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Natural vegetation communities of tidal and non-tidal wetlands are threatened by 

invasive species, e.g. Phragmites australis (Cav.) Trin. Ex Steud., resulting in 

diversity losses and declines in wetland services. The native lineage of Phragmites, 

Phragmites australis ssp. americanus Saltonstall, P. M. & Soreng could be a valuable 

addition to species currently used in restoration projects aimed at increasing wetland 

services. However, tolerances of native Phragmites to environmental conditions are 

uncertain. Salinity and water level tolerances were investigated by monitoring growth 

of adult plants, established from rhizomes, under varying water and salinity levels in 

a greenhouse experiment and an observational study. Results show salinity levels 

above 5 ppt significantly limited growth of native Phragmites regardless of water 

level indicating appropriate restoration use across the marsh platform of fresh and 



  

oligohaline systems. Educational materials and demonstration sites were created to 

improve field identification of native Phragmites. 
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Chapter 1: Introduction 

 

The European lineage of Phragmites australis (Cav.) Trin. Ex Steud. ssp. 

australis (European common reed) (herein after referred to as non-native) has spread 

throughout the Atlantic coastal region since its introduction to North America in the 

mid-19th century (Saltonstall 2002) and is now found along 14.6% of Maryland’s 

estuarine shoreline (Chambers et al. 2008). Analysis of aerial imagery suggests 

invasion rates have slowed in tidal fresh areas, however, brackish marshes are 

experiencing population increases  (Packett and Chambers 2006) (Rice et al 2000; 

Packett & Chambers 2006). Human development, rising sea level, and warming 

temperatures cause bare soils and increased nutrient levels, creating environmental 

conditions conducive to the establishment and spread of Phragmites australis ssp. 

australis (Hellings and Gallagher 1992a; Silliman and Bertness 2004; King et al. 

2007; Chambers et al. 2008). Phragmites invasion has been shown to displace native 

wetland plants (Chambers et al. 1999), decrease species diversity and change marsh 

hydrology (Silliman and Bertness 2004), thereby diminishing valuable ecosystem 

services.  

A native lineage, Phragmites australis ssp. americanus,(herein after referred 

to as native) has been confirmed (Saltonstall et al. 2004) but little is known about its 

ecology. This lineage has been in North America for thousands of years. Native 

Americans used it more often than most herbaceous plants (Kiviat & Hamilton 2001) 

and its reestablishment through restoration efforts has the potential to improve 
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ecosystem function. However, use in restoration practices requires an understanding 

of growth characteristics and factors influencing growth.  

Unlike the non-native form, native does not grow in dense monotypic stands 

and its use in restoration efforts may lead to increased diversity (Meadows and 

Saltonstall 2007; Price et al. 2014) thereby increasing marsh resiliency (Folke et al. 

2004). Additionally, native outperforms the non-native and other wetland plants in 

assimilating inorganic nitrogen and has high rates of organic nitrogen uptake 

(Mozdzer and Zieman 2010) making it an ideal candidate in restoration of areas with 

high nutrient levels. The non-native lineage is considered more aggressive and is 

thought to have displaced the native in many wetlands (Saltonstall 2002; League et al. 

2006). Ironically, eradication efforts aimed at the non-native (primarily herbicides), 

may inadvertently kill the native form (Rinella et al. 2009)(Baldwin, personal 

observation).  Thus, it is important for managers to distinguish between the two 

lineages; determining habitat requirements of the native will contribute to that 

understanding. 

Wetlands are defined by the temporary or continuous flooding of soils with 

fresh or salt waters. Plant establishment, growth, and productivity are, in part, 

determined by these environmental factors (e.g. salinity and inundation). All plants 

are sensitive to salt, including wetland plants. Saline solutions alter water potential 

and ion distribution inhibiting growth at the cellular and whole plant level. Initially, 

nutrient and water uptake slow as energy expenditures shift from photosynthesis to 

maintaining osmotic potential (Reddy et al. 1992; Munns 2002; Parida et al. 2004). 

Stomata conductance slows to minimize water loss decreasing transpiration rates and 
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reducing carbon dioxide uptake available for photosynthesis (Brugnoli and Lauteri 

1991; Rahnama et al. 2010). Transpiration does not stop but continues and ions 

accumulate in transpiring leaves eventually reaching toxic levels (Parida and Das 

2005). Numerous studies have shown that salinity suppresses growth in all plants but 

the rate of reduction varies among species (Munns and Termaat 1986; Ball 1988; 

McKee and Mendelssohn 1989; Katerji et al. 1996; Mauchamp and Mésleard 2001a; 

Shaoliang Chen et al. 2003; Wang et al. 2006a; Gorai et al. 2010; Glenn et al. 2012; 

James et al. 2012) and genotype (Rahnama et al. 2010; Achenbach and Brix 2014).  

Increased salinity has been shown to limit seed germination and growth of 

non-native Phragmites (Wijte and Gallagher 1996; Buchsbaum et al. 2006a; 

Greenwood and MacFarlane 2006; Wang et al. 2006a) with severity dependent on 

growth stage (Lissner and Schierup 1997; Bart and Marie Hartman 2002). Optimal 

growth of non-native Phragmites occurs in salinities less than 20 ppt, but it can 

persist in areas of 30 ppt (Chambers et al. 2003). Salinity tolerance of distinct clones 

varies widely (Achenbach et al. 2013) with some evidence suggesting that native 

Phragmites has a lower salinity tolerance than non-native (Vasquez et al. 2005) but 

tolerance levels are uncertain. While optimal growth of monocotyledonous 

halophytes generally occurs in the absence of, or at low concentrations of salt 

(Flowers and Colmer 2008a), results of the few native studies previously conducted 

are conflicting. On the Rappahannock River, native grew best in areas of salinity <1 

ppt while non-native stands occurred over a broader salinity range of 0-11 ppt 

(Packett and Chambers 2006). Yet in Chicago, the non-native was found in areas of 

lower salinities as compared to the native (Price et al. 2013). Native has been 
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identified on Maryland’s Choptank River in salinity levels up to 6.7 ppt (preliminary 

data Baldwin) and in a Rhode Island tidal marsh where salinity reached 27 ppt 

(Lambert and Casagrande 2006). A greenhouse study (Vasquez et al. 2005) found that 

native did not grow in salinities greater than 6 ppt and the non-native was limited at 

24 ppt.  

In addition to salinity, increased duration and frequency of inundation, as is 

likely under sea level rise, is expected to alter the composition and distribution of 

plant communities (Baldwin et al. 2001) and reduce productivity due to decreased 

seedling recruitment and diminished growth of some wetland plants (McKee and 

Mendelssohn 1989; Baldwin et al. 1996; Lessmann et al. 1997; Warren et al. 2001; 

Peterson and Baldwin 2004; Galatowitsch et al. 2016). Inundation slows the diffusion 

of oxygen into the root zone inhibiting growth and establishment although, 

physiological adaptations provide mechanisms such that high levels of productivity 

can occur within an optimal range of inundation (Mauchamp et al. 2001; Morris 

2007; Kirwan and Guntenspergen 2012; Byun et al. 2017a) for a given species 

(Bockelmann et al. 2002; Long et al. 2017). Species dominant in the low marsh, e.g. 

Spartina alterniflora and Zizania latifolia, respond positively to high water levels 

(Byun et al. 2017a) but surface inundation of non-native Phragmites suppressed bud 

emergence; increases in submergence were found to decrease height and culm density 

(Hellings and Gallagher 1992a; Vretare et al. 2001; Zhao et al. 2013). Optimal 

performance of the non-native occurs in areas with low flooding frequency but the 

tolerance range of the native is uncertain. Meadows and Saltonstall (2007) observed 

that native Phragmites on Maryland’s eastern shore extended across the marsh 
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platform suggesting tolerance to a range of flooding frequencies but in Canada 

Taddeo and de Blois (2012) observed native mostly in low lying areas. A literature 

review yielded no experimental results concerning the effects of inundation on native 

Phragmites or on the tolerance levels of the different haplotypes. 

With rising sea levels, wetlands are likely to experience the effects of salinity 

and inundation simultaneously. It is unclear how vegetation will respond but 

understanding the environmental thresholds of native Phragmites will improve our 

ability to restore and create wetlands with high plant biodiversity, improve land 

management practices in regard to eradication practices of invasive species, and help 

predict future loss of a native species due to rising sea levels and increased salinity. 

This study examines the response of native Phragmites to environmental 

stressors of salinity and inundation. The objective was to evaluate the effect of 

increased salinity under varying inundation conditions both alone and in combination 

on morphological and physiological characteristics of native Phragmites to determine 

tolerance levels. I hypothesize that salinity and inundation levels each, and in 

combination, will be negatively correlated with the growth of native Phragmites. 

Hypothesis testing was conducted in a greenhouse experiment and then in a field 

study to determine if greenhouse results could be replicated in a natural setting. 

Understanding salinity and inundation tolerance of a native species will improve 

current management and restoration practices. 
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Chapter 2: Response of Native Phragmites to Varying Salinity 

and Water Level Treatments: A Greenhouse Experiment 

 

Abstract 

Salinity and flooding regimes are key environmental determinants of wetland plant 

communities. Human activity, sea level rise, and invasive species often alter wetland 

environmental conditions thereby modifying natural assemblages of plants. 

Populations of the native Phragmites australis ssp. americanus Saltonstall, P. M. & 

Soreng are in decline as the non-native lineage has replaced the North American 

native throughout much of its range. Determining the environmental thresholds of 

native Phragmites will improve wetland management and restoration practices and 

aid in the protection of a native species. This study provides a quantitative assessment 

of the growth of native Phragmites under three hydrological regimes (water levels at 

10 cm below, 10 cm above, and at the soil surface) at eight salinity levels (0, 2, 5, 9, 

14, 20, 27, and 35 ppt). Biomass yield reduction, stem-root anatomical changes, and 

photosynthetic rates were used to evaluate the effect of stress. A greenhouse 

experiment was conducted at the University of Maryland, College Park, Maryland. In 

general, all measures of growth responded to salinity regardless of water level. 

Results of this experiment combined with observations from a field study conducted 

on the Patuxent River in Maryland (see chapter 3) find growth of native Phragmites 

to be inhibited at salinity levels above 5 ppt but able to tolerate a range of water 

levels. I recommend the addition of native Phragmites to species currently used in 

wetland restoration with installation appropriate across the marsh platform of fresh 



 

 7 

 

and oligohaline systems. This study improves our ability to predict the location of a 

native wetland plant and provides useful information for the development of wetland 

management and restoration strategies. 

Introduction 

Wetlands are among the most productive ecosystems in the world providing 

many valuable services such as flood control, sequestration of carbon, shoreline 

stabilization, nutrient cycling, and wildlife habitat (Mitsch and Gosselink 2007). The 

provision of services is limited  by threats from invasive species and sea level rise as 

biodiversity shrinks and hydrology and salinity levels change (Zedler and Kercher 

2004; Craft et al. 2009; Więski et al. 2009).   

Invasive species modify wetland ecosystems through structural changes to the 

landscape or by altering community composition (Zedler and Kercher 2004). 

Phragmites australis (Cav.) Trin. ex. Steud., hereafter referred to as non-native, is 

considered invasive due to its rapid spread, abundance, and impact on the landscape. 

Slow decomposition rates of litter from non-native Phragmites may lead to a higher 

marsh platform thereby altering marsh hydrology (Chambers et al. 1999) and its 

tendency to grow in large monotypic stands reduces both plant and animal diversity 

(Benoit and Askins 1999; Chambers et al. 1999; Keller 2000; Bertness et al. 2002). 

The invasive behavior of non-native Phragmites has led to control and eradication 

efforts across the United States, with the US spending $4 million annually (Blossey 

and Casagrande 2016). Management tools include prescribed burns, mowing, and 

application of herbicides. Currently, the primary method of control is broadcasting of 

herbicides by plane or truck. Unfortunately, this method can have the  unintended 
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consequence of eliminating non-target native species including the native lineage of 

Phragmites, Phragmites, australis ssp. americanus Saltonstall, P. M. & Soreng 

(Saltonstall et al. 2004). The northeastern US native populations are believed to be in 

decline (Saltonstall 2002) and current management efforts may eradicate remaining 

native stands as it can be found growing in close proximity to the non-native form. 

Increased awareness as to its existence and knowledge of habitat requirements would 

help to sustain current populations.  

The combined effects of flooding and salinity typically decrease growth and 

survival more than does either stress alone (Marcar 1993; Conner et al. 1997; 

Kozlowski 1997; Isla et al. 2014). However, hydrology is considered to be a 

dominant factor determining the structure of wetlands as it dictates species 

composition and constrains productivity levels (Tiner 2005; Mitsch and Gosselink 

2007; Batzer and Baldwin 2012). Water significantly restricts the diffusion of oxygen 

into the soil (Armstrong et al. 1994), reducing or eliminating the amount of oxygen 

available in the rhizosphere for aerobic respiration (Mendelssohn et al. 2014). 

Oxygen deficits cause reductions in growth, photosynthetic processes, and, 

eventually, plant death (Baldwin et al. 2001; Jackson and Colmer 2005; Voesenek et 

al. 2006; Colmer and Flowers 2008). The presence of water may also reduce light 

available to submerged tissues for photosynthesis limiting production of energy. 

Adaptations that alleviate oxygen deficiencies, such as aerenchyma tissue or rapid 

stem elongation, and energy deficiencies, i.e. anaerobic glycolysis, facilitate growth 

in flooded environments (Mitsch and Gosselink 2007).  
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Interspecific variation in response to flooding has been reported (Justin and 

Armstrong 1987; Pezeshki and Anderson 1996; Kozlowski 1997; Kercher and Zedler 

2004; Byun et al. 2017b) as has intraspecific variation (Voesenek et al. 2006; Ismail 

et al. 2009). Germination and survival of emergent species is reduced under 

submergence (McKee and Mendelssohn 1989; Kozlowski 1997; Baldwin et al. 2001; 

Buchsbaum et al. 2006b; Baldwin et al. 2010). In non-native Phragmites, productivity 

declines in response to submergence (Osland et al. 2011) and is often most severe in 

young plants (Chambers et al. 2003) while established plants tolerate flooding and, 

during short periods of submersion, an increase in stem density and height may occur 

(Lessmann et al. 1997; Mauchamp et al. 2001; Vretare et al. 2001). However, long 

term submergence prohibits stem production in rhizome grown plants (Hellings and 

Gallagher 1992a) but low water levels appear to facilitate growth (Cross and Fleming 

1989; Burdick et al. 2001; Warren et al. 2001; Whyte et al. 2008). I am unaware of 

studies evaluating native Phragmites tolerance to varying water levels.    

Although hydrology plays a dominant role in the structure of wetlands, 

salinity is a key determinant of the structure and function of wetlands as well. Salinity 

differentiates systems from one another, for example, freshwater marsh from salt 

marsh, and differential tolerances to saline conditions influences the distribution and 

productivity of the vegetation found in each system. Salt stress inhibits plant growth 

in the short term due to osmotic stress, and in the long term, by the accumulation of 

toxic ions in transpiring leaves and impaired nutrient uptake (Munns and Termaat 

1986). Halophytes are able to complete their life cycle in saline conditions due to 

various adaptations that enable the plant to avoid or tolerate salts (Flowers et al. 1986; 
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Munns 2002; Flowers and Colmer 2008b). Despite these adaptations, research has 

shown salinity induces injury, inhibits vegetative and reproductive growth, and alters 

plant morphology and physiology; however, the degree to which growth is limited 

varies among species (Ball 1988; Ashraf and Harris 2004; Flowers and Colmer 

2008b; Da Cruz et al. 2013; Xianzhao et al. 2013). Numerous studies have shown a 

negative response of morphological and physiological features such as stem height, 

leaf area, biomass, and photosynthetic rate to increased saline conditions (T J Flowers 

et al. 1977; Greenway and Munns 1980; Munns and Termaat 1986; Parida and Das 

2005; Colmer and Flowers 2008; Parihar et al. 2015). In the woody species Acacia 

ampliceps and Rhizophoria apiculata, significant reductions in stem height and leaf 

area in response to increases in salinity were found (Ball 1988; Ashraf and Harris 

2004). Non-native Phragmites tolerates a range of salinity levels (Chambers et al. 

1999; Burdick et al. 2001), but Lissner and Schierup (1997) found growth to be 

negatively related to salinity with tolerance differing between plants with those grown 

from seed having a lower threshold than those grown from rhizomes. Additional 

studies found decreases in height, density, and biomass in response to increases in 

salinity, above approximately 20 ppt, in plants grown from rhizomes (Hellings and 

Gallagher 1992a; Bart and Marie Hartman 2002). However, some salt tolerant species 

have shown a stimulation to growth and then, once salinity goes beyond the threshold 

level, growth is inhibited (Mendelssohn et al. 2014).   

Intraspecific differences have been identified as well for a variety of species 

including Phragmites (Gao et al. 2012; Lieth and Masoom 2012; Achenbach and Brix 

2014; Sandhu et al. 2017). Numerous studies have assessed the salt tolerance of non-
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native Phragmites (Burdick et al. 2001; Mauchamp and Mésleard 2001b; Vasquez et 

al. 2006), but few have evaluated the native lineage. Plants grown above 

approximately 7 ppt (reported as 0.1M NaCl) failed to survive in a greenhouse 

experiment (Vasquez et al. 2005). Field observations on the Delaware Peninsula 

appear to support those findings as native populations were only found in fresh and 

oligohaline waters (Meadows and Saltonstall 2007). However, native stands do exist 

in the high salinity waters of Block Island in Rhode Island (Lambert and Casagrande 

2006).  

I investigated the effect of salinity and water level on the growth of a native 

species, Phragmites australis ssp. americanus. The aim of the study was to 

understand native Phragmites growth in response to eight salinity levels (0, 2, 5, 9, 

14, 20, 27, and 35 ppt) at three water levels (10 cm below substrate surface, 10 cm 

above substrate surface, and at the substrate surface). The objective was to evaluate 

the effect of salinity increases at varying water levels, separately and in combination, 

on morphological and physiological characteristics of native Phragmites. I 

hypothesized that (a) salinity would be negatively correlated with vegetative growth 

as evidenced by reductions in stem height, diameter, biomass, and photosynthetic 

activity; (b) water level would be negatively related to biomass but positively related 

to stem height; and (c) the combined effect of salinity and water level would be 

negatively related to growth. 
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Materials and Methods 

Materials 

Rhizomes were collected from a stand of native Phragmites on the Patuxent 

River, Maryland, USA (N38° 42' 8", W76° 41' 48", map datum: WGS 84) on March 

18, 2015 (Figure B.2.1). This stand was previously confirmed as native following the 

methodology described in Saltonstall 2003. Rhizomes were excavated using a shovel, 

rinsed with river water, placed in 19-liter buckets, and transported to the University of 

Maryland in College Park and placed in cold storage (4 °C). Firm white rhizomes, 

with at least two nodes, were planted in 2:1 mixture of potting soil and washed sand 

and grown in the University of Maryland greenhouse — one rhizome per pot. 

Rhizomes were watered regularly to maintain moisture. Temperature was kept 

between at 32 °C during the day and dropped to 7 °C at night to mimic natural 

conditions. After eight weeks, plantlets were moved to 6.033-liter circular pots 

(Classic 600, Nursery Supply Inc.) with a surface area of 2280.18 cm
2 

containing well 

drained soils (2:1 peat and washed sand). To prevent substrate loss, each pot was 

placed in a second 6.033-liter pot such that drainage holes overlapped. All pots had 

similar numbers of stems of similar size. Potted plants were allowed to acclimate for 

two weeks in the greenhouse. 

Experimental Design   

A randomized complete block design (RCBD) with a factorial arrangement of 

water levels and salinity (three water levels x eight salinity levels) was established at 

the University of Maryland greenhouse in June 2015 (refer to Appendix B, Figure 
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B.2.2 for graphic of experimental 

layout and images of greenhouse 

setup). Plants were randomly 

assigned to one of three water level 

treatments (submerged conditions 

defined as substrate surface -10 cm 

below water level, surface 

conditions defined as water level at 

substrate surface 0 cm, or exposed 

conditions defined as substrate surface +10 cm above water level) (Figure 2.1) and 

one of eight salinity treatments (0, 2, 5, 9, 14, 20, 25, 35 ppt). Plants were randomly 

organized and replicated four times (n = 4) in blocks. Blocking was used because of 

possible humidity and temperature gradients in the greenhouse. Greenhouse 

temperature was maintained above 26 °C and supplemental lighting simulated a 16-

hour day. 

Treatment Application 

Application of treatments began on June 26 with all plants receiving 0 ppt and 

assigned water level. Salinity levels were progressively increased twice weekly until 

final treatment levels were reached on July 17, 2015 (Appendix A, 2 Table A.2.3). 

Salinity solutions were mixed immediately prior to application by adding the 

appropriate amount of Instant Ocean to a fixed amount of water in a 19-L bucket and 

applied by: (1) lifting potted plant from water and flushing with old solution (to flush 

any precipitated solids) and then allowed to completely drain; (2) the pot was placed 
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back in the bucket, iron sulfate solution was poured onto the substrate surface; and (3) 

5-L of the new treatment solution was slowly poured onto the substrate surface, the 

remaining saline solution was poured into the outer bucket to a pre-marked level on 

the outer bucket. A six-week experimental period followed during which treatment 

water was changed weekly with the appropriate salinity following the above 

procedure. Random salinity checks were performed daily and adjustments made as 

needed.  

PVC pipe was cut to one of three lengths, holes were drilled into the sides to 

allow for circulation of treatment water. The PVC was used as a riser to attain the 

assigned water level treatment (Appendix B, Figure B.2.3, image (a) PVC lengths). 

Each potted plant was placed on top of a riser which had been placed in a 19-liter 

bucket. Water levels were maintained at: (1) 10 cm below the soil surface 

(submerged), (2) the soil surface 0 cm (surface), or (3) 10 cm above soil surface 

(exposed) (Appendix B, Figure 2.3 (b), potted plants at experimental levels). 

Reservoir water was monitored daily and adjusted as needed with de-chlorinated 

water. 

Previous attempts to grow native Phragmites under greenhouse conditions 

were unsuccessful due to chlorosis. To prevent chlorosis, a 100 mL solution of iron 

sulfate (FeSO4) and deionized water was prepared the morning of water change. One 

mL was poured onto the substrate surface of each plant prior to application of the new 

salinity treatment. FeSO4 was added at a rate of 0.1462 grams/pot/week based on 

Eller et al. 2013 (Appendix A, Table A.2.4, FeSO4 loading calculation). A slow 

release fertilizer (Osmocote
®
 Scotts Sierra Co, Maryville, OH, 19-6-12) was 
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broadcast on top of the growth media once at the beginning of the experiment at the 

recommended application rate (approximately 26.2 g per pot) to prevent nutrient 

limitation. 

Data Collection 

Salinity, temperature, and pH of reservoir and drainage water were measured 

before each water change using handheld meters (YSI, Yellow Springs Ohio). Non-

destructive measurements of growth were taken twice weekly during the treatment 

period and then weekly during the experimental period. For each pot, stems and 

leaves were counted and stem height and diameter were measured. All stems and 

fully developed leaves were counted. Each stem was measured from the sediment 

surface to the uppermost collared (flat) leaf to determine height. Diameter 

measurements were taken approximately 4 cm from the soil surface with a 100 mm 

pocket caliper.  

To quantify physiological response to stress, photosynthetic rates were 

determined by measuring the yield and maximum leaf chlorophyll fluorescence 

(Fv/Fm ratio) of two  leaves per pot twice during the experimental period using a 

Walz PAM-2100 Chlorophyll Fluorometer (Heinz Walz GmbH, Effeltrich, Germany) 

(Maxwell and Johnson 2000, Maricle et. al., 2007). Yield readings were taken in the 

morning, starting approximately at 0900 hours, and Fv/Fm were taken at night, 

starting at approximately 2200 hours. 

After 5 weeks of treatment, final height, basal diameter, stem count, and leaf 

count measurements were taken and plant leaves, stems, and roots were harvested. 

Leaves on every stem in each pot were stripped, starting from the lowest leaf on the 
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stem to the top in order to keep the sheath attached to the blade. The leaves from each 

pot were weighed, counted, and their total projected area measured using an LI-

3100C Area Meter (LI-COR, Lincoln, Nebraska, USA). Stems were clipped at the 

soil surface and weighed. The rhizomes and lateral roots in each pot were removed 

from the growth media by rinsing with tap water over a 5-mm mesh sieve. Lateral 

roots were then stripped from the rhizomes, counted, and weighed. The total length 

and average diameter of rhizomes in each pot were measured and weighed before 

drying. Dead material was separated from live material and weighed. All plant 

fractions were weighed wet then dried to a constant mass at 70 °C in a ventilated 

oven (Appendix A, Table A.2.5). Dried fractions were then weighed to the nearest 

0.01g to determine final above- and belowground dry biomass. 

The specific leaf area (SLA) was calculated as the ratio of the sum of the leaf area to 

the dry mass of the leaves per pot. SLA serves as an index of the thickness of leaves, 

and thus their photosynthetic capability per leaf unit area (Evans and Poorter 2001). 

The sum of the projected areas of the leaves in each pot were divided by the total dry 

mass of all above- and below ground plant material to determine the leaf area ratio 

(LAR), an index correlated with relative growth rate (Poorter and Remkes 2001). The 

total belowground dry mass (lateral roots + rhizomes) was divided by the total 

aboveground dry mass (stems + leaves) in the pot to determine root:shoot ratio which 

reflects the resources allocated for nutrient uptake to belowground as opposed to 

aboveground growth. 

 

Data Analysis 
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The greenhouse study was a randomized block design. All growth 

measurements, below and aboveground biomass estimates, and fluorescence data 

were analyzed to determine significant main effects of salinity and water level as well 

as significant interactions. Data were analyzed using two-way ANOVA for the 

dependent variables measured over the course of the experiment and for those 

measured at the conclusion of the experiment. Data were checked for normality and 

homogeneity. Results were considered significant at the α = 0.05 level. Post-hoc 

multiple comparisons of means were performed using the Tukey procedure. Analysis 

was performed using SAS, SAS University Edition, SAS studio, version 3.5 (SAS 

Institute Inc., Cary, NC, USA).  

Results 

Morphological Variables 

Salinity generally had a significant negative effect on growth (Table 2.1) as 

reflected in repeatedly measured variables - cumulative height, stem height, stem 

count, live and dead leaf count, Fv/Fm, and yield. Salinity inhibited most variables at 

treatment levels above 5 ppt, Fv/Fm was inhibited at 27 ppt, although plants 

continued to persist at 35 ppt (Appendix B, Figures B.2.4-B.2.6a). Significant 

differences between salinity treatments were also seen for stem diameter, however, a 

linear relationship was not found (Appendix B, Figure B.2.6b). The negative 

influence of salinity escalated over time and varied by water level (salinity x water 

level x day of experiment, Table 2.1; Appendix B, Figs. B.2.7-B.2.9). For example, at 

low salinity, stem count was similar for all water levels on day 26; but, by day 61 

stem count was highest for the submerged treatment (11 stems). For plants receiving 
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35 ppt, stem count was similar on day 26, but by day 61, stem count had not changed 

significantly and was highest for the exposed treatment (1.75 stems). Significant three 

way interactions were also found for cumulative height and Fv/Fm. 

The negative effect of salinity was generally observed between weeks `3 and 4 

with significant differences seen in the means of all variables except yield (salinity x 

day of experiment interaction; Table 2.1; Figs. 2.2 a-d; Appendix B, Figs. B.2.10 and 

B.2.11). For example, significant differences in cumulative height were not found 

initially but by day 26 significant differences between plants receiving treatments of ≤ 

5 ppt and those receiving ≥ 9 ppt were found. Plants receiving 5 ppt had reached 

134.8 cm which was 58% greater than that of plants receiving 9 ppt (85.3 cm) and 

more than double the cumulative height at 14 ppt (66.3 cm). On day 61, cumulative 

height was 521.3 cm for plants at 5 ppt which was two times that of those at 9 ppt 

(255.6 cm) and more than four times those at 14 ppt (121.0 cm). Generally, the means 

for the 5 ppt and 9 ppt treatments were not statistically different from one another but 

9 differed from treatments < 5 ppt and 5 ppt differed from treatments > 9ppt.  The 

effect of salinity and water level on stem diameter was additive, however, a clear 

trend was not observed (Table 2.1; Appendix B, Figure B.2.12). 

Submergence tended to result in increased growth, although the effect varied 

with time (Table 2.1; Appendix B, Figure B.2.13) as seen in cumulative stem height, 

stem height, stem diameter, and dead leaf count (water level x day of experiment 

interaction). Stem height was highest for plants under submerged conditions but on 

day 46, exposed plants were taller than submerged and by day 61 the trend reversed 

again with submerged taller than exposed plants. A main effect of water level was 
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found for stem height and stem diameter with the largest means occurring in 

submerged plants with significant differences between submerged and exposed plants 

but neither were significantly different from plants with water level at the substrate 

surface (Appendix B, Figure B.2.14).  

By the conclusion of the experiment, ANOVA results confirmed the trends 

found during the experiment with significant differences between salinity treatments 

for most morphological variables (Table 2.2; Appendix B, Figures B.2.15 and B.2.16 

a-c), stem and rhizome diameter were the exceptions. Pair wise comparisons of 

salinity levels on the data collected at the conclusion of the experiment found 5 ppt to 

be the threshold beyond which decreases in growth were observed. No interactions 

were found. 

Biomass Fractions 

Analysis of data collected at the conclusion of the experiment confirmed that 

growth of native Phragmites was significantly inhibited by salinity (Table 2.2; Figure 

2.3). All biomass fractions had a significant negative response to salinity at α <0.05 

except rhizome biomass where a significant positive response was found at α <0.1 

(P=0.0876, Table 2.2). However, water level treatments did not produce a significant 

response in any of the biomass fractions and neither treatment amplified the effect of 

the other (Table 2.2).  

Resource Capture and Allocation 

A significant difference between salinity treatments was found for the 

root:shoot ratio (P=0.0016, Table 2.2, Appendix B, Figure B.2.16 d) which increased 

as salinity increased but no significant differences were seen in either leaf area ratio 
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(LAR) or specific leaf area (SLA) (P=0.2774 and P=0.3923, respectively; Table 2.2). 

No responses to water level treatments were found nor were any interactions 

identified.   
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Table 2.1. Results of two-way ANOVA of Phragmites australis ssp. americanus 

response to salinity and water level treatments based on repeatedly measured data 

collected weekly throughout the experimental period. Bolded values represent a 

significant treatment effect (p<0.05). 
Variable Effect Ndf Ddf F PValue 

Stem Height (cm) Salinity (S) 7 160 17.73 <0.0001 

 Water level (W) 2 172 3.15   0.0293 

 S x W 14 181 0.81   0.5800 

 Day of Experiment 

(DOE) 

9 515 55.12 <0.0001 

 S x DOE 63 471 4.77 <0.0001 

 W x DOE 18 531 2.92 <0.0043 

 S x W x DOE 126 424 1.30   0.2296 

Cumulative Stem 

Height (cm) 

S 7 190 24.94 <0.0001 

W 2 235 1.69   0.1868 

S x W 14 239 1.09   0.3654 

DOE  9 553 82.71 <0.0001 

S x DOE 63 460 11.82 <0.0001 

W x DOE 18 525 2.91 <0.0001 

S x W x DOE 126 446 1.96 <0.0001 

Stem Count S 7 173 20.08 <0.0001 

 W 2 194 0.43   0.6520 

 S x W 14 198 1.20   0.2767 

 DOE  9 520 36.27 <0.0001 

 S x DOE 63 417 6.48 <0.0001 

 W x DOE 18 487 8.54 <0.0001 

 S x W x DOE 126 401 3.57 <0.0001 

Stem Diameter S 7 148 2.87   0.0076 

 W 2 213 3.03   0.0503 

 S x W 14 214 2.90   0.0005 

 DOE  9 466 3.08   0.0013 

 S x DOE 63 448 1.37   0.0376 

 W x DOE 18 463 1.10   0.3538 

 S x W x DOE 126 471 0.87   0.8196 

Leaf Count, Live S 7 163 10.49 <0.0001 

 W 2 187 0.20   0.8215 

 S x W 14 198 0.94   0.5196 

 DOE  9 526 5.79 <0.0001 

 S x DOE 63 497 2.35 <0.0001 

 W x DOE 18 525 1.47   0.0949 

 S x W x DOE 126 494 0.92   0.7070 

Leaf Count, Dead S 7 190 19.29 <0.0001 

 W 2 209 1.14   0.3221 

 S x W 14 220 1.21   0.2710 

 DOE  9 537 8.17 <0.0001 

 S x DOE 63 511 2.70 <0.0001 

 W x DOE 18 536 1.74   0.0294 

 S x W x DOE 126 521 1.05   0.3432 

Fv/Fm S 7 136 30.44 <0.0001 
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Variable Effect Ndf Ddf F PValue 

Fv/Fm(cont.) W 2 136 0.71   0.4934 

 S x W 14 137 1.27   0.2315 

 DOE  1 174 2.42   0.1218 

 S x DOE 7 174 5.25 <0.0001 

 W x DOE 2 174 2.40   0.0938 

 S x W x DOE 14 173 2.63   0.0017 

Yield S 7 127 19.10 <0.0001 

W 2 126 0.96   0.3867 

S x W 14 128 0.68   0.7858 

DOE  1 186 11.85   0.0007 

S x DOE 7 186 0.75   0.6340 

W x DOE 2 186 1.40   0.2485 

S x W x DOE 14 185 0.89   0.5726 
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Figure 2.2. Variation of Phragmites australis ssp. americanus (a) cumulative stem 

height, (b) stem height, (c) stem count, and (d) live leaf count in response to salinity 

treatments. Plotted values are arithmetic means of weekly measurements and plotted 

using a straight line curve. By the end of the experiment, salinity levels >5ppt had 

inhibited growth. 
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Discussion 

Growth of native Phragmites was negatively related to salinity as 

hypothesized. Specifically, salinity levels greater than 5 ppt significantly inhibited 

growth within 4 weeks of treatment. The growth response measured here was similar 

to the response found by Vasquez et al. (2005). In that greenhouse study, plants 

grown from rhizomes showed a significant decrease in stem height, density, and 

above and below ground biomass in response to increasing salinity levels with 

complete mortality at levels above 6 ppt.  

Salinity has been shown to have a significant negative effect on non-native 

Phragmites although its maximum tolerance is much higher than the natives. In 

greenhouse studies of non-native Phragmites, Vasquez (2006) saw 50% reduction in 

growth above 24 ppt however, growth was sustained at 30 ppt (Achenbach and Brix, 

2014) while complete mortality occurred at 32 ppt (Lissner and Schierup 1997; 

Achenbach et al. 2013). In North America, the non-native form has been observed in 

a range of conditions from freshwater to polyhaline tidal wetlands (Hellings and 

Gallagher 1992b; Chambers et al. 1999; Rice et al. 2000; Burdick et al. 2001; Packett 

and Chambers 2006). These results, and those of other investigators (Hellings and 

Gallagher 1992a; Lissner and Schierup 1997; Lissner et al. 1999; Vasquez et al. 2005; 

Achenbach et al. 2013; Achenbach and Brix 2014), indicate intraspecific-variation 

within this species. The degree to which plants are able to tolerate saline conditions is 

known to vary within species. For example, Spartina alterniflora, which is similar to 

Phragmites in its wide ranging distribution, shows a differential response to salinity 

that is dependent upon location of the population (Mateos-Naranjo and Redondo-



 

 27 

 

Gómez 2016). Several studies of non-native Phragmites australis have shown salinity 

tolerance to vary widely and is dependent upon the genotype (Hanganu et al. 1999; 

Gao et al. 2012; Achenbach et al. 2013). The North American native Phragmites 

grows along the Atlantic seaboard and gulf coast under a variety of saline conditions 

(Meyerson et al. 2000; Saltonstall 2011; Achenbach and Brix 2014). However, the 

known stands of native Phragmites in the Mid-Atlantic region are located in fresh to 

oligohaline waters suggesting a limited range of tolerance to salinity (Vasquez et al. 

2005; Packett and Chambers 2006; Meadows and Saltonstall 2007). 

Growth has been shown to vary with water level (Wang et al. 2006b) and the 

combined effect of salinity and water level decreases growth more than either stress 

alone (Baldwin and Mendelssohn 1998). I was unable to confirm those results or 

prove my hypotheses in this study. Although, stem height varied with water level 

during the experiment, at its conclusion neither water levels nor the combined effect 

of water and salinity showed a significant influence on growth. Much work has been 

devoted to understanding the role of inundation on plant growth for a wide variety of 

halophytes and non-halophytes. Submergence has been shown to stimulate the 

production of ethylene but the presence of water inhibits its diffusion such that it 

accumulates in plant tissue triggering rapid stem elongation restoring gaseous 

exchange and resumption of aerobic respiration (Armstrong et al. 1994; Voesenek et 

al. 2004; Voesenek et al. 2006; Colmer and Voesenek 2009). Coops et al. (1996) 

found an increase in stem height but a decrease in overall growth. As was the case in 

this study, stem height responded to water level during the experiment with stems 

significantly taller under the submerged (i.e., -10 cm) treatment as compared to either 
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the surface (0 cm) or exposed (+10 cm) treatments but there was an overall decrease 

in growth. Non-native Phragmites response to prolonged submergence has produced 

mixed results with both significant reductions (Hellings and Gallagher 1992a; 

Mauchamp et al. 2001) and increases (Vretare et al. 2001; Wang et al. 2006b) in 

biomass and height. However, the results of this study confirm those of Coops et al 

(1996) which did not find a significant effect of flooding on biomass, cumulative 

height, density, or basal diameter. 

Physiological adaptations in wetland plants provide an escape from oxygen 

deprivation; however, effectiveness is dependent upon duration and growth stage. For 

example, non-native Phragmites seedling emergence is limited under flooded 

conditions (Baldwin et al. 2010), while mature plants appear to tolerate flooding 

(Armstrong et al. 1999). The results of this study combined with those of the field 

study provide evidence that mature native Phragmites plants can tolerate a wide range 

of flooding conditions. It is possible, however, had we started with seedlings, our 

results may have been different.  

Salinity and flooding regimes are known to be a primary influence on wetland 

plant community composition and distribution. Understanding a species tolerance to 

physical stress is important for predicting natural community dynamics and for 

practical applications. This is particularly useful in facilitating the conservation and 

restoration of native species under threat from non-native species, rising sea levels, 

and anthropogenic activities that destroy or modify wetland hydrology. The results 

from this greenhouse experiment were confirmed in a natural setting (see chapter 3) 

where growth a negative response to the salinity gradient of the Patuxent River 
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occurred and no response to flooding was observed. While some populations of 

native Phragmites exhibit a higher tolerance to salt concentrations, this study suggests 

that the Chesapeake Bay population has a limited tolerance similar to populations of 

the larger Mid-Atlantic region. If salinity levels do not rise above 5 ppt in response to 

changing climatic conditions, native Phragmites may be able to retain current 

populations even as water levels rise. The findings provide evidence that while native 

Phragmites is limited by salinity, water level does not influence growth indicating its 

usefulness in restoration efforts of fresh and oligohaline wetlands that experience a 

range of hydrologic conditions in the Chesapeake Bay and Mid-Atlantic regions.  
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Chapter 3: Growth of Native Phragmites on the Patuxent River: 

Assessing Salinity and Flooding Tolerance 

 

Introduction 

 Wetlands provide a variety of services including stabilizing shorelines, 

protecting against storm surges, and providing habitat for a diversity of plant (and 

biotic) life found nowhere else (Mitsch and Gosselink 2000). However, wetlands are 

vulnerable to changes due to natural environmental processes (e.g., storms and 

subsidence), anthropogenic modifications (e.g., land development), or unintended 

consequences resulting from both natural and anthropogenic modifications (e.g., sea 

level rise and invasive species). Sea level rise threatens to alter hydrology while 

invasive alter species diversity. Current restoration efforts are aimed at creating 

habitats for native plant species but will need to consider the effects of increased 

inundation and salinization due to sea level rise.  

The non-native Phragmites australis (Cav.) Trin. ex Steud., hereafter referred 

to as non-native, is an invasive plant shown to decrease biodiversity (Meyerson et al. 

2000; Lathrop et al. 2003) and alter the hydrology of North American wetlands 

(Lathrop et al. 2003) which can diminish ecosystem function. The significant impact 

of non-native Phragmites has prompted management efforts to decrease its current 

population and control its spread into new environments. The US spends $4 million 

annually on control efforts (Martin and Blossey 2013); herbicides are the primary 

method of control and while effective, the potential to damage non-target species 

exists (Rinella et al. 2009; Skurski et al. 2013). Sometimes found growing in close 
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proximity to non-native Phragmites (Blossey and Casagrande 2016) is the recently 

identified native form, Phragmites australis ssp. americanus Saltonstall, Peterson and 

Soreng, hereafter referred to as native. Given that the native and non-native forms are 

congeners, the native may easily be mistaken for the non-native and unintentionally 

treated during control efforts. As a result, native stands along the Choptank River on 

Maryland’s eastern shore have been eradicated (Baldwin personal communication). 

Environmental changes due to sea level rise, rising temperatures, and current 

land use practices are likely to cause increased salinization of water and soil (Kaushal 

et al. 2005; Jeppesen et al. 2015). Saline conditions limit plant growth as it can inhibit 

the uptake of nutrients and water and, at levels beyond tolerance, cause tissue damage 

and, over time, death. The degree to which growth is limited depends on species and 

genotype (Lessmann et al. 1997; Inan et al. 2004; Glenn et al. 2012; Da Cruz et al. 

2013). Many wetland plants are successful in saline conditions due to physiological 

and morphological adaptations which provide mechanisms that exclude, excrete, or 

adjust ion concentration levels. 

While halophytes are adapted to saline conditions, maximums do exist. Non-

native Phragmites is capable of tolerating a range of salinities but is generally found 

in fresh and brackish marshes (<18 ppt) (Chambers et al. 1999; Burdick et al. 2001) 

with decreases in biomass, height, and density at levels above 0.1M NaCl 

(approximately 7 ppt) (Vasquez et al. 2006) and complete mortality above 15 ppt 

(Lissner and Schierup 1997). Response to salinity is dependent upon growth stage 

with decreases in germination rates occurring at 10ppt, decreases in growth of 

seedlings occurring at 7.5 ppt, and decreases in survival occurring at 15-20 ppt 
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(Mauchamp and Mésleard 2001b). Although the maximum reported salinity for non-

native seedlings varies among studies, seedlings appear to have higher tolerance 

than seeds while rhizome grown plants have a higher tolerance than seedlings. 

Lissner and Schierup (1997) found 75% of rhizome grown plants survived 22.5 ppt 

while only 12% of seedlings survived that level. Mature plants appear to be most 

tolerant with established stands in Delaware thriving at conditions where soil 

salinity reaches approximately 50 ppt (Mills and Gallagher unpublished). 

Phragmites tolerance also varies among genotypes. In a study of Eurasian and Asian 

types, Achenbach et al (2013) found survival rates varied among types and identified 

different maximums based on growth and survival rates. Few studies on the tolerance 

of native Phragmites have been conducted. A study of  natives from the Mississippi 

delta found that growth was negatively related to salinity but the response varied by 

genotype with the least sensitive experiencing growth reductions at 20 ppt  

(Achenbach and Brix 2014) but an earlier experiment which included natives of the 

Mid-Atlantic region found growth significantly decreased in saline conditions greater 

than 0.1 M NaCl (approximately 7 ppt)(Vasquez et al. 2005). Field observations have 

identified native stands in freshwater and oligohaline waters (League et al. 2006; 

Packett and Chambers 2006; Meadows and Saltonstall 2007) as well as in mesohaline 

conditions (Lambert and Casagrande 2006). 

While salinity plays a role in determining plant success or distribution, 

hydrology also determines wetland structure (Baldwin et al. 2001; Mitsch and 

Gosselink 2007; Batzer and Baldwin 2012) as its influence on chemical and physical 

processes dictate species composition, primary productivity, organic material 
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accumulation, and nutrient availability. Flooding is known to decrease species 

richness, limit seedling germination and survival, and inhibit productivity (McKee 

and Mendelssohn 1989; Baldwin et al. 1996; Lessmann et al. 1997; Baldwin et al. 

2001; Peterson and Baldwin 2004). The stress imposed by flooding drives adaptive 

evolution allowing for growth and reproductive success in conditions that would be 

highly damaging to most plant species. But, for those adapted to saturated conditions, 

the degree to which flooding and the resulting anoxic conditions are detrimental, 

varies with age and duration of stress (McKee and Mendelssohn 1989; Baldwin et al. 

2001; Peterson and Baldwin 2004). For example, when under complete submergence, 

non-native Phragmites seedlings have reductions in germination (Baldwin et al. 

2010), rhizomes fail to emerge (Hellings and Gallagher 1992b; Bart and Hartman 

2003), and productivity decreases (Buchsbaum et al. 2006b; Wang et al. 2006b) with 

the most severe productivity losses in young plants (Armstrong et al. 1999; 

Mauchamp et al. 2001). However, established plants are able to tolerate flooding 

(Warren et al. 2001; Chambers et al. 2002) and may even experience an increase in 

stem density and height under submergence (Vretare et al. 2001; Voesenek et al. 

2004). I am aware of no studies evaluating the flood tolerance of native Phragmites.  

In recent decades, scientific understanding of wetland functions has increased, 

as has the desire to protect and restore native species and their habitats. Created or 

restored wetlands are specifically designed to support native species and a primary 

objective of land managers is to restore the native flora (Martin and Blossey 2013). 

However, the success of these efforts depends on our knowledge of species tolerance 
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to environmental constraints. Understanding plant tolerance to environmental 

conditions is crucial to successful establishment of native species in restoration.  

An experiment to identify the tolerance to physical stressors across a range of 

natural conditions would fill a considerable gap in our knowledge of native 

Phragmites. This study, in conjunction with a greenhouse experiment (Chapter 2), 

was designed to determine the tolerance of native Phragmites to two environmental 

stressors: salinity and inundation both alone and in combination. My objective was to 

examine the growth of native Phragmites planted at three sites along the salinity and 

flooding gradient of Maryland’s Patuxent River. Because of the limits imposed by 

flooding and salinity, I hypothesized that the growth response of native Phragmites 

would differ across various flooding regimes and salinity levels. Specifically, growth 

would be negatively correlated to salinity and inundation frequency. Growth is 

measured by culm height, basal diameter, and culm density. 

Methodology 

Study Area 

Originating in the Piedmont physiographic province of western Maryland, 

USA, the Patuxent River flows through urban and suburban areas and then through 

more rural areas before emptying into the Chesapeake Bay. The 2,393-km
2
 drainage 

basin is located between Washington, DC, and Baltimore, MD. Current land use 

patterns in the watershed are as follows: forests 38%, residential 32%, agriculture 

19%, other developed lands 10%, and wetlands 1% (Patuxent River Commission 

2014). The average annual temperature near the study sites is 33°C with average low 

of 1.1°C in January and average high of 24°C in July and an average annual 
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precipitation of 45.8 inches (NOAA, National Climatic Data Center, Monthly 

Normals 1981-2010 for Mechanicsville 5 NE, MD US GHCND:USC00185865). 

The 170 km river is divided into non-tidal and tidal; the lower 95 km section 

of the river is tidal. Observational field studies were conducted along the salinity 

gradient of the Patuxent River at three tidal marshes dominated by dense stands of 

non-native Phragmites: 1) Jug Bay Wetland Sanctuary (Lothian, MD; N38°46'53, 

W76°42'23"); 2) God’s Grace Point (Prince Frederick, MD; N38°32'20”, 

W76°40'3”); and 3) Jefferson Patterson Park and Museum (St. Leonard, MD; 

N38°23'23”, W76°30'26”) (Figure 3.1).  

Site selection was based on salinity reports from Eyes on the Bay 

http://mddnr.chesapeakebay.net/eyesonthebay) and field salinity measurements to 

obtain three distinct salinity regions — low, tidal fresh (Jug Bay), middle, oligohaline 

(God’s Grace), and high mesohaline (Jefferson Patterson Park and Museum). Two of 

the sites are public lands; the third is privately held and adjacent to agricultural land. 

Permission to access the property was granted by the land owner. 
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In April of 2015, ten 1-m
2
 plots were randomly positioned along perceived 

elevation gradients at each site (10 plots per site x 3 sites = 30 plots). A monitoring 

well outfitted with conductivity and water level continuous data loggers (Odyssey, 

New Zealand) was installed at the lowest point within each site; one additional un-

instrumented monitoring well used to make manual water level measurements was 

also installed in each plot. Dense stands of non-native Phragmites exists at all three 

sites. Resource managers broadcast herbicides at Jug Bay and Jefferson Patterson 

Park in the fall 2014 and for at least two consecutive years prior. At God’s Grace, the 
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plots and a 3 foot perimeter were treated with herbicide directly 5 weeks prior to plant 

installation. Within each plot, all vegetation was clipped to the marsh surface prior to 

installing native Phragmites plants to minimize competition. Weeding of non-native 

Phragmites within each plot was done weekly as needed throughout the duration of 

the observation period. In May of 2015, five plants were installed into each plots, 

25cm on center (5 plants per plot x 10 plots per site x 3 sites = 150 plants). A 0.5-m 

cleared border around the perimeter of each plot was maintained to minimize the 

influence of shading. 

Plant Material 

Rhizomes were collected for the field planting study from a confirmed stand 

of native Phragmites on the Patuxent River, Maryland, USA (N38° 42' 8", W76° 41' 

48", map datum: WGS 84) on March 18, 2015. Stands were identified first using 

morphological characteristics (Saltonstall et al. 2004; Blossey) and then confirmed 

genetically following methodology described by Saltonstall (2003) which uses a 

restriction fragment length polymorphism assay to distinguish native from non-native. 

Rhizomes were excavated using a shovel, rinsed clean with river water, placed in 19-

liter buckets, transported to the University of Maryland in College Park and placed in 

cold storage (4°C).  

Firm white rhizomes with at least two nodes were planted in a 2:1 by volume 

mixture of potting soil and washed sand in small pots. Rhizomes were watered 

regularly to maintain moisture. To mimic natural conditions, greenhouse room 

temperature was controlled at 32°C during the day 7
o
C at night. After ten weeks, 

plants were installed at study sites. All pots had one shoot of similar size, with an 
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average height of 39.1 cm (± 1.6) at Jug Bay, 38.8 cm (± 0.8) at God’s Grace, and 

34.4 cm (± 2.2) at Jefferson Patterson at the time of installation.   

Variable Measurements 

Growth measurements (culm height, diameter, and culm density) and 

environmental measurements (pore water salinity, temperature, and pH, and water 

levels) were collected every other week. Measurements began on May 29 and 

concluded October 9 of 2015. During the 2016 season, initial measurements were 

taken on June 6 and final measurements were taken on August 9, 62 days after the 

first observation was made. Native Phragmites were identified morphologically 

(Saltonstall et al. 2004; Blossey) and genetically following Saltonstall (2003) 

methodology. The height of each culm was measured from the soil surface to the 

tallest collared (flat) leaf. Basal diameter was measured using calipers at 

approximately 4 cm above soil surface. Salinity, temperature, and pH were measured 

using portable meters (YSI, Yellow Springs, Ohio) with the probe placed in the 

monitoring wells at approximately 10-20 cm beneath the marsh surface.  

Standing water levels were monitored manually by measuring the distance 

from the top of the well to the water level and to the marsh surface with a steel tape at 

three marked positions on the well. When water was absent from the marsh surface, 

water level was determined by inserting a steel tape into the well to the point of 

contact with the water surface, determined visually, repeated three times at each well. 

Time of measurement was recorded. Relative elevation of plots was determined using 

water as a leveling device (Evgenidou and Valiela 2002). An average marsh surface 

level, based on observed measurements at the logger, was calculated. Calibrated 
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logger values were paired to their corresponding observed measurements by date and 

time. The calibrated water level was subtracted from the marsh surface value to 

determine water level relative to the marsh surface. An equation of the line was 

constructed describing the relationship between the logger data and observed data in 

order to predict the water levels throughout the experiment at each plot. The resulting 

water levels were then used to determine frequency of inundation at each plot for Jug 

Bay and God’s Grace. A graphical examination of Jefferson Patterson’s hydrology 

data suggested that water flow was restricted and not tidally influenced. This is likely 

due to a sand berm along the sites perimeter bordering the river. Therefore, 

inundation frequency at Jefferson Patterson is based on observed water levels for each 

plot. See Appendix B, Figure B.3.1 for hydrographs of study sites. 

Final culm counts, culm height, basal, and leaf count measurements were 

taken on August 9, 2016. Species count and cover estimates were not done in 2015. 

Cover was estimated visually following the cover classes of Peet et al. (1998) before 

clipping and bagging all aboveground vegetation at the soil surface. Plant material 

was transported to University of Maryland stored in a black trash bag at 4 °C until 

processed. Vegetation was separated into two categories, native Phragmites and all 

other species, weighed and dried to a constant mass at 70°C to the nearest 0.01 g. 

Three soil cores (10 cm diameter, 50 cm depth) were collected haphazardly 

from each study site across elevation levels using a McCauley peat corer to calculate 

moisture content, bulk density, and organic matter content. Wet soils were weighed 

then dried at 70°C to a constant mass and weighed again. Water content was 

calculated as the percentage of water mass of the wet sample. Bulk density was 
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determined as the mass of dried soil per volume of the sample collected. Organic 

matter content was calculated following methodology for loss on ignition by Klute 

(1986): (1) each dried soil sample was crushed into fine particles, mixed thoroughly, 

and 1-3 grams were placed in a muffle furnace for 16 hours to burn off all 

combustible organic matter; (2) washed samples were allowed to cool to room 

temperature in a desiccator and then reweighed; and (3) the percent change in sample 

weight was calculated (%OM).  

Results 

Site Characteristics 

While the latter part of 2016 was a wetter than normal year, precipitation 

during the study period, May 2015 – October 2016, was normal (Appendix B, Figure 

B.3.2). Soils in the upper 50 cm at Jug Bay are primarily composed of organic matter 

while God’s Grace is predominantly clay loam and Jefferson Patterson predominantly 

is a sandy clay loam. Sites were similar in soil pH, organic matter, and bulk density 

with very little variation. Salinity was as expected providing low, medium, and high 

salinity sites (Table 3.1). 
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Salinity Effect 

Growth as measured by culm density, height, and basal diameter decreased 

along the salinity gradient of the river (Figure 3.1). Initially, during the 2015 

observation period, the number of culms per m
2
 plot increased at similar rates at all 

sites; however, by the middle of July (around day 50), additions to culm count at Jug 

Bay increased at a faster rate than God’s Grace and Jefferson Patterson. God’s Grace 

and Jefferson Patterson saw a dramatic decline in culm production reaching a 

maximum of 10 culms at the end of August while at that same time, Jug Bay had an 

average of 17 culms and it wasn’t until October 9
th

 that a maximum of 20 stems was 

reached, for an increase of 222%. At the conclusion of 2015, Jug Bay had the most 

culms, with God’s Grace and Jefferson Patterson both having lower counts than Jug 

Bay but similar counts to each other (Figure 3.2a).  
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Throughout the 2015 growing season, cumulative height (Figure 3.2c) 

increased at Jug Bay and continued at a positive rate reaching 1281.5 cm on August 

29 (day 95). Initially, God’s Grace and Jefferson Patterson showed positive growth in 

cumulative height reaching a maximum of 332 cm and 257 cm, respectively, on July 

15 (day 50) after which, growth became negative as individual culms died and above 

ground growth decreased. Culm height at Jug Bay increased 75% from the initial 

observation (39 cm, ±1.6) to its maximum height (68.4 cm, ±5.6) on August 29 (day 

95). During that same period, God’s Grace and Jefferson Patterson saw negative 

patterns in average height, consistently declining after the first measurement. Basal 

diameter (Appendix B, Figure B.3.3) showed similar patterns. 

In spring 2016, native Phragmites resprouted at the freshwater site, Jug Bay, 

only; no regrowth occurred at the more saline sites. One plot at Jug Bay was 

destroyed during the 2015 season, likely during sampling, and did not re-establish. 

Initial measurements, on June 8, 2016, found an average of 7 culms (± 1.4 culms) and 

by August 9, 2016, final measurement, the average number of culms had increased to 

13 ( ± 3.2 culms). Although, culm count at Jug Bay was lower in 2016 than in 2015, 

culms were taller initially and remained taller throughout 2016 as compared to 2015 

(Figure 3.2). Cumulative height was also greater in 2016, even though culm count 

was lower, until harvest date at which point annual cumulative heights were similar. 

During the 2016 harvest, culms were found growing outside of plots (not included in 

analysis) whereas none were found growing outside of the plots in 2015. 
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Figure 3.2: Mean density (a), stem height (b), and cumulative stem height (c) of 

Phragmites australis ssp. americanus found at each study site during 2015 and 

2016 observation periods (mean values ±SE).  

 

a. 

b. 

c. 
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Inundation Effect 

The plots at each site experienced a range of flooding frequencies (Figure 

3.3). Plots at Jug Bay experienced flooding 35-90% of the time. Jefferson Patterson 

had a similar range of elevations based on flooding frequency (7-73%). God’s Grace 

tended to be drier and did not have the large range of flooding frequency seen at Jug 

Bay or Jefferson Patterson, however, variation in flooding frequency did occur with 

plots flooding 0-41% of the time. The average cumulative height for each plot was 

greatest at Jug Bay across all flooding frequencies when compared to either God’s 

Grace or Jefferson Patterson. Jug Bay culm counts were generally greater than the 

counts at any of the plots at God’s Grace and Jefferson Patterson. Despite the range of 

flooding frequencies, inundation did not show a clear effect on growth.   

Figure 3.3. Mean density (a) stem height (b) and cumulative culm height (c) of 

Phragmites australis ssp. americanus found in each plot at study sites in response to 

different flooding regimes. Flooding frequency is based on 2015 and 2016 water level 

readings. Density and cumulative culm height are based on 2015 plant measurements. 

 

Aboveground Biomass and Community Composition 

b. a. c. 
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Jefferson Patterson had the highest aboveground biomass and God’s Grace 

had the lowest (Figure 3.4). Plant community composition differed across the salinity  

 

gradient (Appendix A, Table 3.2) as did species richness, which decreased as salinity 

increased (Figure 3.5). In 2016, a combined total of 26 species were identified: 14 at 

Jug Bay, 7 at God’s Grace, and 10 at Jefferson Patterson. Jug Bay had the highest 

species richness, while God’s Grace and Jefferson Patterson had similar richness. 

Native Phragmites was only found at Jug Bay in 2016.  

The non-native lineage was found at Jug Bay and God’s Grace in 2016. While 

not found in the Jefferson Patterson plots, large swaths of non-native grow along the 

perimeter of the study site. The absence of the non-native in the study area is likely 

due to prior eradication efforts at the site.   

Figure 3.5. Species richness found at 

Patuxent River field sites in 2016 

(mean values, +1SE). 

Figure 3.4. Aboveground biomass 

of plants harvested on August 9, 

2016 (mean values, +1SE). 
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 In 2016, Jug Bay was dominated by Murdannia keisak and areas of no 

vegetation; God’s Grace had very little plant cover, as plots were primarily 

unvegetated; and Jefferson Patterson was dominated by S. patens, S. alterniflora, and 

D. picata with few areas of no vegetation (Figure 3.6). 

  
 

Figure 3.6. Cover (%) of standing vegetation identified during 2016 harvest at 

Patuxent River study sites. Nomenclature is in accordance with the USDA Plants 

Database (plants.usda.gov, accessed September 2016). 
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Discussion 

This research measured the growth of native Phragmites under varying 

salinity and inundation levels. As hypothesized, productivity reductions were 

observed along the salinity gradient. Additionally, at levels of 8 ppt and above, 

growth was not only reduced but a complete cessation of growth was observed at the 

conclusion of the first growing season. Inundation differences within sites appeared 

not to contribute to plant stress. The field planting results combined with results of 

the greenhouse study (Chapter 2) suggests native Phragmites has a limited tolerance 

to salinity, possible maximum of 5 ppt as demonstrated in the greenhouse study, but 

can tolerate a wide range of flooding conditions.  

I observed decreases in all morphological parameters measured (culm count, 

average height, culm diameter) as salinity levels increased across the estuary. 

Contrary to Lambert and Casagrande (2006) observations of native stands in high 

salinity conditions, 27 ppt, my native plantings failed to grow at levels above 8 ppt. 

Complete dieback at God’s Grace and Jefferson Patterson during 2015 as well as the 

lack of regrowth in 2016, suggests that native Phragmites maximum tolerance is less 

than 8 ppt (2015 average salinity at God’s Grace). These findings support results of 

this greenhouse experiment (chapter 2) and those of Vasquez et al. (2005) who found 

reduced height and density at salinity levels greater than approximately 7 ppt. Several 

haplotypes of native Phragmites have been identified and appear to have 

geographical ranges (Achenbach and Brix 2014; Saltonstall 2016) suggesting that 

tolerance differences are due to physiological differences of haplotypes. In fact, 

studies have found that salinity tolerances not only vary by genotype (Achenbach et 
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al. 2013) but haplotype. In Mississippi, Achenbach and Brix (2014) found decreased 

growth of Phragmites in response to salinity varied by haplotype. In fact, one of the 

four types examined was capable of survival at 40 ppt. The native Phragmites 

haplotype F, which was used in the greenhouse study by Vasquez et al. (2005), is 

primarily found in the mid-Atlantic region although, haplotype F is also found in New 

England along with haplotypes E and AB where growth is documented at higher 

salinity levels (Lambert and Casagrande 2006; Meadows and Saltonstall 2007). 

Interestingly, haplotype AB, was found in low salinity section of Maryland’s 

Choptank River (Meadows and Saltonstall 2007) further documenting variance of 

haplotypes. Additional research is needed to determine the role of genetics in salinity 

tolerance of the various haplotypes to further understand possible responses to 

environmental changes and use in restoration. 

This study did not find a clear effect of inundation on growth in contrast to my 

hypothesis. Instead, the response of native Phragmites to inundation was not uniform; 

in the fresh water conditions of Jug Bay, the native was successful under extreme 

flooding (90%) yet, under oligohaline conditions at God’s Grace and Jefferson 

Patterson, it was unable to survive even under minimal flooding (10%). Warren et al. 

(2001) found that non-native Phragmites occupied areas with a mean flooding 

frequency of 40% and concluded that it was hydro period, not salinity that limited 

growth. However, given that growth was inhibited at God’s Grace where flooding 

frequencies were less than 50%, I believe it is salinity that limits growth of native 

Phragmites. Culm height and count was greatest at Jug Bay for all inundation levels 

which coincides with results from (Voesenek et al. 2004; Jackson and Colmer 2005) 
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who found, under submergence, shoot elongation increased in an effort to increase 

gas exchange. However, this study did not produce those results at the high and mid 

salinity sites suggesting the negative growth pattern and failure to reestablish at God’s 

Grace and Jefferson Patterson was due to the higher salinity of those sites and not due 

to differences of flooding frequency. These results suggest an ability to tolerate 

flooding, which aligns with a spatial distribution study in Canada that found the 

native to be more prolific at lower elevations while the non-native occupied drier land 

(Taddeo and Blois 2012). Additionally, observations of native Phragmites stands on 

Maryland’s eastern shore, which extend across the marsh profile (Meadows and 

Saltonstall 2007), are able to tolerate varied flooding conditions. However, my results 

contradict these studies showing a negative growth response to flooding frequency. 

Previous studies used seedlings or young plants while those in this study may have 

been old enough to tolerate flooding.   

Cover estimates identify S. patens and S. alterniflora as the dominant species 

at Jefferson Patterson, While, God’s Grace  was almost void of vegetation, and Jug 

Bay was dominated by an invasive low growing herbaceous perennial (Murdannia 

keisak). Unexpectedly, aboveground biomass was highest at the high salinity site. I 

expected Jug Bay to have higher levels since freshwater tidal marshes have been 

shown to be more productive than mesohaline marshes (Barendregt et al. 2009; Craft 

et al. 2009) however, Wieski (2001) also found higher above ground biomass at 

brackish sites compared to fresh sites. The low biomass may have resulted from my 

efforts to limit competition with native Phragmites at Jug Bay - all plants other than 

native Phragmites plants were clipped to the surface at Jug Bay during the 
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observation period. Clipping did not occur at God’s Grace because plots were mostly 

barren nor did it occur at Jefferson Patterson once it was clear that native Phragmites 

had not re-established. To eliminate competitive pressure, clipping of the non-native 

Phragmites continued during the 2016 season at Jug Bay. M. keisak with its prostrate 

sprawling growth habit likely avoided removal because of its low stature and its 

propensity to form dense mats may explain why it had the greatest cover. The low 

biomass at God’s Grace was due to several un-vegetated plots as compared to Jug 

Bay which only had one and none were found at Jefferson Patterson. Establishment is 

dependent upon several factors with limited light availability, seed bank limitations, 

and land disturbance all known to decrease vegetation and species richness in flooded 

saline conditions (Baldwin and Mendelssohn 1998; Ailstock et al. 2001; Baldwin et 

al. 2010) Prior to site establishment, God’s Grace was very densely populated by non-

native Phragmites and scattered Iva frutescens which may have contributed to the low 

number of species found at God’s Grace as viable seeds or limited light conditions 

may have prevented the establishment of additional species once non-native 

Phragmites had been cleared from the plots. Although, given the low flooding 

frequency at God’s Grace, I would have expected to see higher species richness as 

was found by Baldwin et al where richness increased by 42% under dry conditions as 

compared to submerged conditions. Jug Bay had the largest number of species found 

which was to be expected since tidal freshwater marshes are more diverse than both 

oligohaline and mesohaline (Crain et al. 2004; Sharpe and Baldwin 2009; Więski et 

al. 2009; Batzer, Darold P. and Sharitz, Rebecca R. 2014). Even though Jug Bay is 
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more diverse, it is likely that the number of species was underestimated due to efforts 

to minimize the effect of competition. 

Invasive species have had a significant impact on our natural systems 

requiring intensive management and restoration efforts to improve ecosystem 

function. Plant selection is essential to restoring ecological integrity and is the 

primary focus of many restoration projects — restore or enhance natural vegetation 

communities, increase biodiversity, improve ecosystem function — all of which 

require an understanding of native plant tolerance to environmental conditions. 

Restoration and enhancement projects are deemed successful when plant diversity 

and vegetative cover expectations are met (USDA NRCS 2003). However, 

maintaining the desired plant community is dependent on the physical and chemical 

processes present. This study was conducted along a natural salinity gradient and 

varying inundation frequencies in order to identify tolerances to those stressors based 

on the physical response of native Phragmites. The results of this study suggest that 

plantings of adult native Phragmites would be successful in areas both frequently and 

infrequently flooded but  where salinity levels are lower than 8 ppt and possibly no 

higher than 5 ppt. 
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Chapter 4: Final Conclusions 

 

Wetlands are recognized as highly important ecosystems providing services 

valued in the trillions of dollars (Zedler 2000) such as habitat, erosion control, 

containment of flood waters, and pollution abatement. Yet, from 1998-2008 coastal 

wetland losses increased from 60,000 -80,000 acres per year (Stutz 2014 Jul 28). 

Losses are not only quantitative but qualitative. Degradation in the form of low native 

biodiversity due to the spread of invasive species or from increased flooding due to 

either a reduction in the ability of the ecosystem to regulate water flow or the threat of 

sea level rise limit the ability of wetlands to provide valuable services.  

Increased public awareness and recognition by policy makers regarding the 

value of wetlands delivered $4.2 billion to the restoration of wetlands in recent 

decades (Hansen et al. 2015). Successful restoration is understood to be the return of 

a wetland and its functions to a close approximation of its original condition as it 

existed prior to disturbance. In addition to restoring hydrology and soil conditions, the 

restoration of native vegetation is necessary to restore wetland diversity, value, and 

function. The value of restoring native species is recognized by the federal 

government. In fact, executive orders task federal agencies and partners to restore 

native species and habitat conditions in ecosystems that have been invaded and to 

develop guidance on the use and maintenance of native species (PROTECT 2008).   

I investigated the tolerance levels of native Phragmites to environmental 

stressors – salinity and inundation. I examined native Phragmites plants grown from 
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rhizomes that were collected from the Patuxent River in Maryland. As hypothesized, 

the results of the greenhouse experiment indicate that salinity inhibits growth; 

additionally, the results indicate that the salinity tolerance is 5 ppt, beyond which, 

growth is inhibited. Similar results were found in field observations conducted along 

the salinity gradient of the Patuxent River. Where salinity levels averaged 8 ppt, 

growth was inhibited during the first field season and at higher salinity levels of 12 

ppt I observed 100% mortality by the end of the first observation season. I also 

observed a complete lack of regrowth in the second season at those same locations. I 

hypothesized that growth would vary with water level; however, both the greenhouse 

results and field observations suggest that water levels do not influence growth. 

According to the US EPA, one priority of wetland restoration is to re-establish 

ecological integrity of degraded ecosystems, specifically, the composition and natural 

processes of its biotic communities by simulating the native communities and 

diversity found in the region (US EPA OW 2015 Jun 30). Effective restoration 

designs incorporate the natural communities that have sustained native ecosystems 

through time. Restoration success is measured by the establishment of vegetation 

(USDA NRCS 2003); however, establishment is dependent upon species ability to 

tolerate existing environmental conditions. This research demonstrates that native 

Phragmites would be appropriate in the restoration and re-vegetation of natural 

communities found in the fresh or oligohaline marshes of the Mid-Atlantic region. 

Further, the ability of native Phragmites to tolerate various water levels broadens its 

scope of use to include restoration efforts aimed at re-establishing hydrologic 

regimes, particularly in cases where flooding or runoff is expected as sea level rises 
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or land development occurs, and in projects aimed at limiting erosion, such as living 

shorelines. I recommend that native Phragmites be added to plant identification 

guides currently used by professionals involved in restoration projects. In addition to 

increasing biodiversity, the use of native Phragmites may also improve water quality 

as the native is able to assimilate inorganic nitrogen and has high rates of organic 

nitrogen uptake. 

The presence of non-native Phragmites along the Atlantic coast has been a 

nuisance to resource managers for decades. Control efforts are vital in restraining the 

invasive and in protecting the native vegetation communities. Knowing where and in 

what conditions native Phragmites is found is imperative to the protection of this 

native species. Current investigations in near infrared spectroscopy may prove useful 

in remote identification of unidentified populations while mapping the currently 

known locations and incorporating those locations into the decision making process 

could help stave off inadvertent eradication of this native species.   

Protecting native Phragmites not only requires understanding its tolerance to 

environmental conditions and where it can be found but, also the ability to identify it 

in the natural settings. In addition to this research, I provided training, developed 

outreach materials, and established demonstration sites (Appendix C). Surveys I 

conducted after educational seminars showed most attendees were unaware of the 

native lineage and were unable to distinguish between the non-native and the native. 

Additional educational programs, outreach materials such as fact sheets and YouTube 

videos, and demonstration sites aimed at increasing awareness of resource managers, 
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restoration practitioners, and technicians would result in more effective techniques for 

the management of native wetland vegetation.   

Future research into the relationship of native Phragmites with other plant 

and/or animal species may uncover relationships currently unknown, potentially 

identifying indicator species. Further studies examining salinity tolerance of native 

Phragmites using plant material from other regions has the potential to identify 

populations with greater tolerance thereby expanding its range of use in restoration. 

In summary this research concludes that planting native Phragmites in fresh 

and oligohaline marshes of the Mid-Atlantic region at varying water levels is 

appropriate for restoration and management control efforts. I suggest incorporating 

installation of native Phragmites into management and restoration projects which 

identify as a primary goal: 

  increasing biodiversity;  

 restoring  natural vegetation communities; 

 removing invasive species, e.g. non-native Phragmites; 

 restoring site hydrology; 

 controlling shoreline erosion (when used as shoreline vegetation, i.e. 

living shorelines); or 

 improving water quality.  

The loss of ecological integrity accompanies the decline and degradation of 

wetlands, however incorporating native Phragmites into management and restoration 

practices is likely to improve biodiversity and increase ecosystem services locally and 

at the landscape scale.  
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Table A.2.2. Calculation of iron sulfate additions. 

 
Amount Units 

 

0.0006 M FeSO4 (based on Eller et al., 2014) 

 

0.0003 0.5L added weekly 

 

151.9076 FeSO4 molecular weight (g/mole) 

 

0.0464 g FeSO4 added weekly 

 

0.0132 g/L of soil using 3.5L pot 

 

0.0077 g needed for 6.03L pot 

   

 

278.0146 g FeSO4 7H2O molecular weight 

 

151.9076 g FeSO4 molecular weight 

 

1.8302 Amount of FeSO4 in FeSO4 7H2O 

 

0.0141 g FeSO4 needed/pot/week 
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Table A.2.3. Above- and belowground parts dried at 70 °C until constant mass was 

reached. Random samples of each fraction were chosen and weighed on 3 dates unitl 

no change was recorded. 
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Table A.3.2.  Species identified at each study location in 2016. Nomenclature is in 

accordance with the USDA Plants Database (plants.usda.gov, accessed September 

2016). 

  

Species 

Location 

Jug Bay 

Wetland 

Sanctuary 

God’s Grace 

Jefferson 

Patterson Park 

and Museum 

Amaranthus cannabinus  X  

Atriplex patula   X 

Bidens sp. X   

Distichlis spicata   X 

Eleocharis sp.  X  

Iva frutescens  X X 

Leersia oryzoides X   

Limnobium spongia X   

Ludwigia palustris X   

Mikania scandens X   

Murdannia keisak X   

Peltandra virginica X   

Phragmites australis X X  

Phragmites australis ssp.  americanus X   

Pilea pumila X   

Pluchea odorata  X X 

Polygonum arifolium X   

Polygonum hydropiper X   

Pontaderia cordata X   

Sagitaria latifolia X   

Salicornia depressa   X 

Solidago sp.   X 

Spartina alterniflora  X X 

Spartina cynosuroides  X X 

Sparitna patens   X 

Typha sp.   X 

Total Species Count 14 6 10 
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Appendix B. Supplemental Figures 

 

Figure B.2.1. Photographs of (a) Phragmites australis ssp. americanus rhizomes 

collected from the Patuxent River on March 18, 2015, (b) potted rhizomes in the 

greenhouse on March 30, 2015, and (c) rhizome growth in the greenhouse on April 

29, 2015. 
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Figure B.2.3. Photograph of (a) PVC risers used to elevate potted plants to assigned 

water level treatments, and (b) experimental set up on harvest day showing growth of 

native Phragmites at the conclusion of experiment. 

 

  

b. 

a. 

0 cm 
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Figure B.2.4. Main effect of salinity on growth of Phragmites australis ssp. 

americanus. Plotted values are arithmetic means +1 SE of weekly measurements of 

(a) cumulative stem height, (b) stem height, (c) stem count, and (d) live leaf count. 

Within each panel, means with the same letter are not significantly different from 

each other (Tukey–Kramer test, P<0.05). 
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Figure B.2.5. Effect of salinity on fluorescence as measured by (a) Fv/Fm and (b) 

yield. Plotted are arithmetic means of measurements, + 1 SE, taken on day 50 and day 

57 of the experiment. Within each panel, means with the same letter are not 

significantly different 

from each other (Tukey–Kramer test, P<0.05). 
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Figure B.2.6. Effect of salinity on growth as measured by (a) dead leaf count and (b) 

stem diameter. Plotted values are arithmetic means +1 SE of values measured 

repeatedly during experimental period. Within each panel, means with the same letter 

are not significantly different from each other (Tukey–Kramer test, P<0.05). 
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Figure B.2.7. Variation of Phragmites australis ssp. americanus cumulative height in 

response to water level over the course of the experiment for selected salinity 

treatments. Plotted values are arithmetic means of weekly measurements and plotted 

using a straight line curve.
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Figure B.2.8. Variation of Phragmites australis ssp. americanus stem count in 

response to water level over the course of the experiment for selected salinity 

treatments. Plotted values are arithmetic means of weekly measurements and plotted 

using a straight line curve. 
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Figure B.2.9 Variation of Phragmites australis ssp. americanus Fv/Fm in response to 

water level over the course of the experiment at each salinity treatment. Plotted values 

are arithmetic means of measurements on Day 50 and Day 57 and plotted using a 

straight line curve. 

 
 

  



 

 69 

 

Figure B.2.10. Variation of Phragmites australis ssp. americanus (a) dead leaf count 

and (b) stem diameter in response to salinity treatments. Plotted values are arithmetic 

means of weekly measurements and plotted using a straight line curve. 
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Figure B.2.11. Variation in Fv/Fm of Phragmites australis ssp. americanus due to 

salinity treatment on (a) day 50 and (b) day 57. Plotted values are arithmetic means 

+1 SE. Within each panel, means with the same letter are not significantly different 

from each other (Tukey–Kramer test, P<0.05). 
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Figure B.2.12 Variation of Phragmites australis ssp. americanus stem diameter in 

response to salinity treatments at three water levels. Plotted values are arithmetic 

means +1 SE of weekly measurements of diameter at one of three water treatments -

10 cm (submerged) below water level, 0 cm (surface), or (c) +10 cm (exposed) above 

water level.  

 
  



 

 72 

 

Figure B.2.13. Variation of Phragmites australis ssp. americanus (a) cumulative stem 

height, (b) stem height, (c) stem count, and (d) dead leaf count in response to water 

level treatments. Plotted values are arithmetic means of weekly measurements plotted 

using a straight line curve.  
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Figure B.2.14. Main effect of water level on growth of Phragmites australis ssp. 

americanus. Plotted values are arithmetic means +1 SE of (a) stem height, and (b) 

stem diameter measured weekly. Within each panel, different letters indicate 

significant differences of means (Tukey-Kramer test, p<0.05 for stem height and 

p<0.10 for stem diameter). 
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Figure B.2.15. Main effect of salinity on (a) cumulative height, (b) stem height, (c) 

stem count, and (d) live leaf count. Arithmetic means of measurements at conclusion 

of experiment + 1 SE are plotted. Within each panel, means with the same letter are 

not significantly different from each other (Tukey–Kramer test, P<0.05). 
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Figure B.2.16. Main effect of salinity on (a) lateral root count, (b) leaf area, (c) 

rhizome length, and (d) root:shoot ratio. Arithmetic means of measurements at 

conclusion of experiment + 1 SE are plotted. Within each panel, means with the same 

letter are not significantly different from each other (Tukey–Kramer test, P<0.05). 
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Figure B.2.17. Experimental salinity treatment level and measured salinity level in 

drainage water and reservoir water. Plotted are the salinity means (±1 SE) of reservoir 

water and drainage water measured before water treatment was applied.  
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Figure B.2.18. Amy Kuritsky taking stem height measurements. 

 

Figure B.2.19. Photographs of (a) Amy Kuritsky taking basal measurements and (b) 

100 mm pocket caliper and YSI hand held meter. 

 

Figure B.2.20. Photograph showing salinity reading of reservoir water. 
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Figure B.2.21. Photograph of root washing. Growth media was washed away from 

belowground parts using a garden hose and a 5 mm mesh screen. 

 
 

Figure B.2.22. Example of harvested belowground material (rhizome and lateral 

roots) after being rinsed.   
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Figure B.3.3. Basal diameter of culms at study sites in 2015. Plotted values are 

arithmetic means ±1 SE of weekly measurements made during the 2015 observation 

period. 
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Figure B.3.4. Example of plot layout, photo taken at God’s Grace one week after 

plant installation. 

 

 

 

 

 

 

Figure B.3.5.  Image of continuous data logger well, installed at God’s Grace. 

 

Figure B.3.6. Zack Bernstein installing native Phragmites at Jug Bay, 2015. 
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 Figure B.3.7. Data recording at Jug Bay. 

 

 

 

 

 

 

 

Figure B.3.8. 2016 aboveground biomass harvest at (a) Jug Bay and (b) Jefferson 

Patterson Park. 
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Figure B.3.9. Example of soil core samples from (a) Jug Bay, (b) God’s Grace, and 

(c) Jefferson Patterson Park  
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Appendix C. Demonstration and Outreach 

 

In 2016, two demonstration sites were established on the Patuxent River in tidal fresh 

marsh areas. One at Jug Bay Wetland Sanctuary (approximate center point of 

demonstration area 38°46'53.8"N 76°42'25.3"W) (Figure C.4.1) adjacent to our field 

study site (see Chapter 3) and the other at Wooton’s Landing Wetland Park, a 

restored area (approximate center point of demonstration area 38°51'22.0"N 

76°41'26.4"W)(Figure C.4.2). Eurasian P. australis is dominant at each site enabling 

us to situate the native plants adjacent to the Eurasian. Each location was treated with 

glyphosate prior to installation. One hundred and fifty plants were installed in an area 

approximately 6m
2
, 25 plants per m

2
. Seeds for the plants were collected from a 

genetically confirmed native Phragmites stand on the Choptank River, Maryland 

(38°50'25.4"N 75°51'52.4"W). Seed heads were placed in cold storage at the 

University of Maryland greenhouse until ready for processing. Florets were hand 

stripped from inflorescence on January 6, 2015 and mailed to Environmental Concern 

the following day. Environmental Concern established plants from the seeds. 

Rhizomes were divided in the fall of 2015 and again in the winter of 2016. Plants 

were delivered to Jug Bay on April 28, 2017 and installed at the Jug Bay 

demonstration site on May 3, 2016 and at the Wooton’s Landing site on June 9, 2016. 

Plants grew during the 2016 season however, in July, plants at Wooton’s had not 

grown as vigorously as those at Jug Bay which may have been due to heavy shade 

(Fig. C.4.1.c and Fig.C.4.2.b). In November of 2017, no live plants were found at 

Wooton’s Landing while plants at Jug Bay appeared healthy (Figs. C.4.1.d and 

C.4.2.c).   

       

Distinguishing between the native and Eurasian forms is difficult however, several 

morphological features can be used to positively identify native Phragmites 

(Saltonstall et al. 2004). Specimen boxes were created using the inflorescence, stems, 

leaves, and ligules to illustrate some of the morphological differences between the 

two forms (Fig.C.4.3). Additional materials, such as identification cards, fact sheets, 

and maps of currently known locations, should be developed to ensure that native 

Phragmites is considered during land management efforts. Awareness about the 

existence of this native species and educational materials that elucidate the 

differences between the invasive form and the native would serve to protect a native 

species and improve our land management practices. 
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Figure C.4.1. Jug Bay Wetland Sanctuary demonstation site (approximate center 

point of demonstration site 38°46'53.8"N 76°42'25.3"W): (a) native Phragmites 

plants from Envrionmental Concern, (b) installation of native Phragmites on May 3, 

2016 (pictured from left are Dr. Andrew Baldwin, Josh Gaimaro, Martina Gonzalez 

Mateau, and Zach Berry), (c) native Phragmites on June 13, 2016, and (d) native 

Phragmites on November 7, 2017.  

 

   

b. 

b. 

c. 

c. d. 

a. 
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Figure C.4.2.Wooton’s Landing Wetland Park demonstation area (approximate center 

point of demonstration area 38°51'22.0"N 76°41'26.4"W): (a) installation of native 

Phragmites on June 9, 2016 (pictured from left are Lindsay Wood, Josh Gaimaro, and 

Zach Berry), (b) plantings in July 2016, and (c) native Phragmites demonstration site 

on November 7, 2017.  

 

a. 

b. 

c. 
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Figure C.4.3. Photographs of specimen boxes used to illustrate morphological 

differences between the native and non-native Phragmites australis as seen in the (a) 

stems, (b) inflorescence, and (c) leaves. Specimen boxes used during extension 

programs. 
 

 

 

 

 

  

a. b. 

a. 
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b. 
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Appendix D. Sample of SAS code used to analyze data collected on harvest day at the 

conclusion of the greenhouse experiment. 

 

PROC MIXED data=ghharvestdatatran; 

CLASS uniqid salinity elevation block; 

MODEL col1 = salinity elevation salinity*elevation / ddfm=satterth outp=resids; 

RANDOM block; 

LSMEANS salinity elevation salinity*elevation / adjust=tukey diff=all cl; 

BY variable; 

ods listing; 

ods output lsmeans=lsmean1; 

ods listing exclude diffs; ods output diffs=diff1; 

ods output tests3=stat2; 

RUN; 

%include '/folders/myfolders/PDMix800.sas'; 

%pdmix800(diff1,lsmean1,alpha=.05,sort=yes); 

QUIT; 

/* check anova assumptions */ 

PROC SORT DATA=resids; 

BY variable; 

RUN; 

PROC PLOT data=resids vpercent=50; 

PLOT resid*pred/vref=0; 

BY variable; 

QUIT; 

data resids; 

set resids; 

aresid=ABS(resid); 

RUN; 

PROC CORR SPEARMAN data=resids; 

VAR aresid pred; 

QUIT; 

PROC PLOT data=resids vpercent=50; 

PLOT resid*pred/vref=0; 

BY variable; 

RUN; 

PROC UNIVARIATE data=resids plot normal; 

VAR resid; 

BY variable; 

QUIT; 

RUN; 

PROC PRINT data=stat2; 

QUIT; 

ods graphics off; 

quit; 
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