Generating Efficient Stack Code for Java

Tatiana Shpeisman and Mustafa Tikir
Department of Computer Science
University of Maryland
{murka,tikir}@cs.umd.edu

October 8, 1999

Abstract

Optimizing Java byte code is complicated by the fact that it uses a stack-based execution model.
Changing the intermediate representation from the stack-based to the register-based one brings the
problem of Java byte code optimizations into well-studied domain of compiler optimizations for register-
based codes. In this paper we describe the technique to convert a register-based code into the Java byte
code. The code generation techniques developed for the stack-based computers are not directly applicable
to this problem as the comparative cost of the local memory and stack manipulation instructions in JVM
is quite different from that in the stack-based computers. Naive verbose translation of the register-
based code into the Java byte code produces the code with many redundant store and load instructions.
The tool that we have developed allows to remove 90-100 % of the stores to the local (i.e., non-global)
variables. It produces the Java byte code that is slightly faster and shorter than the original byte code
even when no optimizations except for register allocation are performed on the register-based code.

1 Introduction

The Java programming language is becoming more and more popular as its design answers a demand
for a completely-specified, portable and secure programming language. The only major complaint about
Java is its performance. Optimizing Java is a wide-spread topic of the ongoing research. Developing the
optimizations for the Java byte code rather than for the Java source code has several advantages: the
byte code is independent from any compiler that was used to generate it, the byte code may be generated
for languages other than Java and, finally, the byte code optimizations can be performed as a prepass to
Just-In-Time (JIT) compilation.

Optimizing the Java byte code is complicated by the fact that it uses a stack-based execution model.
The problems of performing static analysis and transformations on the stack-based code are well de-
scribed by Raja Vallee-Rai and Laurie Hendren [VRH98]. They propose a Java byte code optimization
framework called Soot that uses a register-based 3-addressed intermediate representation. Such a frame-
work brings a problem of optimizing a Java byte code into well-studied domain of compiler optimizations
for register-based codes. Yet, using the register-based representation for the Java byte code creates two
additional problems: converting the byte code into a register-based code, and converting a register code
into a stack-based Java byte code. While the first problem has been practically solved, much room
remains in developing the techniques to convert the register code into an efficient byte code. The code
currently generated by Soot is verbose and inefficient. In fact, transforming the byte code into a Jimple
representation used by Soot and back into the byte code may increase the number of byte code instruc-
tions by about 50 %. This code size increase is due to the redundant store and load instructions that are
introduced by verbose translation of the register code instructions into the stack code instructions.

There can be two approaches to generating the byte code that contains a reasonable number of local
memory instructions: to generate the optimal byte code directly from the register-based code, or to,
first, convert a register-based code into an inefficient byte code, and then optimize the byte code using
the results of the analysis performed on the register code. We have developed the technique that is
based on the second approach, that is, we first convert a register code into an inefficient stack code, and
then optimize it using the results of live variable analysis performed on the register code. Our goal is to
eliminate as many store instructions as possible without introducing additional instructions whose only

purpose is to change the order of the values on the stack. (We allow the dup instructions to be used
instead of loads when such a transformation is likely to enable a store instruction elimination.)

We believe that our goal is well justified. Although Java does provide the byte code instructions
whose combination can be used to arbitrary reorder top four stack words, it is unclear whether using
such instructions is better than using local memory instructions. Usually, the Java byte code is not
executed by the stack CPU, but is interpreted or JIT compiled. The relative cost of the local memory
and stack manipulation instructions depends on the implementation of JVM and/or JIT compiler and
is not known in general. On the other hand, eliminating the store instructions without introducing the
stack manipulation instructions should be always profitable. A byte code interpreter gets less instructions
to interpret and perform. A JIT compiler gets less instructions to analyze, and more variable whose life
range can be found without performing expensive global live variable analysis.

There has been some earlier work on generating an efficient stack-based code, but none of it can be
directly applied to the problem of generating the stack-based code for Java. An early work by Bruno
and Lassagne solved the problem of generating an optimal code that evaluates an expression without
dependencies on the stack with a finite depth. Later work has concentrated on performing the peephole
optimizations [Han89, Hay86]. Relatively recently Koopman has investigated the problem of eliminating
memory instructions for a basic block or even the whole program [PJK94]. This work has provided
us with useful insights on the problem of stack-based code generation. Yet, technique developed by
Koopman is based on the assumption that a single local variable instruction is more expensive than a
sequence of instructions that operate on the stack, and, thus, cannot be directly applied to the Java byte
code.

The rest of the paper is organized as follows. Section 2 briefly describes our implementation of a Java
byte code optimization framework that uses a register-based intermediate representation. In Section 3
we give a detailed description of the technique to convert a register-based code into an efficient Java byte
code. The experimental results are described in Section 4. We finish the paper by giving our conclusions
and acknowledgments.

2 General Framework

A compiler that optimizes Java byte code while working with the register code representation should
perform the following three steps: convert a byte code into a register code, optimize the register code
and convert the register code into the byte code.

Our main interest is in the last step. Yet, it is impossible to convert a register code into the byte
code unless we first obtain the register code (When we started this work the Soot framework has not yet
been publicly available). A commonly accepted technique for converting a Java byte code into a register
code is based on simulating the run-time stack. We used a simpler approach and, much to our surprise,
obtained a good register code. The first stage of our translation is to convert each stack instruction
into a register code instruction, with the fixed register numbers assigned to the stack locations and local
variables. The next step is copy propagation and dead-code elimination. The register code obtained
after these two steps still has some extra copy instructions that correspond to the store operations in the
byte code. To get rid of them we use a optimization that we call a “backward copy propagation”.

As it may be guessed from its name, the backward copy propagation propagates the copies backward.
Given a copy instruction with source and destination registers, it replaces a previous definition of the
source register with the definition of the destination register, swaps the source and destination of the
copy instruction and moves it to the position immediately after the replaced definition. An example of
converting a byte code into the register code is given in Figure 1.

The only optimization that we perform on the register code before converting it back into a byte
code 1s register allocation. Our register allocation algorithm is based on the graph coloring techniques
[Muc97]. We construct the webs, i.e., the collections of definition-use chains that share a common use,
perform simple register coalescing, build an interference graph and color it based on the priorities given
to the webs according to static reference count.

3 Converting a Register Code into a Byte Code

Converting a register code into an efficient stack code is not a trivial task. A direct translation, when each
register instruction is translated into a sequence of the byte code instructions that load the arguments
on the stack, perform the necessary operation and store the result into a local variable, results in a code

iload_1 S0=R1 - - -

iload 2 S1=R2 - - -

iadd S0=S0+51 S0=R1+R2 R2=R1+R2 R2=R1+R2

istore_2 R2=50 R2=50 S0=R2 -

iconst_b S0=>5 S0=>5 S0=5h SO0=R5

a) Byte code b) After direct ¢) Copy propagation d) Backward e) Dead-code
translation & dead-code elimination copy propagation elimination

Figure 1: Backward copy propagation example

with many redundant store and load instructions. In this section we describe the techniques that allow
us to eliminate most of them.

A store instruction removes a value from the top of the stack and places it into a register. The
subsequent load instruction copies the value from the local variable back on the stack. Under certain
conditions, it is possible to remove both store and load instructions, thus, letting the value reside on
the stack rather than in a local variable between its definition and use. If a store instruction is used by
multiple load instructions it may be necessary to first replace them by dup instructions.

We shall say that a store instruction is local if its variable is dead at the end of the basic block,
and global otherwise. Eliminating the global store instructions is much more complicated problem than
eliminating the local ones. Fortunately, most of the stores in a stack code naively generated from the
register code are the local ones. We do not attempt to remove the global store instructions. Further on
we shall always mean that the store instruction under investigation is dead at the end of the basic block.

3.1 Overview of the algorithm

To convert a register code into the byte code we first perform a naive translation and then optimize the
generated byte code. For each basic block we perform the following steps:

e eliminate store instructions that are followed by a single load.

e recognize and replace the patterns of two consecutive loads that can be replaced by a dup?2 instruc-
tion (e.g., iload_1; iload 2; iload_1; iload 2 can be replaced by iload_1; iload_2; dup2.)

e climinate store instructions that are followed by multiple loads
e recognize and replace the patterns that can be replaced by iinc instructions.

Our experiments have shown that the above order of the optimization steps works best. Most of the
store instructions are followed by a single load instruction. Eliminating such instructions is relatively
easy and allows to significantly reduce the size of the code. In fact, in our implementation we perform
this step while converting the register code into a stack code rather than as a separate pass. Replacing
two loads by a single dup instruction is an enabling transformation that allows to eliminate more store
instructions at the next step. The increment instructions are introduced last as they hide the store
instruction and prevent them from being eliminated.

After processing all the basic blocks we perform one additional optimization on the whole control
graph. If all the predecessors of a basic block end with exactly the same sequence of instructions, this
sequence is moved to the beginning of the basic block. This transformation reduces the size of the byte
code but does not change the number of instructions being executed. The most common situation when
it is applicable arises from conditional assignments.

In the remainder of this paper we shall describe our techniques for eliminating a store followed by a
single load and a store followed by multiple loads in more detail.

3.2 Eliminating a store followed by a single load

Consider a store/load pair separated by some instruction sequence. The interleaving instructions consume
some words from the stack and produce some words on the stack. We shall say that an instruction
sequence is stack independent if it neither consumes nor produces any stack words. Here, we mean the
commulative effect of executing the instruction sequence rather than a sum of the words consumed and
produced by single instructions. For example, instructions istore 0; iload 0 consume one word from

public final class E1 {
int all,bl];
public void foo(int i) {
blil=alil;
}
}

R2=R0O.Db
R3=R0O.a
R4=R3[R1]
R2[R1]=R4
return

a) Source code

b) Register code

Code Stack
1: aload_0 this
2: getfield <Field int b[]> | b
3: astore_ 2 .
4: aload_0 this
5: getfield <Field int a[]> | a
6: astore_3 .
7 aload_3 a
8: tload_1 a 1
9: 1aload a[i]
10: istore 4 .
11: aload_2 b
12: 1iload_1 b 1.
13: iload 4 b i ali

14: 1astore
15: return

1: aload_0

2: getfield <Field int b[]>
4: aload_0

5: getfield <Field int a[]>
8: iload_1

9: 1aload

10: istore 4

12: iload_1

13: iload 4

14: 1astore
15: return

¢) Byte code obtained by naive translation

d) Removed 2 store/load w/o instruction reordering

aload_0

getfield <Field int b[]>
2: 1load_1

aload_0

getfield <Field int a[]>
tload_1

9: 1aload

10: istore 4

13: iload 4

14: 1iastore

15: return

OO Ot = = N =

aload_0

getfield <Field int b[]>
iload_1

aload_0

getfield <Field int a[]>
iload_1

1aload

[\]

1astore

== O 00 O e = N

return

e) Reorder instructions

f) All stores are removed

Figure 2: Eliminating store instructions followed by a single load instruction

Instruction Stack State Number of words

‘ consumed produced
load_0 0 . 0 1
load_2 0 12 0 1
putfield <Field int x> | . . 2 0
load_2 r2 0 1

a) A code fragment with two load instructions

Instruction Stack State
load_0 0 .

load_2 0 2 .
dup x1 r2 0 12

putfield <Field int x> 12

b) Second load is replaced by dup_x1

Figure 3: Finding the right dup instruction

the stack and produce one word on the stack, while instructions iload 0; istore_0 neither produce nor
consume any stack words. The pair of store and load instructions separated by some instructions can
be safely eliminated if and only if the interleaving instructions are stack independent. This condition
trivially holds when the interleaving instruction sequence is empty, i.e. store is immediately followed by
the load.

What do we do if the interleaving instructions are not stack independent? One solution would be
to handle some special cases by introducing the instructions that interchange the values on the stack.
Yet, our goal is to eliminate the extra instructions, so we would like to avoid introducing the new
ones. Instead, we attempt to interchange the instructions so that store and load are separated by the
independent sequence. This transformation is possible if there exist an independent instruction sequence
ending with the store under consideration and it is legal to interchange it with the interleaving instruction
sequence.

Interchanging two sequences of instructions is legal only if it does not violate the data dependencies
and does not contradict to the precise exception model, i.e., does not change the relative order of the
instructions whose execution may result in an exception being thrown. Any instruction that accesses an
array element or an object field may throw an exception. We interchange two instruction sequences only
if no more than one of them contains an array access, a field accesses or a function call; there are no
flow, anti or output dependencies between the local variables; and there are no monitor instructions.

An example that illustrates the above technique is shown in Figure 2. The Java source code and
the register code for method foo are shown in Figures 2a and b. The byte code produced by the direct
translation of the register code shown in Figure 2c contains three pairs of store/load instructions: 3
and 11, 6 and 7, 10 and 13. The first two pairs can be simply removed as they are separated by the
independent instruction sequences. The resulting code is shown in Figure 2d. The instructions 10 and
13 are separated by iload_l1 instruction that produces one value on the stack. To enable store/load
elimination we interchange this instruction with the independent sequence {4,5,8,9,10}. In the resulting
code (see Figure 2e) the store is immediately followed by the load. The final byte code with all the store
instructions eliminated is shown in Figure 2f.

3.3 Eliminating a store followed by multiple loads

The problem of eliminating a store instruction whose variable subsequently is used by several load
instructions can be reduced to two smaller problems: replacing a load that is preceded by another load
by a dup operation and eliminating a store followed by a single load.

Consider two load instruction separated by several other instructions. If the interleaving instruction
sequence does not produce any words on the stack it is possible to eliminate the second load by introducing

final public class E2 {
int n;

final public void foo(int [Ja, int k) {

alk]=++n;
¥
¥

R3 = RO.n
R4 =1

R3 = R3 + R4
RO.n = R3
R1[R2] = R3
return

a) Source code

b) Register code

aload_0

getfield <Field int n>
iconst_1

1add

istore_3

aload_0

1load_3

putfield <Field int n>
9: aload_1

10: iload2

11: iload_3

12: iastore

13: return

0 =1 O O =~ W N —

~I O = O O W N =

aload_0

getfield <Field int n>
iconst_1

1add

istore_3

aload_1

iload_2

aload_0

1load_3

putfield <Field int n>
iload_3 // to be removed
1astore

return

¢) After stores with single loads have been eliminated

d) Reorder instructions

1: aload_0

2: get field <Field int n>
3: iconst_1

4: tadd

5: istore_3

9: aload_1

10: iload 2

6: aload_0

7 iload_3

new: dupxl // inserted

8: putfield <Field int n>
12: 1astore

13: return

> O DN — O = ©

new:

13:

aload_1

iload 2

aload_0

aload_0

get field <Field int n>
iconst_1

tadd

dup_x1

putfield <Field int n>
1astore

return

e) Replaced iload 3 by dup_x1

f) Eliminated pair istore_3 and iload_3

Figure 4: Eliminating store with multiple loads

Benchmark Class Ratio of the transformed to the original code size
Soot Framework, | Our technique, | Our technique,
size in instr. size in instr. size in bytes
CaffeineMark Float Atom 1.64 0.99 0.98
LogicAtom 1.44 0.97 0.95
LoopAtom 1.40 0.98 0.98
Method Atom 1.36 0.94 0.96
Sieve Atom 1.32 0.96 0.97
StringAtom 1.21 1.00 1.00
SciMark FFT 1.50 0.96 0.88
JBLAS 1.55 0.99 0.93
JBLASopt 1.79 0.99 0.94
Jacobi 1.67 0.95 0.85
LU 1.58 0.99 0.91
MonteCarlo 1.67 0.96 0.95
FhourStones 2.0 | Game 1.68 0.97 0.94

Table 1: Effect of the representation changes on the byte code size

a new dup instruction right after the first load. The choice of the dup instruction (dup, dup_x1, dup_x2,
dup2, dup2.x1 or dup2x2) depends on the number of words being loaded and the number of words
consumed by the interleaving instructions. If the number of the consumed words is larger than 3 for
single word loads or 4 for double word loads the transformation is not possible, as Java byte code does not
have the required dup instructions. Choosing the correct dup instruction is illustrated by the example
shown in Figure 3. Here, the interleaving sequence consist of a single putfieldinstruction that consumes
two words from the stack. The required dup operation is dup_x1 that copies the word on the top of the
stack two words below, thus keeping the two top stack words intact.

When, the second load instruction cannot be eliminated we attempt to reorder the instructions to
enable the elimination. We look for a sequence of instruction that includes the first load instruction and
both consumes and produces the same number of words as being consumed by the interleaving sequence.
If such a sequence exist we attempt to interchange it with the remainder of the interleaving sequence.

As an example consider the byte code shown in Figure 4c. Two occurrences of load_3 instruction are
separated by instructions 8,9 and 10. These interleaving instructions consume two words from the stack
and produce two words on the stack. Thus, we need an instruction sequence containing instruction 7
that produces and consumes two words, that is, instructions {6,7,8}. The remainder of the interleaving
sequence is instructions {9,10}. Interchanging these two sequences of instructions yields the code shown
in Figure 4d. Now it is possible to remove the load instruction 11 by inserting a new dup_x1 instruction.
In the resulting code shown in Figure 4e there is just one pair of store/load instructions that is eliminated
as have been described in the previous section. The final code with all the stores eliminated is shown in
Figure 4f.

4 Experimental Results

Performing the optimizations on the register code for Java programs is practical only if it is possible to
convert the register code into an efficient byte code. In particular, simply converting a byte code into a
register code and back should not result in the byte code that is worse than the original code. Such a
transformation may even improve the byte code, if the original byte code contained extra load and store
operations. In this section we present the experimental results that show that our techniques allow to
generate the byte code that is no worse or even better than the original byte code.

We have performed our experiments on the class files from the CaffeineMark 3.0, SciMark and Fhour-
Stones 2.0 benchmarks. As our current implementation does not support exceptions we skipped the
classes whose methods throw or catch exceptions. The class files from CaffeineMark and FhourStones
benchmarks have been compiled using Sun’s JDK 1.2 javac compiler with -0 option. The SciMark
benchmark contains pre-compiled class files.

For each class file we performed the following operations: converted the byte code of all the class
methods into a register code, performed the register allocation on the register code and converted the

Package Class Store instruction ratio,%
Local/Total | Eliminated/Total | Eliminated/Local
CaffeineMark | FloatAtom 92 90 98
LogicAtom 12 12 100
LoopAtom 82 80 97
Method Atom 74 74 100
Sieve Atom 78 78 100
StringAtom 83 83 100
SciMark FFT 75 68 90
JBLAS 58 58 100
IBLASopt 86 81 94
Jacobi 79 79 100
LU 71 68 96
MonteCarlo 7 72 94
FhourStones Game 93 89 95

Table 2: Relative number of the eliminated store instructions

register code back into a byte code. We have measured how this sequence of representation changes
affects the size of the code. We have also run the same transformations using Soot version 1.beta.l
[VRH]. The current version of the Soot framework generates a verbose and inefficient stack code. We
use this code to demonstrate that a naive direct translation of the register code into a byte code really
yields a very inefficient code.

Table 1 shows the ratio of the transformed code size to the original code size. The code generated by
Soot Framework is about 1.5 times larger than the original byte code. Our technique generates the code
that is even slightly shorter than the original byte code. For most of the class files, we obtain a better
reduction in the number of bytes than in the number of the instructions. This is mainly the result of
performing the register allocation (the store and load instructions for the registers 0-3 take just one byte
rather than two). Also, dup instructions take only one byte. Thus, replacing loads to the registers with
numbers 4 and higher by dup instructions reduces the number of bytes without reducing the number of
instructions.

We have also measured the performance of the benchmarks before and after transformations. We
have used Sun’s JVM1.2 with enabled JIT compilation. Our transformed code got 1% better score on
the Embedded CaffeineMark, 4.5% better score on the SciMark and the same score on the FhourStones
benchmark

We have investigated how close to the optimal one is the stack code that we generate. We have
measured the total number of store instructions in the naive code that we obtain by direct translation
of the register code. An optimal code would have no store instructions at all. Our technique attempts
to eliminate only the local store instructions, i.e., the instructions that store to a variable, that is dead
at the end of the basic block. Table 2 shows the percentage of local store among all store instructions
in the naive code, the percentage of the store instructions that have been eliminated and the percentage
of local store instructions that have been eliminated. Our technique works pretty well. It eliminates at
least 90 % of the store instructions. For six class files out of the thirteen that we investigated all local
store instructions are eliminated.

5 Conclusions

A register-based code is a better studied and more convenient representation for performing program
analysis and optimizations than the stack-based Java byte code. This paper presents the technique
to convert a register-based code into an efficient Java byte code. Our transformation tool successfully
eliminates 90-100 % of the local store instructions. The byte code obtained by simply changing the
program representation from the byte code into a register-based code and back achieves 4.5% better
score on the SciMark benchmark than the original byte code. Thus, the presented technique can be used
within Java byte code optimization framework that uses a register-based intermediate representation
without fear that inefficient translation of the register-based code into a stack-code would nullify the
effect of optimizations performed on the register-based code.

The presented store elimination algorithm is mostly independent from the register-based code repre-
sentation. It performs the optimizations directly on the byte code but needs the results of a live variable
analysis that in our implementation is performed on the register code. Thus, the store elimination algo-
rithm presented in this paper can be used by any compiler that generates the Java byte code or even as
a stand-alone pass on the Java byte code itself.

Our current approach is based on the assumption that eliminating store instructions is always prof-
itable as long as no instructions whose only purpose is to change the order of values on the stack is
introduced. We would like to investigate how valid this assumption is for different implementations of
JIT compilers, and whether it is possible to further improve the generated byte code by using more exact
instruction cost model.

Acknowledgments

This work has started as a class project for CMSC731/838P “Programming Language Implementation:
Implementing Java” taught by Dr. William Pugh at the University of Maryland. We thank Dr. Pugh for
giving a wonderful class and encouraging us to continue with our work. We also thank all other members
of the class who provided a supportive environment and beta tested the earlier versions of our code.

References

[Han89] T. Hand. Performance of the harris rtx-2000 ¢ compiler. In Proc. of the 1989 Rochester Forth
Conf.,, pages 61-62, June 1989.

[Hay86] J. Hayes. An interpreter and object code optimizer for a 32 bit forth chip. In 1986 FORML
Conf. Proc., pages 211-221, November 1986.

[Muc97] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufman publish-
ers, 1997.

[PJK94] Jr. Philip J. Koopman. A preliminary exploration of optimized stack code generation. Journal
of Forth Applications and Research, 6(3):241-251, October 1994.

[VRH] Raja Vallee-Rai and Laurie J. Hendren. Soot: a java bytecode analysis and transformation
framework. http://www.sable.mcgill.ca/soot/.

[VRHY98] Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying java bytecode for analyses
and transformations. Technical Report 1998-4, McGill University, July 1998. Available as
http://www.sable.mcgill.ca/publications/sable-tr-1998-4.ps.

