA v ∀R.¬E to

the earlier one, there exists an additional condition which makesA unsatisfiable, namely,

the finer-grained axiomsA v ∃R.E andA v ∀R.¬E, and this cannot be captured by the

current definition of MUPS or justifications.

81

In this section, we discuss an extension to the Axiom Pinpointing service that cap-

turesprecisejustifications, which are at a finer granularity level than the original asserted

axioms. In this context, we provide a formal notion of precise justification and propose a

decision procedure for the problem.

4.4.1 Splitting a KB

Since we aim at identifying relevant parts of axioms, we define a function thatsplits

the axioms in a KBK into “smaller” axioms to obtain an equivalent KBKs that contains

as many axioms as possible.

The idea of the transformation is to rewrite the axioms inK in a convenient normal

form and split across conjunctions in the normalized version, e.g., rewritingA v C uD

as A v C, A v D. In some cases, we are forced to introduce new concept names,

only for the purpose of splitting axioms into smaller sizes (which prevents any arbitrary

introduction of new concepts); for example, since the axiomA v ∃R.(C u D) is not

equivalent toA v ∃R.C, A v ∃R.D, we introduce a new concept name, sayE, and

transform the original axiom into the following set of “smaller” axioms:A v ∃R.E,

E v C, E v D, C uD v E.

We now provide a definition of splitting.

Definition 8 Given a conceptC in negation normal form (NNF), the setsplit(C) is in-

ductively defined as follows:

• If C ∈ Sig(K) (the signature ofK, i.e. the set of names used inK), C is of the form

¬A for A ∈ Sig(K) or C of the form≥ nR or ≤ nR, thensplit(C) = {C}.

82

• If C is of the formC1 u C2, thensplit(C) = split(C1) ∪ split(C2).

• If C is of the formC1 t C2, thensplit(C) =
⋃

C′
1∈split(C1),C′

2∈split(C2)
C′1 t C′2

• If C of the form∀R.D, thensplit(C) =
⋃

D′∈split(D) ∀R.D′.

• If C of the form∃R.D, then:

– if D of the formD1 u D2, then split(C) = {∃R.E, E} ∪ split(¬E t D1) ∪

split(¬E t D2) ∪ split(¬D1 t ¬D2 t E)}, with E a new name.

– otherwise,split(C) =
⋃

D′∈split(D) ∃R.D′.

For a set of GCIsK =
⋃

i αi with αi a of the formCi v Di, we have:

split(K) =
⋃

i> v u(split(¬Ci t Di))

The splitting transformation isconservative, i.e., if K′ = split(K) every model ofK′ is

also a model ofK, and every model ofK can be extended to a model ofK′ by appropri-

ately choosing the interpretation of the additional concept names.

Proposition 1 Given ontologiesK,K′, withK′ = split(K), we have thatK′ is a conserv-

ative extension ofK.

Proof

The fact that every modelI of K can be extended to a model ofK′ is trivial. We show the other

direction, namely that ifI |= K′, thenI |= K. This is a direct consequence of the following claim:

C ∈ sub(K) implies CI = (usplit(C))I (4.1)

We prove this claim by induction on the structure ofC. The base of the induction is given by the first bullet

in Definition 8 and is straightforward to verify. We proceed with the induction step:

83

• If C is of the formC1uC2, thensplit(C) = split(C1)∪split(C2) andCI = CI
1 ∩CI

2 . By induction,

CI
i = (usplit(Ci))I and thusCI = (usplit(C1))I u (∩split(C2))I , and the hypothesis holds.

• If C is of the formC1tC2, thensplit(C) =
⋃

C′
1∈split(C1),C′

2∈split(C2)
C′1tC′2 andCI = CI

1 ∪CI
2 . By

induction,CI
i = (usplit(Ci))I and thusCI = (usplit(C1))I ∪ (usplit(C2))I , and the hypothesis

holds.

• If C is of the form∀R.D then split(C) =
⋃

D′∈split(D) ∀R.D′ and CI = {a ∈ ∆|∀b ∈ ∆, if

(a, b) ∈ RI , then b ∈ DI} (where∆ is the domain of interpretation). By induction,DI =

(usplit(D))I and thusCI = {a ∈ ∆|∀b ∈ ∆, if (a, b) ∈ RI , thenb ∈ usplit(D)I}, which implies

CI =
⋃

D′I∈split(D)I{a ∈ ∆|∀b ∈ ∆, if (a, b) ∈ RI , thenb ∈ D′I}.

• If C is of the form∃R.D, thenCI = {a ∈ ∆|∃b ∈ ∆ with (a, b) ∈ RI andb ∈ DI} (where∆ is

the domain of interpretation).

– if D is not of the form(D1 uD2), thensplit(C) =
⋃

D′∈split(D) ∃R.D′. By induction,DI =

(usplit(D))I and thusCI = {a ∈ ∆|∃b ∈ ∆, s.t. (a, b) ∈ RI andb ∈ usplit(D)I}, which

impliesCI =
⋃

D′I∈split(D)I{a ∈ ∆|∃b ∈ ∆ with (a, b) ∈ RI andb ∈ D′I}.

– if D is of the form(D1uD2) thensplit(C) = {∃R.E,E}∪ split(¬EtD1)∪ split(¬EtD2)∪

split(¬D1 t D2), whereE is a new concept. Now,(∃R.(D1 u D2))I = (∃R.E u (¬E t

(D1 uD2)))I and thus the hypothesis holds.

2

This ensures that every entailment inK holds in its splittingK′, and every entail-

ment inK′ concerning only symbols in the signature ofK holds inK as well.

Table 4.4 shows an algorithm to split a KB based on the above definition. In this

algorithm, we also keep track of the correspondence between the new axioms and the

axioms inK by using a functionσ.

Proposition 2 GivenK, the algorithm in Table 4.4 computessplit(K) in linear time.

84

Algorithm: Split KB
Input: KB K
Output: TBoxK′, Axiom Correspondence Functionσ
K′ ← ∅
initialize axiom correspondence functionσ
initialize substitutioncache
for eachsubclass axiomα ∈ K

from α := C v D generateCα := ¬C tD
normalizeCα to NNF (pushing negation inwards)
K′ ← K′ ∪ {> v Cα}
σ({> v Cα})← α

while there exists{> v Cα} ∈ K′ with A uB occurring at positionπ in Cα

K′ ← K′ − {> v Cα}
if A uB is not qualified by an existential restriction,then

CA ← Cα[A]π; σ(CA)← σ(CA) ∪ σ(Cα); K′ ← K′ ∪ {> v CA}
CB ← Cα[B]π; σ(CB)← σ(CB) ∪ σ(Cα); K′ ← K′ ∪ {> v CB}

else
if cache(A uB) = ∅, then

let E be a new concept not defined inK′
K′ ← K′ ∪ {E v A,E v B,A uB v E}
cache(A uB)← E

elseE ← cache(A uB)
CE ← Cα[E]π; σ(CE)← σ(Cα); K′ ← K′ ∪ {> v CE}

Table 4.4: Splitting a KB

Proof For each subclass axiomα ∈ K, the algorithm generates the conceptCα corresponding

to α, normalizes the concept into NNF, and generates new axioms insplit(K),K′, based on the occurrence

of a conjunction in the conceptCα. For each conjunction that is not qualified by some existential role

restriction∃R, the algorithm generates two new axioms (obtained by substituting the conjunction by each

of its conjuncts), whereas for a conjunction qualified by some∃R, the algorithm generates four new axioms

(obtained by introducing a new concept as seen in Definition 8). Thus, for each axiom, the algorithm

adds new axioms based on some constant times the number of conjunctions. Since the total number of

conjunctions is fixed and each conjunction is split only once, the algorithm takes linear time to compute the

result. Also, the size ofK′ increases linearly in the size ofK. 2

Finer-grained justifications can be defined as follows:

85

Definition 9 (Precise Justification)

LetK |= α. A KBK′ is aprecise justificationfor α inK if K′ ∈ JUST(α, split KB(K)).

We denote byJUSTp(α,K) the set of all precise justifications forα in K.

4.4.2 Finding Precise Justifications

The problem of finding all precise justifications for an entailmentα of a KB K

now reduces to the problem of finding all justifications forα in thesplit KB(K). Thus,

we can use the algorithm listed in Table 4.4 to split a KB, and then apply any decision

procedure to find all justifications for the entailment in the split version of the KB, such

as the one described earlier in the chapter.

4.4.3 Optional Post-Processing

Sometimes, from a user perspective, it may be more desirable to provide an ex-

planation for the entailment only in terms of (parts of) the original asserted axioms, and

suppress any new concept names introduced during the splitting process. In such cases,

we can use the axiom correspondence functionσ generated in Table 4.4 to replace the

newly introduced terms by their original counterparts using the algorithm shown in Table

4.5.

4.4.4 Example

We now present a detailed example to demonstrate how the algorithm finds precise

justifications.

86

Algorithm: Remove New Terms
Input: Collection of Axiom SetsJ , Original KBK
Output: J
for eachaxiom setj ∈ J do,

while there exists a termC ′ ∈ Sig(j) s.t.C ′ /∈ Sig(K), do
S ← ∅
for eachaxiomC ′ v Ci ∈ j, do

S ← S ∪ Ci

if S 6= ∅, then
C ← C1 u C2 u ..Cn (for all Ci ∈ S)

else
C ← >

substituteC ′ with C in j

Table 4.5: Post-Processing to Remove New Concept Names

Consider a KBK composed of the following axioms:

1. A tB v ∃R.(C u ¬C) uD u E

2. A v ¬D uB u F uD u ∀R.⊥

3. E v ∀R.(¬C uG)

Note, the signature of the KBSig(K) = {A, B, C,D, E, F, R}, and the conceptA

is unsatisfiable w.r.tK.

GivenA,K as input, the algorithm proceeds as follows:

Step 1:First, we obtain an equivalent KBKs that is split as much as possible using

the procedure explained earlier:

Ts = {A v ∃R.H1; B v ∃R.H1; A v D1,2; B v D1; A v E1; B v E1; H v

C1; H v ¬C1; A v ¬D2; A v B2; A v F 2; A v ∀R.⊥2; E v ∀R.¬C3; E v ∀R.G3}.

The superscript of each axiom inKs denotes the corresponding axiom inK that

it is obtained from. This correspondence is captured by the functionσ in the Split-KB

algorithm (see Table 4.4). Notice that the superscript of the axiomA v D in Ks is the set

87

{1, 2} since it can be obtained from two separate axioms inK. Also, we have introduced a

new conceptH in the split KB, which is used to split the concept∃R.(Cu¬C) in axiom1.

Step 2: Now, we obtain the justifications for the unsatisfiability ofA w.r.tKs. This

gives us the following axiom setsJ :

J = {{A v ∃R.H1, H v C1, H v ¬C1}; {A v D1,2, A v ¬D2}; {A v

∃R.H1, H v C1, A v E1, E v ∀R.¬C3}; {A v ∃R.H1, A v ∀R.⊥2}}

J is the complete set of precise justifications forA ≡ ⊥ in K.

Step 3: Optionally, we can remove the conceptH introduced inKs from the justi-

fication sets inJ to get:

K′ = {{A v ∃R.(C u ¬C)1}; {A v D1, A v ¬D2}; {A v D2, A v ¬D2}; {A v

∃R.C1, A v E1, E v ∀R.¬C3}; {A v ∃R.>1, A v ∀R.⊥2}}

4.4.5 Optimizations

The additional overhead incurred for capturing precise justifications is due to the

splitting of the entire KB beforehand. The main concern, from a reasoning point of view,

is the introduction of GCIs during the splitting process, e.g.A ≡ B u C is replaced

by (among other things)B u C v A. Even though these GCIs are absorbed, they still

manifest as disjunctions and hence adversely affect the tableau reasoning process.

Alternately, a more optimal version of the algorithm is the following: instead of

splitting the entire KB beforehand, we can perform alazy splittingof certain specific

88

axioms (on the fly) in order to improve its performance. The modified algorithm with

lazy splitting becomes:

• GivenA unsatisfiable w.r.tK, find a single justification set,J ∈ JUST(A ≡ ⊥,K)

• Split axioms inJ to giveJs. PruneJs using the Black-box algorithm seen in Section

4.2.1 to arrive at a minimal precise justification setJp

• ReplaceJ by Js in K.

• Form Reiter’s HST usingJp as a node, with each outgoing edge being an axiom

α ∈ Jp that is removed fromK

The advantage of this approach is that it only splits axioms in the intermediate

justification sets in order to arrive at precise justifications, and re-inserts split axioms

back into the KB dynamically.

Finally, we mention one other optimization (heuristic) that can be used to easily

identify and remove irrelevant parts of axioms in the justification set, even before we

perform any splitting operation. The idea is the following: given any one justificationJ

for a particular entailmentα, letJα be the set of axioms in the justification plus the axiom

denoting the entailment itself. Now, if we consider the set of symbols appearing in the

signature ofJα, then symbols that appear only once in any of the axioms inJα can be

considered irrelevant for the entailment.

For example, suppose the following three axioms constitute the justificationJ for

the entailmentα : C v D in some ontology (whereA−G are atomic concepts andR is

an atomic role):

1. C v A u ∃R.E u ∀R.F

89

2. A v B uG

3. G v D

In the above case,Jα = {1, 2, 3} ∪ {C v D}. Now, the conceptsB, E, F appear

only once inJα and hence can be considered irrelevant for the entailment. Similarly, given

thatF is irrelevant, the expression∀R.F can be considered irrelevant as well. Thus, we

only need to split{C v A u ∃R.>A v G, G v D}.

4.5 Applications of Axiom Pinpointing

Obviously, the main use of the Axiom Pinpointing service is for explaining the out-

put of the description logic reasoner to the user – it can be used to extract and display

the minimal set of axioms in the KB responsible for a particular entailment. This also

implies that removing (or possibly rewriting) any one of the axioms in each of the justifi-

cation sets will drop the entailment from the KB. This is especially useful in the context

of debugging, where the goal is to get rid of the unsatisfiability entailment or the KB

inconsistency itself.

In the case of precise justifications, the service displays minimal set of axioms

in a more fine-grained, but equivalent version of the KB, which helps in focusing on

only the relevant parts of the original axioms responsible for the entailment. Even in this

case, removing axioms in the precise justification sets will drop the concerned entailment.

Though, the advantage in the latter case (precise justifications) is that less additional en-

tailments are lost compared to the former case (justifications), where entire axioms are

removed.

90

Chapter 5

Auxillary Debugging Service: Root Error Pinpointing

5.1 Introduction

The core debugging service developed so far, Axiom Pinpointing, can be used to

understand and resolve a particular semantic defect, e.g., an unsatisfiable class, since it

provides the precise set of axioms responsible for it. However, consider what happens

when dealing with an ontology that has a large number of unsatisfiable classes, e.g., the

original OWL version1 of the Tambis ontology in which 144 out of 395 classes are un-

satisfiable. In this case, the user can adopt a brute force approach and iterate through the

list of unsatisfiable classes, fixing each one in turn by invoking the axiom pinpointing

service separately for every defect. Besides being pointlessly exhausting, there are two

serious problems here. Firstly, many of the unsatisfiable classes depend in simple ways

on other unsatisfiable classes, e.g., the classprotein is defined as a subclass of the unsatis-

fiable classmacromolecular compound, and the classprotein part is related toprotein by

forcing an existential restriction on the propertypart of. In such cases, a brute approach

may not necessarily produce correct results, e.g., the user could remove the subsump-

tion protein v macromolecular compound instead of resolving the source of the problem

which lies in the unsatisfiable classmacromolecular compound. Secondly, there are large,

far-reaching effects of assertions in a logic like OWL, e.g., in one case, three changes in

1http://www.cs.man.ac.uk/h̃orrocks/OWL/Ontologies/tambis-full.owl

91

Tambis repair over seventy other unsatisfiable classes. Thus, it is not sufficient to take on

defects in isolation.

In this chapter, we design a service that given an ontology with numerous defects,

detects dependencies between them and identifies thesourceof the problems.

We first consider each of the semantic defects, i.e., unsatisfiable classes and in-

consistent ontologies, separately. For the former, we categorize unsatisfiable classes into

two types,root (or critical) andderived(or dependent), and propose a set of algorithms

to separate them. For the latter problem of inconsistent ontologies, we show techniques

to reduce the problem to unsatisfiable classes where possible, or present alternate solu-

tions to highlight the core inconsistency causing axioms. In both cases, we discuss the

significance and drawbacks of the algorithms developed using appropriate examples.

Finally, in the last section, we pull together the algorithms described earlier in the

chapter into a single coherent debugging service forRoot Error Pinpointing.

5.2 Dealing with Numerous Unsatisfiable Classes

In this section, we consider the problem of debugging a consistent ontology that

has a large number of unsatisfiable classes. Typically, ontology users or modelers are

concerned about the unsatisfiability of theatomicor named classes in the ontology, since

they represent key classes in the domain of the ontology.

5.2.1 Root and Derived

We start by broadly categorizing unsatisfiable classes into two main types:

92

1. Root Class- this is an unsatisfiable atomic class in which a clash or contradic-

tion found in the class definition (axioms) does notdepend on the unsatisfiabil-

ity of another atomic class in the ontology. More specifically, the unsatisfiability

bug for a root class cannot be fixed bysimplycorrecting the unsatisfiability bug

in some other class, instead, it requires fixing some contradiction stemming from

its own definition. Example of a root class is:nonmetal v≥ 2.atomic number u

≤ 1.atomic number, given that this is the only definition ofnonmetal.

2. Derived Class- this is an unsatisfiable atomic class in which a clash or contradic-

tion found in a class definition either directly (via explicit assertions) or indirectly

(via inferences)depends on the unsatisfiabilityof another atomic class (we refer to

it as theParentdependency). Hence, this is a less critical bug in that resolving it

involves fixing the unsatisfiability of the parent dependency. Example of a derived

class is:carbon v nonmetal, wherenonmetal is an unsatisfiable class itself, in this

case, its parent.

We give formal definitions for root and derived unsatisfiable classes in terms of

the justification for their unsatisfiability, and also formalize the related notion ofparent

dependency for a derived class:

Definition 10 (Root, Derived and Parent) LetC1, C2, ...Cn be a set of unsatisfiable atomic

classes in a consistent ontologyO. LetJi be the justification for the unsatisfiability of the

classCi, i.e.,Ji =JUSTIFY(Ci ≡ ⊥,O). Ci is aderivedunsatisfiable class iff there exists

an axiom setsi ∈ Ji such thatsi ⊇ sj, wheresj ∈ Jj, (j 6= i). In this case, the classCj

is aparentdependency ofCi if there exists no axiom setsk ∈ Jk, (k 6= j, k 6= i) such that

93

sk ⊃ sj. An unsatisfiable class that is not derived is aroot unsatisfiable class.

Intuitively, a derived unsatisfiable classC depends on parentD if the unsatisfiability

of D in the ontology causesC to be unsatisfiable. A derived class can have more than one

parent dependency, e.g., given the following axioms:

A v B A v ∃R.C B v D u ¬D C v E u ¬E

the unsatisfiable classA has two parents,B andC.

Furthermore, if resolving the error in each of its parents turns a derived class satis-

fiable, we refer to it aspurelyderived, otherwise we refer to it aspartially derived. In the

case above,A is purely derived.

We capture this notion formally by extending the definition above to include the

two types of derived classes:

Definition 11 (Pure and Partially Derived) LetCi be a derived unsatisfiable class.Ci is

purely derived if for every axiom setsi ∈ Ji there exists a setsj, sj ∈ Jj, (j 6= i) such

thatsi ⊇ sj, otherwise it is partially derived.

Note that a partially derived unsatisfiable class has at least one standalone contra-

diction. This implies that if one were to adopt an iterative process to debugging, i.e., fix

all the root unsatisfiable concepts in each iteration (as discussed in the next subsection),

then the partially derived unsatisfiable classes would be exposed as roots in later itera-

tions, and thus would need specific attention at that point. This is unlike purely derived

unsatisfiable classes where one needs to focus on it’s parent bugs alone.

94

5.2.2 Significance and Drawbacks of Root/Derived

The process of debugging an ontology that has numerous unsatisfiable classes can

be performed from two different points of view – anaxiom-drivenview or aclass-driven

view. In the former approach, the user focuses on a set of erroneous axioms in the ontol-

ogy that entail the unsatisfiability ofat least one atomic class, and resolve the modeling

error in the axioms to get rid of the unsatisfiability. This process can be repeated until all

the unsatisfiable classes are fixed. In the latter approach, the user can focus on a particular

unsatisfiable class, resolve the contradiction in its definition before proceeding to the next

class, and repeat the process till all the classes are fixed. The difference is subtle since

there is an obvious and strong correlation between classes and axioms in the ontology,

i.e., the meaning of the class is specified by the axioms that define it. However, the choice

of view is influenced by whether the ontology modeler cares more abouterroneous ax-

iomsor erroneous classesper se. Another factor which dictates the view is the support

provided by the debugging/editing tool or environment – typical ontology editors such as

Protege [76], OntoEdit [98], Swoop [57] etc. provide a class-based view of the ontology

instead of an axiom-centered view.

Obviously, a service that identifies root/derived unsatisfiable classes comes into

play when the modeler adopts a class-driven view to debugging. The significance of

the service is clear: the modeler needs to fix the root unsatisfiable classes first, which

automatically reduces the problem causing conditions in the derived classes, possibly

turning some of them satisfiable immediately. This gives rise to an iterative debugging

process – in each iteration, the modeler focuses on the current roots, the resolution of

95

which uncovers a new set of unsatisfiable classes containing new roots, that lead to the

next iteration.

There is one other interesting aspect of root/derived classes that needs to be ad-

dressed, i.e., the possibility of a pair of unsatisfiable classes beingmutually dependent,

making them both derived.

For example, consider an ontologyO1 with the following axioms:{A v C u

¬C, B v D u ¬D, A ≡ B}. InO1, the atomic classesA, B are unsatisfiable. Moreover,

according to Definition 10, bothA, B are classified as derived classes, with the parent

dependency of one being the other, due to the equivalence relation between them. Thus,

in this case, the ontology has only derived unsatisfiable classes with no roots. Here,

emphasizing the error dependence between unsatisfiable classes can help understand the

reason for this result and point the modeler to the appropriate classes to be fixed.

5.2.3 Detecting Root/Derived: Using the Axiom Pinpointing Service

We now present a straightforward approach to finding the root/derived unsatisfi-

able classes in an ontology. The idea behind this approach is to make use of the Axiom

Pinpointing service (seen in Chapter 4) to determine the justification set for each unsat-

isfiable class and then use the property of justification containment, as seen in Definition

10, in order to determine error dependence and thereby separate the root from the derived

unsatisfiable classes.

Given an ontology with unsatisfiable classesC1, ..Cn, the algorithm generates an

error-dependency graphEDG = (V, E) where the verticesV = {v1, ..vn} denote unsat-

96

isfiable classes, i.e.,L(vi) = Ci, and a directed edgee(i,j) from vertexvi to vj denotes that

Cj is the parent dependency of the classCi. A vertex of the graph without any outgoing

edges represents a root unsatisfiable class, whereas a vertex with least one outgoing edge

represents a derived unsatisfiable class.

Algorithm: GenerateDependencyGraph
Input: OntologyO, Classes{C1, ..Cn}
Output: Error Dependency GraphEDG
EDG← (V,E)
for eachunsatisfiable classCi ∈ {C1..Cn}

V ← V ∪ vi

L(vi)← Ci

for each ji ∈ JUSTIFY(Ci ≡ ⊥,O)
parent← ∅
for eachunsatisfiable classCk ∈ {C1..Cn}, k 6= i

for each jk ∈ JUSTIFY(Ck ≡ ⊥,O)
if ji ⊇ jk and (parent = ∅ or ∀p∈parent jk 6⊂ jp), then
parent← parent ∪ k

for eachp ∈ parent
E ← E ∪ e(i→p)

Table 5.1: Algorithm to Generate EDG

Algorithm Analysis and Discussion

The algorithmGenerateDependencyGraphcreates an error-dependency-graphEDG

given a consistent ontologyO that has a set of unsatisfiable classesC1, ...Cn. In the first

stage of the algorithm, it cycles through the unsatisfiable classes inO, adding each class

to the label of a distinct node in theEDG, and obtaining the justification for the unsatisfi-

ability entailment of the class. In the second stage of the algorithm, it adds directed edges

in the graph by looping through the unsatisfiable classes, determining parent dependen-

cies, if any, using the precomputed justification sets (based on Definition

Figure 5.1 shows a sample error-dependency-graph generated by the algorithm for

an ontologyO2 consisting of five axioms as shown. The classesA, B, C,D in the ontol-

97

ogy are unsatisfiable. In this case,D is the only root unsatisfiable class, whereasB and

C and mutually dependent.

Figure 5.1: Sample Error Dependency Graph

To verify this result, consider the justifications for each unsatisfiability entailment:

(Note: we use numbers to denote axioms)

• JA = JUSTIFY(A ≡ ⊥,O2) = {{1, 2, 5}, {1, 3, 4, 5}}

• JB = JUSTIFY(B ≡ ⊥,O2) = {{2, 5}, {3, 4, 5}}

• JC = JUSTIFY(C ≡ ⊥,O2) = {{4, 5}, {2, 3, 5}}

• JD = JUSTIFY(D ≡ ⊥,O2) = {{5}}

Based on Definition 10,A has parent dependenciesB andC because the set{1, 2, 5} ∈

JA is a superset of{2, 5} ∈ JB and the set{1, 3, 4, 5} ∈ JA is a superset of{4, 5} ∈ JC .

Thus, there exist directed edges from the nodeA to the nodesB, C in the EDG. The

remaining dependency relations are computed in a similar manner.

As shown above, the advantage of this algorithm is that it clearly distinguishes

between the root, derived and mutually-dependent unsatisfiable classes by highlighting

the dependencies between the various errors. Also, the correctness of the algorithm is

evident given that it enforces the semantics of Definition 10.

The output of the algorithm can be enhanced in several ways in order to help the

98

ontology debugger understand the relationships between the errors better. For example,

we could

• label edges with the number of dependencies between unsatisfiable classes, i.e.,

if a derived unsatisfiable conceptx hasn of its justification sets subsumed by the

justifications of its parenty, we could setL(x→ y) = n.

• differentiate between purely and partially derived unsatisfiable classes, e.g., we

could add a self-loop to nodes representing unsatisfiable concepts that have atleast

one stand-alone justification set. This would include both, root and partially derived

unsatisfiable classes.

However, the algorithm has some drawbacks. The main problem is that it requires

computing the justification for every (atomic) unsatisfiability entailment, which as seen in

Chapter 4, is an expensive process given its complexity (2NExpTime [103]). A secondary

problem is that the algorithm does not highlight thedependency axioms, i.e., axioms

which relate a derived unsatisfiable class to its parent. In the next subsection, we look at

an alternate solution to determine the root/derived unsatisfiable classes that addresses both

of these problems. The solution is sound, though incomplete, and hence is appropriate

as a pre-processing optimization step before invoking theGenerateDependencyGraph

algorithm.

5.2.4 Alternate Detection of Root/Derived: Structural Analysis

In this subsection, we present a dependency-detection algorithm that does not rely

on the computation of justification for each unsatisfiability entailment, instead it analyzes

99

the structure of the axioms in the ontology in order to ascertain the root and derived

unsatisfiable classes. The structural analysis also helps identify the corresponding axioms

that link a derived class to its parent dependency.

Given a consistent ontologyO with a known set of unsatisfiable classes{C1, ...Cn},

the algorithm returns an error dependency-graph, similar to the type discussed in the

previous section, with the difference being that an edge from a derived unsatisfiable class

Cd to it’s parent dependencyCp is labeled with a set of dependency axioms linkingCd to

Cp.

The algorithm consists of two phases:asserteddependency detection andinferred

dependency detection and we describe each in detail.

Detecting Asserted Dependencies: Structural Tracing

This phase is used to detect dependencies between unsatisfiable classes by analyz-

ing the asserted axioms in the ontology. Before we proceed to the description of the

algorithm, we provide an example to illustrate the main intuitions.

Consider an ontologyO3 with the following axioms:

1. A v ∀R.C uB u ∃P.D 2. A v≥ 1.R 3. B v (D u ¬D) u (C t ∀R.E)
4. C v E u ¬E 5. D v F u ¬F

Table 5.2: Structural Tracing Example

In O3, the atomic classesA, B, C,D are unsatisfiable. Note thatB, C, D are roots,

whereasA has three different parents:B, D due to axiom{1}, andC due to axioms

{1, 2}. Determining thatB, D are parents ofA is rather straightforward because of the

direct relation in axiom1, i.e.,B is a superclass ofA, andD is related toA by an exis-

100

tential roleP . On the other hand, realizing thatC is a parent ofA requires correlating

between the universal restriction on roleR in axiom1 and the cardinality restriction on

the same role in axiom2, which forces the existence of the role to the unsatisfiable con-

ceptC. Non-local effects such as these need to be taken into account when designing this

algorithm.

We now present the basic cases of the tracing approach.

Given an ontologyO in which classA is unsatisfiable. The classA is derived if it

satisfies any of the conditions shown in Table 5.3.

1. A v B ∈ O and classB is unsatisfiable
2. A v C1 u C2... u Cn ∈ O andanyclassCi (1 ≤ i ≤ n) is unsatisfiable
3. A v D1 tD2... tDn ∈ O andall Di (1 ≤ i ≤ n) are unsatisfiable
4. A v ∃R.B ∈ O andB is unsatisfiable
5. A v ∀R.B, A v≥n.R(orA v ∃R.C) ∈ O andB is unsatisfiable
6. A v≥n.R(orA v ∃R.C), domain(R) = B ∈ O andB is unsatisfiable
7. A v≥n.R(orA v ∃R.C), range(R−) = B ∈ O andB is unsatisfiable

Table 5.3: Base Cases of Structural Tracing

These basic cases can be extended to identify more non-local dependencies. For

example, in cases (4), (5), instead of a single role restriction leading to an unsatisfiable

class, we can consider a role-chain, i.e., a chain of role successors that lead to an unsatis-

fiable class. Also, in cases (6), (7), we can make an additional check to see whether the

domain (/range) of anyancestorrole ofR(/R−) is unsatisfiable.

The pseudo code for this algorithm is shown in Table 5.4. It uses a recursive subrou-

tine Trace Concept to determine unsatisfiable parent dependencies in the RHS of each

class definition axiom, based on the basic cases and the two extensions listed above.

101

Algorithm: StructuralTracing
Input: OntologyO, Classes{C1, ..Cn}
Output: Error Dependency GraphEDG
EDG← (V,E)
for eachunsatisfiable classCi ∈ {C1..Cn}

SD ← set of concept definition axioms ofCi in O
for eachaxiomax ∈ SD, (ax : Ci v D or Ci ≡ D)

role chainrc← ∅
Sτ ← TraceConcept(D, {ax})
for each tuple〈D,Sax〉 ∈ Sτ ,

V ← V ∪ {v1, v2};E ← E ∪ {e(v1→v2)}
L(v1)← {Ci};L(v2)← {D};L(e)← Sax

subroutine: TraceConcept(ClassC, Axiom SetS)
Sτ ← ∅
if C is atomicand C is unsatisfiablethen

Sτ ← Sτ ∪ {(C,S)}
else ifC is of the formc1 u c2.. u cn, then

for eachconjunctci ∈ C,
Sτ ← Sτ∪ TraceConcept(ci, S)

else ifC is of the formd1 t d2.. t dn, then
Sall ← ∅
for eachdisjunctdi ∈ C,

Sdisj ← Trace Concept(di, S)
if Sdisj = ∅, return ∅
elseSall ← Sall ∪ Sdisj

Sτ ← Sτ ∪ Sall

else ifC is of the form∃R.D or ≥ n.R or ∃R.{I}, then
rc← rc|R
if C = ∃R.D, Sτ ← Sτ∪ TraceConcept(D,S)
for each roleR′ that is equivalent toR, or an ancestor-role ofR

Sτ ← Sτ ∪ TraceConcept(domain(R′), S)
Sτ ← Sτ ∪ TraceConcept(range(R′−), S)

else ifC is of the form∀R.D, then
rc← rc|R
if there exists an axiomα ∈ O of the formCi v ∃rc.E, then

Sτ ← Sτ∪ TraceConcept(D,S ∪ {α})
return Sτ

Table 5.4: Structural Tracing Algorithm

102

Algorithm Analysis and Discussion

By making calls to the subroutineTrace Concept recursively, the algorithm is able

to detectnesteddependencies, e.g., given the axiomA v ∃R.(BtC)uD in an ontology

O4, whereA, B, C are unsatisfiable concepts, andD is satisfiable inO4, the algorithm

correctly determines thatB, C areboth the parents ofA, since their being unsatisfiable

makesA unsatisfiable as well.

Also note that there is a point in the algorithm where it checks for a correlation

between an existential and a universal restriction on the same role leading to an unsatis-

fiable concept (as mentioned in the example in Table 5.2). In this case, it is possible to

use a pre-processing step as seen in [58], where we trace the concept definition using the

same procedure (Trace Concept), and collect all the necessary information to check for

beforehand.

One of the main advantages of the structural tracing algorithm is its complexity:

given that all the definition axioms for an unsatisfiable concept can be laid out into a

single concept description (by taking the conjunction), the complexity of the structural

tracing is linear in the size of the description created, as each conjunct is examined only

once sequentially in a deterministic manner. This is a definite improvement over the

previous approach. For realistic KBs, we have found it’s performance to be reasonably

fast as shown in Chapter 7, e.g., in the case of the Tambis OWL ontology2, which has

144 out of 395 unsatisfiable concepts, the algorithm identifies the 3 roots in under five

seconds.

We now list a straightforward, yet important theorem related to structural tracing:

2http://protege.stanford.edu/plugins/owl/owl-library/tambis-full.owl

103

Theorem 5 (Soundness)

LetO be an ontology with unsatisfiable classesC1, ...Cn. Let EDG = (V, E) be

the error dependency graph output by the StructuralTracing algorithm when given inputs

O, {C1, ...Cn}. Let v, C be a vertex (inV), unsatisfiable class (inO) respectively such

that L(v) = C, and suppose there exists at least one outgoing edgeev→v′ ∈ E with

L(e) = Sax andL(v′) = D. ThenC is a derived unsatisfiable class.

Proof We are givenL(e) = Sax, wheree is an edge from conceptC to D in theEDG. Thus,

based on the procedure followed by the tracing algorithm, we can conclude thatSax is a set of axioms that

satisfies the following two properties:

1. Sax |= C v ⊥ (since e.g.,Sax |= C v D, or Sax |= C v ∃R1..RnD whereD is unsatisfiable)

2. any proper subsetS′ax ⊂ Sax does not satisfy property (1) above

Now, given thatD is unsatisfiable, letJD = JUSTIFY(D ≡ ⊥, O) and consider any arbitrary set

SD ∈ JD. Let S ← SD ∪ Sax. Obviously,S ⊆ O.

SinceSax satisfies property (1), it follows thatS |= (C ≡ ⊥). Moreover, asSax satisfies property

(2), andSD satisfies the notion of minimality (see Chapter 4), there exists no proper subsetS′ ⊂ S such

thatS′ |= (C ≡ ⊥). Hence,S ∈ JUSTIFY(C ≡ ⊥,O). Therefore,C is a derived unsatisfiable class.2

However, the main drawback of the algorithm is that it is incomplete, i.e., it does

not discover all dependency relations between unsatisfiable classes.

For example, it does not detectinferred equivalence or subsumption between two

unsatisfiable classes. Consider two atomic unsatisfiable classesA andB in an ontology

that do not have an explicit (asserted) subsumption relation between them but the reasoner

can infer one, e.g.,A ≡ (≥ 1p) andB ≡ (≥ 2p). Even though there is no subclass axiom

104

relating the two classes, a reasoner can infer thatB v A. However, the tracing algorithm

shown above cannot find thehiddendependence ofB on A. In this case, even using a

reasoner to infer the subsumption relation will not work as both classes are unsatisfiable

and hence effectively equivalent to the bottom class,owl:Nothing. As a result, we need

an alternate way to discover hidden dependencies between unsatisfiable classes.

Detecting Inferred Dependencies: Subsumption-Revealing Transformations

The problem with detecting hidden dependencies between unsatisfiable classes in

an ontology is the masking of useful subsumption relationships, since all unsatisfiable

classes are implicitly subsumed by every other class in the ontology.

To resolve this problem, we consider the notion ofsubsumption-revealingtransfor-

mations to an ontology, i.e., transformations that weaken an ontology by getting rid of

the unsatisfiability-causing errors, while preserving theintendedsubsumption hierarchy

as much as possible. The weakened ontology can help expose subsumption relationships

between the previously unsatisfiable classes.

We use a simple example to illustrate this point. Consider an ontologyO5 with the

following four axioms:

A ≡ D u ∃R.D A v ¬D B ≡ C u ∃R.C C v D

In O5, the classesA, B are unsatisfiable. Now, we could argue that the unsatisfia-

bility masks theintendedsubsumption ofB by A. This is because the ontology fragment

{1, 3, 4} |= (B v A) whereas the addition of axiom2 to the fragment causesA to be un-

satisfiable, which in turn makesB unsatisfiable as well (making both classes equivalent to

105

each other and to⊥). Here, detecting that the classB depends onA for its unsatisfiability

can help the ontology modeler focus on the root of the problem.

One possible modification that we could make to the above ontology in order to get

rid of the unsatisfiability error, while preserving as much information as possible, is to

replace the class¬D in the RHS of axiom2 by a new classD′ that is previously undefined

in the ontology. After applying the above transformation, we can use the reasoner to

classify the new ontology in order to detect the hidden subsumption betweenB andA.

Thus, we have the following algorithm to detect hidden dependencies:

Algorithm: Subsumption-RevealingTransformation
Input: OntologyO
Output: OntologyO′
initialize substitution cachecachesub

for eachaxiomx ∈ O,
xNNF ← normalized version ofx in Negation Normal Form (NNF)
if the formula¬C is present inxNNF , then

if C ∈ cachesub, then
D ← cachesub(C)

else
D ← new atomic class undefined inO

substitute¬C by D in xNNF

O′ ← O′ ∪ xNNF

for eachpair of classesC1, C2 ∈ cachesub,
D1 ← cachesub(C1)
D2 ← cachesub(C2)
if C1 v C2 and C1 6= C2 6= ⊥, then
O′ ← O′ ∪ (D1 v D2)

Table 5.5: Inferred Dependency Detection Algorithm

Algorithm Analysis and Discussion

The motivation for the above approach is to remove the main cause of class unsatis-

fiability – negation. Also, given the monotonicity of the logic (OWL-DL), underspecify-

ing the axioms by replacing the negated classes with new classes in the ontology ensures

106

that no new subsumptions are introduced. In order to recover some of the subsumptions

that are lost upon substitution, the last 5 lines of the algorithm check the substitution

cache for subsumptions between the satisfiable classes (that are replaced) and insert sub-

sumption relations between the corresponding new classes in the ontology.

SupposeO,O′ are the respective input/output of the algorithm above, and after the

classification ofO′ by a reasoner, a subsumption relationship is discovered between two

previously unsatisfiable classes, sayC v D, then it follows thatC must be a derived

unsatisfiable class inO andD must be its parent. This is a consequence of Theorem 5 if

we consider any set in JUSTIFY(C v D,O′) to reduce toSax.

Note that the algorithm (heuristic) to detect inferred dependencies is clearly incom-

plete. However, it provides a cheap and easy solution to detecting more dependencies

between unsatisfiable classes, over and above those found by structural tracing.

5.3 Dealing with Inconsistent OWL Ontologies

Many of the techniques discussed in the prior section are, in fact, applicable to the

diagnosis of inconsistent ontologies, with a few slight twists. This should be no surprise as

unsatisfiability detection is performed by attempting to generate an inconsistent ontology.

First, consider the different kind of reasons for inconsistent ontologies:

1. Individuals Related to Unsatisfiable Classes or by Unsatisfiable Roles: There is an

unsatisfiable class description and an individual is asserted to belong to that class.

Similarly, an ontology is inconsistent if there is an unsatisfiable role and there exists

a pair of individuals that is an instance of the role. For example, consider a role

107

hasParent whose range is accidentally set to the intersection of classesFather and

Mother instead of their union, whereFather, Mother are disjoint classes. Here,

hasParent is an unsatisfiable role. Thus, defining a relation between individuals

using this role, e.g.,hasParent(Bob, Mary) results in an inconsistent ontology.3

2. Inconsistency of Assertions about Individuals: There are no unsatisfiable classes in

the ontology but there are conflicting assertions about one individual, e.g., an indi-

vidual is asserted to belong to two disjoint classes or an individual has a cardinality

restriction but is related to more distinct individuals.

3. Defects in Class Axioms Involving Nominals: It might be the case that inconsistency

is not directly caused by type or property assertions, i.e., ABox assertions, but

caused by class axioms that involve nominals, i.e., TBox axioms. Nominals are

simply individuals mentioned in owl:oneOf and owl:hasValue constructs. As an

example consider the following set of axioms:

MyFavoriteColor ≡ {Blue}

PrimaryColors ≡ {Red, Blue, Yellow}

MyFavoriteColor v ¬PrimaryColors

These axioms obviously cause an inconsistency because the enumerated classes

MyFavoriteColor andPrimaryColors share one element, i.e., individual namedBlue,

but they are still defined to be disjoint.

Now, irrespective of the type of inconsistency, a generic debugging solution is to

use the Axiom Pinpointing service developed in Chapter 4 to obtain all the minimal jus-

3Note that debugging an unsatisfiable roleR is equivalent to debugging the unsatisfiable concept≥ 1.R

108

tification sets (axioms) responsible for the inconsistent ontology.

For example, consider the ontologyO6 shown in Table 5.6:

1. A v C u ¬C 2. B v ∃R.D u A 3. C v E u A
4. D v ¬E 5. A(a) 6. B(b)
7. C(c) 8. D(d) 9. E(e)
10. R(b, e)

Table 5.6: Example to Capture Core Inconsistency Causing Axioms

O6 is inconsistent and the justification for this inconsistency is the following axiom

sets{{1, 5}, {1, 2, 6}, {1, 3, 7}, {2, 4, 6, 9, 10}}.

The contradiction in each justification set needs to be resolved in order to make the

ontology consistent, and no justification set is subsumed by any other as all are minimal by

definition. Here, the only analogue to root unsatisfiable classes issharedaxioms across

justification sets, which we can consider ascore inconsistency causing axioms. In this

case, axiom1 appears in three justification sets and can be seen as a major source of the

problems.

The following simple algorithm can be used to return an axiom dependency map

that associates each axiom with the justification sets it appears in. The output of the

algorithm is a dependency map which can be used to sort and rank axioms based on their

arity, i.e., the number of justification sets that they jointly appear in.

5.3.1 Special Case: Reduction to Unsatisfiable Classes/Roles

For the first type of inconsistency, instead of using the Axiom Pinpointing service

to determine all the justifications, which may be time consuming if the ontology has

numerous inconsistency-causing conditions, we can perform some simple ontology mod-

109

Algorithm: CoreAxiom
Input: Set of axiom sets (S)
Output: Axiom Dependency Mapη
initialize axiom dependency mapη
total← ∅
for eachsets ∈ S,

total← total ∪ s
for eachaxiomx ∈ total,

Sx ← ∅
for eachsets ∈ S,

if x ∈ s, then Sx ← Sx ∪ s
store(x 7→ Sx) in η

Table 5.7: Detecting Core Inconsistency Axioms

ifications to directly expose the main problems.

We can get rid of all the ABox assertions, i.e., assertions of the formC(a) or

R(a, b), whereC is a class,R is a role anda, b are individuals. Removing these asser-

tions would immediately reveal all the unsatisfiable classes or unsatisfiable roles, which

can then be debugged using structural analysis (described in Section 5.2.4) by focusing

directly on the root unsatisfiable classes/roles. This approach is likely to give better per-

formance results than using the Axiom Pinpointing service to compute all the minimal

justifications (even though the service output would directly point to the root classes)

because of the cheap cost of structural analysis.

5.4 Putting It All Together: Service Description

In the previous sections, we have a described a set of algorithms for identifying

the main source of the semantic errors in an ontology, both, from a concept and an ax-

iom point of view. We now describe one possible coherent version of theRoot Error

Pinpointingservice that invokes the previous algorithms as and when necessary.

The service outline is shown below:

110

Service:Root Error Pinpointing
Input: OntologyO
if O is inconsistent, then
O′ ← O minus all ABox assertionsC(a), R(a, b) ∈ O
if O′ is inconsistent, then

SJ ← JUSTIFY (O is inconsistent)
invoke algorithmCore Axiom(SJ)

else
DebugUnsatisfiable(O′)

else
DebugUnsatisfiable(O)

subroutine : DebugUnsatisfiable(O)
S ← {C1, ...Cn} (set of unsatisfiable classes inO)
if n ≥ threshold, then

invoke algorithmStructural Analysis(O, S)
S ← S minus derived classes found byStructural Analysis

invoke algorithmGenerate DependencyGraph(O, S)
SR ← set of root unsatisfiable classes,SJR

← set of justifications for each rootr ∈ SR

invoke algorithmCore Axiom(SJR
)

Table 5.8: Root Error Pinpointing

The service receives an ontology that has semantic defects, i.e., either it is incon-

sistent, or it is consistent with some unsatisfiable classes. In the former case, the service

attempts to remove the inconsistency if it is due to unsatisfiable classes by getting rid of

all the ABox assertions. The reason for this step is that, if applicable, it highlights the

cause of the inconsistency immediately, and moreover, if there are a large number of un-

satisfiable classes, it allows us to useStructural Analysis (as seen below) to eliminate

the less critical unsatisfiable classes quickly.

If the ontology still remains inconsistent after the modification, the service obtains

the justification for the inconsistency using the Axiom Pinpointing service and invokes

the algorithmCore Axiom to generate an axiom dependency map from the justification

sets. This map can then be used to highlight the core-erroneous axioms by displaying the

corresponding justification sets they fall in.

On the other hand, if the ontology turns consistent as a result of the modification,

111

the service calls the sub-routineDebug Unsatisfiable which is used to separate the root

from the derived unsatisfiable classes. In this case, depending on whether the number

of unsatisfiable classes exceeds some user-specifiedthreshold, the service either directly

invokes theGenerate DependencyGraph algorithm, or usesStructural Analysis to

prune the problematic space quickly by reducing the number of derived unsatisfiable

classes before generating the graph for the remaining erroneous ones.

Finally, once the user has narrowed down the root unsatisfiable classes to focus on,

the Axiom Pinpointing Service can be used to obtain the justifications for each of the

roots, and theCore Axiom algorithm can be used (as seen above) to generate an axiom

dependency map from the justification sets.

112

Chapter 6

Ontology Repair Service

6.1 Introduction

In Chapters 4, 5, we have devised a set of ontology debugging services that can be

used to highlight the core erroneous axioms and concepts in a defected ontology. After

identifying and understanding the cause of the error, the next step is to act upon it, i.e.,

resolve the error by modifying the ontology in an appropriate manner. Though in most

cases, repairing errors is left to the ontology modelers’ discretion, and understanding the

cause of the error certainly helps make resolving it much easier, bug resolution can still be

a non-trivial task, requiring an exploration of remedies with a cost/benefit analysis. For

this reason, we present a service specifically catered towards ontology repair.

Given an OWL ontology with one or more unsatisfiable classes (or alternately, an

inconsistent OWL ontology), the ontology repair service automatically generates repair

solutions, i.e., a set of ontology changes, which if applied to the ontology eliminate all

the concerned errors.

In designing this service, we consider various strategies torank erroneous axioms

in order to arrive at sensible solutions. For example, one of the metrics used for axiom

ranking is the impact of removing the axiom on the remaining entailments of the ontology.

Roughly, the idea here is to assign a high rank to an erroneous axiom if removing it

from the ontology has a very small impact on the semantics of the ontology. In order

113

to generate repair solutions based on the axiom ranks, we use a standard uniform cost

search algorithm. We modify the algorithm to allow for easy customization of the repair

solutions based on the modelers’ preferences.

We also note that the repair service considers axiom additions or rewrites as well,

and not just the removal of axioms. Axiom rewrites are desirable because they attempt to

preserve the meaning of the axioms as much as possible, while eliminating the problem-

atic parts. In quite a few cases that we have observed, the quality of the repair solutions

is greatly enhanced when rewrites are considered.

In the remainder of this chapter, we describe the key components of the repair ser-

vice when used to debug unsatisfiable classes in a consistent ontology. Since the under-

lying problem involves dealing with and rectifying a set of erroneous axioms, the same

principles for generating repair solutions are applicable when debugging an inconsistent

ontology.

6.2 Repair Overview: Scope and Limitations

In this section, we provide a brief overview of how the repair service works, and

discuss it’s scope and limitations.

We consider a simple example to illustrate the main points. LetO1 be an ontology

composed of the following axioms:

114

1. Person v (= 1).hasGender

2. Gender(male)

3. Gender(female)

4. Person v ¬Animal

5. {male} v ¬{female}

6. domain(hasGender) = Animal

7. range(hasGender) = {male} u {female}

8. Student v Person

The classesPerson, Student are unsatisfiable inO1. The objective of the repair

service is to generate a solution (set of ontology changes) to fix the two unsatisfiable

classes.

Now, the Axiom Pinpointing service devised in Chapter 4 can be used to obtain

the justification for the unsatisfiability of each of these classes, i.e., the minimal set of

axioms from the ontology which is responsible for their unsatisfiability. For example,

the justification for the entailmentPerson ≡ ⊥ is the two axiom sets:{1, 4, 6}, {1, 5, 7}.

This justification is also referred to as theMUPS of the unsatisfiable concept, as seen in

Chapter 4.

From a repair point of view, the significance of theMUPS(Person) is clear – in order

to make the classPerson satisfiable inO1, we need to remove fromO1 at least one axiom

in each set present in theMUPS(Person). Thus, the repair service uses this information to

automatically generate a minimal repair solution to fix this bug, e.g., assuming we do not

want to remove axiom1 since it is the concept definition axiom, one solution is to remove

axioms{4, 7} fromO1.

115

Figure 6.1:Ontology Repair Service

Moreover, if the ontology has numerous unsatisfiable classes, as is the case above,

the Root-Error Pinpointing Service devised in Chapter 5 can be used to identify the core

errors, by separating theroot from thederivedunsatisfiable classes, e.g., inO1, the class

Student is purely derived, while Parent is a root, because of the subclass dependency re-

lation in axiom8. This implies that any repair solution to fixParent is guaranteed to make

the classStudent satisfiable as well. Thus, the repair service makes use of this knowledge

to arrive at a solution that removes theleast number of axiomsfrom the ontology while

repairingall the unsatisfiable bugs.

However, the main drawback of automatically generating a solution is that it is im-

possible to determine what acorrector appropriaterepair solution is for every case, since

assessing the quality of a solution is left to the ontology authors’ discretion. In theO1 ex-

ample, an alternate solution that contains a minimal axiom set (not including the concept

definition axiom1) is the set{5, 6}, though this solution is probably undesired. Obvi-

ously, there is no way a tool can automatically distinguish between desired and undesired

solutions. In the absence of any domain knowledge or modeler intent, the only option

is to take into account suitable heuristics to ensure that the service arrives at reasonable

solutions, present alternatives to the user and facilitate feedback to improve their quality.

Thus, the naive, straightforward design of the repair service that uses the previous

116

debugging services to come up with axiom-removal solutions is modified as shown in

Figure 6.1. It includes the following modules: anAxiom Rankingmodule that uses various

strategies to prioritize erroneous axioms, aSolution Generationmodule that automatically

generates repair plans which can be customized easily, and anAxiom Rewritemodule that

enhances the solutions by suggesting appropriate axiom edits where possible to the user.

The purpose of these modules is to create a service that aids the user in understanding and

evaluating the options available for repair.

6.3 Axiom Ranking Module

Given a set of erroneous axioms in an ontology, the key task for repair is selecting

which of the axioms need to be modified or removed. For this purpose, we consider

whether axioms can beranked in order of importance. Repair is then reduced to an

optimization problem whose primary goal is to get rid of all the inconsistency errors in

the ontology, while ensuring that the highest rank axioms are preserved and the lowest

rank axioms removed from the ontology.

In this section, we describe the Axiom Ranking module of our Ontology Repair

service. This module uses the following strategies to rank erroneous axioms:

• Frequency: the number of times the axiom appears in the MUPS of the various

unsatisfiable concepts in an ontology. If an axiom appears inn different MUPS

(in each set of the MUPS), removing the axiom from the ontology ensures thatn

concepts turn satisfiable. Thus, higher the frequency, lower the rank assigned to the

axiom

117

• Semanticrelevance to the ontology, in terms of the impact (i.e., entailments lost

or added) when the axiom is removed or altered. Greater the impact caused by

removing the axiom, higher it’s assigned rank and vice versa.

• Test casesspecified manually by the user to rank axioms. Axioms are ranked in

direct (or inverse) proportion to desired (or undesired) entailments specified by the

user.

• Syntacticrelevance to the ontology, in terms of the usage of the elements in the

axiom signature. Axioms related to elements that are strongly connected in the

ontology graph are ranked higher and vice versa.

Among the above strategies, determining thefrequencyof the axiom is straightfor-

ward once the MUPS of the unsatisfiable concepts has been determined (using the Axiom

Pinpointing service). We now describe each of the remaining strategies in detail in the

following subsections.

6.3.1 Semantic Relevance: Impact Analysis

The basic notion of revising a knowledge base while preserving as much informa-

tion as possible has been discussed extensively in belief revision literature [1]. We now

apply the same principle to repairing unsatisfiable concepts in an OWL ontology, i.e.,

we determine the impact of the changes made to the ontology in order to get rid of un-

satisfiable concepts, and identify minimal-impact causing changes. Since repairing an

unsatisfiable concept involves removing axioms in it’s MUPS, we consider the impact of

axiom removal on the OWL ontology.

118

A fundamental property of axiom removal based on the monotonicity of OWL-DL

is the following: removing an axiom from the ontology cannot add a new entailment.

Hence, we only need to consider entailments (subsumption, instantiation etc.) that are

lost upon axiom removal, and need not consider whether other concepts in the ontology

turn unsatisfiable.

For the purpose of impact analysis, we present a simple definition ofsemantic rel-

evance.

Definition 1 (Semantic Relevance)

Given an ontologyO with axiomα, the semantic relevance ofα, given bySRα, is

a set of entailments{β1, ..βn} such that for each entailmentβi ∈ SRα (1 ≤ i ≤ n), it

holds thatO |= βi but (O − α) 6|= βi.

The above definition is quite broad as it allows an arbitrarily infinite set of entail-

ments to be considered as semantically relevant (e.g., if an ontology entailsC v D, it

also entailsC v DtD′ whereD′ is any arbitrary concept), hence we shall only consider

subsumption/disjointness betweenatomicconcepts and instantiation ofatomicconcepts

as the key entailments to check for when an axiom is removed. In the next subsection, we

discuss how the user can provide a set of test cases as additional interesting entailments

to check for.

Note that axiom ranks are assigned in direct proportion to their semantic relevance,

i.e., higher the semantic relevance, more the entailments that are lost upon it’s removal,

and hence higher the axiom rank.

119

Computing Semantic Relevance

In order to compute the semantic relevance of an axiom w.r.t. some key entail-

ments, a brute-force technique involves processing the ontology using a DL reasoner by

removing the concerned axiom and noting the entailments lost. Obviously, performance

issues are the main concern here, especially when dealing with large ontologies contain-

ing thousands of axioms. Though we are exploring techniques for incremental reasoning

for dynamic (changing) ontologies [80], this is still largely an unexplored field.

A more optimal solution is employed by our Ontology Repair service and the algo-

rithm is shown in Table 6.1.

Algorithm: Compute Semantic Relevance
Input: OntologyO, Set of erroneous axiomsS, weighting factorwt
Output: Entailment MapM , Rank functionrank
while classifyingO using a reasoner,

for eachsubsumptionC v D,
if C is unsatisfiable,

handleUnsat(C v D)
else

computeJUSTIFY (C v D) using Axiom Pinpointing (tableau tracing, ref. Ch4)
for eachaxiomα ∈ S s.t.α ∈ JUSTIFY (C v D),

M(α)→M(α) ∪ {C v D}
while realizingO using a reasoner,

for each instantiationC(a),
computeJUSTIFY (C(a)) using Axiom Pinpointing (tableau tracing, ref. Ch4)
for eachaxiomα ∈ S s.t.α ∈ JUSTIFY (C(a)),

M(α)→M(α) ∪ {C(a)}
for eachaxiom entryα in M and entailmentE ∈M(α)

if (O − α) |= E
M(α)←M(α)− E

for eachaxiomα ∈ S,
rank(α)← sizeof(M(α)) ∗ wt

subroutine: handleUnsat(C v D)
useStructural Analysis(ref. Ch5) to obtainT ⊆ O s.t.T |= C v D andC is satisfiable inT
for eachaxiomα ∈ S s.t.α ∈ T ,

M(α)→M(α) ∪ {C v D}
return

Table 6.1: Computing Semantic Relevance

The algorithm accepts as input the OWL ontologyO, a set of erroneous axiomsS

120

responsible for the various logical errors in it, and a weighting factorwt used for comput-

ing ranks. It returns a map (bijection)M that associates each erroneous axiom with the

entailments that are lost from the ontology when the axiom is removed, and a function

rank that assigns an axiom rank based on the entailments associated with the axiom in

M and the value ofwt specified.

The idea behind the algorithm is the following: we use the Axiom Pinpointing

service (seen in Chapter 4) to obtain the justification sets (axioms) responsible for the sig-

nificant subsumption and/or instantiation relationships in the ontology, and then directly

determine the justification sets the axiom falls in. Since the tableau tracing (Glass-box)

version of the Axiom Pinpointing service does not impose much overhead over the regular

reasoning procedure, we can easily compute a single justification set for each entailment

during reasoning. However, since we only find one justification set for the entailment,

we need to check whether the entailment would actually be lost when the axiom in the

set is removed. The second to last loop in the main algorithm verifies this. Note that the

number of entailments tested as a result of this algorithm is a fraction of the total set of

entailments that would have been tested if one were to use the brute force method.

In addition, the algorithm makes use of a subroutinehandleUnsat(..) to deal with

entailments related to unsatisfiable classes, which represent a special case. This is because

when a concept is unsatisfiable, it is equivalent to the bottom concept (or in the OWL

language,owl:Nothing), and hence is trivially equivalent to all other unsatisfiable

concepts, and is a subclass of all satisfiable concepts in the ontology. In this case, we need

to differentiate between the stated or explicit entailments related to unsatisfiable concepts

and the trivial ones. Thus, we apply the following strategy: if a given entailment related

121

to an unsatisfiable concept holds in afragmentof the ontology in which the concept is

satisfiable, we consider the entailment to be explicit. While this is a hard problem, the

subroutine uses theStructural Analysistechniques seen in Chapter 5 to detect explicit

relationships involving unsatisfiable concepts without performing large scale ontology

changes.1

We consider a few examples that highlight the significance of semantic relevance.

Example 1: In the Tambis OWL ontology2, the following set of axioms cause 77

unsatisfiable classes:

1. metal ≡ chemical u (= 1).atomic-number u ∃atomic-number.integer

2. non-metal ≡ chemical u (= 1).atomic-number u ∃atomic-number.integer

3. metalloid ≡ chemical u (= 1).atomic-number u ∃atomic-number.integer

4. metal v ¬non-metal

5. metalloid v ¬non-metal

6. metalloid v ¬metal

In this case, though the disjoint axioms appear in the MUPS of each of the three

unsatisfiable concepts,metal, non-metal, metalloid, removing them is not the correct so-

lution, since eliminating them removes the disjointness relations between numerous other

classes in the ontology and also makes all three concepts above equivalent which is prob-

ably undesired.

1For example, we use theInferred Dependency Detectionheuristic to get rid of the contradictions in the
ontology while revealing the hidden subsumption entailments. Our evaluation in Chapter 7 demonstrates
that heuristics based on this technique work quite well in practice.

2Note: All ontologies mentioned in this paper are available online at
http://www.mindswap.org/ontologies/debugging/

122

In fact, a better solution is to weaken the equivalence to a subclass relationship in

each concept definition, thereby getting rid of the subclasses:chemical u (= 1)atomic-

number u ∃atomic-number.integer v metal/non-metal/metalloid; and we find that re-

moving these relationships has no impact on other entailments in the ontology.

Example 2: Consider the followingMUPS of an unsatisfiable conceptOceanCrustLayer

w.r.t. the Sweet-JPL ontologyO2:

1. OceanCrustLayer v CrustLayer

2. CrustLayer v Layer

3. Layer v Geometric 3D Object

4. Geometric 3D Object v ∃hasDimension.{“3D”}

5. OceanCrustLayer v OceanRegion

6. OceanRegion v Region

7. Region v Geometric 2D Object

8. Geometric 2D Object v ∃hasDimension.{“2D”}

9. hasDimension is Functional

Note that inO2, each of the conceptsCrustLayer, OceanRegion, Layer, Region,

Geometric 3D Object, Geometric 2D Object, has numerous individual subclasses.

In this case, removing the functional property assertion onhasDimension fromO2

eliminates the disjoint relation between conceptsGeometric 2D Object andGeometric 3D Object,

and between all it’s respective subclasses. Also, removing any of the following axioms

2, 3, 4, 6, 7, 8 eliminates numerous subsumptions from the original ontology. Thus, using

the minimal impact strategy, the only option for repair is removing either1 or 5, which

123

turns out to be the correct solution, based on the feedback given by the original ontology

authors.

6.3.2 User Test Cases

In addition to the standard entailments considered in the previous subsection, the

user can specify a set of test cases describing desired entailments (similar to the idea

proposed in [35]). Axioms to be removed are then directly ranked based on the desired

entailments they break.

Also, in some cases, the user can specifyundesiredentailments to aid the repair

process. For example, a common modeling mistake is when an atomic conceptC inad-

vertently becomes equivalent to the top concept,owl:Thing . Now, any atomic con-

cept disjoint fromC becomes unsatisfiable. This phenomenon occurred in the CHEM-A

ontology, where the following two axioms caused conceptA (anonymized) to become

equivalent to>: {A ≡ ∀R.C, domain(R,A) }.

To incorporate test cases such as these into the algorithm shown in Table 6.1, we

modify it to allow two more input arguments – a set of user-specified entailments and

a function which annotates entailments as desired or undesired. Then, during the main

routine, we obtain the justifications of the manually specified entailments (in addition to

the standard ones) and verify if the axiom removal breaks such entailments or not (by

checking the justifications). Finally, while computing the functionrank based on the

entailment mapM , we use the information about whether the entailment is desired or not

to assign a positive or negative valued weight respectively.

124

6.3.3 Syntactic Relevance

There has been research done in the area of ontology ranking [81], [29], where for

example, terms in ontologies are ranked based on their structural connectedness in the

graph model of the ontology, or their popularity in other ontologies, and the total rank

for the ontology is assigned in terms of the individual entity ranks. Since an ontology is

a collection of axioms, we can, in theory, explore similar techniques to rank individual

axioms. The main difference, of course, lies in the fact that ontologies as a whole can

be seen as documents which link to (or import) other ontology documents, whereas the

notion of linkage is less strong for individual axioms.

Here, we present a simple strategy that ranks an axiom based on theusageof ele-

ments in it’s signature. For this, we define the notion of syntactic relevance.

Definition 2 (Syntactic Relevance)

Given an ontologyO with axiomα, let sign(α) = {E1, ..En} be the signature of

α, whereEi is either an atomic concept, role or individual in the vocabulary ofO. The

usage of an entityEi, given byusage(Ei), is the set of axiomsS = {α1, ...αm}, (S ⊆ O),

s.t. for eachαi ∈ S, Ei ∈ sign(αi). Then, the syntactic-relevance rank of the axiomα is

given by:size(usage(E1)).. ∪ usage(En)).

The significance of this strategy is based on the following intuition: if the entities

in the axiom are used (or are referred to) often in the remaining axioms or assertions

of the ontology, then the entities are in some sense, core or central to the overall theme

of the ontology, and hence changing or removing axioms related to these entities may be

undesired. For example, if a certain concept is heavily instantiated, or if a certain property

125

is heavily used in the instance data, then altering the axiom definitions of that concept or

property is a change that the user needs to be aware of. Similarly, in large ontologies

where certain entities are accidentally underspecified or unused, axioms related to these

entities may be given less importance.

An algorithm to determine the syntactic relevance is shown below. Similar to the

algorithm depicted in Table 6.1, it accepts as input the OWL ontology, a set of erroneous

axioms and a weighting factor used to compute axiom ranks. It enforces the semantics

of Definition 2 and assigns ranks based on the usage of entities in the signature of the

erroneous axiom.

Algorithm: Compute Syntactic Relevance
Input: OntologyO, Set of erroneous axiomsS, weighting factorwt, axiom type weight functionτ
Output: Rank functionrank
initialize entity usage mapMu

for eachaxiomα ∈ O,
sign(α)← signature of axiomα
for eachentity (class, property, individual)E ∈ sign(α),

Mu(E)←Mu(E) ∪ α
for eachaxiomα ∈ S, s.t.rank(α) = 0

for eachentityE ∈ sign(α),
rank(α)← rank(α) ∪Mu(α) ∗ τ(α)

rank(α)← rank(α) ∗ wt

Table 6.2: Computing Syntactic Relevance

In order to make the ranking approach more flexible, an additional input to the al-

gorithm is a functionτ that assigns weights based on various axiom types, e.g., it allows

weighing property attribute assertions such asowl : InverseFunctional higher. This func-

tion specified by the user would be motivated by the ontology modeling philosophy and

purpose (e.g., as is done in OntoClean [38], where certain concept / property definition

types are given higher importance).

126

6.4 Solution Generation Module

So far, we have devised a procedure to find ranks for various erroneous axioms

(MUPS) in the ontology. The next step is to generate a repair plan (i.e., a set of ontol-

ogy changes) to resolve the unsatisfiable or inconsistency errors taking into account their

respective MUPS and axiom ranks. This is handled by the solution generation module,

which uses a standarduniform cost searchalgorithm taking the computed axiom ranks as

the cost.

Figure 6.2 shows an example of a search tree generated by the algorithm for a

collection of erroneous axiom setsC = {{2, 5}, {3, 4, 7}, {1, 6}, {4, 5, 7}, {1, 2, 3}} with

the axioms1 − 7 ranked as follows:r(1) = 0.1, r(2) = 0.2, r(3) = 0.3, r(4) = 0.4,

r(5) = 0.3, r(6) = 0.3, r(7) = 0.5, wherer(x) is the rank of axiomx. The ranks are

computed based on the factors mentioned earlier, such as frequency, impact analysis etc.

each weighed separately if needed using appropriate weight constants. The superscript

for each axiom-number denotes the rank of the axiom, andPr is the path rank computed

as the sum of the ranks of axioms in the path from the root to the node. For example, for

the leftmost path shown:Pr = 0.2 + 0.3 + 0.1 + 0.3 = 0.9.

As shown in the figure, the repair solution found with the minimal cost is either

{2,4,1} or {5,3,1}.

However, there is a drawback of using the above procedure to generate repair plans,

i.e., impact analysis is only done at a single axiom level, whereas the cumulative impact of

the axioms in the repair solution is not considered. This can lead to non-optimal solutions.

For example, in the Tambis OWL ontology seen earlier, where the three root classes are

127

Figure 6.2:Uniform Cost Search: Generating a repair plan based on ranks of axioms in
the MUPS of unsatisfiable concepts.

asserted to be mutually disjoint, removing any one of the disjoint axioms does not cause

as large an impact as removing all the disjoints together.

In order to resolve this issue, we propose a slight modification to the algorithm:

each time a solution is found, we compute a new cost based on the cumulative impact

of the axioms in the solution. The algorithm now finds repair plans that minimize these

updated costs.

6.4.1 Improving and Customizing Repair

The algorithm described above can be used in general to fix any arbitrary set of

unsatisfiable concepts, once the MUPS of the concepts and the ranks for axioms in the

MUPS is known. Thus, a brute force solution for resolvingall the errors in an ontology

involves determining the MUPS (and ranking axioms in the MUPS) foreachof the un-

128

satisfiable concepts. This is computationally expensive and moreover, unnecessary, given

that strong dependencies between unsatisfiable concepts may exist. Thus, we need to

focus on the MUPS of the critical or root contradictions in the ontology.

To achieve this, we make use of the Root-Error Pinpointing service described in

Chapter 5 that identifies theroot unsatisfiable concepts in an ontology, which propagate

and cause errors elsewhere in the ontology, leading toderivedunsatisfiable concepts.

Recall that a root unsatisfiable concept is one in which a clash or contradiction found

in the concept definition does notdepend on the unsatisfiabilityof another concept in

the ontology; whereas, a derived unsatisfiable concept acquires a contradiction due to

it’s dependence on another unsatisfiable concept. For example, ifA is an unsatisfiable

concept, then a conceptB (B v A) or C (C v ∃R.A) also becomes unsatisfiable due

to it’s dependence onA, and is thus considered as derived. From a repair point of view,

the key advantage here is that one needs to focus on the MUPS of the root unsatisfiable

concepts alone since fixing the roots effectively fixes a large set of directly derived concept

bugs.

Also, the service guides the repair process which can be carried out by the user at

three different granularity levels:

• Level 1: Reparing a single unsatisfiable concept at a time: In this case, it makes

sense to deal with the root unsatisfiable concepts first, before resolving errors in

any of the derived concepts. This technique allows the user to monitor the entire

debugging process closely, exploring different repair alternatives for each concept

before fully fixing the ontology. However, since at every step in the repair process,

129

the user is working in a localized context (looking at a single concept only), the

debugging of the entire ontology could be prolonged due to new bugs introduced

later based on changes made earlier. Thus, the repair process may not be optimal.

• Level 2: Repairing all root unsatisfiable concepts together: The user could batch

repair all the root unsatisfiable concepts in a single debugging iteration before pro-

ceeding to uncover a new set of root/derived unsatisfiable concepts. This technique

provides a cross between the tool-automation (done in level 3) and finer manual

inspection (allowed in level 1) with respect to bug correction.

• Level 3: Repairing all unsatisfiable concepts: The user could directly focus on

removing all the unsatisfiable concepts in the ontology in one go. This technique

imposes an overhead on the debugging tool which needs to present a plan that

accounts for the removal of all the bugs in an optimal manner. The strategy works

in a global context, considering bugs and bug-dependencies in the ontology as a

whole, and thus may take time for the tool to compute, especially if there are a

large number of unsatisfiable concepts in the ontology (e.g. Tambis). However, the

repair process is likely to be more efficient compared to level 1 repair.

The number of steps in the repair process depends on the granularity level chosen

by the user: for example, using Level 1 above, the no. of steps is atleast the no. of

unsatisfiable concepts the user begins with; whereas using Level 3 granularity, the repair

reduces to a single big step. To make the process more flexible, the user is allowed to

change the granularity level, as and when desired, during a particular repair session (see

section 6.6: Putting It All Together).

130

6.5 Axiom Rewrite Module

To make our repair solution more flexible, the Axiom Rewrite module considers

strategies to edit erroneous axioms instead of strictly removing them from the ontology.

An important point to note here is that if the rewrite is not astrict weakening, we need

to determine the new entailments that areintroducedbecause of the rewrite. At the very

least, no new unsatisfiable concepts should arise because of the rewrite, and currently we

test this using the reasoner directly. As future work, we plan to perform a more elaborate

analysis of the added entailments by making use of techniques we are developing for

incremental reasoning [42], [80].

Using Erroneous Axiom Parts

As shown in Chapter 4, the Axiom Pinpointing service can be used to output precise

justifications (in addition to asserted justifications) which identify parts of axioms in the

MUPS responsible for making a concept unsatisfiable. Having determined the erroneous

part(s) of axioms, the module suggests a suitable rewrite of the axiom that preserves as

much as information as possible while eliminating unsatisfiability.

Identifying Common Pitfalls

Common pitfalls in OWL ontology modeling have been enumerated in literature

[87]. We have summarized some commonly occurring errors that we have observed (in

addition to those mentioned in [87]), highlighting themeantaxiom and the reason for the

mistake in each case.

131

Asserted Meant Reason for Misunderstanding
A ≡ C A v C Difference between

Defined and Primitive concepts
A v C A v C tD Multiple subclass
A v D has intersection semantics

domain(P,A) A v ∀P.B Global vs. Local
range(P,B) property restrictions

domain(P,A) domain(P,A tB) Unclear about multiple domain
domain(P,B) semantics

Table 6.3: Common Errors in OWL

The library of error patterns is used in the axiom rewrite module as follows: once

an axiom responsible for an unsatisfiable concept is identified, we check if the axiom has

a pattern corresponding to one in the library, and if so, suggest themeantaxiom to the

user as a replacement. As future work, we plan to make this library easily extensible and

shareable among ontology authors and users.

6.6 Putting It All Together: Service Description

In the previous sections, we have described the various modules of the Ontology

Repair Service. We now describe a single coherent version of the service that ties the

modules together (see Table 6.4).

During the execution of the repair service, the user is asked for his/her preferences

regarding the granularity level (g) of the solution, and additional information used to

compute ranks for erroneous axioms (weight-function for the various axiom types (τ) and

ranking metrics weights). Based on these preferences, the service computes an appropri-

ate repair solution by using a uniform cost search algorithm as described earlier (it uses

the subroutineGenerateSolution for this task).

Note that, where necessary, the service makes use of the Axiom Pinpointing service

132

to find the precise justifications of the unsatisfiable concept, and the Root Error Pinpoint-

ing service to find root unsatisfiable concepts. Also note that when generating a solution

to repair all the unsatisfiable concepts, the service works iteratively – considering only

the root unsatisfiable concepts in each iteration.

Finally, the Axiom Rewrite module (denoted by AXIOM-REWRITE(..) in Table

6.4 but not explicated), replacessubaxiomsin the solution set by appropriate axiom

rewrites, e.g., removing newly introduced terms in the subaxioms; and also performs a

lookup in the error pattern library for possible rewrite suggestions.

6.7 Conclusion / Outlook

In this chapter, we have discussed the key design factors of our Ontology Repair

service, namely, metrics for ranking axioms that contribute to the inconsistency, genera-

tion of repair plans based on axiom ranks, and techniques to suggest axiom rewrites when

possible. A nice outcome has been the use of services devised in the earlier chapters in

the various stages of repair, e.g., ranking axioms based on entailments they justify, gener-

ating plans faster using root/derived unsatisfiable classes, and suggesting rewrites based

on precise justifications.

However, the repair service is different in spirit from the services seen in Chapters

4, 5. The latter services are not dependent on human factors such as modeler’s intent,

background domain knowledge etc., making them more concrete or well-defined, whereas

the repair process is more interactive, heuristic-based and user-driven. This also implies

that User Interface (UI) issues play a larger role in determining the effectiveness of the

133

repair service, as compared to the earlier two services. We discuss the UI details of our

repair tool in the implementation and evaluation chapter (Chapter 7).

134

Algorithm: Ontology Repair Service
Input: OWL OntologyO
while O contains some unsatisfiable concepts,

ask user for: repair granularity levelg, axiom-type weight fn.τ , ranking metric weightswf , wi, wu

GenerateSolution(O, g, τ, wf , wi, wu)
soln← AXIOM-REWRITE(soln)

subroutine: GenerateSolution(O, g, τ, wf , wi, wu)
S ← ∅, soln← ∅
if g = 1 (repair one unsatisfiable concept at a time, say some arbitrary conceptC)

S ← JUSTIFYprecise(C v ⊥) (obtained using Axiom Pinpointing)
soln← repairAxiomSets(O, S, τ, wf , wi, wu)

else ifg = 2 (repair all roots)
R← set of root unsatisfiable concepts (obtained using Root Error Pinpointing)
for each root conceptr ∈ R,

S ← S ∪ JUSTIFYprecise(r v ⊥) (obtained using Axiom Pinpointing)
soln← repairAxiomSets(O, S, τ, wf , wi, wu)

elseg = 3 (repair all unsatisfiable concepts)
while there exists at least one unsatisfiable concept inO,

R← set of root unsatisfiable concepts (obtained using Root Error Pinpointing)
for each root conceptr ∈ R,

S ← S ∪ JUSTIFYprecise(r v ⊥) (obtained using Axiom Pinpointing)
solnitn ← repairAxiomSets(O, S, τ, wf , wi, wu)
remove axioms insolnitn fromO
soln← soln ∪ solnitn

return soln

subroutine: computeRanks(O, S, τ, wf , wi, wu)
for eachsetm ∈ S,

for eachaxiomα ∈ m
freq ← number of sets inS thatα falls in
rankf (α)← −wf ∗ freq

ranki ← compute Semantic Relevance(O,m, wi)
ranku ← compute Syntactic Relevance(O,m, wu, τ)

for eachaxiomα ∈ m wherem ∈ S,
rank(α)← rankf (α) + ranki(α) + ranku(α)

return rank

subroutine: repairAxiomSets(O, S, τ, wf , wi, wu)
rank ← computeRanks(O, S, τ, wf , wi, wu)
soln← uniform-cost-search(S, rank)
return soln

Table 6.4: Ontology Repair Service

135

Chapter 7

Implementation and Evaluation

In this chapter, we discuss the key issues involved in deploying the debugging and

repair services seen in Chapters 4-6, and present results demonstrating the practical sig-

nificance of these services.

The chapter is divided into two main sections – in Section 7.1, we describe im-

plementation details of each service, discuss human factors involved, and present per-

formance evaluations of the service. In section 7.2, we describe the results of two pilot

studies that were conducted to judge the overall use and benefit of the services.

We note that all the debugging and repair services have been implemented in the

OWL-DL reasoner Pellet1, and as part of the OWL Ontology Editor toolkit, Swoop2. For

a detailed background of Swoop and Pellet, we refer the reader to [57], [97], and the

Appendix.

Before proceeding, we mention the main sample data used in our experiments – we

selected existing OWL ontologies that varied greatly in size, complexity and expressiv-

ity3. The details of the ontologies are given in Table 7.1.

The table displays the DL expressivity of each ontology, followed by the number

of axioms, classes/properties/individuals and unsatisfiable classes in the ontology, and

a small background description. With the exception of the University OWL ontology

1Pellet: http://www.mindswap.org/2003/pellet
2Swoop: http://www.mindswap.org/2004/SWOOP
3Note: The ontologies are available at http://www.mindswap.org/ontologies/debugging.

136

that we built for training purposes, all the remaining ontologies have been built by third

parties.

Ontology DL Expressivity Axioms C/P/I/Unsat. Comments
Chemical ALCH(D) 254 48/ 20/ -/ 37 Ontology dealing with chemical elements

containing real modeling errors
DOLCE SHOIN (D) 1417 200/ 299/ 39/ - Foundational ontology for linguistic and

cognitive engineering
Economy ALH(D) 1704 338/ 53/ 481/ 51 Mid-level ontology by Teknowledge

Galen SHF 6580 2749/ 413/ -/ - An adaptation of an early prototype of the
GALEN Clinical Terminology

Sweet-JPL ALCHO(D) 3833 1537/ 121/ 150/ 1 NASA ontology dealing with Earthscience
Tambis SHIN 800 395/ 100/ -/ 144 A biological science ontology developed

by the TAMBIS project
Transport ALH(D) 2051 444/ 93/ 183/ 55 Mid-level ontology by Teknowledge
University SIOF(D) 169 30/ 12/ 4/ 8 Training ontology hand-crafted to demonstrate

non-trivial errors
Wine SHIF(D) 856 77/ 18 /206/ - Expressive Ontology used in the OWL Guide

(modified to remove nominals)

Table 7.1: Sample OWL Data used in our Debugging/Repair Experiments

7.1 Deploying the Debugging & Repair Services

In this section, we focus on the three ontology debugging/repair services –Axiom

Pinpointing, Root Error PinpointingandOntology Repairseparately and discuss their

implementation and presentation issues in Swoop. The first two services also include a

performance (timing) evaluation. For the third service, i.e., Ontology Repair, timings are

included as part of the user study described in section 7.2.

7.1.1 Implementing Axiom Pinpointing

Recall that the Axiom Pinpointing service is used to obtain the justification set

for any entailment of an ontology, i.e., the minimal set of axioms from the ontology

responsible for the entailment. For debugging purposes, we can use it to either obtain the

137

minimal set of axioms responsible for an unsatisfiable class in a consistent ontology, or

responsible for an inconsistent ontology itself.

Figure 7.1: Displaying the Justification Axioms as a Single Unordered List

Figure 7.1 shows an example of this feature when invoked from within Swoop.

The figure displays the thirteen axioms (of the only justification set) responsible for the

unsatisfiability of the classOceanCrustLayer in the Sweet-JPL OWL Ontology.

From a debugging point of view, the advantage of this presentation is clear – among

the (roughly) three thousand axioms present in the Sweet-JPL ontology, only the thirteen

axioms that make the class unsatisfiable are displayed, and moreover, if any one of these

axioms is removed from the ontology, the classOceanCrustLayer is guaranteed to turn

satisfiable (since this is the only justification). However, on the downside, displaying

the axioms as a single unordered list makes it difficult to see the interaction between the

axioms and understand the real cause of the unsatisfiability.

To address this issue, we have made several enhancements in the presentation of the

axioms in order to facilitate the understanding of the problem. These include:

138

• Displaying Clash Information(when using the tableau-based version of the Axiom

Pinpointing service)

• Improving Axiom Layout, i.e., ordering and indenting axioms

• Striking out Irrelevant Parts(when using the service to obtainprecise justifications)

Figure 7.2 shows an enhanced version of the earlier example.

Figure 7.2: Improved Presentation of the Justification

We now describe each of these enhancements in detail.

Displaying Clash Information

As noted in Chapter 2, there are many different ways for the axioms in an ontology

to cause an inconsistency. But these different combinations boil down to some basic con-

tradictions in the description of an individual. Tableaux algorithms apply transformation

rules to individuals in the ontology until no more rules are applicable or an individual has

a clash. The basic set of clashes in a tableaux algorithm are:

139

• Atomic: An individual belongs to a class and its complement.

• Cardinality: An individual has a cardinality restriction on a property that is violated.

• Datatype: A literal value violates the (global or local) range restrictions on a datatype

property.

When using the tableau-based (hybrid) version of the Axiom Pinpointing service,

it is easy to modify the internals of the tableau algorithm to expose and display the clash

causing the inconsistency (as seen in Chapter 4).

One of the main challenges is tousefullypresent this clash information to the user

since the normalization and decomposition of expressions (done by the reasoning algo-

rithms) can obscure the error by getting away from the concepts actually used by the

modeler. Thus, we maintain the correspondence between the original asserted terms and

their normalized versions, and display only the asserted information to the user.

Also, the clash may involve some individuals that were not explicitly present in the

ontology, but generated by the reasoner in order to try to adhere to some constraint. Those

generated individuals may not even exist (or be relevant) in all models. For example, if

an individual has aowl : someValuesFrom restriction on a property, the reasoner would

generate a new anonymous individual that is the value of that property. In this case,

since these individuals do not have a name (URI) associated with them, we use paths of

properties for identification (see Figure 7.3 for an example).

140

Figure 7.3: Displaying clash information using a property-path and variables to denote
anonymous individuals. This example has been taken from the Mad-Cow ontology used
in the OilEd [8] Tutorials.

Improving Axiom Layout

In order to improve the axiom layout, we use a recursive ordering strategy that starts

with the unsatisfiable class definition axioms, and arranges axioms such that atleast one

element (i.e., class, property or individual) in the signature of the right hand side (RHS)

of the current axiom matches with the left hand side (LHS) of the next. The motivation

here is to present a chain of reasoning by suitably aligning related axioms, i.e., axioms

sharing elements in their signature. We discuss the pros and cons of this strategy with

some sample cases.

Figure 7.4 shows three cases based on our axiom layout strategy. In each case,

the ordering and indentation of the axioms helps leads the user down several reasoning

chains, with the end-points of each chain being a direct pointer to the contradiction.

For example, in case (A), by following axioms1 → 2, 1 → 3 the user can see

that an instance of classAIStudent is related to an instance of classProfessorInHCIorAI

by propertyhasAdvisor, whoseinverse propertyadvisorOf adds the typeHCIStudent

back to the first instance. Finally, the sole axiom 4 highlights the disjointness between the

141

Figure 7.4:Ordering and Indenting Justification Axioms. Example (A) has been taken
from the University OWL Ontology, whereas examples (B),(C) are from the Tambis On-
tology.

classesAIStudent, HCIStudent thus making the contradiction clear. Similarly, in case (B),

the reasoning chain consisting of axioms1..6 indicates that an instance of classoxidation

is related to an instance of class¬regulation (via propertyinvolves), whereas the reasoning

chain[1..4, 4→ 7] points to the contrary. Finally, in case (C), the axioms1→ 9 indicate

that an instance ofgene− part is related to an instance ofcarbon, whereas the last three

unordered axioms10..12 point to the source of contradiction incarbon.

The reason this strategy works well in practice is because, typically, most of the

axioms in an OWL ontology are subclass or equivalent axioms, which correspond to

implications in FOL, i.e.,C v D 7→ ∀(x)C(x) → D(x). Hence, a chain of sub-class

relations forms a chain of implications, which is easy for the user to understand. Thus,

this strategy relies on leading the user systematically from the base set of facts to the

inferred ones until the source of the contradiction is reached.

142

However, there are cases when the interaction between the axioms is difficult to

grasp even when the axioms are laid out as shown above. Figure 8.2 illustrates this point.

Figure 7.5: Justification example where ordering/indenting of axioms fails

In the figure, the cause of the unsatisfiability ofPerson is highly non-trivial. This

is due to the interaction between axioms2 − 5 which makes the classPublishedWork

equivalent to> (Top concept or in the OWL language,owl : Thing). Thus, axiom1

which asserts the disjointness ofPerson andPublishedWork causes the former to become

unsatisfiable. However, notice that it is difficult to get an indentation of the axioms that

illustrates this form of interaction.

One way to alleviate the problem is to display critical intermediate inferences (e.g.,

the equivalence betweenPublishedWork and>) to help understand the error better, as

discussed in the future work section in Chapter 8.

Striking out Irrelevant Parts

When the Axiom Pinpointing Service is used to obtainprecise justifications, we

can directly strike out the parts of axioms that do not contribute to the unsatisfiability

entailment. Figure 7.6 shows some examples that highlight this feature.

Notice that keeping the original asserted axioms in view, with the irrelevant parts

struck out, is done in order to maintain context. An alternative would be to hide the irrele-

143

Figure 7.6: Striking out parts of axioms that are irrelevant to the entailment

vant information and display the smaller axioms (sub-axioms) directly, but this would re-

quire a correlation between the sub-axioms and the corresponding asserted axioms, which

is an additional burden for the user.

7.1.2 Axiom Pinpointing: Performance Analysis

For the performance evaluation, we randomly selected 10 inferred entailments (in-

cluding unsatisfiable class entailments if any) in each ontology present in Table 7.1. For

each entailment, we first compared the performance of the base consistency checking

algorithm versus the pure Black-box and Hybrid solutions for computing asingle justi-

fication. We then evaluated the performance of the algorithm based on Reiter’s Hitting

Set Trees which computesall the justifications. The experiments have been performed

on a Pentium Centrino 1.6GHz computer with 1.5GB memory, with 256MB (maximum)

memory allotted to Java.

Computing a Single Justification

The second column of Table 7.2 shows the average runtime of the consistency test

used to verify an entailment; the third and fourth columns depict the average times to

find asinglejustification using the pure Black-box and the Hybrid solutions respectively.

144

Timings for individual entailment tests in the ontologies are shown in Figure 7.7. Also

shown are the average and maximum size of the justifications (in terms of axioms) in the

last two columns.

OWL Ontology Base Time Single Just. Single Just. Avg. Max.
(Black Box) (Hybrid) Just. size Just. size

Chemical 0.285 0.68 0.295 6.9 9
Dolce 0.863 0.213 0.888 2 2

Economy 0.179 0.054 0.199 3.5 4
Galen 1.232 0.341 1.291 3.6 7

Sweet-JPL 0.29 0.187 0.301 4.2 13
Tambis 0.434 9.421 0.455 8.3 17

Transport 0.59 0.274 0.609 5.2 8
University 0.045 0.074 0.05 4.2 9

Wine 0.034 0.39 0.036 5.1 7

Table 7.2: Performance of Algorithms that find aSingleJustification.

Figure 7.7:Evaluating Algorithms to Compute a Single Justification

There are two key points to note here:

1. The performance of the tableau-based hybrid algorithm to find a single justification

is only marginally worse than the base consistency checking performance. This is

not surprising, given that the ‘axiom tracing’ is tightly integrated into the standard

tableau expansion process and the final stage of the algorithm which reduces the

145

non-minimal axiom set (output by the tracing) to a minimal one by pruning out

extraneous axioms includes very few such axioms – in all the tested cases, we

found that the tracing output included atmost 5-10 irrelevant axioms. Thus, the final

pruning, which involves reasoning over a very small fraction of the axioms (i.e.,

justification set + irrelevant axioms, which totals around 20-25 in all), introduces

very little timing overhead.

2. The performance of the pure black-box solution to finding a single justification

depends entirely on the locality of the problem, i.e., in a lot of cases, where the

axioms responsible for the entailment are small in number (less than 10) and are

closely related to the concerned entity definitions, the black-box algorithm performs

well. However, for entailments in ontologies such as Chemical or Tambis, which

are mainly caused by highly non-local conditions, the performance is degraded, as

the algorithm needs to span out to find relevant axioms sometimes including many

irrelevant axioms which need to be pruned out subsequently.

One surprising result based on the timings shown in Figure 7.7 is that the black-box

solution beats the hybrid solution (even surpassing the base consistency checking

times) for entailments in an equal number of ontologies. The reason is that the input

to the black-box algorithm is a small fragment, sayO′, of the original ontologyO

(O′ << O) and thus the time taken by the reasoner to processO′ is much smaller

thanO (e.g., since many General Concept Inclusion axioms inO are not considered

initially). Thus, if the entailment is satisfied inO′ and the algorithm does not need

to expandO′ any further, the algorithm terminates in lesser time as it never has to

146

deal with the entire ontology.

However, the significance of the black-box timings must be taken into proper con-

text – in order to determine whether a particular entailment holds in an ontology,

we need to perform a consistency test over the entire ontology in the first place,

and the timings do not reflect this. The advantage of the hybrid solution is that the

justification finding can be done simultaneously (inline) during this consistency test

used to verify the entailment.

Computing All Justifications

Table 7.3 depicts the average runtimes obtained when executing the Axiom Pin-

pointing service to compute all the Justifications for the unsatisfiable concepts in the

above ontologies. Timings for individual entailment tests in the ontologies are shown

in Figure 7.8.

Ontology Base Time(s) All Justifications (s) Avg. #Just. Max. #Just.
Chemical 0.285 1.431 2.8 6

Dolce 0.863 1.034 1 1
Economy 0.179 1.318 1.1 2

Galen 1.232 10.177 1.3 2
Sweet-JPL 0.29 2.541 1.2 2

Tambis 0.434 34.727 3.4 6
Transport 0.59 17.987 2.2 3
University 0.045 0.062 1 1

Wine 0.034 1.137 2.3 5

Table 7.3: Performance of Algorithm to find All Justifications.

We found that our algorithm performs well in practice, for two main reasons. First,

the tableau-based hybrid algorithm for finding a single justification does not introduce

a significant overhead w.r.t. theSHOIN satisfiability algorithm as seen in Table 7.2.

Second, although the complexity of generating the Hitting Set Tree (HST) is exponential

147

Figure 7.8: Evaluating Algorithms to Compute All Justifications. Time scale is logarith-
mic.

with the number of justifications, most of the tested entailments exhibited at most three

or four justifications, with five to ten axioms each. For example, in the case of the Tambis

OWL ontology, where each of the entailments in Figure 7.8 have at least 3 justifications,

the algorithm terminated in less than a minute for most entailments.

Computing Justifications using other DL reasoners

We have also tested the Black-box Axiom Pinpointing algorithms with two other

DL reasoners besides Pellet - RACER Pro v1.9 [104] (the commercialized version of the

RACER system) and KAON2 [78] (the ontology management infrastructure built at the

University of Karlsruhe). Both, RACER Pro and KAON2, support the full OWL standard

with the exception of nominals, but in addition, allow for qualified cardinality restrictions

(hence supporting the logicSHIQ(D)). While reasoning in RACER Pro is based on

state-of-the-art tableaux algorithms (like Pellet), reasoning in KAON2 is implemented by

148

reducing a SHIQ(D) knowledge base to a disjunctive datalog program [55].

For comparing the performance of the Axiom Pinpointing algorithms based on the

three reasoners, we had to select OWL ontologies that could successfully be handled by

all of them (e.g., excluding ontologies that made use of nominals). Figure 7.9 shows the

results of the smaller evaluation on a few selected ontologies – Chemical, Economy, mini-

Tambis, Transport, and University (minus nominals). As noted earlier, these ontologies

have numerous unsatisfiable classes with many containing non-local errors (i.e., where all

the erroneous axioms are not local to the concept definition).

Figure 7.9: Comparison of DL reasoners to find Justifications

Figure 7.9 depicts the time taken by the Black-box Axiom Pinpointing algorithm

to find a single justification using RACER (Pro), KAON2 and Pellet respectively. The

X-axis denotes individual entailments tests (randomly chosen) for each of the ontologies

while the Y-axis denotes time in seconds.

The results show that RACER and Pellet both perform equally well and consis-

tently outperform KAON2, which is expected, given that the former (besides having been

149

around for a longer time) are based on highly optimized tableau algorithms making it bet-

ter suited to handle class-based reasoning for expressive DLs that underlie the ontologies.

7.1.3 Implementing Root Error Pinpointing

The Root Error Pinpointing service described in Chapter 5 contains a set of algo-

rithms for separating the root or critical errors in an ontology from the derived or depen-

dent ones. Figure 7.10 shows an example of this service where theStructural Analysis

algorithm is used to obtain a dependency table that highlights the parent dependencies of

any partially derived unsatisfiable classes and emphasizes the roots at the top.

Figure 7.10: Root/Derived Debugging in Tambis using Structural Analysis

In addition to using the service output, we have made simple modifications in the

UI to highlight error dependency. For example, all unsatisfiable named classes, and even

class expressions, are marked with red icons whenever rendered — a useful pointer for

150

identifying dependencies between inconsistencies. In Figure 7.11 (the Tambis ontology),

note how simply looking at the class definition ofgene− part makes the reason for the

inconsistency apparent: it is a subclass of the inconsistent classdna− part and the in-

consistent class expression∃partof.gene. The hypertextual navigation feature of Swoop

allows the user to follow these dependencies easily, and reach the root cause of the incon-

sistency, e.g., the class which is independently inconsistent in its definition (i.e., no red

icons in its definition). In this manner, the UI guides the user in locating and understand-

ing bugs in the ontology by narrowing them down to their exact source.

Figure 7.11: The classgene-part is unsatisfiable on two counts: its defined as an
intersection of an unsatisfiable class (dna-part) and an unsatisfiable class expression
(∃partof.gene), both highlighted using red tinted icons.

7.1.4 Root/Derived Performance Analysis

We have tested this service on various OWL ontologies that have a large number of

unsatisfiable concepts and found it to be very useful in narrowing down the error space

substantially, with its performance being reasonably fast.

Table 7.4 shows the summary of our evaluation of this service. The ontologies Tam-

bis, DICE-A (Anonymized version of the DICE terminology), Chemical and Terrorism

151

OWL Ontology Unsat. Concepts Root / Derived Step1-time / Step2-time
Tambis 144 3/141 0.033s / 1.893s
DICE-A 76 5/71 0.01s / 7s

Transportation 62 5/57 0.02s / 2.8s
Economy 51 34/17 0.01s / 2.5s
Chemical 37 2/35 0.01s / 0.14s
Terrorism 14 5/9 0s / 0.951s

Table 7.4: Evaluation of the Root/Derived Debugging Service

contain real modeling errors, while Transportation and Economy ontologies have unsat-

isfiable concepts introduced in them using the Strong Disjointness Assumption (SDA) as

noted in [92], i.e., by adding disjoint statements between siblings.

As can be seen, the number of root concepts found in each case is a fraction of

the total number of unsatisfiable concepts (with the exception of the Economy ontology

where it is still a reasonable reduction). The last column displays separate timings (in

seconds) for the two steps in the service algorithm, i.e., structural tracing and inferred

dependency detection as described in Chapter 5.The results clearly show that the service

plays a key role in pruning errors quickly.

7.1.5 Ontology Repair

The Ontology Repair service described in Chapter 6 is used to generate repair plans

to fix errors in an ontology based on various metrics for ranking erroneous axioms.

The key design goal for its UI in Swoop is to provide a flexible, interactive frame-

work for repairing the ontology by allowing the user to analyze erroneous axioms, weigh

axiom ranks as desired, explore different repair solutions by generating plans on the fly,

preview change effects before executing the plan and compare different repair alterna-

tives. Moreover, the tool also suggests axiom edits where possible.

152

Figure 7.12 is a screenshot of the Swoop repair plugin when used to debug the Uni-

versity OWL ontology. As can be seen, the top segment of the repair frame displays a

list of unsatisfiable concepts in the ontology, with theroot classes marked. The adjacent

pane renders the axioms responsible for making the concepts selected in the list unsatis-

fiable. There are two view modes for this pane – the one shown in Figure 7.12 displays

the erroneous axioms for each unsatisfiable class in separate tables with axioms indented

(as described earlier), and common axioms responsible for causing multiple errors high-

lighted as shown. The other view displays all erroneous axioms globally, i.e., in a single

list as shown in Figure 7.13.

Figure 7.12:Interactive Repair in Swoop: Generating a repair plan to remove all unsat-
isfiable concepts in the University OWL Ontology

The tables in both views display for each axiom, its arity, impact and usage, com-

153

Figure 7.13: Analyzing Erroneous Axioms in a Single (Global) View

puted as described in Chapter 6. The values for these parameters are hyperlinked, clicking

on which pops up a pane which displays more details about the parameter (not shown in

the figure). For example, clicking on a value for the arity displays the concepts whose jus-

tification the axiom falls in, while clicking on a value for the impact displays entailments

that are dependent on this axiom.

Figure 7.14: Displaying the Impact of Erroneous Axiom Removal

To see how the impact analysis is useful, see Figure 7.14. The figure displays the en-

tailments that are dependent on the axiomLecturer ≡ hasTenure.falseuTeachingFaculty.

In this case, the tool has displayedusefulentailments related to unsatisfiable classes (high-

154

lighted in red), as described in Chapter 6. The user can see the reason for each of these

entailments by clicking on theWhy? link, e.g., the two axioms which cause the entail-

mentLecturer ≡ AssistantProfessor, and use this information to reach a suitable plan as

discussed below.

Also, clicking on the table headers re-sorts the results based on the parameter se-

lected. The total rank for each axiom, displayed in the last column of the table, is the

weighted sum of the parameter values, with the weights (and thus ranks) being easily

reconfigurable by the user. For example, users interested in generating minimal impact

plans can assign a higher weight to the impact parameter, while users interested in smaller

sized plans can weigh arity higher. The range of the weights is from -1.0 to 1.0.

As discussed in Chapter 6, we provide three different granularities for the repair

process, i.e., the ability to fix a particular set of unsatisfiable concepts; all therootsonly;

or all the unsatisfiable classes directly in one go. For example, in Figure 7.12, the user

has asked the tool to generate a plan to repair all the roots.

For a repair tool to be effective, it should support the easy customization of the plan

to suit the user’s needs. In the simple case, the user can either choose tokeepa particular

axiom in the ontology, or forciblyremovea particular one. These user-enforced changes

are automatically reflected in the plans. In Figure 7.12, the user has chosen tokeepthe

disjoint axiomsAIStudent v ¬HCIStudent, andLecturer v ¬AssistantProfessor in the

ontology (highlighted in green in the Table). In the advanced case, the user can choose to

keep or remove a particular entailment of the ontology, e.g., a particular subclass relation.

The tool then takes these desired and undesired entailments into account when generating

a plan.

155

Finally, axiom rewrites suggested by the tool (based on the techniques described

in Chapter 6) can be (optionally) included in the plan as well. In the figure, the tool has

suggested weakening the two equivalence axioms to subclass relations, which removes

the contradictions in the unsatisfiable classes, but preserves the semantics as much as

possible. Obviously, the user can directly edit erroneous axioms if desired.

The repair plan can be saved, compared with other plans and executed, after which

the ontology changes (which are part of the plan) are logged in Swoop. These changes

can be serialized and shared among ontology users (as shown in Chapter 8).

7.2 Usability Studies

In order to determine the practical use and efficiency of the debugging and repair

features implemented in Swoop/Pellet, we conducted a small usability-study as follows:

1. We selected twelve subjects in all having at least 9 months of experience with

OWL and with an understanding of description-logic reasoning that varied greatly

(novices to experts). Most of the subjects were undergraduate and graduate students

at the University of Maryland in the Computer Science dept.

2. Each subject received a 20-30 minute orientation that covered:

• an overview of the semantic errors found in OWL ontologies (using examples

of unsatisfiable classes)

• a brief tutorial of Swoop, demonstrating its key browsing, editing and search

features

• a detailed walkthrough of the debugging and repair support in Swoop using a

156

set of toy ontologies

We then performed two separate studies, the first testing the debugging services, i.e.

Axiom Pinpointing and Root Error Pinpointing; and the second evaluating the Ontology

Repair service.

7.2.1 Evaluating Debugging

In this case, the twelve subjects wererandomlydivided into 4 groups of three sub-

jects each as follows:

Group 1: Subjects in this group receivedno debugging supportat all, i.e., only a list of

unsatisfiable classes in the ontology was displayed by the reasoner

Group 2: Subjects in this group could only use theAxiom Pinpointingservice

Group 3: Subjects in this group could only use theRoot Error Pinpointingservice

Group 4: Subjects in this group could useboth, the Axiom Pinpointing and the Root

Error Pinpointing services

Having formed the groups, each subject was given three erroneous ontologies –

University.owl, SweetJPL.owl andminiTambis.owl (in random order), any of which the

subject had not seen before. The subject was asked to debug the ontologies in Swoop

(independently) using only the features assigned to the group the subject belonged to.

The following guidelines were observed during the debugging process:

• The subject was given a maximum of 30 minutes to debug an ontology. He/she was

free to stop the debugging process at any time.

• While debugging any unsatisfiable class, the subject was asked to write down a

157

brief explanation of the contradiction for that class (in his/her own words) based on

the understanding of the problem. In addition, the subject was asked to suggest a

likely fix for the problem where possible

• The tool automatically counted the number of entity definitions viewed, and the

changes made to the ontology during the entire debugging process, both of which

we considered as key sub-tasks

Having obtained the times taken by a subject for debugging each of the three on-

tologies, we took the average of the times (for the group) in order to nullify the expertise

and skill factor of the subject (note that the subjects were randomly assigned to the groups

as mentioned earlier).

Finally, after working on all three ontologies, the subject was handed a question-

naire to elicit feedback on the entire debugging experience using Swoop

Key properties of the ontologies used in the study were:

Ontology Total Classes Unsat. Classes Root/Derived

1. University.owl 28 8 5/3

2. SweetJPL.owl 1537 1 1/-

3. miniTambis.owl 183 30 5/25

Our hypothesis was as follows:

1. The information provided by the Axiom Pinpointing service is better than no sup-

port for all the erroneous ontologies, i.e., the subject will take significantly less time

to understand and fix the errors correctly using the service.The reason for this is

that the information would help pinpoint and illustrate the source of the contradic-

tion for the unsatisfiable class.

158

2. For a relatively small no. of unsatisfiable classes (i.e., ontologies 1 and 2), the

Axiom Pinpointing service information will outperform both, the Root Error Pin-

pointing service and the no support, and perform not too worse than the full-debug

support.The reason for this is that the subject could potentially distinguish the root

from the derived classes by manually inspecting the justification axioms for each

class, thus reducing the impact of automatically identifying them.

3. For a large no. of unsatisfiable classes with different roots (i.e., ontology 3) the

Root Error Pinpointing service support will match the performance of the Axiom

Pinpointing information, and additionally, the full-debug support will be clearly

better than either of the two.The reason for this is that manually discovering the

root/derived classes would often be hard and time-consuming in such cases, and

the dependency detection technique would help narrow down the problem space

tremendously.

The results of the usability study are summarized in the graph in Figure 7.15. The

graph displays the average time taken (in mins) per group to debug all the errors for each

of the three ontologies given (Note: ‘F’ represents a Failure to debug the error).

As seen from the graph, the statistical results obtained are in agreement with hy-

pothesis (1), i.e., a 2-tailed T-test shows that debugging with clash/SOS is significantly

better than debugging without it forp ≈ 0.01. While the timings for the ontologies are in

agreement with hypothesis (2) and (3), given the small size of the study, a measure of the

statistical results was not significant for verifying those hypothesis. We plan to conduct a

more extensive evaluation to fully justify them.

159

Figure 7.15: Results of the Debugging Usability Study

For University.owl, all subjects were able to identify the erroneous axiom(s) for

each of the unsatisfiable classes within the time period given, however, only 1 subject in

normal/root-derived (black box) mode was able to understand the cause of the problem,

whereas, 2/3 using the Axiom Pinpointing and 3/3 using the full-debug mode were able

to understand and explain the problem correctly. Also, the time taken to fix all the errors

using the full-debug mode was approx. half of that taken using the normal-mode.

In the case ofSweetJPL.owl, without justification axioms no subject was able to

understand the cause of the error due to the highly non-local interactions in the large

ontology, whereas, using the axioms, each subject took under 5 minutes to understand

and fix the problem correctly.

Interestingly, the results given only the Root Error Pinpointing service performed

nearly as well as the Axiom Pinpointing in the case ofminiTambis.owl since subjects

160

found it easier to debug the roots identified by the former service than to manually dis-

cover them using the latter, due to the large number of unsatisfiable classes. Also, for this

ontology, the subjects in the normal mode fixed only 2/3 roots in the time period given,

i.e, they could not fully complete the debugging.

We learnt some useful lessons based on our observations of the debugging process

and the feedback given by the subjects:

• For Group 1 – no-debug mode:

– 3/3 subjects rated the hypertextual navigation (with back/next history) as the

most useful feature for understanding relationships and causes of errors in the

ontology

– 2/3 subjects found ontology changes immensely useful to identify erroneous

axioms by using a trial-and-error strategy

– TheShow Referencessearch feature was never used by any of the subjects.

Based on their comments, it seemed that they were unclear about its use and

significance. Interestingly, a subject in Group 3 found this feature very help-

ful, implying that the feature either supports a different debugging style (to

that of the authors in this mode) or requires better presentation.

• For Group 2 – Axiom Pinpointing:

– 3/3 subjects rated the justification axioms as the most useful feature

– 2/3 subjects felt that a proof-style layout of the justification axioms with in-

termediate inferences shown as well would help explain the problem better.

161

– Overall, 6 subjects were exposed to the Axiom Pinpointing service (3 from

this group and 3 using the full-debug mode), and they were divided on the

significance of the clash information. While half the subjects used the clash

information to pinpoint relevant components of the justification axioms, the

other half found the information poorly presented and redundant given the

justification axioms, pointing us to a definite area of improvement.

• For Group 3 – Root Error Pinpointing:

– 1/3 subject used theShow-Referencesfeature extensively to aid debugging,

especially for mini-Tambis.owl, where discovering a commonly-used prop-

erty restriction helped understand the source of the contradiction for a set of

unsatisfiable classes

– 1/3 subject felt that the Class-Expression (CE) support needed to be made

more effective by allowing arbitrary queries on CEs

– 2/3 subjects suggested displaying the number of derived dependencies that

arise from each root to highlight the more significant roots

• For Group 4 – full-debug mode:

– 3/3 subjects felt that it was thecombinationof the clash/SOS presentation and

the root/derived identification and not one specific feature that was useful to

debug all errors in the ontology

Overall, the response of the subjects in the study was very encouraging. Many

relative newcomers to OWL and description-logic were impressed by the fact that they

162

were able to correctly fix all the errors in ontologies which they had not seen before within

the specified time period. Experts in the field who had experience in OWL ontology

modeling and manual debugging were surprised at how easy the task of debugging was

made for them.

7.2.2 Evaluating Repair

For this study, we selected two OWL Ontologies –University.owl andminiTambis.owl

and asked each subject to debug all the unsatisfiable classes in a particular ontology using

the Axiom/Root Error Pinpointing services, and in the other ontology using the Ontology

Repair service. We had introduced new errors in these ontologies to make them different

from the earlier study, however, the errors were realistic based on commonly observed

patterns and misconceptions (e.g., errors enumerated in [87]).

The subjects were randomly assigned to the two cases, but the overall distribution

was equally proportional in that given a particular ontology, an equal number of subjects

(six) debugged it with and without using the Ontology Repair service. At the end of

the study, our goal was to compare the performance improvement, if any, of using the

Ontology Repair service over the other two debugging services, which were shown to be

useful in the previous study.

The subjects were given a maximum of 45 minutes to debug the entire ontology, and

as in the previous case, the tool recorded the use of the various repair features, e.g., gran-

ularity of the repair plan selected, ranking metrics viewed, number of rewrites included

etc.

163

Before we proceed to our hypothesis, we discuss important points related to this

study that were factored into its design. The first is that the subjects did not build the ontol-

ogy themselves and hence did not have prior knowledge of the modeling intent. Secondly,

the subjects did not possess domain knowledge related to the mini-Tambis (medical) on-

tology. Thirdly, in cases where there is more than one reasonable solution, determining

a ‘correct’ solution is subjective, and we took this fact into account when evaluating the

results.

A key point to note is that we have basically divided the subjects into two groups

– G1: Axiom and Root/Error Pinpointing services, andG2: Ontology Repair service,

and subjects inG2 have access to all the features available inG1 (since the Ontology

Repair UI displays the justification axioms responsible for an unsatisfiable class, and dif-

ferentiates between the root/derived unsatisfiable classes), with the addition of the ranking

metrics and the plan generation/customization options present inG2. Thus, from a de-

bugging and repair point of view, subjects in both groups were in a position to understand

the error and determine the critical unsatisfiable classes, however, the difference was that

in G1, they had to manually repair one unsatisfiable class at a time, select appropriate

axioms to remove and determine the impact of their solution, whereas inG2, they had

the necessary tool support to automate these tasks.

Based on these factors, our hypothesis was as follows:The Ontology Repair service

is more “effective” than a combination of both, the Axiom Pinpointing and the Root Error

Pinpointing service, for repairing all the unsatisfiable concepts in an ontology, in that the

quality of the repair solutions in both cases is comparable, but the time taken to arrive at

a solution in the former case is significantly smaller than in the latter case.

164

The results of the timings are displayed below. All times in the table are in minutes.

As can be seen, the time taken to arrive at a solution in the repair case (G2) was between

3-8 times less than in debugging case (G1). A standard 2-tailed T-test on the data col-

lected for the University / miniTambis ontologies indicated thatG2 is significantly faster

thanG1 with p < 0.05 andp < 0.001 respectively.

University miniTambis

Debug (G1) — Repair (G2) Debug (G1) — Repair (G2)

8 — 2 11 — 2

9 — 2 12 — 2

9 — 3 15 — 2

12 — 4 16 — 4

14 — 5 17 — 5

33 — 6 22 — 6

We found that in both groups, the quality of the repair solution was quite similar,

with the subjects inG2 performing marginally better. For example, in the University

ontology, all the subjects in both groups were able to correctly ensure that the concepts

Lecturer, AssistantProfessor did not become equivalent. The rewrites suggested by the

repair service (G2) were useful in this regard as subjects always opted for the weakening

of the concept definitions. However, for the slightly more difficult problem related to

the conceptsAIStudent, HCIStudent, subjects inG2 were able to arrive at the correct

solution that avoided these two concepts from becoming equivalent by using the impact

analysis.

The miniTambis ontology posed a different challenge. Since subjects found this do-

main (medical) more foreign to that of the University ontology, the quality of the solutions

165

in both groups were below par.

In addition, we learnt some valuable lessons based on our observations of the repair

tool usage and the feedback provided by the subjects:

• All the subjects reached the desired repair solution within 0-3 changes from the

initial plan suggested by the tool. This implies that the quality of the solutions

based on the default ranking metrics/weights was reasonable.

• All the subjects appreciated the quality of the axiom rewrites suggested by the tool,

and in every case that a rewrite was suggested, it was incorporated in the final

solution.

• All the subjects preferred the ‘local’ axiom table view to the ‘global’ view, in order

to understand the interaction among the axioms and identify common erroneous

axioms.

• Only 3/12 subjects opted to repair all the unsatisfiable classes in one go, while the

remaining chose to repair the unsatisfiable classes iteratively by focusing on the

current roots.

• Only 3/12 subjects changed the default weights for the (axiom) ranking metrics

suggested by the tool. The only change was weighing ‘arity’ less and/or ‘usage’

more. ‘Impact’ was consistently weighted high by all the subjects.

• Only 2/12 subjects found ‘usage’ as a significant metric and took it into account

when arriving at a repair solution. This points to an area of improvement.

166

Chapter 8

Open Issues and Future Work

In this chapter, we enumerate the limitations and open issues of our OWL debug-

ging services and outlines areas for future work.

8.1 Enhancing Debugging and Repair Services

8.1.1 Improving Algorithmic Performance

In Chapter 4, we have described a Black-box (reasoner independent) algorithm to

find a justification for an arbitrary entailment of an OWL-DL ontology, and then devel-

oped a pre-processing Glass-box optimization procedure (tableau-tracing), which reduces

the size of the input to the Black-box algorithm thereby providing a big performance im-

provement. However, ideally, we would like to have a purely Glass-box solution to finding

a justification (minimal axiom set) since it would eliminate the additional step of pruning

axioms, which may be time consuming in some cases (when there are a large number of

role successors due to cardinality or existential restrictions) .

The challenge here is obtainingminimality of the axiom sets when building the

tableau (completion graph) for expressive DL KBs. One of the main problems arises due

to the presence of cardinality restrictions, and in particular, the≤ n.R rule – when a node

in the completion graph built by the tableau reasoner contains a concept≤ n.R and if

there exists more than ‘n’ R-successors of that node, then the≤ n.R rule gets fired which

167

arbitrarily merges any two successor nodes recursively till it is no longer applicable.

For example, consider an ontology with the following axioms:

1: A v ∃R.B 2: A v ∃R.(C u ¬B) 3: A v ∃R.(¬C u ¬B)

4: A v ∃R.C 5: A v≤ 2.R

In the ontology above, the conceptA is unsatisfiable and it’s justification set is

{1, 2, 3, 5}.

Consider the completion graph for the conceptA shown in Figure 8.1, in which the

reasoner has processed axioms1 − 4 and generated fourR-successor nodes of the root

nodex (that represents conceptA).

Figure 8.1: Finding minimal justification hard due to node merges

Now, when the algorithm unfolds axiom5, the concept≤ 2.R is added toL(x) and

the presence of more than two R-successors ofx causes the≤ n.R rule to be applied

recursively. We find that a clash occurs in the completion graph eventually irrespective of

the choice of nodes to merge. This clash occurs because either bothB,¬B or C,¬C are

present in the label of the same successor node ofx.

In this case, the key question iswhichsuccessors should be considered responsible

for the merge operation since there are greater than two successors of nodex, and the

168

restriction demands at most two. We certainly cannot consider all the successors since

that would cause axiom4 to be included in the trace of the clash, which is incorrect. On

the other hand, if we consider any three successors arbitrarily (which is when the≤ 2.R

rule is applicable), we need to ensure that all combinations of merges involving those

three successors results in a closure.

The matter is further complicated if the existential restriction in axiom2 is replaced

by a universal:A v ∀R(C u ¬B). In this case, the justification for the unsatisfiability of

A reduces to the axiom set{1, 2} – the clash occurs in nodey1 irrespective of the merge

operation. Hence, an additional issue is identifying whether a clashdependson the merge

or not. This can be done by introducing choice points in the trace of an event, and using

this choice record to determine if an event could have occurred independent of the choice.

We are currently working on an algorithm that takes into account issues such as this.

8.1.2 Improving Output Explanation

We are exploring the possibility of inserting intermediate steps (inferences) in the

output of the Axiom Pinpointing service to help make the explanation easier to follow.

Consider an example taken from the Chemical ontology shown in Figure 8.2 (the example

was seen previously in Chapter 7):

In this case, the axioms2 − 5 cause the classPublishedWork to be equivalent to

> (owl : Thing), which in turn renders the classPerson unsatisfiable as it is disjoint with

PublishedWork. Here, displaying the inferencePublishedWork ≡ > that arises from

axioms2− 5 would help make the cause of the error clearer.

169

Figure 8.2: Axiom Pinpointing example where cause of unsatisfiability is hard to under-
stand by looking at the asserted axioms

In general, determining which intermediate inference is critical to understanding

the error is not easy. There are two problems here: Firstly, the inference may be rather

non-trivial as is the case above, i.e., simply looking at the axioms, it is difficult to tell

that PublishedWork ≡ >. At best, one could flag suspicious entailments such as this

(atomic concept being equivalent to>), however, good heuristics need to be developed

to expose ‘key’ problematic inferences. Secondly, numerous trivial inferences can follow

from the output axioms and one needs to be careful about cluttering the output with too

much additional information, e.g., in the above case, axioms{2, 3} entail

VR RelatedPublishedWork v PublishedWork

though this simple subsumption may be avoided in the output.

8.1.3 Testing and Evaluating Repair

One of the known limitations of the conducted user study described in Chapter 7

was that the subjects did not author the ontologies themselves, and lacked domain knowl-

edge, which adversely affected the quality of the repair solutions. A more thorough

case study – that would involve placing the service in a real world ontology engineer-

ing/application context and having domain and ontology modeling experts use it over a

170

period of time – would help us gauge the efficiency of this service better. Also, the no-

tion of maintaining a library of error patterns as discussed in Chapter 6 would be more

applicable in the context of this longer study.

We also discuss an interesting extension to the axiom rewrite module in the repair

service. Currently, axiom rewrites are determined by inspecting the erroneous parts of

axioms (obtained using the Axiom Pinpointing service), and using heuristics based on

commonly occurring error patterns. We can also suggest rewrites that are in keeping with

the update semantics proposed in [63].

We describe the idea using an example from the Koala ontology in which the con-

ceptKoala is unsatisfiable due to the following axioms:

Koala v ∃isHardWorking.false

domain(isHardWorking,Person)

Koala v Marsupials

Marsupials v ¬Person

An instance ofKoala is inferred to belong to the classPerson andMarsupials, which

is disjoint withPerson, hence the contradiction. In this case, one likely update that pre-

serves the semantics as much as possible while getting rid of the unsatisfiability ofKoala

involves introducing a disjunction in axiom2 as follows:

domain(isHardWorking, Person tMarsupials).

This notion of introducing disjunctions in axioms to allow for additional models and

get rid of the contradiction is discussed in [63]. Identifying meaningful updates on these

lines in expressive DLs such asSHOIN (OWL-DL) is a hard and unresolved problem.

171

8.1.4 Debugging Non-Subsumptions

So far, we have presented techniques for diagnosing semantic defects, which are

also directly applicable for any unintended entailments (not just logical inconsistencies).

As future work, we are looking at the problem of debuggingintended non-entailments

such as non-subsumptions, which is of interest to the OWL community. We present some

initial thoughts on this problem, discussing the key challenges and outlining a possible

solution.

Explaining why a particular entailmentfails to hold in an ontology is much harder

than explaining why it holds. This is because from a model theoretic point of view, a

failed entailment implies that there exists at least one model of the ontology in which the

entailment is false. From a tableau reasoning standpoint, this translates to the fact that a

completion graph representing the ontology with the entailment refuted doesnot contain

a clash. This makes explanation tricky since there is no one particular reason for the lack

of a clash (i.e., there are potentially infinite ways to generate a clash) and presenting the

entire graph as a counter-example is obviously not a sensible solution.

Also, in this case, there is no notion of justification for the failed entailment, since

all the axioms in the ontology are responsible for the lack of the entailment. Finally,

an additional issue that needs to be noted is that fixing the problem can be done rather

trivially, by directly adding the entailment as an axiom to the ontology.

Based on these factors, we explore the problem ofdebuggingnon-subsumptions

with a slightly different philosophy. The idea is to devise a service that displaysnon-

trivial but sensible axiom changes which would result in the subsumption. Note that the

172

main focus is not explanation, though displaying themissingcomponents (axioms) may

help the user understand the non-subsumption in the first place better.

Consider an ontologyO2 with the following axioms:

TexasWine ≡Wine u ∃locatedIn.TexasRegion

TexasRegion v ∃locatedIn.USRegion

AmericanWine ≡Wine u ∃locatedIn.USRegion

In this case, the desired subsumption isTexasWine v AmericanWine. Hence, we

generate a completion graph for the conceptTexasWine u ¬AmericanWine as shown in

Figure 8.3.

Figure 8.3: Open completion graph reflecting non-subsumption ofTexasWine by
AmericanWine

As can be seen, the completion graph is not closed and henceTexasWine 6vAmericanWine.

In order to determine which axioms can be added toO2 in order to get the desired sub-

sumption, we consider clash-causing changes to the completion graph that would result

in it’s closure.

Since a clash can be introduced in arbitrarily many ways, we need a heuristic ap-

proach to select sensible or likely changes. One heuristic is to consider possible clash

interactions between concepts introduced by the subsumer and the subsumee separately

173

in the graph, since this would prevent either the subsumer or the subsumee from becoming

independently unsatisfiable. For example, in the above case, the conceptsTexasRegion

and¬USRegion are introduced separately fromTexasWine andAmericanWine, yet appear

in the label of the same node, and hence we can consider an axiom such as

TexasRegion v USRegion

which would result in a clash. Note that it is not hard to translate a tableau event

to the corresponding axiom which would cause it (on the lines of our tableau tracing

algorithm seen in Chapter 4). Based on this heuristic, we identify the following clash-

inducing axiom changes:

1. TexasWine v AmericanWine (trivial)

2. TexasRegion v USRegion

3. TexasWine v ∃locatedIn.USRegion

4. transitive(locatedIn)

Note that adding any one of the above axioms toO2 would enable the desired sub-

sumption, and yet prevent any of the conceptsTexasWine or AmericanWine from becom-

ing unsatisfiable, i.e., the clashes induced by the axioms only render the graph represent-

ing the conceptTexasWine u ¬AmericanWine closed.

An additional heuristic to consider is thesizeof the justification set of the desired

subsumption, after the axiom has been introduced in the ontology. The idea here is that

larger the size of the justification set, the more non-trivial the entailment. Above, the

axiom which results in the largest justification set is4 and interestingly, it is the only case

where the justification includes all the original axioms from the ontology. This notion

is useful in situations where the user has pinpointed specific axioms (a fragment of the

174

ontology) that he feels should cause the entailment – typically the justification set would

need to include the specified axioms. Finally, also note that the justification set can be

displayed using the ordering and indenting techniques described in Chapter 7, with the

missing axiom highlighted separately. This might help the user understand the cause of

the non-subsumption better.

8.2 Exploring Extensions to other Logics

The debugging and repair techniques in this thesis have been developed in the con-

text of DLs. However, DLs are usually a subset of FOL and thus many of the techniques

seen here can be directly applied for inconsistent FOL knowledge bases without much

modification. For example, tableaux-based algorithms (semantic tableaux) are a well

known proof procedure for automated reasoning in FOL, and thus the glass-box tableau

tracing techniques for Axiom Pinpointing seen in Chapter 4 can be directly translated to

the FOL tableau-reasoning case. The basic principle remains the same – trace the clauses

in the FOL KB responsible for the introduction of a particular formulae in a branch of the

tableau, and identify the justification for the inconsistency of the KB by using the traces

of the contradiction (theFalseclause) in each branch. In some sense, the tableau expan-

sion rules in the FOL case are simpler than in the DL case (e.g., there is no merging of

nodes due to cardinality restrictions as in DL) and thus the problems ensuring minimality

of the final output (as seen in section 8.1.1) do not arise.

For the more popular FOL proof procedure typically used in Automated Theorem

Provers (ATP) –resolution– we need to modify the tracing algorithm in accordance

175

with the procedure. The main challenge lies in tracing through the steps of obtaining

the CNF (first step of the resolution), which involves normalizing terms (e.g. pushing

negation inwards), standardizing variables, splitting across conjunctions and eliminating

existentials usingSkolemfunctions. This is not impossible, as similar pre-processing

steps are also carried out by the tableaux procedures for DLs (using techniques such as

normalization, absorption etc.), but it introduces an additional level of complexity that

needs to be dealt with.

Irrespective of the type of proof procedure used for FOL reasoning (whether tableaux-

based or resolution), it is important to note that the black-box version of the Axiom Pin-

pointing service can be directly used for FOL debugging, though its performance needs

to be tested on realistic FOL KBs to determine the practical use.

Finally, the relationship between description logics and modal logics has been ex-

tensively studied over the last decade. [90] pointed that the description logicALC can be

seen as a variant of the multi-modal logicKm. Later, the relationship was investigated

between more expressive DLs and modal logics, e.g., qualified cardinality restrictions

correspond to graded modalities, and nominals in DL which are similarly present in hy-

brid modal logics. Thus, it is not surprising, that the tableaux algorithms in DLs are

similar to the satisfiability checking algorithms in modal logics. This again means, just

as in the previous case for FOL, that the diagnosis techniques for DLs can be translated

in the modal case, and we leave this as future work.

176

8.3 Beyond Debugging

The core debugging service developed, Axiom Pinpointing, is used to explain the

output of the description logic reasoner since it extracts the minimal set of axioms in the

ontology (justifications) responsible for a particular entailment. This service can be uti-

lized in ontology engineering applications outside of ontology debugging and we discuss

one such area in detail.

8.3.1 Reasoning over Dynamic Ontologies

Justifications act as a form of truth-maintenance that can be used to optimize rea-

soning tasks for dynamic or changing ontologies. This is especially useful in the context

of ontology editing (when coupled with a reasoner), where interactivity is essential from

the user point of view.

To elaborate, once a reasoner has processed an ontology and derived its key entail-

ments (e.g., subsumption between atomic concepts), the justifications for the individual

entailments can be stored separately. Then, when the ontology is modified by say re-

moving an axiom, we can inspect the justification sets to determine which entailments

are lost directly, i.e., the reasoner can skip entailment tests based on previously cached

justifications. These justification sets can be updated on the fly as and when new axioms

are introduced.

Recently, we have also explored the use of the glass-box version of Axiom Pin-

pointing (tableau tracing) to incrementally update the completion graph built internally

by the reasoner, which speeds up the reasoning significantly when dealing with dynamic

177

ontologies [42]. The basic idea is the following: the tracing algorithm computes the rela-

tion between axioms in the ontology and the various parts of the completion graph, and

thus when the ontology is modified, instead of discarding the previous completion graph

and starting from scratch (as is normally done by the reasoner), we update the graph in

accordance with the added/removed axioms only. Obviously, this process saves a lot of

time which was previously wasted in redoing the graph expansion each time the ontology

is changed.

The current solution works for updating assertions related to individuals (ABox

updates), which itself has many real-world use cases. Two popular examples include

dynamic web services frameworks where devices register or deregister their logical de-

scriptions (and supporting ontologies) quite rapidly; and Semantic Web portals, which

often allow content authors to modify or extend the ontologies leading to a reorganiza-

tion of the site structure/content. In both scenarios, optimizing reasoning helps reduce

maintenance time and effort.

178

Appendix A

Appendix: Swoop – Web Ontology Browser/Editor

In this section, we discuss specific features in the OWL Ontology Editor, Swoop

[57] that are tailored towards the understanding and analysis of OWL ontologies.

In particular, we focus on four different aspects:

• Explanation of concept definition (useful for understanding error cause)

• Browsing, comparing and querying ontological information (useful for understand-

ing dependencies between entities)

• Change management (useful for experimenting / repair)

• Collaborative discussion and annotation of ontological data (useful for sharing ex-

planations and repair solutions)

A.0.2 Explaining Concept Definition: Natural Language Paraphrases

In order to help users understand the meaning behind complex concept definitions,

we have developed a plugin for Swoop that generates natural language (NL) paraphrases

for OWL Concepts based on a variety of NLP techniques [45]. The goal is to ensure

both fluency (readability) and accuracy of the output, in terms of preserving the meaning

conveyed by it’s description logic formalism (see Figure A.1 for an example). The NL

generation approach is a generic domain-independent one, and is completely automated.

The algorithm works by building a parse tree from the concept definition axioms,

179

and generating sentences by traversing the tree and inserting textual phrases denoting

DL operators between ontological terms and relationships. Various heuristics - syntactic,

using a part of speech (POS) tagger, and semantic, using a reasoner, are used to improve

the quality of the NL sentences.

While there exist some obvious limitations of the work, such as it’s reliance on

standard naming conventions and it’s inability to cope with deeply-nested logical opera-

tors, we have found that in a lot of tested ontologies, the algorithm generates readable NL

paraphrases, which are useful for getting a quick overview of the concept meaning (see

[41] for a related pilot study).

Figure A.1 shows an example of the NL generation when applied to a concept in

the Wine OWL ontology.

Figure A.1: Natural Language: paraphrase describing the concept in the Wine OWL
Ontology.

180

A.0.3 Browsing, Comparing and Querying data

Swoop has adebugmode wherein the basic rendering of entities is augmented with

information obtained from a reasoner. Different rendering styles, formats, and icons are

used to highlight key entities and relationships that that are likely to be helpful to de-

bugging process. For example, allinferred relationships (axioms) in a specific entity

definition are italicized and are obviously not editable directly. On a similar note, in the

case of multiple ontologies, i.e., when one ontology imports another, allimportedax-

ioms in a particular entity definition are italicized as well. Highlighting them helps the

modeler differentiate between explicit assertions in a single context and the net assertions

(explicit plus implied) in a larger context (using imports), and can also reveal unintended

semantics.

Figure A.2: The classKoala is unsatisfiable because (1)Koala is a subclass of
∃isHardWorking.false andMarsupials; (2) ∃isHardWorking.false is a subclass ofPerson;
and (3)Marsupials is a subclass of¬Person (disjoint). Note that the regions outlined in
red are not automatically generated by the tool but are presented here for clarity.

181

In addition to displaying information about named classes, Swoop renders infor-

mation such as sub/super classes of complex class expressions as shown in Figure A.2

(Region 2). This sort of ad hoc “on-demand” querying helps reveal otherwise hidden

dependencies.

Consider the case of the unsatisfiable classKoala depicted in Figure A.2, which

contains three labeled regions. The figure also emphasizes theComparatorfeature in

Swoop, which allows users to compare and contrast any arbitrary set of entities. Region

1 shows the definition of theKoala class in terms of it’s subclass-of axioms: note the

presence of the class expression∃isHardWorking.false and the named classMarsupials

mentioned here. Now, clicking on the class expression reveals that it is an inferred sub-

class ofPerson (Region 2)1, and clicking onMarsupials shows that it is defined asdisjoint

with classPerson (Region 3). Thus, the contradiction is found – an instance ofKoala is

forced to be an instance ofPerson and¬Person at the same time, and the bug can be fixed

accordingly.

Finally, Swoop has an interesting non-standard search feature which can be use-

ful during ontology debugging. This feature known asShow Referenceshighlights the

usage of an OWL entity (concept/property/individual) by listing all references of that en-

tity in local or external ontological definitions. TheSweet-JPLontology set2 presents

an excellent use case for debugging using this feature. The classOceanCrustLayer is

found to be unsatisfiable and a reason displayed for the clash is‘Any member of Ocean-

1A simple heuristic to manually debug an unsatisfiable class is to inspect it is asserted and inferred
subclass relationships that could potentially cause a contradiction, as is what motivates clicking the class
expression link here.

2Sweet-JPL Ontologies are located at http://sweet.jpl.nasa.gov/ontology/. The bug in the ontology was
fixed on May 24, 2005 after we e-mailed the ontology authors at NASA informing them about it. The pre-
vious faulty version can be found at http://www.mindswap.org/ontologies/debugging/buggy-sweet-jpl.owl

182

CrustLayer has more than one value for the functional property hasDimension’(Note:

Clash detection is explained later). Now, running aShowReferences search on the prop-

erty hasDimension, returns four classesGeometricObject(0..3)D, each of which has a

different value restriction on the functional propertyhasDimension. This suggests that the

unsatisfiable class is somehow related to more than one of these four classes causing the

cardinality violation. This is indeed the case since by looking at the class hierarchy, one

can note thatOceanCrustLayer is a subclass of both the classes,GeometricObject2D and

GeometricObject3D, and thus the reason for the contradiction becomes apparent.

Figure A.3: TheShow Referencesfeature (used along with the clash information and
the resource holder) is used to hint at the source of the highly non-local problem for the
unsatisfiable classOceanCrustLayer.

183

A.0.4 Change Management

Part of good debugging support for OWL ontologies is making experimentation

involving ontology changes safe, easy, and effective. Swoop has an ontology evolution

framework that supports the ad hoc undo/redo of changes (with logging).

Swoop uses the OWL API [9] to model ontologies and their associated entities,

benefiting from it’s extensive and clean support for changes. The OWL API separates

the representation of changes from the application of changes. Each possible change type

has a corresponding Java class in the API, which is subsequently applied to the ontology

(essentially, the Command design pattern). These classes allow for the rich representation

of changes, including metadata about the changes. The change sets can be serialized in

RDF/XML and exchanged among ontology users, making it possible to apply patches of

changes to ontologies as and when desired.

Swoop also provides the ability to checkpoint and archive different ontology ver-

sions. Each change set or checkpoint can be saved at three different granularity levels -

entity, ontology, workspace, which basically specify it’sscope. While the change logs

can be used to explicitly track the evolution of an ontology, checkpoints allows the user

to switch between versions directly exploring different modeling alternatives.

A.0.5 Collaborative Discussion Using Annotea

For collaborative discussion of ontologies using Swoop, we use the Annotea frame-

work [56], which takes the idea of separating annotations about ontologies from the core

ontologies themselves and provides both a specific RDF based, extensible annotation vo-

184

cabulary, and a protocol for publishing and finding out-of-band annotations (annotations

that do not live inside the document being annotated).

Annotea support in Swoop is provided via a simple plug in whose implementation

is based on the standard W3C Annotea protocols [102] and uses the default Annotea RDF

schema to specify annotations (see Figure A.4). Any public Annotea Server can then

be used to publish and distribute the annotations created in Swoop. The default annota-

tion types (comment, advice, example, etc) seem an adequate base for human oriented

ontology annotations.

We have extended the Annotea Schema with the addition of an OWL ontology for a

new class of annotations — ontology changes (similar to [59]). The “Change” annotation

defined by the Annotea projected was designed to indicate a proposed change to the an-

notated document, with the proposal described in HTML-marked-up natural language. In

our extended ontology, change individuals correspond to specific changes made in Swoop

during editing.

The Swoop change annotations can be published and retrieved by Annotea servers,

or any other annotation distribution mechanism. The retrieved annotations can then be

browsed, filtered, endorsed, recommended, and selectively accepted. A similar collab-

orative framework based on an interactive dialogue was implemented in a more local

(tool-specific) context in the WebOnto system [30]. However, we decided to exchange

annotations using the Annotea protocol to make the collaboration less tool-specific (any

Annotea client can be used to discuss ontology annotations), and to allow users to arbitrar-

ily extend the Annotea schema the way we have for ontology-change sets. These change

sets also make it possible to define “virtual versions” of an ontology, by specifying a base

185

Figure A.4: Using Annotea Client to Collaboratively Discuss and Debug Ontology

ontology and a set of changes to apply to it.3

Once a series of changes has proven effective in removing the defect and seems

sensible, the modeler can use Swoop’s integrated Annotea client to publish the set of

changes plus a commentary as shown in Figure A.4. Other subscribers to the Annotea

store can see these changes and commentary in context they were made, apply the changes

to see their effect, and publish responses. These exchanges persist, providing a repository

of real cases for subsequent modelers to study.

As future work, we plan on using the collaborative annotea-based framework in

Swoop to maintain a robust and extensible library of error patterns. As seen in Chapter 6,

the Ontology Repair service can make use of such a library to suggest axiom rewrites in

the repair solutions.

3Note that in certain cases, changes may not be applicable to the ontology, if the change operation refers
to an entity that is not present (defined) in the ontology. In such cases, a warning message is reported to the
user describing the reason for the change conflict.

186

BIBLIOGRAPHY

[1] Gardenfors P. Markinson D. Alchourron, C.E. On the logic of theory change: Par-

tial meet contraction and revision functions.Journal of Symbolic Logic, 50:510–

530, 1985.

[2] Gregoris Antoniou, Frank van Harmelen, Robert Plant, and Jan Vanthienen. Ver-

ification and validation of knowledge-based systems - report on two 1997 events.

AI Magazine, 19(3):123–126, Fall 1998.

[3] F. Baader. Logic-based knowledge representation. In M. J. Wooldridge and

M. Veloso, editors,Artificial Intelligence Today, Recent Trends and Developments,

number 1600, pages 13–41. Springer Verlag, 1999.

[4] F. Baader and W. Nutt. Basic description logics. In Franz Baader, Diego Calvanese,

Deborah McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors,The

Description Logic Handbook: Theory, Implementation, and Applications, pages

43–95. Cambridge University Press, 2003.

[5] F. Baader and U. Sattler. An overview of tableau algorithms for description logics.

Studia Logica, 69:5–40, 2001.

[6] Franz Baader and Bernhard Hollunder. Embedding defaults into terminological

knowledge representation formalisms. Technical Report RR-93-20, 1993.

[7] Kenneth Baclawski, Christopher J. Matheus, Mieczyslaw M. Kokar, Jerzy

Letkowski, and Paul A. Kogut. Towards a symptom ontology for semantic web

applications. InInternational Semantic Web Conference, pages 650–667, 2004.

187

[8] S. Bechhofer, I Horrocks, C. Goble, and R. Stevens. OilEd: a reason-able ontol-

ogy editor for the Semantic Web.Proceedings of KI2001, Joint German/Austrian

conference on Artificial Intelligence, September 2001.

[9] S. Bechhofer, P. Lord, and R. Volz. Cooking the semantic web with the owl api.

Proceedings of the International Semantic Web Conference, October 2003.

[10] D. Beckett and B. McBride. RDF/XML syntax specification. W3C Recommenda-

tion, 2004.

[11] S. Benferhat, S. Kaci, D. Berre, and M. Williams. Weakening conflicting informa-

tion for iterated revision and knowledge integration. InProceedings of the Seven-

teenth International Joint Conference on Artificial Intelligence, 2004.

[12] Tim Berners-Lee.Weaving the Web: The Original Design and Ultimate Destiny of

the World Wide Web by Its Inventor. Harper San Francisco, 1999.

[13] A. Borgida, R. Brachman, D. McGuinness, and L. Resnick. Classic: A structural

data model for objects. InProc. of SIGMOD-89, 1989.

[14] A. Borgida, E. Franconi, I. Horrocks, D. McGuinness, and P. Patel-Schneider. Ex-

plainingALC subsumption. InProc. of DL-99, 1999.

[15] Martin Brain and Marina De Vos. Debugging logic programs under the answer set

semantics. InAnswer Set Programming, 2005.

[16] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Extensible markup language

(xml). volume 2, pages 27–66, 1997.

188

[17] Dan Brickley and R Guha. RDF Vocabulary Description Language 1.0: RDF

Schema. http://www.w3.org/tr/rdf-schema/. February 2004.

[18] Laure Brisoux, Eric Gregoire, and Lakhdar Sais. Validation of knowledge-based

systems by means of stochastic search. InDEXA Workshop, pages 41–46, 1998.

[19] T. Burners-Lee, J. Hendler, and O. Lassila. The semantic web.Scientific American,

284(5), May 2001.

[20] L. Byrd. Understanding the control flow of prolog programs.Proceedings of the

Workshop on Logic Programming, 1980.

[21] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele Nardi.

Reasoning in expressive description logics. In Alan Robinson and Andrei

Voronkov, editors,Handbook of Automated Reasoning, pages 1581–1634. Elsevier

Science Publishers, 2001.

[22] Luca Console, Gerhard Friedrich, and Daniele Theseider Dupré. Model-based

diagnosis meets error diagnosis in logic programs. InIJCAI, pages 1494–1501,

1993.

[23] Thierry Coupaye, Claudia Roncancio, and Christophe Bruley. A visualization

service for event-based systems. InProc. 15emes Journees Bases de Donnees

Avancees, BDA, pages 181–199, 1999.

[24] P. Pinheiro da Silva, S. McGuinness, and R. Fikes. A proof markup language for

semantic web services. Technical report, 2004. TR KSL-04-01, Stanford Univer-

sity, 2004.

189

[25] Carlos Viegas Damasio, Luis Moniz Pereira, and Michael Schroeder. REVISE:

Logic programming and diagnosis. InLogic Programming and Non-monotonic

Reasoning, pages 354–363, 1997.

[26] R. Davis. Application of meta-level knowledge to the construction, maintenance,

and use of large knowledge bases.Ph.D. Dissertation, Dept. of Computer Science,

1976.

[27] M. Dean and G. Schreiber. OWL Web Ontology Language Reference W3C Rec-

ommendation. http://www.w3.org/tr/owl-ref/. February 2004.

[28] Xi Deng, Volker Haarslev, and Nematollaah Shiri. A framework for explaining

reasoning in description logics. InProceedings of the AAAI Fall Symposium, pages

55–61, 2005.

[29] Li Ding, Rong Pan, Tim Finin, Anupam Joshi, Yun Peng, and Pranam Kolari.

Finding and Ranking Knowledge on the Semantic Web. InProceedings of the 4th

International Semantic Web Conference, LNCS 3729, pages 156–170. Springer,

November 2005.

[30] John Domingue. Tadzebao and webonto: Discussing, browsing, and editing on-

tologies on the web. In11th Knowledge Acquisition for Knowledge-Based Systems

Workshop, 1998.

[31] Wlodzimierz Drabent, Simin Nadjm-Tehrani, and Jan Maluszynski. Algorithmic

debugging with assertions. InWorkshop on Meta-Programming in Logic, pages

501–521, 1988.

190

[32] A. Felty and D. Miller. Proof explanation and revision.Dept. of Computer and

Information Science School of Engg. and Applied Science Report, 1988.

[33] Armin Fiedler. P.rex: An interactive proof explainer. In Rejeev Goré, Alexander

Leitsch, and Tobias Nipkow, editors,Automated Reasoning — 1st International

Joint Conference, IJCAR 2001, number 2083 in LNAI, pages 416–420, Siena, Italy,

2001. Springer Verlag.

[34] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. Updating dls using

the agm theory: A preliminary study. InDescription Logics, 2005.

[35] G. Friedrich and Shchekotykhin. K. Diagnosis of description logic knowledge

bases. InProceedings of Fourth Internal Semantic Web Conference ISWC, 2005.

[36] Peter Gardenfors. Belief revision: An introduction.Cambridge Tracts in Theoret-

ical Computer Science, (29):1–28, 1992.

[37] H.P. Grice. Logic and conversation.P. Cole and J.L. Morgan, editors, Syntax and

semantics, 3:43–58, 1975.

[38] Nicola Guarino and Christopher Welty. Evaluating ontological decisions with on-

toclean.Commun. ACM, 45(2):61–65, 2002.

[39] Volker Haarslev and Ralf Moller. High performance reasoning with very large

knowledge bases: A practical case study. InIJCAI, pages 161–168, 2001.

191

[40] Volker Haarslev, Ralf M̈oller, and Anni-Yasmin Turhan. Exploiting pseudo models

for TBox and ABox reasoning in expressive description logics.Lecture Notes in

Computer Science, 2083:61–??, 2001.

[41] Christian Halaschek, Jennifer Golbeck, Bijan Parsia, Vladimir Kolovski, and Jim

Hendler. Image browsing and natural language paraphrases of semantic web anno-

tations. InFirst International Workshop on Semantic Web Annotations for Multi-

media (SWAMM), Edinburgh, Scotland, 2006.

[42] Christian Halaschek-Wiener, Aditya Kalyanpur, and Bijan Parsia. Extend-

ing tableau tracing for abox updates. InUMIACS Tech Report, 2006.

http://www.mindswap.org/papers/2006/aboxTracingTR2006.pdf.

[43] Christian Halaschek-Wiener, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. De-

scription logic reasoning for dynamic aboxes. InAccepted in DL 2006, 2006.

[44] P. Hayes. Resource description framework (RDF) semantics. W3C Recommenda-

tion, 2004.

[45] Daniel Hewlett, Aditya Kalyanpur, Vladamir Kovlovski, and Chris Halaschek. Ef-

fective natural language paraphrasing of ontologies on the semantic web. InEnd

User Semantic Web Interaction Workshop, International Semantic Web Conference

(ISWC), Galway, Ireland, November 2005.

[46] B. Hollunder and F. Baader. Qualifying number restrictions in concept languages.

DFKI Research Report RR-91-03, Deutsches Forschungszentrum für Künstliche

Intelligenz, Kaiserslautern, 1991.

192

[47] I. Horrocks and P. Patel-Schneider. Reducing OWL entailment to description logic

satisfiability. InProc. of the 2nd International Semantic Web Conference (ISWC),

2003.

[48] I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.

In Proceedings of the Seventeenth International Joint Conference on Artificial In-

telligence, 2001.

[49] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive

description logics.Logic Journal of the IGPL, 8(3):239–264, 2000.

[50] Ian Horrocks. FaCT and iFaCT. InDescription Logics, 1999.

[51] Ian Horrocks. Implementation and optimization techniques. pages 306–346, 2003.

[52] Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In

Proc. of IJCAI 2005, 2005.

[53] Xiaorong Huang and Armin Fiedler. Presenting machine-found proofs. In Michael

McRobbie and John Slaney, editors,Proc. 13th Conference on Automated De-

duction, New Brunswick/NJ, USA, volume 1104, pages 221–225. Springer-Verlag,

1996.

[54] Zhisheng Huang, Frank van Harmelen, and Annette ten Teije. Reasoning with in-

consistent ontologies. InProceedings of the Nineteenth International Joint Confer-

ence on Artificial Intelligence (IJCAI’05), page xxx, Edinburgh, Scotland, August

2005.

193

[55] U. Hustadt, B. Motik, and U. Sattler. ReducingSHIQ− description logic to dis-

junctive datalog programs. In D. Dubois, C. Welty, and M.-A. Williams, editors,

Proceedings of the 9th International Conference on Knowledge Representation and

Reasoning (KR2004), pages 152–162. AAAI Press, 2004.

[56] J. Kahan, M-R. Koivunen, E. Prud’Hommeaux, and R. Swick. Annotea: An open

RDF infrastructure for shared web annotations.Proc. of the WWW10 International

Conference, May 2001.

[57] A. Kalyanpur, B. Parsia, E.Sirin, B. Cuenca-Grau, and J. Hendler. Swoop: A web

ontology editing browser.Journal of Web Semantics, Vol 4, Issue 2, 2006.

[58] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and James Hendler. Debugging un-

satisfiable classes in OWL ontologies.Journal of Web Semantics, Vol 3, Issue 4,

2005.

[59] M. Klein and N. Noy. A component-based framework for ontology evolution.

Workshop on Ontologies and Distributed Systems at IJCAI, 2003.

[60] Kevin Lee and Thomas Meyer. A classification of ontology modification. InAus-

tralian Conference on Artificial Intelligence, pages 248–258, 2004.

[61] T. Liebig and O. Noppens. Ontotrack: Combining browsing and editing with rea-

soning and explaining for owl lite ontologies. InProceedings of the 3rd Interna-

tional Semantic Web Conference (ISWC) 2004, Japan, November 2004.

[62] Thorsten Liebig and Michael Halfmann. Explaining Subsumption inALEHFR+

TBoxes. In Ian Horrocks, Ulricke Sattler, and Frank Wolter, editors,Proc. of the

194

2005 International Workshop on Description Logics - DL2005, pages 144–151,

Edinburgh, Scotland, July 2005.

[63] Hongkai Liu, Carsten Lutz, Maja Milicic, and Frank Wolter. Updating description

logic aboxes. InKR, Lake District, UK, 2006.

[64] C. Lutz. Complexity of terminological reasoning revisited. InProceedings of the

6th International Conference on Logic for Programming and Automated Reasoning

LPAR’99, pages 181–200. Springer-Verlag, 6 – 10, 1999.

[65] C. Lutz. Description logics with concrete domains—a survey, 2002.

[66] F. Manola and E. Miller. RDF Primer W3C Recommendation.

http://www.w3.org/tr/rdf-primer/. February 2004.

[67] D. McGuinness.Explaining Reasoning in Description Logics. PhD thesis, New

Brunswick, New Jersey, 1996.

[68] D. McGuinness and P. Pinheiro da Silva. Infrastructure for web explanations.In

Second International Semantic Web Conference, ISWC, 2003.

[69] Deborah McGuinness and Alexander Borgida. Explaining subsumption in descrip-

tion logics. In Chris Mellish, editor,Proceedings of the Fourteenth International

Joint Conference on Artificial Intelligence, pages 816–821, San Francisco, 1995.

Morgan Kaufmann.

195

[70] Richard Fikes James Rice McGuinness, Deborah L. and Steve Wilder. The chi-

maera ontology environment.Proceedings of the Seventeenth National Conference

on Artificial Intelligence (AAAI 2000), 2000.

[71] Thomas Meyer, Kevin Lee, and Richard Booth. Knowledge integration for de-

scription logics. InAAAI, pages 645–650, 2005.

[72] Guido Moerkotte and Peter C. Lockemann. Reactive consistency control in deduc-

tive databases.ACM Transactions on Database Systems, 16(4):670–702, 1991.

[73] Boris Motik. On the properties of metamodeling in owl. InInternational Semantic

Web Conference, pages 548–562, 2005.

[74] B. Nebel. Reasoning and revision in hybrid representation systems.Lecture Notes

in AI, 1990.

[75] C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency management with

repair actions.Proc. of the 25 Int. Conference on Software Engineering, 2003.

[76] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, and M. Musen. Creating

semantic web contents with Protéǵe-2000.IEEE Intelligent Systems, 2001.

[77] Perkins W.A. Laffey T.J. Nyugen, T.A. and D. Pedora. Checking an expert system

for consistency and completeness. InProceedings of the Ninth International Joint

Conference on Artificial Intelligence, 1985.

[78] Daniel Oberle, Raphael Volz, Boris Motik, and Steffen Staab. An extensible ontol-

ogy software environment. In Steffen Staab and Rudi Studer, editors,Handbook

196

on Ontologies, International Handbooks on Information Systems, chapter III, pages

311–333. Springer, 2004.

[79] D.A.S. Oliveira, C.S. de Souza, and E.H. Haeusler. Structured argument generation

in a logic-based kb-system.Proceedings of the Second Conference on Information-

Theoretic Approaches to Logic, Language and Computation, pages 173–181, 1996.

[80] B. Parsia, C. Halaschek-Wiener, E. Sirin, and A. Kalyanpur. Classification main-

tenance for expressive description logics. Technical report, (in progress), 2005.

Available online at http://www.mindswap.org/papers/TR-incclass.pdf.

[81] Chintan Patel, Kaustubh Supekar, Yugyung Lee, and E. K. Park. Ontokhoj: a

semantic web portal for ontology searching, ranking and classification. InWIDM,

pages 58–61, 2003.

[82] Michael J. Pazzani and Clifford A. Brunk. Detecting and correcting errors in rule-

based expert systems: An integration of empirical and explanation-based learning.

Technical Report ICS-TR-90-38, 1990.

[83] L.M. Pereira and J.J. Alferes. Well founded semantics for logic programs with

explicit negation.Proc. ECAI92, pages 102–106, 1992.

[84] Luis Moniz Pereira, Carlos Viegas Damasio, and Jose Julio Alferes. Diagnosis and

debugging as contradiction removal in logic programs. InPortuguese Conference

on Artificial Intelligence, pages 183–197, 1993.

[85] Robert T. Plant. Tools for the validation & verification of knowledge-based sys-

tems.University of Miami, 1995.

197

[86] Alun Preece. Evaluating verification and validation methods in knowledge engi-

neering.University of Aberdeen, 2001.

[87] Alan L. Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger

Knublauch, Robert Stevens, Hai Wang, and Chris Wroe. Owl pizzas: Practical

experience of teaching owl-dl: Common errors & common patterns. InEKAW,

pages 63–81, 2004.

[88] R. Reiter. A theory of diagnosis from first principles.Artificial Intelligence, 32:57–

95, 1987.

[89] Andrea Schaerf. Reasoning with individuals in concept languages.Data Knowl-

edge Engineering, 13(2):141–176, 1994.

[90] Klaus Schild. A correspondence theory for terminological logics: preliminary re-

port. InProceedings of IJCAI-91, 12th International Joint Conference on Artificial

Intelligence, pages 466–471, Sidney, AU, 1991.

[91] S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of

description logic terminologies. InProc. of IJCAI, 2003, 2003.

[92] Stefan Schlobach. Debugging and semantic clarification by pinpointing. InESWC,

pages 226–240, 2005.

[93] Stefan Schlobach. Diagnosing terminologies. InAAAI, pages 670–675, 2005.

[94] Ehud Y. Shapiro. Algorithmic program debugging.MIT Press, May 1982.

[95] E. Shortliffe. Computer-based medical consultations: Mycin. InElsevier, 1996.

198

[96] Evren Sirin, Bernardo Cuenca Grau, and Bijan Parsia. From wine to water: Opti-

mizing description logic reasoning for nominals. InInternational Conference on

the Principles of Knowledge Representation and Reasoning (KR-2006), 2006. To

Appear.

[97] Evren Sirin and Bijan Parsia. Pellet: An owl dl reasoner. InDescription Logics,

2004.

[98] Y. Sure, M. Erdmann, J. Angele, S. Staff, R. Studer, and D. Wenke. OntoEdit:

Collaborative ontology development for the Semantic Web.Proceedings of the

International Semantic Web Conference (ISWC), June 2002.

[99] M. Suwa, A. Scott, and E. Shortliffe. An approach to verifying completeness and

consistency in a rule-based expert system.AI Magazine, 3(4):16–21, 1982.

[100] W. Swartout. XPLAIN: A system for creating and explaining expert consulting

systems.Artificial Intelligence, 21(3):285–325, 1983.

[101] W. Swartout, C. Paris, and J. Moore. Explanations in knowledge systems: Design

for explainable expert systems.IEEE Intelligent Systems, 6(3):58–64.

[102] R. Swick, E. Prud’Hommeaux, M-R. Koivunen, and J. Kahan. Annotea protocols.

http://www.w3.org/2001/Annotea/User/Protocol.html, 2001.

[103] S. Tobies. Complexity results and practical algorithms for logics in knowledge

representation.PhD thesis, RWTH Aachen, 2001.

199

[104] V.Haarslev and R.Moeller. Racer system description. InProc. of the Joint Conf.

on Automated Reasoning (IJCAR 2001). Volume 2083 of Lecture Notes in Artificial

Intelligence, pages 701-705, 2001.

[105] Hai Wang, Matthew Horridge, Alan L. Rector, Nick Drummond, and Julian Sei-

denberg. Debugging owl-dl ontologies: A heuristic approach. InInternational

Semantic Web Conference, pages 745–757, 2005.

[106] Geoffrey I. Webb, Jason Wells, and Zijian Zheng. An experimental evaluation

of integrating machine learning with knowledge acquisition.Machine Learning,

35(1):5–23, 1999.

200

