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Government acquisitions requiring research and development (R&D) efforts are 

fraught with uncertainty.  The risks are often mitigated by employing a multi-stage 

competition, with multiple projects funded initially until a single successful project is 

selected.  While decision-makers recognize they are using a real options approach, 

analytical tools are often unavailable to evaluate optimal decisions. The use of these 

techniques for R&D project selection to reduce the uncertainties has been shown to 

increase overall project value. 

This dissertation first presents an efficient stochastic dynamic programming 

(SDP) approach that managers can use to determine optimal project selection 

strategies and apply the proposed approach on illustrative numerical examples.  While 

the SDP approach produces optimal solutions for many applications, this approach 

does not easily accommodate the inclusion of a budget-optimal allocation or side 

constraints, since its formulation is scenario specific.  Thus, we then formulate an 



  

integer program (IP), whose solution set is equivalent to the SDP model, but 

facilitates the incorporation of these features and can be solved using available 

commercial IP solvers.  The one-level IP formulation can solve what is otherwise a 

nested two-level problem when solved as an SDP.  We then compare the performance 

of both models on differently sized problems.  For larger problems, where the IP 

approach appears to be untenable, we provide heuristics for the two-level SDP 

formulation to solve problems efficiently.   

Finally, we apply these methods to carbon capture and storage (CCS) projects in 

the European Union currently under development that may be subject to public 

funding.  Taking the perspective of a funding agency, we employ the real options 

models presented in this dissertation for determining optimal funding strategies for 

CCS project selection. The models demonstrate the improved risk reduction by 

employing a multi-stage competition and explicitly consider the benefits of 

knowledge spillover generated by competing projects.  We then extend the model to 

consider two sensitivities: 1) the flexibility to spend the budget among the time 

periods and 2) optimizing the budget, but specifying each time period’s allocation a 

priori.  State size, scenario reduction heuristics and run-times of the models are 

provided. 
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Chapter 1: Introduction 

1.1 Background and General Real Options Literature 

Virtually all government acquisition activities possess some elements of risk and 

uncertainty.  However, the acquisition of new capabilities is particularly perilous, 

especially when the desired capabilities are significant advances beyond current 

levels of technology, as is often the case in many modern public-sector and defense 

acquisitions.  These acquisitions frequently require significant research and 

development (R&D) programs to provide the basic research or technology 

development and maturation required to produce operational products that deliver the 

desired capability.  In addition to the various cost, schedule, and programmatic risks 

all government acquisitions face, R&D intensive acquisitions must contend with a 

higher degree of technical risk.  This additional risk is due to broadly defined initial 

capability or threshold performance levels, changing performance targets during the 

course of the acquisition as requirements change, insufficient technological maturity 

to produce the desired capability, or uncertainty regarding the feasibility of any given 

technological approach.  The successful management of technical risk in such long 

duration, one-of-a-kind R&D acquisitions is crucial for these projects’ success. 

Real options approaches for managing R&D activities have been shown to 

increase project value while mitigating the risks associated with the uncertainties 

inherent in R&D.   Dixit and Pindyck’s (1994) seminal work outlines the transition 

from traditional (financial) options to real options with a private sector focus, such as 

an oil extraction project.   Using real option techniques, such as sequential decision 
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making to manage risk, has been well-established in the literature (Trigeorgis, 1996).  

Perdue, et al. (1996), for example, provide a solid analytical framework in which to 

value real options with sequential decision points in an R&D setting.   

However, this dissertation addresses two areas largely ignored in the real options 

literature.  First, we consider how real options can mitigate risk and uncertainty due to 

variability in project performance and schedule.   Most studies of real options 

valuation techniques in R&D projects have considered risk and uncertainty to occur 

in the project’s market payoff.  Second, we consider the value of increased 

managerial flexibility in a multi-stage, project source selection model for a non-traded 

public good, which is often difficult to value and often does not permit a program 

abandonment option.  Considering multi-stage development projects where managers 

can consider continuing, improving, or abandoning development at each decision 

point, Huchzermeier and Loch (2001) evaluate changes in option values in the 

presence of five types of operational uncertainty: market payoff variability, budget 

variability, performance variability, market requirement variability, and schedule 

variability.  They conclude that the value of increased managerial flexibility through 

the use of real options increases with increased variability in market payoffs and 

budgets but may actually decrease in the presence of the other types of uncertainty 

discussed.  Building off of the same formulation, Santiago and Vakili (2005) find 

different results, with uncertainties beyond market payoff providing ambiguous 

results for the value of increased managerial flexibility.  However, in the case of 

market payoff, they find increasing variability increases either the project value or the 

project option value.  Santiago and Bifano (2005) consider the application of a 
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multidimensional decision tree real options model that considers multiple types of 

operational uncertainty toward the development of a specific product.  They 

demonstrate how the project could be managed by estimating its value and 

determining optimal managerial actions taken at each review stage.  While they claim 

their model has applications beyond their case study project, their decision tree model 

contains the typical “abandon-continue-improve” decisions within one project. 

These approaches are complicated when R&D is contracted outside of the firm or 

governmental agency, either directly or through the acquisition of an R&D intensive 

item, by reducing the firm’s ability to directly address technical risks as they occur.  

If the firm or agency outsources this work, we typically refer to those groups 

undertaking the initiative as a “vendor.” More generically, we refer to this 

outsourcing process as a “project,” recognizing that each of these projects is not 

necessarily occurring within the same firm, but rather represents separate projects 

quite possibly working towards the same technological objective.  Moreover, 

selecting among projects with unverifiable performance outcomes further increases 

the uncertainty of the technical success of an R&D effort. One approach for managing 

this additional uncertainty is to employ a multi-stage contract where the first stage 

serves as a pilot program to: (i) verify project capabilities and (ii) reduce technical 

risk by assessing the realized outcomes, thereby providing information to the firm 

regarding the likely success of the project.  Snir and Hitt (2004) present a model that 

helps establish quality vendors by setting a two-stage project in which the pilot 

project stage’s compensation is small enough to only attract quality vendors.  Errais 

and Sadowsky (2008) present a model that values the outcomes at each stage of an N  
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period pilot project.  After this initial screening stage the firm decides whether to 

continue the project. Often, particularly in public sector applications, such as weapon 

systems procurement (Rogerson, 1995), the first stage serves as a tournament, with 

contracts awarded to multiple vendors competing to continue the project into the next 

stage(s).   

While reducing the technical risks associated with R&D projects, multi-stage 

multi-project competitions pose different challenges to a firm. Specifically, how 

should projects be selected at each stage? Which project should be funded at each 

decision point? How many stages before a single winning project is selected? How 

should funding be spread between stages?  

Cao and Wang (2007) present a vendor selection model for two-stage multi-

vendor competitions where the first stage reveals the final level of performance to be 

achieved by each of the competing vendors.  Given a fixed budget on the part of the 

client firm, this model selects the optimal portfolio of vendors to fund in the first 

stage as well as the amount of resources to dedicate to each stage to maximize the 

expected benefit to the client firm upon project completion.  Their approach is to use 

an integer programming model that resembles a knapsack problem, where the 

outcomes are listed in very basic terms (“poor”, “fair”, good” and “excellent”), and 

by this single criterion of expected benefit.  They conclude that the selection in the 

first stage is more about creating a good portfolio of vendors than simply selecting a 

few “frontrunners.”  In this way, public sector R&D acquisitions are much like the 

one-sided sequential development process in Roberts and Weitzman’s (1981) seminal 

work, in which benefits are received after all stages are completed.  Like the 
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examples provided by Cao and Wang (2007) and Snir and Hitt (2004) show, many 

large-scale information technology (IT) projects that are outsourced to third party 

vendors also follow this development process.   

1.2 Differences between Public and Private Sector R&D Acquisitions 

Unfortunately, while there exists a robust literature on the use of real options to 

manage uncertainty in R&D projects, this literature largely focuses on private sector 

R&D and does not consider the peculiarities of public sector R&D acquisitions.  This 

is not to imply that the technical risks in public sector R&D projects are somehow 

different than those encountered in private sector R&D efforts.  For example, the 

likelihood that a specific, scientific breakthrough occurs or whether developmental 

subassemblies can be successfully integrated according to the system’s initial design 

is common to both the public and private sectors.  Rather, it is the relative rigidities of 

the public sector acquisition process that influence the available approaches for 

mitigating the various technical risks that may occur during an R&D project.  

Commercial R&D projects are largely internal to the firm with direct management 

oversight to guide and direct as technical issues arise.  While a portion of public 

sector R&D is performed in government facilities, a majority of the R&D required for 

new capabilities is either sourced to private vendors or simply embedded within the 

contracts issued for the completed capability.  Embedding occurs when government 

pays for R&D through the contracts for finished products (such as satellites) with the 

understanding that some of the “cost” of the product is actually covering R&D 

expenses rather than just the cost of producing the product itself.  In short, through 

this mechanism the government is indirectly funding R&D performed by private 
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firms rather than directly (Lichtenberg, 1988).  This significantly reduces the public 

sector’s ability to directly mitigate technical risks as they occur, subject to the 

provisions incorporated and relative completeness of the vendor’s contracts.  

Therefore, in a public sector context the question at hand is rarely how to mitigate 

specific technical risks that may occur in an R&D effort, but alternatively, how to 

mitigate the likelihood of technical risks preventing a successful project conclusion. 

In addition to the rigidities present in public sector R&D efforts, there are often 

specific uncertainties that private sector efforts do not face.  Public sector acquisitions 

are frequently non-market traded goods which are often difficult to value.  One 

method is to use contingent valuation (Carson, 2007), a survey-based technique used 

for estimating the economic value of non-market traded goods, such as environmental 

quality and conservation, public services like parks or defense, and the value of 

human life.  While techniques such as contingent valuation have been developed to 

meet this challenge (Carson, 2007), public decision makers still must reconcile 

multiple, divergent valuations as both proponents and opponents of a given 

acquisition submit their respective estimates.  Regardless of the valuation method 

employed, the selection of an appropriate discount rate, and whether this rate should 

vary over the period of performance for lengthy acquisitions, continues to provide 

spirited debate among policy makers.   

This is not to imply that public sector R&D acquisitions have been ignored by the 

real options literature.  Vonortas and Hertzfeld (1998) describe at length some of the 

unique issues related to public sector R&D acquisitions.  They claim that the 

valuation of options is difficult, since the goal of the public sector is to essentially 
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enable the private sector to make better investment choices.  As a result, more 

traditional economic valuations of these options have not been applied to public 

sector R&D options.  Thus, they use a real options approach to attribute social 

benefits to traditional net present value (NPV) calculations of public sector R&D 

investments and apply it to several examples of interest for the National Aeronautics 

and Space Administration (NASA).   Post, et al. (2004) demonstrate the increased 

value of real options in the implementation of Controller Pilot Data Link 

Communications, a Federal Aviation Administration (FAA) program.  They argue 

that the “now or never” approach implied in NPV calculations tend to underestimate 

the value of the actual project, since it does not explicitly value managerial flexibility.  

While they admit that complications make certain valuations difficult, they argue that 

such an approach makes government managers think of their projects as options.  

Nevertheless, these models do not directly incorporate the technical risk inherent in 

such projects.  Golabi, et al. (1981) provide a procedure for the U.S. Department of 

Energy to select a portfolio of R&D projects in solar energy.  Their index does 

incorporate a multi-attribute utility function (where multiple evaluation measures are 

combined into a single measure for the purposes of government acquisition), along 

with budgetary restrictions, and then solves an integer programming problem.  Their 

model does not, however, incorporate the multi-stage competition aspects of many 

R&D projects. 

Previous option studies evaluating multi-stage development processes allow 

flexibility through the use of continuation, improvement, delay, or abandonment 

options at each stage of the development depending upon program value at each 
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stage.  Yeo and Qiu (2003) give examples of using real options for technology 

investments and show how it has been accepted among several industries (e.g., 

mining, petroleum, pharmaceuticals).  Wang and Hwang (2008) use a fuzzy 

compound options model to evaluate the value of each R&D project that value.  

Meier, et al. (2001) present a model that combines contingent claims analysis 

(valuing assets by replicating return and risk characteristics through an existing 

portfolio of assets (Dixit and Pindyck, 1994)) and integer programming.  Costa and 

Paixao (2009) propose a heuristic approach based involving fewer variables, which 

allows the model to obtain good solutions for a reasonable number of projects.  

Panayi and Trigeorgis (1998) demonstrate their multi-stage model on two case studies 

and show how the valuations can differ from the traditional NPV analysis. 

For the purposes of this dissertation, however, we define a public R&D project as 

one that will deliver a non-market traded good or service upon completion and has 

been deemed sufficiently necessary that project completion will be funded.  While all 

government R&D acquisitions possess some cost or schedule limit through which 

program abandonment becomes an option, because there are typically no directly 

observed market payoffs, these limits are not easily definable.  Ceylan and Ford 

(2002) point out that the rigid planning tools for abandonment in public acquisitions 

have been proven inadequate.  Further, it is not infrequent for programs to continue in 

the face of tremendous cost and schedule overruns compared to those in the private 

sector since government investment decisions are often determined by political or 

other reasons (Post, et al., 2004).  For example, Drezner, et al. (1993) find that major 

defense acquisitions between 1960 and 1990 experienced an average of 20% cost 
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growth from their initial cost estimates and with a substantial percentage of programs 

exceeding their initial estimates by as much as 50%.  Therefore, we choose to 

evaluate the likelihood of a given R&D program successfully developing a desired 

capability subject to the total budget available to the acquisition manager, while 

assuming that the manager has no incentive to either conserve his budget to any point 

below his inflexible funding constraint or abandon development until the budget is 

exhausted.  The abandonment option can be readily incorporated into our models, but 

as it has been well studied by the real options literature, we find it adds no further 

qualitative insights. 

1.3 Contributions and Organization of Dissertation 

1.3.1 Contributions of Dissertation 

There are four distinct, but related, contributions of this dissertation.  Each 

contribution constitutes a chapter of this dissertation.  This dissertation considers a 

multi-stage real options problem under three budget allocation schemes.  Before 

discussing the specific real options problem itself, consider the following two-level 

problem (see also (4.1) and related Figure 4.1): 

 

 

0,,

,,

30      s.t.

,,max

321

321

321

321332211









BBB

BBBSOLx

BBB

BBBBaBaBa 

 (1.1) 

 

where  321 ,, BBB  represent the budgets available for three time periods specified in a 

lower-level problem.  A solution x  to (1.1) depends on the values of the budgets, so 
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the decision as to how those budgets are determined greatly affects the solution set to 

the lower-level problem.  In this dissertation, we define three possible budget 

allocation methods (sometimes referred to as “Models”): 

1. Fixed (“Model 1”):  The budget tB  for each time period, t , is specified 

without explicit regard to its effect on the objective function of the lower-level 

problem.  It is, in effect, exogenous, as the values for each budget are given.  

For the above case, one example would be specifying that: 

   10,10,10,, 321 BBB .  We first solve the fixed-budget problem using both 

stochastic dynamic programming and integer programming in Chapter 2 and 

Chapter 3, respectively. 

2. Flexible (“Model 2”):  This method provides the greatest flexibility for the 

budget allocation, but does so optimally.  In some sense it could be called 

flexible budget-optimal, but for distinction, we refer to it as simply “flexible.”  

The budgets are determined in a manner that optimizes the lower-level 

problem, but their precise values are not specified until that time period, when 

the state of the system is known. Thus, at the beginning of the multi-stage 

competition, the value for 1B  is provided, but the optimal 2B  is determined 

for every possible outcome that occurs at the end of the first time period.  We 

first solve the flexible-budget problem only using stochastic dynamic 

programming in Chapter 2. 

3. Budget-Optimal (“Model 3”):  This case optimizes the two-level problem in 

(1.1) by determining endogenously an optimal  321 ,, BBB .  The optimal 

values for  321 ,, BBB  correspond to those that optimize  321 ,, BBB  if 
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0321  aaa .  However, these budgets cannot change after each time 

period has been realized.  In this sense, these budgets are optimal, but are 

specified a priori (i.e., at the beginning of the first time period).  As such, it 

can be considered optimal “fixed” budget allocation.  We first solve the 

budget-optimal problem both as a two-level stochastic dynamic program and a 

one-level integer program in Chapters 4. 

The first contribution of this dissertation, examined in Chapter 2, is the 

formulation of a stochastic dynamic program that public sector acquisition managers 

can use to determine optimal project selection strategies in multi-stage, multi-project 

competitions.  Though stochastic dynamic programming (SDP) is a standard method 

of evaluating decisions under uncertainty, this thesis is unique in the kind of decisions 

that it considers.  Real options models typically demonstrate the increased benefits of 

managerial flexibility that can be achieved through the inclusion of additional 

options.  This paradigm makes these models an ideal approach for evaluating the 

dynamic investment decisions in R&D portfolios, where the numbers of distinct 

options grow over time as R&D projects progress.  However, the project selection 

problem is quite different from typical real options problems in that the acquisition 

manager starts with many different options and then chooses to potentially reduce the 

number of options as the project progresses.  This decreasing options problem has 

been largely ignored by the literature and the suggested solution methodology 

constitutes a useful, practical approach for devising optimal project selection 

strategies.  Moreover, using this approach, acquisition managers may find optimal 

strategies that would not likely have been considered without formally modeling the 
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acquisition’s options.  Our numerical examples in Chapter 2 illustrate that ad hoc 

solutions, such as “one expensive project and one cheap one” or “more options in the 

early stages is always better,” can be significantly suboptimal to the objective of 

maximizing that at least one project succeeds, a special case of optimizing the 

probability of achieving a certain technological maturity. 

The second contribution of this thesis, presented in Chapter 3, is the reformulation 

of the real options problem modeled in Chapter 2 as a stochastic dynamic program 

into an integer program.  Exploring the equivalence of specific dynamic programs to 

an integer programming problem is an active field of research.  For instance, 

Newman, et al. (2010) formulate a dynamic program into an integer program and 

compare the run-times and efficiencies of both approaches.  Moreover, the 

construction of the integer programming model yields several interesting insights, 

such as the linearization of binary variables, the relaxation of certain binary 

constraints, and a generalized formulation of the time period constraints.  A more 

practical value of the integer programming formulation lies in its ability to handle 

side constraints more easily.  While SDPs tend to have specific applications and 

solution methods, an additional side constraint can be easily incorporated into an 

integer programming solver.  For example, we might wish to consider certain funding 

restrictions, such as: the funding of two projects may be mutually exclusive; the 

funding of a certain project implies necessarily the funding of another; certain 

projects can commence funding in the initial time period only, while others are not so 

restricted, etc. While it is true these examples of side constraints can be incorporated 

into an SDP model, the addition of such constraints for sensitivity analysis can 
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require some significant changes to the structure of the SDP. On the other hand, these 

constraints can more easily be incorporated into an integer program with a simple 

algebraic expression of the relationship.  Thus, the integer programming formulation 

provided in this dissertation could be used in operational, real options integer 

programming decision models, as the speed of computing resources and solution 

efficiencies of solvers continue to improve.   

The third contribution, as detailed in Chapter 4, is the examination of two-level 

solutions and optimal budget search techniques.  In most real options problems, there 

is one level of decision-making in which some suitable objective function is 

optimized.  However, in a number of settings two levels are possibly more 

appropriate.  Consider for example a government agency which first must decide its 

anticipated budget levels TBB ,,1  , in each of T  time periods.  Having fixed these 

annual budgets, a real options problem can then be used to determine how to best 

allocate the various projects in support of an overall public sector goal or goals.  Such 

a two-level problem can be written as funding the budget levels  TBBB ,,1 

  and 

binary funding decisions itx  for projects Ni  and time periods  TT ,,1  to 

solve:  

 
)(

,

..

),(min
,

BSOLx

SxB

SBts

xBf

J

B

xB














 (1.1) 
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where ),( xBf


, BS , JS  and )(BSOL


 represent respectively, the overall objective 

function, the feasible set for just the B


 variables, the joint feasible region JS  for 

),( xB


 and the solution set of the lower-level real options problem when the budget 

levels are fixed ( )(BSOL


).  One might ask whether this top layer to determine 

optimal budget levels by year is really needed.  As it turns out, the timing of how 

much is allocated (the B


 variables) can greatly affect the overall objective.  As one 

example in Chapter 4 illustrates, the budget-optimal problem can increase the 

objective function even when the basic funding strategies ( x  variables) are nearly the 

same as the fixed-budget problem.  This increase results from an optimal allocation of 

the budget variables, B


.  We explore solution techniques for this critical two-level 

problem.  To solve this two-level problem using the SDP approach, one needs to 

solve a series of SDPs using intelligent search techniques and budget discretization to 

obtain an optimal budget-optimal allocation. However, using the approach outlined in 

Chapter 4 of this dissertation, we can easily convert the above two-level problem into 

a “one-level” IP by finding the optimal budget variables, B , while simultaneously 

solving for the optimal funding decisions variables, x , by simply converting the each 

time period’s budget into a continuous decision variable.  As we will show in this 

dissertation, for some problems the IP formulation solved with robust commercial 

solvers may solve more quickly than the equivalent SDP formulation.   

The fourth and final contribution in Chapter 5 is the application of these methods 

to an actual series of projects in which such a real options modeling approach is 

valuable.  While we outline the need for these real options techniques in this chapter, 
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and apply both the SDP and integer programming approaches to illustrative examples 

in the next two chapters, we actually apply these methods to carbon capture and 

storage (CCS) projects currently being considered and developed in the European 

Union (but is certainly applicable in regions outside of Europe).  To our knowledge, 

no model has been built to solve this type of multi-stage, multi-project real options 

problem with such a large number of variables and constraints for an actual set of 

R&D projects.  In this dissertation, we gather survey data from experts on CCS 

technologies, synthesize the results into input data for the real options model, and 

demonstrate several key advantages to the real options approach.  Taking the 

perspective of a funding agency, we employ a real options framework for determining 

an optimal funding strategy for project selection for the development of full-scale 

CCS plants.  Specifically, we formulate and solve a SDP for obtaining optimal 

funding solutions in order to achieve success by a target year.  The model 

demonstrates the improved risk reduction by employing such a multi-stage 

competition and explicitly considers the benefits of knowledge spillover among 

competing projects.  We then extend the model to consider two sensitivities: 1) 

changing funding decisions based on the available budget and 2) flexibility to spend 

that budget among the time periods.  This study also makes use of the two-level 

problem discussed previously in that it suggests an optimal allocation of the budget, 

which can be a necessary step for certain funding initiatives.   

Throughout this dissertation, there are essentially two general solution 

approaches:  integer programming and stochastic dynamic programming.  We 

formulate real options models under three possible budget allocation approaches:  
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fixed, flexible, and budget-optimal.  Table 1.1 summarizes in which chapters the 

approaches are applied to the real options models.   

Table 1.1: Chapter Locations of Solution Approaches by Problem Type  

 

Fixed-

Budget 

Problem

Flexible-

Budget 

Problem

Budget-

Optimal 

Problem

Integer 

Programming 

(IP)

Chapter 3 N/A Chapter 4

Stochastic 

Dynamic 

Programming 

(SDP)

Chapter 2 

Chapter 3 

Chapter 5

Chapter 2 

Chapter 5

Chapter 4 

Chapter 5

 

 

1.3.2 Organization of Dissertation 

Chapter 2 introduces the real options problem we outline in this chapter in greater 

detail.  A description of the multi-stage competition model is provided.  We identify 

the technology progression metric for our numerical example, the Technology 

Readiness Levels.  The explicit Markov decision process (Puterman, 1994) is defined 

for two problems.  We then solve these real options problems for two numerical 

examples, the latter example being a more generalized version of the first.  The final 

section of the chapter provides a detailed overview of the algorithm implementation, 

state size and run-time statistics.  Chapter 2 is primarily based on the work of 

Eckhause, et al. (2009). 

Chapter 3 provides an equivalent integer programming formulation for the real 

options problem presented in Chapter 2.  We present the general formulation for the 
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integer programming version of the problem solved as a stochastic dynamic program 

in Chapter 2.  A small two-project, two-time period problem is described in order to 

demonstrate the approach.  The following section demonstrates how to linearize the 

products of binary variables, and shows that those linear variables need not 

themselves be binary.  We then extend it to a three-project, three-time period 

example.  Numerical examples are provided for both a two-project, two-time period 

problem and a three-project, three-time period problem.  The integer programming 

model code for the three-project, three-time period problem is in Appendix B.  Run-

times, number of variables and iterations are calculated for two optimization solvers, 

and are compared with the performance of an equivalent SDP formulation, similar to 

the ones presented in Chapter 2.  Chapter 3 is primarily based on the work of 

Eckhause, et al. (2011). 

Chapter 4 presents perhaps the most significant advantage of the IP formulation 

vis-à-vis the SDP, when each time period’s budget may be optimized, but still needs 

to be specified at the outset of the real options problem.  The first part of the chapter 

describes this as a two-level problem, where the upper level is the optimization of the 

budget allocation.  We then show the equivalence of this two-level problem to the 

one-level problem, if the lower-level problem is formulated as an IP.  We compare 

the run-times for sample problems, and demonstrate the advantage of the IP approach 

for problems of a certain size, but the SDP is superior in some cases.  However, both 

approaches have limits on the size of the problems they can solve for computational 

reasons, as we describe in Chapter 4.  The third section of Chapter 4 then proves 

several properties about the lower-level objective function, which then outlines 
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techniques for intelligent search heuristics for the upper –level budgets while solving 

a series of lower-level SDPs. The third section also discusses the run-time 

performance of these methods on larger problems.  Sections 4.1.1, 4.1.3 and 4.2.1 are 

based on Eckhause, et al. (2011).  The remaining sections are unpublished work of 

Eckhause. 

Chapter 5 applies the techniques outlined in Chapters 2 – 4 to actual carbon 

capture and storage projects eligible for public funding in the European Union.  The 

first section provides an overview of the three major CCS technologies: pre-

combustion, post-combustion and oxyfuel.  The second section details some of the 

specific projects currently being undertaken in the EU.  Section 3 outlines the solution 

approaches outlined in this dissertation to this real options problem.  The fourth 

section describes the detailed subject matter expert interviews and survey results, 

necessary to obtain probabilities, costs, and knowledge-spillover data for the real 

options model.  We then present the numerical results for these models, which 

include the cases with fixed budgets, flexible budgets and optimal budgets, along with 

knowledge-spillover cases.  We then discuss the main conclusions about the 

advantages of managerial flexibility and cross-project learning, along with future 

applications of similar real options models applied to state-of-the-art energy 

technologies.  Chapter 5 is based on the work of Eckhause and Herold (2011), with 

the exception of Section 5.6, which is unpublished work of Eckhause. 

Chapter 6 provides a brief summary of the four critical chapters (Chapters 2-5).  

The research activities, particularly the CCS case study, have applications beyond the 
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models presented here.  As such, this last chapter concludes with suggested future 

research activities. 
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Chapter 2: Using Stochastic Dynamic Programming to Solve the 

Multi-Stage Real Options Model 

This chapter first provides a description of a multi-stage real options model, 

followed by a description of the objective functions and data used in the models.  We 

then provide a mathematical formulation of the Markov decision process for two 

budget allocation schemes (fixed and flexible) in Section 2.3.  We then solve these 

real options problems for two numerical examples in Section 2.4.  The final section 

provides a description of the model implementation.  Chapter 2 is based on the work 

of Eckhause, et al. (2009). 

2.1 Problem Definition: The Multi-Stage Competition Model 

 Government acquisition managers often mitigate the technical risk associated 

with R&D acquisitions through a combination of formal milestone decision points 

and multi-source, parallel development acquisition strategies.  However, a lack of 

formal models to address the optimal design of these competitions typically leads to 

ad hoc, qualitative solutions to these questions.   

Real options valuation techniques provide an analytical framework to find optimal 

solutions to these problems.  Real options strategies for managing R&D can also be 

viewed as deciding which projects should be funded and when this funding should 

occur. An important public sector example is in energy. The U.S. Department of 

Energy analyzes which alternative power generation technologies should be 

emphasized to meet the nation’s environmental, energy-related, and security 

objectives. For example, in producing electricity, how much funding should be 
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allocated to R&D in: carbon capture and storage (CCS), biofuels, solar energy, 

geothermal power, wind power, among others?  This is essentially a multi-project 

competition over several stages (typically years). Often due to budgetary restrictions, 

it is not possible to fund each of these projects until completion.  Instead, a decision 

must be made early on as to which projects should receive continued funding and at 

what levels in order to achieve some overall societal goals.  This is a real options 

problem but one for which a public sector objective needs to be used.  There are 

many choices for the overall objective such as the maximization of social welfare, 

minimization of total cost, or as discussed by Eckhause, et al. (2009), maximization 

of the probability that at least one of the projects succeeds. 

As noted, government acquisition managers often mitigate the technical risk 

associated with R&D acquisitions through a combination of formal milestone 

decision points and parallel development strategies.  For example, consider the 

Department of Defense’s DOD 5000 acquisition process presented in Figure 2.1 

(Department of Defense, 2001).  After the Department of Defense has determined the 

new capability desired, multiple projects are initially awarded technology 

development and maturity contracts to perform the R&D required for successful 

development of the desired capability.  At predetermined decision points, Milestones 

A and B, resulting technologies are evaluated to determine which, if any, projects are 

selected to continue R&D and capability development efforts.  Milestone C decisions 

will typically evaluate finished prototypes and result in a final down-select to a single 

winning project to commence a low rate of initial production (LRIP) of the fielded 

capability.  It is important to note that the winning project may be selected for criteria 
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other than obtaining the highest or most robust technological maturity, such as 

possessing the technology with the lowest expected total cost or development 

schedule, or having the highest probability of successful implementation conditional 

upon their current level of technological maturity. 

Figure 2.1: DOD 5000 Acquisition Process 
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While these multi-stage, multi-project competitions have proven useful for 

mitigating technical risk, acquisition managers must address a number of key 

questions to efficiently employ this strategy: How many projects should be initially 

funded? How many stages? How should funding be spread between stages? Which 

project should be funded after each decision point?  The answers to these questions 

present difficult tradeoffs that must be faced.  For example, are more projects, 

theoretically increasing the range of technical alternatives, or fewer, better-funded 

projects more likely to increase the probability of successfully acquiring the desired 

capability on time and within budget?  Should more funds be spent in the R&D phase, 

ensuring a more robust technological solution, or in the product development phase, 

increasing the likelihood of a smoother implementation?  Should the high-cost, 

mature technology project be selected over the low-cost, less mature technology 

project as the winner?  Of course, the answers to these questions depend upon the 



 

 23 

 

precise nature of the given acquisition program.  Real options techniques outlined in 

this chapter can provide an analytical framework to find optimal solutions to these 

problems. 

2.1.1 Real Options Definitions 

A basic call option represents a right, but not an obligation, to make a purchase at 

a future date (Dixit, 1994).  There is the price paid to purchase this right, or option, 

along with the price paid to exercise a purchased option, which is the option’s 

exercise (or strike) price.  The exercise price is only paid if the option proves to be 

valuable at a later date, thus limiting the buyer’s risk to the amount paid to initially 

purchase the option.  Multi-stage, multi-project R&D competitions are similar in 

structure.  The cost of issuing initial technology development contracts to a project 

represents the purchase price for that project option.  A given project option is 

exercised upon the award of a subsequent contract to the project to continue 

development of the actual capability.  The exercise price of this option is the amount 

of funding each winning project receives at each subsequent stage.  In the simplest 

two-stage problem, the competition reduces to the selection of the optimal portfolio 

of simple call options to purchase and then exercise in the next stage.   
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Figure 2.2: Two-Stage Multi-Project Competition 

 

t = 0 t = 1

Project 1

t = 2

Project 2

Project 3

Uncertain 

Outcomes

 

 

Figure 2.2 demonstrates such a two stage multi-project competition.  If the 

objective of the acquisition program manager is to maximize the likelihood of 

successfully developing a desired capability in time period t=2, the manager must 

determine how many and which of the project options to purchase in period t=0 and 

then how many and which of the purchased project options to exercise in period t=1.  

If the competition is composed of several decision stages before the winning 

project(s) are selected, each project represents a complex
1
 call option, as each 

subsequent exercising prior to the last stage, also represents an additional purchase of 

the option.  While this may create potential computational problems as the state space 

                                                 
1
 A complex, or exotic, option is one that can be classified neither as a simple “European” (i.e., may 

only be exercised on the date of expiration) nor as a simple “American” option (i.e., can be exercised at 

any point up until expiration of the option) (Hull, 1997).  One type of complex option, called a 

compound option, where the holder can purchase the right to a second option at a later date, is 

somewhat analogous to the real options problem described here. 
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expands, it does not change the formulation required to evaluate such problems.  

Fortunately, current computing power is sufficient to address the state spaces required 

for many realistic acquisition applications. 

2.2 Project Progression Metric:  Technology Readiness Level (TRL) 

Before an optimal portfolio of project options to purchase and exercise can be 

identified, a metric must be employed to gauge the success of each project’s R&D 

efforts.  A common metric currently employed to assess the maturity of evolving 

technologies by many government agencies, especially the NASA and the 

Department of Defense, is the Technology Readiness Level (TRL).  NASA (2011) 

uses nine TRLs to describe the maturity of an evolving technology.  The Department 

of Defense, as by the Deputy Under Secretary of Defense for Science and Technology 

(2005), employs a slightly different definition, but the essence of the level 

progression is the same.  The general concept behind a TRL progression is that at the 

beginning of technology development, general concepts are observed; then, the 

concepts are developed; the prototypes are designed and tested; and then the actual 

technology is tested and deployed.  Table 2.1 provides a brief definition of each level, 

as defined by NASA. 
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Table 2.1: NASA Technology Readiness Levels (TRLs) 

 

TRL  Definition 

1 Basic principles observed and reported 

2 Technology concept and/or application formulated 

3 Analytical and experimental critical function and/or characteristic proof-of-concept 

4 Component and/or breadboard validation in laboratory environment 

5 Component and/or breadboard validation in relevant environment 

6 System/subsystem model or prototype demonstration in a relevant environment 

7 System prototype demonstration in a space environment 

8 Actual system completed and “flight qualified” through test and demonstration 

9 Actual system “flight proven” through successful mission operations 

 

While the TRL metric has been used by NASA and the Department of Defense, 

there are of course other metrics that one could employ to gauge the completion level 

of a project.  These measures might include measures related to earned value, number 

of successful prototypes developed or deployed or the like.  Moreover, it is also true 

that the stochastic dynamic programming approach we propose can be used beyond 

these two application areas.  Two other domains that lend themselves directly to such 

a methodology include IT management and R&D efforts in low-carbon technologies 

for the energy sector.  In the first area, IT R&D managers may be concerned with 

fewer or different completion levels (e.g., software system concept, prototype 

development, alpha- and beta-level versions).  In terms of funding R&D efforts for 

low-carbon technologies to produce power (e.g., tidal power, advanced solar or wind 

power), project managers also may have fewer or different levels of completion.  For 

example, these levels might include: initial concept (taking into account how related 

to existing technology or novel), approval by a government regulatory agency, initial 

disbursement of funding to research laboratories and universities, prototype 

development, field deployment, market-ready product. 
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To mitigate the risks in developing new capabilities, many large-scale, expensive 

projects do not award a single contract that will progress from TRL 1 to TRL 9.  

Rather, the observations and concepts, along with the proof-of-concept and 

exploratory research, are usually done first, under smaller contract awards.  If proven 

successful, or if sufficient progress is made, future contracts are awarded based on the 

preliminary success of the earlier TRL progression (this strategy is adopted by NASA 

and the Department of Defense, but is applicable to other public sector areas). 

Although this multi-stage approach is sometimes used with a single project, it 

naturally leads to the multi-stage, multi-project contracts usually being employed.  

For example, during the beginning stages of a project’s TRL progression, the cost of 

concept-development may be relatively small enough that the government agency can 

award several simultaneous contracts with a decision point for future contracts 

occurring when projects are expected to achieve TRL 6.  Each project is assumed to 

choose whichever technology platform best suits its abilities to achieve its desired 

readiness level. Of course, it must be noted that TRL progression alone is not a 

substitute for quality of the work performed.  Two competing developers or 

contractors may claim to have “successfully” reached a certain TRL, but one of the 

two may be vastly superior to the other.  We assume this type of judgment is 

considered in the technology readiness assessment (Deputy Under Secretary of 

Defense for Science and Technology, 2005).  Since TRLs are already commonly used 

for assessing technological maturity in multi-project competitions, we will also use 

this measure to assess competing projects within our formulation of multi-project, 

multi-stage acquisitions. 
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2.3 Mathematical Formulation 

The general framework for our multi-project, multi-stage competition is as 

follows.  We wish to potentially fund a number of projects, each with their own costs 

and probability of success over various stages of an R&D acquisition project so that 

the probability of achieving a specific predetermined level of success for the overall 

R&D project is maximized.  The set of potential projects is represented by I .  Using 

TRL as the measure of desired R&D success for each project in each stage, we 

assume that we wish to maximize the probability of achieving TRL 8 by the end of 

the acquisition process, as TRL 9 is usually reserved for proven, fielded systems, i.e., 

post initial acquisition.  We should note that many other objectives are possible 

within this framework, such as minimizing expected cost or expected development 

schedule. Furthermore, let us assume there are certain funding decision periods that 

allow us to assess the level of maturity (success) of each funded project.  There are T  

time periods in which decisions are made and an additional final time period ( 1T ) 

in which outcomes are realized.  At each of these time periods, t , we can decide 

whether or not to continue funding the projects currently funded (or even, by how 

much we should fund them) in the subsequent funding cycle.   

We assume each project starts at a certain TRL, and can progress along the way 

according to a set of transitional probabilities relating to funding.  Thus, the state of 

any project at the beginning of any time period is a value in the set 

 8,7,6,5,4,3,2,1,0S , where 1,…,8 correspond to the current TRL achieved and 0  

corresponds to no longer being funded (or possibly having been never funded).  We 

allow for the possibility that the project may reach “success” (i.e., TRL 8) before the 
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final stage ( 1T ).  Whether or not this is possible for a particular instance of this 

problem can be specified by the probability mass functions (PMFs) for the transitions 

of each project.  While we assume that we know the transitional probabilities from 

each state to every other state (i.e., the probability mass function of the TRL 

progression from one stage to the next) at every stage for every project, defining these 

PMFs can be challenging for many applications.  However, many R&D intensive 

public sector acquisitions, such as aerospace and defense programs, already produce 

estimates of TRL success during source selection and R&D portfolio funding 

decisions.  Typically, these are discrete PMFs, such as the probability that a program 

will achieve TRL 6 given a specific schedule or level of funding, that are obtained 

from subject matter experts and historical data.  Weisbin, et al. (2004) describe such a 

process in the claim for the need for a systematic process for NASA technology 

portfolios.  NASA’s Strategic Assessment of Risk and Technology (START) 

approach for evaluating R&D investment decisions uses a peer review process to 

assign cumulative probability values to different performance range points as well as 

probabilities of project acceptance by the stakeholder once TRL 6 is achieved (Elfes, 

et al., 2006).  Recognizing the need for better estimates for the likelihood that a 

technology development project successfully meets its milestones, NASA Ames 

Research Center is currently developing a Technology Development Risk Assessment 

(TDRA) tool to calculate TRL transitional probabilities as a function of time and 

budget (Mathias, et al., 2006).  However, as current public sector R&D funding 

decisions use some form of qualitative or Delphi approach (Linstone and Turoff, 

1975) to evaluate the probabilities of achieving a few specific program milestones 
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(e.g., the probability of reaching TRL 6 by a specific point), we employ the simple, 

discrete PMFs that modelers will most likely obtain from subject matter experts and 

historical data. 

This sequential decision model can be referred to as a Markov decision process 

(Puterman, 1994).  The actions, rewards and transition probabilities depend only on 

the current state and actions, not on the past states occupied and past actions made.  

To the extent that those previous actions affect the transitional probabilities in our 

current state, we expand the state definition to include those effects.  We will develop 

our formulations for determining the optimal portfolios of real options to purchase 

and exercise in multi-project, multi-stage competitions by initially examining a fairly 

restrictive version of the problem.  We will then develop a formulation that relaxes 

many of the initial assumptions to better accommodate realistic acquisition programs.  

The PMF for each project is strictly determined by the funding decision for that 

project; we assume the funding decisions for the other projects do not impact that 

PMF.   

While this assumption appears extreme for certain types of problems, 

modification of the state definitions can make this difficult restriction disappear.  In 

our case study in Chapter 5, knowledge spillover, which is encouraged by the funding 

agency, implies that one project’s technological progress can influence the PMFs of 

other projects.  We incorporate that important feature by expanding the state 

definition to include not simply the project’s current state, but the maximum state 

achieved by other relevant projects, at that time period.  By expanding the state 

definition we are able to preserve the Markov process.   
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2.3.1 Model 1 Formulation: Fixed-Budget Problem 

In this version of the multi-project, multi-stage competition, we assume that the 

total budget available to the acquisition manager at each stage is fixed and that the 

potential funding level for each project at every stage is also fixed at some 

predetermined level.  The only decision available to the acquisition manger (or 

decision-maker) is whether or not to fund any specific project(s) at each stage.  We 

define the following state variables and data for our formulation: 

 Let iit SC   be the state of project i  at time period t ; we assume that 

  iSi  8,7,6,5,4,3,2,1,0  

 Let }1,0{itX  be the decision variable of whether to fund project i  at time 

period t  

 Let it  represent the cost of funding project i  at time period t  

 Let tB  represent the R&D budget available for time period t  

With these definitions, we make the following assumptions: 

 Assumption 1: As previously stated, we assume we are provided the state 

transition probabilities.  In other words, given for any state 1s  and any state 

2s , we know the value of }1,|{ 121,  ititti XsCsCP .  In other words, 

given that project i  is in state 1s  at time period t , we know the probability of 

going to some other state 2s  if we fund the project in that time period.   

 Assumption 2: }8{\1 Ss  , 1}0,|0{ 11,  ititti XsCCP .  In other 

words, a project not funded at time period t  will necessarily be in state 0  in 
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the next time stage (and all subsequent stages), unless that project has already 

attained a TRL of 8.  

 Assumption 3: We assume that if a project is in the unfunded state, then the 

option has “expired” and cannot be funded subsequently.  Namely, for all time 

periods 1t , 1},0|0{ 1,  ititti XCCΡ .   

 Assumption 4:  If a project reaches TRL 8 (or “success”) before the final time 

period, then that project remains in the success state, regardless of additional 

funding, i.e., 1},8|8{ 1,   ititti XCC .   

Implicit in Assumption 1 is that the projects’ state transition probabilities (and its 

associated costs) reflect the characteristics and variety of projects considered.  Some 

project teams may have greater experience and more workers, and therefore likely 

more costly but more successful.  Other projects may be “long shots” with limited 

resources, but potentially mitigated by lower costs.  

At time period t , the state of the system can be described as all the combinations 

of states, with one for each project.  That is, 

tSSC
Ii

it 



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
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For these combinations of states at time period t , we can choose a set of feasible 

funding decisions: 
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In other words, tX  is the set of all funding decisions made at time period t .  The 

second constraint indicates that we do not fund a project that is already in state 0 .  

Explicitly adding the constraint  IiCX itit  8if0  is unnecessary by an 

optimality argument, since it is implicitly considered in the objective function of 

maximizing overall project success.  That is, letting  1itX  when 8itC  does not 

increase the objective function, but rather decreases the available budget.  

Nevertheless, in order to preserve fiduciary responsibility, we can include such a 

constraint.  If the desire to conserve funding does not exist, then it still has no impact 

on an optimal solution. 

If we wish to choose the optimal funding strategy to maximize the probability of 

at least one project reaching TRL 8 (i.e., success), then we can solve for the binary 

decision variables by formulating it as a stochastic dynamic program.  We formulate 

the problem as 

TtXCCVCV tttt
CXX

tt
tt

,,1},|)({max)( 11
)(

 


E  (2.3) 

 

Calculating the value of this function is inherent to the stochastic dynamic program 

model itself.  In other words, the model described here, while containing certain 

commonalities to all Markov decision processes, forms the basis of the solution 

algorithm techniques.  In this SDP, the calculation of the expectation depends on the 

distribution of 1tC  conditioned on tC  and tX , which we previously assumed as 

given.  We note that maximizing the above objective function will always have a 

solution, since we are considering a set of feasible funding solutions over a discrete 
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set of possibilities
2
.  Therefore, complete enumeration—while not always desirable in 

practice—would guarantee an optimal solution. 

Recall that the goal is to maximize the probability that at least one project 

achieves TRL 8.  We assume if all projects fail to reach TRL 8, then we have failed to 

meet the goals of the R&D acquisition.  Thus, we can state the boundary condition of 

the dynamic program as 



 





otherwise0

somefor    8   if1
)(

1,

11

IiC
CV

Ti

TT  (2.4) 

 

This condition assumes no “consolation” prize for a project reaching TRL 7, for 

instance.  If the dynamic program is solved optimally, the probability that the goal is 

accomplished by the final time period is determined by the transitional probabilities 

and the R&D budgets for each time period (i.e., TBBB ,...,, 21 ).  Solved recursively, 

the value of 1V , the value of the initial state, therefore provides to solution the optimal 

success probability. 

2.3.2 Model 2 Formulation: Multiple Funding Levels and Flexible 

Budgets 

By relaxing two of our previous assumptions we are able to address a much wider 

class of problems that can accommodate the many variations that government 

decision-makers face.  First, we permit some degree of budget flexibility.  Though we 

continue to assume that the total budget for the entire planning horizon is fixed at a 

predetermined level, the budget can be spread as required between the two stages.  

                                                 
2
 The trivial solution of funding no projects in any time period is always feasible so long as the budget 

available in each time period is non-negative. 
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Next, we allow several distinct funding levels for each project at each stage, under the 

assumption that increasing a project’s funding above some threshold is likely to 

positively increase its TRL transitional probabilities.  One might argue that a 

decision-maker actually faces a continuum of funding levels for each project.  

However, there are at least two reasons why discrete funding levels are sufficient.  

From a theoretical standpoint, a continuum of funding levels can be sufficiently 

approximated discretely.  In reality, transitional probabilities for TRL progression 

would exist for only a few funding levels, since they rely heavily on subject matter 

expertise and historical data.  Thus, the number of funding levels for each project and 

stage is limited to the number of probability mass functions one is able to generate 

with reasonable accuracy.  We define the following state variables and data for Model 

2:   

 Let 1BB   denote the fixed budget available to the decision maker at the 

beginning of the R&D acquisition process. 

 Let tB  be the budget remaining at time period t . 

 Let itl  denote the cost of funding project i  at time period t  at level l  

 Let }1,0{itlX  be the decision variable of whether to fund project i  at time 

period t  at level l  

Extending the same four assumptions from Model 1 to multiple funding levels, 

we assume given for any state 1s  and any state 2s , we know the value of 

}1,|{ 121,  itlitti XsCsCP  for all funding levels l .  If a project is not funded in a 
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certain time period at any level l , i.e., 0
l

itlX , then Assumption 2 from Model 1 

holds.   The state of the system at time period t  is 
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and the feasible decisions and budget transition at time period t  can now be written 

as 
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tX  represents the set of feasible funding decisions for all projects over all possible 

funding levels.  Similar to Model 1, we can formulate this problem as a stochastic 

dynamic program, but with two sets of decision variables ),( 1tt BX .  The set 

),( tt BCX  represents the feasible funding decisions given the state of all projects at 

time period t  (i.e., tC ) and a budget remaining (i.e., tB ).  Again, we are concerned 

with an optimal funding strategy to maximize the probability of at least one project 

reaching TRL 8.  However, we now calculate that probability based on both the 

budgetary and funding decision flexibility.  Thus, we have 

TtXCBCVBCV ttttt
BCXBX

ttt
tttt
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In order to solve this dynamic program, we must discretize the budget component 

of the state variables.  While this requirement could theoretically create significant 

state expansion problems rendering the SDP intractable, realistic applications can 

most likely be handled.  For example, the decision-maker can discretize the budget 

components to reasonable sizes.  One need not make that increment any smaller than 

the smallest combinations of the project costs over any time period.  In the example 

below, $0.1 million is a sufficiently small increment.  Presumably, we may desire to 

limit the ability to spend large amounts of the budget in any one time period.  

Naturally, one can easily produce additional constraints to the feasible decisions to 

limit the amounts spent in each time period.   

2.4 Numerical Examples 

In this section we use numerical examples to illustrate the effectiveness of the 

formulations outlined in the previous section.  These instances demonstrate the 

approach for both a simple, illustrative problem, as well as a larger, more 

computationally intense example.  The purpose of the latter example is to indicate the 

efficiency and speed of the SDP model.  Computational complexity is discussed in 

the next section.  Algorithm implementation details for the actual case study are 

described in Chapter 5. 

2.4.1 Model 1 (Fixed-Budget) Numerical Example 

Suppose that the National Reconnaissance Office (NRO) decides to acquire a 

satellite with new sensing capabilities substantially out of the reach of current 

technology.  Assuming the NRO is employing the DOD 5000 acquisition framework 
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presented in Figure 2.1, they decide to pursue the following acquisition strategy.  The 

NRO will request proposals from four project teams that detail their technical 

approach, proposed schedule, and cost bids for performing the R&D required to 

invent the new sensing capability.  This type of acquisition strategy is typical for 

government agencies to employ.  Each project will also submit a similar proposal and 

bid for actually developing the satellite.  At the Milestone A decision, the NRO will 

determine which projects will actually receive a technology maturation contract to 

invent the new capability.  The NRO will purchase a simple call option with each of 

these initial contracts it awards.  At a predetermined Milestone B decision point, the 

NRO will evaluate each of the selected projects’ prototypes and exercise one or more 

of their previously purchased options by awarding a follow-on contract to the winning 

project(s) selected to build the satellite.  The NRO will decide whether to launch the 

satellite at the Milestone C decision point, at which time it is fielded.  In essence, we 

are considering an acquisition with two stages and four projects.  We will assume that 

the acquisition has already reached a certain technical maturity, so each project’s 

project begins at TRL 4, with the goal of reaching TRL 8 by the end of the second 

stage.  The budget available to the NRO for the first and second stages are fixed at 

$10 million and $20 million, respectively (i.e., 10$1 B  and 20$2 B ), with 

decision makers facing the “use it or lose it” constraint not atypical of government 

budgets.  Thus, with no budget flexibility or incentive to withhold funds, the NRO’s 

acquisition managers will choose to exhaust their entire budget in each stage.   Table 

2.2 shows each project’s stated costs for each stage.  The conditional transitional 

probabilities for each project are presented in Tables A1 and A2 in Appendix A.   
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Table 2.2: Projects Costs for Each State (millions) 

 

Project Stage 1 Stage 2 

Project 1 $ 3.5 $  4.0 

Project 2 $ 3.7 $  6.9 

Project 3 $ 5.0 $ 10.4 

Project 4 $ 2.3 $  6.3 

 

Traditionally, the acquisition managers would construct a capability or 

requirements matrix and assign appropriate qualitative and quantitative values to each 

of the projects for comparison.   Project selection in each stage would then typically 

be determined through either a weighted or un-weighted Delphi approach that 

estimates the state transition probabilities (Linstone and Turoff, 1975).  While this 

approach allows acquisition managers the ability to carefully consider the qualitative 

merits of each project, it fails to ensure that the number and mix of projects selected 

actually maximizes the probability of a successful acquisition given the NRO’s 

budget constraints.  We determine the optimal portfolio of project options to purchase 

and exercise by solving },|)({max 11
)(

tttt
CXX

XCCV
tt




E .  An optimal solution maximizes 

the expected value of the value function, which is the probability that at least one 

project achieves TRL 8.  The results of the dynamic program for this two-stage, four-

project problem are that the acquisition manager purchases options, by awarding 

contracts, on both Project 3 and Project 4 in the first stage.  As it turns out, both 

options would be exercised in the second stage with the award of follow-on contracts 

regardless of their first-stage outcomes, since the total cost falls beneath the Stage 2 

budget constraint.  This acquisition strategy produces a 56% probability of success 

(i.e., 56.01 V  ), with success defined as the likelihood that one of the projects will 
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achieve TRL 8 at the end of the second stage.  This 56% is computed as follows with 

43 , PP  denoted as the success probabilities for Projects 3 and 4, respectively.  For 

example, Figure 2.3 and Figure 2.4 display the transition success probability for 

Projects 3 and 4.   Using the transition probabilities in Figure 2.3, 

41.0)1(1.0)7.0(2.0)3.0(5.0)1.0(1.0)1.0(1.03 P .   4P  is calculated 

similarly using the values in Figure 2.4.  Thus, we have that 

56.0)255.01)(41.01(1()1)(1(1 43  PP .   

Figure 2.3: Project 3's Transition Success Probabilities 
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Figure 2.4: Project 4's Transition Success Probabilities 
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One interesting point to note is that in Stage 1, Project 3 has the highest cost and 

Project 4 has the lowest cost.  Thus, funding them is not intuitively the obvious thing 

to do if one were to simply fund the cheapest projects first until the budget is 

exhausted (i.e., the “cherry-picking” approach).  This result shows that it is the 

combination of costs as well as probabilities that need to be taken into consideration 

to arrive at an optimal decision. 

For such a small problem, one can simply enumerate the state space, rather than 

solve the stochastic dynamic program.  There are only 25628   unique funding 

possibilities, the vast majority of which are infeasible.  One could simply select the 

feasible strategy with the largest value for the objective function.  A subset of this 

enumeration is shown in Table 2.3.  Obviously, larger problems can make better use 

of the reduction of states that need to be considered by solving a dynamic program. 
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Table 2.3: Enumeration of Model 1's Solutions 

 

X11 X21 X31 X41 X12 X22 X32 X42   22 CV  

0 0 0 0 0 0 0 0  0.00 

1 0 0 0 1 0 0 0  0.14 

1 1 0 1 1 1 0 1  0.47 

1 0 1 0 1 0 1 0  0.49 

0 1 1 0 0 1 1 0  0.52 

0 0 1 1 0 0 1 1  0.56 

0 1 1 1 0 0 1 1  infeasible 

1 0 1 1 0 0 1 1  infeasible 

1 1 1 1 1 1 1 1  infeasible 

 

2.4.2 Model 2 (Flexible-Budget) Numerical Example  

We now consider the more robust problem outlined in Model 2.  Reconsidering 

our hypothetical NRO satellite procurement, we will assume that there are still two 

stages and four projects, but instead of one funding level, the NRO requests proposals 

from each project at different funding levels, to insulate the acquisition from pending 

budget cuts.  Of course, the degree of technological maturity achieved will likely be 

reduced at lower levels of funding, but this will be reflected in the TRL transition 

probabilities associated with each funding level.  For our example, we assume that the 

NRO receives as many as three funding options (four, if one counts deciding not to 

fund that project) for each project.  We have retained the original four projects, but 

assume that each of the projects can also be funded at some specific higher or lower 

level of funding.  Other than incorporating the additional funding levels, we will 

assume the NRO’s acquisition strategy remains unchanged.  Table 2.4 shows the 

costs for funding at the low, medium and high levels for each of the projects in both 

time periods.  Again, each project begins at TRL 4.  The conditional transitional 

probabilities for each project at each funding level are presented in Table A3 and 
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Table A4 in Appendix A.  However, we also assume that the NRO’s previous total 

acquisition budget of $30 million can be spent over the two stages without restriction.  

It is important to note that the costs in the medium funding levels in Table 2.4 

correspond to the costs in Table 2.2.  This overlap permits us to see explicitly the 

benefits of increased managerial flexibility.  As our cost values have significance at 

the $0.1 million level, we can safely discretize the budget to $0.1 million without loss 

of scenario feasibility. 

Table 2.4: Project Costs at Three Funding Levels in Each Stage (millions) 

 

Project 
Stage 1 

Low 
Stage 1 

Med 
Stage 1 

High 
Stage 2 

Low 
Stage 2 

Med 
Stage 2 

High 

Project 1 $ 2.5 $ 3.5 $ 5.0 $ 3.0 $  4.0 $ 5.0 

Project 2 $ 3.2 $ 3.7 $ 5.2 $ 6.9 $  6.9 $ 7.9 

Project 3 $ 3.0 $ 5.0 $ 9.2 $ 10.4 $ 10.4 $ 10.4 

Project 4 $ 1.8 $ 2.3 $ 2.8 $ 5.3 $  6.3 $ 7.3 

 

The optimal first-stage solution (since we enumerated all funding possibilities, it 

is a unique optimum) in this example is to purchase options, by awarding contracts, to 

Project 1 and Project 3 at the highest possible funding level, and Project 4 at the 

medium funding level.  An option is not purchased on Project 2, which at first glance 

may seem counter-intuitive given the relative cost vs. Project 3, which is funded.  As 

shown in Figure 2.5, the rationale for this is Project 3’s stochastic dominance over 

Project 2 for most of the TRL levels.  Maximizing the value function (i.e., the 

probability that at least one project reaches TRL 8), we find 71.01 V  or that there 

will be a 71% chance of at least one project at TRL 8 at the end of the acquisition 

program.   
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Figure 2.5: Cumulative Distribution Functions for Projects 2 and 3 
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Comparing these results to the Model 1 example clearly demonstrates the value of 

increasing managerial flexibility in these kinds of acquisitions.  By allowing budget 

flexibility, the NRO’s acquisition managers are able to fund an additional project 

(Project 1) in the first stage, even at their highest funding levels.  The most surprising 

result, however, is that we maximize our probability of success by spending more on 

the first stage ($16.5 million) than the second stage ( million 5.13$2 B ).  Since 

actual government acquisitions are typically structured with increasing budgets in 

each subsequent stage, even when program managers are able to retain unused funds, 

we produce an optimal strategy that would not likely have been discovered using the 

current Delphi-based decision process.  Lastly, with a more flexible budget as well as 

the allowance for multiple funding levels, the success probability increases from 56% 

to 71%. 

Another advantage of using this real options technique is that the optimal 

portfolio of options to exercise in the second stage can be easily solved after 

incorporating the realized TRLs after the first stage.  This provides additional 

managerial flexibility since the acquisition manager can significantly alter his or her 

initial acquisition strategy as new information arrives.  As our results show, the 

ability to include budget flexibility and multiple funding options in this example 

provides a significantly larger value for the objective function in Model 2. 
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2.4.3 Using Common Numerical Examples to Compare the SDP 

and IP Formulations 

In the following chapter we formulate the real options problem with a fixed 

budget (Model 1) as an integer program.  In order to compare the approaches 

computationally, we introduce a common problem in this section.  In the above 

numerical examples, we demonstrated the approach on four-project, two-time period 

problems.  The definition of the states mapped directly from the TRLs definitions.  In 

other words, each project could theoretically be among the states 

 8,7,6,5,4,3,2,1,0S , though in the numerical example there was only a non-zero 

probability of being in states  8,7,6,5,4,0  given a funding decision.  

For the integer programming problem, we consider a two-project, time-period 

problem and a three-project, three-time period, where the states space for each project 

is defined as  4,3,2,1,0S , where states 1, 2, 3, and 4 implicitly map to TRLs 5, 6, 7 

and 8, respectively.
3
  The reason for this deviation is to be consistent with the 

notation in Eckhause, et al. (2011) where the TRL concept was not utilized.  For 

computational complexity and problem size concerns, the key is that, for each project, 

there are five possible state outcomes instead of six.  In Chapter 3, we introduce and 

motivate the integer programming version of this real option problem, and use the 

above state definitions for the numerical examples.  We mention it here as a point of 

reference when we ultimately compare the run-times and computational complexity 

of the stochastic dynamic programming formation and the integer programming 

model. 

                                                 
3
 We define the final state, 4, in the possible project states, {0,1,2,3,4}, as the “success” state. 
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2.5 Algorithm Implementation and Computational Complexity 

The dynamic program employs the backward induction method in the standard 

manner (see, for example, Puterman, 1994).  It begins in the final time period ( 2t ).  

For every 2C  (i.e., all possible states for the four projects at the beginning of time 

period 2) and a given remaining budget, 2B ,  we calculate the feasible set of actions, 

2X , that maximizes the probability that at least one project reaches TRL 8 (i.e., we 

minimize the probability that all projects fail).  In other words, for each 2C , we solve 

for  

  lXCC
Ii

liiti
BCXBX





},|8{11max 23,

),(),( 2232

P  (2.8) 

 

The optimal action’s probability of success, given a set of outcomes and 

remaining budget, becomes the second-stage value function.  That is, for each 

feasible ),( 22 BC , we calculate  

  lXCCBCV
Ii

liiti
BCXBX

 



},|8{11max),( 23,

),(),(
222

2232

P .  It is worth noting 

that this product can be written as the sum of logs, in which case the objective 

function becomes additive, which would help with computation. 

In the first stage, for each set of funding actions, 1X , and its associated cost, we 

find the value that maximizes ),( 111 BCV  by calculating  







SC
BCXBXBCXBX

XCCBCVXCBCV
2

11211121

},|{),(max},|),({max 112222
),(),(

11222
),(),(

PE  (2.9) 

 

In other words, we calculate the value of those feasible actions in state 1 by summing 

the probabilities of the outcomes given the funding action multiplied by the 



 

 48 

 

associated ),( 222 BCV  calculated previously.  The algorithm sums the probabilities 

since the state outcomes are mutually exclusive. This procedure would continue for 

all prior time periods if the acquisition problem had three or greater funding intervals. 

While the numerical examples in the previous section describes a problem that 

can solved using the methods described in this chapter, these problems were still 

small enough that the run-time performance of the model for a larger number of 

projects and time periods needs to be explored.  The case study in Chapter 5 will 

demonstrate the robustness of the model to adapt to large, real-world problems.  In 

our numerical experiments, this model does well for problems with small numbers of 

projects, outcomes and actions.  It seems likely that the number of possible projects 

and actions would be modest for large acquisitions.  Also, since simple, discrete 

PMFs are likely the type of data available for such a decision process, the number of 

possible outcomes is probably limited to only a handful of identifiable outcomes.  

In terms of the computational complexity involved, consider the following.  

Suppose that there are v  projects, o  possible outcomes (i.e., the possible TRLs 

achieved in the following state), a  actions (i.e., the set of funding levels, including 

not funding) and b  number of possible budget increments (simply the total budget 

divided by the budget increment—$0.1 million in the Model 2 numerical example).  

For the Model 2 example, when 300b , 4a , 6o , 4v  and 2t , there are 

potentially 200 million iterations
4
, though many are eliminated due to budget or state 

infeasibilities.  A C++ implementation on a 2.0 GHz dual-CPU with 2.0 GB of RAM 

runs in about two seconds.  For 6000b , there is a 20-fold increase in the number of 

                                                 
4
 Here, an “iteration” refers to the number of times in the inner-most for-loop the SDP enters. 
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iterations, and the computational time increases linearly to roughly 30 seconds, still 

quite tolerable for solving such problems.  For a five-project, five-time period 

example of Model 1 (where the budget for each time period is fixed and the decision 

is simply “fund” or “no fund”), 2a , 6o , 5v  and 2t , there are roughly 6 

billion potential iterations.  The run time for a similar C++ implementation on the 

same 2.0 GHz dual-CPU with 2.0 GB of RAM is about 14 seconds.  A more thorough 

explanation of the number of iterations, state size, run-times for the SDP, and its 

performance compared to an integer programming approach are presented at the end 

of the next chapter and in Chapter 4. 

In Chapter 3, we present a mixed-integer programming formulation of the fixed-

budget real options problem.  The integer programming formulation provides an 

alternative method, which could be valuable for some instances, while allowing more 

easily for the addition of side constraints.  We compare the run times of this 

stochastic dynamic programming implementation with integer programming 

formulations.  In Chapter 4, we provide further detail on the comparison of the two 

approaches for certain classes of problems; we present detailed results on the state 

space, run-times and computational complexity issues.   
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Chapter 3: An Integer Programming Approach for Evaluating 

the Multi-Stage Real Options Model 

This chapter provides an equivalent integer programming formulation for the real 

options problem presented in Chapter 2.  We present a general formulation of the 

model in Section 3.2.  A small instance of the problem is described in order to 

demonstrate the approach in Section 3.3, followed by a larger example in Section 3.4.  

After briefly discussing the advantages of the integer programming approach in 

Section 3.5, numerical examples are provided for two sample problems in Section 

3.6, along with a comparison of run-time performance with the equivalent SDP 

formulation.  Chapter 3 is primarily based on the work of Eckhause, et al. (2011). 

3.1 Rationale for the Integer Programming Approach 

In Chapter 1, we discussed several of the motivating factors for modeling and 

solving the multi-project, multi-time period real options problem as an integer 

program, not just simply presenting it as a Markov decision process and solving it 

using stochastic dynamic programming, as we did in Chapter 2.  There are at least 

three motivating factors for this alternative formulation.  The first is that the 

formulation of the problem, originally modeled as a Markov decision process, but 

reformulated as an integer program, presents a guide for the conversion of other 

problems traditionally solved using stochastic dynamic programming as integer 

programs.  It is well established that stochastic programs whose outcomes do not 

depend on the decisions made can be written as linear programs (Birge and 

Louveaux, 1997).  Certain knapsack problems can be solved either using an integer 
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programming formulation or a pseudo-polynomial time dynamic program 

(Nemhauser and Wolsey, 1988).  The formulation of the problem presented in 

Chapter 2, however, is solved using stochastic dynamic programming, which presents 

its conversion to an integer program as a novel undertaking.  As we demonstrate in 

this chapter, the linearization constraints require the creation of path dependencies 

that eliminate the “memoryless” property of the Markov decision process.  

Nevertheless, we show that these linearization constraints only require the addition of 

continuous, linearly-constrained, non-integer, variables.   

The second reason for the reformulation of this problem as an integer program is 

the relatively easy incorporation of side constraints, should they need to be added to a 

real options problem.  For a clean energy example, we could consider certain funding 

restrictions, such as: the funding of two wind projects may be mutually exclusive; the 

funding of a certain wind project implies necessarily the funding of another; certain 

projects can commence funding in the initial time period only, while others are not so 

restricted, etc. While it is true these types of constraints can be incorporated into an 

SDP model, the addition of such constraints for sensitivity analysis can require some 

significant changes to the structure of the SDP. On the other hand, these constraints 

can more easily be incorporated into an IP with a simple algebraic expression of the 

relationship.  Moreover, with the advances in integer programming methods over the 

last few decades, it is anticipated that an IP formulation could be a viable approach 

for even larger problems. 

Finally, the third major reason for the IP formulation has to do with a two-level 

formulation, as we discussed in Chapter 1.  Consider for example a government 
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agency which first must decide its anticipated budget levels a priori.   Having fixed 

these annual budgets, a real options problem can then be used to determine how to 

best allocate the various projects in support of an overall public sector goal or goals.  

We are unaware in the literature of a two-level problem in which the lower-level is an 

SDP. Significant recent work in multilevel programming has focused on this bottom 

level as an optimization (Brotcorne, et al., 2008) or an equilibrium problem.  In the 

latter case, such problems are called mathematical programs with equilibrium 

constraints (MPEC) (Luo, et al., 1996) and include both optimization as well as game 

theoretic models. While most MPECs have included lower-level problems and have 

received considerable attention in the last few years due to their applicability in a 

variety of fields, often the lower-level problem is assumed to have Karush-Kuhn-

Tucker (KKT) conditions (see, for instance, Bazaraa, et al., 1979) in order to be able 

to characterize the solution set of the lower-level problem.  A recent example in 

energy in which the lower-level problem’s KKT conditions get moved to the upper 

level and then converted to disjunctive constraints can be found in (Gabriel and 

Leuthold, 2010); a mixed-integer linear program resulted. In the current setting, no 

such KKT conditions are available to the SDP formulation of our problem, so 

necessarily a different approach is needed.  In particular, the reformulation of the 

SDP into an integer program is what is accomplished.  Thus, we develop the required 

IP formulation for solving a lower-level SDP in this context.  We will then convert 

this two-level problem into a one-level IP problem.  The formal proof of this property 

is in Chapter 4.  This chapter follows the approach and notation from Eckhause, et al. 

(2011). 
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3.2 General Integer Program Formulation 

The following nonlinear, integer program is a formulation of the real options 

project selection problem presented in Chapter 2 and formulated as a stochastic 

dynamic program.  Suppose we wish to decide whether to fund N projects over T  

time periods such that the probability of success (i.e., that at least one project reaches 

a specific success state by the end of the thT  time period) is maximized.  There is one 

funding level for each project and a fixed budget for each time period. 

The following notation is used for the input data: 

 

 The set of possible project outcomes (states) is:  S,...,2,1,0S  , where 0 

denotes the state of the project in all subsequent time periods if it was not 

funded in the first time period.   

  1| t

i

t

i

t

i ss   is the probability of project i (where Ni ,...,1 ) achieving state 

Ss t

i   at time period t given the project was in state 1t

is  at time period 1t .   

Figure 3.1 depicts these probabilities for a given project i where  4,3,2,1,0S . 
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Figure 3.1: Project i’s Outcomes 

 

 

 

  T

N

TT sssv ,...,, 21  is the value of being in state  T

N

TT sss ,...,, 21  in the final time 

period.  Since the objective is to have at least one project succeed, and there 

are no “consolation prizes:” 

 


 


otherwise   0

any for  S if    1
,...,, 21

is
sssv

T

iT

N

TT
 

SsT 1 , SsT 2 , or SsT

N   means that project 1 or project 2 or project N has 

achieved the success state. 

 t

ic  is the cost of funding project i at time period t. 

 tB  is the budget for time period t. 

The decision variables that represent the values to be optimized in the objective 

function are: 
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 t

sssi t
N

ttx
),...,,(, 11

2
1

1
  is the binary decision variable to fund project i (where 

Ni ,...,1 ) at time period t, conditioned on the set of states
5
 achieved by all 

projects at the end of 1t . 

The resulting variable  T

N

TT sssp ,...,, 21  is the probability of being in state 

 T

N

TT sss ,...,, 21  in the final time period given the set of funding decisions 

T

sssi

t

sssisssi T
N

TTt
N

tt
N

xxx
),...,,(,),...,,(,

1

),...,,(, 11
2

1
1

11
2

1
1

00
2

0
1

,...,...,   for all Ni ,...,1 . 

In the final time period for each project, there is only a “failure” (0) and a 

“success” ( S ) outcome. Thus, there are 12 N  possible meaningful outcomes, 

indexed by j , where at least one of the projects has achieved success.  For example, 

if there are three projects, there would be 7123   outcomes: 

),,)...(0,,0(),,0,0( SSSSS , where each project’s final state less than S  represents a 

“failure.”   Based on each of the 12 N  meaningful outcomes, jP
~

 is the probability of 

achieving the thj  outcome.  For example, in a problem with two projects, the 

objective function would be: 

         SSpsSpSspPsspssv T
S

s

T
S

sss j

j

TTTT

TTTT

,,,
~

,,max 2

1

1

1

,

3

1

2121

2121

  




 

 

(3.1) 

 

Given the above definitions, we have the following general objective function: 

    





T
N

TT

N

sss j

j

T

N

TTT

N

TT Pssspsssv
,...,,

12

1

2121

21

~
,...,,,...,,max  (3.2) 

 

                                                 
5
 The set of initial states  00

2

0

1 ,...,, Nsss  can be heterogeneous across projects i, though in our 

examples they are not. 
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In (3.2) the summation is only over the final time period, T , since success prior to T  

is maintained for all subsequent time periods.   

The integer program with the objective function in (3.1) requires a number of 

nonlinear constraints.  The first set of constraints defines the probabilities of 

terminating in the 12 N  possible success outcomes (i.e., at least on project in the 

state S ) shown in (3.2).  

In each time period, t, the set of projects N  can be separated into two subsets, tN1  

and tN 2 , such that NNN tt  21  and ? tt NN 21 .  tN1  comprises the set of projects 

that were funded at time period t; tN 2  were the projects that were not funded at t.  If a 

project is funded in a given time period t then the project was necessarily funded for 

all previous time periods, 1,...,1 t .  Therefore, tt NN 1

1

1   for all t.   

Let  tt ND 11 ,...,2,1  index the mapped elements of tN1 ; likewise, 

 tt ND 22 ,...,2,1  indexes the mapped elements of tN 2 .  For example, for 5N , if 

}5,3,1{1 
tN  and  }4,2{2 

tN , then }3,2,1{1 
tD  and }2,1{2 

tD .  Similarly, we define 

the states of the projects in tD1  and tD2  as tD1

~
 and tD2

~
, respectively.  Thus, 

 11

2

1

11
1

,...,,
~  t

D

ttt
tsssD  and 0

~
2 
tD  for all elements of tD2 .  For each value of tD1 , 

there are  tN

t
S

N

N
1

1













 possible tD1

~
 sets. 

We can now define a set of constraints that describe the success outcomes for 

every time period.  Consider the probability,  ttt DDp 21

~
,

~
, of the event that at least one 

of the funded projects tD1  achieved success for the first time in that time period, t 
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(i.e., there were no successful projects at 1t  or earlier).  Since the events are 

mutually exclusive, the constraints for all possible  tt DD 21

~
,

~
 at time period, t, are: 

   



T

t

tttTT DDpDDp
1

2121

~
,

~~
,

~
 (3.3a) 

 

where for any given time period, t
~

, the probability of success is defined by (3.4) 

below. 

To illustrate how constraint (3.4) works, we consider a simple example with three 

projects and three time periods, where each project has three states, )2,1,0( , where 

2S  and any unfunded project goes to state 0.  As shown in Table 3.1, we consider 

the case where Projects 1 and 3 are funded in the first time period and Project 2 is not.  

Then, at 2
~
t , only Project 1 is funded.  In other words,  

   

   

   

   )0,0(,2
~

,
~

 )3,2(,1,

states)(project  0),1,1(
~

,
~

 indices)(project  2),3,1(,

2

2

2

1

2

2

2

1

1

2

1

1

1

2

1

1









DD

DD

DD

DD

 (3.3b) 

 

From Table 3.2, for each time period, Project 1 has probability of 0.6 to stay in state 1 

and 0.4 to go to state 2 (success state), if funded.  Project 3 has probability 0.5 for 

both staying in state 1 and going to state 2.   

Table 3.1:  A Funding Strategy for Obtaining    )0,0(),2(
~

,
~ 22

2

2

1

2 pDDp    

 

Time 

Period
Project 1 Project 2 Project 3

1 Funded Not Funded Funded

2 Funded Not Funded Not Funded  
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Table 3.2:  State Transition Probabilities for Three Projects, where 2S   

 

 

Project P(st+1 = 1 | st = 1, xt = 1) P(st+1 = 2 [success] | st = 1, xt = 1) 

Project 1 0.6 0.4

Project 2 0.7 0.3

Project 3 0.5 0.5  

 

According to (3.4), the probability of being in a success state for the first time at 

the end of 2
~
t , given the decisions in Table 3.1, is  2

2

2

1

2 ~
,

~
DDp  )0,0(),2(2p  

0.12 = )(0.6)(0.6))(0.5 - 1( .  This value,  2

2

2

1

2 ~
,

~
DDp , is therefore equal to:  i) 1 – 

probability Project 1 was unsuccessful in the second time period, multiplied by ii) the 

probability Projects 1 and 3 were unsuccessful in the first time period.  However, this 

product must be multiplied by a product of binary decisions variables that is 1 if and 

only if 12

1

1

3

1

1  xxx  and 02

3

2

2

1

2  xxx .  So, 

    )0,0(),2(
~

,
~ 22

2

2

1

2 pDDp 0.12 = )(0.6)(0.6))(0.5 - 1(  if and only if 

,12

1

1

3

1

1  xxx  02

3

2

2  xx , and 0 otherwise. 

In the more general case, we have the following: 
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 
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t
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t
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~
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~
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~
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~
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~
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
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(3.4) 

 

In other words,  ttt DDp
~

2

~

1

~ ~
,

~
 is the probability of achieving success for the first time at 

period t
~

 for the set of funded and unfunded projects  tt DD
~

2

~

1

~
,

~
.  It is equal to the 

product of the following terms: 

A. The probability of all successful outcomes for projects tD
~

1

~
 at time period t

~
, 

which is simply 1 minus the probability of all unsuccessful outcomes (i.e., 

states 1 through 1S ). In the example, it is: (1-(0.6)). 

B. The probability of all outcomes where no project is in the success state, S , 

before time t
~

(i.e, 1
~

,...,1  tt ), for all projects in tD1

~
.  In the example, it is 

 (0.6)(0.5)  for Projects 1 and 3 in time period 1.   

C. A product of binary variables that equals 1 if the projects in the set tD1

~
 have 

been funded up to and including time period t
~

, and 0 otherwise.  In the 

example, this is the product 12

1

1

3

1

1 xxx . 
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D. The product of binary variables that equals 1 if the projects in the set tD
~

2

~
 are 

not funded at time period t
~

, which is 1 only if all are not funded at time t
~

, 

and 0 otherwise. 

Thus, for a given  tt DD
~

2

~

1

~
,

~
, the value DCBA   is nonzero if exactly projects tD

~

1

~
 

are funded at time period, t
~

.   

  The constraints (3.4) can be compactly expressed for each time period t by the 

recursive equation   

  tttt PXMP 1
 (3.5) 

 

where  tt XM  is the matrix of all the decision variables (expressed in the vector tX )  

and the probabilities  1| t

i

t

i

t

i ss , expressed as tM , and tP  is the vector of 

probabilities.   

This nonlinear, integer program also requires the following set of budget 

constraints: 

 SsssBxc t

N

tt

t

N

i

t

sssi

t

i t
N

tt ,...,0,...,, 11

2

1

1

1
),...,,,( 11

2
1

1

 



   (3.6) 

 

in addition to the set of funding constraints: 

iSsx t

i

t

sssi t
N

tt  


1

),...,,(,
any  if011

2
1

1

 (3.7) 
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which ensures that no projects are funded once one or more projects achieve the 

success state.
6
  One final set of constraints are the binary restrictions on the funding 

variables: 

},...,1,0{,}1,0{ 1

),...,,(, 11
2

1
1

Ssix t

i

t

sssi t
N

tt  
  (3.8) 

 

This problem will always have an optimal solution, since i) there are a finite number 

of binary t

sssi t
N

ttx
),...,,(, 11

2
1

1
 , and ii) a feasible solution will always exist (e.g., fund no 

projects if budget is too small). 

3.3 Two-Project, Two-Time Period Example 

To illustrate the general formulation, consider a two-project, two-time period 

example ( 2N , 2T ) with possible project states }4,3,2,1,0{S , where 4 denotes 

the success state and 0 denotes the state of the project in the second period if it was 

not funded in the first.  Assuming the initial states of the projects and the transition 

probabilities are known, the following nonlinear, binary integer program results: 

                                                 
6
 These constraints are consistent with the assumption made in Chapter 2. 
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(3.9a) 

 

(3.9b) 

 

 

(3.9c) 

 

 

 

(3.9d) 

 

 

 

(3.9e) 

 

 

 

(3.9f) 

 

(3.9g) 

(3.9h) 

 

(3.9i) 

(3.9j) 

 

(3.9k) 

 

The first five constraints (3.9a)-(3.9e) define the probabilities of ending up in a 

success state (i.e., the state 4). Additionally, the following constraints are added: 

 No funding a project in the second time period if it was not funded in the first 

(3.9f) 

 Budget constraints (3.9g)-(3.9h) 

 Funding ceases once a project has achieved a success state (3.9i)-(3.9j) 

This optimization problem could be solved directly using an integer programming 

method, noting that the above integer program is nonlinear. However, all 
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nonlinearities involve the product of a series of binary variables. In the following 

subsection, we demonstrate our technique for making all of these constraints linear by 

adding additional constraints and variables. 

3.3.1 Removing Nonlinearities in the Constraints 

The above nonlinear problem can be transformed to make it computationally 

easier to solve. Though it will still remain an integer program, we demonstrate how to 

remove all nonlinearities from the integer program in this section. This approach is a 

specific case of results demonstrated by Glover and Woolsey (1974).  Moreover, the 

additional variables that are required to remove the nonlinearities grow exponentially 

with the number of time periods and projects; but they only need linear restrictions, 

not integer ones. We prove that property in the next subsection. 

We first note that the above nonlinear, integer program has different types of 

decision variables multiplied by one another. There are cases where we multiply: 

 both projects’ first and second time period decision variables (four binary 

variables) 

 both projects’ first time period decision variables, but only one project’s 

second time period (three binary variables) 

 both projects’ first time period decision variables only (two binary variables) 

 

Linearizing Two Binary Variables 

There are cases where the constraints contain the product of two binary variables, 

such as (3.9c). These represent the constraints on decisions of the first time period. 

These bilinear terms can be handled by introducing a new variable and constraints.  



 

 64 

 

For example, in (3.9c), a new variable 1w  is defined so that 11 w  if and only if 

121  xx . Specifically, we add the following constraints (see Williams, 1999 for 

this and other logic constraints and Yu et al., 2008 for a specific example in 

transportation modeling): 

11

2

1

11

1

21

1

11


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

xxw

xw

xw

 (3.10) 

 

The other bilinear terms in (3.2) can be handled in a similar way: 
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(3.11) 

 

Linearizing Three Binary Variables 

The two-project, two-time period integer program has constraints where there is 

the product of three binary variables. These constraints result from the possibility that 

one of the two projects is not funded in the first time period and the other project is 

funded in both, for example (3.9d).  Linearization variables and constraints are added 

in a similar fashion to the product of two binary variables.  The set of variables 1
1,1 s

y  

is defined as     111 2

0,,1

1

2

1

1,1 1
1

1
1
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ss

xxxy  by adding the constraints: 
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Similarly, the 1
2,2 s

y  variables are defined as     111 2
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Linearizing Four Binary Variables 

For the constraints that have the product of all four decision variables, e.g., 

2
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The 
),(,1 1
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z  variables eliminate the need to have the product of the four binary 

variables ( 2
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1 ssss

xxxx ) in the constraints.  In the next section, we prove that 
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Likewise, the case when   11 2
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The end result is that the two-project, two-time period real options problem 

modeled in (3.9) can be formulated as the following linear, integer program: 
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(3.17) 
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It is important to note that the IP in (3.17) involves fixed, individual budgets for each 

time period; it is not effective for the flexible allocations.  In the following section we 

show why the constraints that 10  w , 10  y , and 10  z  are sufficient and 

the binary restrictions are not necessary.  As a result, the number of binary (or 

integer) decision variables is limited to only the number of decisions at each time 

period given the current state. 

3.3.2 Proof that the Linearization Variables Need No Binary 

Restrictions 

The general formulation in Section 3.2, as explicitly shown in the two-project, 

two-time period example, contains the products of binary variables, resulting in 

nonlinear, non-convex constraints. As demonstrated in the previous section, this 

nonlinear problem can be transformed to potentially make it computationally much 

easier to solve.  It is worth noting that the number of additional variables that are 

required to remove the nonlinearities grow exponentially with the number of time 

periods and projects; but these additional variables only need linear restrictions, not 

integer ones.   

The construction of the w, y, and z variables are identical in structure.  Namely, 

given a product of a series of n binary variables, nxxx 21 , the values of this product 

are such that either 021 nxxx   or 121 nxxx  . Moreover, 121 nxxx   if and only 

if 121  nxxx  .  Therefore, we can define a variable, u, which will be 

equivalent to nxxx 21 , by adding the following constraints: 
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  (3.18) 

 

The above constraints ensure that 0u  if and only if 021 nxxx   and 1u  if 

and only 121 nxxx  .  Extending Gabriel and Leuthold’s (2010) method of 

linearizing binary variables to the linearization of products of binary variables, we 

claim that the solution for u in (3.18) is equivalent to its value in (3.19).    
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(3.19) 

 

Theorem 3.1: The solution set for u in (3.18) is equivalent to its value in (3.19).   

Proof:  Since the values ]1,0[1 and 0  , clearly )19.3()18.3( SOLSOL  .  To 

show )18.3()19.3( SOLSOL  , we suppose not.  Then, }1,0{u  implies 10  u .  

Since 0u , then by the binary restrictions on the x  variables,  11  nxx  , since 

uxi   for all ni ,1 .  However, the constraint that  11  nxxu n  implies 

that     11111  nnnu  .  Thus, for any 10  uu , which implies 

that 1u , and contradicts our claim that 10  u . ■ 

The reason for applying these linearization techniques is to be able to reduce run-

times in optimization packages that can solve (to global optimality) both linear and 
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nonlinear integer programs. For the numerical examples outlined later in this chapter, 

the run-times for the globally optimal, nonlinear formulations were dramatically 

longer than their linearized equivalents. While these problems were not tested for 

every solver package, linearizing the integer formulation can provide an increase in 

solution speed—at least for some solvers.  Of course, the linearization constraints 

must not exceed the virtual memory accessible to the solver. 

3.4 Three-Project, Three-Time Period Problem 

For the purposes of considering a larger, more realistic setting, this section 

describes a three-project, three-time period problem, where S  is the set of states such 

that }4,3,2,1,0{S , identical to the set S  in the two-project, two-time period problem 

outlined in Section 3.3.  Our objective function for this problem is also similar to the 

two-project, two-time period case, namely, 
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 (3.20) 

 

Using the general time period constraints we could set up the constraints provided 

in (3.5) for each time period, along with appropriate budget constraints, i.e.,  
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and solve for the optimal funding decisions.  However, this requires solving a 

nonlinear, non-convex optimization problem with nonlinear constraints. As shown 

previously, we can linearize these constraints. For a three-project, three-time period 

problem the constraints are more complicated than for two projects in two time 

periods, because the number of linear variables and linearization constraints grows 

exponentially with both projects and time periods.  The additional variables and 

constraints occur due to the tracking of all decisions over three time periods for three 

projects.  The specific constraints are provided in the next section. 

3.4.1 Constraint Construction 

Our objective function is to maximize the probability of being in a successful 

state at the end of the third time period.  These can be obtained directly from the 

funding decision variables ( 1

ix , 2

),,(, 1
3

1
2

1
1 sssi

x , and 3

),,(, 2
3

2
2

2
1 sssi

x , again where t

sssi tttx
),,(, 1

3
1

2
1

1
  

represents the funding decision for project i at time t given that three projects 

achieved state  1

3

1

2

1

1 ,,  ttt sss  at the end of the previous time period) and the 

probabilities of success.  However, to avoid nonlinearities, variables that map to 

every funding decision over all three time periods are needed. For each component of 

the objective function (e.g., )2,4,0(p ) it is necessary to define the funding decisions 

and transition probabilities under which that state could be reached. It is also 

necessary to construct linearization constraints ,, yw  and z  to represent reaching a 

success state in the first, second or third time period, respectively. 
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 w  Constraints 

In the first time period, we must decide whether to fund the projects (i.e., choose 

the values for  1

3

1

2

1

1 ,, xxx ).  This set of funding decisions can be represented by a set 

of constraints jw  where 8,,1j . The w  constraints correspond to the 823   

funding decisions possible in the first time period. For example, the constraints: 
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w
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xw

 (3.22) 

 

ensure that 1,1,11 1

3

1

2

1

11  xxxw , or )1,1,1( .  We can assume these w  (along 

with the subsequent y  and z ) variables are linear, rather than binary, due to the 

proof in Section 3.3.  Similar constraints are constructed for the other jw  constraints 

such that: 
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 (3.23) 

 

As we will observe in Section 3.5, branching on all combinations of first time 

period funding decisions greatly decreases the run-times of the IP optimization.  

Thus, it is an important property that the jw  variables are mutually exclusive.  That 



 

 73 

 

is, there exists only one j such that 1jw , and therefore, 1
j

jw .  Thus, the 

integer programming formulation need only iterate on, at most, eight first-stage 

funding possibilities. 

 

y  Constraints 

Identical reasoning can be applied to the y and z constraints. There are seven sets 

of y  variables corresponding to the 123   non-trivial funding decisions made in the 

first time period (we do not denote the trivial case where no projects were funded, as 

there would be no second time period decisions to be made).  For example, the 

jsss
y

),,,(,1 1
3

1
2

1
1

 (where 82,,1 3  j ) variables correspond the decision of which 

projects to fund in the second time period given that: (a) all three projects were 

funded in the first time period (i.e., 11 w ) and (b) the state at the beginning of time 

period 2 is denoted as  1

3

1

2

1

1 ,, sss .  The set of decision of which projects to fund in the 

second time period (i.e.,  2

),,(,3

2
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2

),,(,1 1
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1
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1
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sssssssss

xxx ), can be represented by: 
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 (3.24) 

 

Similar y  variables and constraints are constructed for cases where other first 

time period funding situations arise, i.e., when 12 w , 13 w , …, 17 w .  Again, 

the trivial case ( 18 w ) needs no second time period constraints, since no projects 
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were funded in the first time period.  The index on j varies on the number of possible 

projects available to be funded in that case.  For the case where 12 w , we have 

jss
y

),0,,(,2 1
2

1
1

, where 42,...,1 2 j , since 02

)0,,(,3 1
2

1
1


ss

x  (i.e., project 3 cannot be funded 

in the second time period if it was not funded in the first time period).  For 
jss

y
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2
1
1

, 

the constraints are: 
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Corresponding definitional constraints can be constructed for 
jss

y
),,0,(,3 1

3
1
1

 and 

jss
y

),,,0(,4 1
3

1
2

.  In these cases, 
jss

y
),,0,(,3 1

3
1
1

 corresponds to the case where projects 1 and 3 

were funded in the first time period (and achieved state  1

3

1

1 ,0, ss ); 
jss

y
),,,0(,4 1

3
1
2

 

corresponds the case where projects 2 and 3 were funded in the first time period. 

Similar cases where only one project was funded in the first time period can be 

constructed.  For the case where the first project was the only one funded, there are 

variables 
js

y
),0,0,(,5 1

1

, where 2,1j .  The constraints are: 
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Finally, we create corresponding constraints for the variables 
js

y
),0,,0(,6 1

2

 and 

js
y

),,0,0(,7 1
3

, to represent the decision variables when only project 2 and only project 3 

were funded in the first time period, respectively. 
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z  Constraints 

The z  constraints map to decisions over all three time periods. Since the z  

variables consider the funding over the outcome of both the first and second stages, 

the variables must include the relevant state information for each of the funding 

decisions. This makes the set of z  variables much larger than y , which in turn was 

larger than the number of w  variables.  Consider the case where both 11 w  and 

1
1),,,(,1 1

3
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
sss

y .  Since all three projects were funded in the second time period, the 

state of the system at the beginning of the third time period (i.e., the end of the second 

time period) is denoted as ),,( 2
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82,,1 3  j  corresponds to the third time period funded decisions 
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when 11 w  and 1
1),,,(,1 1

3
1
2

1
1


sss

y .  Similar constructions exist for, as an example, 

jsssss
z
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
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our only decision in the third time period is whether to fund the first two projects (i.e., 

3
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It is worth noting that we would, in theory, need to construct sets of z  constraints 

for each possible y  variable with a j  index value.  Since 
jsss

y
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 has 8,...,1j ,  
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2,1j , there could be 262224448   set of z  constraints.  However, 

several of these funding decision paths do not need to be defined by z  variables, as 

there is no nontrivial funding decision to make at that point.  For example, if 
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xxx , then no 

project can be funded in the third time period since none were funded in the second. 

Thus, the corresponding z  variables will not be used in any of the linear constraint 

construction, as it does represent a meaningful funding situation in the third time 

period.  Nevertheless, for consistency of notation in mapping to previous time 

periods, the z  variables map according to the 26 possible indices.  For example, if 

13 w  (first and third projects were funded in the first time period), and 1
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(both were funded in the second time period as well), the set of variables 
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In other words, the set of 13z  variables represents the first funding decision in the 

second time period (i.e., )1,1( ) and the third funding possibility in the first time period 

(i.e.,   )1,0,1(,, 1

3

1

2

1

1 xxx ).  Thus, it is 13148   in the ordering scheme. 

As stated previously, the number of x  binary decision variables grows 

exponentially with the number of projects and possible state outcomes.  On the other 

hand, the linearization variables ( ,, yw  and z ) grow exponentially with projects, state 

outcomes and time periods, since it is necessary to include a funding history from the 

first time period to the final time period those linearization constraints cover.  As a 

result, the number of linear variables for even small problems can become quite large. 

For instance, while the number of binary variables for a three-project, three-time 

period problem with five possible outcomes for each project (including the “not 

funded” outcome) is     75353533 33  , the number
7
 of continuous variables is 

 410O .   

3.4.2 Linking the Objective Function to the Funding Constraints 

The successful state probabilities that define the objective function must be linked 

to the linearization constraints. For the sake of brevity, we show how to construct 

some sample constraints, rather than all of the constraints, though all follow a similar 

logic.  The LINGO code for the full integer program is available in Appendix B.   

For example, the probability of reaching the state )4,4,4(),,( SSS  (which 

represents all three projects being in the success state) is calculated by the variable 

                                                 
7
 This notation follows computational complexity descriptions found in Nemhauser and Wolsey 

(1988). 
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)4,4,4(p .  Since the assumption is that no projects are funded once one or more has 

reached the success state, the only way   )4,4,4(,, 3

3

3

2

3

1 sss  is for all three projects to 

reach success is simultaneously.  Thus, all three projects must achieve state 4 after the 

first stage, or the second stage or the third stage. In other words, )4,4,4(p  

 all projects reached state 4 after being funded in the first stage: 

1
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1 )4()4()4( w  (3.29a) 

 or, no projects reached state 4 in the first stage and they were all funded in the 

second stage and then they all reached 4: 
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 or, no projects reached it in the first or second stage, but they all reached state 

4 (and were all funded) in the final (third) stage: 
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The constraints are the sums of mutually exclusive scenarios, so the probabilities can 

be summed without over-counting. 

For the )0,4,2(p  element, it is important to note that the system can only be in 

state )0,4,2(  at the end of the third time period if Project 2 achieved success in the 

third time period.  Had Project 2 reached success prior to the final time period, 

funding for the other projects would have ceased for all other projects, and Project 1 

would have reverted to state 0.  On the other hand, Project 3 was not funded at least 

one time interval prior to Project 2 achieving state 4.  The constraint needs to reflect 

those possibilities.  In other words, )0,4,2(p  
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 Project 3 was never funded: 
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 Project 3 was funded in the first time period only: 
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 Project 3 was funded in the first two time periods only: 
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(3.30c) 

We use these linearization constraints to map from the probability of success 

variables that are contained in the objective function to the binary funding decision 

variables. 

3.5 Advantages of the IP Formulation 

As the details of the previous section indicates, there is a fair amount of effort 

required to formulate even a two-project, two-time period problem as an IP; and a 

three-project, three-time period problem is quite involved.  In these formulations, we 

assumed that the budgets for each time period, 1B  and 2B  (and 3B  for the three-time 

period formulation), were fixed.  For this case, the SDP is likely the best approach for 

problems of any considerable size.  However, there are cases where a project manager 

may be looking for the optimal budget allocation within each time period given a total 

overall budget, along with an optimal set of funding strategies, representing a 

problem optimized at two levels.  Suppose the project manager has the opportunity to 

optimize the proposed budgets for each time period.  In order to optimize the 
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probability of success over all possible budget allocations, the IP formulation can be 

modified rather easily.  By setting 1B  and 2B  to continuous variables with their sum 

equal to a determined value (i.e., BBB  21 ), where the total budget, B , is given, 

we can modify the IP formulation to include only one more linear constraint and two 

more continuous variables, as we will show in Chapter 4.  Since this is a two-level 

problem, with the lower-level being an SDP, perhaps the only way to solve this is to 

enumerate all possible budget increments and solve the resulting SDPs.   

The formal proof showing the equivalence between a two-level budget problem 

and the one-level IP formulation, along with efficient solution search techniques 

when solving an embedded set of SDPs, is provided in Chapter 4.  We nevertheless 

introduce these concepts here, since we compare the run-time performance on various 

sample problems using both the IP and SDP approaches in this chapter. 

In Chapter 2, and in Eckhause, et al. (2009), we provide the SDP formulation and 

solution techniques for both the fixed-budget problem ("Model 1") and the flexible-

budget problem ("Model 2"), but not a budget-optimal allocation problem (which we 

refer to as "Model 3").  In the flexible-budget (Model 2) case, the amount of budget 

necessary in each time period, tB  (where BB
T

t

t 
1

 for some fixed overall budget, 

B ), is determined with certainty only when the state of the system is known (i.e., at 

that time period) and an optimal decision is identified.  This flexibility offers the 

greatest set of feasible funding decisions, as each time period’s budget need not be 

allocated in advance.  Of course, solving for the optimal budget (Model 3) provides 

greater flexibility than the fixed-budget problem (Model 1), as the feasible region is 
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larger, since the tB  variables are fixed in Model 1.  As such, an optimal objective 

function value 
8
 ( *Z ) to each of the three problem cases has the following property, 

assuming the same sets of transition probabilities, time periods, costs, and total 

budget: 

*

2 Model

*

3 Model

*

1 Model ZZZ   (3.31) 

 

This relationship demonstrates the benefit of this type of increased managerial 

flexibility.  While the fixed-budget (“Model 1”) and the flexible-budget (“Model 2”) 

problems are possibly more efficiently solved using an SDP approach, the numerical 

results indicate that the IP formulation may be the preferred approach for some 

problems when solving for the budget-optimal problem (“Model 3”) along with the 

optimal funding strategy.  We test both approaches on several problems in the next 

chapter.  In the next section, we compare the approaches applied to the fixed-budget 

problem. 

3.6 Numerical Examples 

We solve the proposed IP formulation and compare its performance to that 

received by the SDP approach using the case study outlined in Chapter 2 and by 

Eckhause, et al. (2009). We have modified the parameters of the numerical problems 

to better facilitate the comparison and scalability of these kinds of problems. 

Specifically, two numerical problems are solved: a two-project, two-time period 

problem and a three-project, three-time period example. Both models were 

                                                 
8
 The optimal objective function value 

*Z  is distinguished from the continuous decision variables z  

mentioned previously. 
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constructed in LINGO and solved using both LINGO’s solver and XPRESS-MP’s 

solver by converting the LINGO model’s code into .mps format for XPRESS-MP. 

For the two-project, two-time period ( 2,2  TN ) and the three-project, three-

time period ( 3,3  TN ) SDP formulations, the feasible decisions at each time 

period, given the state of all projects (denoted by tS , where }4,3,2,1,0{S ) are: 










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



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0if0

:}1,0{
)( 1  (3.32) 

 

This problem is then solved for each decision t

iX  over all time periods, T , such that: 

TtXSSVSV tttt

SXX

tt

tt
,,1},|)({max)( 11

)(
 


E  (3.33) 

 

Since the objective function is to maximize the probability of reaching the success 

state (in this example, state 4) in the final time period, the boundary condition for the 

dynamic program is: 



 






otherwise0

somefor    4   if1
)(

1

11 NiS
SV

T

iTT
 (3.34) 

 

3.6.1 Problem 1: A Two-Project, Two-Time Period Example 

In this section, we solve a two-project, two-period numerical example to illustrate 

the approach one would take for solving larger problems. The states are 

}4,3,2,1,0{S , where 4 defines the success state and the 0 state corresponds to not 

being funded. Table 3.3 shows the costs and budget for this problem in millions. 
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Table 3.4 shows the first stage transition probabilities. Table 3.5 shows the second 

stage conditional probabilities, where the row represents the state reached at the end 

of time period one, and the column is the state achieved at the end of the second 

stage, if the project is funded. 

 

Table 3.3:  Two-Project, Two-Time Period Costs and Budget 

 

Project
Time 

Period 1 

Time 

Period 2

Project 1 5.8$           3.0$         

Project 2 5.8$           2.0$         

Budget 12.0$         3.0$          

 

Table 3.4: First Time Period State Transitional Probabilities 

 
Project State Prob

Project 1 1 0.30

2 0.40

3 0.25

4 0.05

Project 2 1 0.40

2 0.40

3 0.15

4 0.05  

 

Table 3.5: Second Time Period Conditional State Transition Probabilities 

 

Project 1 State 1 State 2 State 3 State 4

State 1 0.30 0.20 0.50 0.00

State 2 - 0.20 0.70 0.10

State 3 - - 0.35 0.65

State 4 - - - 1.00

Project 2 State 1 State 2 State 3 State 4

State 1 0.40 0.30 0.15 0.15

State 2 - 0.30 0.35 0.35

State 3 - - 0.45 0.55

State 4 - - - 1.00  
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This integer program is solved in LINGO and XPRESS-MP very quickly, as the 

number of integer variables is   52522 2  , and some of these binary variables have 

trivial solutions (e.g., variables representing the decision variable of a project already 

in the success state).  An optimal solution yields the following results: 

0025.0)4,4(

24525.0)4,0(

201875.0)0,4(

0.449625*

1 Model









p

p

p

Z

 (3.35) 

 

By inspection, it is clear that the only possible successful outcomes after two time 

periods are )0,4( , )4,0(  and )4,4(  because the budget only allows for funding one of 

the two projects in the second time period (total costs = $5, total budget = $3). Thus, 

the unfunded (i.e., less successful) project goes to state 0, unless both projects achieve 

state 4 after the first time period which happens with probability 

0025.0)05.0)(05.0(   (see “State 4” probabilities in Table 3.4). 

3.6.2 Problem 2: A Three-Project, Three-Time Period Example 

Unlike the previous example, the three-project, three-time period ( 3,3  TN ) 

integer programming formulation is a large enough problem that solving by 

inspection for the optimal funding options is not likely possible. The example listed 

below provides a framework whereby larger problems can be modeled. Like the two-

project, two-time period problem, the states are }4,3,2,1,0{S , where 4 defines the 

success state and the 0 state corresponds to not being funded.  Table 3.6 shows the 

costs and budgets for the three projects over the three time periods.  Table 3.7 shows 
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the first stage transition probabilities.  Table 3.8 shows the second stage conditional 

probabilities.  Table 3.9 shows the third stage conditional probabilities. 

 

Table 3.6:  Three-Project, Three-Time Period Problem Costs and Budget 

 

Projects
Time 

Period 1

Time 

Period 2

Time 

Period 3

Project 1 5.0$       6.0$       8.0$       

Project 2 4.0$       2.0$       4.0$       

Project 3 3.0$       2.5$       4.0$       

Budget 10.00$    10.00$    10.00$     

 

Table 3.7: First Time Period State Transitional Probabilities 

 
Project State Probability

Project 1 1 0.40

2 0.30

3 0.30

4 0.00

Project 2 1 0.50

2 0.40

3 0.10

4 0.00

Project 3 1 0.45

2 0.45

3 0.10

4 0.00  
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Table 3.8: Second Time Period Conditional State Transition Probabilities 

 

Project 1 State 1 State 2 State 3 State 4

State 1 0.30 0.40 0.30 0.00

State 2 -- 0.50 0.35 0.15

State 3 -- -- 0.60 0.40

State 4 -- -- -- 1.00

Project 2 State 1 State 2 State 3 State 4

State 1 0.40 0.35 0.25 0.00

State 2 -- 0.60 0.30 0.10

State 3 -- -- 0.80 0.20

State 4 -- -- -- 1.00

Project 3 State 1 State 2 State 3 State 4

State 1 0.35 0.40 0.25 0.00

State 2 -- 0.45 0.45 0.10

State 3 -- -- 0.75 0.25

State 4 -- -- -- 1.00  

 

Table 3.9: Third Time Period Conditional State Transition Probabilities 

 

Project 1 State 1 State 2 State 3 State 4

State 1 0.50 0.30 0.20 0.00

State 2 -- 0.30 0.40 0.30

State 3 -- -- 0.60 0.40

State 4 -- -- -- 1.00

Project 2 State 1 State 2 State 3 State 4

State 1 0.40 0.40 0.20 0.00

State 2 -- 0.50 0.40 0.10

State 3 -- -- 0.75 0.25

State 4 -- -- -- 1.00

Project 3 State 1 State 2 State 3 State 4

State 1 0.50 0.25 0.25 0.00

State 2 -- 0.40 0.45 0.15

State 3 -- -- 0.80 0.20

State 4 -- -- -- 1.00  

 

As Table 3.10 shows, using LINGO or XPRESS-MP to solve this example with 

the integer program formulation with no branching takes a significant amount of 

processor time.  However, dividing the untreated problem into smaller subproblems 
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makes finding an optimal solution very fast.  The budget in the first time period is 

$10.0 and the costs of the three projects are $5.0, $4.0 and $3.0, respectively.  Thus, 

we can consider solving for the optimal solution by considering the 32  first time 

period funding decisions.  In fact, one can see that an optimal first time-period 

funding decision for this example must be among the following:   )0,1,1(,, 1

3

1

2

1

1 xxx , 

)1,0,1(  or )1,1,0( , since   )1,1,1(,, 1

3

1

2

1

1 xxx  is infeasible (first time period costs exceed 

$10) and other combinations would fund fewer projects. 

As noted previously, the number of binary variables in the three-project, three-

time period example is     75353533 33  .  While branching on the first time 

period variables only reduces the number of integers by 3 out of 753, the structure for 

calculating optimal funding actions based on the condition outcomes becomes much 

easier for both LINGO and XPRESS-MP to exploit. The value for the objective 

function, some of the critical decision variables and the relevant success states are: 

0.01155)4,0,4(

0.074695)4,0,0(

0.3906)0,0,4(

)1,0,1(),,(

0.476845

1

3

1

2

1

1

*

1  Model











p

p

p

xxx

Z

 (3.36) 

 

3.6.3 Solution Run-Times and Comparison with the SDP Approach 

For the two-project, two-time period numerical example described, the solution in 

LINGO runs very quickly. The three-project, three-time period problem runs more 

slowly, unless we exploit the structure of the problem and solve for the branching on 
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the first time period, which greatly speeds up the solution time. Table 3.10 provides 

the run-times for the above three-project, three-time period numerical example when 

solved in both LINGO and XPRESS-MP, with and without branching on the first 

time period variables.  All runs were made on a 2.0 GHz dual-processor with 2.0 GB 

of RAM running Windows XP.  While the number of linearization variables ),,( zyw  

is large, the run-times for the three-project, three-time period problems are quite low 

once we branch on the first time period variables prior to using LINGO or XPRESS-

MP.  This branching technique is inherent to the solution methods in solving an SDP, 

so results are repeated for the “branching” and “no branching” cases. 

Table 3.10: Run-Times for Numerical Examples
9
 

 

CPU Sec. Iterations CPU Sec. Iterations CPU Sec. State Var.

2 Project, 2 Time Period 

(no branching) <1 476 <1 63 <1 50

3 Project, 3 Time Period 

(no branching) 5,116 726,970 1,249 1,171,868 2 375

3 Project, 3 Time Period 

(with branching) 39 97,795 2 1,624 2 375

IP (LINGO) IP (XPRESS-MP) SDP (Coded in C++)
Numerical Example

 

 

For both examples, the stochastic dynamic program implements backward 

induction in the standard manner (Puterman, 1994).  Given that there are N  projects, 

S  possible states (or outcomes) for each project and T  time periods, there are TS N  

state variables and NS  possible states for each funding decision.  The SDP does quite 

well for the problems with fixed budgets due to the Markov nature of the problem.  

However, as the number of state variables at each time period is NS , computational 

                                                 
9
 Iterations refer to pivots on the constraint matrix (LINGO, 2011). 
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complexity grows polynomially with the increase in the number of states and 

exponentially with the number of projects. 

When an optimal budget allocation must be solved, we are required to run a series 

of embedded SDPs, each of which is as computationally complex as the fixed-budget 

SDP.  Since we must search over a range of possible budgets, the budget must be 

discretized into sufficiently small increments. In this case, the performance time of 

the SDP will be decreased.  As we demonstrate in Chapter 4, when considering the 

budget-optimal real options problem, the IP formulation can be used effectively to 

solve this two-level problem, as we prove its equivalence to a one-level IP.  Indeed, in 

many cases, it solves considerably faster than the SDP.  However, as the complexity 

of the problem grows and the IP approach becomes intractable, efficient search 

techniques for solving the two-level problem, where the lower-level problem is an 

SDP, are needed.  Those techniques are also developed in Chapter 4, and used on an 

actual set of carbon capture and storage technology projects in Chapter 5. 
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Chapter 4: Budget-Optimal Allocations for the Multi-Stage Real 

Options Model:  A Two-Level Problem 

As described in Chapter 1, this dissertation covers three types of budget allocation 

methods for the multi-stage real options problem: fixed (“Model 1”), flexible (“Model 

2”) and budget-optimal (“Model 3”).  In Chapter 2, we provided the SDP formulation 

for the fixed-budget and flexible-budget real options problem.  In Chapter 3, we 

provided the equivalent IP formulation for the fixed-budget real options problem.  In 

this chapter, we present both IP and SDP formulations of the budget-optimal real 

options problem (“Model 3”).  The first section describes how the budget-optimal 

problem can be modeled a one-level IP.  Section 4.2 compares the run-times and 

complexity of the IP and SDP.  Section 4.3 outlines methods for reducing the run-

times of the two-level SDP formulation. 

4.1 Motivation for the Two-Level Problem:  Optimal Budgets 

In Chapter 3, the integer programming solution for the multi-stage real options 

model assumes a fixed-budget allocation for each of the time periods under which the 

problem is being solved.  This allocation is an important problem in itself, as not only 

the amount of the total budget, B  is important, but also the specific values for each 

time period ,t  tB , where BB
t

t  .  In Chapter 2, we assumed in the flexible-budget 

(“Model 2”) numerical example that the budget available for both stages could be 

spread among the stages in whatever manner was optimal.  This flexibility allowed us 

to demonstrate the approach on a problem with a larger state-space.  While one can 
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imagine such flexibility for a two-time period problem such as the example in 

Chapter 2, it is more difficult to imagine such budgetary freedom for multiple time 

periods, especially if each time period is related to months or years of development. 

The characteristics of the budget allocation problem form a higher-level hierarchy 

to the optimal selection of projects solved in Chapter 3.  Fortuny-Amat and McCarl 

(1981) present five criteria for situations which could be properly represented by a 

multi-level programming model.  The five criteria are: i) two of more decision makers 

with not necessarily identical goals; ii) each decision maker only has control over 

certain variables; iii) the decision process is carried out in two stages: the higher level 

announces its actions and the lower level responds; iv) the higher level’s objective is 

to select a plan that optimizes the lower level’s rational response; and v) the higher 

level decision maker knows the objective function and constraints of the subproblem.  

All five criteria potentially exist in the multi-stage real options problem.   As stated 

previously, this budget-optimal problem differs from the flexible-budget problem 

(Model 2) in Chapter 2, since we assign each time period’s budget in advance.  In this 

case, the discretion to decide upon the budget for each time period exists only at the 

beginning of the multi-stage competition, not at the beginning of each time period, 

which was the case of the flexible-budget problem (Model 2).   

4.1.1 An Illustration of the Two-Level Problem 

The two-project, two-time period and three-project, three-time period problems 

we formulated in Chapter 3 provides an optimal funding strategy and the probability 

of success given certain characteristics of the projects’ costs and technological 

progression.  Considering the problem with two time periods, suppose that we had a 
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total budget,  B  (where 21 BBB  ) and we had the ability to spread the funding 

between the time periods optimally, but we must specify them in advance (hence, an 

a priori budget allocation). We can consider this as a two-level problem where the 

upper-level problem is: 

 

 1

21

132211

      s.t.

max

BSOLx

BBB

BaBaBa





 

 (4.1) 

 

We denote the optimal value function to the lower-level integer programming 

problem as problem  1B , which is equivalent to solving the integer program (3.9).  

Since 21 BBB  , given a value for 1B , we immediately know 2B .  Thus, we can 

describe   as a function simply of 1B .  In (4.1), 1a  and 2a  correspond to possible 

coefficients we might apply to the selection of 1B  and 2B  (e.g., a discount rate for 

delayed funding).  In what follows, however, we set 021  aa  and 13 a  to 

simplify things, while noting that in the fixed-budget problem described in Chapter 3 

that 121 B  and 32 B .  If 1521  BB , and we specify a given 1B  (and thus, 2B ), 

we can consider the optimization of the a priori budget allocation. Figure 4.1 shows 

the “cityscape” solution to the subproblem for varying values of 1B .  As it turns out, 

its fixed-budget allocation from Chapter 3, 121 B , is optimal since   

  449625.0max 1
1

B
B

  (4.2) 

 

which would be determined by solving the two-level problem in (4.1).  Figure 4.1 

provides the optimal objective function  1B  for all possible values of 1B  (and thus, 
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2B ).  For T  time periods, the figure would require optimizing over a 1T  

dimensional “cityscape” function to the find the value over which  121 ,,, TBBB   

is greatest.    

Figure 4.1:  Solution to the Subproblem  1B  
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However, as we prove in this chapter, this problem can be easily converted into a 

one-level integer programming problem by bringing the budgets for each time period 

into the lower level problem and making them continuous variables.  The result of 

this equivalence is that the two-level problem is now only slightly more 

computationally difficult than the fixed-budget problem, when solved as an IP.  

However, there is no known way of converting this to a one-level problem when the 

lower-level problem is solved using SDP methods.  As a result, the run-times for the 

IP for certain size problems can be significantly faster than the SDP approach.  We 
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compare the run-times for several problems in Section 4.2, after we formally prove 

the equivalence of the two-level problem to a one-level IP. 

4.1.2 Converting the Budget-Optimal Allocation Problem to a 

One-Level Integer Program 

In order to establish the potential advantage of the IP formulation for the budget-

optimal problem, we first formally prove the equivalence of the budget-optimal two-

level problem in (4.1) to a one-level IP.  This property allows us to solve a one-level 

integer program to compare it with the two-level problem solved as a series of SDPs. 

Suppose we have a budget at time period t  denoted by tB .  We denote the vector 

of budgets over all time periods as  TBBBB ,...,, 21


, for a given total budget 

available, B .  For a fixed-budget allocation, B


, we can solve the real options integer 

programming problem formulated in Section 3.2 to find the optimal decisions of 

which projects to fund.  Using the notation from Chapter 3, we denote the objective 

function for this problem, represented in (3.2), as  B


 , since the solution depends on 

the budgets for each time period.  The integer program can then be written generically 

as: 

 
 BXx

xdB T









   s.t.            

 max
 (4.3) 

 

where d  is the appropriate vector corresponding to the values in (3.2), x  is the 

feasible funding decisions and  BX


 is the feasible space (of the real options integer 

program shown given in (3.2) – (3.8) in Section 3.2), given the set of budget 
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allocations, B


.  As shown in Chapter 3, using linearization variables, the general 

integer program in Section 3.2 can be expressed with linear constraints and objective 

function (e.g., the two-project, two-time period problem given in (3.17)).  Thus, (4.3) 

is expressed with a linear objective and  BX


 has linear constraints. 

The two-level problem can be written as:  

 

  0,...,,                  

   s.t.                  

 max

21

1

leveltwo







T

T

BBBB

BBB

BZ







 (4.4) 

 

In other words, the two-level problem finds the maximum value for  B


 —that is, 

the maximum probability that at least one project succeeds—over all possible budget 

allocations, B


, that are feasible (i.e., less than or equal to B ).  Combining the 

components of (4.3) and (4.4), we can now write a one-level problem as: 

 BXx

B

BBB

xdZ

T














                 

0                 

   s.t.                 

 max

1

T

levelone

 (4.5) 

 

Figure 4.2 shows the conceptual relationship between the upper-level and lower-level 

problems of the two-level problem in (4.4) and its equivalence to (4.5). 
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Figure 4.2:  Two-Level Problem Structure 

 


 B


 max

(4.4)

xdT max

(4.3)

B


 Bx


, (4.5)

 

 

Remark 4.1: There is always a solution to problems (4.3) – (4.5) by the following 

argument.  The feasible region is always nonempty, since 0,0  Bx


 (fund nothing 

with no budget) is always feasible.  There are a finite number of values for the binary 

funding decisions, x , (all x  variables are binary by Theorem 3.1).  Each ],0[ BBt  , 

which is a compact set.  Thus, by the Weierstrass theorem, a solution exists for each 

fixed x .  Given that there is a finite number of values for x , the result is shown. 

We show in the next theorem that the optimal objective functions to the two-level 

problem (4.4) and the one-level problem (4.5) are identical.   

Theorem 4.1: The optimal objective function value, leveltwoZ , to the two-level 

problem (4.4) is equal to the optimal objective function value, leveloneZ , to the one-

level problem (4.5). Moreover, the solution set to (4.4) is equal to the solution set to 

(4.5).  That is, )5.4()4.4( SOLSOL  . 
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Proof:  First, we prove that leveloneleveltwo   ZZ .  Let *B


 be an optimal solution to 

the two-level problem in (4.4).  We thus have that  *

leveltwo BZ


  and that 

BBB T  **

1  .  Solving (4.3) using the budget allocation *B


, we denote *x  as an 

optimal solution to this problem.  Thus, we have that   **

leveltwo xdBZ T


  and 

 ** BXx


 .  So,  **, xB


 is a feasible solution to problem (4.5) with the objective 

function value of  ** Bxd T


 , as all constraints are satisfied.  Since this solution is 

feasible solution to (4.5), though not necessarily optimal, we get that 

  leveltwo

**

levelone   ZBxdZ T


 , because the objective function in (4.5) can do at 

least well as *xd T .   

Now we show that leveltwolevelone   ZZ .  Let  **, xB


 be an optimal solution to 

(4.5), i.e., the one-level problem.  Solving (4.3) after fixing the budgets to *B


, we 

claim that *x  must be an optimal solution to (4.3), which gives   ** xdB T


 .    

To prove that *x  is a solution to (4.3), we assume not. Then, there exists a 

 *ˆ BXx


  such that *ˆ xdxd TT  .  So,  xB ˆ,*


 is a feasible solution to (4.5) (since 

 *ˆ BXx


 ), satisfying *ˆ xdxd TT  .  However, this contradicts the fact that  **, xB


 is 

an optimal solution to the one-level problem (4.5).  Therefore, we must indeed have 

that   ** xdB T


 . 

Since  **, xB


 is an optimal solution to (4.5), *B


 is a feasible solution to (4.4), 

since it must satisfy BBB T  **

1  .  Since *B


 is a feasible—but not necessarily 
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optimal—solution to (4.4), we have that   levelone

**

leveltwo   ZxdBZ T


 .  

Therefore,   levelone

**

leveltwo   ZxdBZ T


 . 

To show that )5.4()4.4( SOLSOL  , we know that ),( ** xB


 must be a feasible 

solution to (4.5).  Assume it is feasible, but not optimal.  Then, we have that 

  levelone

**

leveltwo   ZxdBZ T


 , which is a contradiction.  Thus, any optimal 

solution to (4.4) must be an optimal solution to (4.5).  Similarly, to show that 

)4.4()5.4( SOLSOL  , we know that *B


 must be a feasible solution to (4.4). If *B


 is 

not an optimal solution to (4.4), then we have that   leveltwo

**

levelone   ZBxdZ T


 , 

which is also a contradiction.  Therefore, any optimal solution to (4.5) must be an 

optimal solution to (4.4).  Therefore, )5.4()4.4( SOLSOL  . ■ 

While leveloneleveltwo   ZZ , a solution *B


 in (4.4) may not be the same as a solution 

in (4.5), since an optimal solution is not necessarily unique.  As is shown in Figure 

4.1, an optimal solution for the two-level problem is )1.3,9.11(* B


.  However, 

solving the one-level problem can produce the solution )0.3,0.12(* B


.  While the 

solutions to (4.4) and (4.5) are not unique, the solution sets are identical. 

The interpretation of this equivalence is important, but relatively straightforward.  

For the integer programming problem, we can simply add the constraint that 

BBB T 1  to the original problem formulated in Chapter 3 and solve what is in 

effect a two-level problem.  From a modeling perspective, this additional constraint is 

trivial to add.  Nevertheless, despite the addition of only a few continuous variables 

and one constraint, it can somewhat increase the run-time for the IP, as the feasible 
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region increases.  The reason the budget-optimal problem can be written as a one-

level program is that it assumes that a single decision maker (in this case, the real 

options problem optimizer) is deciding upon both the optimal funding strategy and 

the optimal budget.  Since there is no longer explicitly a higher level decision maker 

with “control” over certain variables (i.e., the budgets), the budget-optimal problem 

does not fit the classical requirements for a two-level problem (Fortuny-Amat and 

McCarl, 1981).   

While we do not prove it formally, objective functions other than the one in (4.3) 

and (4.4) can be used while preserving the conversion of the two-level problem to a 

one-level problem.  For example, we could have the objective function: 

 BBaZZ
t

tt


   maxlevel-twolevel-one , where ta  is perhaps some scalar representing 

the time-value of money.  Additionally, budget constraints can be incorporated into 

the one-level problem while removing the equivalence to the two-level problem.  For 

example, we could have a constraint that TBBB  ...21 , ensuring that the budgets 

increase over time.  The flexibility to add these constraints easily in the IP 

formulation highlights an advantage of over the SDP approach. 

Unlike for the IP, for the SDP, the additional, budget-optimal constraint is hugely 

significant.  Since the budgets for each time period are intended to be optimal, but 

dynamically determined, the budget-optimal problem in (4.5) is not identical to the 

flexible-budget problem (i.e., Model 2) shown in Chapter 2, where the budget 

allocation for that time period does not need to be decided (and is not decided) until 

the previous time period.  In a general setting, to solve this budget-optimal problem 

using stochastic dynamic programming requires solving for every possible budget 
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allocation to find the allocation that optimizes  B


  , or the probability of success.  In 

the next section, we compare IP and SDP run-times for the three-project, three-time 

period problem introduced in Chapter 3 and then consider the advantages and limits 

of the two approaches. 

4.2 Comparing the Performance of the IP and SDP Formulations of the 

Budget-Optimal Allocation Problem 

In this section, we first compare the run-times for the numerical example 

introduced in Section 3.6.2.  The IP formulation appears to do quite well in 

comparison with the SDP for problems of a certain size.  The main difficulty with 

using the IP for all large problems is the exponentially increasing number of 

linearization constraints.  Methods for solving larger problems are discussed at the 

end of this section.   

4.2.1 Three-Project, Three-Time Period Examples 

We now consider the identical three-project, three-time period problem 

introduced in Section 3.6.2, but with the possibility for budget-optimal solutions.  

Recalling the costs from Table 3.6, we now add the flexibility for the budgets: 

Table 4.1: Costs Identical, but now with Flexible Budgets 

 

Projects
Time 

Period 1

Time 

Period 2

Time 

Period 3

Project 1 5.0$       6.0$       8.0$       

Project 2 4.0$       2.0$       4.0$       

Project 3 3.0$       2.5$       4.0$       

Total Budget = $30.0 B1 B2 B3  
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where the total budget is fixed at $30.  Note that instead of 10$321  BBB , as we 

had in Section 3.6.2, we now simply have that 30$321  BBBB .   

In order to handle this additional constraint, the integer programming problem in 

Appendix B simply includes the budget-optimal constraint and the budgets for each 

time period become continuous variables.  To get run-time data for each problem 

solved, we employ both LINGO and XPRESS-MP solvers.  Our results indicate that 

XPRESS-MP tends to be faster for these budget-optimal IP problems.  However, 

LINGO has a global, nonlinear, mixed-integer nonlinear programming solver, which 

we used in the sensitivity analyses; so both solvers’ results are included for all runs 

each solver can handle.  As in the fixed-budget problem solved in Section 3.6.2, using 

either solver for this example with no specified branching on the first-stage variables 

can increase both XPRESS-MP’s and LINGO’s solvers run-time by a factor of 10 or 

more.  However, as with the fixed-budget problem in Chapter 3, dividing the 

untreated problem into smaller subproblems makes finding an optimal solution 

straightforward. 

The budget in the first time period can be as high as $30.0 and the costs of the 

three projects are $5.0, $4.0 and $3.0, respectively. Thus, we can consider solving for 

the optimal solution by branching on the 823   first time period funding decisions 

(and can exclude the trivial solution    0,0,0,, 1

3

1

2

1

1 xxx , since that will have objective 

value equal to 0).  The most time-consuming branch (between 50%-90% of the total 

run-time for both LINGO and XPRESS-MP) is branching on the    1,1,1,, 1

3

1

2

1

1 xxx  

case, as that represents the greatest number of choices for the second and third time-

period variables. 
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As noted in Chapter 3, this three-project, three-time period problem has  

    753period)  time(third 53period)  time(second 53period) e(first tim 3 33   

binary variables.  While branching on the first time period only reduces the number of 

variables by 3 out of the 753 integer variables, the structure for calculating optimal 

funding actions based on the condition outcomes becomes much easier for both 

LINGO and XPRESS-MP to exploit. The value for the objective function, some of 

the critical decision variables and the relevant success states are: 

5.31            

8.5            

8.0            

)1,0,1(),,(

0.5391175          

3

2

1

1

3

1

2

1

1

*











B

B

B

xxx

Z

 (4.6) 

 

It is interesting to note that while the first time funding decision results are 

identical to those in (3.36)—namely, fund Project 1 and Project 3—the objective 

function is higher: approximately 0.54 instead of approximately 0.48.  This 

improvement, of course, stems from the ability to specify the budget in an optimal 

way—in this case, having more funds available in the final time period.  While the 

number of linearization variables is large, the run-times shown in Table 4.2 for the 

three-project, three-time period problems are quite reasonable once we branch on the 

first time period variables prior to using LINGO or XPRESS-MP, even when solving 

for the budget-optimal allocation.   

We also compare the results of the IP formulation to that of the SDP in Table 4.2.  

To summarize the SDP problem size, there are N projects, S possible states (or 

outcomes) for each project and T time periods.  Therefore, there are TS N state 
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variables and NS  possible states for each funding decision ( tX ) The SDP does quite 

well for the problems with fixed budgets, due to the Markovian nature of the problem.  

When the a priori budget allocation must be optimized, we are required to run a 

series of embedded SDPs, each of which is as computationally complex as the fixed-

budget SDP.  Since the algorithm must search over a range of possible budgets, the 

budget must be discretized into sufficiently small increments.  For the three-project, 

three-time period example, we used a budget increment of $0.5 million, as that value 

represents the greatest common factor (GCF) for the costs of the projects over all time 

periods.  Thus, in this example, this increment is sufficiently small that the embedded 

SDP will provide an optimal solution equal to the IP formulation’s optimal solution.  

If smaller increments are required, more efficient search techniques need to be 

employed in order for the SDP run-times to be manageable.  Reducing the number of 

iterations and improving the two-level SDP run-times are addressed in detail later in 

this chapter.  The run-times for the two-project, two-time period numerical example 

are also shown, though their run-times were sufficiently small that no significant 

information about which method is faster can likely be inferred.  The values for an 

optimal 1B  and 2B  were 11.6 and 3.4, respectively, with 0.449625* Z .  However, 

the fixed allocation in Chapter 3 with 0.121 B  and 0.32 B  is also optimal, as 

Figure 4.1 demonstrates.   

Table 4.2 provides the run times for the two-project, two-time period example and 

the three-project, three-time period numerical example when solved as an IP, in both 

LINGO and XPRESS-MP and compares them to that of the SDP for both the fixed-

budget results from Chapter 3 and with the budget-optimal results here.  All runs in 
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Table 4.2 were made on a 2.0 GHz dual processor with 2.0 GB of RAM using 

Windows XP. 

Table 4.2: Run-Times for IP and SDP Models with Fixed-Budget and 

Budget-Optimal Allocations 

 

CPU Sec. Iterations CPU Sec. Iterations CPU Sec. State Var.

2 Project, 2 Time Period 

(fixed budgets) <1 476 <1 63 <1 50

2 Project, 2 Time Period 

(budget-optimal) <1 1088 <1 124 <1 52

3 Project, 3 Time Period 

(fixed budgets) 39 97,795 2 1,624 2 375

3 Project, 3 Time Period 

(budget-optimal) 91 230,185 14 18,926 634 378

Numerical Example
IP (LINGO) IP (XPRESS-MP) SDP (Coded in C++)

 

 

For the IP, the run-time for the budget-optimal problem is considerably greater 

than the fixed-budget problem, which is to some degree surprising, since the number 

of continuous variables is increased only by three ( 1B , 2B , and 3B ), the number of 

constraints is increased by one ( BBBB  321 ) and no new binary variables are 

introduced.  Indeed, it is likely that the larger feasible region due to the introduction 

of the budget variables makes for the longer run-times.  The run-time for the SDP, on 

the other hand, grows even more considerably.  Since the budgets for each time 

period are continuous variables, there are potentially an uncountably infinite number 

of values each budget could assume (Royden, 1988).  In order to solve the lower-level 

SDP, one must discretize the budget.  However, even with a budget increment of $0.5 

million, the budget-optimal problem required solving approximately 500 subproblems 

of the fixed-budget real options problem for the three-project, three-time period 

problem.  Hence, there was an increase from roughly two seconds to over 10 minutes 

in run-times.   
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For problems of this size, the IP approach appears to be the faster method, at least 

in terms of run-times.  While explicitly formulating the linearization constraints 

requires a fair amount of effort, the coding can be generalized.  Also, the addition of 

side constraints can more easily be handed than in the SDP formulation.  While run-

times for IP may be better, there is a difficulty in the exponential growth of the 

linearization constraints.  The limits of these ranges are discussed in the rest of this 

section. 

4.2.2 Comparing Run-Times for Larger Problems 

The solution time for the three-project, three-time period problem with optimal 

budgets was lower for the IP than it was for the SDP.  As this section shows, based on 

the numerical examples tried, this property appears to hold for problems that were 

ultimately solved using the IP approach.  For example, the five-project, five-time 

period problem in Table 4.5 was not solved due insufficient memory (4 GB).  

However, the number of linearization constraints is  510O  and the number of linear 

variables is  410O , even though the number of binary variables was fewer than 

 310O .  Since the number of variables for the IP and the number of states for the 

SDP grow exponentially with the number of projects, we would expect the run-times 

for both the IP and the SDP to grow exponentially as a function of the number of 

projects.  As we show in Figure 4.3, this property seems to hold numerically for the 

sample problems.  With the fixed-budget real options problem, SDP problem size 

only grows linearly with the number of time periods.  However, when one solves the 

budget-optimal allocation problem using an SDP formulation, the increase in time 
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periods produces an exponential increase in run-time, since the number of SDP 

subproblems increases exponentially, as we show in this chapter.  Nevertheless, for 

very small problems (e.g., the two-project, two-time period example), either the SDP 

or the IP method is sufficiently fast, even when solving for the budget-optimal 

allocation.  Since it would appear the IP performs better for somewhat larger 

problems, it is important to evaluate yet larger problems to determine i) when the IP 

approach might no longer be as efficient as the SDP and ii) when the problem size 

becomes too large for a typical computer to solve such problems as IPs.  

We first increased the size to a four-project, three-time period problem, similar to 

the three-project problem illustrated in the previous section.  The first three projects’ 

cost and transitional probability data are identical to those in the three-project, three-

time period problem solved previously and are provided in Tables 3.4-3.7.  The fourth 

project’s probability transition data are provided in Table 4.3.  The cost for funding 

Project 4 is, along with total budget for all three time periods ($40 million), is given 

in Table 4.4. 
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Table 4.3: Transition Probability Data for Project 4 

 

State Probability

1 0.30

2 0.40

3 0.30

4 0.00

Time Period 2 State 1 State 2 State 3 State 4

State 1 0.40 0.35 0.20 0.05

State 2 -- 0.50 0.40 0.10

State 3 -- -- 0.70 0.30

State 4 -- -- -- 1.00

Time Period 3 State 1 State 2 State 3 State 4

State 1 0.40 0.35 0.20 0.05

State 2 -- 0.40 0.40 0.20

State 3 -- -- 0.70 0.30

State 4 -- -- -- 1.00

Time Period 1

 

 

Table 4.4: Cost Project Data for All Four Projects 

 

Projects
Time 

Period 1

Time 

Period 2

Time 

Period 3

Project 1 5.0$       6.0$       8.0$       

Project 2 4.0$       2.0$       4.0$       

Project 3 3.0$       2.5$       4.0$       

Project 4 2.8$       3.4$       5.4$       

Total Budget = $40.0 B1 B2 B3  

 

For the budget-optimal four-project, three-time period problem, the IP performs 

more efficiently than the SDP.  With a total budget of $40 million and a budget 

increment of $0.1 million (the greatest common divisor of the project costs), the SDP 

solved to optimality in 11,143 seconds (approximately 3 hours).  For the same 

problem, the IP formulation took 284 seconds (between 4-5 minutes) using XPRESS-

MP when branching on all of the possible first time period solutions.  These results, 

along with the results from Table 4.2, are shown in Figure 4.3.  This reduction is both 
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significant in absolute terms and the fact that the IP version in XPRESS-MP ran in 

2.5% of the time the SDP did.  Nevertheless, despite running reasonably quickly, the 

generation of over one million constraints (mostly linearization constraints) required 

roughly 800 megabytes of memory.  The objective function, first time period 

variables and budget allocations are: 

0.12            

16.0            

.021            

)0,1,1,1(),,,(

0.677959          

3

2

1

1
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1
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 (4.7) 

 

Figure 4.3 shows the comparative run-times for three cases between the IP and the 

SDP for the budget-optimal problem.  While the run-times for both methods increase 

nonlinearly with the number of projects and time periods, the SDP approach becomes 

much slower. 
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Figure 4.3:  Run-Times (CPU Seconds) for the IP and SDP Approaches for the 

Optimized Budget Allocation Problem 
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IP using XPRESS-MP (with branching) SDP (Coded in C++)

 

 

We attempted to solve a five-project, five-time period problem as an IP; however, 

the linearization constraints grew far too quickly and exhausted the computer’s 2 

gigabytes of memory.  The number of linearization constraints and memory required 

for the budget-optimal IP sample problems are provided in Table 4.5.  While 

attempting to solve this problem in its nonlinear version would likely require far 

fewer linearization constraints and variables, as we show in the next section, the run-

times for smaller problems were sufficiently long that this approach would not be 

viable, at least for the LINGO nonlinear, nonconvex, global solver we utilized.  It is 

certainly possible that other solvers, such as the Branch and Reduce Optimization 

Navigator (BARON, 2011), could do better than LINGO’s non-convex global 

optimizer for this problem, however, we were limited to the solvers for which we 

have an unrestricted license. 
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Table 4.5: Constraints and Memory Requirements for the Sample Budget-

Optimal IP Formulations
10

 

 

2 Project, 2 Time Period 600 0.1

3 Project, 3 Time Period 100,000 15

4 Project, 3 Time Period 1,000,000 800

5 Project, 5 Time Period 1,000,000,000 > 4000

Numerical Example

Linearization 

Constraints 

(Approximate)

Memory 

Needed (MB)

 

  

Based on the results of these modestly sized sample problems, the IP in (4.5) 

solves significantly faster than the equivalent SDP.  Additionally, with limited 

sensitivity analysis on the costs or transitional probabilities this pattern did not 

change.  While there is a clear limit on the size of solvable problems using the IP 

approach, the SDP formulation encounters difficulties for even smaller problems.  

While these results do not represent a comprehensive set of results over all mixed-

integer linear and nonlinear solvers, it demonstrates that the linearized IP approach 

has a range over which it appears to be the preferred method.  It also highlights the 

need for efficient solution techniques when solving this two-level problem as an SDP, 

which we address later in this chapter. 

4.2.3 Evaluating Approaches for Improving the IP Run-Times on 

Larger Problems 

Several techniques can be considered to improve the run-times of the integer 

programming version of the multi-stage real options problem described in Section 3.2 

                                                 
10

 Since there are a small number (relative to the linearization constraints) of other constraints, the 

numbers of constraints shown are rounded estimates.  Again, the five-project, five-time period problem 

was not successfully solved. 
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with objectives and constraints in (3.1) – (3.8).  However, excessively long run-times 

is only one difficulty faced when solving these problems as IPs.  The other primarily 

difficulty is the enumeration of all of the linearization constraints, which requires to 

varying degrees some amount of automation of the constraints generation for larger 

problems.  Moreover, enumeration of the linearization constraints requires an 

increasing number of constraints and continuous variables that grows exponentially as 

the number of projects, states or time periods increases.   

Perhaps the most important improvement in run-time comes from branching on 

the first time period binary variables (i.e., all possible solutions for  1

3

1

2

1

1 ,, xxx , except 

for the trivial case of  0,0,0 ).  While exploiting this structure would seem to be an 

obvious technique in an IP solver using branch-and-bound algorithms, based on the 

greatly improved run-times in both LINGO and XPRESS-MP, it appears that the 

solvers did not use this approach.  While it is unclear whether other solvers would 

need this exogenous branching, it would appear that at least some solvers are unable 

to identify this structure in the problem quickly.  As Figure 4.4 shows, the number of 

feasible solutions is greatly reduced when only considering one of the branches of the 

first-stage decision variables.  This massive reduction in the feasible region occurs 

because the second-stage (as well as all subsequent stages) continuous variables and 

linearization constraints are path-dependent (though the binary variables are not).  As 

Table 3.10 showed, run-times for both LINGO and XPRESS-MP were roughly two 

orders of magnitude lower after branching on  1

3

1

2

1

1 ,, xxx .  
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Figure 4.4:  Branching on the First Time Period Constraints Reduces Run-Time 

 

t = 1 (1,1,1) (1,1,0) (1,0,1) (0,1,1) (1,0,0) (0,1,0) (0,0,1)

t = 0
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Another approach that could potentially improve the run-times and certainly 

reduce the number of constraints and continuous variables is to simply solve the 

problem as the original mixed-integer (in this case, binary) nonlinear program 

(MINLP).  Even if the run-times solving it as an MINLP were no better than the 

linearized version of the problem, such as the IP shown in (3.17), the lack of 

linearization constraints could make it a viable modeling option for problems such as 

the five-project, five-time period problem where the number of linearization 

constraints greatly exceeded the computer’s memory.   

The MINLP approach was applied to the two-project, two-time period example 

introduced in Section 3.6.1 using LINGO (XPRESS-MP does not have a global 

MINLP solver).   Additionally, the MINLP approach was applied to a nonlinear 

version of a three-project, two-time period problem with fixed budgets
11

.  In both 

                                                 
11

 The MINLP version of the three-project, two-time period fixed budget problem is located in 

Appendix C.  The linearized (IP) version of this problem is located in Appendix D. 
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cases, we branched on the possible solutions for the first time period.  Table 4.6 

compares the run-time for both cases.   

Table 4.6: Fixed-Budget Problem Run-Times (CPU Seconds) for the Linearized 

IP and MINLP Formulations 

 

2 Project, 2 Time Period <1 4

3 Project, 2 Time Period 11 1,825

Numerical Example Linearized IP MINLP

 

 

Based on these limited results, we conclude that the linearized approach is 

necessary to get reasonable run-times for the three-project, three-time period problem, 

at least when using the LINGO solver.  Moreover, based on these results, while a 

nonlinear version of the five-project, five-time period would have many fewer 

constraints than the IP, the run-times for smaller MINLP problems were sufficiently 

large that it appears there is no reasonable chance that an MINLP version of the 

problem can successfully produce a solution in an acceptable amount of time.  Again, 

other solvers more specialized in nonlinear optimization, such as BARON, may 

perform better than LINGO when solving this problem as a MINLP. 

Another option we performed was solving in LINGO the MINLP version of the 

fixed-budget (Model 1) and budget-optimal (Model 3) IP formulations.  We evaluated 

LINGO’s local solutions options in terms of solution quality and run-time 

performance.  As Table 4.7 shows, the run-times for the local solution approach were 

short, but not always optimal. The general conclusion is the local MINLP approach 

provides fast, but not necessarily global solutions.  Therefore, it is not generally 

viable. 
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For the three-project, two-time period problem with fixed budgets shown in Table 

4.6, we ran a more extensive set of cases by modifying the costs, transition 

probability and budget data.  We obtained local solutions using the MINLP and 

compared them with the global solution from the IP
12

.  Table 4.7 contains the results 

for five three-project, two-time period example problems with fixed and optimized 

budgets.  For about half of the examples, the MINLP’s local solution’s objective 

equaled that of the IP’s global solution.  The costs, budgets and transition 

probabilities for the five sample problems are given in Appendix E.   

Table 4.7: Comparison of the MINLP’s Locally Optimal Solutions with the 

IP’s Globally Optimal Solutions for the Problems in Appendix E 

 

Budget 

Type
Problem #

MINLP Solution's 

Objective (Local)

IP Solution's 

Objective (Global)

MINLP 

Run-Time 

(Sec)

IP Run-Time 

(Sec)

1 0.4496 0.5296 <1 <1

2 0.4321 0.5296 <1 <1

3 0.4298 0.5090 <1 <1

4 0.5540 0.5650 <1 <1

5 0.5785 0.5785 <1 <1

1 0.5799 0.5799 <1 2

2 0.5296 0.5296 <1 <1

3 0.4755 0.5730 <1 <1

4 0.5491 0.6246 <1 2

5 0.6710 0.6710 <1 2

Fixed

Budget-

Optimal

 

 

For the budget-optimal problem, improving the SDP performance beyond the 

times in this section is particularly important for very large-sized problems where the 

IP approach is likely not a viable option.  The IP could be difficult, if not impossible, 

to use for such problems, since the linearization constraints in the IP would be too 

numerous.  Similarly, the MINLP’s run-times might be too long for globally 

                                                 
12

 LINGO has a local MINLP solver setting.  We compared the MINLP local solutions with the 

linearized IP’s global solution (with no optimality gap) to verify optimality. 
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optimally solutions, or its bounds on optimality might not be sufficiently tight.  

Therefore, we explore techniques to improve the run-times of the budget-optimal, 

two-level SDP in the next section. 

4.3 Improving the Budget-Optimal Problem Run-Time when Solved as an 

SDP 

Section 4.2 outlined some of the advantages for solving the budget-optimal 

problem as a one-level IP formulation in (4.5) instead of a two-level SDP version in 

(4.4).  As mentioned previously, the optimal budget allocation is determined in the 

upper level of the two-level problem in (4.4).  While establishing the equivalence of 

the SDP version of the problem to an IP version illuminates a set of methods for 

translating other SDPs into IPs (especially in cases where the IP may solve more 

quickly), there are several cases where modeling this multi-stage real options problem 

as an SDP is particularly useful.   

First, from the numerical results, there is strong evidence that the fixed-budget 

(i.e., the original “Model 1” from Chapter 2) real options problem solves faster—or at 

least, no slower—as an SDP than as an IP.  Second, as far as we know, the flexible-

budget problem (“Model 2” from Chapter 2), where the budget available for that time 

period is only decided upon at the time period, is only solvable as an SDP without a 

prohibitively large number of binary variables.  Moreover, the flexible-budget 

problems are often solved quickly as SDPs.  Thirdly, it seems quite reasonable that if 

the budget-optimal problem (“Model 3”) is part of a sensitivity analysis on the value 

of budget flexibility, presented along with the fixed and fully flexible budget options, 

then the SDP is the more likely and useful approach.  In summary, if we wish to solve 
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all three budget problems (as we do in Chapter 5’s CCS case study), then the SDP 

approach is the only one that can handle all three problem-types.  If the fixed-budget 

(“Model 1”) and the budget-optimal (“Model 3”) problems are the only ones being 

solved, then using the IP may be preferred since run-times are lower for some 

problems.  Table 4.8 summarizes the run-time results for the three-project, three-time 

period problem for all three models.   

Table 4.8: Run-Times (CPU Seconds) for the Three-Project, Three-Time Period 

Problem for All Three Budget Allocation Problems 

 

Budget Problem Type IP (XPRESS-MP) SDP (Coded in C++)

Fixed (Model 1) 2 2

Flexible (Model 2) N/A 4

Budget-Optimal (Model 3) 14 634  

 

While the SDP approach in preferred in certain circumstance, for the budget-

optimal problem, the IP approach we are faced with a two-level problem, which can 

be converted into a one-level problem with continuous budget levels when solved as 

an IP—and with only moderate increases in run-times.  With the SDP, we must first 

discretize the budget, and then—absent any additional information—solve for all 

possible combinations.   

In the next subsection, we establish a simple bound on the number of times the 

lower-level SDP problem (i.e., the fixed-budget problem shown in (2.1) – (2.4)) must 

be solved.  Improvements to the bound are then described and proven in the 

subsequent section, along with the introduction of improved search rules which can 

greatly reduce the solution time.  Performance results from tests on a series of sample 



 

 117 

 

problems are then given.  Those results are then applied to improve the solution times 

for the CCS case study in the following chapter. 

4.3.1 A Simple Bound on the Iterations of the Lower-Level 

Problem: The Budget-Increment Method 

As introduced earlier in this chapter, the two-level problem for solving for the 

budget-optimal problem can be written as:  

 

0                  

   s.t.                  

 max

1

leveltwo







B

BBB

BZ

T







  

 

where  B


  represents the optimal objective value to the real options problem given a 

set of budgets, B


.   If solving this problem as an IP, this is equivalent to a one-level 

problem, as we proved in Theorem 4.1, since the constraint that BBB T 1  can 

be incorporated directly in the constraints of the lower-level problem.  For the SDP, 

there is no way to explicitly consider this constraint, so enumerating “all possible” 

budgets levels is required. 

Since the lower-level SDP (i.e., the fixed-budget problem in (2.1) – (2.4)) is 

solved for a given set of budgets over all time periods, represented by B


, it is 

important to describe a bound on the number of potential budget combinations the 

SDP must solve.  Since we must discretize the potential budget allocation, an 

important factor is the budget increment.  Ideally, one presumably wants a large 

budget increment in order to keep the number of lower-level SDPs that must be 

solved to a manageable amount.  On the other hand, too large an increment—without 
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analyzing the solutions in that interval—could result in “skipping over” a potentially 

budget-optimal allocation.   

Costs for projects, along with the budgets for each time period, can be considered 

discrete, since eventually these values must be specified in some monetary value 

(e.g., $100.54 million is $100,540,000; $456.56 is 45,656 cents). In the illustrative 

problems presented earlier in the chapter, we set the budget increment as the greatest 

common factor (GCF) of all of the costs of the projects.  Due to the discrete values 

these costs can assume, a GCF among the costs (perhaps as small as 1 U.S. cent, for 

example) is guaranteed to exist.  We again denote the t

ic  as the cost of funding 

project i  at time period t .  Further, we denote the term ),( 21 aagcf  as the greatest 

common factor of 1a  and 2a . Given a budget increment (or grid width), b , such that  

),...,,...,,...,,,...,( 1

22

1

11

1

T

N

T

NN ccccccgcfb  , we denote M  as a positive integer such that 

b

B
M   and that 

b

B
M 1 .  For example, if 2TN , 

 8.3,2.2,4.6,2.4),,,( 2

2

2

1

1

2

1

1 cccc  and 10B , then   2.08.3,2.2,4.6,2.4  gcfb  

and 500
2.0

10
M .  We can then write the following theorem.   

Theorem 4.2: There exists a set of nonnegative integers ),...,,( 21 Tmmm , with 

tMmt   and Bbmbmbm T  ...21 , such that ),...,,( 21 bmbmbm T  is an optimal 

budget allocation to the two-level problem (4.4).  

Proof:  As shown in Remark 4.1, there always exists an optimal solution for (4.4).  

Thus, there is an optimal ),,( **

1

*

TBBB 

  such that BBB T  **

1  .  It suffices to 

show that *

tB  can be replaced with bmt  for some Ztm  and Mmt  .  Since a 
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solution to (4.4) must also satisfy (3.6), there is an optimal  Tt

N

t xxx ,...,1

*   with 

b

B
x

b

c
x

b

c
x

b

c
Bxcxcxc tt

N

t

Nt
t

t
t

t

t

N

t

N

tttt
*

2
2

1
1*

2211 ......  .   Since 
b

c

b

c

b

c
t

N

tt

,...,, 21  

are all integer-valued, the sum t

N

t

Nt
t

t
t

x
b

c
x

b

c
x

b

c
 ...2

2
1

1  must also be an integer.  

Therefore, 
b

B
x

b

c
x

b

c
x

b

c tt

N

t

Nt
t

t
t *

2
2

1
1 ...   implies 

t
tt

N

t

Nt
t

t
t

m
b

B
x

b

c
x

b

c
x

b

c











*

2
2

1
1 ... , where Ztm  and M

b

B

b

B

b

B
m tt

t 









**

.  

Therefore, the feasible region for (4.3) will be the same if bmt  replaces *

tB .  Thus, 

***

11 ),,(),,( xdBBbmbm T

TT    . ■ 

In other words, we have constraint   bMBMbbmmm T )1(...21  .  

Because of the integrality of tm  and M , we can simply consider the number of 

combinations of the form Mmmm T  ...21 , where each tm  is a nonnegative 

integer.  This value can be considered as the number of ways to put M  “items” into 

T  “buckets.”  This combinatorial analysis problem is equivalent to the “stars and 

bars” problem, where the number of distinct T -tuples of nonnegative integers whose 

sum is M is given by the binomial coefficient (Feller, 1968):  

 
 !1!

!1

      

1












 

TM

TM

M

TM
 (4.8) 

 

With Theorem 4.2, the equation in (4.8) guarantees one upper bound on the 

number of lower-level SDPs that must be solved for a given total budget B  and an 

appropriate budget increment b .  As we will show in Section 4.3.2, using another 



 

 120 

 

approach may produce a better upper bound under some circumstances.  For the 

three-project, three-time period example in Section 4.2.1, where 0.30$B (million) 

and 5.0$b (million), we have that 60
5.0

30
M  and 3T .  Therefore, the number 

of lower-level SDPs solved was 
 

 
891,1

!2)!60(

!62

!1!

!1






TM

TM
, since we used the 

budget-increment method.  For the more complicated four-project, three-time period 

example in Section 4.2.2, 400M , and therefore, the upper-bound on the number of 

lower-level SDPs solved was 601,80
!2)!400(

!402
  for the budget-increment approach.  

Even though the lower-level SDP for a fixed budget is solvable in a fraction of a 

second, the very high number of possible funding combinations is the reason the 

solution time approached three hours. 

It is worth noting how this differs in computational complexity from the flexible-

budget SDP presented in (2.5) – (2.8) in Section 2.3.2.  Due to the Markov nature of 

the flexible-budget SDP, the computational complexity should only increase linearly 

with the addition of time periods, which is significantly better than the increase in the 

number (shown in (4.8)) of lower-level SDPs for the budget-optimal problem.  For 

example, if the four-project, three-time period problem added one additional time 

period and were a four-time period problem, the number of lower-level SDPs to solve 

would increase from 80,601 to  10,827,401
!3)!400(

!403
  for the same number of budget 

increments ( 400M ), more than a hundred-fold increase.   

Fortunately, the equation in (4.8) only represents an upper bound for one 

approach for finding the number of lower-level SDPs necessary to solve.  In the next 
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section, we provide methods to reduce the number of lower-level SDP problems that 

must be solved.  From Theorem 4.3 shown below, it can be shown that the necessary 

number of lower-level problems can be much lower.  As the previous example 

illustrated, such techniques are useful for solving problems with even a modest 

number of time periods, and are certainly necessary for solving the budget-optimal 

real options problem for CCS projects in Chapter 5. 

4.3.2 An Approach for Reducing the Number of Iterations on the 

Lower-Level Problem: The Cost-Coefficient Method 

In this section, we apply an alternative approach for determining the number of 

lower-level (fixed-budget) SDPs that must be solved when optimizing the two-level 

problem in (4.4).  This approach creates another upper bound, which can be compared 

to the budget-increment method, thereby allowing the two-level problem to be solved 

by whichever method produces the fewest lower-level SDPs.  We call this approach 

the cost-coefficient method. 

As Figure 4.1 illustrated, the solution to the subproblem  B


  (which is the real 

options project selection for a fixed set of budgets, B


) of course depends on the 

budget allocation.  Additionally, the budget allocation only affects one set of 

constraints, shown in (3.6) as  SsssBxc t

N

tt

t

N

i

t

sssi

t

i t
N

tt ,...,1,...,, 11

2

1

1

1
),...,,,( 11

2
1

1

 



  .  

Therefore, the value for  B


 , which represents the objective function, is flat over 

certain intervals of its domain ( B


) and only changes when there is a change in one of 

the binary decision variables t

sssi t
N

ttx
),...,,(, 11

2
1

1
  in (3.6).   
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While there are a large number of binary variables for each time period 

specifically, there are only N  cost variables, t

ic , relating to each of the N  projects.  

The next theorem indicates that we need only consider sensitivities on t

ic .  So, any 

change in the objective function must be a result of some 




N

i

t

sssi

t

i t
N

ttxc
1

),...,,,( 11
2

1
1

 becoming 

feasible (or infeasible).  Therefore, we can reduce the number of values for tB  so that 

we only consider all binary combinations of t

ic .  Since there are N  binary variables, 

there are N2  combinations at each time period, t .  As a result there are, at most, 

NTNNNNNN 22222 ...    possible combinations for an N  project, T  project 

problem.  Moreover, for the final time period, it is not necessary (assuming no 

incentive to conserve the budget) to iterate through all of the final time period’s 

possible funding strategies.   Allocating the entire “remaining” budget to the final 

time period is sufficient, since a lower budget for the final time period will not 

increase the objective function.  That is, once we have chosen values for 

121 ,...,, TBBB , we can simply let  0),...(max 121  TT BBBBB .  This 

decrease has the effect of reducing the number of lower-level problems to—at most—

)1(2 TN .  Theorem 4.3 below proves a general property illustrated by the following 

small example.  Given a set of constraints: 

}1,0{

4231

2211







ix

nxcxc

nxcxc

 (4.9) 

 

the set of values ),( 21 xx  is feasible if and only if ),(),( 2143 xxxx  is feasible.     
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Theorem 4.3: For a given time period, t , and a set of states, 

 Ssss t

N

tt ,...,0ˆ,...,ˆ,ˆ 11

2

1

1  , the binary variables t

sssi t
N

ttx
)ˆ,...,ˆ,ˆ(, 11

2
1

1
  satisfy 

t

N

i

t

sssi

t

i Bxc t
N

tt 




1
)ˆ,...,ˆ,ˆ(, 11
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1

1

 if and only if t

N

i

t

sssi

t

i Bxc t
N

tt 




1
),...,,(, 11

2
1

1

 is feasible for all 

 Ssss t

N

tt ,...,0,...,, 11

2

1

1  .   

Proof:  Obviously, if t

N

i

t

sssi

t

i Bxc t
N

tt 




1
),...,,(, 11

2
1

1

 is feasible for all 

 Ssss t

N

tt ,...,0,...,, 11
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1  , then it is true for any specific set,  Ssss t

N

tt ,...,0ˆ,...,ˆ,ˆ 11

2

1

1  .  

Now suppose there exist N  binary variables, t

sssi t
N

ttx
)ˆ,...,ˆ,ˆ(, 11
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  where 
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i Bxc t
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tt 

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)ˆ,...,ˆ,ˆ(, 11
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 for a given set of  Ssss t

N

tt ,...,0ˆ,...,ˆ,ˆ 11

2

1

1  .  Then, we define 

the vector t

iĉ  of size N where: 
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1

 (4.10) 

 

such that t

N

i

t

i Bc 
1

ˆ .  Since t

N

i

t

i Bc 
1

ˆ  does not depend on the specific values of the 

index  Ssss t

N

tt ,...,0ˆ,...,ˆ,ˆ 11

2

1

1  , it holds for all sets of  Ssss t

N

tt ,...,0,...,, 11

2

1

1  .  

Therefore, we have that t

N

i

t

sssi

t

i Bxc t
N

tt 




1
),...,,(, 11

2
1

1

 for all  Ssss t

N

tt ,...,0,...,, 11

2

1

1  . ■ 

Solving for all lower-level SDPs using the budget-increment method provides a 

feasible budget allocation for all time periods.  However, for the cost-coefficient 

method, the bound of )1(2 TN  could be lower because many of the )1(2 TN  
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combinations may be infeasible because it is possible that Bxc
T

t

N

i

t

sssi

t

i t
N

tt 


 



1

1 1
),...,,(, 11

2
1

1

 

for some values of t

sssi t
N

ttx
),...,,(, 11

2
1

1
 .  Additionally, if we assume funding for a project 

cannot occur in time period 1t  if it did not occur at t , then further combinations 

could be eliminated.   

On the other hand, as we discuss in Chapter 5, )1(2 TN  assumes: i) a single funding 

level and ii) that there is only one value, t

ic , for a given project i  and time t .  

However, if cost is also determined by the current state of the project, then the cost-

coefficient vectors must be written as t

si t
i

c 1,  .  These two conditions do not hold for the 

CCS real options model presented in Chapter 5.  Consequently, we develop additional 

methods for managing run-times for the budget-optimal CCS real options problem in 

Section 5.6. 

Since either the cost-coefficient method in this section or the budget-increment 

method from Section 4.3.1 will produce a budget-optimal solution to the SDP version 

of the two-level problem in (4.4), we can compare the methods to determine which 

method produces the fewer lower-level SDPs that must be solved.  The next section 

shows whether the SDP run-times from Section 4.2 to determine if the run-times can 

be improved using the cost-coefficient method. 

4.3.3 Testing the Improved Performance of the Two-Level SDP 

As stated previously, for the three-project, three-time period problem in Section 

4.2.1, the run-time is based on using a budget-increment method.  As outlined in 

Section 4.3.1, this approach resulted in 1,891 lower-level, fixed-budget SDPs to 
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solve.  Using the cost-coefficient method described in the previous section, we can 

solve to optimality in no more than 64222 6)2)(3()1( TN  SDPs.  Since 

Bcc
i

i

i

i  21 , we are not able to eliminate any of the 64 lower-level SDPs, 

because no cost coefficient combination exceeds the total budget in the first two time 

periods.  The run-time results for the three-project, three-time period and the four-

project, three-time period budget-optimal problems are shown in Table 4.9 for the 

different solution approaches.   

Table 4.9: Comparison of the Run-Times for the Budget-Optimal Problem 

under Solution Approaches  

 

IP (XPRESS-MP)

Total CPU Sec.
Total CPU 

Sec.

Lower-Level 

SDPs

Total CPU 

Sec.

Lower-Level 

SDPs

3 Project, 3 Time Period 14 634 1,891 29 64

4 Project, 3 Time Period 284 11,143 80,601 216 256

Numerical Example

SDP (Budget Increment 

Approach)

SDP (Cost Coefficent 

Approach)

 

 

The problems in Table 4.9 were solved sufficiently quickly using the cost-

coefficient approach that additional methods to reduce run-times are not necessary.  

However, the cost-coefficient approach still requires an exponentially increasing 

number of lower-level SDPs as the number of time periods grows.  Thus, larger 

problems would need to reduce the number of lower-level SDPs in order to be 

practical to solve.  For example, a five-project, five-time period problem could have 

as many as 576,048,122 20)1( TN  lower-level SDPs.  Of course, many of these 

lower-level problems will be infeasible because they violate the total budget or other 

logical constraints.   
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While the run-times for the cost-coefficient method are comparable to that of the 

IP, further reductions in the IP could be gained.  Moreover, it is relatively 

straightforward to add side constraints and easily run with many with different 

solvers, which is not the case for SDP.  Nevertheless, intelligent search techniques 

must be implemented to solver larger problems for the budget-optimal allocation, 

which we implement for the CCS case study in the next chapter.   

Solution run-time for fixed-budget, flexible-budget, and budget-optimal real 

options problems for a case study are provided in the following chapter.  Specifically, 

in the next chapter, the application of the multi-stage real options model to a series of 

CCS projects in the European Union is presented after the types of technologies are 

described, specific projects are identified, and the costs, transition probabilities and 

knowledge spillover are described.  Solving all three types of budget allocations 

demonstrates the merit of the real options approach, especially the improved value of 

budgetary flexibility. 
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Chapter 5:  Optimal Funding Strategies for Carbon Capture and 

Storage (CCS) Projects in the European Union: A Real Options 

Case Study 

Among the various technologies for CO2 abatement available, carbon capture and 

storage (CCS) technologies are expected to hold significant abatement potential if 

they reach market maturity within the next several years.  One barrier to the large 

scale implementation of the technology is the lack of demonstration projects that 

validate the technologies.  Several projects in the European Union (EU) are currently 

under development to implement the CCS technology on a large scale and may be 

subject to public funding under EU support initiatives.  These CCS projects may try 

to develop any combination of three types of operating levels: pilot, demonstration 

and full-scale, representing progressing levels of electric power generation capability.  

Several projects have commenced at the pilot project level, with full-scale 

commercial operation levels planned for approximately 2020.  While CCS projects 

outside the EU exist, such as FutureGen 2.0 in the United States (DoE, 2011), those 

projects would not be subject to the same EU public funding agency, so they are 

excluded from consideration.   

In this chapter, we apply the analytical funding decision methods outlined in the 

previous chapters to a series of CCS projects in the European Union.  Moreover, since 

these projects are working on both competing and complementary technologies with 

progressive levels of improvement, such a framework is ideal for the multi-stage real 

options competition.  Prior to introducing the specific real options model, it is 
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important to describe the current CCS, as well as carbon capture, transport and 

storage (CCTS) technologies in sufficient detail. 

The first section of this chapter provides an introduction to CCS technologies and 

describes three specific ones: post-combustion, pre-combustion, and oxyfuel.  Section 

5.2 describes the actual CCS projects that are being undertaken and the data available 

and assumptions based on expert elicitation.  Section 5.3 outlines the three specific 

multi-stage real options model, based on the framework presented in this dissertation.  

Section 5.4 presents the data for the model obtained through subject-matter expert 

interviews.  Results are then presented in Section 5.5 with sensitivities for many 

alternatives:  technology type, funding level, and budget allocation and flexibility.  In 

Section 5.6, we then provide statistics on run-times and model complexity, along with 

a heuristic for improving the run-times for the budget-optimal problem, followed by a 

summary section on the policy implications of the results.  This chapter is based on 

the work of Eckhause and Herold (2011), with the exception of Section 5.6, which is 

entirely unpublished work of Eckhause. 

There are a total of eight CCS projects modeled in this chapter, but they are 

analyzed in two separate problems: three projects for one technology and five for two 

related technologies.  While the project types, models, data, complexity and run-times 

are discussed in detail, Table 5.1 provides a summary of the breadth of the problems 

that were solved.  The large ranges on run-times and problem sizes illustrate the curse 

of dimensionality common to many Markov decision processes (Puterman, 1994). 
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Table 5.1: Bounds on Problem Sizes and Run-Times Modeled in Chapter 5 

 
3 Pre-Combustion 

Projects

5 Post-Combustion & 

Oxyfuel Projects

Smallest Problem: 

State Variables
90 196

Largest Problem: 

State Variables
2,122,200 23,708,160

Shortest Run-Time 

(CPU Seconds)
<1 <1

Longest Run-Time 

(CPU Seconds)
1,873 1,828

 

 

5.1 Overview of Three CCS Storage Technologies 

The global efforts to combat climate change have led to a high degree of 

innovation and investment in the energy sector (IEA, 2011).  In recent years, the 

development of renewable energy sources, among other measures, have already led to 

a significant reduction in CO2 emissions from electricity production within the 

European Union (PWC, 2010).  Another strategy to further reduce the emissions from 

burning fossil fuels in power plants is through the technology of CO2 capture, 

transport and storage.  These technologies can be applied to power plants and CO2-

intensive industries to capture a 90% share of the CO2 emissions in the flue gas
13

. 

Storing this CO2 in underground reservoirs mitigates its impact as a greenhouse gas 

effect in the earth’s atmosphere. Figure 5.1 provides a diagram of how CCS and 

CCTS technologies are typically designed.  Note that transportation of the CO2 can 

occur via truck or pipeline.  Depleted oil or gas beds, or deep saline aquifers are ideal 

locations for storing spent CO2.   

                                                 
13

 Flue gas refers to combustion exhaust gas produced by power plants that is generally released to the 

atmosphere. 
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Figure 5.1:  Overview of CCS Plant (Zerogen, 2011) 

 

 

 

The high potential for CCS in the global fight against climate change was outlined 

by the Intergovernmental Panel on Climate Change (IPCC, 2005 and IPCC 2007) and 

the International Energy Agency (IEA, 2008). Both institutions reached the 

conclusion that CCS could provide a high share of CO2 abatement in the 21
st
 century 

and that the technologies would significantly lower the global costs of climate change 

mitigation.  In this dissertation, we focus on the first generation capture technologies: 

post-combustion, pre-combustion and oxyfuel.   

5.1.1 Post-Combustion CCS Technology 

Post-combustion technologies separate the CO2 out of the flue gas after 

combustion.  This process is comparable to flue gas desulphurization, which has long 
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has been mandatory for power plants to filter SO2 emissions.  It was first applied in 

the 1980s for the capture of CO2 from ammonia production plants for commercial 

uses of CO2.  Once removed from ammonia, the captured CO2 is used in food 

production (e.g., to carbonate soft drinks and soda water).  Post-combustion chemical 

absorption technologies represent the most commercially available CO2 capture 

technologies. However, the technology so far has only be used for the treatment of 

very clean gas mixtures containing no or few impurities such as dust, SO2, NO2 

(Kanniche, et al., 2010).  Currently, plants operating with this technology are capable 

of capturing between 1000 to 4000 tons of CO2 per day.  However, to comply with 

the emissions of a 1 GW lignite-powered plant, upscaling to 13,000 tons of CO2 per 

day would be required (Vallentin, 2007).  An advantage of the post-combustion 

implementation is that the technology can be retrofitted to existing power plants.  It 

can also be retrofitted to other plants that produce large amounts of CO2, such as iron 

or cement manufacturers. 

5.1.2 Pre-Combustion CCS Technology 

Pre-combustion capture refers to the treatment of CO2 and H2 after the 

gasification process of coal, biomass or the steam reformation of natural gas.  Due the 

limited number of power plants operating with this technology, the coal-based 

internal gasification combined cycle (IGCC) technology itself is still in the 

demonstration phase.  Due to the increasing process complexity, proven refinery-

based plants are not based on coal, but on natural gas or liquid hydro-carbons; and the 

hydrogen is used in the chemical industry instead of power generation.  The high 

investment costs would need to be reduced to a level in which they allow for 
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competition with other capture technologies (e.g., by developing economic and 

efficient hydrogen selective membranes).  Currently, post-combustion offers 

significantly less expensive investment costs, as is shown later in this chapter. 

5.1.3 Oxyfuel CCS Technology 

The oxyfuel process aims at the separation of gases before the combustion.  By 

combusting fuels in a pure O2 and CO2 atmosphere (with up to 60% as O2), one 

achieves a sequestration-ready gas stream, containing simply CO2 and H2O.  The 

water vapor can then be easily removed by simply cooling the gas.  In this sense, the 

oxyfuel process has elements of both pre-combustion and post-combustion 

technologies.   

Figure 5.2:  The Oxyfuel Process 
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Nevertheless, there remain several open questions.  First, the presence of 

incondensable gases (oxygen, nitrogen, argon) in the CO2 flow transported in the 

supercritical state can cause vibrations and shock loads in the pipeline (Kanniche, et 

al., 2010). Secondly, because of the separation required, there is reduced efficiency, 

which may further decrease if additional SO2 removal is required.  Thirdly, so far, the 

technology has not been demonstrated on a larger scale than the demonstration level, 

so there may be unforeseen technical problems.  For oxyfuel, the actual CCS 

component is still in the pre-demonstration phase; only a limited number of pilot 

projects have been realized for power plants (Herold, et al., 2010a). Therefore, its 

impact on the marginal CO2 abatement curve remains uncertain (Baker, 2009).   

5.2 CCS Initiatives in the European Union 

The International Energy Agency (IEA, 2008) has reached the conclusion that 

reducing global CO2 emissions by 50 percent by 2050 compared to 1990 levels would 

be greatly aided by the commercial availability of CCS technologies.  Otherwise, 

society could face additional mitigation costs of up to $1.28 trillion over the next 40 

years.  To reach that target, the IEA (2009) Blue Map scenario outlines ambitious 

development plans in CCS demonstration over the next ten years.  Specifically, a total 

investment in 100 capture plants, with a minimum of 10,000 km of pipelines and the 

storage of 1.2 billion metric tons of CO2, are required to make CCS a serious 

abatement technology by 2050.  As the industry has failed to realize demonstration 

projects on the scale and scope required to meet the Blue Map target, the EU, among 

other governments, has committed billions of Euros to co-finance CCS demonstration 

projects (Herold, et al., 2010a).  Particularly noteworthy are the following: 
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 The European Energy Program for Recovery (EEPR), part of the European 

Economic Recovery Plan presented by the European Commission on 

November 26, 2008, allocates €1.05 billion to six CCS demonstration 

projects.  Five of the six schemes have been awarded an initial subsidy of 180 

million Euros each, with additional funding coming from national 

governments. The Italian project, Enel, will receive 100 million Euros 

(Reuters, 2009). 

 On February 3, 2010, EU member states agreed on the use of the revenues 

from the sale of 300 million CO2 certificates from the New Entrants Reserve 

of the EU Emission Trading Scheme (ETS) (NER300, 2010).  Earnings will 

finance CCS demonstration projects (200 million certificates) and innovative 

renewable energy technologies (100 million certificates). Depending on the 

allowance price, several billion Euros could become available for CCS. The 

agreement proposes to fund eight CCS projects, with at least one, but not 

more than three, of each capture technology. 

 There is a portfolio of national support schemes, which provide funding on the 

basic research level, as well as for implementation of the technology in pilot 

and demonstration plants (ZEP, 2010). 

These programs are supposed to accelerate the CCS demonstration and 

commercialization not only by providing financial support, but through technology 

transfer.  Projects that receive public funding must disclose the acquired knowledge 

the developed technologies, while making it available to competitors.  This 

requirement means that subsequent projects will likely benefit from more advanced 
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and cheaper technology.  This knowledge transfer is supposed to be greatest for the 

first CCS projects, as uncertainty on costs, performance and feasibility is highest.  

This stipulation implies that projects that receive public funding should neither be too 

risky, nor should they be too insignificant.  These projects should also not apply 

components which have already reached a high level of maturity.  Projects that are 

too risky have a high chance of running out of money without achieving the target, 

while projects that are too small or of marginal technical innovation will likely not 

provide much additional insight and, thus, will not lead to a return on the public 

investment. 

Allocating the available billions of Euros among a portfolio of CCS projects 

therefore raises a series of questions:  the number and scale of projects to be funded 

by the EU, the optimal funding level of the projects, the level of flexibility of 

spending this money over time, and the optimal timing of abandoning unsuccessful or 

delayed projects.  Projects differ in many respects other than the capture technology. 

For instance, the plant size within these projects varies from small pilot plants to mid-

size demonstration projects to projects on a commercial scale (ZEP, 2008).  Thus, 

possible CCS projects differ not only in costs, but the extent of supplemental public 

funding required.  Finally, they also have different probabilities of successful 

realization, which depend on both funding level and knowledge gain from the other 

projects. 

Taking the perspective of a funding agency, we employ a real options framework 

for determining an optimal funding strategy for project selection for the development 

of full-scale carbon capture plants.  Specifically, we formulate and solve a stochastic 
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dynamic program for obtaining optimal funding solutions in order to achieve at least 

one successfully operating full-scale CCS plant by a target year (in this case, 2022).  

Using a subject-matter-expert interview approach, we obtain the needed data on 

projects costs and technology success probabilities.  The SDP model is solved for 

multiple budgets and budget allocation schemes.  Sensitivities on knowledge 

spillover, where projects’ costs and transition probabilities may be improved based on 

the progress of a competing project, are presented.  In the next section, we describe 

the real options model, which is used to determine the optimal funding for the CCS 

portfolio.   

5.3 Applying the Real Options Model to the CCS Projects 

While virtually all public-sector initiatives involve some risk, ones that involve 

uncertain technological capabilities are particularly perilous.  Controlling for the risk 

is critical to the overall success of the technology, especially for a long-term, one-of-

a-kind R&D activity (Ceylan and Ford, 2002).  Funding a series of projects is not an 

uncommon way for government managers to mitigate the technical risk associated 

with R&D by establishing decision points and multi-project, parallel development 

strategies (Department of the Navy, 1998).   

While there exists a robust literature on using real options to mitigate risk (Dixit 

and Pindyck, 1994; Huchzermeier and Loch, 2001), and even using real options 

approaches to mitigate emissions for power generation (Burchett and Biswas, 2002), 

there are many unique aspects to public-sector R&D which differs from the private-

sector undertakings, including valuation of non-market traded goods, which we 

outlined in Chapter 2.  For the CCS projects, we employ the SDP framework 
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introduced in Chapter 2 (Eckhause, et al., 2009) to solve a multi-project, multi-time 

period competition in which each projects has its own costs, probabilities of success 

and states.  The objective function we employ for the CCS projects is similar to the 

one employed in the Chapter 2 examples in that we are maximizing the probability 

that at least one project is “successful.”  Our work expands upon that objective 

function to consider competing technologies, knowledge spillover, state-dependent 

probabilities, and solving a budget-optimal allocation problem. 

Given the emphasis in Chapter 3 and some of Chapter 4 on the IP approach, it is 

important to the state the reasons why this approach was not implemented for the 

CCS projects.  First and foremost, there are six time periods in which funding 

decisions are made.  Since using the linearization constraints illustrated in Chapter 3 

requires creating path-dependent variables, the number of variables becomes 

unwieldy.  For example, the five-project, five-time period problem in Chapter 4 far 

exceeded the memory available (2 GB).  While some of the CCS project cases 

modeled have fewer than five projects, the number of states for the projects ranges 

from 6 to 14, significantly more than the five-state projects used in the problems in 

Chapter 4.  As we noted in Table 5.1, the number of state (and decision) variables can 

be as large as 20 million. Secondly, in addition to solving the fixed-budget and 

budget-optimal problems, we wish to solve the flexible-budget real options problem, 

which is, as far as we know, essentially unsolvable using an IP formulation. 

Considering this CCS project funding problem as a multi-project, multi-stage 

competition, each stage represents a decision time period for the funding of a project.  

Each project funding decision represents an option to the EU.  The cost of purchasing 
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each option is the amount of initial funding required for each project’s development.  

An option is exercised through the award of a continuation of funding.  We seek an 

optimal portfolio of options (CCS projects) to fund at each stage in order to maximize 

the overall success of the R&D capability. 

5.3.1 Model 1: The Fixed-Budget Real Options Formulation 

Suppose the funding available at each time period (e.g., every two years) is fixed.  

That is, the amount of subsides available must be allocated during that time period 

and cannot be saved for (or borrowed from) future time periods.  Using the model 

presented in Eckhause and Herold (2011), whose model is an extension of Eckhause, 

et al. (2009), we define the following terms: 

 Let there be Tt ,...,1  time periods over which funding decisions for the 

Ii ,...,1  CCS projects are made.  Funding for project i  may occur at 

different levels, Ll . 

 Let Ssit   be the state of project i  at time period t  from a set of possible 

project states, S .  We denote the state of all projects at time period t  as tS . 

 Let Ss full  denote the state where a project has reached full-scale capacity. 

 Let }1,0{itlX  be the binary decision variable whether fund project i  at level 

l  at time period t . 

 Let 
titlSc  be the cost of funding project i  at level l  time period t , given that 

the state of system at time t  is tS .  For cases of knowledge spillover, this cost 

vector is a function of multiple projects, not simply project i . 
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 Let tB  be the budget available for time period t . 

Based on the expert elicitations and data available in the literature outlined in 

Section 5.4, we are able to obtain the estimates for costs 
titlSc  for each of the projects.  

Additionally, these elicitations provide us the state transition probabilities for each of 

the projects, i.e., ]1,|[ 1  itltit XSssP .  In other words, given the current state of all 

projects (or perhaps some subset of those projects) and a funding decision, we know 

the probability of project i  winding up in state s  for all Ss .  The values for tB  are 

based on assumptions about funding levels, though we perform several sensitivity 

analyses on those values.  Therefore, we have the set of feasible funding decisions at 

time period, t : 
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We choose our objective function to maximize the probability of having at least 

one successful CCS project with fully functional capabilities at the end of the final 

time period.  We can then write our value function for the stochastic dynamic 

program with a standard recursion equation (Puterman, 1994): 

TtXSSVSV tttt
SXX

tt
tt

,,1},|)({max)( 11
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
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Since our objective is to have at least one project reach state fulls , we have failed to 

meet the objective if this property does not hold.  Thus, we write the boundary 

condition of the stochastic dynamic program as
14

: 
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This condition provides no “consolation” prize for a project reaching any level below 

the successful full-scale implementation, nor does it provide “extra credit” for having 

multiple projects reach that objective.  While other objective functions are possible, 

this formulation ensures an efficient use of funding towards one successful 

implementation.     

5.3.2 Model 2: The Flexible-Budget Real Options Formulation 

In the model presented in the previous subsection, we assumed that the budget for 

each time period was fixed.  Following the flexible-budget formulation provided in 

Eckhause, et al. (2009), we now suppose that the total public funding budget 

available (denoted as B ) is fixed, but that the budgets for each time period, tB , do 

not need to be determined in advance.  We simply add the constraint: 

TBBB  ...1 .  For this problem, our feasible region (and thus, our state definition) 

must include a budget variable indicating the budget remaining to the decision maker 

at each time period.  Therefore, at time period, t , the state of the system is 


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
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
  R

Ii

tt SBS ),( ; and the set of feasible funding decisions for time period, t , is: 

                                                 
14

 The boundary condition is for the final observed time period, 1T .  While decisions are only made 

for Tt ,...,1 , the outcome of the decisions made at time T  is realized at time 1T . 
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The boundary condition for the stochastic dynamic program follows as: 

TtXSBSVBSV ttttt
BSXBX

ttt
tttt

,,1},|),({max),( 111
),(),( 1

 


E  (5.5) 

 

In order to solve this dynamic program, a discrete budget increment must be a 

component of the state variables.  While this addition creates a significant state 

expansion, reasonable increments could be handled in our cases.  Moreover, the IP 

formulation is essentially untenable for the flexible-budget problem, as it would 

require the creation of a binary variable for every possible budget increment, which 

could be as many as 20 million binary variables for one of the aforementioned CCS 

problems (Table 5.1).  

This budget flexibility can provide a great benefit, since it can increase the value 

of the objective function as the feasible region is much larger.  Indeed, the ability to 

combine budgets to consider more scenarios can greatly increase the overall success 

probability.  Of course, complete flexibility for the budgets in each time period may 

not be realistic.  However, even some degree of budget autonomy could greatly 

increase the probability of successful project implementation, as we demonstrate in 

the numerical results in Section 5.5. 
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5.3.3 Model 3: The Budget-Optimal Real Options Formulation 

Eckhause, et al. (2009) provided formulations for the fixed and flexible real 

options models we apply to the CCS projects in this chapter.  There is the potential 

for another budget allocation scheme:  one must specify the budgets a priori, but 

there is the ability to optimize them so that the overall probability of a fully functional 

CCS project is maximized.  In this sense, we are solving a series of fixed-budget 

problems outlined in Section 5.3.1 and choosing the allocation that provides the 

greatest objective function.  However, this allocation must be specified a priori; so it 

will not provide as great a benefit as the flexible-budget model. 

On the other hand, it is likely that the fiscal and political freedom to have budgets 

remain unspecified until the year of the funding decisions is not realistic.  This 

budget-optimal allocation problem can be considered as a two-level problem 

(Fortuny-Amat and McCarl, 1981), where the upper-level problem is the budget 

allocation and the lower-level is the fixed-budget real options model.  Letting B  

represent the vector of budgets available at each time period (i.e., ),...,( 1 TBBB ) and 

 B  be a solution to the fixed-budget real options model presented in Section 5.3.1, 

the budget-optimal real options model (with objective function leveltwoZ ) can be 

written as a two-level problem: 

 

0,                 

   s.t.                 

 max
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Since  B  is solved as a stochastic dynamic program, we know of no way to 

explicitly incorporating the constraint BBB T 1  (as one could with an integer 
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program, as we showed in Chapter 4).  Thus, we solve for an optimal budget by 

solving a series of fixed-budget stochastic dynamic programs.  Techniques for 

reducing the number of fixed-budget subproblems, along with solution run-times, are 

discussed in the Sections 5.5 and 5.6; these results follow from the methods described 

in Chapter 4.  In the next section, we describe the methods we used to obtain 

transition probabilities, costs and other necessary inputs to the three models outlined 

in this section. 

5.4 Expert Elicitations and Survey Results 

A survey of experts on the likelihood of a technical breakthrough and the 

associated costs or the performance of a new technology is part of the standard 

assessment tools in science, business and politics (Duong et al., 2007).  Chan, et al. 

(2011) define the expected cost and efficiency of different capture technologies in 

2010 and 2030 as benchmarks and ask subject matter experts how those will change 

under public R&D funding scenarios.  They conclude that the most important area of 

demonstration is the IGCC, but that most funds should be allocated to the most 

mature and market-ready post-combustion technology.  While public funding might 

help to demonstrate the technologies on the medium- and large-scales, the experts 

expect it to contribute little towards the reduction of the CCS investment costs.  

Hansson and Bryngelsson (2009) collect expert opinions on economic, technical and 

institutional aspects along the CCS value chain.  They find excessive optimism 

regarding the large-scale, commercial availability of the CCS technology and 

underestimation of uncertainties among the 24 experts.  This conclusion is of 

particular importance, as those experts also often advise policy makers.  Baker, et al. 
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(2009) apply expert elicitation to analyze the impact of public R&D for CCS on the 

future costs of CO2 abatement.  Their expert panel strongly disagrees on the expected 

CCS investment costs, but according to the authors, cost uncertainty does not pose a 

barrier to a successful CCS application.   

To address the question of an optimal funding strategy for a predefined portfolio 

of CCS demonstration projects, we are interested not only in the expected cost of the 

technologies, but also in the probability that such projects will be realized.  To our 

knowledge, no previous study provides such data; we therefore use individual 

judgments from six subject matter experts from research and academia to a 

predetermined questionnaire on the required information
15

.  This approach is in 

contrast to the closely related Delphi method, where a consensus among experts is 

reached during a number of judgment rounds (Dalkey, 1969).  While individual 

elicitations rule out the problem of group dynamics, it leaves the interpretation of the 

results to the authors of the questionnaire.  This approach increases the risk of 

misinterpretation of results due to a biased or less informed analyst (Chan, et al., 

2011).  In the following subsections, we present the outcomes of the expert elicitation 

we conducted.  The results are manifested as success probabilities of implementing 

each of the CCS technologies successfully for the first time in coal-fueled power 

plants; these probabilities change based on the available budget.   
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5.4.1 Cost Data for the CCS Technologies 

 Costs and success probabilities for the first CCS demonstration projects are 

highly speculative and depend on many factors, e.g., the scale and scope of the 

project, the political and public option towards the technology, the storage situation, 

available funding, the expected availability of technology substitutes like renewable 

energy technologies, and the anticipated carbon prices.  In this dissertation, we 

abstract from any existing cost, technological, and institutional related hurdles 

existing along the transport and storage part of the CCS value chain and focus solely 

on the construction of the power plants using the CO2 capture technologies.  This 

focus is based on the type of uncertainty around each of the steps along the value 

chain.  The transport and storage of CO2 is a mature technology, but faces high 

regulatory and legal hurdles.  Also, across Europe, citizens affected by potential, 

nearby storage sites typically strongly oppose storage.  This resistance has led to a 

number of delayed or cancelled projects (Herold, et al., 2010a). 

In this chapter, we focus on the technical uncertainty only surrounding carbon 

capture.  Nevertheless, a diverse set of announced carbon capture projects remains, 

which will test different capture technologies on various scales and levels of maturity.  

Therefore, we develop individual project data from a generalized questionnaire on 

CCS costs and the probability of implementing the technology for the first time.  As a 

starting point, we used the cost estimates for a 400 MW coal-fired CCS plants 

presented in Tzimas (2009), shown in Table 5.2.  We then asked the experts how 

upscaling or downscaling the size of a CCS plant will affect those costs. 
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Table 5.2: Investment Cost of Different Plants with and without CO2 Capture 

(Tzimas, 2009)
16

 

 
 Investment Costs for 

Demonstration Project 
[€/kW] 

Efficiency 
[%] 

Standard coal plant 1,478 46 

Post-combustion plant 2,500 35 

Pre-combustion plant 2,700 35 

Oxyfuel plant 2,900 35 

 
 

The simple, unweighted, mathematical mean of the experts’ cost estimates are 

shown in Table 5.3.  It shows that all three technologies benefit from economies of 

scale.  For the most mature technology—post-combustion capture—the penalty for 

downscaling is lowest.  The pre-combustion capture is best implemented on medium 

and large-scale power generation, which is based on the complexity of applying the 

IGCC technology to solid fuels, which has been implemented in only a few projects 

with unsatisfying results (Herold, et al., 2010b).   

Table 5.3: Estimated Costs for the First CCS Demonstration Project by 

Technology in €/kW
17

 

 
 125 MW 250 MW 500 MW 750 MW 1000 MW 

Post-combustion  3000 2875 2500 2125 1875 

Pre-combustion  3780 3240 2700 2295 1890 

Oxyfuel  3770 3480 2900 2465 2175 

 
 

The investment cost advantage of larger projects is nevertheless outweighed by 

the sharp decreased in the project success probability for building the first carbon 

capture plant.  Technology success, as presented in Table 5.4, is defined as reaching a 

                                                 
16

 “€/kW” means Euros (in 2008) per kilowatt generated. 
17

 The starting values for the 500 MW plants are taken from Tzimas (2009). 
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capture rate of 90 percent and staying within the predefined cost threshold in € per 

kW installed capacity outlined in Table 5.3.  All the panel experts estimate a 

significantly higher chance of technology success for smaller power plants and the 

corresponding capture unit. 

Table 5.4: CCS Technology Success Probabilities 

 
 

125 MW 250 MW 500 MW 750 MW 1000 MW 

Post-combustion  100% 86% 75% 68% 60% 

Pre-combustion 81% 69% 58% 46% 41% 

Oxyfuel 98% 81% 68% 54% 48% 

 
 

In a further step the experts were asked to estimate how a change in the budget 

(for instance, due to a higher public funding) would affect the technology success 

probabilities.  These estimates are based on the supposition that the scale and scope of 

the project are unaffected by a change in the budget.  If this assumption holds, a 

higher budget is assumed to increase the project success probability and vice versa; 

Table 5.5 provides a summary of those surveys.  However, a higher budget can also 

allow for more components to be tested; if this is the case, no answer on the change in 

the overall success probability can be calculated.  The lowest probability of success is 

defined for the “no funding” case.  The decision to undertake such a project is 

external to the funding agency and therefore not considered in the model.  We define 

an increase in the investment budget of 20 percent per kW as public “Funding Level 

1” and an increase in the budget of 40 percent as public “Funding Level 2.”   
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Table 5.5: Technology Success Probabilities of the First Demonstration Project 

Subject to Changes in the Budgets Estimated in Table 5.2 

 
 - 20%  

(No Funding) 
- 10% 

 €/kW for 500 MW  
(Funding Level 1) 

+ 10% 
+ 20% 

(Funding Level 2) 

Post-combustion 65% 68% 75% 80% 85% 

Pre-combustion 46% 50% 58% 62% 66% 

Oxyfuel 55% 59% 68% 73% 77% 

 
 

In Table 5.4, the project success probabilities are estimated to be at their 

maximum for the smallest project stage available.  Successful completion of this 

stage therefore allows companies to gain a first experience with the innovation itself 

on a small scale and at lower total costs.  The experience the company gains may 

allow for developing the technology further by lowering its investment costs.  Table 

5.6 reflects the expert panel’s opinion on how the successful completion of a previous 

project stage influences the technology success probabilities and the costs of the 

subsequent technology stages.  For example, for post-combustion, a company 

successfully completing the pilot stage can expect a 20 percent increase in the success 

probability of the following, demonstration stage, while the costs of building this 

demonstration plant will also drop by 5 percent.  This learning effect is of paramount 

importance for the real options model and the optimal funding strategy, as it 

determines whether it is beneficial to test the technology on various stages or not. 

Table 5.6: Change in Technology Success Probabilities and Costs for the 

Subsequent Stage Given Successful Completion of Current Stage 

 
 Change in Technology 

Success Probability 
Change in Technology Costs 

[€/kW] 

Post-combustion + 20% - 5% 

Pre-combustion + 17% - 5% 

Oxyfuel + 20% - 10% 
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Finally, we asked which of the European electricity companies planning to build a 

CCS demonstration project is a leader in knowledge and experience about each 

capture technology.  This leadership in early adoption translates, according to the 

experts, into a 5 percent increased technology success probability for that company 

for all three stages.  The companies listed in Table 5.7 have a history of early 

innovation.  RWE, for instance, gained experience with IGCC technology during the 

1980s and 1990s, while Vattenfall has already successfully implemented the oxyfuel 

technology in a 30 MW pilot plant in Germany. 

Table 5.7: Electricity Supplier Estimated to be Most Advanced for Each 

Technology Line 

 
 Innovation Leader Increased Probability of Success 

Post-combustion  E.ON 5 % 

Pre-combustion RWE 5 % 

Oxyfuel Vattenfall 5 % 

 
 

5.4.2 Effects of Knowledge Spillover  

One of the main reasons for public funding of R&D initiatives is so that firms can 

recover the full benefit of their research investment.  The innovating firm creates 

knowledge externalities, or so-called spillovers (Jaffe, et al., 2006).  Then, the 

improvement results in benefits beyond those enjoyed by the original firm (Stern, 

2007).  In the absence of recovering these benefits, there will be insufficient funding 

of R&D by private firms.  Public funding is therefore designed to compensate for the 

under investment.  In the presence of pollution control, society might benefit not only 

from R&D spillovers, but also from lower emissions.  Nevertheless, Fischer (2008) 
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concludes that R&D policy support would only be justified if: i) some spillovers are 

realizable; and ii) at least a moderate pollution internalization policy is in place.  

Otherwise, public support in favor of R&D is not justified as any progress in 

pollution control lacks incentives for its application.  Thus, an intense R&D policy 

cannot necessarily compensate for a deficient internalization policy. 

Reis and Traca (2008) assert that it is in the inability to appropriate the returns 

(i.e., reaping profits and protecting from imitation) received from R&D that is a key 

deterrent to innovative undertakings and, by extension, to economic growth.  Policy 

can respond to that innovation market failure by enforcing intellectual property rights 

or by funding R&D.  Because the companies under consideration for the CCS 

technology projects receive EU funding, they are thus obliged to make patent-

protected technologies developed in these projects available to competitors, in the 

form of compulsory licensing (IZ Klima, 2010). 

In this study, we distinguish between learning among projects applying the same 

capture technology and cross-technology learning, meaning that a successfully 

operating post-combustion plant will, for example, have a positive impact on costs or 

success probability of the oxyfuel projects.  For cross-technology effects, we there are 

divergent opinions.  First, some of our experts expect no cross-technology learning.  

This view is based on the assumption that the successful implementation of one 

technology significantly lowers the need for a second technology.  Indeed, there is 

only one dominating flue gas desulphurization technology applied today, whereas in 

the beginning of the diffusion process of that technology different options competed 

(Rubin, et al., 2005).  With respect to CCS, there may be exceptional cases. For 
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instance, the pre-combustion technology is not applicable to an existing power plant 

other than IGCC, and therefore may require a complementing technology such as 

post-combustion or oxyfuel capture.  On the other hand, some industrial processes, 

like hydrogen and biofuel production, or advanced technologies for iron and steel 

production use, would require pre-combustion capture. 

We therefore group the technologies into substitutable technologies (post-

combustion and oxyfuel capture) and the complementing technology, pre-combustion 

capture.  The results of our expert interviews on cross-technology spillover effects for 

the technology success probabilities are shown in Table 5.8.  For the cross-technology 

cases, all experts expect little-to-no impact. 

Table 5.8: Knowledge Spillover: Impact of a First 500 MW Plant Successfully 

Operating on the Success Probabilities for Third Party Projects 

 
 Post-combustion Pre-combustion Oxyfuel 

Post-combustion  + 20% 0% 0% 

Pre-combustion 0% + 17% 0% 

Oxyfuel 0% 0% + 20% 

 
 

As Table 5.9 shows, the effect of the first successfully operating, large-scale 

demonstration project on the cost of subsequent plants is positive or zero.  Our 

experts do not expect a benefit from pre-combustion plants on the competing post-

combustion and oxyfuel technology, nor vice versa.  Within the post-combustion and 

oxyfuel process, however, we find technologies that are more related to each other, as 

both processes rely on conventional thermal power plant technology.  Thus, there is 

an expected decrease in costs across these two technologies. 
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Table 5.9: Knowledge Spillover: Impact of a First 500 MW Plant Successfully 

Operating on the Technology Costs for Third Party Projects 

 
 Post-combustion Pre-combustion Oxyfuel 

Post-combustion  - 8% 0% - 3% 

Pre-combustion 0% - 8% 0% 

Oxyfuel - 3% 0% - 8% 

 
 

Overall, the answers of the experts to our questionnaire present a consistent 

picture, especially for the estimated changes in capital costs and the success 

probabilities.  Whether this consensus occurred randomly or was based on similar 

underlying assumptions is not entirely clear, due to modest sample size.  

Nevertheless, the positive effect of the first successfully operating project on similar 

projects’ costs and success probabilities is notable; and it could justify public funding 

if this knowledge would be shared among other projects and companies. 

5.4.3 Technology State Definitions 

We translate the data presented in Sections 5.4.1 and 5.4.2 into the state 

definitions introduced in Section 5.3.1, distinguishing the projects according to their 

project size and the level of maturity of the applied CCS technology.  We classify the 

selected projects into three groups, according to the following criteria.  The 

descriptions of the three categories are: 

1. The pilot project stage covers projects on a small stage, below 125 MW and a 

high level of innovative technologies to be tested, as is the case for the 30 

MW Schwarze Pumpe oxyfuel project in Germany. 



 

 153 

 

2. The demonstration project stage covers projects which aim at the 

demonstration of the CCS technology at a larger scale.  Examples include the 

planned 250 MW post-combustion capture projects in Belchatow, Poland and 

the 250 MW Oxyfuel project in Jänschwalde, Germany. 

3. The full-scale project stage aims at the commercial roll-out of the CCS 

technology. This stage covers projects rated at 500 MW and the retrofitting of 

pre-combustion technology to capture-ready IGCC plants constructed on in 

the second stage. 

In the model, we assume construction of projects can take four, six or eight years, 

depending on the project stage.  For pilot plants, only four years of construction is 

allowed. Afterwards, the projects is considered as having reached its technology 

success level (denoted as “proven”), or it is still in the construction phase.  From the 

perspective of the funding agency, the latter case is considered as failure and no 

additional funding would be provided.  This outcome does not mean that the project 

is going to be abandoned entirely.  Rather, whether the company continues the project 

or not is a decision internal to the company (and external to the funding agency), and 

therefore not considered in our model.  The same mechanism applies to projects in 

the demonstration and full-scale stages, with a maximum of six and eight years of 

construction, respectively. 

However, at the demonstration and full-scale stages, the set of funding decisions 

is extended by defining additional milestones after four years for demonstration and 

after four and six years for full-scale projects respectively.  Thus, we have the 

following states:  
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1. The project reached the “proven” state.  If so, no need for an additional 

intervention from the funding agency arises. 

2. The project is not finished yet, but a third party project has reached 

completion of the stage. In this case there remains no need to further fund the 

unfinished project.  

3. No project has successfully completed the current stage. In this case, the 

funding agency can decide to continue funding.  

Figure 5.3:  Technology State Definition Example 

 

State (2, 1, 0, 0, 0)

Project stage:

1 = Pilot stage

2 = Demonstration stage

3 = Full-Scale project

Operation phase:

1 = Construction

2 = Proven

Third party project:

0 = No third party operating

1 = Oxyfuel project operating

2 = Post-comb project operating

3 = Pre-comb project operating

4 = post and oxy operating

Construction started:

0 = four years earlier

1 = six years earlier 

2 = eight years earlier 

Previous stage: 

0 = not undertaken

1 = success

 

The stage reached by other (i.e., third party) projects can affect the costs and 

success probabilities of the projects that would be funded in subsequent periods, 

based on the assumptions of technology knowledge spillover outlined in Tables 5.8 

and 5.9.  Unlike the other components of state definition shown in Figure 5.3, the 

third party state is determined exogenously; that is, it is determined by examining the 

states of all the other projects.  This structure allows for smaller state size, which 
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favorably affects computational complexity and run-time.  We present all costs and 

transition probabilities using the definitions in Figure 5.3—with and without 

knowledge spillover—for the “Oxy 1” project in Appendix F.   Those data are applied 

to the projects shown in Table 5.10, which are based on announced projects (ZEP, 

2008). 

Table 5.10: Modeled CCS Projects
18

 

 

Project 
Unit Size [MW] Expected Start of Operation 

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 

Oxy 1 30 300 1000 2008 2014 2018 

Oxy 2 30 320 - 2012 2016 - 

Post 1 - 250 - - 2014 - 

Post 2 - 450 900 - 2014 2018 

Post 3 - 250 - - 2016 - 

Pre 1 - 450 - - 2014 - 

Pre 2 - 900 IGCC 300 PCC - 2014 2016 

Pre 3 - 1200 IGCC 900 PCC - 2012 2014 

 
 

5.5 Funding Scenarios and Numerical Results 

In this section, we present the results from the models outlined in Section 5.3 

using the data described in Section 5.4 on the eight actual CCS projects shown in 

Table 5.10.
19

  Since the CCS technology for pre-combustion differs significantly from 

the post-combustion and oxyfuel technologies, we assume there exists a separate 

funding source for pre-combustion in order to maximize the probability that two CCS 

                                                 
18

 “Oxy” refers to the oxyfuel projects.  “Post” refers to the post-combustion projects. “Pre” refers to 

the pre-combustion projects.  “PCC” stands for pre-combustion capture. 
19

 While these represent actual projects, the cost, probability and CCS efficiency data are based on the 

expert interviews.  Thus, the project’s names are generic so as not to identify any company’s name 

with any project. 
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technologies will be realized.  As a result, there are two sets of optimizations 

performed: one for the pre-combustion projects and for the post-combustion and 

oxyfuel projects.  Additionally, since the budgets available in future years are not 

entirely known, we perform sensitivities on both the available budget and how that 

budget can be allocated.  Specifically, we solve for optimal funding strategies for all 

three models formulated in Section 5.3:  fixed-budget, flexible-budget, and budget-

optimal allocations. 

For both the pre-combustion and the combined post-combustion/oxyfuel cases, 

we employ the multi-stage competition using an identical approach.  The costs for 

each of the projects depend not only on knowledge spillover, but on the levels at 

which the project are funded.  Due to limited levels of funding which are likely to be 

manifested, the number of funding levels we model is typically restricted to two (high 

funding and low funding), in addition to no funding of the project, for each time 

period.  As the following results show for both the pre-combustion and post-

combustion/oxyfuel results, the probability of successful completion of a full-scale 

CCS plant greatly depends on available budget and, moreover, how that budget is 

allocated during the time periods. 

5.5.1 Pre-Combustion Capture Projects without Knowledge 

Spillover 

There are three pre-combustion CCS projects that we considered in our real 

options model (denoted as “Pre 1,” “Pre 2” and “Pre 3” in Table 5.10).  None of the 

projects is assumed to be able to progress to full-scale without public funding (i.e., 

the probability of success with no funding is zero).  Since the Pre 1 project does not 
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plan to achieve full-scale operation, the objective function’s value for funding this 

project extends only to Pre 1’s ability to create knowledge spillover.  As shown in 

Tables 5.8 and 5.9, the spillover can increase the probability of success and decrease 

the cost on the full-scale stage for other projects. Therefore, it is suboptimal to fund 

“Pre 1” in cases where the spillover is assumed to be nonexistent. 

Table 5.11 shows the potential funding levels for the fixed-budget and flexible-

budget cases.  The total budget in the bottom row represents the sum of each time 

period’s budget and the total amount available over all time periods for the flexible-

budget case (e.g., 3910€ million).  For the fixed-budget cases, the budget is usually 

allocated in equal amounts or in amounts with larger funding for the initial “ramping-

up” time periods, as that is when the costs may be greatest (Rubin, et al., 2006). In the 

pre-combustion cases, the internal gasification plant itself is considered as an 

innovative technology and represents the major share of the investment. Therefore, 

higher funding levels are needed in the beginning. 

Table 5.11: Budget Cases Modeled for Pre-Combustion Projects
20

 

 

Period  Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €]

1 (2010) 100 200 300 400 910 910 910

2 (2012) 100 200 300 400 400 910 910

3 (2014) 100 200 300 400 400 400 910

4 (2016) 100 200 300 400 400 400 400

5 (2018) 100 200 300 400 400 400 400

6 (2020) 100 200 300 400 400 400 400

Total Budget 600 1200 1800 2400 2910 3420 3930  

 

Due to the flexibility of the real options approach we employ and the relatively 

high level of success probabilities (especially given the option of delaying the funding 

                                                 
20

 The final decision time period ( 6T ) maps to the year 2020, but the results are not realized until 

2022 ( 1T ). 
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of projects), the overall value of the objective function (i.e., the probability that at 

least one pre-combustion CCS project is performing at full-scale by the end of the 

sixth time period—that is, 2022) is quite high for the larger budget cases.  However, it 

is important to notice a vastly improved performance of the flexible-budget approach 

in terms of the objective function.  This difference is particularly noticeable for more 

limited budgets, since the amount available in a given time period could be restricted 

to only a few possibilities.  Of course, as the budgets increase, the managerial benefit 

of flexible budgets decreases, as there is sufficient funding in most time periods to 

fund multiple projects.  Indeed, as the budget increases, the performance gap between 

the fixed and flexible budgets narrows, as shown in Table 5.12.  With infinite budgets 

for each time period, the flexible and fixed budgets would have identical objective 

function values.  Table 5.12 provides the results with the total budget provided; again, 

the breakouts for the budgets for each time period are provided in Table 5.11.  

Computational complexity and solution run-times for these cases, along with the 

budget-optimal allocation, are presented in Section 5.6. 

Table 5.12: Optimal Objective Function Values (Success Probabilities) for Pre-

Combustion Projects with Fixed and Flexible Budgets   

 

Budget [m €]
Fixed-Budget 

Case

Flexible-Budget 

Case

0 0 0

600 0 0.405

1200 0 0.781

1800 0 0.903

2400 0.844 0.937

2910 0.902 0.962

3420 0.943 0.968

3930 0.962 0.974  
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Naturally, the allocation of the fixed budget is very rigid.  In some cases, this 

somewhat arbitrary distribution of the budget among the time periods does not allow 

for the opportunity for even one project to reach full-scale operations.  A more 

thoughtful allocation—that takes into consideration optimal budgeting for each time 

period—would be necessary to improve the fixed-budget case.  One option is a 

completely flexible-budget case, where the budget for each time period is only 

decided at that time.  Another possible model is the one presented in Section 5.3.3: it 

is an optimal, a priori budget, which is essentially the optimal, fixed-budget case.  It 

does not permit for the ability to have complete budget flexibility, as one must 

specify the budgets at the beginning of the multi-stage competition.  However, it 

permits for an optimal allocation of budgets, along with determining how much the 

real options model’s objective function is improved by budget flexibility versus 

simply optimal upfront budgeting.  This difference determines to a large degree the 

value of managerial flexibility, which is vital to overall R&D success (Tseng, et al., 

2005). 

When we solve for the budget-optimal model presented in Section 5.3.3, we know 

the solution cannot be better than the flexible-budget problem.  The reason the 

flexible-budget problem acts as an upper-bound on the budget-optimal problem is that 

in the flexible-budget problem, the budget allocation for time period t  is determined 

at time period t , when the state of the system,  Itt ss ,...,1 , is known.  The budget-

optimal problem must determine an optimal budget before each  Itt ss ,...,1  is realized.  

As we know of no way to incorporate the budget constraint into the lower-level SDP 

explicitly, we applied heuristics to reduce the number of lower-level problems to be 
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solved in order to avoid complete enumeration when the problem size was too large, 

while ensuring the budget-optimal solution was within 2% of optimality.  Indeed, as 

shown in Table 5.22, using the cost-coefficient method to determine all possible 

budget allocations, there would be as many as  710O  lower-level SDPs that would 

need to be solved.  However, since the optimal flexible-budget objective function 

value acts as an upper-bound
21

 for the budget-optimal problem, the objective values 

in Table 5.12 provide sufficient conditions to determine if our heuristic is close to an 

optimal solution.  As Table 5.13 demonstrates, our solutions to the budget-optimal 

problem produce optimal objective values that are very close to the flexible-budget 

solutions’ optimal objectives shown in Table 5.12.  In addition, the first time period 

funding decision variables are the same for the flexible-budget and budget-optimal 

cases for the results shown in Tables 5.12 and 5.13.  These results point to the 

importance of having the ability to optimize the available budget in advance (in the 

absence of completely flexible budgets).  Table 5.13 also provides the actual optimal 

budgets for each case considered in Table 5.12.   

                                                 
21

 The optimal objective function value to any fixed-budget problem serves as a lower-bound, since it 

represents a feasible budget allocation. 
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Table 5.13: Optimal Objectives and Budgets for Pre-Combustion Projects under 

the Budget-Optimal Problem
22

 

 
Period  Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €]

1 324 324 732 732 732 1056 1056

2 0 0 0 423 423 423 423

3 84 345 324 423 747 747 1140

4 84 345 324 324 423 648 747

5 84 84 324 324 423 423 423

6 24 102 96 174 162 123 141

Total Budget 600 1200 1800 2400 2910 3420 3930

Budget-Optimal 

Objective
0.405* 0.779* 0.889 0.933 0.958 0.966 0.971

Flexible-Budget 

Objective 
0.405 0.781 0.903 0.937 0.962 0.968 0.974

 

 

The number of lower-level SDPs (i.e., the fixed-budget real options model) solved 

varied from 710 (for a budget of 600€ million) to approximately 74,000 (for the 

2910€ million budget)
23

.  Further detail on the run-times and solution heuristic are 

provided in Section 5.6.  Figure 5.4 shows the objective functions for all three budget 

allocation cases when the budget was 2400€ million or greater.  In order to show the 

very small gap between the budget-optimal and flexible-budget results, the solutions 

for the smaller budget cases are not shown.  Again, the flexible-budget objective 

serves as an upper bound for the budget-optimal solution.  Any fixed-budget solution 

provides a lower bound to the budget-optimal objective, since any fixed-budget 

solution is a feasible, but not necessarily optimal, solution to the budget-optimal 

solution. 

                                                 
22

 *Budgets of 600€ million and 1200€ million were solved to optimality, since all feasible lower-level 

SDPs were solved.  For all other budget cases, the heuristics outlined in Section 5.6 were employed. 
23

 Since the heuristic trimmed cost combinations until the number of lower-level SDPs was fewer than 

about 100,000, there were fewer lower-level problems solved for the 3420€ million and 3930€ million 

budget cases.  Details about the heuristic are provided in Section 5.6. 
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Figure 5.4:  Comparison of Objective Functions for Pre-Combustion Projects 

under Different Budget Allocation Rules 
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5.5.2 Post-Combustion and Oxyfuel Capture Projects without 

Knowledge Spillover 

As Table 5.9 notes, there are the three post-combustion and two oxyfuel projects 

that we model using the real options framework outlined in Section 5.3.  Like the pre-

combustion projects, not all post-combustion and oxyfuel projects are planning to 

attempt full-scale completion.  As a result, the funding strategies of Oxy 1 and Post 2 

are the only projects under consideration for the non-spillover case.  Table 5.14 

shows the possible budget allocations considered for the funding of these projects. 
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Table 5.14: Budget Cases Modeled for Post-Combustion and Oxyfuel Projects   

 

Period  Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €]

1 100 200 300 350 400 1000

2 100 200 300 350 400 1000

3 100 200 300 350 400 1000

4 100 200 300 350 400 600

5 100 200 300 350 400 600

6 100 200 300 350 400 600

Total Budget 600 1200 1800 2100 2400 4800  

 

Since the post-combustion technology is more mature than pre-combustion, the 

probability of success for the post-combustion projects tends to be higher—at least 

for those scenarios with large budgets (Table 5.12 vs. Table 5.15).  The costs for the 

upscaling of the post-combustion and oxyfuel projects, however, are higher than for 

pre-combustion, even though they are technologically less uncertain.  Therefore, as 

Table 5.15 and Figure 5.5 indicate, the optimal probability of success approaches 1.0, 

once the budget becomes large enough to have multiple funding options.  It is again 

important to note the significant improvement in the objective function when we have 

a flexible-budget allocation.   

Table 5.15: Optimal Objective Function Values for Post-Combustion and 

Oxyfuel Projects with Fixed and Flexible Budgets   

 

Budget [m €]
Fixed-Budget 

Case

Flexible-Budget 

Case

0 0 0

600 0 0.712

1200 0 0.936

1800 0 0.973

2100 0 0.984

2400 0.936 0.989

4800 0.993 0.998  
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Figure 5.5:  Comparison of Objective Functions for Post-Combustion and 

Oxyfuel Projects under Fixed and Flexible Budgets 
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As the approach did for pre-combustion, solving for the budget-optimal allocation 

for the post-combustion and oxyfuel projects produces an improvement in the 

objective function over the fixed-budget allocation.  In fact, as Table 5.16 indicates, 

for all of the budget cases we modeled—except the 4800€ million case—the optimal 

budget produced an objective function equal to the flexible-budget case.  For the 

4800€ million case, the solutions was within 2x10
-4

, or 0.01%.   
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Table 5.16: Optimal Objectives and Budgets for Post-Combustion and Oxyfuel 

Projects for the Budget-Optimal Problem 

 
Period  Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €]

1 0 0 0 435 0 190

2 150 435 585 0 735 380

3 0 0 0 450 0 890

4 0 380 450 450 450 0

5 435 380 380 380 380 1651

6 15 5 385 385 835 1689

Total Budget 600 1200 1800 2100 2400 4800

Budget-Optimal 

Objective
0.712 0.936 0.973 0.984 0.989 0.998

Flexible-Budget 

Objective
0.712 0.936 0.973 0.984 0.989 0.998

 

 

Since the budget-optimal problem requires solving a large number of SDPs, we 

applied heuristic approaches to reduce the number of lower-level problems; these 

techniques were similar to the ones we employed on the pre-combustion projects.  

Namely, for smaller total budgets (i.e., 600 and 1200€ million cases) we considered 

all cost coefficient combinations of funding strategies for each time period (i.e., all 

combinations of 
titlSc  for each t ), provided that the sum of those strategies was 

feasible (i.e., within the budget).  For small budgets, this strategy works very well.  

For larger budgets, we needed to reduce the number of combinations solved with a 

lower-level SDP, as run-times grow exponentially with the increase in budget.  As the 

flexible-budget case represents an upper bound on the value of the budget-optimal 

solution, the heuristic obtained an optimal budget allocation in all but the 4800€ 

million case (where it was within 0.01% of optimality), as its objective function was 

equal to the flexible-budget result.  Again, that property represents a sufficient, but 

not necessary, condition for the heuristic to have an optimal budget allocation.  Since 
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the flexible-budget objective value represents an upper-bound, the budget-optimal 

objective must be optimal if it is equal to the flexible-budget objective value, and thus 

represents a sufficient condition.  This condition is not necessary, however, since 

there are cases when an optimal budget-optimal objective (according to Theorem 4.3) 

is less than the flexible-budget problem’s value (e.g., the total budget case of 1200€ 

million in Table 5.12).  The potential gap in the objective values of these two 

problems results from the lack of temporal flexibility in the budget-optimal case.   

As we will show in Section 5.6, run-times were similar to the pre-combustion 

cases: the lower-level SDP solved more quickly for the post-combustion and oxyfuel 

projects, but there were more SDPs for each case that need to be solved.  Run-times 

ranged from two seconds (for the 600€ million budget case) to approximately 30 

minutes (for the 4800€ million budget case).  In short, the heuristics managed to solve 

all cases to optimality (or near optimality) within a reasonable amount of time.   

5.5.3 Effects of Knowledge Spillover 

Based on the experts’ opinions on knowledge spillover represented in Tables 5.8 

and 5.9, it would seem reasonable to expect an increased objective function value 

(i.e., probability of success) since the costs decrease and transition probabilities 

increase under such a technical transfer assumption.  The results of the model, 

however, show very little effect in most cases.  The knowledge spillover cases in 

these tables refer to the increased success probabilities and decreased costs assumed 

in Tables 5.8 and 5.9.   Those data show that the probability of a project reaching 

successful completion increases between 17-20% if another project of the same 

technology type has already done so.  In addition, there is a cost reduction between 3-
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8% for those projects.  Table 5.17 shows the results for the pre-combustion projects 

with fixed and flexible budgets; Table 5.18 shows the corresponding results for the 

post-combustion and oxyfuel projects.  Because the results for the budget-optimal 

allocation were nearly identical to the flexible-budget problem, we tested the effects 

of knowledge spillover for the fixed-budget and flexible-budget problems only (i.e., 

we omitted the budget-optimal model runs for knowledge spillover). 

Table 5.17: Increase in Objective Function’s Value with Knowledge Spillover for 

Pre-Combustion Projects 

 

No Spillover 

(A)

Knowledge 

Spillover (B)

Increase 

(B-A)

No Spillover 

(A)

Knowledge 

Spillover (B)

Increase 

(B-A)

0 0 0 0 0 0 0

600 0 0 0 0.405 0.405 0

1200 0 0 0 0.781 0.781 <0.001

1800 0 0 0 0.903 0.903 0.001

2400 0.844 0.844 0 0.937 0.938 0.001

2910 0.902 0.903 <0.001 0.962 0.963 0.001

3420 0.943 0.944 0.001 0.968 0.969 0.001

3930 0.962 0.963 0.001 0.974 0.975 0.001

Budget [m €]

Fixed-Budget Problems Flexible-Budget Problems

 

 

Table 5.18: Increase in Objective Function’s Value with Knowledge Spillover for 

Post-Combustion and Oxyfuel Projects 

 

No Spillover 

(A)

Knowledge 

Spillover (B)

Increase 

(B-A)

No Spillover 

(A)

Knowledge 

Spillover (B)

Increase 

(B-A)

0 0 0 0 0 0 0

600 0 0 0 0.712 0.712 0

1200 0 0 0 0.936 0.936 0

1800 0 0 0 0.973 0.974 0.001

2100 0 0.720 0.720 0.984 0.984 0.000

2400 0.936 0.936 <0.001 0.989 0.990 0.001

4800 0.993 0.993 <0.001 0.998 0.999 <0.001

Budget [m €]

Fixed-Budget Problems Flexible-Budget Problems

 

 

It appears counterintuitive that the addition of knowledge spillover did not 

materially affect the results in most cases.  The one case where the effect was very 
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significant (the 2100€ million fixed budget for post-combustion and oxyfuel) occurs 

because the reduction in costs from roughly 360€ million to 340€million allows a 

budget of 350€ in each time period (i.e., 2100€ million total budget) to be sufficient 

to fund a project to full-scale completion, provided another project was making 

sufficient progress.  However, in most cases, the extra savings is not enough to fund 

an entirely new project; so the previous funding strategy usually remained unchanged 

after the spillover assumptions were added, even in the cases with flexible budgets.  

Secondly, while the probability of fully completing the stage increases once another 

project has done so (Table 5.8), the improved odds of success can only occur with 

sufficient means to fund multiple projects concurrently.  Indeed, the ability to fund 

projects agilely under tight budgets is one of the benefits of the real options approach.  

Finally, the number of projects considered in these two cases was limited, and there is 

no knowledge transfer between pre-combustion and post-combustion or oxyfuel.   

Certainly the results in this chapter do not imply knowledge spillover is 

insignificant in all multi-stage R&D competitions, or even for those competitions 

involving the development of CCS technologies.  Knowledge spillover would likely 

be more significant in a case where the number of projects was greater; and the 

probability of two or more projects making significant progress would be higher.  If 

the knowledge spillover more significantly affected the probabilities—especially in 

the cases where the probability of adequate technological progression was not 

particularly high—then the probability of success could be considerably larger for the 

spillover case versus the no-spillover case. 
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5.6 Model Complexity, State Size and Solution Run-Times  

As we outlined in Chapter 4, there is a limit on the size of the models that were 

tested using the linearized integer programming approach, even though it has the 

obvious natural benefit of solving the budget-optimal allocation problem more 

directly.  The models we solved for both the pre-combustion and the post-combustion 

and oxyfuel projects exceeded this limit.  In Table 4.5, we note that a five-project, 

five-time period problem with each project having five state variables would require 

linearization constraints (approximately 1 billion) and variables that exceeded 

computer memory (4 GB).  For both sets of CCS projects modeled there were six 

time periods.  Moreover, while some cases we solved had fewer than five projects, all 

of the projects had more than five states.  The number of projects and the state 

variables for each project are provided in Table 5.19 for both the pre-combustion and 

the post-combustion and oxyfuel cases.  The state variables map to the components 

shown in Figure 5.3.  The number of states differs among projects since not all 

projects complete all stages.  The third party state is determined exogenously (i.e., 

from the states of the other projects) and, therefore, does not increase the state space.  

The non-spillover case had fewer projects, as noted in the table.   

Table 5.19: Number of States for Pre-Combustion and Post-Combustion/Oxyfuel 

Projects 

 

Project States
Spillover Case 

Only
Project States

Spillover 

Case Only

Oxy 1 14 Pre 1 9

Oxy 2 7 X Pre 2 10

Post 1 6 X Pre 3 6 X

Post 2 14

Post 3 6 X  
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Thus, in the case of the post-combustion and oxyfuel projects, the number of 

projects, state variables and time periods equaled or exceeded the number in the five-

project, five-time period, five-state variable problem that was computationally too 

complex for the IP formulation.  While the non-spillover cases, especially the pre-

combustion one, were perhaps solvable on a 4 GB machine using an IP approach 

((4.3) for the fixed-budget problem or (4.5) for the budget-optimal problem), they 

would not be scalable if more projects were later added.  Of course, the run-times for 

the SDP are quite manageable, provided we did not solve for the budget-optimal 

allocation problem—something that the IP may handle more readily for smaller 

problems.  However, since the IP approach was not feasible in this case, we needed to 

apply the approach from Chapter 4 to these cases. 

5.6.1 Complexity of Fixed-Budget, Flexible-Budget, and Budget-

Optimal Problems 

For the spillover cases with a fixed budget, the total number of states at each time 

period was 000,506614714   for post-combustion and oxyfuel and 

5406109   for pre-combustion.  However, for the case of flexible budgets, the 

number of states increases by the size of the budget increment.  Thus, for a budget as 

high as 4000€ million, the number of state variables per time period was as high as 

 710O for the post-combustion and oxyfuel cases with knowledge spillover.  For the 

non-spillover cases with fixed budgets, the state size of these problems is very 

modest:  210O .  The addition of the flexible budget, even with a very small budget 
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increment (1€ million), increases the state size to  510O , which is well within the 

means of a 4 GB laptop with four 1.73 GHz processors.  Table 5.20 shows the 

number of states (which equals the number of decision variables in the SDP) and run-

times for the fixed-budget problems.  Table 5.21 provides the number of states and 

run-times for the flexible-budget problems solved in this chapter.  For the flexible-

budget case, the run-times and state variables are shown for the largest budgets 

considered (i.e., 3930€ million for the pre-combustion projects and 4800€ million for 

the post-combustion and oxyfuel projects), as those cases have the longest run-times 

and greatest number of states.  Because of the Markovian property of the SDP, only 

the current and the next time periods’ state variables need to be stored in a memory at 

any one time. Nevertheless, due to the large number of state variables for even one 

time period, the budget increment for the post-combustion and oxyfuel projects with 

knowledge spillover must be 10€ million; with a smaller budget increment of 1€ 

million, 4 GB of RAM was insufficient to solve this problem.   

Table 5.20: Number of State Variables and Run-Times for the Fixed-Budget 

CCS Problems 

 

CCS Projects
With 

Spillover?

State Variables 

(Each Period)

State Variables 

(Total)

Run-Time 

(CPU Sec.)

Pre-Combustion No 90 540 <1

Post-Combustion 

& Oxyfuel
No 196 1,176 <1

Pre-Combustion Yes 540 3,240 <1

Post-Combustion 

& Oxyfuel
Yes 49,392 296,352 12
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Table 5.21: Number of State Variables and Run-Times for the Flexible-Budget 

CCS Problems 

 

CCS Projects
With 

Spillover?

Budget 

Increment 

(€ Million)

State Variables 

(Each Period)

State Variables 

(Total)

Run-Time 

(CPU Sec.)

Pre-Combustion No 1 353,700 2,122,200 8

Post-Combustion 

& Oxyfuel
No 1 940,800 5,644,800 46

Pre-Combustion Yes 1 2,122,200 12,733,200 63

Post-Combustion 

& Oxyfuel
Yes 10 23,708,160 142,248,960 974

 

 

Since the budget-optimal problem is obtained by solving a set of lower-level 

fixed-budget problems, the number of decision variables for the budget-optimal 

problem is identical to the fixed-budget problem.  The increase in run-time and 

complexity for the budget-optimal problem is strictly due to the large number of 

lower-level, fixed-budget SDPs that must be solved.  Those results are presented in 

the Section 5.6.2. 

It is worth noting that combining all eight projects into one real options model 

with flexible budgets and a budget increment of 10€ million would have 

 101090061096614714 O  state variables per time period, far exceeding a 

computer’s 4GB of memory.
24

  Since pre-combustion technology differs 

significantly, separating the funding budgets is suitable.  However, for a larger set of 

projects, the solution time will eventually become unmanageable as the states suffer 

from the curse of dimensionality (Puterman, 1994).   

                                                 
24

 At four bytes for each single-point floating variable, the memory requirements to store one time 

period’s state variables for this problem would be at least 100 GB.  
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Nevertheless, the size of the budget-optimal allocation problem requires a very 

large number of lower-level SDPs to be solved.   In Chapter 4, we outlined two 

approaches:  solving for all budget combinations using a discrete budget increment, 

or solving for all combinations of the cost coefficients.  The former approach was not 

viable.  Since costs were in terms of whole millions of Euros, and the greatest 

common factor was typically 1€ million, for even the smallest budget of 600€ 

million, according to (4.8) there would be, 
 

 
000,000,000,600

!5)!600(

!605

!1!

!1






TM

TM
 

lower-level problems.   

As we show, obtaining budgets from all cost coefficient combinations, while 

fewer than the number of discrete budget combinations, does not necessarily produce 

a sufficiently small number of lower-level SDPs that need to be solved.  Since each 

project typically had multiple funding levels at each time period, there were a large 

number of cost combinations, each requiring the solving of the lower-level SDP.  For 

post-combustion, Table 5.22 shows the possible number of costs each project could 

have in that time period.  While some of these costs only can occur when the project 

is in a certain state, what state a project occupies at a given time period cannot be 

determined a priori.  Additionally, each project may not necessarily be funded in that 

time period, which represents a cost combination (0€, for that project). 
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Table 5.22: Number of Budget Possibilities Using the Cost-Coefficient Method 

for the Full-Scale CCS Projects Based on Each Project’s Funding Levels 

 

1 2 3 4 5

Pre 1 3 3 5 5 5

Pre 2 3 7 7 5 5

Oxy 1 5 5 9 9 7

Post 2 1 5 5 5 5

Time Period
Project

= 4,134,375

= 8,859,375

Total

 

 

The total number of budget possibilities is simply the product of all possible cost 

combinations for each of the projects over each of the time periods.  As we noted in 

Chapter 4, it is not necessary to consider the final time period’s cost combinations, 

since the final time period’s budget, 6B , is simply 

 0),(max 543216 BBBBBBB  .  Even though the lower-level SDP solves 

very quickly (less than 10
-1

 seconds), solving such a large number of cases requires 

heuristics to obtain a manageable number of lower-level problems, since a full 

consideration of all cases would take roughly 100,000 seconds, or around one full 

day.  The next section describes the methods used and the run-times for the budget-

optimal problems for both sets of CCS technologies. 

5.6.2 Approaches to Improving Solution Speeds for the Budget-

Optimal Problem 

As mentioned in Chapter 4, an obvious way to reduce the number of lower-level 

SDPs necessary is to remove from consideration all budget combinations that are 

infeasible because the allocation exceeds to the total budget.  This method is 
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particularly useful for cases where the total budget is a small amount compared to the 

sum of the average cost of each project over each time period.  Indeed, that was the 

only technique we applied for the cases where the total budgets were either 600€ 

million or 1200€ million.  The resulting number of SDPs for these cases was 

relatively small; and the run-times were short.   

For cases where the total budget was larger, the number of feasible combinations 

grows quickly.  Based on the desire to have relatively manageable run-times, it was 

necessary to develop a set of rules to obtain verifiably close-to-optimal solutions.  

The budget-increment approach (where optimality is guaranteed by Theorem 4.2) or 

the cost-coefficient approach (which is optimal by Theorem 4.3) requires solving for 

all lower-level SDPs specified by the theorems.  However, we can solve for a subset 

of the lower-level problems using the cost-coefficient approach, while checking the 

optimality gap by calculating the upper bound provided by the flexible-budget 

solution’s objective.  We therefore outline the following heuristic approach for 

solving budget-optimal problems as an SDP, which was applied to several of the 

budget-optimal problems in this chapter.  The number of lower-level SDPs and their 

associated run-times are presented in Tables 5.23 and 5.24. 

Heuristic 5.1: 

 Step 0: Solve the flexible-budget SDP for the identical problem (i.e., for the 

same total budget).  This solution acts as an upper bound for a budget-optimal 
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objective.  Solve the fixed-budget problem to obtain a lower bound and 

approximate run-time for this lower-level SDP.
25

  

 Step 1: A) Compute the number of cost coefficient combinations that produce 

feasible budget allocations (i.e., the values of itx  such that Bxc
T

t

N

i

itit 


 

1

1 1

).  

B) From the average run-time of the lower-level SDP (calculated in Step 0), 

determine if expected run-time is sufficiently fast.  If so, solve for an optimal 

budget allocation and stop; solution will be optimal via from Theorem 4.3.  If 

not, continue to Step 2. 

 Step 2: Reduce the number of cost combinations in the following manner: for 

each time period considered in isolation, calculate all possible budget 

allocations.  Eliminate all cost coefficients, itc , that are a combination of any 

other coefficients in that time period.  For example, if there are five cost 

coefficients at time period t  with   500) 340, 220, 120, (40,,,,, 54321 ttttt ccccc , 

then eliminate 3404 tc , since 340432  ttt ccc .  Calculate the reduced 

number of lower-level SDPs and expected run-time.  If sufficiently small, 

solve for all budget-optimal allocations and go to Step 4; otherwise, go to Step 

3. 

 Step 3: Eliminate the cost coefficient that is closest (but smaller) to another 

coefficient or combination of coefficients.  For example, if the four cost 

coefficients at time t  are   280) 200, (75,130,,,, 4321 tttt cccc , then eliminate 

                                                 
25

 The average run-time for a single fixed-budget SDP can be negligible (much less than one second).  

Thus, for the CCS projects modeled in this chapter, our estimate was calculated in terms of fixed-

budget SDPs solved per CPU second. 
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2003 tc , since 2051307521  tt cc .  Calculate the reduced number of 

lower-level SDPs and the corresponding expected run-time.  If sufficiently 

small, go to Step 4; otherwise, repeat Step 3.
26

 

 Step 4: Compare the result to the flexible-budget result.  If budget-optimal 

solution is not close to the flexible-budget result, return to Step 1 and increase 

the run-time threshold.  For an infinite run-time threshold, a solution will be 

optimal, since the heuristic will only perform Step 1, which is optimal by 

Theorem 4.3. ■  

Fortunately, as Tables 5.13 and 5.16 show, the budget-optimal objectives were 

sufficiently close to the flexible-budget values that the optimality gaps, if any, were 

small.  For the pre-combustion cases, the largest optimality gap for any budget case 

(the 1800€ million budget case) was 1.5%; for post-combustion and oxyfuel it was a 

mere 0.01% (for the 4800€ million case).  Since there is no known way of 

incorporating the budget allocation constraint into the SDP, the solution to the 

flexible-budget problem is likely the only certain optimality upper bound.  Lower 

bounds are obtained by solving for the fixed-budget problem with largest objective 

function value at that point.  Table 5.23 provides the run-times number of lower-level 

SDPs solved for every budget for pre-combustion projects; Table 5.24 provides those 

results for the post-combustion and oxyfuel projects.  Appendix G lists the cost 

coefficients that exist and the ones that were eliminated for the larger budget cases for 

the post-combustion and oxyfuel projects.  

                                                 
26

 Note that in Step 2 and Step 3, the elimination of a cost coefficient at any time period reduces the 

number of lower-level SDPs by one-half, since the total number of combinations for N cost 

coefficients at each time period is  222 1 NN
. 
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Table 5.23: Run-Times and Number of Lower-Level SDPs Solved for the Pre-

Combustion Projects Budget-Optimal Problems 

 
Total Budget 600 [m €] 1200 [m €] 1800 [m €] 2400 [m €] 2910 [m €] 3420 [m €] 3930 [m €]

Run-Time 

(sec)
22 514 201 851 1,873 386 558

Lower-Level 

SDPs
710 24,376 8,708 38,608 73,922 16,815 20,518

 

 

Table 5.24: Run-Times and Number of Lower-Level SDPs Solved for the Post-

Combustion and Oxyfuel Projects Budget-Optimal Problems 

 
Total Budget 600 [m €] 1200 [m €] 1800 [m €] 2100 [m €] 2400 [m €] 4800 [m €]

Run-Time 

(sec)
2 19 205 119 157 1,828

Lower-Level 

SDPs
156 5,947 75,813 40,332 55,471 607,474

 

5.7 Policy Implications of Results 

In this chapter, we combine subject matter expert interviews with a real options 

approach to find risk-minimizing public funding strategies for CCS.  The results of 

the expert elicitations show that testing the innovative CCS technologies for the first 

time should best be carried out in small pilot plants.  The knowledge gained in such 

projects at lower total costs (yet higher costs per kW installed) benefits projects at the 

demonstration and full-scale stage.  The post-combustion capture technology, which 

is generally understood as being closest to the market, already shows the highest 

success probabilities at the lowest cost.  This result is consistent with the literature, as 

well as the actual EU CCS funding strategy (Tzimas, 2009; RECCS, 2010).  Under 

the EEPR, it was decided to co-finance four post-combustion projects, one pre-

combustion and one oxyfuel project (European Commission, 2009).   

The experts’ answers regarding the cross-technology spillover effect show 

interesting, albeit divergent, opinions.  While some experts expect some positive 
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effects on the costs of subsequent projects between post-combustion and oxyfuel 

capture, other experts expect no effect at all.  Those experts even outline a sharp 

decrease in the success probability if one technology is successfully introduced on the 

market.  This possible outcome is explained by the necessity for only one proven 

capture technology in the power sector and the resulting stop in public funding for the 

substitutable technology. 

In addition to the value of the real options approach for considering a set of CCS 

projects, the solutions we present point to the importance of allocating budgets in a 

way that best utilizes the projects’ ability to make use of them.  The results for the 

pre-combustion projects (Table 5.16) seem to indicate that allocating more funds in 

the early time periods produces an optimal budget allocation, while the post-

combustion and oxyfuel projects (Table 5.13) have an optimal budget allocation that 

somewhat favors more funding in later time periods.  In general, it is difficult to 

predict the appropriate allocation without explicitly solving the budget-optimal 

problem.  While it is likely that the costs for the projects could accommodate several 

different budget allocations, it is important to identify how success probabilities 

change with funding levels, as the outcomes are greatly dependent upon it.  Any study 

whose results affect actual funding decisions should consider a more detailed 

technology success probability distribution for each project, in the hopes of allocating 

a budget, and then funding projects, in a way that is fully optimal. 

Nevertheless, there arises a natural conflict between the risk-minimizing CCS 

portfolio strategy from the perspective of the funding agency modeled in this chapter 

and the necessity for a credible funding strategy from the perspective of the firms: the 
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CCS technology is a complex compound of technologies which faces significant 

barriers towards its large-scale implementation.  Those barriers consist not only in the 

form of technological hurdles, but also in the uncertain legal and institutional 

framework.  Real options modeling may show that it is optimal to cancel ongoing or 

planned projects in case of underperformance or in the event of third-party projects 

reaching success.  This strategy necessarily adds another dimension of uncertainty to 

the project planning process of the firms.   

Another conflict arises from the regional distribution of potential projects. 

According to the European Commission, a maximum of one project may receive 

public funding in each member state.  While this allotment appears to be a fair 

procedure at a policy level, it may result in an inefficient project portfolio.  This 

inefficiency in portfolio selection may be further enforced due to individual delays in 

member state projects—for example, due to delays in the planning and approval 

process.  Under the EEPR funding scheme, the European Commission limited this 

risk by only granting funding to projects which can prove by the end of 2011 that the 

technical, legal and regulatory framework allows the demonstration of the full carbon 

capture, transport and storage chain (European Commission, 2009).  Finally, our 

results show that a budget-optimal allocation leads to objective function values very 

close to the fully flexibly budget allocation. The advantage of the budget-optimal 

allocation over the flexible allocation is an increase in the credibility of the funding 

scheme from the perspective of the firms undertaking such high risk projects. 
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Chapter 6:  Conclusions and Extensions 

The main chapters of this dissertation provide four fundamental categories of 

results.  First, the value of the real options models demonstrates the benefits over 

qualitative, ad hoc methods commonly used, especially in government-sponsored, 

R&D intensive procurement (Ceylan and Ford, 2002).  The methods applied in these 

chapters not only highlight the value of the delayed decisions common to real options 

valuation (for example, Ward, et al., 1995), but also establishes the importance of 

budget flexibility and an optimal budget allocation.  The second major contribution is 

the development of equivalent methods for modeling such problems: stochastic 

dynamic programming and integer programming, which provides a roadmap for 

expressing similar Markov decision processes as integer programs.  The third 

contribution is solving the otherwise, two-level, budget-optimal SDP as a one-level 

IP.  Each approach has advantages with respect to the other; we provide specific 

guidelines where each method is likely the preferred technique.  In general, the IP is 

more efficient when solving a large number of projects (or cost coefficients) while the 

SDP can be efficiently utilized using heuristics and solving for the flexible-budget 

problem as an upper bound.  The fourth contribution is the application of the model to 

an actual set of technologically uncertain, R&D intensive projects being undertaken 

that are subject to public funding: pre-combustion, post-combustion and oxyfuel 

carbon capture and storage projects in the European Union.  In addition to providing 

value for those concerned with the actual funding strategies of these CCS 

applications, the research we conducted provides illustrative processes for data 
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collections, expert elicitation, and state definition techniques for risky R&D 

initiatives unrelated to clean energy.   

6.1 Utility and Limitations of the Real Options Methods 

Though government acquisition managers recognize they are using real options 

approaches, through multi-project, multi-stage competitions, to mitigate the technical 

risks associated with R&D intensive acquisition programs, there have been few 

analytical frameworks available for their use.  This dissertation develops a general 

formulation of such competitions that may be readily solved through stochastic 

dynamic programming or integer programming to determine the optimal portfolio of 

project options to purchase and exercise.   

The real options model approaches utilized in this dissertation provide a set of 

quantitative measures for appropriate levels of funding.  The models presented, such 

as the flexible budget example in Section 2.4.2, illustrate the value in the wait-and-see 

approach fundamental to real options theory.  On the other hand, these methods can 

often provide counter-intuitive results, such as funding a smaller set of projects 

initially, as opposed to spreading the funding over more projects where the diluted 

funds produce several unsuccessful projects more likely than fewer well-funded 

projects.  The numerical example in Section 2.4.1 illustrates how this strategy could 

be optimal.  Such conclusions are important to identify and analyze. 

An additional benefit of the real options approaches presented in this work is that 

it can explicitly recognize the effect budgeting has on the solutions obtained from the 

models.  Based on the numerical examples presented in Chapters 2 and 3, along with 

the actual CCS projects in Chapter 5, we find that allowing budget flexibility and 
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multiple finding levels may increase the probability of program success.  While the 

specific project selection and the budget are typically considered as separate 

problems, the ability to optimize the budget greatly increases our likelihood of 

success, which thereby decreases the chances of cost overruns (Tseng, et al., 2005).  

When the budgets must be determined in advance, the extent to which the lower-level 

problem (i.e., the real options funding strategy) can inform the upper-level problem 

(i.e., the budget allocation) is vitally important to a successful acquisition outcome. 

Nevertheless, significant hurdles hinder the wide-spread adoption of such 

methods to R&D intensive acquisitions.  Perhaps the most obvious difficulty is the 

ability for the acquisition managers to obtain well-defined probability distributions 

for the technical progress of the projects they evaluate.  There are two mitigating 

strategies that can be employed when using the models presented here.  

First, due to the temporal nature of these real options problems, any subsequent 

information that provides more reliable probability, cost or budget estimates can be 

incorporated into the model and solved to optimality from that point forward.  While 

any potential modification of the data will not guarantee optimality for the previous 

time periods, the ability to be optimal from that intermediate time period forward 

provides a risk-mitigation strategy for employing these real options models. This 

flexibility extends not only to funding decisions, but potentially future budget 

allocations as well.  

Secondly, robust optimization techniques could be utilized to obtain solutions that 

are within some range of optimality and feasibility.  Since the budgets available and 

(to a lesser extent) project costs are often more certain than the estimates of the 
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probability distributions, it is vital to find solutions that are “solution robust,” which 

remain near-optimal for all scenarios of the input data (Mulvey, et al., 1995).  

Specifically, if the greatest uncertainly is in the probabilities of success (i.e., the 

objective function coefficients), a robust optimization could potentially make use of 

recent methods, such as Bertsimas and Sim (2003), who provide a method for 

obtaining for robust solutions on IPs containing n  binary variables that solves in at 

most 1n  instances of the original IP.   

When using the SDP approach, one can make assumptions on the uncertainties of 

the transition probabilities (Bertsimas, et al., 2011).  For example, Nilim and El 

Ghaoui (2005) formulate “robust” SDPs with explicit bounds on optimality that can 

be achieved with practically no extra computing cost beyond the original SDP.  

Moreover, they derive a similar bound for an uncertainty set with a finite number of 

possible values for the transition matrices (an assumption that several problems in this 

dissertation could likely assume).  Such methods could be employed to help provide 

robust solutions for the multi-stage real options problems discussed in this 

dissertation.       

A second major obstacle towards implementation is that our models assume to 

some extent the flexibility to down-select projects based on the performance of the 

portfolio or a specific project.  In reality, such large R&D projects with public 

funding are not so agile, especially when the down-select is due to a competing 

project doing well, rather than specific poor performance of the project being 

reduced.  Nevertheless, it can be handled in many cases, though the risk of reduced or 

discontinued funding due to these strategies would likely increase the upfront 
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contractual costs (Ceylan and Ford, 2002).  For the purposes of our examples, we 

assume full transparency of the strategies employed by the real options model user 

(e.g., the public funding agency).  For the CCS projects, we assumed internal 

resources were included in the developments of the plants, but were not sufficient to 

continue the R&D efforts without continued public support. 

A third obstacle is that the future budgets (whether fixed or flexible) may be 

uncertain, especially in the later years.  Fortunately, the SDP approach can handle this 

uncertainty by calculating a set of solutions that optimizes the objective function.  If 

the budget for each time period can be described by a probability distribution, then 

the Markov process can be incorporated as part of the solution with these budget 

uncertainties.  However, the computational complexity of the model will increase, as 

the solution must optimize over all possible future budgets.  Incorporating this 

realistic scenario into the multi-stage competition in this dissertation could prove to 

be an insightful extension to public-sector managers facing fiscal uncertainty. 

6.2 Formulation and Modeling Approaches 

Practitioners can employ the stochastic dynamic programming or integer 

programming formulations in this dissertation to determine an optimal combination of 

projects to fund and how much funding each project should receive within an R&D 

portfolio to achieve a given objective.  In general terms, the SDP approach’s 

advantages over the IP formulation are:  it can handle larger sized problems; it has 

shorter run-times for the fixed-budget problem; and it can readily incorporate a 

flexible-budget state variable.  Additionally, the memoryless property that the SDP 

utilizes ensures that the growth in the computational complexity of the model will 
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grow only linearly with the number of time periods.  This path-independent property 

does not hold if the IP uses linearization constraints.  While solving for the budget-

optimal problem requires solving a large number of lower-level SDPs, each lower-

level problem can be solved independently, which can take advantage of parallel 

processing in a more obvious manner than the IP. 

An advantage of the IP approach over the more traditional SDP approach is the 

ability to identify the optimal a priori budget for each time period given a fixed 

budget for the overall project portfolio.  Like the SDP approach, the IP model can be 

used iteratively after each decision point has been reached to fine-tune the optimal 

strategy conditional upon each funded project’s progress up to that point.  Also, 

modeling this type of real options problem as an IP more readily facilitates “what-if” 

analysis by easily incorporating additional side constraints to the problem (e.g., the 

budget for a given time period must be within a certain range; funding of one project 

is conditional on the funding decision of another at a certain time period).  If a 

practitioner anticipates building models with many of these side constraints, the IP 

approach could be preferred, since the set-up time for a completely new SDP may be 

greater than modifying an existing IP.  The set-up time for an IP, however, can be 

quite large when the number of time periods is significant, as even semi-automated 

construction of the linearization variables can be cumbersome. 

While it is certainly true that the LINGO and XPRESS-MP solvers typically can 

only solve modestly-sized problems (due to the large number of linearization 

constraints and continuous variables), continual improvements in commercial IP 

solvers beyond merely faster processor time does suggest larger problems may be yet 
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be tractable in the future.  Moreover, techniques for obtaining more concise 0-1 

linearizations are a field of active research.  For example, Adams and Forrester 

(2005) propose a method for linearizing a mixed 0-1 cubic program with n  variables 

in 
2

)1( nn
 additional continuous variables and 

2

)1( nn
 inequality constraints.  

While the product of binary variables is often greater than three in the IP version of 

the real options model, (3.4) can be written so that only the objective function is 

nonlinear.  Such an implementation could potentially reduce the number of 

linearization constraints and increase the size of problems an IP model could solve.   

Additionally, the problems solved in this dissertation were done so on a typical 

laptop computer, not on a cluster of super computers.  While faster computers would 

no doubt solve the SDP formulations more quickly, they would also provide a larger 

space for which these real options problems can be solved using IP approaches, 

especially if those computers could utilize a diverse set of commercial IP solvers.   

Other solution techniques can be employed to reduce the excessive IP run-times 

or solve larger-sized problems.  In Chapter 4, we solved the nonlinear version of the 

integer program with lackluster results; however, other, more specialized, nonlinear 

solvers may perform better.  Local solutions were obtained quickly, but those 

solutions were often not globally optimal.  Relaxing the binary constraints produced 

unusable solutions, though it could be utilized as part of a branching and bounding 

approach.  Taking logarithms of the binary variables eliminates the multiplication of 

variables, but results in nonlinear constraints.  With further research, some 

combination of these approaches could expand the region over which the IP 



 

 188 

 

formulation would be the preferred solution approach for the optimal a priori budget 

allocation real options problem. 

In Chapter 5, we solved the formulated real options problem for a detailed set of 

pre-combustion, post-combustion and oxyfuel CCS projects.  While the run-times for 

the budget-optimal problem could be lengthy, the solution heuristics that were 

implemented produced optimal (or near-optimal) solutions with reasonable run-times.  

However, the successful implementation of Heuristic 5.1 for the budget-optimal 

problem does not imply such models can be applied to larger sets of projects with 

little concern for the computational complexity and state size of the problem.  Due to 

the technologically unique aspects of pre-combustion, we evaluated those funding 

strategies separately and from a different source of funding.  This separation approach 

allows the models’ complexity to be greatly reduced, since SDPs state size suffers 

from the “curse of dimensionality” when two sets of projects are combined.  A reason 

for the increased number of states is the partial path-dependency for some CCS 

projects.  These dependencies occur because some projects’ transitional probabilities 

are affected by:  i) how long has a project been in the “construction” phase and ii) 

whether the project completed the previous phase.  However, a complete path-

dependency for all projects (e.g., knowing the mix of projects for each time period) 

would destroy the Markov property and would require total enumeration.  

Even without path-dependencies, one can imagine that the addition of a few more 

projects, states or funding levels would make the problem intractable to solve using 

the SDP or IP approaches presented.  At that point, some form of approximate 

dynamic programming or other heuristic approach could be employed to get 
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meaningful solutions (Powell, 2009).  A specific example of a solution technique is to 

assign a value to only a subset of the possible states (e.g., the value of being in the 

state where any project has achieved state S  are all identical, regardless of which 

states the other projects occupy).  In effect, we would have a composite state that 

represents a set of states with assumed homogenous properties.  Fortunately, for the 

projects evaluated in Chapter 5, such approximation or simplification techniques were 

not necessary. 

6.3 Extending the Real Options Models to Other Problem Classes 

An obvious extension of the real options model would be to other technologically 

uncertain, research-intensive, and publically funded (either partially or wholly) 

projects whose outcome is difficult or impossible to monetize using traditional real 

options approaches.  As we noted in Chapter 5, the economic value of the CCS 

projects extends beyond those specific plants’ ability to capture and store CO2, as the 

technology acquired will transfer to a larger set of operators.  Moreover, while even 

this transfer knowledge can be valued, the funding for these initiatives is often 

divorced from strictly monetary considerations (Post, et al., 2004).  Thus, objective 

functions such as the maximization of project success employed in our models are 

appropriate for these types of initiatives, as traditional methods (e.g., NPV) often do 

not capture the long-range value of such R&D programs (Vonortas and Hertzfeld, 

1998). 

While the real options framework presented in this dissertation is suitable for 

many practical applications beyond CCS or other energy applications, it also serves 

as a foundation for further research, in the hopes of addressing larger classes of 
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problems. One example would be solving for optimal funding decisions while 

considering entirely different types of systems (e.g., a centralized or de-centralized air 

traffic control system).  The techniques can also be extended to consider the optimal 

number of projects to fund from a pool of identical projects, where the transitional 

probability matrices are more complex than the ones discussed here, but are difficult 

to distinguish among the separate projects.   

 The problems addressed in this dissertation typically have one decision-maker 

(e.g., the program manager of a federal agency).  For a broader class of problems, 

there could be a set of decision-makers with multiple objectives (e.g., a National 

Science Foundation panel).  In cases where those objectives conflict, relevant game 

theory must be utilized to appropriately address the outcomes (Cottle, et al., 1992).   

Of course, multiple objectives could arise from a single decision-maker with 

competing goals (Cohon, 2003).  For example, the Centers for Medicare and 

Medicaid Services manage a portfolio of research projects with the joint goals of 

increasing the quality of care while reducing the overall cost of service delivery—

goals which are often in opposition in the healthcare arena.  Developing models that 

explicitly accommodate such complex objectives would be valuable for applying the 

techniques developed in the dissertation in these contexts.  Possible solutions may 

involve applying weights to each objective, which would effectively reduce the 

objective function to a single quantitative metric that can be solved through the 

methods presented.  More realistic applications would likely include non-constant 

weights for each of the objectives for different combinations of outcomes to 

adequately reflect the convex relationship that may characterize the tradeoff among 
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different objectives.  This approach may require multi-objective optimization 

techniques that explicitly incorporate the convex relationship among different 

objectives. 
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Appendix A: Transition Probabilities for Numerical Examples in 

Chapter 2 
 

Table A1: Model 1’s First Stage Transition Probabilities 

First Stage 
Outcomes TRL  Prob 

 First Stage 
Outcomes TRL  Prob 

Project 1 4 0.20  Project 3 4 0.10 

 5 0.30   5 0.10 

 6 0.40   6 0.50 

 7 0.10   7 0.20 

 8 0.00   8 0.10 

       

Project 2 4 0.10  Project 4 4 0.30 

 5 0.20   5 0.10 

 6 0.50   6 0.40 

 7 0.20   7 0.15 

 8 0.00   8 0.05 

  

Table A2: Model 1’s Second Stage Transition Probabilities 

Second 
Stage 

Outcomes TRL  
Previou
s TRL Prob 

 Second 
Stage 

Outcomes TRL  
Previo
us TRL Prob 

Project 1 4 4 0.30  Project 3 4 4 0.20 
 5 4 0.40   5 4 0.40 
 6 4 0.20   6 4 0.20 
 7 4 0.10   7 4 0.10 
 5 5 0.40   8 4 0.10 
 6 5 0.35   5 5 0.40 
 7 5 0.25   6 5 0.35 
 6 6 0.30   7 5 0.15 
 7 6 0.50   8 5 0.10 
 8 6 0.20   6 6 0.30 
 7 7 0.40   7 6 0.40 
 8 7 0.60   8 6 0.30 
 8 8 1.00   7 7 0.30 
      8 7 0.70 

Project 2 4 4 0.10   8 8 1.00 
 5 4 0.30      
 6 4 0.40  Project 4 4 4 0.40 
 7 4 0.20   5 4 0.30 
 5 5 0.30   6 4 0.20 
 6 5 0.20   7 4 0.10 
 7 5 0.50   5 5 0.50 
 6 6 0.20   6 5 0.30 
 7 6 0.70   7 5 0.10 
 8 6 0.10   8 5 0.10 
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 7 7 0.35   6 6 0.40 
 8 7 0.65   7 6 0.30 
 8 8 1.00   8 6 0.30 
      7 7 0.50 
      8 7 0.50 
      8 8 1.00 

 

Table A3: Model 2’s First Stage Transition Probabilities 

LOW   MIDDLE   HIGH 

Project TRL  Prob   Project TRL  Prob   Project TRL  Prob 

Project 1 4 0.30   Project 1 4 0.20   Project 1 4 0.20 

  5 0.20     5 0.30     5 0.20 

  6 0.45     6 0.40     6 0.30 

  7 0.05     7 0.10     7 0.20 

  8 0.00     8 0.00     8 0.10 

Project 2 4 0.10   Project 2 4 0.10   Project 2 4 0.10 

  5 0.20     5 0.20     5 0.20 

  6 0.50     6 0.50     6 0.40 

  7 0.20     7 0.20     7 0.25 

  8 0.00     8 0.00     8 0.05 

Project 3 4 0.20   Project 3 4 0.10   Project 3 4 0.00 

  5 0.30     5 0.10     5 0.10 

  6 0.30     6 0.50     6 0.40 

  7 0.10     7 0.20     7 0.30 

  8 0.10     8 0.10     8 0.20 

Project 4 4 0.30   Project 4 4 0.30   Project 4 4 0.20 

  5 0.20     5 0.10     5 0.20 

  6 0.30     6 0.40     6 0.40 

  7 0.20     7 0.15     7 0.15 

  8 0.00     8 0.05     8 0.05 

 

Table A4: Model 2’s Second Stage Transition Probabilities 

LOW MIDDLE HIGH 

Project 
Stage 

2 
TRL  

Stage   
1   

TRL 
Prob Project 

Stage 
2 

TRL  

Stage   
1   

TRL 
Prob Project 

Stage 
2 

TRL  

Stage   
1   

TRL 
Prob 

Project 1 4 4 0.40 Project 1 4 4 0.30 Project 1 4 4 0.20 

  5 4 0.30   5 4 0.40   5 4 0.30 

  6 4 0.20   6 4 0.20   6 4 0.30 

  7 4 0.10   7 4 0.10   7 4 0.20 

  8 4 0.00   8 4 0.00   8 4 0.00 

  5 5 0.50   5 5 0.40   5 5 0.40 

  6 5 0.40   6 5 0.35   6 5 0.30 

  7 5 0.10   7 5 0.25   7 5 0.20 
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  8 5 0.00   8 5 0.00   8 5 0.10 

  6 6 0.40   6 6 0.30   6 6 0.25 

  7 6 0.50   7 6 0.50   7 6 0.50 

  8 6 0.10   8 6 0.20   8 6 0.25 

  7 7 0.50   7 7 0.40   7 7 0.50 

  8 7 0.50   8 7 0.60   8 7 0.50 

  8 8 1.00   8 8 1.00   8 8 1.00 

Project 2 4 4 0.10 Project 2 4 4 0.10 Project 2 4 4 0.10 

  5 4 0.30   5 4 0.30   5 4 0.20 

  6 4 0.40   6 4 0.40   6 4 0.50 

  7 4 0.20   7 4 0.20   7 4 0.20 

  8 4 0.00   8 4 0.00   8 4 0.00 

  5 5 0.30   5 5 0.30   5 5 0.20 

  6 5 0.20   6 5 0.20   6 5 0.30 

  7 5 0.50   7 5 0.50   7 5 0.40 

  8 5 0.00   8 5 0.00   8 5 0.10 

  6 6 0.20   6 6 0.20   6 6 0.20 

  7 6 0.70   7 6 0.70   7 6 0.65 

  8 6 0.10   8 6 0.10   8 6 0.15 

  7 7 0.35   7 7 0.35   7 7 0.30 

  8 7 0.65   8 7 0.65   8 7 0.70 

  8 8 1.00   8 8 1.00   8 8 1.00 

Project 3 4 4 0.20 Project 3 4 4 0.20 Project 3 4 4 0.20 

  5 4 0.40   5 4 0.40   5 4 0.40 

  6 4 0.20   6 4 0.20   6 4 0.20 

  7 4 0.10   7 4 0.10   7 4 0.10 

  8 4 0.10   8 4 0.10   8 4 0.10 

  5 5 0.40   5 5 0.40   5 5 0.40 

  6 5 0.35   6 5 0.35   6 5 0.35 

  7 5 0.15   7 5 0.15   7 5 0.15 

  8 5 0.10   8 5 0.10   8 5 0.10 

  6 6 0.30   6 6 0.30   6 6 0.30 

  7 6 0.40   7 6 0.40   7 6 0.40 

  8 6 0.30   8 6 0.30   8 6 0.30 

  7 7 0.30   7 7 0.30   7 7 0.30 

  8 7 0.70   8 7 0.70   8 7 0.70 

  8 8 1.00   8 8 1.00   8 8 1.00 

Project 4 4 4 0.40 Project 4 4 4 0.40 Project 4 4 4 0.30 

  5 4 0.40   5 4 0.30   5 4 0.30 

  6 4 0.10   6 4 0.20   6 4 0.20 

  7 4 0.10   7 4 0.10   7 4 0.15 

  8 4 0.00   8 4 0.00   8 4 0.05 

  5 5 0.50   5 5 0.50   5 5 0.40 

  6 5 0.30   6 5 0.30   6 5 0.30 

  7 5 0.15   7 5 0.10   7 5 0.15 

  8 5 0.05   8 5 0.10   8 5 0.15 

  6 6 0.40   6 6 0.40   6 6 0.30 

  7 6 0.35   7 6 0.30   7 6 0.35 
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  8 6 0.25   8 6 0.30   8 6 0.35 

  7 7 0.55   7 7 0.50   7 7 0.45 

  8 7 0.45   8 7 0.50   8 7 0.55 

  8 8 1.00   8 8 1.00   8 8 1.00 
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Appendix B: LINGO Code for Three-Project, Three-Time 

Period Integer Program 
model: 

 

DATA: 

M = 10000.0; 

nTRL = 4; nTRLP1 = 5; 

nTRLM1 = 3; 

nV = 3;    

nTP = 3;   

nF = 8;  

nFFFF = 4; 

nFF = 2; 

ENDDATA 

 

SETS: 

COST/1..nV/: C1, C2, C3;     !Cost matrix for each project at each period; 

TRL/1..nTRL/:  FP11, FP21, FP31;   

TRLP1/1..nTRLP1/; 

TRLM1/1..nTRLM1/; 

FUND/1..nF/: W;   ! Logic variables  

F4/1..nFFFF/; 

F2/1..nFF/; 

TRLP1M(TRLP1,TRLP1,TRLP1): OC3, X12, X22, X32, X13, X23, X33; 

TRL2(TRL,TRL); 

TRL3(TRL,TRL,TRL); 

TRL3P1(TRLP1,TRLP1,TRLP1); 

TRLM1P2(TRLM1,TRLM1); 

TRLM1P3(TRLM1,TRLM1,TRLM1); 

TRLM1P4(TRLM1,TRLM1,TRLM1,TRLM1); 

TRLM1P5(TRLM1,TRLM1,TRLM1,TRLM1,TRLM1); 

TRLM1P6(TRLM1,TRLM1,TRLM1,TRLM1,TRLM1,TRLM1); 

TRLMATRIX2(TRL,TRL): P12, P22, P32, P13, P23, P33;   !Second and third stage probability 

matrices  

 

!Logic variables that end funding in the second stage; 

TY1(TRLM1,TRLM1,TRLM1,FUND): Y1; 

TY2(TRLM1,TRLM1,F4): Y2, Y3, Y4; 

TY3(TRLM1,F2): Y5, Y6, Y7; 

 

!Logic variables that have at least one funding in the third time period;  

TZ1(TRLM1,TRLM1,TRLM1,TRLM1,TRLM1,TRLM1,FUND): Z1; 

TZ2(TRLM1,TRLM1,TRLM1,TRLM1,TRLM1,F4): Z2, Z3, Z4; 

TZ3(TRLM1,TRLM1,TRLM1,TRLM1,F2): Z5, Z6, Z7; 

!TZ4(TRLM1,TRLM1,TRLM1): Z8; 

TZ5(TRLM1,TRLM1,TRLM1,TRLM1,F4): Z9, Z13, Z17; 

TZ6(TRLM1,TRLM1,TRLM1,F2): Z10, Z11, Z14, Z15, Z18, Z19; 

!TZ7(TRLM1,TRLM1): Z12, Z16, Z20; 

TZ8(TRLM1,TRLM1,F2): Z21, Z23, Z25; 

!TZ9(TRLM1): Z22, Z24, Z26; 

ENDSETS 

 

DATA: 

FP11, FP21, FP31 = @OLE('C:\ProbsTRL5-8_2.xls', 'fpone', 'fptwo', 'fpthree'); 

P12, P22, P32, P13, P23, P33 = @OLE('C:\ProbsTRL5-8_2.xls', 'pr12', 'pr22', 'pr32', 'pr13', 

'pr23', 'pr33'); 

C1, C2, C3 = @OLE('C:\CostsTRL5-8_2.xls', 'cost1', 'cost2', 'cost3'); 

B1, B2, B3 = @OLE('C:\CostsTRL5-8_2.xls', 'bud1', 'bud2', 'bud3'); 

 

ENDDATA 

 

!objective function; 

MAX = (OC3(4,4,4) + @SUM(TRLP1(H)| H #NE# 4: @SUM(TRLP1(I)| I #NE# 4: OC3(H,I,4) ))  +   

       @SUM(TRLP1(I)| I #NE# 4: @SUM(TRLP1(J)| J #NE# 4: OC3(4,I,J) )) +  

       @SUM(TRLP1(H)| H #NE# 4: @SUM(TRLP1(J)| J #NE# 4: OC3(H,4,J) )) +  

       @SUM(TRLP1(H)| H #NE# 4: OC3(H,4,4)) +  

       @SUM(TRLP1(I)| I #NE# 4: OC3(4,I,4)) +  
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       @SUM(TRLP1(J)| J #NE# 4: OC3(4,4,J))  ); 

 

!subject to; 

 

   !1) OC3(4,I,J) constraint; 

   @FOR(TRLM1P2(I,J): OC3(4,I,J) = @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*P23(I2,I)*FP31(J1)*P32(J1,J2)*P33(J2,J)*Z1(H1

,I1,J1,H2,I2,J2,1)) );   

   !2) OC3(H,4,J); 

@FOR(TRLM1P2(H,J): OC3(H,4,J) = @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,H)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*P33(J2,J)*Z1(H1

,I1,J1,H2,I2,J2,1)) ); 

   !3) OC3(H,I,4); 

   @FOR(TRLM1P2(H,I): OC3(H,I,4) = @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,H)*FP21(I1)*P22(I1,I2)*P23(I2,I)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z1(H1

,I1,J1,H2,I2,J2,1)) ); 

   !4) OC3(4,4,J); 

   @FOR(TRLM1(J): OC3(4,4,J) = @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*P33(J2,J)*Z1(H1

,I1,J1,H2,I2,J2,1)) ); 

   !5) OC3(4,I,4); 

   @FOR(TRLM1(I): OC3(4,I,4) = @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*P23(I2,I)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z1(H1

,I1,J1,H2,I2,J2,1)) ); 

   !6) OC3(H,4,4); 

   @FOR(TRLM1(H): OC3(H,4,4) = @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,H)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z1(H1

,I1,J1,H2,I2,J2,1)) ); 

   !7) OC3(4,4,4); 

   OC3(4,4,4) = FP11(4)*FP21(4)*FP31(4)*W(1) + @SUM(TRLM1P3(H1,I1,J1): 

FP11(H1)*P12(H1,4)*FP21(I1)*P22(I1,4)*FP31(J1)*P32(J1,4)*Y1(H1,I1,J1,1))+@SUM(TRLM1P6(H1,I1,J1,

H2,I2,J2): 

P11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z1(H1,

I1,J1,H2,I2,J2,1)); 

   !8) OC3(4,5,J); 

   @FOR(TRLM1(J): OC3(4,5,J) = @SUM(TRLM1P4(H1,J1,H2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP31(J1)*P32(J1,J2)*P33(J2,J)*Z13(H1,J1,H2,J2,1)) + 

@SUM(TRLM1P5(H1,I1,J1,H2,J2): 

P11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*FP31(J1)*P32(J1,J2)*P33(J2,J)*Z3(H1,I1,J1,H2,J2,1)) +   

@SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*FP31(J1)*P32(J1,J2)*P33(J2,J)*Z1(H1,I1,J1,H2,

I2,J2,3)) ); 

   !9) OC3(4,I,5); 

   @FOR(TRLM1(I): OC3(4,I,5) = @SUM(TRLM1P4(H1,I1,H2,I2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*P23(I2,I)*Z9(H1,I1,H2,I2,1)) + 

@SUM(TRLM1P5(H1,I1,J1,H2,I2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*P23(I2,I)*FP31(J1)*Z2(H1,I1,J1,H2,I2,1)) +  

@SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*P23(I2,I)*FP31(J1)*P32(J1,J2)*Z1(H1,I1,J1,H2,

I2,J2,2)) ); 

   !10) OC3(4,5,5); 

    OC3(4,5,5) = @SUM(TRLM1P2(H1,H2): FP11(H1)*P12(H1,H2)*P13(H2,4)*Z21(H1,H2,1)) +  

@SUM(TRLM1P3(H1,J1,H2): FP11(H1)*P12(H1,H2)*P13(H2,4)*FP31(J1)*Z14(H1,J1,H2,1)) +  

@SUM(TRLM1P4(H1,J1,H2,J2): P11(H1)*P12(H1,H2)*P13(H2,4)*FP31(J1)*P32(J1,J2)*Z13(H1,J1,H2,J2,2)) 

+ @SUM(TRLM1P3(H1,I1,H2): FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*Z10(H1,I1,H2,1)) + 

@SUM(TRLM1P4(H1,I1,H2,I2): FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*Z9(H1,I1,H2,I2,2)) 

+ @SUM(TRLM1P4(H1,I1,J1,H2): FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*FP31(J1)*Z5(H1,I1,J1,H2,1)) 

+ @SUM(TRLM1P5(H1,I1,J1,H2,I2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*FP31(J1)*Z2(H1,I1,J1,H2,I2,2)) + 

@SUM(TRLM1P5(H1,I1,J1,H2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*FP31(J1)*P32(J1,J2)*Z3(H1,I1,J1,H2,J2,2)) + 

@SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*FP31(J1)*P32(J1,J2)*Z1(H1,I1,J1,H2,I2,J2,5)) 

+ @SUM(TRLM1P5(H1,I1,J1,I2,J2): 

FP11(H1)*P12(H1,4)*FP21(I1)*P22(I1,I2)*FP31(J1)*P32(J1,J2)*Y1(H1,I1,J1,1)) + 

@SUM(TRLM1P4(H1,I1,J1,I2): FP11(H1)*P12(H1,4)*FP21(I1)*P22(I1,I2)*FP31(J1)*Y1(H1,I1,J1,2)) + 

@SUM(TRLM1P4(H1,I1,J1,J2): FP11(H1)*P12(H1,4)*FP21(I1)*FP31(J1)*P32(J1,J2)*Y1(H1,I1,J1,3)) + 

@SUM(TRLM1P3(H1,I1,J1): FP11(H1)*P12(H1,4)*FP21(I1)*FP31(J1)*Y1(H1,I1,J1,5)) + 

@SUM(TRLM1P3(H1,I1,I2): FP11(H1)*P12(H1,4)*FP21(I1)*P22(I1,I2)*Y2(H1,I1,1)) +  

@SUM(TRLM1P2(H1,I1): FP11(H1)*P12(H1,4)*FP21(I1)*Y2(H1,I1,2)) +  

@SUM(TRLM1P3(H1,J1,J2): FP11(H1)*P12(H1,4)*FP31(J1)*P32(J1,J2)*Y3(H1,J1,1)) +  
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@SUM(TRLM1P2(H1,J1): FP11(H1)*P12(H1,4)*FP31(J1)*Y3(H1,J1,2)) + @SUM(TRLM1(H1): 

FP11(H1)*P12(H1,4)*Y5(H1,1)) + @SUM(TRLM1P2(I1,J1): FP11(4)*FP21(I1)*FP31(J1)*W(1)) + 

@SUM(TRLM1(I1): FP11(4)*FP21(I1)*W(2)) + @SUM(TRLM1(J1): FP11(4)*FP31(J1)*W(3)) + FP11(4)*W(5); 

    !11) OC3(5,4,J); 

    @FOR(TRLM1(J): OC3(5,4,J) = @SUM(TRLM1P4(I1,J1,I2,J2): 

FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*P33(J2,J)*Z17(I1,J1,I2,J2,1)) + 

@SUM(TRLM1P5(H1,I1,J1,I2,J2): FP11(H1)*FP21(I1)*P22(I1,I2)*P23(I2,4)* 

FP31(J1)*P32(J1,J2)*P33(J2,J)*Z4(H1,I1,J1,I2,J2,1)) + @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*P33(J2,J)*Z1(H1,I1,J1,H2,

I2,J2,4)) ); 

    !12) OC3(H,4,5); 

    @FOR(TRLM1(H): OC3(H,4,5) = @SUM(TRLM1P4(H1,I1,H2,I2): 

P11(H1)*P12(H1,H2)*P13(H2,H)*FP21(I1)*P22(I1,I2)*P23(I2,4)*Z9(H1,I1,H2,I2,1)) + 

@SUM(TRLM1P5(H1,I1,J1,H2,I2): FP11(H1)*P12(H1,H2)*P13(H2,H)*FP21(I1)*P22(I1,I2)*P23(I2,4)* 

    FP31(J1)*Z2(H1,I1,J1,H2,I2,1)) + @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,H)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*Z1(H1,I1,J1,H2,

I2,J2,2)) ); 

    !13) OC3(5,4,5);  

    OC3(5,4,5) =  @SUM(TRLM1P2(I1,I2): FP21(I1)*P22(I1,I2)*P23(I2,4)*Z23(I1,I2,1)) +                  

@SUM(TRLM1P3(I1,J1,I2): FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*Z18(I1,J1,I2,1)) +          

@SUM(TRLM1P4(I1,J1,I2,J2): 

FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*Z17(I1,J1,I2,J2,2)) +         

@SUM(TRLM1P3(H1,I1,I2): FP11(H1)*FP21(I1)*P22(I1,I2)*P23(I2,4)*Z11(H1,I1,I2,1)) +        

@SUM(TRLM1P4(H1,I1,H2,I2): FP11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,I2)*P23(I2,4)*Z9(H1,I1,H2,I2,3)) 

+ @SUM(TRLM1P4(H1,I1,J1,I2): FP11(H1)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*Z6(H1,I1,J1,I2,1)) 

+ @SUM(TRLM1P5(H1,I1,J1,H2,I2): 

P11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*Z2(H1,I1,J1,H2,I2,3)) + 

@SUM(TRLM1P5(H1,I1,J1,I2,J2): 

P11(H1)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*Z4(H1,I1,J1,I2,J2,2)) + 

@SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

P11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*Z1(H1,I1,J1,H2,I2,J2,6)) + 

@SUM(TRLM1P5(H1,I1,J1,H2,J2): 

FP11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,4)*FP31(J1)*P32(J1,J2)*Y1(H1,I1,J1,1)) + 

@SUM(TRLM1P4(H1,I1,J1,H2): FP11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,4)*FP31(J1)*Y1(H1,I1,J1,2)) + 

@SUM(TRLM1P4(H1,I1,J1,J2): FP11(H1)*FP21(I1)*P22(I1,4)*FP31(J1)*P32(J1,J2)*Y1(H1,I1,J1,4)) + 

@SUM(TRLM1P3(H1,I1,J1): FP11(H1)*FP21(I1)*P22(I1,4)*FP31(J1)*Y1(H1,I1,J1,6)) +  

@SUM(TRLM1P3(H1,I1,H2): FP11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,4)*Y2(H1,I1,1)) +  

@SUM(TRLM1P2(H1,I1): FP11(H1)*FP21(I1)*P22(I1,4)*Y2(H1,I1,3)) +  

@SUM(TRLM1P3(I1,J1,J2): FP21(I1)*P22(I1,4)*FP31(J1)*P32(J1,J2)*Y4(I1,J1,1)) +  

@SUM(TRLM1P2(I1,J1): FP21(I1)*P22(I1,4)*FP31(J1)*Y4(I1,J1,2)) + @SUM(TRLM1(I1): 

FP21(I1)*P22(I1,4)*Y6(I1,1)) + @SUM(TRLM1P2(H1,J1): FP11(H1)*FP21(4)*FP31(J1)*W(1)) + 

@SUM(TRLM1(H1): FP11(H1)*FP21(4)*W(2)) + @SUM(TRLM1(J1): FP21(4)*FP31(J1)*W(4)) + FP21(4)*W(6); 

   !14) OC3(H,5,4); 

   @FOR(TRLM1(H): OC3(H,5,4) = @SUM(TRLM1P4(H1,J1,H2,J2): 

P11(H1)*P12(H1,H2)*P13(H2,H)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z13(H1,J1,H2,J2,1)) +   

   @SUM(TRLM1P5(H1,I1,J1,H2,J2): FP11(H1)*P12(H1,H2)*P13(H2,H)*FP21(I1)*   

FP31(J1)*P32(J1,J2)*P33(J2,4)*Z3(H1,I1,J1,H2,J2,1)) + @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,H)*FP21(I1)*P22(I1,I2)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z1(H1,I1,J1,H2,

I2,J2,3)) ); 

   !15) OC3(5,I,4); 

   @FOR(TRLM1(I): OC3(5,I,4) = @SUM(TRLM1P4(I1,J1,I2,J2): 

FP21(I1)*P22(I1,I2)*P23(I2,I)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z17(I1,J1,I2,J2,1)) +   

@SUM(TRLM1P5(H1,I1,J1,I2,J2): FP11(H1)*FP21(I1)*P22(I1,I2)*P23(I2,I)*    

   FP31(J1)*P32(J1,J2)*P33(J2,4)*Z4(H1,I1,J1,I2,J2,1)) + @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,I2)*P23(I2,I)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z1(H1,I1,J1,H2,

I2,J2,4)) ); 

   !16) OC3(5,5,4); 

   OC3(5,5,4) = @SUM(TRLM1P2(J1,J2): FP31(J1)*P32(J1,J2)*P33(J2,4)*Z25(J1,J2,1)) +                 

@SUM(TRLM1P3(I1,J1,J2): FP21(I1)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z19(I1,J1,J2,1)) +                

@SUM(TRLM1P4(I1,J1,I2,J2): 

FP21(I1)*P22(I1,I2)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z17(I1,J1,I2,J2,3)) +        

@SUM(TRLM1P3(H1,J1,J2): FP11(H1)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z15(H1,J1,J2,1)) +       

@SUM(TRLM1P4(H1,J1,H2,J2): 

FP11(H1)*P12(H1,H2)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z13(H1,J1,H2,J2,3)) +       

@SUM(TRLM1P4(H1,I1,J1,J2): FP11(H1)*FP21(I1)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z7(H1,I1,J1,J2,1)) + 

      @SUM(TRLM1P5(H1,I1,J1,H2,J2): 

P11(H1)*P12(H1,H2)*FP21(I1)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z3(H1,I1,J1,H2,J2,3)) + 

@SUM(TRLM1P5(H1,I1,J1,I2,J2): 

P11(H1)*FP21(I1)*P22(I1,I2)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z4(H1,I1,J1,I2,J2,3)) +                

@SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

P11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,I2)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z1(H1,I1,J1,H2,I2,J2,7)) +  
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           @SUM(TRLM1P5(H1,I1,J1,H2,I2): 

FP11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,I2)*FP31(J1)*P32(J1,4)*Y1(H1,I1,J1,1)) +                 

@SUM(TRLM1P4(H1,I1,J1,H2): FP11(H1)*P12(H1,H2)*FP21(I1)*FP31(J1)*P32(J1,4)*Y1(H1,I1,J1,3)) +                

@SUM(TRLM1P4(H1,I1,J1,I2): FP11(H1)*FP21(I1)*P22(I1,I2)*FP31(J1)*P32(J1,4)*Y1(H1,I1,J1,4)) +

      @SUM(TRLM1P3(H1,I1,J1): FP11(H1)*FP21(I1)*FP31(J1)*P32(J1,4)*Y1(H1,I1,J1,7)) +                 

@SUM(TRLM1P3(H1,J1,H2): FP11(H1)*P12(H1,H2)*FP31(J1)*P32(J1,4)*Y3(H1,J1,1)) +       

@SUM(TRLM1P2(H1,J1): FP11(H1)*FP31(J1)*P32(J1,4)*Y3(H1,J1,3)) + @SUM(TRLM1P3(I1,J1,I2): 

FP21(I1)*P22(I1,I2)*FP31(J1)*P32(J1,4)*Y4(I1,J1,1)) + @SUM(TRLM1P2(I1,J1): 

FP21(I1)*FP31(J1)*P32(J1,4)*Y4(I1,J1,3)) + @SUM(TRLM1(J1): FP31(J1)*P32(J1,4)*Y7(J1,1)) +  

@SUM(TRLM1P2(H1,I1): FP11(H1)*FP21(I1)*FP31(4)*W(1)) + @SUM(TRLM1(H1): FP11(H1)*FP31(4)*W(3)) + 

@SUM(TRLM1(I1): FP21(I1)*FP31(4)*W(4)) + P31(4)*W(7); 

   !17) OC3(4,4,5); 

   OC3(4,4,5) = @SUM(TRLM1P4(H1,I1,H2,I2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*P23(I2,4)* Z9(H1,I1,H2,I2,1)) + 

@SUM(TRLM1P5(H1,I1,J1,H2,I2): 

P11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*Z2(H1,I1,J1,H2,I2,1)) + 

      @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*P23(I2,4)*        

FP31(J1)*P32(J1,J2)*Z1(H1,I1,J1,H2,I2,J2,2)) + @SUM(TRLM1P4(H1,I1,J1,J2): 

FP11(H1)*P12(H1,4)*FP21(I1)*P22(I1,4)*FP31(J1)*P32(J1,J2)*Y1(H1,I1,J1,1)) 

+@SUM(TRLM1P3(H1,I1,J1): FP11(H1)*P12(H1,4)*FP21(I1)*P22(I1,4)*FP31(J1)*Y1(H1,I1,J1,2)) + 

@SUM(TRLM1P2(H1,I1): FP11(H1)*P12(H1,4)*FP21(I1)*P22(I1,4)*Y2(H1,I1,1)) + @SUM(TRLM1(J1): 

FP11(4)*FP21(4)*FP31(J1)*W(1)) + FP11(4)*FP21(4)*W(2);  

   !18) OC3(4,5,4); 

   OC3(4,5,4) = @SUM(TRLM1P4(H1,J1,H2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z13(H1,J1,H2,J2,1)) + 

@SUM(TRLM1P5(H1,I1,J1,H2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*FP31(J1)*P32(J1,J2)*P33(J2,4)*                  

Z3(H1,I1,J1,H2,J2,1)) + @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*P13(H2,4)*FP21(I1)*P22(I1,I2)*      

FP31(J1)*P32(J1,J2)*P33(J2,4)*Z1(H1,I1,J1,H2,I2,J2,3)) + @SUM(TRLM1P4(H1,I1,J1,I2): 

FP11(H1)*P12(H1,4)*FP21(I1)*P22(I1,I2)*FP31(J1)*P32(J1,4)*Y1(H1,I1,J1,1)) +                 

@SUM(TRLM1P3(H1,I1,J1): FP11(H1)*P12(H1,4)*FP21(I1)*FP31(J1)*P32(J1,4)*Y1(H1,I1,J1,3)) +                

@SUM(TRLM1P2(H1,J1): FP11(H1)*P12(H1,4)*FP31(J1)*P32(J1,4)*Y3(H1,J1,1)) + @SUM(TRLM1(I1): 

FP11(4)*FP21(I1)*FP31(4)*W(1)) + FP11(4)*FP31(4)*W(3); 

   !19) OC3(5,4,4); 

   OC3(5,4,4) = @SUM(TRLM1P4(I1,J1,I2,J2): 

FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*P33(J2,4)*Z17(I1,J1,I2,J2,1)) + 

@SUM(TRLM1P5(H1,I1,J1,I2,J2): 

FP11(H1)*FP21(I1)*P22(I1,I2)*P23(I2,4)*FP31(J1)*P32(J1,J2)*P33(J2,4)*          

Z4(H1,I1,J1,I2,J2,1)) +  @SUM(TRLM1P6(H1,I1,J1,H2,I2,J2): 

FP11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,I2)*P23(I2,4)*      

FP31(J1)*P32(J1,J2)*P33(J2,4)*Z1(H1,I1,J1,H2,I2,J2,4)) + @SUM(TRLM1P4(H1,I1,J1,H2): 

FP11(H1)*P12(H1,H2)*FP21(I1)*P22(I1,4)*FP31(J1)*P32(J1,4)*Y1(H1,I1,J1,1)) +                 

@SUM(TRLM1P3(H1,I1,J1): FP11(H1)*FP21(I1)*P22(I1,4)*FP31(J1)*P32(J1,4)*Y1(H1,I1,J1,4)) +                

@SUM(TRLM1P2(I1,J1): FP21(I1)*P22(I1,4)*FP31(J1)*P32(J1,4)*Y4(I1,J1,1)) + @SUM(TRLM1(H1): 

FP11(H1)*FP21(4)*FP31(4)*W(1)) + FP21(4)*FP31(4)*W(4); 

 

   !Constraints linking all 8 W's to decision variables in first stage (X11,X21,X31), e.g, W(2) 

= (1,1,0); 

   !The W's correspond to those funding decisions where the "success" stage is reached after 

the first time period; 

  

   W(1) <= X11; 

   W(1) <= X21; 

   W(1) <= X31; 

   X11 + X21 + X31 - W(1) <= 2; 

   W(2) <= X11;  

   W(2) <= X21; 

   W(2) <= (1-X31); 

   X11 + X21 + (1-X31) - W(2) <= 2; 

   W(3) <= X11;  

   W(3) <= (1-X21); 

   W(3) <= X31; 

   X11 + (1-X21) + X31 - W(3) <= 2; 

   W(4) <= (1-X11);  

   W(4) <= X21; 

   W(4) <= X31; 

   (1-X11) + X21 + X31 - W(4) <= 2; 

   W(5) <= X11;  

   W(5) <= (1-X21); 
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   W(5) <= (1-X31); 

   X11 + (1-X21) + (1-X31) - W(5) <= 2; 

   W(6) <= (1-X11);  

   W(6) <= X21; 

   W(6) <= (1-X31); 

   (1-X11) + X21 + (1-X31) - W(6) <= 2; 

   W(7) <= (1-X11);  

   W(7) <= (1-X21); 

   W(7) <= X31; 

   (1-X11) + (1-X21) + X31 - W(7) <= 2; 

   W(8) <= (1-X11);  

   W(8) <= (1-X21); 

   W(8) <= (1-X31); 

   (1-X11) + (1-X21) + (1-X31) - W(8) <= 2; 

    

   !Constraints linking all 8 (really, 7) Y(I)'s to decision variables in second stage 

(X12,X22,X32); 

   !These variables correspond to funding decisions where the "success" stage is reached in the 

2nd stage; 

    

   !Y1 Constraints; 

   @FOR(TRLM1P3(H,I,J): @FOR(FUND(F): Y1(H,I,J,F) <= X11) ); 

   @FOR(TRLM1P3(H,I,J): @FOR(FUND(F): Y1(H,I,J,F) <= X21) ); 

   @FOR(TRLM1P3(H,I,J): @FOR(FUND(F): Y1(H,I,J,F) <= X31) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,1) <= X12(H,I,J) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,1) <= X22(H,I,J) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,1) <= X32(H,I,J) ); 

   @FOR(TRLM1P3(H,I,J): X11 + X21 + X31 + X12(H,I,J) + X22(H,I,J) + X32(H,I,J) - Y1(H,I,J,1) <= 

5); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,2) <= X12(H,I,J) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,2) <= X22(H,I,J) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,2) <= (1-X32(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): X11 + X21 + X31 + X12(H,I,J) + X22(H,I,J) + (1-X32(H,I,J)) - 

Y1(H,I,J,2) <= 5);    

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,3) <= X12(H,I,J) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,3) <= (1-X22(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,3) <= X32(H,I,J) ); 

   @FOR(TRLM1P3(H,I,J): X11 + X21 + X31 + X12(H,I,J) + (1-X22(H,I,J)) + X32(H,I,J) - 

Y1(H,I,J,3) <= 5); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,4) <= (1-X12(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,4) <= X22(H,I,J) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,4) <= X32(H,I,J) ); 

   @FOR(TRLM1P3(H,I,J): X11 + X21 + X31 + (1-X12(H,I,J)) + X22(H,I,J) + X32(H,I,J) - 

Y1(H,I,J,4) <= 5); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,5) <= X12(H,I,J)); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,5) <= (1-X22(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,5) <= (1-X32(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): X11 + X21 + X31 + X12(H,I,J) + (1-X22(H,I,J)) + (1+X32(H,I,J)) - 

Y1(H,I,J,5) <= 5); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,6) <= (1-X12(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,6) <= X22(H,I,J) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,6) <= (1-X32(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): X11 + X21 + X31 + (1-X12(H,I,J)) + X22(H,I,J) + (1-X32(H,I,J)) - 

Y1(H,I,J,6) <= 5); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,7) <= (1-X12(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,7) <= (1-X22(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,7) <= X32(H,I,J) ); 

   @FOR(TRLM1P3(H,I,J): X11 + X21 + X31 + (1-X12(H,I,J)) + (1-X22(H,I,J)) + X32(H,I,J) - 

Y1(H,I,J,7) <= 5); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,8) <= (1-X12(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,8) <= (1-X22(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): Y1(H,I,J,8) <= (1-X32(H,I,J)) ); 

   @FOR(TRLM1P3(H,I,J): X11 + X21 + X31 + (1-X12(H,I,J)) +(1-X22(H,I,J))+ (1-X32(H,I,J)) - 

Y1(H,I,J,8)<= 5); 

 

   !Y2 Constraints; 

   @FOR(TRLM1P2(H,I): @FOR(F4(F): Y2(H,I,F) <= X11) );  

   @FOR(TRLM1P2(H,I): @FOR(F4(F): Y2(H,I,F) <= X21) ); 

   @FOR(TRLM1P2(H,I): @FOR(F4(F): Y2(H,I,F) <= (1-X31)) ); 

   @FOR(TRLM1P2(H,I): Y2(H,I,1) <= X12(H,I,5) ); 

   @FOR(TRLM1P2(H,I): Y2(H,I,1) <= X22(H,I,5) ); 
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   @FOR(TRLM1P2(H,I): X11 + X21 + (1-X31) + X12(H,I,5) + X22(H,I,5) - Y2(H,I,1) <= 4); 

   @FOR(TRLM1P2(H,I): Y2(H,I,2) <= X12(H,I,5) ); 

   @FOR(TRLM1P2(H,I): Y2(H,I,2) <= (1-X22(H,I,5)) ); 

   @FOR(TRLM1P2(H,I): X11 + X21 + (1-X31) + X12(H,I,5) + (1-X22(H,I,5)) - Y2(H,I,2) <= 4); 

   @FOR(TRLM1P2(H,I): Y2(H,I,3) <= (1-X12(H,I,5)) ); 

   @FOR(TRLM1P2(H,I): Y2(H,I,3) <= X22(H,I,5) ); 

   @FOR(TRLM1P2(H,I): X11 + X21 + (1-X31) + (1-X12(H,I,5)) + X22(H,I,5) - Y2(H,I,3) <= 4); 

   @FOR(TRLM1P2(H,I): Y2(H,I,4) <= (1-X12(H,I,5)) ); 

   @FOR(TRLM1P2(H,I): Y2(H,I,4) <= (1-X22(H,I,5)) ); 

   @FOR(TRLM1P2(H,I): X11 + X21 + (1-X31) + (1-X12(H,I,5)) + (1-X22(H,I,5)) - Y2(H,I,4) <= 4); 

      

   !Y3 Constraints; 

   @FOR(TRLM1P2(H,J): @FOR(F4(F): Y3(H,J,F) <= X11) );  

   @FOR(TRLM1P2(H,J): @FOR(F4(F): Y3(H,J,F) <= (1-X21)) ); 

   @FOR(TRLM1P2(H,J): @FOR(F4(F): Y3(H,J,F) <= X31) ); 

   @FOR(TRLM1P2(H,J): Y3(H,J,1) <= X12(H,5,J) ); 

   @FOR(TRLM1P2(H,J): Y3(H,J,1) <= X32(H,5,J) ); 

   @FOR(TRLM1P2(H,J): X11 + (1-X21) + X31 + X12(H,5,J) + X32(H,5,J) - Y3(H,J,1) <= 4); 

   @FOR(TRLM1P2(H,J): Y3(H,J,2) <= X12(H,5,J) ); 

   @FOR(TRLM1P2(H,J): Y3(H,J,2) <= (1-X32(H,5,J)) ); 

   @FOR(TRLM1P2(H,J): X11 + (1-X21) + X31 + X12(H,5,J) + (1-X32(H,5,J)) - Y3(H,J,2) <= 4); 

   @FOR(TRLM1P2(H,J): Y3(H,J,3) <= (1-X12(H,5,J)) ); 

   @FOR(TRLM1P2(H,J): Y3(H,J,3) <= X32(H,5,J) ); 

   @FOR(TRLM1P2(H,J): X11 + (1-X21) + X31 + (1-X12(H,5,J)) + X32(H,5,J) - Y3(H,J,3) <= 4); 

   @FOR(TRLM1P2(H,J): Y3(H,J,4) <= (1-X12(H,5,J)) ); 

   @FOR(TRLM1P2(H,J): Y3(H,J,4) <= (1-X32(H,5,J)) ); 

   @FOR(TRLM1P2(H,J): X11 + (1-X21) + X31 + (1-X12(H,5,J)) + (1-X32(H,5,J)) - Y3(H,J,4) <= 4); 

 

   !Y4 Constraints; 

   @FOR(TRLM1P2(I,J): @FOR(F4(F): Y4(I,J,F) <= (1-X11)) ); 

   @FOR(TRLM1P2(I,J): @FOR(F4(F): Y4(I,J,F) <= X21) ); 

   @FOR(TRLM1P2(I,J): @FOR(F4(F): Y4(I,J,F) <= X31) ); 

   @FOR(TRLM1P2(I,J): Y4(I,J,1) <= X22(5,I,J) ); 

   @FOR(TRLM1P2(I,J): Y4(I,J,1) <= X32(5,I,J) ); 

   @FOR(TRLM1P2(I,J): (1-X11) + X21 + X31 + X22(5,I,J) + X32(5,I,J) - Y4(I,J,1) < = 4); 

   @FOR(TRLM1P2(I,J): Y4(I,J,2) <= X22(5,I,J) ); 

   @FOR(TRLM1P2(I,J): Y4(I,J,2) <= (1-X32(5,I,J)) ); 

   @FOR(TRLM1P2(I,J): (1-X11) + X21 + X31 + X22(5,I,J) + (1-X32(5,I,J)) - Y4(I,J,2) < = 4); 

   @FOR(TRLM1P2(I,J): Y4(I,J,3) <= (1-X22(5,I,J)) ); 

   @FOR(TRLM1P2(I,J): Y4(I,J,3) <= X32(5,I,J) ); 

   @FOR(TRLM1P2(I,J): (1-X11) + X21 + X31 + (1-X22(5,I,J)) + X32(5,I,J) - Y4(I,J,3) < = 4); 

   @FOR(TRLM1P2(I,J): Y4(I,J,4) <= (1-X22(5,I,J)) ); 

   @FOR(TRLM1P2(I,J): Y4(I,J,4) <= (1-X32(5,I,J)) ); 

   @FOR(TRLM1P2(I,J): (1-X11) + X21 + X31 + (1-X22(5,I,J)) + (1-X32(5,I,J)) - Y4(I,J,4) < = 4); 

 

   !Y5 Constraints; 

   @FOR(TRLM1(H): @FOR(F2(F): Y5(H,F) <= X11) ); 

   @FOR(TRLM1(H): @FOR(F2(F): Y5(H,F) <= (1-X21)) ); 

   @FOR(TRLM1(H): @FOR(F2(F): Y5(H,F) <= (1-X31)) ); 

   @FOR(TRLM1(H): Y5(H,1) <= X12(H,5,5)); 

   @FOR(TRLM1(H): X11 + (1-X21) + (1-X31) + X12(H,5,5) - Y5(H,1) <= 3); 

   @FOR(TRLM1(H): Y5(H,2) <= (1-X12(H,5,5)) ); 

   @FOR(TRLM1(H): X11 + (1-X21) + (1-X31) + (1-X12(H,5,5)) - Y5(H,1) <= 3); 

 

   !Y6 Constraints; 

   @FOR(TRLM1(I): @FOR(F2(F): Y6(I,F) <= (1-X11)) ); 

   @FOR(TRLM1(I): @FOR(F2(F): Y6(I,F) <= X21) ); 

   @FOR(TRLM1(I): @FOR(F2(F): Y6(I,F) <= (1-X31)) ); 

   @FOR(TRLM1(I): Y6(I,1) <= X22(5,I,5)); 

   @FOR(TRLM1(I): (1-X11) + X21 + (1-X31) + X22(5,I,5) - Y6(I,1) <= 3); 

   @FOR(TRLM1(I): Y6(I,2) <= (1-X22(5,I,5)) ); 

   @FOR(TRLM1(I): (1-X11) + X21 + (1-X31) + (1-X22(5,I,5)) - Y6(I,2) <= 3); 

 

   !Y7 Constraints; 

   @FOR(TRLM1(J): @FOR(F2(F): Y7(J,F) <= (1-X11)) );  

   @FOR(TRLM1(J): @FOR(F2(F): Y7(J,F) <= (1-X21)) ); 

   @FOR(TRLM1(J): @FOR(F2(F): Y7(J,F) <= X31) ); 

   @FOR(TRLM1(J): Y7(J,1) <= X32(5,5,J)); 

   @FOR(TRLM1(J): (1-X11) + (1-X21) + X31 + X32(5,5,J) - Y7(J,1) <= 3); 

   @FOR(TRLM1(J): Y7(J,2) <= (1-X32(5,5,J)) ); 

   @FOR(TRLM1(J): (1-X11) + (1-X21) + X31 + (1-X32(5,5,J)) - Y7(J,2) <= 3); 
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!Z1 Constraints -- Z1 is largest variable set, it corresponds to fund-all, fund-all in the 

first two stages; 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): @FOR(FUND(F): Z1(H1,I1,J1,H2,I2,J2,F) <= X11) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): @FOR(FUND(F): Z1(H1,I1,J1,H2,I2,J2,F) <= X21) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): @FOR(FUND(F): Z1(H1,I1,J1,H2,I2,J2,F) <= X31) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): @FOR(FUND(F): Z1(H1,I1,J1,H2,I2,J2,F) <= X12(H1,I1,J1)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): @FOR(FUND(F): Z1(H1,I1,J1,H2,I2,J2,F) <= X22(H1,I1,J1)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): @FOR(FUND(F): Z1(H1,I1,J1,H2,I2,J2,F) <= X32(H1,I1,J1)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,1) <= X13(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,1) <= X23(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,1) <= X33(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + 

X32(H1,I1,J1) +  

 X13(H2,I2,J2) + X23(H2,I2,J2) + X33(H2,I2,J2) - Z1(H1,I1,J1,H2,I2,J2,1) <= 8); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,2) <= X13(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,2) <= X23(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,2) <= (1-X33(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + 

X32(H1,I1,J1) +  

 X13(H2,I2,J2) + X23(H2,I2,J2) + (1-X33(H2,I2,J2)) - Z1(H1,I1,J1,H2,I2,J2,2) <= 8); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,3) <= X13(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,3) <= (1-X23(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,3) <= X33(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + 

X32(H1,I1,J1) +  

 X13(H2,I2,J2) + (1-X23(H2,I2,J2)) + X33(H2,I2,J2) - Z1(H1,I1,J1,H2,I2,J2,3) <= 8); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,4) <= (1-X13(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,4) <= X23(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,4) <= X33(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + 

X32(H1,I1,J1) +  

 (1-X13(H2,I2,J2)) + X23(H2,I2,J2) + X33(H2,I2,J2) - Z1(H1,I1,J1,H2,I2,J2,4) <= 8); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,5) <= X13(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,5) <= (1-X23(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,5) <= (1-X33(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + 

X32(H1,I1,J1) +  

 X13(H2,I2,J2) + (1-X23(H2,I2,J2)) + (1-X33(H2,I2,J2)) - Z1(H1,I1,J1,H2,I2,J2,5) <= 8); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,6) <= (1-X13(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,6) <= X23(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,6) <= (1-X33(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + 

X32(H1,I1,J1) +  

 (1-X13(H2,I2,J2)) + X23(H2,I2,J2) + (1-X33(H2,I2,J2)) - Z1(H1,I1,J1,H2,I2,J2,6) <= 8); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,7) <= (1-X13(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,7) <= (1-X23(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,7) <= X33(H2,I2,J2) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + 

X32(H1,I1,J1) + (1-X13(H2,I2,J2)) + (1-X23(H2,I2,J2)) + X33(H2,I2,J2) - Z1(H1,I1,J1,H2,I2,J2,7) 

<= 8); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,8) <= (1-X13(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,8) <= (1-X23(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): Z1(H1,I1,J1,H2,I2,J2,8) <= (1-X33(H2,I2,J2)) ); 

   @FOR(TRLM1P6(H1,I1,J1,H2,I2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + 

X32(H1,I1,J1) + (1-X13(H2,I2,J2)) + (1-X23(H2,I2,J2)) + (1-X33(H2,I2,J2)) - 

Z1(H1,I1,J1,H2,I2,J2,8) <= 8); 

 

   !Z2 Constraints; 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): @FOR(F4(F): Z2(H1,I1,J1,H2,I2,F) <= X11) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): @FOR(F4(F): Z2(H1,I1,J1,H2,I2,F) <= X21) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): @FOR(F4(F): Z2(H1,I1,J1,H2,I2,F) <= X31) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): @FOR(F4(F): Z2(H1,I1,J1,H2,I2,F) <= X12(H1,I1,J1)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): @FOR(F4(F): Z2(H1,I1,J1,H2,I2,F) <= X22(H1,I1,J1)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): @FOR(F4(F): Z2(H1,I1,J1,H2,I2,F) <= (1-X32(H1,I1,J1)) ) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): Z2(H1,I1,J1,H2,I2,1) <= X13(H2,I2,5) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): Z2(H1,I1,J1,H2,I2,1) <= X23(H2,I2,5) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + (1-

X32(H1,I1,J1)) + X13(H2,I2,5) + X23(H2,I2,5) - Z2(H1,I1,J1,H2,I2,1) <= 7); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): Z2(H1,I1,J1,H2,I2,2) <= X13(H2,I2,5) ); 
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   @FOR(TRLM1P5(H1,I1,J1,H2,I2): Z2(H1,I1,J1,H2,I2,2) <= (1-X23(H2,I2,5)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + (1-

X32(H1,I1,J1)) +  X13(H2,I2,5) + (1-X23(H2,I2,5)) - Z2(H1,I1,J1,H2,I2,2) <= 7); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): Z2(H1,I1,J1,H2,I2,3) <= (1-X13(H2,I2,5)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): Z2(H1,I1,J1,H2,I2,3) <= X23(H2,I2,5) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + (1-

X32(H1,I1,J1)) + (1-X13(H2,I2,5)) + X23(H2,I2,5) - Z2(H1,I1,J1,H2,I2,3) <= 7); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): Z2(H1,I1,J1,H2,I2,4) <= (1-X13(H2,I2,5)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): Z2(H1,I1,J1,H2,I2,4) <= (1-X23(H2,I2,5)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,I2): X11 + X21 + X31 + X12(H1,I1,J1) + X22(H1,I1,J1) + (1-

X32(H1,I1,J1)) + (1-X13(H2,I2,5)) + (1-X23(H2,I2,5)) - Z2(H1,I1,J1,H2,I2,4) <= 7); 

 

   !Z3 Constraints; 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): @FOR(F4(F): Z3(H1,I1,J1,H2,J2,F) <= X11) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): @FOR(F4(F): Z3(H1,I1,J1,H2,J2,F) <= X21) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): @FOR(F4(F): Z3(H1,I1,J1,H2,J2,F) <= X31) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): @FOR(F4(F): Z3(H1,I1,J1,H2,J2,F) <= X12(H1,I1,J1)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): @FOR(F4(F): Z3(H1,I1,J1,H2,J2,F) <= (1-X22(H1,I1,J1)) ) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): @FOR(F4(F): Z3(H1,I1,J1,H2,J2,F) <= X32(H1,I1,J1)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): Z3(H1,I1,J1,H2,J2,1) <= X13(H2,5,J2) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): Z3(H1,I1,J1,H2,J2,1) <= X33(H2,5,J2) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + (1-X22(H1,I1,J1)) + 

X32(H1,I1,J1) + X13(H2,5,J2) + X33(H2,5,J2) - Z3(H1,I1,J1,H2,J2,1) <= 7); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): Z3(H1,I1,J1,H2,J2,2) <= X13(H2,5,J2) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): Z3(H1,I1,J1,H2,J2,2) <= (1-X33(H2,5,J2)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + (1-X22(H1,I1,J1)) + 

X32(H1,I1,J1) + X13(H2,5,J2) + (1-X33(H2,5,J2)) - Z3(H1,I1,J1,H2,J2,2) <= 7); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): Z3(H1,I1,J1,H2,J2,3) <= (1-X13(H2,5,J2)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): Z3(H1,I1,J1,H2,J2,3) <= X33(H2,5,J2) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + (1-X22(H1,I1,J1)) + 

X32(H1,I1,J1) + (1-X13(H2,5,J2)) + X33(H2,5,J2) - Z3(H1,I1,J1,H2,J2,3) <= 7); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): Z3(H1,I1,J1,H2,J2,4) <= (1-X13(H2,5,J2)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): Z3(H1,I1,J1,H2,J2,4) <= (1-X33(H2,5,J2)) ); 

   @FOR(TRLM1P5(H1,I1,J1,H2,J2): X11 + X21 + X31 + X12(H1,I1,J1) + (1-X22(H1,I1,J1)) + 

X32(H1,I1,J1) + (1-X13(H2,5,J2)) + (1-X33(H2,5,J2)) - Z3(H1,I1,J1,H2,J2,4) <= 7); 

 

 

   !Z4 Constraints; 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): @FOR(F4(F): Z4(H1,I1,J1,I2,J2,F) <= X11) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): @FOR(F4(F): Z4(H1,I1,J1,I2,J2,F) <= X21) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): @FOR(F4(F): Z4(H1,I1,J1,I2,J2,F) <= X31) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): @FOR(F4(F): Z4(H1,I1,J1,I2,J2,F) <= (1-X12(H1,I1,J1)) ) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): @FOR(F4(F): Z4(H1,I1,J1,I2,J2,F) <= X22(H1,I1,J1)) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): @FOR(F4(F): Z4(H1,I1,J1,I2,J2,F) <= X32(H1,I1,J1)) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): Z4(H1,I1,J1,I2,J2,1) <= X23(5,I2,J2) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): Z4(H1,I1,J1,I2,J2,1) <= X33(5,I2,J2) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): X11 + X21 + X31 + (1-X12(H1,I1,J1)) + X22(H1,I1,J1) + 

X32(H1,I1,J1) + X23(5,I2,J2) + X33(5,I2,J2) - Z4(H1,I1,J1,I2,J2,1) <= 7); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): Z4(H1,I1,J1,I2,J2,2) <= X23(5,I2,J2) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): Z4(H1,I1,J1,I2,J2,2) <= (1-X33(5,I2,J2)) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): X11 + X21 + X31 + (1-X12(H1,I1,J1)) + X22(H1,I1,J1) + 

X32(H1,I1,J1) + X23(5,I2,J2) + (1-X33(5,I2,J2)) - Z4(H1,I1,J1,I2,J2,2) <= 7); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): Z4(H1,I1,J1,I2,J2,3) <= (1-X23(5,I2,J2)) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): Z4(H1,I1,J1,I2,J2,3) <= X33(5,I2,J2) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): X11 + X21 + X31 + (1-X12(H1,I1,J1)) + X22(H1,I1,J1) + 

X32(H1,I1,J1) + (1-X23(5,I2,J2)) + X33(5,I2,J2) - Z4(H1,I1,J1,I2,J2,3) <= 7); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): Z4(H1,I1,J1,I2,J2,4) <= (1-X23(5,I2,J2)) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): Z4(H1,I1,J1,I2,J2,4) <= (1-X33(5,I2,J2)) ); 

   @FOR(TRLM1P5(H1,I1,J1,I2,J2): X11 + X21 + X31 + (1-X12(H1,I1,J1)) + X22(H1,I1,J1) + 

X32(H1,I1,J1) + (1-X23(5,I2,J2)) + (1-X33(5,I2,J2)) - Z4(H1,I1,J1,I2,J2,4) <= 7); 

 

   !Z5 Constraints; 

   @FOR(TRLM1P4(H1,I1,J1,H2): @FOR(F2(F): Z5(H1,I1,J1,H2,F) <= X11) ); 

   @FOR(TRLM1P4(H1,I1,J1,H2): @FOR(F2(F): Z5(H1,I1,J1,H2,F) <= X21) ); 

   @FOR(TRLM1P4(H1,I1,J1,H2): @FOR(F2(F): Z5(H1,I1,J1,H2,F) <= X31) ); 

   @FOR(TRLM1P4(H1,I1,J1,H2): @FOR(F2(F): Z5(H1,I1,J1,H2,F) <= X12(H1,I1,J1)) ); 

   @FOR(TRLM1P4(H1,I1,J1,H2): @FOR(F2(F): Z5(H1,I1,J1,H2,F) <= (1-X22(H1,I1,J1)) ) ); 

   @FOR(TRLM1P4(H1,I1,J1,H2): @FOR(F2(F): Z5(H1,I1,J1,H2,F) <= (1-X32(H1,I1,J1)) ) ); 

   @FOR(TRLM1P4(H1,I1,J1,H2): Z5(H1,I1,J1,H2,1) <= X13(H2,5,5) ); 

   @FOR(TRLM1P4(H1,I1,J1,H2): X11 + X21 + X31 + X12(H1,I1,J1) + (1-X22(H1,I1,J1)) + (1-

X32(H1,I1,J1)) + X13(H2,5,5) - Z5(H1,I1,J1,H2,1) <= 6); 
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   @FOR(TRLM1P4(H1,I1,J1,H2): Z5(H1,I1,J1,H2,2) <= (1-X13(H2,5,5)) ); 

   @FOR(TRLM1P4(H1,I1,J1,H2): X11 + X21 + X31 + X12(H1,I1,J1) + (1-X22(H1,I1,J1)) + (1-

X32(H1,I1,J1)) + (1-X13(H2,5,5)) - Z5(H1,I1,J1,H2,2) <= 6); 

      

   !Z6 Constraints; 

   @FOR(TRLM1P4(H1,I1,J1,I2): @FOR(F2(F): Z6(H1,I1,J1,I2,F) <= X11) ); 

   @FOR(TRLM1P4(H1,I1,J1,I2): @FOR(F2(F): Z6(H1,I1,J1,I2,F) <= X21) ); 

   @FOR(TRLM1P4(H1,I1,J1,I2): @FOR(F2(F): Z6(H1,I1,J1,I2,F) <= X31) ); 

   @FOR(TRLM1P4(H1,I1,J1,I2): @FOR(F2(F): Z6(H1,I1,J1,I2,F) <= (1-X12(H1,I1,J1)) ) ); 

   @FOR(TRLM1P4(H1,I1,J1,I2): @FOR(F2(F): Z6(H1,I1,J1,I2,F) <= X22(H1,I1,J1)) ); 

   @FOR(TRLM1P4(H1,I1,J1,I2): @FOR(F2(F): Z6(H1,I1,J1,I2,F) <= (1-X32(H1,I1,J1)) ) ); 

   @FOR(TRLM1P4(H1,I1,J1,I2): Z6(H1,I1,J1,I2,1) <= X23(5,I2,5) ); 

   @FOR(TRLM1P4(H1,I1,J1,I2): X11 + X21 + X31 + (1-X12(H1,I1,J1)) + X22(H1,I1,J1) + (1-

X32(H1,I1,J1)) + X23(5,I2,5) - Z6(H1,I1,J1,I2,1) <= 6); 

   @FOR(TRLM1P4(H1,I1,J1,I2): Z6(H1,I1,J1,I2,2) <= (1-X23(5,I2,5)) ); 

   @FOR(TRLM1P4(H1,I1,J1,I2): X11 + X21 + X31 + (1-X12(H1,I1,J1)) + X22(H1,I1,J1) + (1-

X32(H1,I1,J1)) + (1-X23(5,I2,5)) - Z6(H1,I1,J1,I2,2) <= 6); 

 

   !Z7 Constraints; 

   @FOR(TRLM1P4(H1,I1,J1,J2): @FOR(F2(F): Z7(H1,I1,J1,J2,F) <= X11) ); 

   @FOR(TRLM1P4(H1,I1,J1,J2): @FOR(F2(F): Z7(H1,I1,J1,J2,F) <= X21) ); 

   @FOR(TRLM1P4(H1,I1,J1,J2): @FOR(F2(F): Z7(H1,I1,J1,J2,F) <= X31) ); 

   @FOR(TRLM1P4(H1,I1,J1,J2): @FOR(F2(F): Z7(H1,I1,J1,J2,F) <= (1-X12(H1,I1,J1)) ) ); 

   @FOR(TRLM1P4(H1,I1,J1,J2): @FOR(F2(F): Z7(H1,I1,J1,J2,F) <= (1-X22(H1,I1,J1)) ) ); 

   @FOR(TRLM1P4(H1,I1,J1,J2): @FOR(F2(F): Z7(H1,I1,J1,J2,F) <= X32(H1,I1,J1)) ); 

   @FOR(TRLM1P4(H1,I1,J1,J2): Z7(H1,I1,J1,J2,1) <= X33(5,5,J2) ); 

   @FOR(TRLM1P4(H1,I1,J1,J2): X11 + X21 + X31 + (1-X12(H1,I1,J1)) + (1-X22(H1,I1,J1)) + 

X32(H1,I1,J1) + X33(5,5,J2) - Z7(H1,I1,J1,J2,1) <= 6); 

   @FOR(TRLM1P4(H1,I1,J1,J2): Z7(H1,I1,J1,J2,2) <= (1-X33(5,5,J2)) ); 

   @FOR(TRLM1P4(H1,I1,J1,J2): X11 + X21 + X31 + (1-X12(H1,I1,J1)) + (1-X22(H1,I1,J1)) + 

X32(H1,I1,J1) + (1-X33(5,5,J2)) - Z7(H1,I1,J1,J2,2) <= 6); 

 

   !Z9 Constraints; 

   @FOR(TRLM1P4(H1,I1,H2,I2): @FOR(F4(F): Z9(H1,I1,H2,I2,F) <= X11) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): @FOR(F4(F): Z9(H1,I1,H2,I2,F) <= X21) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): @FOR(F4(F): Z9(H1,I1,H2,I2,F) <= (1-X31)) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): @FOR(F4(F): Z9(H1,I1,H2,I2,F) <= X12(H1,I1,5)) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): @FOR(F4(F): Z9(H1,I1,H2,I2,F) <= X22(H1,I1,5)) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): Z9(H1,I1,H2,I2,1) <= X13(H2,I2,5) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): Z9(H1,I1,H2,I2,1) <= X23(H2,I2,5) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): X11 + X21 + (1-X31) + X12(H1,I1,5) + X22(H1,I1,5) + X13(H2,I2,5) 

+ X23(H2,I2,5) - Z9(H1,I1,H2,I2,1) <= 6); 

   @FOR(TRLM1P4(H1,I1,H2,I2): Z9(H1,I1,H2,I2,2) <= X13(H2,I2,5) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): Z9(H1,I1,H2,I2,2) <= (1-X23(H2,I2,5)) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): X11 + X21 + (1-X31) + X12(H1,I1,5) + X22(H1,I1,5) + X13(H2,I2,5) 

+ (1-X23(H2,I2,5)) - Z9(H1,I1,H2,I2,2) <= 6); 

   @FOR(TRLM1P4(H1,I1,H2,I2): Z9(H1,I1,H2,I2,3) <= (1-X13(H2,I2,5)) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): Z9(H1,I1,H2,I2,3) <= X23(H2,I2,5) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): X11 + X21 + (1-X31) + X12(H1,I1,5) + X22(H1,I1,5) + (1-

X13(H2,I2,5)) + X23(H2,I2,5) - Z9(H1,I1,H2,I2,3) <= 6); 

   @FOR(TRLM1P4(H1,I1,H2,I2): Z9(H1,I1,H2,I2,4) <= (1-X13(H2,I2,5)) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): Z9(H1,I1,H2,I2,4) <= (1-X23(H2,I2,5)) ); 

   @FOR(TRLM1P4(H1,I1,H2,I2): X11 + X21 + (1-X31) + X12(H1,I1,5) + X22(H1,I1,5) + (1-

X13(H2,I2,5)) + (1-X23(H2,I2,5)) - Z9(H1,I1,H2,I2,4) <= 6); 

 

   !Z10 Constraints; 

   @FOR(TRLM1P3(H1,I1,H2): @FOR(F2(F): Z10(H1,I1,H2,F) <= X11) ); 

   @FOR(TRLM1P3(H1,I1,H2): @FOR(F2(F): Z10(H1,I1,H2,F) <= X21) ); 

   @FOR(TRLM1P3(H1,I1,H2): @FOR(F2(F): Z10(H1,I1,H2,F) <= (1-X31)) ); 

   @FOR(TRLM1P3(H1,I1,H2): @FOR(F2(F): Z10(H1,I1,H2,F) <= X12(H1,I1,5)) ); 

   @FOR(TRLM1P3(H1,I1,H2): @FOR(F2(F): Z10(H1,I1,H2,F) <= (1-X22(H1,I1,5)) ) ); 

   @FOR(TRLM1P3(H1,I1,H2): Z10(H1,I1,H2,1) <= X13(H2,5,5) ); 

   @FOR(TRLM1P3(H1,I1,H2): X11 + X21 + (1-X31) + X12(H1,I1,5) + (1-X22(H1,I1,5)) + X13(H2,5,5) 

- Z10(H1,I1,H2,1) <= 5); 

   @FOR(TRLM1P3(H1,I1,H2): Z10(H1,I1,H2,2) <= (1-X13(H2,5,5)) ); 

   @FOR(TRLM1P3(H1,I1,H2): X11 + X21 + (1-X31) + X12(H1,I1,5) + (1-X22(H1,I1,5)) + (1-

X13(H2,5,5)) - Z10(H1,I1,H2,2) <= 5); 

   !Z11 Constraints; 

   @FOR(TRLM1P3(H1,I1,I2): @FOR(F2(F): Z11(H1,I1,I2,F) <= X11) ); 

   @FOR(TRLM1P3(H1,I1,I2): @FOR(F2(F): Z11(H1,I1,I2,F) <= X21) ); 

   @FOR(TRLM1P3(H1,I1,I2): @FOR(F2(F): Z11(H1,I1,I2,F) <= (1-X31)) ); 
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   @FOR(TRLM1P3(H1,I1,I2): @FOR(F2(F): Z11(H1,I1,I2,F) <= (1-X12(H1,I1,5)) ) ); 

   @FOR(TRLM1P3(H1,I1,I2): @FOR(F2(F): Z11(H1,I1,I2,F) <= X22(H1,I1,5)) ); 

   @FOR(TRLM1P3(H1,I1,I2): Z11(H1,I1,I2,1) <= X23(5,I2,5)); 

   @FOR(TRLM1P3(H1,I1,I2): X11 + X21 + (1-X31) + (1-X12(H1,I1,5)) + X22(H1,I1,5) + X23(5,I2,5) 

- Z11(H1,I1,I2,1) <= 5); 

   @FOR(TRLM1P3(H1,I1,I2): Z11(H1,I1,I2,2) <= (1-X23(5,I2,5)) ); 

   @FOR(TRLM1P3(H1,I1,I2): X11 + X21 + (1-X31) + (1-X12(H1,I1,5)) + X22(H1,I1,5) + (1-

X23(5,I2,5)) - Z11(H1,I1,I2,2) <= 5); 

 

   !Z13 Constraints; 

   @FOR(TRLM1P4(H1,J1,H2,J2): @FOR(F4(F): Z13(H1,J1,H2,J2,F) <= X11) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): @FOR(F4(F): Z13(H1,J1,H2,J2,F) <= (1-X21)) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): @FOR(F4(F): Z13(H1,J1,H2,J2,F) <= X31) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): @FOR(F4(F): Z13(H1,J1,H2,J2,F) <= X12(H1,5,J1)) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): @FOR(F4(F): Z13(H1,J1,H2,J2,F) <= X32(H1,5,J1)) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): Z13(H1,J1,H2,J2,1) <= X13(H2,5,J2) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): Z13(H1,J1,H2,J2,1) <= X33(H2,5,J2) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): X11 + (1-X21) + X31 + X12(H1,5,J1) + X32(H1,5,J1) + X13(H2,5,J2) 

+ X33(H2,5,J2) - Z13(H1,J1,H2,J2,1) <= 6); 

   @FOR(TRLM1P4(H1,J1,H2,J2): Z13(H1,J1,H2,J2,2) <= X13(H2,5,J2) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): Z13(H1,J1,H2,J2,2) <= (1-X33(H2,5,J2)) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): X11 + (1-X21) + X31 + X12(H1,5,J1) + X32(H1,5,J1) + X13(H2,5,J2) 

+ (1-X33(H2,5,J2)) - Z13(H1,J1,H2,J2,2) <= 6); 

   @FOR(TRLM1P4(H1,J1,H2,J2): Z13(H1,J1,H2,J2,3) <= (1-X13(H2,5,J2)) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): Z13(H1,J1,H2,J2,3) <= 1-X33(H2,5,J2) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): X11 + (1-X21) + X31 + X12(H1,5,J1) + X32(H1,5,J1) + (1-

X13(H2,5,J2)) + X33(H2,5,J2) - Z13(H1,J1,H2,J2,3) <= 6); 

   @FOR(TRLM1P4(H1,J1,H2,J2): Z13(H1,J1,H2,J2,4) <= (1-X13(H2,5,J2)) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): Z13(H1,J1,H2,J2,4) <= 1-X33(H2,5,J2) ); 

   @FOR(TRLM1P4(H1,J1,H2,J2): X11 + (1-X21) + X31 + X12(H1,5,J1) + X32(H1,5,J1) + (1-

X13(H2,5,J2)) + (1-X33(H2,5,J2)) - Z13(H1,J1,H2,J2,4) <= 6); 

 

   !Z14 Constraints; 

   @FOR(TRLM1P3(H1,J1,H2): @FOR(F2(F): Z14(H1,J1,H2,F) <= X11) ); 

   @FOR(TRLM1P3(H1,J1,H2): @FOR(F2(F): Z14(H1,J1,H2,F) <= (1-X21)) ); 

   @FOR(TRLM1P3(H1,J1,H2): @FOR(F2(F): Z14(H1,J1,H2,F) <= X31) ); 

   @FOR(TRLM1P3(H1,J1,H2): @FOR(F2(F): Z14(H1,J1,H2,F) <= X12(H1,5,J1)) ); 

   @FOR(TRLM1P3(H1,J1,H2): @FOR(F2(F): Z14(H1,J1,H2,F) <= (1-X32(H1,5,J1)) ) ); 

   @FOR(TRLM1P3(H1,J1,H2): Z14(H1,J1,H2,1) <= X13(H2,5,5) ); 

   @FOR(TRLM1P3(H1,J1,H2): X11 + (1-X21) + X31 + X12(H1,5,J1) + (1-X32(H1,5,J1)) + X13(H2,5,5) 

- Z14(H1,J1,H2,1) <= 5); 

   @FOR(TRLM1P3(H1,J1,H2): Z14(H1,J1,H2,2) <= (1-X13(H2,5,5)) ); 

   @FOR(TRLM1P3(H1,J1,H2): X11 + (1-X21) + X31 + X12(H1,5,J1) + (1-X32(H1,5,J1)) + (1-

X13(H2,5,5)) - Z14(H1,J1,H2,2) <= 5); 

 

   !Z15 Constraints; 

   @FOR(TRLM1P3(H1,J1,J2): @FOR(F2(F): Z15(H1,J1,J2,F) <= X11) ); 

   @FOR(TRLM1P3(H1,J1,J2): @FOR(F2(F): Z15(H1,J1,J2,F) <= (1-X21)) ); 

   @FOR(TRLM1P3(H1,J1,J2): @FOR(F2(F): Z15(H1,J1,J2,F) <= X31) ); 

   @FOR(TRLM1P3(H1,J1,J2): @FOR(F2(F): Z15(H1,J1,J2,F) <= (1-X12(H1,5,J1)) ) ); 

   @FOR(TRLM1P3(H1,J1,J2): @FOR(F2(F): Z15(H1,J1,J2,F) <= X32(H1,5,J1)) ); 

   @FOR(TRLM1P3(H1,J1,J2): Z15(H1,J1,J2,1) <= X33(5,5,J2) ); 

   @FOR(TRLM1P3(H1,J1,J2): X11 + (1-X21) + X31 + (1-X12(H1,5,J1)) + X32(H1,5,J1) + X33(5,5,J2) 

- Z15(H1,J1,J2,1) <= 5); 

   @FOR(TRLM1P3(H1,J1,J2): Z15(H1,J1,J2,2) <= (1-X33(5,5,J2)) ); 

   @FOR(TRLM1P3(H1,J1,J2): X11 + (1-X21) + X31 + (1-X12(H1,5,J1)) + X32(H1,5,J1) + (1-

X33(5,5,J2)) - Z15(H1,J1,J2,2) <= 5); 

 

   !Z17 Constraints; 

   @FOR(TRLM1P4(I1,J1,I2,J2): @FOR(F4(F): Z17(I1,J1,I2,J2,F) <= (1-X11)) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): @FOR(F4(F): Z17(I1,J1,I2,J2,F) <= X21) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): @FOR(F4(F): Z17(I1,J1,I2,J2,F) <= X31) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): @FOR(F4(F): Z17(I1,J1,I2,J2,F) <= X22(5,I1,J1)) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): @FOR(F4(F): Z17(I1,J1,I2,J2,F) <= X32(5,I1,J1)) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): Z17(I1,J1,I2,J2,1) <= X23(5,I2,J2) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): Z17(I1,J1,I2,J2,1) <= X33(5,I2,J2) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): (1-X11) + X21 + X31 + X22(5,I1,J1) + X32(5,I1,J1) + X23(5,I2,J2) 

+ X33(5,I2,J2) - Z17(I1,J1,I2,J2,1) <= 6); 

   @FOR(TRLM1P4(I1,J1,I2,J2): Z17(I1,J1,I2,J2,2) <= X23(5,I2,J2) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): Z17(I1,J1,I2,J2,2) <= (1-X33(5,I2,J2)) ); 
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   @FOR(TRLM1P4(I1,J1,I2,J2): (1-X11) + X21 + X31 + X22(5,I1,J1) + X32(5,I1,J1) + X23(5,I2,J2) 

+ (1-X33(5,I2,J2)) - Z17(I1,J1,I2,J2,2) <= 6); 

   @FOR(TRLM1P4(I1,J1,I2,J2): Z17(I1,J1,I2,J2,3) <= (1-X23(5,I2,J2)) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): Z17(I1,J1,I2,J2,3) <= X33(5,I2,J2) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): (1-X11) + X21 + X31 + X22(5,I1,J1) + X32(5,I1,J1) + (1-

X23(5,I2,J2)) + X33(5,I2,J2) - Z17(I1,J1,I2,J2,3) <= 6); 

   @FOR(TRLM1P4(I1,J1,I2,J2): Z17(I1,J1,I2,J2,4) <= (1-X23(5,I2,J2)) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): Z17(I1,J1,I2,J2,4) <= (1-X33(5,I2,J2)) ); 

   @FOR(TRLM1P4(I1,J1,I2,J2): (1-X11) + X21 + X31 + X22(5,I1,J1) + X32(5,I1,J1) + (1-

X23(5,I2,J2)) + (1-X33(5,I2,J2)) - Z17(I1,J1,I2,J2,3) <= 6); 

 

   !Z18 Constraints; 

   @FOR(TRLM1P3(I1,J1,I2): @FOR(F2(F): Z18(I1,J1,I2,F) <= (1-X11)) ); 

   @FOR(TRLM1P3(I1,J1,I2): @FOR(F2(F): Z18(I1,J1,I2,F) <= X21) ); 

   @FOR(TRLM1P3(I1,J1,I2): @FOR(F2(F): Z18(I1,J1,I2,F) <= X31) ); 

   @FOR(TRLM1P3(I1,J1,I2): @FOR(F2(F): Z18(I1,J1,I2,F) <= X22(5,I1,J1)) ); 

   @FOR(TRLM1P3(I1,J1,I2): @FOR(F2(F): Z18(I1,J1,I2,F) <= (1-X32(5,I1,J1)) ) ); 

   @FOR(TRLM1P3(I1,J1,I2): Z18(I1,J1,I2,1) <= X23(5,I2,5) ); 

   @FOR(TRLM1P3(I1,J1,I2): (1-X11) + X21 + X31 + X22(5,I1,J1) + (1-X32(5,I1,J1)) + X23(5,I2,5) 

- Z18(I1,J1,I2,1) <= 5); 

   @FOR(TRLM1P3(I1,J1,I2): Z18(I1,J1,I2,2) <= (1-X23(5,I2,5)) ); 

   @FOR(TRLM1P3(I1,J1,I2): (1-X11) + X21 + X31 + X22(5,I1,J1) + (1-X32(5,I1,J1)) + (1-

X23(5,I2,5)) - Z18(I1,J1,I2,2) <= 5); 

 

   !Z19 Constraints; 

   @FOR(TRLM1P3(I1,J1,J2): @FOR(F2(F): Z19(I1,J1,J2,F) <= (1-X11)) ); 

   @FOR(TRLM1P3(I1,J1,J2): @FOR(F2(F): Z19(I1,J1,J2,F) <= X21) ); 

   @FOR(TRLM1P3(I1,J1,J2): @FOR(F2(F): Z19(I1,J1,J2,F) <= X31) ); 

   @FOR(TRLM1P3(I1,J1,J2): @FOR(F2(F): Z19(I1,J1,J2,F) <= (1-X22(5,I1,J1)) ) ); 

   @FOR(TRLM1P3(I1,J1,J2): @FOR(F2(F): Z19(I1,J1,J2,F) <= X32(5,I1,J1)) ); 

   @FOR(TRLM1P3(I1,J1,J2): Z19(I1,J1,J2,1) <= X33(5,5,J2) ); 

   @FOR(TRLM1P3(I1,J1,J2): (1-X11) + X21 + X31 + (1-X22(5,I1,J1)) + X32(5,I1,J1) + X33(5,5,J2) 

- Z19(I1,J1,J2,1) <= 5); 

   @FOR(TRLM1P3(I1,J1,J2): Z19(I1,J1,J2,2) <= (1-X33(5,5,J2)) ); 

   @FOR(TRLM1P3(I1,J1,J2): (1-X11) + X21 + X31 + (1-X22(5,I1,J1)) + X32(5,I1,J1) + (1-

X33(5,5,J2)) - Z19(I1,J1,J2,2) <= 5); 

 

   !Z21 Constraints; 

   @FOR(TRLM1P2(H1,H2): @FOR(F2(F): Z21(H1,H2,F) <= X11) ); 

   @FOR(TRLM1P2(H1,H2): @FOR(F2(F): Z21(H1,H2,F) <= (1-X21)) ); 

   @FOR(TRLM1P2(H1,H2): @FOR(F2(F): Z21(H1,H2,F) <= (1-X31)) );    

   @FOR(TRLM1P2(H1,H2): @FOR(F2(F): Z21(H1,H2,F) <= X12(H1,5,5)) ); 

   @FOR(TRLM1P2(H1,H2): Z21(H1,H2,1) <= X13(H2,5,5) ); 

   @FOR(TRLM1P2(H1,H2): X11 + (1-X21) + (1-X31) + X12(H1,5,5) + X13(H2,5,5) - Z21(H1,H2,1) <= 

4); 

   @FOR(TRLM1P2(H1,H2): Z21(H1,H2,2) <= (1-X13(H2,5,5)) ); 

   @FOR(TRLM1P2(H1,H2): X11 + (1-X21) + (1-X31) + X12(H1,5,5) + (1-X13(H2,5,5)) - Z21(H1,H2,2) 

<= 4); 

    

   !Z23 Constraints; 

   @FOR(TRLM1P2(I1,I2): @FOR(F2(F): Z23(I1,I2,F) <= (1-X11)) ); 

   @FOR(TRLM1P2(I1,I2): @FOR(F2(F): Z23(I1,I2,F) <= X21) ); 

   @FOR(TRLM1P2(I1,I2): @FOR(F2(F): Z23(I1,I2,F) <= (1-X31)) ); 

   @FOR(TRLM1P2(I1,I2): @FOR(F2(F): Z23(I1,I2,F) <= X22(5,I1,5)) ); 

   @FOR(TRLM1P2(I1,I2): Z23(I1,I2,1) <= X23(5,I2,5) ); 

   @FOR(TRLM1P2(I1,I2): (1-X11) + X21 + (1-X31) + X22(5,I1,5) + X23(5,I2,5) - Z23(I1,I2,1) <= 

4); 

   @FOR(TRLM1P2(I1,I2): Z23(I1,I2,2) <= (1-X23(5,I2,5)) ); 

   @FOR(TRLM1P2(I1,I2): (1-X11) + X21 + (1-X31) + X22(5,I1,5) + (1-X23(5,I2,5)) - Z23(I1,I2,2) 

<= 4); 

 

   !Z25 Constraints; 

   @FOR(TRLM1P2(J1,J2): @FOR(F2(F): Z25(J1,J2,F) <= (1-X11)) ); 

   @FOR(TRLM1P2(J1,J2): @FOR(F2(F): Z25(J1,J2,F) <= (1-X21)) ); 

   @FOR(TRLM1P2(J1,J2): @FOR(F2(F): Z25(J1,J2,F) <= X31) ); 

   @FOR(TRLM1P2(J1,J2): @FOR(F2(F): Z25(J1,J2,F) <= X32(5,5,J1)) ); 

   @FOR(TRLM1P2(J1,J2): Z25(J1,J2,1) <= X33(5,5,J2) ); 

   @FOR(TRLM1P2(J1,J2): (1-X11) + (1-X21) + X31 + X32(5,5,J1) + X33(5,5,J2) - Z25(J1,J2,1) <= 

4); 

   @FOR(TRLM1P2(J1,J2): Z25(J1,J2,2) <= (1-X33(5,5,J2)) ); 
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   @FOR(TRLM1P2(J1,J2): (1-X11) + (1-X21) + X31 + X32(5,5,J1) + (1-X33(5,5,J2)) - Z25(J1,J2,2) 

<= 4); 

  

   @FOR(TRLM1P2(I,J): X12(5,I,J) = 0); 

   @FOR(TRLM1P2(H,J): X22(H,5,J) = 0); 

   @FOR(TRLM1P2(H,I): X32(H,I,5) = 0); 

   @FOR(TRLM1P2(I,J): X13(5,I,J) = 0); 

   @FOR(TRLM1P2(H,J): X23(H,5,J) = 0); 

   @FOR(TRLM1P2(H,I): X33(H,I,5) = 0); 

    

   @FOR(TRLM1(I): X12(5,I,5) = 0); 

   @FOR(TRLM1(J): X12(5,5,J) = 0); 

   @FOR(TRLM1(H): X22(H,5,5) = 0); 

   @FOR(TRLM1(J): X22(5,5,J) = 0); 

   @FOR(TRLM1(H): X32(H,5,5) = 0); 

   @FOR(TRLM1(I): X32(5,I,5) = 0); 

   @FOR(TRLM1(I): X13(5,I,5) = 0); 

   @FOR(TRLM1(J): X13(5,5,J) = 0); 

   @FOR(TRLM1(H): X23(H,5,5) = 0); 

   @FOR(TRLM1(J): X23(5,5,J) = 0); 

   @FOR(TRLM1(H): X33(H,5,5) = 0); 

   @FOR(TRLM1(I): X33(5,I,5) = 0); 

 

   @FOR(TRLM1P2(I,J): X12(4,I,J) = 0); 

   @FOR(TRLM1P2(H,J): X22(H,4,J) = 0); 

   @FOR(TRLM1P2(H,I): X32(H,I,4) = 0); 

   @FOR(TRLM1P2(I,J): X13(4,I,J) = 0); 

   @FOR(TRLM1P2(H,J): X23(H,4,J) = 0); 

   @FOR(TRLM1P2(H,I): X33(H,I,4) = 0); 

    

   @FOR(TRLM1(I): X12(4,I,4) = 0); 

   @FOR(TRLM1(J): X12(4,4,J) = 0); 

   @FOR(TRLM1(H): X22(H,4,4) = 0); 

   @FOR(TRLM1(J): X22(4,4,J) = 0); 

   @FOR(TRLM1(H): X32(H,4,4) = 0); 

   @FOR(TRLM1(I): X32(4,I,4) = 0); 

   @FOR(TRLM1(I): X13(4,I,4) = 0); 

   @FOR(TRLM1(J): X13(4,4,J) = 0); 

   @FOR(TRLM1(H): X23(H,4,4) = 0); 

   @FOR(TRLM1(J): X23(4,4,J) = 0); 

   @FOR(TRLM1(H): X33(H,4,4) = 0); 

   @FOR(TRLM1(I): X33(4,I,4) = 0); 

 

   @FOR(TRL3P1(H,I,J): X11 >= X12(H,I,J)); 

   @FOR(TRL3P1(H,I,J): X21 >= X22(H,I,J)); 

   @FOR(TRL3P1(H,I,J): X31 >= X32(H,I,J)); 

   @FOR(TRL3P1(H,I,J): X11 >= X13(H,I,J)); 

   @FOR(TRL3P1(H,I,J): X21 >= X23(H,I,J)); 

   @FOR(TRL3P1(H,I,J): X31 >= X33(H,I,J)); 

 

   !Budget constraints: First time period; 

   C1(1)*X11 + C1(2)*X21 + C1(3)*X31 <= B1; 

 

   !Second time period; 

   @FOR(TRL3(H,I,J): C2(1)*X12(H,I,J) + C2(2)*X22(H,I,J) + C2(3)*X32(H,I,J) <= B2 ); 

   @FOR(TRL2(H,I): C2(1)*X12(H,I,5) + C2(2)*X22(H,I,5) <= B2 ); 

   @FOR(TRL2(I,J): C2(2)*X22(5,I,J) + C2(3)*X32(5,I,J) <= B2 ); 

   @FOR(TRL2(H,J): C2(1)*X12(H,5,J) + C2(3)*X32(H,5,J) <= B2 ); 

   @FOR(TRL(H): C2(1)*X12(H,5,5) <= B2); 

   @FOR(TRL(I): C2(2)*X22(5,I,5) <= B2); 

   @FOR(TRL(J): C2(3)*X32(5,5,J) <= B2); 

 

   !Third time period; 

   @FOR(TRL3(H,I,J): C3(1)*X13(H,I,J) + C3(2)*X23(H,I,J) + C2(3)*X33(H,I,J) <= B3 ); 

   @FOR(TRL2(H,I): C3(1)*X13(H,I,5) + C3(2)*X23(H,I,5) <= B3 ); 

   @FOR(TRL2(I,J): C3(2)*X23(5,I,J) + C3(3)*X33(5,I,J) <= B3 ); 

   @FOR(TRL2(H,J): C3(1)*X13(H,5,J) + C3(3)*X33(H,5,J) <= B3 ); 

   @FOR(TRL(H): C3(1)*X13(H,5,5) <= B3); 

   @FOR(TRL(I): C3(2)*X23(5,I,5) <= B3); 

   @FOR(TRL(J): C3(3)*X33(5,5,J) <= B3); 
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   !W,Y,Z variables <= 1; 

   @FOR(FUND: W <= 1); 

 

   @FOR(TY1: Y1 <= 1); 

   @FOR(TY2: Y2 <= 1); 

   @FOR(TY2: Y3 <= 1); 

   @FOR(TY2: Y4 <= 1);    

   @FOR(TY3: Y5 <= 1); 

   @FOR(TY3: Y6 <= 1); 

   @FOR(TY3: Y7 <= 1); 

 

   @FOR(TZ1: Z1 <= 1); 

   @FOR(TZ2: Z2 <= 1); 

   @FOR(TZ2: Z3 <= 1); 

   @FOR(TZ2: Z4 <= 1); 

   @FOR(TZ3: Z5 <= 1); 

   @FOR(TZ3: Z6 <= 1); 

   @FOR(TZ3: Z7 <= 1); 

   @FOR(TZ5: Z9 <= 1); 

   @FOR(TZ6: Z10 <= 1); 

   @FOR(TZ6: Z11 <= 1); 

   @FOR(TZ5: Z13 <= 1); 

   @FOR(TZ6: Z14 <= 1); 

   @FOR(TZ6: Z15 <= 1); 

   @FOR(TZ5: Z17 <= 1);    

   @FOR(TZ6: Z18 <= 1); 

   @FOR(TZ6: Z19 <= 1); 

   @FOR(TZ8: Z21 <= 1); 

   @FOR(TZ8: Z23 <= 1); 

   @FOR(TZ8: Z25 <= 1); 

 

   !Xs are binary variables; 

   @BIN(X11); 

   @BIN(X21); 

   @BIN(X31); 

   @FOR(TRLP1M: @BIN(X12)); 

   @FOR(TRLP1M: @BIN(X22)); 

   @FOR(TRLP1M: @BIN(X32)); 

   @FOR(TRLP1M: @BIN(X13)); 

   @FOR(TRLP1M: @BIN(X23)); 

   @FOR(TRLP1M: @BIN(X33)); 

 

END 
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Appendix C: LINGO Code for Three-Project, Two-Time Period 

Mixed-Integer Nonlinear Program 
 

model: 

 

DATA: 

BIGM = 10000.0; 

nTRL = 4; ! 4 TRLs (5 - 8), start at 5, 8 is success; 

nTRLP1 = 5; 

nV = 3;   ! three projects to consider; 

nTP = 2;  ! two time periods; 

ENDDATA 

 

SETS: 

COST/1..nV/: C1, C2;     !Cost matrix for each project/funding level at each time period; 

TRL/1..nTRL/:  FP11, FP21, FP31;  !FP'S are first stage probability matrices for project; 

TRLP1/1..nTRLP1/; 

TRLP1M(TRLP1,TRLP1,TRLP1): OC1, OC2, X12, X22, X32; 

TRLMATRIX2(TRL,TRL): P12, P22, P32; !Second stage probability matrices for project;   

TRLMATRIX3(TRL,TRL,TRL): T3;  

ENDSETS 

 

 

DATA: 

FP11, FP21, FP31 =  

   @OLE('C:\Maryland\OptionsResearch\IPformulation\Spring09\2Vendors2TPs_2.xls', 'fponeone', 

'fptwoone', 'fpthreeone'); 

P12, P22, P32 = 

   @OLE('C:\Maryland\OptionsResearch\IPformulation\Spring09\2Vendors2TPs_2.xls', 'ponetwo', 

'ptwotwo', 'pthreetwo'); 

B1, B2, C1, C2 =  

    @OLE('C:\Maryland\OptionsResearch\IPformulation\Spring09\2Vendors2TPs_2.xls', 'bud1', 

'bud2', 'cost1', 'cost2'); 

 

 

ENDDATA 

 

 

 

!objective function; 

MAX = OC2(1,1,4) + OC2(1,2,4) + OC2(1,3,4) + OC2(1,4,4) + OC2(1,5,4) + OC2(2,1,4) + OC2(2,2,4) 

+ OC2(2,3,4) + OC2(2,4,4) + OC2(2,5,4) + OC2(3,1,4) + OC2(3,2,4) + OC2(3,3,4) + OC2(3,4,4) + 

OC2(3,5,4) + OC2(4,1,4) + OC2(4,2,4) + OC2(4,3,4) + OC2(4,4,4) + OC2(4,5,4) + OC2(5,1,4) + 

OC2(5,2,4) + OC2(5,3,4) + OC2(5,4,4) + OC2(5,5,4) + OC2(1,4,5) + OC2(2,4,5) + OC2(3,4,5) + 

OC2(5,4,5) + OC2(1,4,3) + OC2(2,4,3) + OC2(3,4,3) + OC2(5,4,3) + OC2(1,4,2) + OC2(2,4,2) + 

OC2(3,4,2) + OC2(5,4,2) + OC2(1,4,1) + OC2(2,4,1) + OC2(3,4,1) + OC2(5,4,1) + OC2(4,1,1) + 

OC2(4,1,2) + OC2(4,1,3) + OC2(4,1,5) + OC2(4,2,1) + OC2(4,2,2) + OC2(4,2,3) + OC2(4,2,5) + 

OC2(4,3,1) + OC2(4,3,2) + OC2(4,3,3) + OC2(4,3,5) + OC2(4,5,1) + OC2(4,5,2) + OC2(4,5,3) + 

OC2(4,5,5) + OC2(4,4,1) + OC2(4,4,2) + OC2(4,4,3) + OC2(4,4,5); 

 

!subject to; 

 

!Second funding stage decisions/outcomes; 

   @FOR(TRLMATRIX3(K,L,M): OC2(K,L,M) = @SUM(TRLMATRIX3(H,I,J):  

FP11(H)*FP21(I)*FP31(J)*P12(H,K)*P22(I,L)*P32(J,M)*X11*X21*X31*X12(H,I,J)*X22(H,I,J)*X32(H,I,J)

)+ @SUM(TRLMATRIX2(H,I): 

FP11(H)*FP21(I)*FP31(M)*P12(H,K)*P22(I,L)*X11*X21*X31*X12(H,I,M)*X22(H,I,M)*(1-X32(H,I,M)))+ 

@SUM(TRLMATRIX2(H,J):  FP11(H)*FP21(L)*FP31(J)*P12(H,K)*P32(J,M)*X11*X21*X31*X12(H,L,J)*(1-

X22(H,L,J))*X32(H,L,J))+ @SUM(TRLMATRIX2(I,J): 

FP11(K)*FP21(I)*FP31(J)*P22(I,L)*P32(J,M)*X11*X21*X31*(1-X12(K,I,J))*X22(K,I,J)*X32(K,I,J))+ 

@SUM(TRL(H): FP11(H)*FP21(L)*FP31(M)*P12(H,K)*X11*X21*X31*X12(H,L,M)*(1-X22(H,L,M))*(1-

X32(H,L,M)))+ 

@SUM(TRL(I):  FP11(K)*FP21(I)*FP31(M)*P22(I,L)*X11*X21*X31*(1-X12(K,I,M))*X22(K,I,M)*(1-

X32(K,I,M)))+ @SUM(TRL(J):  FP11(K)*FP21(L)*FP31(J)*P32(J,M)*X11*X21*X31*(1-X12(K,L,J))*(1-

X22(K,L,J))*X32(K,L,J))+ FP11(K)*FP21(L)*FP31(M)*X11*X21*X31*(1-X12(K,L,M))*(1-X22(K,L,M))*(1-

X32(K,L,M)) ); 
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@FOR(TRL(J): OC2(J,5,5) = @SUM(TRL(I): FP11(I)*P12(I,J)*X11*(1-X21)*(1-X31)*X12(I,5,5)) + 

FP11(J)*X11*(1-X21)*(1-X31)*(1-X12(J,5,5)) ); 

 

@FOR(TRL(J): OC2(5,J,5) = @SUM(TRL(I): FP21(I)*P22(I,J)*(1-X11)*X21*(1-X31)*X22(5,I,5)) + 

FP21(J)*(1-X11)*X21*(1-X31)*(1-X22(5,J,5)) ); 

 

@FOR(TRL(J): OC2(5,5,J) = @SUM(TRL(I): FP31(I)*P32(I,J)*(1-X11)*(1-X21)*X31*X32(5,5,I)) + 

FP31(J)*(1-X11)*(1-X21)*X31*(1-X32(5,5,J)) ); 

 

@FOR(TRLMATRIX2(J,K): OC2(J,K,5) = @SUM(TRLMATRIX2(H,I): 

FP11(H)*FP21(I)*P12(H,J)*P22(I,K)*X11*X21*(1-X31)*X12(H,I,5)*X22(H,I,5)) +  

@SUM(TRL(H): FP11(H)*FP21(K)*P12(H,J)*X11*X21*(1-X31)*X12(H,K,5)*(1-X22(H,K,5))) + 

@SUM(TRL(I): FP11(J)*FP21(I)*P22(I,K)*X11*X21*(1-X31)*(1-X12(J,I,5))*X22(J,I,5)) +  

FP11(J)*FP21(K)*X11*X21*(1-X31)*(1-X12(J,K,5))*(1-X22(J,K,5)) ); 

 

@FOR(TRLMATRIX2(J,K): OC2(J,5,K) = @SUM(TRLMATRIX2(H,I): 

FP11(H)*FP31(I)*P12(H,J)*P32(I,K)*X11*(1-X21)*X31*X12(H,5,I)*X32(H,5,I)) +  

@SUM(TRL(H): FP11(H)*FP31(K)*P12(H,J)*X11*(1-X21)*X31*X12(H,5,K)*(1-X32(H,5,K))) + 

@SUM(TRL(I): FP11(J)*FP31(I)*P32(I,K)*X11*(1-X21)*X31*(1-X12(J,5,I))*X32(J,5,I)) +  

FP11(J)*FP31(K)*X11*(1-X21)*X31*(1-X12(J,5,K))*(1-X32(J,5,K)) ); 

 

@FOR(TRLMATRIX2(J,K): OC2(5,J,K) = @SUM(TRLMATRIX2(H,I): FP21(H)*FP31(I)*P22(H,J)*P32(I,K)*(1-

X11)*X21*X31*X22(5,H,I)*X32(5,H,I)) + @SUM(TRL(H): FP21(H)*FP31(K)*P22(H,J)*(1-

X11)*X21*X31*X22(5,H,K)*(1-X32(5,H,K))) + @SUM(TRL(I): FP21(J)*FP31(I)*P32(I,K)*(1-

X11)*X21*X31*(1-X22(5,J,I))*X32(5,J,I)) + FP21(J)*FP31(K)*(1-X11)*X21*X31*(1-X22(5,J,K))*(1-

X32(5,J,K)) );    

 

!A project can only be funded in the second period if it is funded in the first; 

@FOR(TRLP1M(I,J,K): X11 >= X12(I,J,K)); 

@FOR(TRLP1M(I,J,K): X21 >= X22(I,J,K)); 

@FOR(TRLP1M(I,J,K): X31 >= X32(I,J,K)); 

 

!Budget constraints; 

C1(1)*X11 + C1(2)*X21 + C1(3)*X31 <= B1; 

@FOR(TRLMATRIX3(I,J,K): C2(1)*X12(I,J,K) + C2(2)*X22(I,J,K) +  C2(3)*X32(I,J,K) <= B2 ); 

@FOR(TRLMATRIX2(I,J): C2(2)*X22(5,I,J) + C2(3)*X32(5,I,J) <= B2 ); 

@FOR(TRLMATRIX2(I,J): C2(1)*X12(I,5,J) + C2(3)*X32(I,5,J) <= B2 ); 

@FOR(TRLMATRIX2(I,J): C2(1)*X12(I,J,5) + C2(2)*X22(I,J,5) <= B2 ); 

 

!Branching on first time period binary variables; 

X11=1; 

X21=1; 

X31=0; 

 

!Xs are binary variables; 

@BIN(X11); 

@BIN(X21); 

@BIN(X31); 

@FOR(TRLP1M: @BIN(X12)); 

@FOR(TRLP1M: @BIN(X22)); 

@FOR(TRLP1M: @BIN(X32)); 

; 
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Appendix D: LINGO Code for Three-Project, Two-Time Period 

Integer Program 
 

model: 

 

DATA: 

BIGM = 10000.0; 

nTRL = 4; ! 4 TRLs (5 - 8), start at 5, 8 is success; 

nTRLP1 = 5; 

nV = 3;   ! three projects to consider; 

nTP = 2;  ! two time periods; 

nF = 8; ! eight funding decision combinations; 

ENDDATA 

 

SETS: 

COST/1..nV/: C1, C2;     !Cost matrix for each project/funding level at each time period; 

TRL/1..nTRL/:  FP11, FP21, FP31;  !FP'S are first stage probability matrices for project; 

TRLP1/1..nTRLP1/; 

TP/1..nTP/; 

FUND/1..nF/: Y; 

TRLP1M(TRLP1,TRLP1,TRLP1): OC1, OC2, X12, X22, X32; 

TRLMATRIX2(TRL,TRL): P12, P22, P32; !Second stage probability matrices for project;   

TRLMATRIX3(TRL,TRL,TRL): ZZZZ; 

TRLMATRIX2F(TRL,TRL,TRL): Z2, Z3, Z4; 

TRLMATRIX1F(TRL,TP): Z5, Z6, Z7; 

TRLMATRIX4(TRL,TRL,TRL,FUND): Z1; 

  

ENDSETS 

 

 

DATA: 

FP11, FP21, FP31 =  

   @OLE('C:\Maryland\OptionsResearch\IPformulation\Spring09\3Vendors2TPs_2.xls', 'fponeone', 

'fptwoone', 'fpthreeone'); 

P12, P22, P32 = 

   @OLE('C:\Maryland\OptionsResearch\IPformulation\Spring09\3Vendors2TPs_2.xls', 'ponetwo', 

'ptwotwo', 'pthreetwo'); 

B1, B2, C1, C2 =  

    @OLE('C:\Maryland\OptionsResearch\IPformulation\Spring09\3Vendors2TPs_2.xls', 'bud1', 

'bud2', 'cost1', 'cost2'); 

 

ENDDATA 

 

!objective function; 

MAX = OC2(1,1,4) + OC2(1,2,4) + OC2(1,3,4) + OC2(1,4,4) + OC2(1,5,4) + OC2(2,1,4) + OC2(2,2,4) 

+ OC2(2,3,4) + OC2(2,4,4) + OC2(2,5,4) +  

      OC2(3,1,4) + OC2(3,2,4) + OC2(3,3,4) + OC2(3,4,4) + OC2(3,5,4) + OC2(4,1,4) + OC2(4,2,4) 

+ OC2(4,3,4) + OC2(4,4,4) + OC2(4,5,4) + 

      OC2(5,1,4) + OC2(5,2,4) + OC2(5,3,4) + OC2(5,4,4) + OC2(5,5,4) + OC2(1,4,5) + OC2(2,4,5) 

+ OC2(3,4,5) + OC2(5,4,5) + OC2(1,4,3) +  

 OC2(2,4,3) + OC2(3,4,3) + OC2(5,4,3) + OC2(1,4,2) + OC2(2,4,2) + OC2(3,4,2) + OC2(5,4,2) + 

OC2(1,4,1) + OC2(2,4,1) + OC2(3,4,1) +  

 OC2(5,4,1) + OC2(4,1,1) + OC2(4,1,2) + OC2(4,1,3) + OC2(4,1,5) + OC2(4,2,1) + OC2(4,2,2) + 

OC2(4,2,3) + OC2(4,2,5) + OC2(4,3,1) +  

 OC2(4,3,2) + OC2(4,3,3) + OC2(4,3,5) + OC2(4,5,1) + OC2(4,5,2) + OC2(4,5,3) + OC2(4,5,5) + 

OC2(4,4,1) + OC2(4,4,2) + OC2(4,4,3) +  

 OC2(4,4,5); 

 

!subject to; 

    

   !Branch on the first time period binary variables; 

   X11=0; 

   X21=1; 

   X31=1; 

 

   !Second funding stage decisions/outcomes; 

   @FOR(TRLMATRIX3(K,L,M): OC2(K,L,M) =  
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  @SUM(TRLMATRIX3(H,I,J): 

FP11(H)*FP21(I)*FP31(J)*P12(H,K)*P22(I,L)*P32(J,M)*Z1(H,I,J,1))+ 

  @SUM(TRLMATRIX2(H,I):  FP11(H)*FP21(I)*FP31(M)*P12(H,K)*P22(I,L)*Z1(H,I,M,2))+ 

  

  @SUM(TRLMATRIX2(H,J):  FP11(H)*FP21(L)*FP31(J)*P12(H,K)*P32(J,M)*Z1(H,L,J,3))+ 

  @SUM(TRLMATRIX2(I,J):  FP11(K)*FP21(I)*FP31(J)*P22(I,L)*P32(J,M)*Z1(K,I,J,4))+ 

  @SUM(TRL(H):  FP11(H)*FP21(L)*FP31(M)*P12(H,K)*Z1(H,L,M,5))+ 

  @SUM(TRL(I):  FP11(K)*FP21(I)*FP31(M)*P22(I,L)*Z1(K,I,M,6))+ 

  @SUM(TRL(J):  FP11(K)*FP21(L)*FP31(J)*P32(J,M)*Z1(K,L,J,7))+ 

  FP11(K)*FP21(L)*FP31(M)*Z1(K,L,M,8) ); 

 

   @FOR(TRL(J): OC2(J,5,5) = @SUM(TRL(I): FP11(I)*P12(I,J)*Z5(I,1)) + FP11(J)*Z5(J,2) ); 

   @FOR(TRL(J): OC2(5,J,5) = @SUM(TRL(I): FP21(I)*P22(I,J)*Z6(I,1)) + FP21(J)*Z6(J,2) ); 

   @FOR(TRL(J): OC2(5,5,J) = @SUM(TRL(I): FP31(I)*P32(I,J)*Z7(I,1)) + FP31(J)*Z7(J,2) ); 

 

   @FOR(TRLMATRIX2(J,K): OC2(J,K,5) = @SUM(TRLMATRIX2(H,I): 

FP11(H)*FP21(I)*P12(H,J)*P22(I,K)*Z2(H,I,1)) +  

        @SUM(TRL(H): FP11(H)*FP21(K)*P12(H,J)*Z2(H,K,2)) +  

        @SUM(TRL(I): FP11(J)*FP21(I)*P22(I,K)*Z2(J,I,3)) +  

        FP11(J)*FP21(K)*Z2(J,K,4) ); 

 

   @FOR(TRLMATRIX2(J,K): OC2(J,5,K) = @SUM(TRLMATRIX2(H,I): 

FP11(H)*FP31(I)*P12(H,J)*P32(I,K)*Z3(H,I,1)) +  

        @SUM(TRL(H): FP11(H)*FP31(K)*P12(H,J)*Z3(H,K,2)) +  

        @SUM(TRL(I): FP11(J)*FP31(I)*P32(I,K)*Z3(J,I,3)) +  

        FP11(J)*FP31(K)*Z3(J,K,4) ); 

 

   @FOR(TRLMATRIX2(J,K): OC2(5,J,K) = @SUM(TRLMATRIX2(H,I): 

FP21(H)*FP31(I)*P22(H,J)*P32(I,K)*Z4(H,I,1)) +  

        @SUM(TRL(H): FP21(H)*FP31(K)*P22(H,J)*Z4(H,K,2)) +  

        @SUM(TRL(I): FP21(J)*FP31(I)*P32(I,K)*Z4(J,I,3)) +  

        FP21(J)*FP31(K)*Z3(J,K,4) );    

 

   @FOR(FUND(I): Y(I) <= 1); 

 

   @FOR(TRLMATRIX3(H,I,J): 

     Z1(H,I,J,1) <= X11; 

     Z1(H,I,J,1) <= X21; 

     Z1(H,I,J,1) <= X31; 

     Z1(H,I,J,1) <= X12(H,I,J); 

     Z1(H,I,J,1) <= X22(H,I,J); 

     Z1(H,I,J,1) <= X32(H,I,J); 

     X11 + X21 + X31 + X12(H,I,J) + X22(H,I,J) + X32(H,I,J) - Z1(H,I,J,1) <= 5 ); 

 

   @FOR(TRLMATRIX3(H,I,J): 

     Z1(H,I,J,2) <= X11; 

     Z1(H,I,J,2) <= X21; 

     Z1(H,I,J,2) <= X31; 

     Z1(H,I,J,2) <= X12(H,I,J); 

     Z1(H,I,J,2) <= X22(H,I,J); 

     Z1(H,I,J,2) <= (1-X32(H,I,J)); 

     X11 + X21 + X31 + X12(H,I,J) + X22(H,I,J) + (1-X32(H,I,J)) - Z1(H,I,J,2) <= 5 ); 

 

   @FOR(TRLMATRIX3(H,I,J): 

     Z1(H,I,J,3) <= X11; 

     Z1(H,I,J,3) <= X21; 

     Z1(H,I,J,3) <= X31; 

     Z1(H,I,J,3) <= X12(H,I,J); 

     Z1(H,I,J,3) <= (1-X22(H,I,J)); 

     Z1(H,I,J,3) <= X32(H,I,J); 

     X11 + X21 + X31 + X12(H,I,J) + (1-X22(H,I,J)) + X32(H,I,J) - Z1(H,I,J,3) <= 5 ); 

 

   @FOR(TRLMATRIX3(H,I,J): 

     Z1(H,I,J,4) <= X11; 

     Z1(H,I,J,4) <= X21; 

     Z1(H,I,J,4) <= X31; 

     Z1(H,I,J,4) <= (1-X12(H,I,J)); 

     Z1(H,I,J,4) <= X22(H,I,J); 

     Z1(H,I,J,4) <= X32(H,I,J); 

     X11 + X21 + X31 +  (1-X12(H,I,J)) + X22(H,I,J) + X32(H,I,J) - Z1(H,I,J,4) <= 5 ); 
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   @FOR(TRLMATRIX3(H,I,J): 

     Z1(H,I,J,5) <= X11; 

     Z1(H,I,J,5) <= X21; 

     Z1(H,I,J,5) <= X31; 

     Z1(H,I,J,5) <= X12(H,I,J); 

     Z1(H,I,J,5) <= (1-X22(H,I,J)); 

     Z1(H,I,J,5) <= (1-X32(H,I,J)); 

     X11 + X21 + X31 +  X12(H,I,J) + (1-X22(H,I,J)) + (1-X32(H,I,J)) - Z1(H,I,J,5) <= 5 ); 

 

   @FOR(TRLMATRIX3(H,I,J): 

     Z1(H,I,J,6) <= X11; 

     Z1(H,I,J,6) <= X21; 

     Z1(H,I,J,6) <= X31; 

     Z1(H,I,J,6) <= (1-X12(H,I,J)); 

     Z1(H,I,J,6) <= X22(H,I,J); 

     Z1(H,I,J,6) <= (1-X32(H,I,J)); 

     X11 + X21 + X31 +  (1-X12(H,I,J)) + X22(H,I,J) + (1-X32(H,I,J)) - Z1(H,I,J,6) <= 5 ); 

 

   @FOR(TRLMATRIX3(H,I,J): 

     Z1(H,I,J,7) <= X11; 

     Z1(H,I,J,7) <= X21; 

     Z1(H,I,J,7) <= X31; 

     Z1(H,I,J,7) <= (1-X12(H,I,J)); 

     Z1(H,I,J,7) <= (1-X22(H,I,J)); 

     Z1(H,I,J,7) <= X32(H,I,J); 

     X11 + X21 + X31 +  (1-X12(H,I,J)) + (1-X22(H,I,J)) + X32(H,I,J) - Z1(H,I,J,7) <= 5 ); 

 

   @FOR(TRLMATRIX3(H,I,J): 

     Z1(H,I,J,8) <= X11; 

     Z1(H,I,J,8) <= X21; 

     Z1(H,I,J,8) <= X31; 

     Z1(H,I,J,8) <= (1-X12(H,I,J)); 

     Z1(H,I,J,8) <= (1-X22(H,I,J)); 

     Z1(H,I,J,8) <= (1-X32(H,I,J)); 

     X11 + X21 + X31 +  (1-X12(H,I,J)) + (1-X22(H,I,J)) + (1-X32(H,I,J)) - Z1(H,I,J,8) <= 5 ); 

  

   Y(1) <= X11; 

   Y(1) <= X21; 

   Y(1) <= X31; 

   X11 + X21 + X31 - Y(1) <= 2; 

 

   Y(2) <= X11; 

   Y(2) <= X21; 

   Y(2) <= (1-X31); 

   X11 + X21 + (1-X31) - Y(2) <= 2; 

 

   @FOR(TRLMATRIX2F(I,J,K): Z2(I,J,K) <= Y(2)); 

   @FOR(TRLMATRIX2(I,J): Z2(I,J,1) <= X12(I,J,5) ); 

   @FOR(TRLMATRIX2(I,J): Z2(I,J,1) <= X22(I,J,5) );  

   @FOR(TRLMATRIX2(I,J): Z2(I,J,2) <= X12(I,J,5) ); 

   @FOR(TRLMATRIX2(I,J): Z2(I,J,2) <= (1-X22(I,J,5)) ); 

   @FOR(TRLMATRIX2(I,J): Z2(I,J,3) <= (1-X12(I,J,5)) ); 

   @FOR(TRLMATRIX2(I,J): Z2(I,J,3) <= X22(I,J,5) ); 

   @FOR(TRLMATRIX2(I,J): Z2(I,J,4) <= (1-X12(I,J,5)) ); 

   @FOR(TRLMATRIX2(I,J): Z2(I,J,4) <= (1-X22(I,J,5)) );  

 

   Y(3) <= X11; 

   Y(3) <= (1-X21); 

   Y(3) <= X31; 

   X11 + X21 + X31 - Y(3) <= 2; 

 

   @FOR(TRLMATRIX2F(I,J,K): Z3(I,J,K) <= Y(3)); 

   @FOR(TRLMATRIX2(I,J): Z3(I,J,1) <= X12(I,5,J) ); 

   @FOR(TRLMATRIX2(I,J): Z3(I,J,1) <= X32(I,5,J) );  

   @FOR(TRLMATRIX2(I,J): Z3(I,J,2) <= X12(I,5,J) ); 

   @FOR(TRLMATRIX2(I,J): Z3(I,J,2) <= (1-X32(I,5,J)) ); 

   @FOR(TRLMATRIX2(I,J): Z3(I,J,3) <= (1-X12(I,5,J)) ); 

   @FOR(TRLMATRIX2(I,J): Z3(I,J,3) <= X32(I,5,J) ); 

   @FOR(TRLMATRIX2(I,J): Z3(I,J,4) <= (1-X12(I,5,J)) ); 

   @FOR(TRLMATRIX2(I,J): Z3(I,J,4) <= (1-X32(I,5,J)) );  
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   Y(4) <= (1-X11); 

   Y(4) <= X21; 

   Y(4) <= X31; 

   (1-X11) + X21 + X31 - Y(4) <= 2; 

 

   @FOR(TRLMATRIX2F(I,J,K): Z4(I,J,K) <= Y(4)); 

   @FOR(TRLMATRIX2(I,J): Z4(I,J,1) <= X22(5,I,J) ); 

   @FOR(TRLMATRIX2(I,J): Z4(I,J,1) <= X32(5,I,J) );  

   @FOR(TRLMATRIX2(I,J): Z4(I,J,2) <= X22(5,I,J) ); 

   @FOR(TRLMATRIX2(I,J): Z4(I,J,2) <= (1-X32(5,I,J)) ); 

   @FOR(TRLMATRIX2(I,J): Z4(I,J,3) <= (1-X22(5,I,J)) ); 

   @FOR(TRLMATRIX2(I,J): Z4(I,J,3) <= X32(5,I,J) ); 

   @FOR(TRLMATRIX2(I,J): Z4(I,J,4) <= (1-X22(5,I,J)) ); 

   @FOR(TRLMATRIX2(I,J): Z4(I,J,4) <= (1-X32(5,I,J)) );  

 

   Y(5) <= X11; 

   Y(5) <= (1-X21); 

   Y(5) <= (1-X31); 

   X11 + (1-X21) + (1-X31) - Y(5) <= 2; 

 

   @FOR(TRLMATRIX1F(I,J): Z5(I,J) <= Y(5)); 

   @FOR(TRL(I): Z5(I,1) <= X12(I,5,5) ); 

   @FOR(TRL(I): Z5(I,2) <= (1-X12(I,5,5)) ); 

 

   Y(6) <= (1-X11); 

   Y(6) <= X21; 

   Y(6) <= (1-X31); 

   (1-X11) + X21 + (1-X31) - Y(6) <= 2; 

 

   @FOR(TRLMATRIX1F(I,J): Z6(I,J) <= Y(6)); 

   @FOR(TRL(I): Z6(I,1) <= X22(5,I,5) ); 

   @FOR(TRL(I): Z6(I,2) <= (1-X22(5,I,5)) ); 

 

   Y(7) <= (1-X11); 

   Y(7) <= (1-X21); 

   Y(7) <= X31; 

   (1-X11) + (1-X21) + X31 - Y(7) <= 2; 

 

   @FOR(TRLMATRIX1F(I,J): Z7(I,J) <= Y(7)); 

   @FOR(TRL(I): Z7(I,1) <= X32(5,5,I) ); 

   @FOR(TRL(I): Z7(I,2) <= (1-X32(5,5,I)) ); 

 

 

   !A project can only be funded in the second period if it is funded in the first; 

   @FOR(TRLP1M(I,J,K): X11 >= X12(I,J,K)); 

   @FOR(TRLP1M(I,J,K): X21 >= X22(I,J,K)); 

   @FOR(TRLP1M(I,J,K): X31 >= X32(I,J,K)); 

 

   !Budget constraints; 

   C1(1)*X11 + C1(2)*X21 + C1(3)*X31 <= B1; 

   @FOR(TRLMATRIX3(I,J,K): C2(1)*X12(I,J,K) + C2(2)*X22(I,J,K) +  C2(3)*X32(I,J,K) <= B2 ); 

   @FOR(TRLMATRIX2(I,J): C2(2)*X22(5,I,J) + C2(3)*X32(5,I,J) <= B2 ); 

   @FOR(TRLMATRIX2(I,J): C2(1)*X12(I,5,J) + C2(3)*X32(I,5,J) <= B2 ); 

   @FOR(TRLMATRIX2(I,J): C2(1)*X12(I,J,5) + C2(2)*X22(I,J,5) <= B2 ); 

 

   !Xs are binary variables; 

   @BIN(X11); 

   @BIN(X21); 

   @BIN(X31); 

   @FOR(TRLP1M: @BIN(X12)); 

   @FOR(TRLP1M: @BIN(X22)); 

   @FOR(TRLP1M: @BIN(X32)); 

 

END 
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Appendix E: Costs, Budgets, and Transition Probabilities for the 

Five Sample Problems in Section 4.2.3 
 

This appendix includes all data for the five sample problems in Section 4.2.3 which 

are used to compare the results and run-times of the MINLP model with locally 

optimal solutions with linearized IP model with globally optimal solutions.  All data 

are identical between the fixed and optimized budget allocations.  The only difference 

is that for the optimized allocation, the sum of the two budgets is allocated in the 

optimal way; however, the total budgets are the same. 

Table E1: Problem 1’s Costs and Budgets 

Project
Time 

Period 1 

Time 

Period 2

Project 1 4.7$         3.0$       

Project 2 6.8$         4.2$       

Project 3 5.8$         3.5$       

Budget 15.0$        5.0$        

 

Table E2: Problem 2’s Costs and Budgets 

Project
Time 

Period 1 

Time 

Period 2

Project 1 4.7$         3.0$       

Project 2 6.8$         4.2$       

Project 3 5.8$         3.5$       

Budget 12.0$        4.0$        
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Table E3: Problem 3’s Costs and Budgets 

Project
Time 

Period 1 

Time 

Period 2

Project 1 4.7$         3.0$       

Project 2 5.5$         4.8$       

Project 3 5.8$         3.5$       

Budget 13.0$        5.0$        

 

Table E4: Problem 4’s Costs and Budgets 

Project
Time 

Period 1 

Time 

Period 2

Project 1 5.1$         3.0$       

Project 2 3.8$         2.6$       

Project 3 4.5$         3.5$       

Budget 13.0$        6.0$        

 

Table E5: Problem 5’s Costs and Budgets 

Project
Time 

Period 1 

Time 

Period 2

Project 1 5.1$         3.0$       

Project 2 3.4$         2.6$       

Project 3 4.5$         3.5$       

Budget 12.0$        4.0$        
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Table E6: First Stage Transition Probabilities for Problems 1, 2, and 3 

Project State Prob

Project 1 1 0.30

2 0.40

3 0.25

4 0.05

Project 2 1 0.40

2 0.40

3 0.15

4 0.05

Project 2 1 0.35

2 0.35

3 0.25

4 0.05  

 

Table E7: First Stage Transition Probabilities for Problems 4 and 5 

Project State Prob

Project 1 1 0.30

2 0.30

3 0.30

4 0.10

Project 2 1 0.30

2 0.50

3 0.15

4 0.05

Project 2 1 0.30

2 0.40

3 0.25

4 0.05  
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Table E8: Second Stage Transition Probabilities for Problems 1 and 2 

Project 1 State 1 State 2 State 3 State 4

State 1 0.30 0.20 0.50 0.00

State 2 0.00 0.20 0.70 0.10

State 3 0.00 0.00 0.35 0.65

State 4 0.00 0.00 0.00 1.00

Project 2 State 1 State 2 State 3 State 4

State 1 0.40 0.30 0.15 0.15

State 2 0.00 0.30 0.35 0.35

State 3 0.00 0.00 0.45 0.55

State 4 0.00 0.00 0.00 1.00

Project 3 State 1 State 2 State 3 State 4

State 1 0.35 0.35 0.15 0.15

State 2 0.00 0.30 0.40 0.30

State 3 0.00 0.00 0.60 0.40

State 4 0.00 0.00 0.00 1.00  

 

Table E9: Second Stage Transition Probabilities for Problems 3 and 4 

Project 1 State 1 State 2 State 3 State 4

State 1 0.40 0.50 0.10 0.00

State 2 0.00 0.20 0.66 0.14

State 3 0.00 0.00 0.40 0.60

State 4 0.00 0.00 0.00 1.00

Project 2 State 1 State 2 State 3 State 4

State 1 0.40 0.30 0.15 0.15

State 2 0.00 0.30 0.40 0.30

State 3 0.00 0.00 0.40 0.60

State 4 0.00 0.00 0.00 1.00

Project 3 State 1 State 2 State 3 State 4

State 1 0.35 0.35 0.15 0.15

State 2 0.00 0.30 0.40 0.30

State 3 0.00 0.00 0.65 0.35

State 4 0.00 0.00 0.00 1.00  
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Table E10: Second Stage Transition Probabilities for Problem 5 

Project 1 State 1 State 2 State 3 State 4

State 1 0.40 0.40 0.05 0.15

State 2 0.00 0.20 0.60 0.20

State 3 0.00 0.00 0.40 0.60

State 4 0.00 0.00 0.00 1.00

Project 2 State 1 State 2 State 3 State 4

State 1 0.40 0.30 0.15 0.15

State 2 0.00 0.30 0.20 0.50

State 3 0.00 0.00 0.20 0.80

State 4 0.00 0.00 0.00 1.00

Project 3 State 1 State 2 State 3 State 4

State 1 0.35 0.35 0.15 0.15

State 2 0.00 0.30 0.40 0.30

State 3 0.00 0.00 0.65 0.35

State 4 0.00 0.00 0.00 1.00  
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Appendix F: State, Cost and Probability Data for an Oxyfuel 

CCS Project   
 

This appendix contains cost and transition probabilities for the “Oxy 1” project from 

Chapter 5.  The state structure follows the definitions shown in Figure 5.3.   

Table F1: State, Cost and Transition Probability Data for “Oxy 1” for 2010 and 

2012 

 

T ime 

P erio d
State

End 

P erio d

T hird 

P arty 

T echno lo g

F unding

[mil Euro ]  
P ro bability

F unding

[mil Euro ]  
P ro bability

1,2,0,na,na -->2,2,na 2014 no 160 1.00 160 1.00

1,2,0,na,na -->2,2,na 2014 no 320 1.00 320 1.00

1,2,0,na,na --> 2,1,x,0,1 2014 no 160 0.00 160 0.00

1,2,0,na,na --> 2,1,x,0,1 2014 no 320 0.00 320 0.00

1,2,0,na,na --> 3,2,na,0 2014 no 495 0.50 495 0.50

1,2,0,na,na --> 3,2,na,0 2014 no 990 0.57 990 0.57

1,2,0,na,na --> 3,1,x,0,0 2014 no 495 0.50 495 0.50

1,2,0,na,na --> 3,1,x,0,0 2014 no 990 0.43 990 0.43

1,2,0,na,na -->2,2,na 2016 ps 160 1.00 160 1.00

1,2,0,na,na -->2,2,na 2016 ps 320 1.00 320 1.00

1,2,0,na,na --> 2,1,x,0,1 2016 ps 160 0.00 160 0.00

1,2,0,na,na --> 2,1,x,0,1 2016 ps 320 0.00 320 0.00

1,2,0,na,na --> 3,2,na,0 2016 no 495 0.50 495 0.50

1,2,0,na,na --> 3,2,na,0 2016 no 990 0.57 990 0.57

1,2,0,na,na --> 3,1,x,0,0 2016 no 495 0.50 495 0.50

1,2,0,na,na --> 3,1,x,0,0 2016 no 990 0.43 990 0.43

N o  spillo ver Spillo ver

2010

2012
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Table F2: State, Cost and Transition Probability Data for “Oxy 1” for 2014 
 

T ime 

P erio d
State

End 

P erio d

T hird 

P arty 

T echno lo g

F unding

[mil Euro ]  
P ro bability

F unding

[mil Euro ]  
P ro bability

1,2,0,na,na -->2,2,na 2018 no 160 1.00 160 1.00

1,2,0,na,na -->2,2,na 2018 no 320 1.00 320 1.00

1,2,0,na,na --> 2,1,x,0,1 2018 no 160 0.00 160 0.00

1,2,0,na,na --> 2,1,x,0,1 2018 no 320 0.00 320 0.00

1,2,2,na,na --> 2,2,na 2018 post 160 1.00 158 1.00

1,2,2,na,na --> 2,2,na 2018 post 320 1.00 315 1.00

1,2,2,na,na --> 2,1,x,0,1 2018 post 160 0.00 158 0.00

1,2,2,na,na --> 2,1,x,0,1 2018 post 320 0.00 315 0.00

1,2,0,na,na --> 3,2,na 2018 no 495 0.50 495 0.50

1,2,0,na,na --> 3,2,na 2018 no 990 0.57 990 0.57

1,2,0,na,na --> 3,1,x,0,0 2018 no 495 0.50 495 0.50

1,2,0,na,na --> 3,1,x,0,0 2018 no 990 0.43 990 0.43

1,2,2,na,na --> 3,2,na 2018 post 495 0.50 488 0.50

1,2,2,na,na --> 3,2,na 2018 post 990 0.57 975 0.57

1,2,2,na,na --> 3,1,x,0,0 2018 post 495 0.50 488 0.50

1,2,2,na,na --> 3,1,x,0,0 2018 post 990 0.43 975 0.43

2,2,0,na,na --> 3,2,na 2018 no 450 0.60 450 0.60

2,2,0,na,na --> 3,2,na 2018 no 890 0.68 890 0.68

2,2,0,na,na --> 3,1,x,0,1 2018 no 450 0.40 450 0.40

2,2,0,na,na --> 3,1,x,0,1 2018 no 890 0.32 890 0.32

2,1,0,0,1 --> 2,2,na 2016 no 160 0.86 160 0.86

2,1,0,0,1 --> 2,2,na 2016 no 320 0.97 320 0.97

2,1,2,0,1 --> 2,2,na 2016 post 160 0.86 158 0.86

2,1,2,0,1 --> 2,2,na 2016 post 320 0.97 315 0.97

2,1,0,0,1 --> 2,1,x,1 ,1 2016 no 160 0.14 160 0.14

2,1,0,0,1 --> 2,1,x,1 ,1 2016 no 320 0.03 320 0.03

2,1,2,0,1 --> 2,1,x,1 ,1 2016 post 160 0.14 158 0.14

2,1,2,0,1 --> 2,1,x,1 ,1 2016 post 320 0.03 315 0.03

2,1,0,0,na --> 3,2,na 2018 no 495 0.50 495 0.50

2,1,0,0,na --> 3,2,na 2018 no 990 0.57 990 0.57

2,1,1,0,na --> 3,2,na 2018 oxy 495 0.50 475 0.55

2,1,1,0,na --> 3,2,na 2018 oxy 990 0.57 950 0.63

2,1,2,0,na --> 3,2,na 2018 post 495 0.50 488 0.50

2,1,2,0,na --> 3,2,na 2018 post 990 0.57 975 0.57

2,1,0,0,na --> 3,1,x,0 ,0 2018 no 495 0.50 495 0.50

2,1,0,0,na --> 3,1,x,0 ,0 2018 no 990 0.43 990 0.43

2,1,1,0,na --> 3,1,x,0 ,0 2018 oxy 495 0.50 475 0.45

2,1,1,0,na --> 3,1,x,0 ,0 2018 oxy 990 0.43 950 0.37

2,1,2,0,na --> 3,1,x,0 ,0 2018 post 495 0.50 488 0.50

2,1,2,0,na --> 3,1,x,0 ,0 2018 post 990 0.43 975 0.43

3,1,0,0,0 --> 3,2,na 2016 no 495 0.50 495 0.50

3,1,0,0,0 --> 3,2,na 2016 no 990 0.57 990 0.57

3,1,2,0,0  --> 3,2,na 2016 post 480 0.50 473 0.50

3,1,2,0,0  --> 3,2,na 2016 post 960 0.57 946 0.57

3,1,0,0,0 --> 3,1,x,1,0 2016 no 495 0.50 495 0.50

3,1,0,0,0 --> 3,1,x,1,0 2016 no 990 0.43 990 0.43

3,1,2,0,0 --> 3,1,x,1,0 2016 post 480 0.50 473 0.50

3,1,2,0,0 --> 3,1,x,1,0 2016 post 960 0.43 946 0.43

N o  spillo ver Spillo ver

2014
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Table F3: State, Cost and Transition Probability Data for “Oxy 1” for 2016 
 

T ime 

P erio d
State

End 

P erio d

T hird 

P arty 

T echno lo g

F unding

[mil Euro ]  
P ro bability

F unding

[mil Euro ]  
P ro bability

1,2,0,na,na --> 3,2,na 2020 no 495 0.50 495 0.50

1,2,0,na,na --> 3,2,na 2020 no 990 0.57 990 0.57

1,2,0,na,na --> 3,1,x,0,0 2020 no 495 0.50 495 0.50

1,2,0,na,na --> 3,1,x,0,0 2020 no 990 0.43 990 0.43

1,2,2,na,na --> 3,2,na 2020 post 495 0.50 488 0.50

1,2,2,na,na --> 3,2,na 2020 post 990 0.57 975 0.57

1,2,2,na,na --> 3,1,x,0,0 2020 post 495 0.50 488 0.50

1,2,2,na,na --> 3,1,x,0,0 2020 post 990 0.43 975 0.43

2,2,na --> 3,2,na 2020 ps 450 0.60 450 0.60

2,2,na --> 3,2,na 2020 ps 890 0.68 890 0.68

2,2,na --> 3,1,x,1,0 2020 ps 450 0.40 450 0.40

2,2,na --> 3,1,x,1,0 2020 ps 890 0.32 890 0.32

2,1,0,0,1 --> 2,2,na 2018 no 160 0.86 160 0.86

2,1,0,0,1 --> 2,2,na 2018 no 320 0.97 320 0.97

2,1,1,0,1 --> 2,2,na 2018 oxy-ps 160 0.86 160 0.86

2,1,1,0,1 --> 2,2,na 2018 oxy-ps 320 0.97 320 0.97

2,1,2,0,1 --> 2,2,na 2018 post 160 0.86 158 0.86

2,1,2,0,1 --> 2,2,na 2018 post 320 0.97 315 0.97

2,1,0,0,1 --> 2,1,x,1 ,1 2018 no 160 0.14 160 0.14

2,1,0,0,1 --> 2,1,x,1 ,1 2018 no 320 0.03 320 0.03

2,1,1,0,1 --> 2,1,x,1 ,1 2018 oxy-ps 160 0.14 160 0.14

2,1,1,0,1 --> 2,1,x,1 ,1 2018 oxy-ps 320 0.03 320 0.03

2,1,2,0,1 --> 2,1,x,1 ,1 2018 post 160 0.14 158 0.14

2,1,2,0,1 --> 2,1,x,1 ,1 2018 post 320 0.03 315 0.03

2,1,0,0,na --> 3,2,na 2020 no 495 0.50 495 0.50

2,1,0,0,na --> 3,2,na 2020 no 990 0.57 990 0.57

2,1,1,0,na --> 3,2,na 2020 oxy 495 0.50 475 0.55

2,1,1,0,na --> 3,2,na 2020 oxy 990 0.57 950 0.63

2,1,2,0,na --> 3,2,na 2020 post 495 0.50 488 0.50

2,1,2,0,na --> 3,2,na 2020 post 990 0.57 975 0.57

2,1,0,0,na --> 3,1,x,0 ,0 2020 no 495 0.50 495 0.50

2,1,0,0,na --> 3,1,x,0 ,0 2020 no 990 0.43 990 0.43

2,1,1,0,na --> 3,1,x,0,0 2020 oxy 495 0.50 475 0.45

2,1,1,0,na --> 3,1,x,0,0 2020 oxy 990 0.43 950 0.37

2,1,2,0,na --> 3,1,x,0 ,0 2020 post 495 0.50 488 0.50

2,1,2,0,na -->32,1,x,0 ,0 2020 post 990 0.43 975 0.43

3,1,0,0,0 --> 3,2,na 2018 no 495 0.50 495 0.50

3,1,0,0,0 --> 3,2,na 2018 no 990 0.57 990 0.57

3,1,2,0,0  --> 3,2,na 2018 post 480 0.50 473 0.50

3,1,2,0,0  --> 3,2,na 2018 post 960 0.57 946 0.57

3,1,0,0,0 --> 3,1,x,1,0 2018 no 495 0.50 495 0.50

3,1,0,0,0 --> 3,1,x,1,0 2018 no 990 0.43 990 0.43

3,1,2,0,0 --> 3,1,x,1,0 2018 post 480 0.50 473 0.50

3,1,2,0,0 --> 3,1,x,1,0 2018 post 960 0.43 946 0.43

3,1,0,1,0 --> 3,2,na 2018 no 495 0.50 495 0.50

3,1,0,1,0 --> 3,2,na 2018 no 990 0.57 990 0.57

3,1,2,1,0  --> 3,2,na 2018 post 480 0.50 473 0.50

3,1,2,1,0  --> 3,2,na 2018 post 960 0.57 946 0.57

3,1,0,1,0 -->3,1,x,2,na 2018 no 495 0.50 495 0.50

3,1,0,1,0 -->3,1,x,2,na 2018 no 990 0.43 990 0.43

3,1,2,1,0  --> 3,1,x,2,na 2018 post 480 0.50 473 0.50

3,1,2,1,0  --> 3,1,x,2,na 2018 post 960 0.43 946 0.43

N o  spillo ver Spillo ver

2016
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Table F4: State, Cost and Transition Probability Data for “Oxy 1” for 2018 
 

T ime 

P erio d
State

End 

P erio d

T hird 

P arty 

T echno lo g

F unding

[mil Euro ]  
P ro bability

F unding

[mil Euro ]  
P ro bability

1,2,0,na,na --> 3,2,na 2022 no 495 0.50 495 0.50

1,2,0,na,na --> 3,2,na 2022 no 990 0.57 990 0.57

1,2,0,na,na --> 3,1,x,0,0 2022 no 495 0.50 495 0.50

1,2,0,na,na --> 3,1,x,0,0 2022 no 990 0.43 990 0.43

1,2,2,na,na --> 3,2,na 2022 post 495 0.50 488 0.50

1,2,2,na,na --> 3,2,na 2022 post 990 0.57 975 0.57

1,2,2,na,na --> 3,1,x,0,0 2022 post 495 0.50 488 0.50

1,2,2,na,na --> 3,1,x,0,0 2022 post 990 0.43 975 0.43

2,2,na --> 3,2,na 2022 ps 450 0.60 450 0.60

2,2,na --> 3,2,na 2022 ps 890 0.68 890 0.68

2,2,na --> 3,1,x,0,1 2022 ps 450 0.40 450 0.40

2,2,na --> 3,1,x,0,1 2022 ps 890 0.32 890 0.32

2,1,0,0,1 --> 2,2,na 2020 no 160 0.86 160 0.86

2,1,0,0,1 --> 2,2,na 2020 no 320 0.97 320 0.97

2,1,1,0,1 --> 2,2,na 2020 oxy-ps 160 0.14 160 0.14

2,1,1,0,1 --> 2,2,na 2020 oxy-ps 320 0.03 320 0.03

2,1,2,0,1 --> 2,2,na 2020 post 160 0.86 158 0.86

2,1,2,0,1 --> 2,2,na 2020 post 320 0.97 315 0.97

2,1,0,0,1 --> 2,1,x,1 ,1 2020 no 160 0.14 160 0.14

2,1,0,0,1 --> 2,1,x,1 ,1 2020 no 320 0.03 320 0.03

2,1,1,0,1 --> 2,1,x,1 ,1 2020 oxy-ps 160 0.86 160 0.86

2,1,1,0,1 --> 2,1,x,1 ,1 2020 oxy-ps 320 0.97 320 0.97

2,1,2,0,1 --> 2,1,x,1 ,1 2020 post 160 0.14 158 0.14

2,1,2,0,1 --> 2,1,x,1 ,1 2020 post 320 0.03 315 0.03

2,1,0,0,na --> 3,2,na 2022 no 495 0.50 495 0.50

2,1,0,0,na --> 3,2,na 2022 no 990 0.57 990 0.57

2,1,1,0,na --> 3,2,na 2022 oxy 495 0.50 475 0.55

2,1,1,0,na --> 3,2,na 2022 oxy 990 0.57 950 0.63

2,1,2,0,na --> 3,2,na 2022 post 495 0.50 488 0.50

2,1,2,0,na --> 3,2,na 2022 post 990 0.57 975 0.57

2,1,0,0,na --> 3,1,x,0 ,0 2022 no 495 0.50 495 0.50

2,1,0,0,na --> 3,1,x,0 ,0 2022 no 990 0.43 990 0.43

2,1,1,0,na --> 3,1,x,0,0 2022 oxy 495 0.50 475 0.45

2,1,1,0,na --> 3,1,x,0,0 2022 oxy 990 0.43 950 0.37

2,1,2,0,na --> 2,1,x,0 ,0 2022 post 495 0.50 488 0.50

2,1,2,0,na --> 2,1,x,0 ,0 2022 post 990 0.43 975 0.43

3,1,0,0,0 --> 3,2,na 2020 no 495 0.50 495 0.50

3,1,0,0,0 --> 3,2,na 2020 no 990 0.57 990 0.57

3,1,2,0,0  --> 3,2,na 2020 post 495 0.50 488 0.50

3,1,2,0,0  --> 3,2,na 2020 post 990 0.57 975 0.57

3,1,0,0,0 --> 3,1,x,1,0 2020 no 495 0.50 495 0.50

3,1,0,0,0 --> 3,1,x,1,0 2020 no 990 0.43 990 0.43

3,1,2,0,0 --> 3,1,x,1,0 2020 post 495 0.50 488 0.50

3,1,2,0,0 --> 3,1,x,1,0 2020 post 990 0.43 975 0.43

3,1,0,1,0 --> 3,2,na 2020 no 495 0.50 495 0.50

3,1,0,1,0 --> 3,2,na 2020 no 990 0.57 990 0.57

3,1,2,1,0  --> 3,2,na 2020 post 495 0.50 488 0.50

3,1,2,1,0  --> 3,2,na 2020 post 990 0.57 975 0.57

3,1,0,1,0 -->3,1,x,2,na 2020 no 495 0.50 495 0.50

3,1,0,1,0 -->3,1,x,2,na 2020 no 990 0.43 990 0.43

3,1,2,1,0  --> 3,1,x,2,na 2020 post 495 0.50 488 0.50

3,1,2,1,0  --> 3,1,x,2,na 2020 post 990 0.43 975 0.43

3,1,0,0,1 --> 3,2,na 2020 no 446 0.60 446 0.60

3,1,0,0,1 --> 3,2,na 2020 no 891 0.68 891 0.68

3,1,2,0,1  --> 3,2,na 2020 post 446 0.60 439 0.60

3,1,2,0,1  --> 3,2,na 2020 post 891 0.68 878 0.68

3,1,0,0,1 -->3,1,x,1,1 2020 no 446 0.40 446 0.40

3,1,0,0,1 -->3,1,x,1,1 2020 no 891 0.32 891 0.32

3,1,2,0,1  --> 3,1,x,1,1 2020 post 446 0.40 439 0.40

3,1,2,0,1  --> 3,1,x,1,1 2020 post 891 0.32 878 0.32

N o  spillo ver Spillo ver

2018
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Table F5: State, Cost and Transition Probability Data for “Oxy 1” for 2020 
 

T ime 

P erio d
State

End 

P erio d

T hird 

P arty 

T echno lo g

F unding

[mil Euro ]  
P ro bability

F unding

[mil Euro ]  
P ro bability

3,1,0,0,0 --> 3,2,na 2022 no 495 0.50 495 0.50

3,1,0,0,0 --> 3,2,na 2022 no 990 0.57 990 0.57

3,1,2,0,0  --> 3,2,na 2022 post 495 0.50 488 0.50

3,1,2,0,0  --> 3,2,na 2022 post 990 0.57 975 0.57

3,1,0,0,0 --> 3,1,x,1,0 2022 no 495 0.50 495 0.50

3,1,0,0,0 --> 3,1,x,1,0 2022 no 990 0.43 990 0.43

3,1,2,0,0 --> 3,1,x,1,0 2022 post 495 0.50 488 0.50

3,1,2,0,0 --> 3,1,x,1,0 2022 post 990 0.43 975 0.43

3,1,0,1,0 --> 3,2,na 2022 no 495 0.50 495 0.50

3,1,0,1,0 --> 3,2,na 2022 no 990 0.57 990 0.57

3,1,2,1,0  --> 3,2,na 2022 post 495 0.50 488 0.50

3,1,2,1,0  --> 3,2,na 2022 post 990 0.57 975 0.57

3,1,0,1,0 -->3,1,x,2,na 2022 no 495 0.50 495 0.50

3,1,0,1,0 -->3,1,x,2,na 2022 no 990 0.43 990 0.43

3,1,2,1,0  --> 3,1,x,2,na 2022 post 495 0.50 488 0.50

3,1,2,1,0  --> 3,1,x,2,na 2022 post 990 0.43 975 0.43

3,1,0,0,1 --> 3,2,na 2022 no 446 0.60 446 0.60

3,1,0,0,1 --> 3,2,na 2022 no 891 0.68 891 0.68

3,1,2,0,1  --> 3,2,na 2022 post 446 0.60 439 0.60

3,1,2,0,1  --> 3,2,na 2022 post 891 0.68 878 0.68

3,1,0,0,1 -->3,1,x,1,1 2022 no 446 0.40 446 0.40

3,1,0,0,1 -->3,1,x,1,1 2022 no 891 0.32 891 0.32

3,1,2,0,1  --> 3,1,x,1,1 2022 post 446 0.40 439 0.40

3,1,2,0,1  --> 3,1,x,1,1 2022 post 891 0.32 878 0.32

3,1,0,1,1 --> 3,2,na 2022 no 446 0.60 446 0.60

3,1,0,1,1 --> 3,2,na 2022 no 891 0.68 891 0.68

3,1,2,1,1  --> 3,2,na 2022 post 446 0.60 439 0.60

3,1,2,1,1  --> 3,2,na 2022 post 891 0.68 878 0.68

3,1,0,1,1 --> 3,1,x,2,1 2022 no 446 0.40 446 0.40

3,1,0,1,1 --> 3,1,x,2,1 2022 no 891 0.32 891 0.32

3,1,2,1,1  --> 3,2,x,2,1 2022 post 446 0.40 439 0.40

3,1,2,1,1  --> 3,2,x,2,1 2022 post 891 0.32 878 0.32

N o  spillo ver Spillo ver

2020
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Appendix G: Cost Coefficients Used for Each Budget Case for 

the Post-Combustion and Oxyfuel Projects   

 

This appendix shows the cost coefficients used to construct the optimal a priori 

budgets for each funding case and time period for the post-combustion and oxyfuel 

projects.  The reduction in combinations allows for the number of lower-level SDPs 

solve to remain manageable.  The blank entries refer to those values that have been 

eliminated from the budget combination calculations for the corresponding the total 

budget case.  The costs shown for the budgets of 600 and 1200 reflect the entire set of 

cost coefficients for each time period.  Costs are in millions of Euros. 
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Table G1: Cost Coefficients Used for Each Budget Case and Time Period 

for the Oxyfuel and Post-Combustion Projects 

 

Time 

Period

Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190

Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380

Oxy 1 435 Oxy 1 435 Oxy 1 435 Oxy 1 435 Oxy 1 435 Oxy 1 435

Oxy 1 870 Oxy 1 870 Oxy 1 870 Oxy 1 870 Oxy 1 870 Oxy 1 870

Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190

Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380

Oxy 1 435 Oxy 1 435 Oxy 1 435 Oxy 1 435 Oxy 1 435 Oxy 1 435

Oxy 1 870 Oxy 1 870 Oxy 1 870 Oxy 1 870 Oxy 1 870 Oxy 1 870

Post 2 150 Post 2 150 Post 2 150 Post 2 150

Post 2 300 Post 2 300 Post 2 300 Post 2 300 Post 2 300 Post 2 300

Post 2 380 Post 2 380

Post 2 760 Post 2 760 Post 2 760 Post 2 760 Post 2 760 Post 2 760

Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190

Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380

Oxy 1 435 Oxy 1 435 Oxy 1 435 Oxy 1 435

Oxy 1 450 Oxy 1 450 Oxy 1 450 Oxy 1 450 Oxy 1 450 Oxy 1 450

Oxy 1 480 Oxy 1 480 Oxy 1 480 Oxy 1 480 Oxy 1 480 Oxy 1 480

Oxy 1 870 Oxy 1 870 Oxy 1 870

Oxy 1 890 Oxy 1 890 Oxy 1 890 Oxy 1 890 Oxy 1 890 Oxy 1 890

Oxy 1 960 Oxy 1 960 Oxy 1 960 Oxy 1 960 Oxy 1 960 Oxy 1 960

Post 2 150 Post 2 150 Post 2 150 Post 2 150

Post 2 300 Post 2 300 Post 2 300 Post 2 300 Post 2 300 Post 2 300

Post 2 380 Post 2 380

Post 2 760 Post 2 760 Post 2 760 Post 2 760 Post 2 760 Post 2 760

Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190

Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380

Oxy 1 435 Oxy 1 435 Oxy 1 435 Oxy 1 435

Oxy 1 450 Oxy 1 450 Oxy 1 450 Oxy 1 450 Oxy 1 450 Oxy 1 450

Oxy 1 480 Oxy 1 480 Oxy 1 480 Oxy 1 480 Oxy 1 480 Oxy 1 480

Oxy 1 870 Oxy 1 870 Oxy 1 870

Oxy 1 890 Oxy 1 890 Oxy 1 890 Oxy 1 890 Oxy 1 890 Oxy 1 890

Oxy 1 960 Oxy 1 960 Oxy 1 960 Oxy 1 960 Oxy 1 960 Oxy 1 960

Post 2 360 Post 2 360 Post 2 360 Post 2 360 Post 2 360 Post 2 360

Post 2 380 Post 2 380

Post 2 720 Post 2 720 Post 2 720 Post 2 720 Post 2 720 Post 2 720

Post 2 760 Post 2 760 Post 2 760 Post 2 760 Post 2 760 Post 2 760

Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190 Oxy 1 190

Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380 Oxy 1 380

Oxy 1 435 Oxy 1 435 Oxy 1 435 Oxy 1 435

Oxy 1 450 Oxy 1 450 Oxy 1 450 Oxy 1 450 Oxy 1 450 Oxy 1 450

Oxy 1 870 Oxy 1 870 Oxy 1 870

Oxy 1 891 Oxy 1 891 Oxy 1 891 Oxy 1 891 Oxy 1 891 Oxy 1 891

Post 2 360 Post 2 360 Post 2 360 Post 2 360 Post 2 360 Post 2 360

Post 2 380 Post 2 380

Post 2 720 Post 2 720 Post 2 720 Post 2 720 Post 2 720 Post 2 720

Post 2 760 Post 2 760 Post 2 760 Post 2 760 Post 2 760 Post 2 760

T = 1

T = 2

T = 3

T = 4

T = 5

4800

Budget Case

600 1200 1800 2100 2400
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Glossary: Acronyms 

BARON  Branch and Reduce Optimization Navigator  

CCS  Carbon Capture and Storage 

CCTS  Carbon Capture, Transport and Storage 

EEPR  European Energy Program for Recovery 

ETS  Emission Trading Scheme 

EU  European Union 

FAA  Federal Aviation Administration 

GCF  Greatest Common Factor 

IEA  International Energy Agency 

IGCC  Internal Gasification Combined Cycle 

IP  Integer Program(ming) 

IPCC  Intergovernmental Panel on Climate Change 

IT  Information Technology 

KKT  Karush-Kuhn-Tucker 

kW  Kilowatt 

LRIP  Low Rate of Initial Production 

MINLP Mixed-Integer Nonlinear Program  

MPEC  Mathematical Programs with Equilibrium Constraints   

MW  Megawatt 

NASA  National Aeronautics and Space Administration 

NPV  Net Present Value 

NRO  National Reconnaissance Office 

PCC  Pre-Combustion Capture 

PMF  Probability Mass Function 

R&D  Research and Development 

SDP  Stochastic Dynamic Program(ming) 

START Strategic Assessment of Risk and Technology  

TDRA  Technology Development Risk Assessment 

TRL  Technology Readiness Level 
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