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Chapter 1: Introduction

The Hasse-Weil zeta function of an algebraic variety defined over a number

field is an important object of study in modern number theory connected to several

guiding problems. A goal of the Langlands Program is to express these zeta functions

in terms of automorphic L-functions. Much can be said about the zeta functions

in the case of Shimura varieties due to the contributions of many mathematicians,

and in particular, the Langlands-Kottwitz method outlines a rigorous strategy for

studying local factors in the Euler product of a zeta function of a Shimura variety.

Although the Langlands-Kottwitz method and the Test Function Conjecture

of Haines and Kottwitz serve as the motivation for this thesis, very little of the

technology involved with that theory will be used in what is to come. For a com-

plete explanation, see the survey article [15], while the Test Function Conjecture is

precisely stated in [17], Conjecture 4.30.

We will focus instead on a single aspect of a certain identity involving the

semisimple trace of Frobenius on the `-adic cohomology of a Shimura variety, which

must be established in the course of following the Langlands-Kottwitz approach.

Here is the formula as stated in [17], Section 6.1:

trss
(
Φr
p, H

•
c (ShKp ⊗E Q̄p, Q̄`)

)
=
∑

(γ0;γ,δ)

c(γ0; γ, δ)Oγ(1Kp)TOδθ(φr).
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For the purposes of this thesis, we can limit our attention to the term TOδθ(φr)

in the trace formula, which is a twisted orbital integral defined by

TOδθ(φr) =

∫
G◦δθ(F )\G(Fr)

φr

(
g−1δθ(g)

)
dḡ,

where

• G is a connected reductive group over a p-adic field F ,

• Fr/F is a degree r unramified extension,

• θ generates the Galois group Gal(Fr/F ),

• δ is an element of G(Fr) whose norm in G(F ) is semisimple,

• Gδθ(F ) = {g ∈ G(Fr) | g−1δθ(g) = δ}, with identity component G◦δθ(F ),

• dḡ is a quotient Haar measure, and

• φr is a locally-constant compactly-supportedKpr -biinvariant function onG(Fr).

See [16], Section 6.2, for a complete explanation of TOδθ(φr).

The function φr is called a test function, and it is the focal point of this thesis.

The aforementioned Test Function Conjecture predicts that the Bernstein center of

G is a source of test functions that satisfy the above trace formula; however, we

do not directly address the Conjecture. Instead, we consider functions defined via

the Bernstein center in the case of split connected reductive groups with connected

center with pro-p Iwahori level structure, in which case the function is denoted φr,1,

and then we develop a combinatorial formula for a closely related function φ′r,1 whose

twisted orbital integrals match those of φr,1, that is, TOδθ(φr,1) = TOδθ(φ
′
r,1).
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This research is modeled on an explicit formula for test functions in the

Drinfeld case with pro-p Iwahori level structure due to Haines and Rapoport [19].

Scholze [27] discovered explicit test function formulas in the GL2 case for deeper

level structure groups. More recently, Scholze opened new directions of research

into the Langlands-Kottwitz method [28].

1.1 Summary of this thesis

Let us provide a map for this thesis. We highlight key definitions and results,

while pointing out the various hypotheses assumed along the way. Background

material can be found in Section 1.2.

The group G is a split connected reductive algebraic group with connected

center defined over a p-adic field F , which admits the cases of general linear groups

and general symplectic groups. Fixing a choice of Borel subgroup B, which we do,

in turn determines a split maximal torus T ⊂ B. Now define the Iwahori subgroup

I to be the subgroup of G(OF ) whose reduction modulo $ is B(kF ). Let µ be a

dominant minuscule cocharacter of T . Given a degree r unramified extension Fr/F ,

the Fr-points of G shall be denoted Gr.

Let q denote order of the residue field kF , hence the residue field kr of Fr has

order qr. We will often use the difference Qr = q−r/2 − qr/2 in what follows.

Our group G has a dual group Ĝ defined over C corresponding to the dual root

datum of G. There exists a highest-weight representation (rµ, Vµ) of Ĝ determined

by our chosen µ. By the theory of the stable Bernstein center Zst(G), there is an
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element ZVµ in Zst(G) that maps an infinitesimal character (λ)Ĝ on the Weil group

WF to the semisimple trace of Frobenius on Vµ (Proposition 2.2.5). Assuming the

LLC+ conjecture, described in [17] Section 5.2, the distribution ZVµ can be viewed

as an element of the usual Bernstein center Z(G). All of this is tied together in

Definition 2.2.8, which is stated for a general test function. The discussion at the

start of Section 2.3 specializes that definition to the case where the level structure

group is the pro-unipotent radical I+
r of an Iwahori subgroup Ir of Gr. So we come

to consider the test function

φr,1 = qr`(tµ)/2
(
ZVµ ∗ 1I+

r

)
.

The function φr,1 lies in the center of the Hecke algebra H(Gr, I
+
r ). This

algebra is related to Hecke algebras H(Gr, Ir, ρχr), each of which is determined by

a depth-zero character χr on T (Or) obtained by composing a depth-zero character

χ : T (OF ) → C× with the norm Nr : T (Or) → T (OF ). Because T (kr) ∼= Ir/I
+
r ,

by Proposition 2.3.7, the character χr can be extended to a character ρχr on the

Iwahori subgroup Ir that is trivial on I+
r . Section 2.3 is devoted to objects and

results, such as these, associated to depth-zero characters.

Definition 2.3.19 builds on the LLC for Tori to associate an “endoscopic el-

ement” κχ in T̂ (C) to each depth-zero character χ on T (OF ). Proposition 2.3.21

characterizes these endoscopic elements as the kernel Kq−1 of the endomorphism on

T̂ (C) given by κ 7→ κq−1.

Section 2.4 takes advantage of the work with depth-zero characters to prove

φr,1 = [Ir : I+
r ]−1qr`(tµ)/2

∑
ξ∈T (kr)∨

ZVµ ∗ eξ,
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where eξ is an idempotent in the Hecke algebra H(G) and ξ is a depth-zero character

on T (Or). It turns out that we can ignore certain terms in this sum when viewing φr,1

as a test function to be plugged into a twisted orbital integral. This is Lemma 2.4.2:

Lemma. (Haines) Suppose ξ ∈ T (kr)
∨ is not a norm, that is, there is not a χ ∈

T (kF )∨ such that ξ = χ ◦ Nr. Then all twisted orbital integrals at θ-semisimple

elements vanish on functions in H(Gr, Ir, ρξ).

In light of this lemma, we define a new function

φ′r,1 = [Ir : I+
r ]−1qr`(tµ)/2

∑
χ∈T (kF )∨

ZVµ ∗ eχr

whose twisted orbital integrals satisfy TOδθ(φr,1) = TOδθ(φ
′
r,1). As we shall see,

the main theorem of this thesis is a combinatorial formula for φ′r,1 rather

than φr,1. But because the twisted orbital integrals of these functions agree, this

formula may as well be a formula for the test function.

Remark. It is possible to give a definition of φ′r,1 that does not invoke LLC+ by

using the LLC for Tori. Instead of using the distribution ZVµ to define functions

ZVµ ∗ eχr in the center of H(Gr, Ir, ρχr), we can define ZVµ ∗ eχr to be the function

in the center of that Hecke algebra which acts by semisimple trace of Frobenius on

the Bernstein block of χ̃r. See also Remark 2.4.4.

Roche’s theory of Hecke algebra isomorphisms shows us how to rewrite a func-

tion in the center of H(Gr, Ir, ρχr) as a sum of Bernstein functions in the center

an Iwahori-Hecke algebra associated to an endoscopic group Hχr ; however, we must

make some assumptions about G in order to apply this theory without making re-

strictions to char(kF ). These are explained in Remark 2.3.10. Haines’s formula for
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Bernstein functions attached to dominant minuscule cocharacters leads to a more

concrete formula for φ′r,1 by introducing Kazhdan-Lusztig R̃-polynomials to the ex-

pression. The end result of Chapter 2, Proposition 2.4.16, is an explicit formula for

the coefficients φ′r,1(I+
r swI

+
r ), with γNrs as in Lemma 2.3.23:

Proposition. Given a pair (s, w) ∈ T (kr)× W̃ , the coefficient φ′r,1(I+
r swI

+
r ) can be

rewritten as a sum over endoscopic elements in T̂ (C) which arise from depth-zero

characters χ ∈ T (kF )∨:

φ′r,1(I+
r swI

+
r ) = [Ir : I+

r ]−1
∑

κχ∈Kq−1

γNrs(κχ)−1qr`(w,tλ(w))/2R̃χ
w,tλ(w)

(Qr).

The formula of Proposition 2.4.16 defines an element of the Hecke algebra

H(Gr, I
+
r ), and so there is no doubt that the function exists, subject to the various

hypotheses in place. On the other hand, the purpose for considering this function

involves the conjectural existence of a distribution ZVµ in the stable Bernstein center.

When G = GLn, this distribution is known to exist and embeds into Z(G). Hence in

at least one important example of a split connected reductive group with connected

center, the function φr,1 appearing in the Test Function Conjecture exists, and its

twisted orbital integrals agree with those of the function φ′r,1, whose coefficients are

specified by the formula in Proposition 2.4.16.

Chapter 3 begins the process of simplifying this formula. The first simplifica-

tion comes from studying the set of endoscopic elements κχ such that the functions

ZVµ ∗ eχr(w) 6= 0 for a fixed w ∈ W̃ . An element κ in T̂ (C) is “relevant” to w = tλw̄

if λ(κ) = 1 and w̄κ = κ. Then we prove in Proposition 3.2.3:

Proposition. The elements κ ∈ T̂ (C) relevant to a fixed w ∈ W̃ form a closed
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subgroup called the relevant subgroup Sw.

We subsequently define a subgroup Sw,J ⊆ Sw for any root sub-system J of the

ambient system Φ(G, T ) in Definition 3.2.6. The Sw,J are diagonalizable algebraic

subgroups of T̂ defined over C, hence it is natural to consider their character groups

X∗(Sw,J). Section 3.2.2 culminates in the definition of a lattice Lw,J ⊂ X∗(T̂ ) such

that X∗(Sw,J) = X∗(T̂ )/Lw,J .

Whereas the groups Sw,J are (infinite) algebraic groups, the groups needed for

the formula are finite subgroups Sdz
w,J = Sw,J ∩Kq−1 of T̂ (C). In Section 3.3.2, we

define a finite group Aw,J,kF ⊂ T (kF ) using the lattice Lw,J . Together, this data

describes what happens to a certain sum that will appear in the proof of the main

theorem. This is Proposition 3.3.5:

Proposition. Let s ∈ T (kr), and define γNrs as above. Then

∑
κχ∈Sdz

w,J

γNrs(κχ)−1 =


0, if Nr(s) /∈ Aw,J,kF

|Sdz
w,J |, otherwise.

The second simplification of the formula for φ′r,1 comes from the theory of the

R̃-polynomials, defined by Kazhdan and Lusztig, using a formula for these polyno-

mials due to Dyer based on the Bruhat graph and reflection orderings. This is the

content of Chapter 4. Section 4.1.3 defines the notion of a reflection ordering ≺ on

the positive roots of the root system Φ associated to the Weyl group W . The set

of paths u
∆−→ v, for u and v in W , through the Bruhat graph whose edges are

increasing with respect to ≺ is denoted B≺Φ (u, v). This information determines the

R̃-polynomials according to Theorem 4.3.4:
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Theorem. (Dyer) Let W̃χ be the extended affine Weyl group of Hχr , and let ≺ be

a reflection ordering on Wχ,aff . Let Qr = q−r/2 − qr/2. For any u, v ∈ W̃χ such that

u ≤χ v in Bruhat order,

R̃χ
u,v(Qr) =

∑
∆∈B≺Φχ,aff

(u,v)

Q`(∆)
r .

The main objective of Chapter 4 is to rewrite this formula for use in the proof

of the main theorem. Suppose we start with an element w in the extended affine

Weyl group W̃ . Such an element has the form w = tλw̄ where tλ is the translation

element for the coweight λ and w̄ is an element of the finite Weyl group. When

we want to emphasize that a translation element is the “translation part” of some

w ∈ W̃ , we write tλ(w). Now suppose further that w is µ-admissible: Haines and

Pettet [18] showed that such elements satisfy w ≤ tλ(w) in the Bruhat order on W̃ .

Proposition 4.2.2 shows that for any ≺-increasing path from w to tλ(w), all edges of

the path correspond to finite reflections:

Proposition. Let µ be a dominant minuscule coweight of Φ, and let (W,S) be the

finite Weyl group of Φ inside the affine Weyl group (Waff , Saff). Let T be the set of

reflections in W .

Consider a µ-admissible element w ≤ tλ(w). There exists a length-zero element

σ in W̃ such that w, tλ(w) ∈ σWaff . Let w
∆−→ tλ(w) be any path in the Bruhat graph

Ω(Waff ,Saff). Each reflection in the edge set E(∆) = {t1, . . . tn} belongs to T .

As a consequence of this proposition, we see that B≺Φ(G,T )aff
(w, tλ(w)) has a ≺-

preserving bijection to a certain interval B≺Φ(G,T )(w
−1
λ w̄, w−1

λ ) whose members are

paths with edges only in the finite Weyl group. See Proposition 4.2.4. Moreover,
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for each path ∆ ∈ B≺Φ(G,T )(w, tλ(w)), Lemma 4.3.5 shows how to construct a root

system J∆ ⊂ Φ(G, T ).

All of this comes together in a “stratified” version of Dyer’s formula, pre-

sented in Corollary 4.3.8, which applies to the polynomials R̃J
w,tλ(w)

(Qr), defined in

Chapter 3 (see discussion following Lemma 3.3.2):

Corollary. Let w = tλw̄ ∈ AdmGr(µ) and J ⊆ Φ. Then

R̃J
w,tλ

(Qr) =
∑
J ′⊆J

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J ′

Q`(∆)
r .

Finally, in Chapter 5 we come to the main result. Several lemmas employ the

results from Chapters 3 and 4 to rewrite our original formula for φ′r,1(I+
r swI

+
r ). The

proof of the theorem requires the following assumptions on G (see Remark 2.3.10),

1. G is a split connected reductive group with connected center,

2. The derived group Gder is simply-connected, and

3. Wχ = W ◦
χ .

For w ∈ W̃ , s ∈ T (kr) and J ⊆ Φ, define a symbol δ(s, w, J) by

δ(s, w, J) =



0, if w /∈ AdmGr(µ)

0, if w ∈ AdmGr(µ) and Nr(s) /∈ Aw,J,kF

1, if w ∈ AdmGr(µ) and Nr(s) ∈ Aw,J,kF .

Let Stors
w,J∆

be the torsion subgroup of Sw,J∆
. Then Theorem 5.1.3 ties everything

together:
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Main Theorem. Let w ∈ W̃ and s ∈ T (kr). Let d be the rank of T . Fix a reflection

ordering ≺ on Φ, and set c(∆) = [`(w, tµ)− `(∆)] /2. The coefficient of φ′r,1 for the

I+
r -double coset of (s, w) is given by

(−1)d
∑

∆∈B≺Φ (w−1
λ w̄,w−1

λ )

δ(s, w, J∆)|Stors
w,J∆
∩Kq−1|(q − 1)d−rank(J∆)−1qrc(∆)(1− qr)`(∆)−d.

Corollary 5.1.5 shows how to recover the formula for the Drinfeld case obtained

by Haines and Rapoport as a special case of the Main Theorem. Section 5.2 follows

this with remarks on using the formula for calculations and a description of how

the formula can be implemented in software. We conclude with two sections that

discuss features of some data gathered by computer for cases where G is a general

linear group or a general symplectic group. Tables located in the Appendix present

the data in full.

1.2 Preliminaries

We conclude this Introduction by introducing some terms and notation con-

cerning reductive algebraic groups defined over non-archimedean local fields. As

the main purpose of this section is to introduce notation and supplementary facts,

almost all of the details are left out, but references are given.

Several unrelated concepts are represented by similar symbols over the course

of this thesis, for example, we use W for a finite Weyl group and WF for a Weil

group of a local field F ; we use T for both a split maximal torus of G and the set

of reflections in a Weyl group; and an Iwahori subgroup of an algebraic group G

defined over F is denoted I, while the inertia subgroup of a Galois group Gal(F̄/F)
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is denoted IF .

1.2.1 p-adic fields

The following material on p-adic fields and related ideas has been drawn from

the book by Serre [29] and the article by Tate [30] found in the Corvallis proceedings.

The symbol F shall always refer to a non-archimedean local field, which is

sometimes also referred to as a p-adic field. Let OF and kF denote its ring of

integers and its residue field, respectively. The cardinality of kF shall be denoted

q. Fix an algebraic closure F̄ ⊃ F . The Galois group Gal(F̄ /F ) is the profinite

topological group of automorphisms of F̄ which fix F .

Let $ be a uniformizer of OF . Given an element x = u$n, for u a unit,

define val(x) = n. A standard convention is to set val(0) =∞. Thus we get a map

val : OF → {N,∞}.

For each r ∈ N, there exists a degree r unramified extension Fr ⊃ F

(see [29], III.5), which is unique inside F̄ . Given such an extension, the algebraic

integers inside Fr are denoted Or and its residue field is written kr. Its Galois group

Gal(Fr/F ) is isomorphic to Z/rZ. Define the norm map Nr : Fr → F by

Nr(z) =
r−1∏
i=0

θi(z),

where θ is a generator of the cyclic group Gal(Fr/F ).

The following definition of a Weil group is drawn from [30], Section 1.4.1. A

Weil group for F is a group WF embedded in Gal(F̄ /F ) whose closure is the Galois

group itself. Let k̂ = ∪E/FkE be the union of all residue fields for finite extensions

11



E/F . Then WF consists of the elements which act by Frobenius on k̂, i.e., x 7→ xq
n
,

for x ∈ k̂ and some n ∈ Z. The Weil group is generated by a geometric Frobenius

element ΦF and fits into a short exact sequence

1 −→ IF −→ WF −→ Z −→ 1,

where IF is the inertia subgroup. It is a fact that a Weil group exists for all

p-adic fields, and moreover, this group is unique up to isomorphism. One of the

consequences of Local Class Field Theory (see [29], XIII) is the existence of a reci-

procity map τF : WF → F ∗. For any extension E/F , there is an isomorphism

rE : E∗ → W ab
E .

Tate goes on to define the Weil-Deligne group W ′
F associated to WF in [30],

Definition 4.1.1. The representation theory of Weil-Deligne groups is a major feature

of the Local Langlands Conjecture, but we will not need the details in what follows.

1.2.2 Root systems

We briefly introduce the notions of a root system and its Weyl group, the

latter of which is a type of Coxeter group. Much more will be said about Coxeter

groups in Section 4.1. There are many excellent references for this subject, such as

Humphreys [21], Bourbaki [4], and the more recent book by Björner and Brenti [1],

which focuses on combinatorics.

Let V be a Euclidean space endowed with an inner product 〈 , 〉. Given a

vector α ∈ V , define the reflection sα with respect to the hyperplane in V orthogonal
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to α. That is,

sα(x) = x− 2〈x, α〉
〈α, α〉

α

A root system Φ is a finite set of vectors α ∈ V such that Φ ∩ Rα = {α,−α}

and sα(Φ) = Φ. A root system can be partitioned into a disjoint union of positive

and negative roots, written Φ = Φ+ ∪ Φ−, by choosing a basis ∆ ⊂ Φ whose

corresponding reflections generate the group W = 〈sα | α ∈ Φ〉, which is called the

Weyl group of Φ. All Coxeter groups admit a partial ordering called the Bruhat

order. Furthermore, Coxeter groups have a length function `. A difference of lengths

`(v)− `(u) is sometimes written `(u, v) as in [1].

Given a root α ∈ Φ, define its coroot α∨ by

α∨ =
2α

〈α, α〉
.

The set of such coroots forms the dual root system Φ∨.

A weight of Φ is a vector λ ∈ V such that 〈λ, α∨〉 ∈ Z for all α ∈ Φ. The set

of weights forms a lattice, which we sometimes denote X. A coweight of Φ is η ∈ V

such that 〈η, α〉 ∈ Z for all α ∈ Φ; these too form a lattice, sometimes denoted Y .

Given an irreducible root system Φ, there is an associated affine root system

Φaff which has a corresponding Coxeter group Waff called the affine Weyl group.

Suppose (W,S) is the (finite) Weyl group of Φ. Let α0 denote the highest root of

Φ, and let s0 = tα∨0 sα0 . Then the set of Coxeter generators Saff of the affine Weyl

group is the union of S ∪ {s0}.

The affine Weyl group can be further enlarged to the extended affine Weyl

group W̃ , defined as the semidirect product W̃ = Y o W . See Macdonald’s
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book [23], Section 2.1, for additional details.

Reflections define orthogonal hyperplanes in V which chop the space up into

alcoves, as described in [4], Chapter 5. A choice of basis for Φ determines a Weyl

chamber of V , and we choose the fundamental alcove C as the alcove in this

chamber whose closure contains the origin. In the situation laid out in Section 1.1,

consider the apartment corresponding to T in the Bruhat-Tits building of G. (See

[31] for more information about buildings. ) Our choice of Borel subgroup B ⊃ T

determines a basis of the root system Φ(G, T ), and C is the unique alcove in the

B-positive Weyl chamber inside the apartment whose closure contains the origin.

The affine Weyl group is generated by reflections through the walls of C. Let Ω[C]

denote the subgroup of W̃ which stabilizes C. Then we get a second realization of

W̃ as the semidirect product Waff o Ω[C].

1.2.3 Reductive algebraic groups over p-adic fields

So far we have encountered Galois and Weil groups, along with several vari-

ants of Weyl groups. We conclude these preliminaries by giving some definitions

pertaining to linear algebraic groups, i.e., Zariski closed subgroups of a general lin-

ear group viewed as an algebraic variety, focusing on the case of (split) reductive

groups defined over local fields. For the general theory of linear algebraic groups,

see for example the books by Borel [3] and Humphreys [20]. The structure theory

of reductive groups over local fields is highly developed; see the survey by Tits [31]

as a starting point.
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Let G denote a connected reductive algebraic group that is split over F . Its

group of F -rational points, denoted G(F ), has a neighborhood basis of compact open

subgroups; and moreover, G(F ) is unimodular, hence we may speak of a choice of

Haar measure on G(F ).

As in Section 1.1, we fix a Borel subgroup B and let T denote the split maximal

torus inside B. The pair (G, T ) determines a root system Φ = Φ(G, T ) whose

positive roots are denoted Φ+. Let U denote the unipotent radical of B. Then

B = TU = T
∏
α∈Φ+

Uα,

where Uα ⊂ G(OF ) is normalized by T ; see [31] Section 1. The Iwahori subgroup

with respect to this configuration is the subgroup of G(OF ) that maps onto B(kF )

via the “mod $” map. The unique pro-unipotent subgroup of I is called its pro-

unipotent radical I+. The subgroup I+ is a pro-p group.

The character group of T is X∗(T ) = HomF (T,Gm). This group can be

thought of as the weight lattice of Φ(G, T ). On the other hand, the cocharacter

group X∗(T ) = HomF (Gm, T ) is the coweight lattice of Φ(G, T ). A cocharacter

λ ∈ X∗(T ) is dominant if 〈λ, α〉 ≥ 0 for all α ∈ Φ+, and it is minuscule if 〈λ, α〉 ∈

{−1, 0, 1}. (See also [4], VI.1 Exercise 24.) Throughout this thesis, the letter µ

will be reserved for a dominant, minuscule cocharacter in X∗(T ) with respect to

Φ(G, T ). The set of dominant cocharacters is written X∗(T )dom.

Our torus T determines a unique dual torus T̂ defined over C whose character

group X∗(T̂ ) is the free abelian group X∗(T ).

Taking the view of a split connected algebraic group G over F as an OF -affine
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group scheme, we obtain data related to the above for each unramified extension

Fr/F . We write Gr for G(Fr), Ir for the corresponding Iwahori subgroup, etc.

Given an unramified extension Fr/F , there is a norm Nr : Fr → F as described

above. The Galois action of Gal(Fr/F ) on Fr can be extended to an action of the

group on T (Or). The resulting map is also written Nr : T (Or)→ T (OF ). Observe

that for each character ξ : T (OF )→ C×, we may use the norm to get a new character

ξr = ξ ◦Nr. This is an important type of character on T (Or).
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Chapter 2: Test functions with pro-p Iwahori level structure

As stated in the Introduction, the main result of this thesis is a new formula

for the coefficients of a function φ′r,1 whose twisted orbital integrals agree with those

of the test function φr,1 with pro-p Iwahori level structure, at least in the cases of

general linear groups and general symplectic groups. This chapter summarizes the

results needed to define test functions as they arise from the Bernstein center, before

going on to develop a first explicit formula for φ′r,1 using various data about depth-

zero characters. Subsequent chapters will translate this version of the formula into

something based on the combinatorics of Coxeter groups.

2.1 Background on representation theory

This section collects definitions and results concerning smooth representations

of reductive algebraic groups defined over a non-archimedean local field. We also

give some background on representations of Weil groups, which involves defining the

Langlands dual group of G, in order to explain the Local Langlands Correspondence.

For reference, we recommend the Fields Institute book [6], which introduces

smooth representations of p-adic groups, representations of Weil groups, and the

Local Langlands Correspondence in a single volume.
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2.1.1 Smooth representations of p-adic groups

In this section, let G be a connected reductive algebraic group defined over a

p-adic field F . Let V be a complex vector space.

Definition 2.1.1. A smooth representation of G(F ) is a homomorphism

π : G(F )→ Aut(V ) such that for every v ∈ V there exists a compact open subgroup

K ⊂ G(F ) such that v ∈ V K, where

V K = {v ∈ V | π(k) · v = v,∀k ∈ K}.

The category of smooth representations of G is denoted R(G).

Let C∞c (G) denote the space of locally constant, compactly supported func-

tions f : G(F )→ C. If K is a compact open subgroup of G(F ), let H(G,K) denote

the K-biinvariant functions in C∞c , that is, f ∈ H(G,K) satisfies

f(k1xk2) = f(x), for k1, k2 ∈ K and x ∈ G.

The Hecke algebra H(G) is the union ∪KH(G,K) ranging over all compact open

subgroups K of G(F ), equipped with a convolution integral:

(f ∗ h)(x) =

∫
G

f(g)h(g−1x)dg,

where dx is a fixed normalization of Haar measure. It is well-known that R(G) is

equivalent to the category of non-degenerate left H(G)-modules.

Definition 2.1.2. Let G be a connected reductive group with maximal torus T , and

let I be the Iwahori subgroup as specified above. The Iwahori-Hecke algebra
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H(G, I) is the set of functions f ∈ C∞c (G) which are invariant on I − I-double

cosets, with an algebra structure given by convolution.

Let P = MN be a Levi decomposition of a parabolic subgroup P of G(F ).

Given a representation (σ, V ) of M , we have an induced representation IndG
P (σ)

in R(G). The representation space of IndG
P (σ) is

{f : G→ V | f(hg) = σ(h)f(g), ∀h ∈ P, g ∈ G}

The case where P is a Borel subgroup, in which case it is denoted B, is particularly

important. Here B = TU for a maximal torus T , and so forming induced represen-

tations is a method for producing smooth representations of G from characters on a

torus. In fact, we generally consider normalized induced representations, where σ is

twisted by a square-root of the modulus function δP . We write iGP (σ) = IndG
P (δ

1/2
P σ).

The category R(G) can be further understood in terms of induced represen-

tations arising from supercuspidal representations of Levi subgroups. (This is part

of Harish-Chandra’s philosophy of cusp forms.) Much of the following terminology

comes from the theory of Bushnell-Kutzko types [5], though our presentation mostly

follows [26], Section 1.7.

Let M be a Levi subgroup of G, and let σ be a supercuspidal representation

of M . The pair (M,σ) is called a cuspidal pair. There is a conjugacy relation on

cuspidal pairs: Given g ∈ G, let L = gMg−1 and define gσ by gσ(x) = σ(g−1xg);

then the resulting cuspidal pair (L, gσ) belongs to (M,σ)G, the G-conjugacy class of

(M,σ). It turns out to be more useful to consider the coarser inertial equivalence

relation: The pairs (M,σ) and (L, τ) are equivalent if there exists g ∈ G such that
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L = gMg−1 and τ ∼= gσ ⊗ η for some unramified character η on the group L.

Let s = [M,σ]G denote an inertial equivalence class, and call the set of all inertial

equivalence classes for G, denoted B(G), the Bernstein spectrum.

Each inertial equivalence class s gives rise to a full subcategory Rs(G) of

R(G). The objects are described in terms of subquotients of induced representations.

Specifically, let Π be a smooth representation of G. Then Π ∈ Rs(G) if and only if

every irreducible subquotient π of Π has inertial support equal to s, i.e., if there is

a cuspidal pair (M,σ) ∈ s such that π is a subquotient of iGP (ση) for P = MN a

Levi decomposition and η an unramified character on M .

Theorem 2.1.3. (Bernstein Decomposition) The category of smooth representa-

tions of G decomposes as

R(G) =
∏

s∈B(G)

Rs(G).

Proof. This result is originally due to Bernstein. See also [26], Theorem 1.7.3.1.

2.1.2 The Local Langlands Correspondence

The primary reference for this section is Borel’s article on automorphic L-

functions [2] from the Corvallis proceedings.

The L-group of a connected reductive group G is LG = ĜoWF , where Ĝ is

the connected reductive group defined over C determined by the dual root datum

(X∗(T ),Φ∨, X∗(T ),Φ). When G is split, the action of the Weil group on Ĝ is trivial;

so in this case we may use Ĝ in place of LG.

In the representation theory of the Weil-Deligne group W ′
F , L-groups play the
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role of automorphisms of a linear space, that is, we consider homomorphisms

ϕ : W ′
F → LG. More specifically, we consider “admissible” homomorphisms in

the sense specified in [17], Section 4. Following the discussion in [17] Section 5.1,

we restrict an admissible homomorphism ϕ on W ′
F along the proper embedding

WF ↪→ W ′
F to get an admissible homomorphism λ on the Weil group, where here

“admissible” is in the sense of the footnote on p. 131 of [17]. The Ĝ-conjugacy class

of an admissible homomorphism λ on WF , denoted (λ)Ĝ, is called an infinitesimal

character.

The Local Langlands Correspondence (LLC) predicts a finite-to-one relation-

ship between the set of Ĝ-conjugacy classes of admissible homomorphisms of the

Weil-Deligne group into the L-group, written Φ(G/F ) and the set of smooth irre-

ducible representations of G(F ), written Π(G/F ), satisfying desiderata given in [2],

which we will not recall here. Given π ∈ Π(G/F ), its Langlands parameter in

Φ(G/F ) is denoted ϕπ.

The LLC is a theorem in several cases of interest to this thesis. First, it is a

theorem for all tori, as we recall in Section 2.3.3. Also, in a major breakthrough,

Harris and Taylor proved the LLC for GLn, which is among the split connected

reductive groups with connected center being considered here.

2.2 Test functions via the Bernstein center

The precise statement of the Test Function Conjecture of Haines and Kottwitz

relies on a significant amount of machinery from the study of bad reduction of
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Shimura varieties that will not be covered here; however, we will provide enough

detail to define the test function φr at the heart of the conjecture. The primary

reference for this section is [17].

Although the Bernstein center is initially defined in categorical terms, there

are three concrete ways to describe it, each of which will play into the present

approach to test functions. The first part of this section explains each of these

alternative descriptions. Then we apply this theory to define the test functions.

The definition relies on the LLC+ conjecture in order to embed a distribution in

the stable Bernstein center Zst(G) as an element of the usual Bernstein center Z(G).

We emphasize that our present objective is to study a test function ϕr in the

context of the Test Function Conjecture and not to explain the conjecture itself.

Several important concepts and objects are mentioned in this section with only

enough exposition to lead us to a definition of ϕr. The reader is encouraged to read

the relevant parts of [17] for the full story.

2.2.1 The Bernstein Center

Definition 2.2.1. The Bernstein center Z(G) of a connected reductive algebraic

group G defined over a p-adic field is the center of the category R(G), i.e., the

endomorphism ring of the identity functor. An element ξ ∈ Z(G) is a family of

morphisms ξA : A → A such that for any morphism f : A → B the following
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diagram commutes

A

ξA
��

f
//B

ξB
��

A
f
//B

The first concrete realization of Z(G) is as an algebra of certain distributions.

A distribution is a linear map D : C∞c (G) → C. Given f ∈ C∞c (G), one can

define a new function D ∗ f ; see [17] Section 3.1. If D is “essentially compact,”

then D ∗ f ∈ C∞c (G). Lemma 4.1 and Corollary 4.2 of [17] show that the set of G-

invariant, essentially compact distributions onG form a commutative and associative

C-algebra (D(G)Gec, ∗).

Second, Z(G) is isomorphic to an inverse limit of centers of Hecke algebras.

Given a compact open subgroup J of G, consider the center Z(G, J) of the Hecke

algebra H(G, J). This is an algebra under convolution, and we choose a Haar

measure dxJ such that voldxJ
(J) = 1. Let 1J denote the characteristic function

of the subgroup J . For J ′ ⊂ J , there is a corresponding morphism of algebras

Z(G, J ′) → Z(G, J) given by zJ ′ 7→ zJ ′ ∗dxJ′ 1J . So we can form the inverse limit

lim←−J Z(G, J); it is a fact that Z(G) ∼= lim←−J Z(G, J).

The final realization of the Bernstein center uses the inertial equivalence classes

defined in Section 2.1. For s = [M,σ]G ∈ B(G), let

Xs = {(L, τ)G | (L, τ)G ∼ (M,σ)G},

that is, the set of G-conjugacy classes of cuspidal pairs encompassed by the inertial
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equivalence class s. Now define a disjoint union

XG =
∐

s∈B(G)

Xs.

This set can be given a variety structure. The Bernstein center is isomorphic to the

ring of regular functions C[XG].

Theorem 2.2.2. In summary, the Bernstein center Z(G) satisfies the following

isomorphisms,

Z(G) ∼= (D(G)Gec, ∗) ∼= lim←−
J

Z(G, J) ∼= C[XG].

Proof. This is all in [17] Section 3.

Recall that given a distribution Z ∈ Z(G) and a subgroup J ⊂ G, the element

Z ∗ 1J belongs to the Hecke algebra H(G, J). As such, we can study the action of

Z ∗ 1J on πJ for a representation π ∈ R(G) viewed as a H(G)-module.

The inertial equivalence class s supporting a smooth representation π ∈ R(G)

is a point in the variety XG. Viewing Z ∈ Z(G) as a regular function on this variety,

we may define a scalar Z(π) as the value of Z at s.

Proposition 2.2.3. Let π be a finite-length smooth representation. For every com-

pact open subgroup J ⊂ G, Z ∗ 1J acts on πJ by Z(π).

Proof. This statement is [17] Corollary 4.3(a).

2.2.2 Definition of a test function

Test functions may be defined in terms of distributions coming from the Bern-

stein center. We construct a particular distribution ZVµ in the stable Bernstein
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center Zst(G) attached to a representation (rµ, Vµ) of the Langlands dual group LG

determined by a dominant minuscule cocharacter µ in X∗(T ). The test function is

obtained by convolving this distribution with the characteristic function of the level

structure subgroup of G.

Recall from Section 2.1.2 that restricting an admissible homomorphism ϕ on

W ′
F gives us an admissible homomorphism λ on WF .

Definition 2.2.4. Let (r, V ) be a complex, finite-dimensional representation of LG.

Given a geometric Frobenius element Φ ∈ WF and an admissible homomorphism

λ : WF → LG, define the semisimple trace by

trss(λ(Φ), V ) = tr(rλ(Φ), V rλ(IF )).

An infinitesimal character (λ)Ĝ defines an element of a certain variety Y

(see [17] Chapter 5). Assuming the LLC+ conjecture [17], Section 5.2, the Bernstein

variety XG has a quasi-finite surjection onto Y when G is split.

Proposition 2.2.5. The map λ 7→ trss(λ(Φ), V ) defines an element ZV ∈ Zst(G) as

a regular function on Y given by

ZV ((λ)Ĝ) = trss(λ(Φ), V )

Proof. This is part of statement is Proposition 4.28 of [17].

Remark 2.2.6. If our split connected reductive group G defined over F satisfies the

LLC+ conjecture, then there is an injective homomorphism Zst(G)→ Z(G). In this

case, the distributions ZV may be viewed as elements of Z(G).
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Theorem 2.2.7. (The Theorem of the Highest Weight) Let G be a linear reductive

group over an algebraically closed field K. An irreducible, finite-dimensional K-

representation has a unique highest weight. Every dominant weight of the root

system of G is the highest weight of such a representation, which is unique up to

isomorphism.

Proof. See [20], Theorem 31.3. Although the reference states the theorem for

semisimple groups, the argument can be applied to reductive groups.

Thus, given a dominant minuscule cocharacter µ ∈ X∗(T ), there exists a

highest weight representation (rµ, Vµ) ∈ Rep(Ĝ), which is unique up to isomorphism.

Definition 2.2.8. Let G be a split connected reductive group defined over a non-

archimedean local field F with split maximal torus T . Consider a degree r unramified

extension Fr/F . Denote the Fr-rational points by Gr. The residue field of Fr has

cardinality qr. Let µ be a dominant cocharacter of T and Kr a compact open subgroup

of Gr. Let tµ denote the translation element in W̃ corresponding to µ. Finally, define

the test function with Kr-level structure for (Gr, µ) to be

φr = qr`(tµ)/2(ZVµ ∗ 1Kr)

Observe that φr lies in Z(Gr, Kr) by the theory of the Bernstein center.

The terminology “Kr-level structure” routinely appears in articles on the theory

of Shimura varieties with bad reduction at a place dividing p. The group we have

called Kr corresponds to the compact open subgroup Kp ⊂ G(Qp), which is a part

of a Shimura datum. As described in the Introduction, the Test Function Conjec-
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ture [17], Conjecture 4.30, predicts that φr can be used to prove a certain formula

for the semi-simple Lefschetz number via the Langlands-Kottwitz method.

Definition 2.2.9. The test function with I+
r -level structure is

φr,1 = qr`(tµ)/2(ZVµ ∗ 1I+
r

).

2.3 Data associated to a depth-zero character

We now begin preparations to rewrite φr,1 via depth-zero characters on T (Or).

As we shall see in the next section, φr,1 can be expressed as a sum indexed by the

group of depth-zero characters ξ on T (Or) by considering certain idempotents in

the Hecke algebra H(Gr).

Remark 2.3.1. Many of the definitions and results in this section can be found in

[25]; however, we have followed the notation used in [19]. The danger for confusion

is mostly with variants of Weyl groups. Specifically, we use W for the finite Weyl

group and W̃ for the extended affine Weyl group, whereas Roche denotes these groups

W and W respectively.

2.3.1 First properties

Definition 2.3.2. Let T be a split maximal torus in G. A depth-zero character

on T (OF ) is a smooth character χ : T (OF )→ C× that factors through T (kF ). The

resulting character T (kF )→ C× is also denoted χ. Similarly, a depth-zero character

on T (Or) is a character ξ that factors through T (kr). Let T (kF )∨ and T (kr)
∨ denote

the sets of depth-zero characters on the groups T (OF ) and T (Or), respectively.
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Next, we will associate a root system Φχ, called a χ-root system, to a char-

acter χ on T (OF ). For this application, χ need not have depth zero.

Proposition 2.3.3. The set Φχ = {α ∈ Φ | χ ◦ α∨|O×F = 1} is a root system.

This statement also appears in Roche [25] and Goldstein’s thesis [12].

Proof. We say that a subset J of a root system Φ is closed if it satisfies the following

condition: If α, β ∈ J and α+β ∈ Φ, then α+β ∈ J . A subset J of Φ is symmetric

if α ∈ J implies −α ∈ J . Following Bourbaki [4], it suffices to show that Φχ is a

closed, symmetric subset of Φ.

Closed: Suppose α, β ∈ Φχ and α + β ∈ Φ. By direct calculation,

χ ◦ (α + β)∨(x) = (χ(α∨(x))) (χ(β∨(x))) = 1.

Symmetric: Suppose α ∈ Φχ. Then χ ◦ (−α∨)(x) = χ(α∨(x)−1) = 1.

Lemma 2.3.4. Let Fr/F be an unramified extension of local fields. The norm map

Nr : Fr → F restricts to a surjective map Nr : O×r → O×F .

Proof. See [29], Proposition V.2.3 and its corollary.

Recall that the norm induces a map Nr : T (Or)→ T (OF ). Given χ ∈ T (kF )∨

and an unramified extension Fr/F , define a new character χr = χ ◦Nr on T (Or).

Lemma 2.3.5. The character χr = χ ◦Nr : T (Or) −→ C× has depth zero.

Proof. The norm Nr : O×r → O×F descends to Nr : kr → kF as explained in [29],
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Section V.2. This induces a commutative diagram on points of the torus:

T (Or)

��

Nr // T (OF )

��

T (kr)
Nr // T (kF )

Because χ is depth zero, it factors through T (kF ). Therefore χ ◦Nr : T (Or)→ C×

factors through T (kr) by composing the induced map χ : T (kF ) → C× with the

lower route through the above diagram.

Proposition 2.3.6. Let χ : T (OF ) → C× be a depth-zero character, and let χr be

the associated depth-zero character on T (Or). Then Φχ = Φχr as subsystems of the

ambient root system Φ = Φ(G, T ).

Proof. For any α ∈ Φ, consider the cocharacter α∨ in X∗(T ). Since G is split, the

maximal torus T is F -isomorphic to a direct product Gm×· · ·×Gm of rank equal to

rank(T ). Galois groups act coordinate-wise on T (Fr) and T (F ), and the following

diagram commutes:

F×r

α∨

��

Nr // F×

α∨

��

T (Fr)
Nr // T (F )

Therefore, we have an equality,

(χr ◦ α∨)(z) = (χ ◦ α∨)(Nr(z)),

for any α ∈ Φ and z ∈ O×r .

The norm map Nr : Fr → F restricts to a surjection Nr : O×r → O×F . It is

then clear that χr(α
∨(z)) = 1 if and only if χ(α∨(Nr(z))) = 1.
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So, if α ∈ Φχ, we can conclude that χr(α
∨(z)) = 1 for all z ∈ kr, i.e., that

α ∈ Φχr . Similar logic gives the reverse inclusion.

Proposition 2.3.7. Let T be the split maximal torus in a fixed Borel subgroup B of

G. Let Ir be the Iwahori subgroup of G(Or) that maps onto B(kr) modulo $. Then

there is an isomorphism T (kF ) ∼= I/I+. Similarly, T (kr) ∼= Ir/I
+
r for the analogous

subgroups of G(Fr).

Proof. The isomorphism is a consequence of the factorization of I (resp. Ir) into

a product of torus elements and unipotent elements. See for example Goldstein’s

thesis [12], Chapter 2.

Using T (kF ) ∼= I/I+, we can extend a depth-zero character χ on T (kF ) to a

character ρχ on I which is trivial on I+. There is a character ρχr on Ir similarly

derived from χr.

We conclude these opening remarks by defining some variants of the Weyl

group associated to a depth-zero character. What follows is essentially reproduced

from [19] Section 9.1.

Let NG(T ) be the normalizer of T (F ) in G(F ). Recall that the Weyl group of

Φ is W = NG(T )/T (F ), and its extended affine Weyl group is W̃ = NG(T )/T (OF ).

The groups NG(T ), W and W̃ all act on the depth-zero characters by conjugation,

e.g., for w ∈ W and t ∈ T (OF ), define the W -action by wχ(t) = χ(w−1tw). Let

Wχ = {w ∈ W | wχ = χ}.

From the definitions, we have surjections NG(T )→ W̃ → W and that Wχ is a
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subgroup of W . Let W̃χ be the preimage of Wχ in W̃ , and let Nχ be the preimage

of Wχ in NG(T ).

Let Φχ,aff = {a = α+k | α ∈ Φχ, k ∈ Z} be the affine root system arising from

Φχ. Let W ◦
χ = 〈sα | α ∈ Φχ〉 and Wχ,aff = 〈sa | a ∈ Φχ,aff〉.

In conclusion, let us state Lemma 9.1.1 of [19], whose proof is due to Roche [25].

Lemma 2.3.8. 1. The group Wχ,aff is a Coxeter group, whose set of generators

Sχ,aff are the reflections associated to the simple roots of Φχ,aff .

2. There is a canonical decomposition W̃χ = Wχ,affoΩχ, where Ωχ is the subset of

W̃χ which fixes the base alcove of Φχ. The Bruhat order ≤χ and length function

`χ of Wχ,aff can be extended to W̃χ such that Ωχ consists of the length-zero

elements.

3. If W ◦
χ = Wχ, then Wχ,aff (resp. W̃χ) is the affine (resp. extended affine) Weyl

group associated to Φχ.

2.3.2 Hecke algebras and their isomorphisms

Given a character ξ on T (kr), extend to ρξ on Ir using T (kr) ∼= Ir/I
+
r as before.

We define the subalgebra H(Gr, Ir, ρξ) ⊂ H(Gr) consisting of functions f such that

f(xgy) = ρξ(x)−1f(g)ρξ(y)−1

where x, y ∈ Ir and g ∈ Gr. Roche refers to such an f as a ρ−1
ξ -spherical function.

Iwahori and Matsumoto [22] gave an explicit presentation for certain Iwahori-Hecke

algebras, which generalizes to algebras such as H(Gr, Ir, ρξ) as described in works
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by Goldstein [12], Morris [24], and Roche [25]. Roche introduced an approach

to Hecke algebra isomorphisms using endoscopic groups, which is advantageous in

the present situation; however, Goldstein’s isomorphism would be sufficient as it

specifically covers the case of depth-zero characters for split reductive groups.

We begin by introducing the Hecke algebra attached to a general Coxeter

group. These groups will be denoted (W ,S) to differentiate them from the finite

Weyl group (W,S) of G. The Hecke algebra is defined by making a parameter choice

for the following general construction:

Theorem 2.3.9. Let (W ,S) be a Coxeter system and A a commutative ring with

unity. There is a unique associated A-algebra H based on a free A-module E having

basis Tw for w ∈ W, with parameters as, bs ∈ S, subject to the relations

TsTw =


Tsw, if `(sw) > `(w)

asTw + bsTsw, otherwise.

Proof. See [21], Sections 7.1-7.3.

If we set as = q − 1 and bs = q for all s ∈ S, then we get the Hecke algebra

H(W ,S) as in [21], Section 7.4. If Waff is the affine Weyl group of G, then the

Iwahori-Matsumoto isomorphism for the Iwahori-Hecke algebra is

H(G, I) ∼= H(Waff , Saff) ⊗̃ C[Ω],

where the notation ⊗̃ refers to a twisted tensor product and whose multiplication

on simple tensors is given by

(Tw ⊗ Tσ) · (Tw′ ⊗ Tσ′) = TwTσw′σ−1 ⊗ Tσσ′
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for w,w′ ∈ Waff and σ, σ′ ∈ Ω. The isomorphism W̃ ∼= Waff o Ω enables us to view

the simple tensors Tw ⊗ Tσ as a basis for H(G, I) indexed by W̃ .

Following Roche, there are two ways to generalize this isomorphism. One

version of the Hecke algebra isomorphism (see [25], Theorem 6.3) shows directly

that

H(Gr, Ir, ρχr)
∼−→ H(Wχr,aff , Sχr,aff) ⊗̃ C[Ωχr ].

However, we will follow the second approach, which defines an endoscopic group

Hχr and shows that H(Gr, Ir, ρχr) is isomorphic to the Iwahori-Hecke algebra of this

endoscopic group with a suitably chosen Iwahori subgroup IHr . Then the original

Iwahori-Matsumoto isomorphism gives a presentation of the Hecke algebra in terms

of a basis indexed by W̃χr .

Before explaining Hecke algebra isomorphisms according to Roche, we make

the following remark to clarify what assumptions are being made.

Remark 2.3.10. The following will be enforced from now on:

1. As before, G is a split connected reductive group with connected center,

2. The derived group Gder is simply-connected (see Section 3.2.2), and

3. Wχ = W ◦
χ .

Under these conditions, we may avoid the restrictions on char(kF ) made by Roche

in [25] to prove Hecke algebra isomorphisms for characters with positive depth. Other

restrictions are needed to ensure Wχ = W ◦
χ . The theory of Hecke algebra isomor-

phisms associated to depth-zero characters holds without any restriction on char(kF ).
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Proposition 2.3.11 states that Wχ = W ◦
χ holds for general linear groups and

general symplectic groups without restrictions, these two important examples satisfy

the above criteria.

Proposition 2.3.11. Suppose G is a split connected reductive group with connected

center defined over F . If G = GLn or G = GSp2n, then Wχ = W ◦
χ without restric-

tion on residue characteristic.

Proof. The proof for all split connected groups with connected center can be ex-

tracted from pages 395-397 of [25], but this comes at the cost of some restrictions

on char(kF ). The cases of GLn and GSp2n are proved to be independent of such

restrictions in an unpublished manuscript of Haines and Stroh.

We are ready to give Roche’s definition of the dual group Hχr . In fact, Roche

defines two groups H̃χr and Hχr ; however, if G has connected center and Wχ = W ◦
χ ,

then H̃χr = Hχr . See [25], Section 8, for the complete story.

Let Hχr be the split connected reductive group over Or associated to the root

datum (X∗(T ),Φχr , X∗(T ),Φ∨χr). By Proposition 2.3.6, Φχr = Φχ. Consequently,

W ◦
χ is the Weyl group for Hχr , while W̃χ is its extended affine Weyl group by

Lemma 2.3.8. We may assume T is the split maximal torus inside Hχr , and there is

an Iwahori subgroup IHr ⊂ Hχr determined by the positive roots Φ+
χ . Thus we come

to consider the Iwahori-Hecke algebra H(Hχr , IHr). When considering this algebra,

we normalize Haar measure for the convolution integral such that vol(IHr) = 1.

Theorem 2.3.12. The algebras H(Hχr , IHr) and H(Gr, Ir, ρχr) are isomorphic via

a family of support-preserving isomorphisms.
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Proof. This is [25] Theorem 8.2.

We make a specific choice of isomorphism among the family established by the

theorem, following the presentation in Haines-Rapoport [19], Section 9. Recall that

Nχ is the inverse image of W̃χ arising from the surjective map N → W̃ .

Lemma 2.3.13. Let χ̃r denote an extension of χr to T (Fr). Then χ̃r extends to a

character χ̆r on Nχr if and only if χ̃r is Wχr-invariant.

Proof. This is [19], Lemma 9.2.3.

For a fixed choice of uniformizer $, Remark 9.2.4 loc. cit. defines a specific

Wχr -invariant extension of χr, called the $-canonical extension, by

χ̃$r (ν($)t0) = χ(t0),

for all ν ∈ X∗(T ) and t0 ∈ T (Or). From now on let χ̆r be the character on

Nχr determined according to Lemma 2.3.13.

For each w ∈ W̃χ, fix a choice of nw ∈ Nχ such that nw 7→ w under the surjec-

tion Nχ → W̃χ. Still following Haines-Rapoport, define [IrnwIr]χ̆r in H(Gr, Ir, ρχr)

to be the “unique element in H(Gr, Ir, ρχr) which is supported on IrnwIr and whose

value at nw is χ̆−1
r (nw). Note that [IrnwIr]χ̆r depends only on w, not on the choice

of n ∈ Nχ mapping to w ∈ W̃χ.” ( [19], p. 766.)

Recall that Haar measure on H(Gr, Ir, ρχr) is normalized so that vol(I+
r ) = 1,

while the measure on H(Hχr , IHr) is normalized so that vol(IHr) = 1.

Lemma 2.3.14. The isomorphism Ψχ̆r : H(Gr, Ir, ρχr)
∼−→ H(Hχr , IHr) maps

q−r`(w)/2[IrnwIr]χ̆r 7−→ q−r`χ(w)/2[IHrnwIHr ].
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Proof. This is quoted from [19], Theorem 9.3.1, but the result comes from [25].

The isomorphism Ψχ̆r will be referred to as “the” Hecke algebra isomorphism

between these algebras. It depends on the choice of $ used to construct χ̆r.

Let χ̃ : T (F ) → C× be an extension of χ. There is a corresponding inertial

equivalence class sχ = [T (F ), χ̃]G, and hence a Bernstein component Rsχ(G), which

we refer to as a depth-zero principal series component of R(G). If χ = 1, i.e., the

trivial character, the inertial class is denoted s1. The component Rs1(G) is the

unramified principal series component.

Proposition 2.3.15. The isomorphism Ψχ̆r sets up an equivalence of categories

Rsχ(Gr) ∼= Rs1(Hχr) under which iGrBr (χ̃
$
r η) corresponds to i

Hχr
BHr

(η), where η is an

unramified character.

Proof. This statement is Proposition 9.3.3(2) in [19].

Using the statements and results from Roche and Haines-Rapoport, we have es-

tablished an isomorphism between the Hecke algebra H(Gr, Ir, ρχr) and the Iwahori-

Hecke algebra H(Hχr , IHr). Then by the Iwahori-Matsumoto isomorphism,

H(Hχr , IHr)
∼= H(Wχr,aff , Sχr,aff) ⊗̃ C[Ωχr ].

The right-hand side of this expression is called a twisted affine Hecke algebra. It has

a basis {Tw}w∈W̃χ
, where each of the Tw is invertible.

Recall from Proposition 2.3.6 that Φχ = Φχr . It follows that the Coxeter

systems (Wχr,aff , Sχr,aff) and (Wχ,aff , Sχ,aff) are identical; however, we could make

different parameter choices as = qr − 1, bs = qr and as = q − 1, bs = q, respectively
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for s ∈ Sχ,aff , which would yield two different twisted affine Hecke algebras that

share a common basis {Tw} indexed by W̃χr .

In what follows, we would like to work with data defined in terms of characters

χ ∈ T (kF )∨. If we set the parameters as = qr−1, bs = qr with respect to the Coxeter

system (Wχ,aff , Sχ,aff) = (Wχr,aff , Sχr,aff), then we get the isomorphism

H(Hχr , IHr)
∼= Hr(Wχ,aff , Sχ,aff) ⊗̃ C[Ωχ],

where the subscript “r” in Hr is meant to remind the reader that the parameters for

the Hecke algebra of the Coxeter system depend on r, even though we are working

with the basis indexed by W̃χ.

The inversion formula for the basis elements determines the R̃-polynomials,

which arise from Kazhdan-Lusztig theory, for the group (Wχ,aff , Sχ,aff). This notion

extends to the extended affine Weyl group W̃χ.

Definition 2.3.16. Let Qr = q−r/2 − qr/2. For the twisted affine Hecke algebra Hr

associated to W̃χ, there is a family of polynomials R̃χ
x,y(Qr), with x, y ∈ W̃χ, deter-

mined by the inversion formula for a normalized basis element T̃w,r = q−r`χ(w)/2Tw

in Hr. The polynomials are defined by

T̃−1
w−1,r =

∑
x∈W̃χ

R̃χ
x,w(Qr)T̃x,r.

We will revisit these polynomials in Chapter 4, where they are defined in terms

of an abstract Coxeter system.

37



2.3.3 The LLC for Tori

The Local Langlands Correspondence is a theorem in the case of tori. While

the LLC is true for general tori, we consider only the split case. Therefore LT can

be viewed as T̂ , the torus determined by the dual root datum.

Theorem 2.3.17. (LLC for Tori: Split Case) Let T be a split torus over F and WF

the Weil group of F . Then there is a correspondence

Hom(WF , T̂ (C)) = Hom(T (F ),C×).

Denote the Langlands parameter of a character ξ : T (F )→ C× by ϕξ : WF → T̂ (C).

Proof. For details see Yu [33].

Let χ : T (OF )→ C× be a depth-zero character, and let χ̃ denote an extension

to T (F ). Let τF denote the Artin reciprocity map from local class field theory.

For any ν ∈ X∗(T̂ ) = X∗(T ), Theorem 2.3.17 yields the following commutative

diagram:

WF

ν◦τF
��

ϕχ̃
// T̂ (C)

ν

��

T (F )
χ̃

// C×

Lemma 2.3.18. Consider χ : T (OF )→ C× and an extension χ̃ to T (F ).

1. χ̃ is an unramified character if and only if its Langlands parameter ϕχ̃ is trivial

on the inertia subgroup IF ⊂ WF .

2. The restriction of ϕχ̃ to IF depends only on χ. This restriction is denoted ϕχ.
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3. χ is depth-zero if and only if ϕχ is trivial on the subgroup τ−1
F (1+$OF ) ⊂ IF .

In this case, χ is determined by the value of ϕχ on an element x ∈ IF whose

image x̃ ∈ O×F under τF projects to a generator of the multiplicative group of

the residue field kF .

We will give a proof of the lemma; however, these statements also appear in Roche’s

article [25] in the discussion following his Theorem 8.2.

Proof. Recall that a character is unramified if it is trivial on

◦T = {t ∈ T (F ) | valF(ν(t)) = 0,∀ν ∈ X∗(T)}.

For split groups over non-archimedean local fields, this group is the maximal compact

open subgroup ◦T = T (OF ). The Artin map gives a surjection τF : IF → O×F .

Suppose χ̃ is an unramified character. If z ∈ IF , then ν(τF (z)) ∈ T (OF ),

which implies ν(ϕχ̃(z)) = 1 for all ν ∈ X∗(T ). Therefore, ϕχ̃(z) = 1. Conversely,

suppose t ∈ T (OF ). Then it can be written as a product t =
∏

i ti =
∏

i νi(τF (zi))

for some zi ∈ IF and cocharacters νi ∈ X∗(T ), because the OF -points of T are

generated by the images of its cocharacters applied to O×F . We have

χ̃(t) =
∏
i

χ̃(νi(τ(zi))) =
∏

νi(ϕχ̃(zi)) = 1,

and ϕχ̃ is trivial on each zi by assumption. This proves the first statement.

To prove the second statement, consider any two extensions χ̃1, χ̃2 to T (F ).

We will show that the parameters ϕχ̃1 and ϕχ̃2 agree on the inertia subgroup, i.e.,

ϕχ̃1|IF = ϕχ̃2|IF .
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Choose any z ∈ IF . Then for all ν ∈ X∗(T ) = X∗(T̂ ) and i = 1, 2:

ν(ϕχ̃i(z)) = χ̃i(ν(τF (z))).

Since τF maps IF ontoO×F , ν(τF (z)) ∈ T (OF ). Therefore, χ̃i(ν(τF (z))) = χ(ν(τF (z)))

for i = 1, 2. Translating this back into a statement about Langlands parameters

gives

ν(ϕχ̃1(z)) = χ(ν(τF (z))) = ν(ϕχ̃2(z)).

Since this holds for all ν, we conclude ϕχ̃1|IF = ϕχ̃2|IF , as our choice of z ∈ IF was

arbitrary.

Finally, recall that χ is depth-zero if it factors through T (kF ). Pick any z in

τ−1
F (1 + $OF ). For all ν ∈ X∗(T̂ ), ν(ϕχ(z)) = χ(ν(z̃)) where z̃ = τF (z) belongs to

1 + $OF . Thus if χ is depth-zero, all ν(ϕχ(z)) = 1, i.e., ϕχ(z) = 1. The relation

ν(ϕχ(z)) = χ(ν(z̃)) also implies the converse direction, namely that if ϕχ is trivial

on τ−1
F (1 +$OF ) ⊂ IF then χ is a depth-zero character.

Choose x ∈ IF such that x̃ = τ(x) ∈ O×F projects to a generator of k∗F under

the reduction map. For any t ∈ T (OF ), there is an expression

χ(t) = χ

(∏
i

νi(x̃
ni)

)
=
∏
i

χ(νi(x̃))ni ,

where the νi are a basis of X∗(T ). Therefore, we know the value χ(t) if we know

the values χ(νi(x̃)). This proves the third statement of the lemma.

Definition 2.3.19. Fix a choice of x ∈ IF such that τF (x) ∈ O×F projects to a

generator of k∗F , and consider any depth-zero character χ on T (OF ). Define the

endoscopic element in T̂ (C) associated to χ by κχ = ϕχ(x).
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Corollary 2.3.20. Fix a choice of x ∈ IF such that τF (x) ∈ O×F projects to a

generator of k∗F . The (finite) group of depth-zero characters T (kF )∨ is isomorphic

to the group of endoscopic elements κχ determined by x.

Proposition 2.3.21. Let q denote the cardinality of the residue field kF . Let Kq−1

denote the kernel of the map T̂ (C) → T̂ (C) defined by κ 7→ κq−1. The group of

depth-zero endoscopic elements is Kq−1; that is, there is χ ∈ T (kF )∨ such that

κ = κχ if and only if κ ∈ Kq−1.

Proof. Suppose κ = κχ for some χ ∈ T (kF )∨. Then κχ = ϕχ(x) for some x ∈ IF

such that x̃ = τF (x) descends to a generator of k∗F . For any ν ∈ X∗(T ) = X∗(T̂ ),

χ(ν(x̃))q−1 = ν(κq−1
χ ).

Because χ descends to a character on T (kF ), the values χ(ν(x̃)) are all (q − 1)-th

roots of unity. Therefore, ν(κq−1
χ ) = 1 for all ν ∈ X∗(T̂ ), which implies κq−1

χ = 1.

That is, κχ ∈ Kq−1.

Now suppose we start with κ ∈ Kq−1. We will produce a depth-zero character

χ on T (kF ) such that κ = κχ.

Since T is split, T̂ is also split and so is isomorphic to a product of copies of

Gm. We think of κ = diag(κ1, . . . , κd), where each coordinate κi is a (q− 1)-th root

of unity. Fix a choice of x ∈ IF such that τF (x) descends to a primitive (q − 1)-th

root ζ generating k∗F . Now κi = ζni for some 0 ≤ ni < q − 1.

For any ν ∈ X∗(T ), the element ν(τF (x)) can be projected into T (kF ) and

thought of as a diagonal matrix diag(ζr1 , . . . , ζrd). Let χ0 be the depth-zero character
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such that

χ0(ν(τF (x))) =
d∏
i=1

ζrini .

Then by construction, for any ν ∈ X∗(T ) = X∗(T̂ ) we have

χ0(ν(τF (x))) = ν(κ).

By Theorem 2.3.17, χ0(ν(τF (z))) = ν(ϕχ0(z)) for all z ∈ WF . So in particular

ν(ϕχ0(x)) = ν(κ) for all ν. This shows κ = κχ0 .

Remark 2.3.22. We sometimes use the notation T̂ (C)dz in place of Kq−1 to remind

the reader of the connection with depth-zero endoscopic elements.

Later, we will encounter values χ−1
r (s) for depth-zero χ and s ∈ T (kr). The

following lemma rephrases this scalar in terms of endoscopic elements.

Lemma 2.3.23. Let s ∈ T (kr). Then there exists a character γNrs ∈ X∗(T̂ ) such

that χr(s) = γNrs(κχ) in C× for all χ ∈ T (kF )∨.

Proof. Let x̃ = τF (x) where x ∈ IF the element determining the correspondence

between χ and κχ. Let {ωi} be a basis for X∗(T ). There are integers ni such that

Nr(s) =
∏

i ωi(x̃)ni in T (kF ). Let γNrs =
∑

i niωi. Then

χ(γNrs(x̃)) =
∏
i

χ(ωi(x̃)ni) =

(∑
i

niωi

)
(κχ) = γNrs(κχ).

2.4 A first formula for φr,1

It looks difficult to compute a test function, in the sense of the Langlands-

Kottwitz method, from the definition given in terms of distributions in the Bernstein
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center. Recall that the test function is written φr,1 when it has I+
r -level structure.

This section shows how to use the various data coming from depth-zero characters

to give a more explicit formula for a function φ′r,1 whose twisted orbital integrals are

identical to those of the test function φr,1, as described in the Introduction.

The first step is to write φr,1 = qr`(tµ)/2(ZVµ ∗ 1I+
r

) as a sum indexed by the

depth-zero characters of T (Or). Its twisted orbital integrals vanish at the summands

corresponding to characters ξ ∈ T (kr)
∨ which are not norms of characters in T (kF )∨.

The Hecke algebra isomorphism Ψχ̆r : H(Gr, Ir, ρχr)
∼−→ H(Hχr , IHr) shows that

summands indexed by norms χr = χ ◦ Nr map to sums of Bernstein functions in

the center of H(Hχr , IHr). We apply an explicit formula for Bernstein functions

attached to dominant minuscule cocharacters to get the formula for φ′r,1.

2.4.1 Definition of φ′r,1

Recall from Section 2.3.1 that a depth-zero character ξ ∈ T (kr)
∨ extends to

a character ρξ on Ir which is trivial on I+
r . Similarly, recall that 1K refers to the

characteristic function of a subgroup K ⊆ Gr. Let us extend this notation:

1ρK(x) =


ρ(x)−1, if x ∈ K,

0, otherwise.

Lemma 2.4.1. For ξ ∈ T (kr)
∨, define eξ = vol(Ir)

−11
ρξ
Ir

in H(Gr). The elements

eξ are idempotents satisfying 1I+
r

=
∑

ξ∈T (kr)∨
eξ.

Proof. Let dz denote Haar measure on Gr normalized such that vol(I+
r ) = 1. We
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will compute eξ ∗ eξ from the definition of the convolution integral, namely

(eξ ∗ eξ)(g) =

∫
Gr

eξ(gz
−1)eξ(z)dz.

Notice that if g /∈ Ir, then (eξ ∗eξ)(g) = 0: if z /∈ Ir, then eξ(z) = 0 in the integrand;

otherwise eξ(gz
−1) = 0. Assuming g ∈ Ir, the integral becomes

(eξ ∗ eξ)(g) =

∫
Ir

ρξ(gz
−1)−1ρξ(z)−1vol(Ir)

−2dz.

Since ρξ(gz
−1)−1ρξ(z)−1 = ρξ(g)−1ρξ(z)ρξ(z)−1 = ρξ(g)−1, we get

(eξ ∗ eξ)(g) = ρξ(g)−1vol(Ir)
−2

∫
Ir

dz.

It follows that eξ ∗ eξ = eξ, verifying the first claim.

Next we show that 1I+
r

=
∑

ξ∈T (kr)∨
eξ. First, observe that if z /∈ Ir, then both

sides are zero. Second, suppose z ∈ Ir\I+
r . Then 1I+

r
(z) = 0, and

∑
ξ∈T (kr)∨

eξ(z) = vol(Ir)
−1

∑
ξ∈T(kr)∨

ρξ(z)−1.

But
∑

ξ∈T (kr)∨
ρξ(z)−1 = 0: we can find ξ0 ∈ T (kr)

∨ such that ρξ0(z) 6= 1 and write

∑
ξ∈T (kr)∨

ρξ(z)−1 =
∑

ξ∈T (kr)∨

(ρξ0ρξ)(z)−1 = ρξ0(z)−1
∑

ξ∈T (kr)∨

ρξ(z)−1.

Thus we are reduced to looking at z ∈ I+
r . Here we have

∑
ξ∈T (kr)∨

ρξ(z)−1 =
∑

ξ∈T (kr)∨

vol(Ir)
−1 = |T (kr)|[Ir : I+

r ]−1 = 1.

Lemma 2.4.2. Suppose ξ ∈ T (kr)
∨ is not a norm, that is, there is not a χ ∈ T (kF )∨

such that ξ = χ ◦ Nr. Then all twisted orbital integrals at θ-semisimple elements

vanish on functions in H(Gr, Ir, ρξ).
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Proof. This is Lemma 10.0.4 of [16].

Corollary 2.4.3. The function φ′r,1 ∈ C∞c (Gr) defined by

φ′r,1 = [Ir : I+
r ]−1qr`(tµ)/2

∑
χ∈T (kF )∨

ZVµ ∗ eχr ,

satisfies TOδθ(φr,1) = TOδθ(φ
′
r,1).

Proof. Recall that Haar measure on H(Gr, I
+
r ) is normalized such that vol(I+

r ) = 1,

while Haar measure onH(Gr, Ir, ρχr) is normalized to have vol(Ir) = 1. The function

φ′r,1 ∈ H(Gr, I
+
r ) is defined by summing up functions ZVµ ∗ eχr ∈ H(Gr, Ir, ρχr);

thus we must account for the different normalizations when rewriting φr,1 using

Lemma 2.4.1. Thus we have the intermediate result

TOδθ(φr,1) = TOδθ

[Ir : I+
r ]−1qr`(tµ)/2

∑
ξ∈T (kr)∨

ZVµ ∗ eξ

 .

But Lemma 2.4.2 says that TOδθ(ZVµ ∗eξ) = 0 if ξ is not a norm, which means there

is no χ ∈ T (kF )∨ such that ξ = χr. This shows TOδθ(φr,1) = TOδθ(φ
′
r,1).

Remark 2.4.4. Recall that the definition of a test function φr invokes the LLC+

conjecture to view the distribution ZVµ as an element of the Bernstein center. Let us

give an unconditional definition for φ′r,1 that agrees with Definition 2.2.8 whenever

LLC+ holds.

For each χr, define ZVµ∗eχr to be the unique function in the center Z(Gr, Ir, ρχr)

which acts on the ρχr-isotypical component of all iGrBr (χ̃r) in R[T,χ̃r](Gr) by the scalar

trss(ϕχ̃r(Φ), Vµ). Of course, the Langlands parameter ϕχ̃r exists by the LLC for

Tori. Sum these functions as before to get a new definition of φ′r,1 that satisfies

TOδθ(φr,1) = TOδθ(φ
′
r,1) as in Corollary 2.4.3.
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2.4.2 Bernstein functions for dominant minuscule cocharacters

The center of an Iwahori-Hecke algebra can be described in terms of Bernstein

functions indexed by dominant cocharacters of the maximal torus. In certain cases,

such as the case of dominant and minuscule cocharacters of interest here, Haines

proved explicit formulas for Bernstein functions [13], [14], [18]. Our presentation

states Haines’s formula for the Iwahori-Hecke algebra H(Hχr , IHr).

Recall that H(Hχr , IHr) is isomorphic to the twisted affine Hecke algebra

Hr(Wχ,aff , Sχ,aff) ⊗̃ C[Ωχ], which we sometimes denote Hr. In the notation of Def-

inition 2.3.16, this algebra has a normalized basis {T̃w,r | w ∈ W̃χ}. If w = tλ is a

translation element, we write T̃λ,r instead of T̃tλ,r.

For any λ ∈ X∗(T ), there exist dominant λ1, λ2 ∈ X∗(T ) such that λ = λ1−λ2.

Let Θλ,r = T̃λ1,rT̃
−1
λ2,r

. This element is independent of the choice of λ1 and λ2.

Definition 2.4.5. For λ ∈ X∗(T ), the Bernstein function attached to a Weyl

orbit Mχ = Wχ · λ is defined by

zMχ,r =
∑
η∈Mχ

Θη,r.

If λ is dominant, we denote the function associated to Mχ = Wχ · λ by zλ,r.

Theorem 2.4.6. The center of H(Hχr , IHr) is the free Z[qr/2, q−r/2]-module gener-

ated by the elements zλ,r, where λ ranges over all dominant cocharacters of T .

Proof. The theorem is due to Bernstein, but this statement is [13], Theorem 2.3,

adapted to the algebra H(Hχr , IHr).
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Definition 2.4.7. Let µ be a dominant coweight of Φ. An element w ∈ W̃ is called

µ-admissible if x ≤ tλ for some λ in the W -orbit of µ.

When Φ is the root system of Gr, the µ-admissible set is denoted AdmGr(µ).

Similarly, if µχ is a dominant coweight of Φχ, the root system of Hχr under our

hypotheses, elements w ∈ W̃χ such that w ≤χ tλ for λ ∈ Wχµχ form the set

AdmHr(µχ).

Proposition 2.4.8. Let µχ be a dominant, minuscule cocharacter of T with respect

to Φχ. The support of zµχ,r equals AdmHr(µχ) as subsets of W̃χ.

Proof. Apply Proposition 4.6 of [14] to the Iwahori-Hecke algebra H(Hχr , IHr),

which has a basis indexed by W̃χ, the extended affine Weyl group of Hχr .

For any w ∈ W̃ , let λ(w) denote the cocharacter of T such that w = tλ(w)w̄

via the isomorphism W̃ ∼= X∗(T )oW .

Proposition 2.4.9. Suppose µ is a minuscule cocharacter and w = tλ(w)w̄ ∈ W̃ is

µ-admissible. Then w ≤ tλ(w).

Proof. This is [18], Corollary 3.5.

Theorem 2.4.10. Let µχ be a dominant minuscule cocharacter of T with respect to

Φχ. Set Qr = q−r/2−qr/2. The Bernstein function zµχ,r in the center of H(Hχr , IHr)

is given by the formula,

zµχ,r =
∑

w∈AdmHr (µχ)

R̃χ
w,tλ(w)

(Qr)T̃w,r.

Proof. This is Theorem 4.3 of [14] applied in the case of H(Hχr , IHr). A different

proof appears in [18].
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2.4.3 An explicit formula via Bernstein functions

The material on Hecke algebra isomorphisms and Bernstein functions devel-

oped in earlier sections can be used to give an explicit formula for the coefficients

of φ′r,1. We begin by expressing the image of ZVµ ∗ eχr under the Hecke algebra

isomorphism Ψχ̆r in terms of Bernstein functions in the center of H(Hχr , IHr).

Lemma 2.4.11. Let Wt(χ) = {λ ∈ Wµ | λ(κχ) = 1}. Let {µiχ} denote the subset

of Wµ consisting of elements which are dominant and minuscule with respect to Φχ.

Then Wt(χ) is the disjoint union of the orbits Wχµ
i
χ.

Proof. The orbits Wχµ
i
χ are all disjoint, because there is a unique dominant element

in each Wχ-orbit. We have Wµ ⊇
∐

iWχµ
i
χ, because µ is among the µiχ and Wχ ⊆

W . On the other hand, given an element η ∈ Wµ, there must exist some index

k such that η ∈ Wχµ
k
χ; just consider the orbit Wχη, which must contain a unique

element dominant with respect to Φχ. So Wµ =
∐

iWχµ
i
χ.

Now pick any λ ∈ Wt(χ). Then λ ∈ Wχµ
k
χ for some k. For any other

η ∈ Wχµ
k
χ, there is u ∈ Wχ such that η = u−1λ. But u ∈ Wχ satisfies uκχ = κχ, so:

η(κχ) = u−1λ(κχ) = λ(uκχ) = λ(κχ) = 1.

This shows that any Wχ-orbit containing an element of Wt(χ) lies entirely within

Wt(χ). It follows that Wt(χ) is a finite, disjoint union of Wχ-orbits.

Lemma 2.4.12. Suppose Wt(χ) =
∐

iWχµ
i
χ as in Lemma 2.4.11. Then the µiχ-

admissible sets AdmHχr (µ
i
χ) are disjoint subsets of W̃ .
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Proof. The translation elements tλ for λ ∈ Wµ may be written tλ = σλw̄λ ∈ W̃ for

some length-zero element σλ and w̄λ ∈ W . The σλ are unique.

Choose any µiχ. It is dominant and minuscule with respect to Φχ, hence any

w ∈ AdmHχr (µ
i
χ) satisfies w ≤χ tλ(w). By definition of Bruhat order on extended

affine Weyl groups, this means the length-zero part of w is σλ(w). But since the σλ

are unique and the Wχµ
i
χ orbits are disjoint, we cannot have w ∈ AdmHχr (µ

k
χ) for

any k 6= i.

We shall sometimes speak of w ∈ W̃ as though it were an element of Gr by

using a set-theoretic embedding of the extended affine Weyl group into NG(T )(Fr),

which depends on a choice of uniformizer $ in Fr. The following definition comes

from [19], Section 2.

Definition 2.4.13. For w ∈ W̃ , we have w = tλw̄ for λ ∈ X∗(T ) and w̄ ∈ W . Let

$ be the fixed uniformizer in Fr, and set $λ = λ($). The set-theoretic embedding

i$ : W̃ ↪→ Gr is defined by tλ 7→ $−λ and mapping w̄ to a fixed representative in

NG(Or)(T (Or)).

Lemma 2.4.14. Let Ir be an Iwahori subgroup of Gr with pro-unipotent radical I+
r .

Then Gr decomposes into disjoint double-cosets indexed by pairs (s, w) ∈ T (kr)×W̃ ,

Gr =
∐
(s,w)

I+
r swI

+
r .

Proof. This is a variant of the Bruhat-Tits decomposition which describes Gr in

terms of Ir-double cosets. The proof of this decomposition uses the relation T (kr) ∼=

Ir/I
+
r ; see [19], Section 2, for an explanation. Both the statement and proof depend

on the set-theoretic embedding of W̃ into G(Fr) given in Definition 2.4.13.
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I thank my advisor, Thomas Haines, for supplying the following lemma and

its proof.

Lemma 2.4.15. Let χr be a depth-zero character on T (Or) arising from a depth-

zero character χ on T (OF ), and fix the $-canonical extensions χ̃$r and χ̆r to T (Fr)

and NG(T )(Fr) respectively. Let $−λw̄ be an element of NG(T )(Fr), which is the

image of w = tλw̄ under the set-theoretic embedding W̃ ↪→ G(Fr). For simplicity,

assume Wχr = W ◦
χr .

1. If $−λw̄ lies in the support of any non-zero function φ ∈ H(Gr, Ir, ρχr), then

w̄χ = χ, or equivalently, w̄κχ = κχ.

2. Suppose µ ∈ X∗(T ) = X∗(T̂ ) is dominant and minuscule. Under the Hecke

algebra isomorphism Ψχ̆r , ZVµ ∗eχr goes to the sum
∑

µχ
zµχ,r, where µχ ranges

over dominant representatives of Wχ-orbits of ν ∈ Wµ such that ν(κχ) = 1.

3. If $−λw̄ lies in the support of any function of the form ZVµ∗eχr then λ(κχ) = 1.

4. If ZVµ ∗ eχr($−λw̄) 6= 0, then tλw̄ ∈ AdmGr(µ).

Proof. (T. Haines) To prove the first statement, we may assume φ = [Ir$
−λw̄Ir]χ̆r .

For any t ∈ T (Or) we have

χ−1
r (t)φ($−λw̄) = φ($−λw̄(w̄

−1

t)) = w̄χ−1
r (t)φ($−λw̄).

Since φ($−λw̄) 6= 0, we conclude χr(t) = w̄χr(t) for all t ∈ T (Or), i.e., w̄χr = χr.

Now let us prove the second statement. The function ZVµ ∗ eχr lies in the

center of the Hecke algebra H(Gr, Ir, ρχr) and acts by a non-zero scalar only on the
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ρχr -isotypical components of representations in the Bernstein block for the inertial

class [T, χ̃$r ]G. In fact, for any unramified character η on T (Fr), unwinding the

definition shows that it acts on iGrBr (χ̃
$
r )ρχr by the scalar

Tr(rµϕχ̃$r η(Φ), V κχ
µ ).

By [19], Lemma 10.1.1, the image Ψχ̆r(ZVµ ∗ eχr) acts by this scalar on the Iwahori-

fixed vectors i
Hχr
BHr

(η)IHr in the unramified principal series of Hχr . In order to prove

Ψχ̆r(ZVµ ∗ eχr) =
∑

µχ
zµχ,r , it will suffice to show that

∑
µχ
zµχ,r acts by this same

scalar on such representations, in which case the functions are equal because they

determine the same regular function on the Bernstein variety XHr .

As T̂ -representations we have V
κχ
µ = ⊕µχV

Hχr
µχ , the sum of highest weight

representations for the dual group of Hχr , hence the scalar can be written as

∑
µχ

Tr(rµχϕχ̃$r η(Φ), V H
µχ).

Note that ϕχ̃$r η(Φ) = ϕη(Φ). View the function zµχ as a regular function on the

variety T̂ /Wχ, whose points correspond to Wχ-invariant unramified characters,

zµχ,r : η 7→
∑

λ∈Wχµχ

λ(η).

Looking at the weight space decomposition,
∑

λ∈Wχµχ
λ(η) = Tr(rµχϕη(Φ), V H

µχ).

Summing over the µχ shows that
∑

µχ
zµχ,r(η) = Tr(rµϕχ̃$r η(Φ), V

κχ
µ ).

Now use the second statement and the fact that Ψχ̆r is support-preserving to

see that $−λw̄ must lie in the support of some zµχ,r. Since µχ is minuscule, we must

have in that case that λ ∈ Wχµχ. But then λ(κχ) = 1 by Lemma 2.4.11.
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Finally, suppose that ZVµ∗eχr($−λw̄) 6= 0. Using earlier work and the support-

preserving property of Hecke algebra isomorphisms, we have that zµχ,r(w) 6= 0 for

some µχ. The support of zµχ,r is AdmHχr (µχ), i.e., w ∈ AdmHχr (µχ). So it is enough

to show that AdmHχr (µχ) ⊂ AdmGr(µ) as subsets of W̃ .

The base alcove for a (based) root system Φ is the set of points in X∗(T )⊗R

on which all positive affine roots take positive values. Since the positive affine roots

attached to Φχ are a subset of the positive affine roots for Φ, we deduce an inclusion

of base alcoves a ⊂ aχ associated to Φ, and Φχ, respectively. Furthermore, every

alcove for Φ is contained in a unique alcove for Φχ.

Given w = tλw̄ ∈ AdmHχr (µχ), we know that w ≤χ tλ, thus there is a sequence

of alcoves waχ = a0
χ, a

1
χ, . . . , a

l
χ = tλaχ, such that if ai−1

χ and aiχ are separated by an

affine hyperplane H, then aχ and ai−1
χ are on the same side of H. From this we get

a sequence of alcoves wa = a0, a0, . . . , al = tλa, such that whenever ai−1 and ai are

separated by an affine hyperplane H, then a and ai−1 are on the same side of H. It

follows that w ≤ tλ, which implies w ∈ AdmGr(µ).

The function φ′r,1 is an element of the Hecke algebra H(Gr, I
+
r ), hence it can be

described by specifying the complex values taken on I+
r -double cosets of Gr indexed

by pairs in T (kr)× W̃ . The values φ′r,1(I+
r swI

+
r ) are called the coefficients of φ′r,1.

The following proposition gives an explicit formula for the coefficients of φ′r,1, which

is sufficient for our purposes by Corollary 2.4.3. We will revisit this proposition

in Chapter 5, where we use the results of the intervening chapters to develop a

combinatorial formula using the following formula as a starting point.
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Proposition 2.4.16. Given a pair (s, w) ∈ T (kr)×W̃ , the coefficient φ′r,1(I+
r swI

+
r )

can be rewritten as a sum over endoscopic elements in T̂ (C) which arise from depth-

zero characters χ ∈ T (kF )∨:

φ′r,1(I+
r swI

+
r ) = [Ir : I+

r ]−1
∑

κχ∈Kq−1

γNrs(κχ)−1qr`(w,tλ(w))/2R̃χ
w,tλ(w)

(Qr).

Proof. The proof is a straightforward application of the work done throughout this

chapter. We start with the definition of φ′r,1 from Corollary 2.4.3,

φ′r,1 = [Ir : I+
r ]−1qr`(tµ)/2

∑
χ∈T (kF )∨

ZVµ ∗ eχr .

Then by Lemma 2.4.15,

φ′r,1 = [Ir : I+
r ]−1qr`(tµ)/2

∑
χ∈T (kF )∨

∑
µχ

Ψ−1
χ̆r

(zµχ,r).

The orbits Wχµχ are disjoint as µχ ranges over the set of elements in Wµ

which are dominant and minuscule with respect to Φχ. The µχ-admissible sets in

W̃ are disjoint by Lemma 2.4.12, hence the supports of each zµχ,r are disjoint. Thus

for each w ∈ AdmGr(µ), there is a unique µχ ∈ Wµ such that w ∈ supp(zµχ,r).

Therefore,

φ′r,1(I+
r swI

+
r ) = [Ir : I+

r ]−1qr`(tµ)/2
∑

χ∈T (kF )∨

Ψ−1
χ̆r

(zµχ,r)(sw).

Now, we apply Haines’s formula for zµχ,r and Lemma 2.3.14. Recall that

zµχ,r(w) = R̃χ
w,tλ(w)

(Qr)T̃w,r(w),

and T̃w,r(w) = q−r`χ(w)/2[IHrwIHr ](w). Therefore,

Ψ−1
χ̆r

(zµχ,r)(sw) = q−r`(w)/2+r`χ(w)/2q−r`χ(w)/2R̃χ
w,tλ(w)

(Qr)[I
+
r swI

+
r ]χ̆r(sw).
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But [I+
r swI

+
r ]χ̆r(sw) = χ−1

r (s). So, we conclude that

φ′r,1(I+
r swI

+
r ) = [Ir : I+

r ]−1
∑

χ∈T (kF )∨

χ−1
r (s)qr(`(tλ(w))−`(w))/2R̃χ

w,tλ(w)
(Qr),

where we have used that the conjugates of a translation element all have the same

length; that is, `(tµ) = `(tλ(w)) for all λ ∈ Wµ.

The set of depth-zero characters T (kF )∨ is in bijective correspondence with

the set of endoscopic elements κχ ∈ T̂ (C) arising from depth-zero characters; this

bijection is determined by a fixed element of the inertia subgroup x ∈ IF whose

image τF (x) projects to a generator of k∗F . Proposition 2.3.21 shows that this subset

of T̂ (C) equals Kq−1.

Following the notation in [1], we write `(w, tλ(w)) for the difference in lengths

`(tλ(w))− `(w).

Finally, for each s ∈ T (kr) the equation γNrs(κχ) = χr(s) holds for all depth-

zero characters χ. In conclusion,

φ′r,1(I+
r swI

+
r ) = [Ir : I+

r ]−1
∑

κχ∈Kq−1

γNrs(κχ)−1qr`(w,tλ(w))/2R̃χ
w,tλ(w)

(Qr)
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Chapter 3: Groups of endoscopic elements in the dual torus

Consider the endoscopic elements κχ in T̂ (C) arising from depth-zero charac-

ters on T (OF ), which index the summation in our formula for φ′r,1. We shall see

that it is useful to determine the κχ such that ZVµ ∗ eχr(w) 6= 0 for a fixed w ∈ W̃ .

We begin by defining a closed subgroup Sw ⊂ T̂ (C) associated to a fixed

w = tλw̄ ∈ W̃ . This “relevant subgroup” is an infinite diagonalizable algebraic

group. In exchange for working with a more complex object, we gain access to the

theory of diagonalizable groups and tori defined over an algebraically closed field.

The endoscopic elements needed for the combinatorial formula for φ′r,1 comprise the

“depth-zero relevant subgroup” Sdz
w , which is a finite subgroup of T̂ (C).

The final section of this chapter contains results to be used later in the state-

ment and proof of the main theorem in Chapter 5. First, we identify an analogue

of the “critical index torus” used by Haines and Rapoport in the Drinfeld case; this

object is used to determine which s ∈ T (kr) contribute to nontrivial coefficients

φ′r,1(I+
r swI

+
r ) in terms of the kF -points of a subtorus of T . Second, we look at the

order of certain subgroups Sdz
w,J ⊂ Sdz

w which arise from root sub-systems J ⊆ Φ.
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3.1 Background on diagonalizable algebraic groups

Let us recall various properties of diagonalizable algebraic groups over an al-

gebraically closed field, that is, linear algebraic groups which are isomorphic to a

closed subgroup of the diagonal torus in some general linear group. In fact, we will

only consider such groups over C.

Definition 3.1.1. An algebraic group over C is diagonalizable if it isomorphic to

a closed subgroup of the diagonal group D(n,C) for some n.

Recall that a connected diagonalizable group is a torus.

Theorem 3.1.2. Let G be a diagonalizable group over C. Then G = A×H, where

A is a torus over C and H is a finite group.

Proof. See [20], Section 16.2.

Let D be a diagonalizable group defined over C. Recall that the multiplicative

group Gm consists of the nonzero elements of the affine space A1 equipped with the

group law (x, y) 7→ xy. The group of C-rational points of Gm is C×. The character

group of D is defined by X∗(D) = HomC(D,C×), while its cocharacter group is

X∗(D) = HomC(C×, D).

Definition 3.1.3. A lattice is a free subgroup of X∗(D) or X∗(D) generated over

a linearly independent set.

When considering a torus we will sometimes choose a basis for the cocharacter

group X∗(T ) and then give coordinates in terms of that basis. For example, we
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write µ = (1, 0, . . . , 0) for the cocharacter µ of the diagonal torus in GLd given by

the formula

µ(z) = diag(z, 1, . . . , 1).

Theorem 3.1.4. There is a categorical anti-equivalence between diagonalizable alge-

braic groups and abelian groups, which arises from the contravariant functor sending

a diagonalizable group D to its character group X∗(D).

Proof. See [32], Section 2.2, for example.

The following corollaries follow directly from Theorem 3.1.4.

Corollary 3.1.5. Let D be a diagonalizable algebraic group over C. If its character

group X∗(D) has torsion, then D is not connected, i.e., D is not a torus.

Corollary 3.1.6. Let D be a diagonalizable subgroup of T̂ (C), and let L be the

lattice in X∗(T̂ ) such that X∗(D) = X∗(T̂ )/L. Then κ ∈ T̂ (C) is annihilated by L

if and only if κ ∈ D.

We conclude this background section with two useful lemmas.

Lemma 3.1.7. Let D be a diagonalizable group. Given two distinct points x and y

in D, there exists a character η ∈ X∗(D) such that η(x) 6= η(y).

Proof. See [20], Section 16.1.

Lemma 3.1.8. Suppose D1 and D2 are diagonalizable subgroups of T̂ (C) such that

X∗(Di) = X∗(T̂ )/Li for lattices L1 and L2. Then the character group of D1 ∩D2 is

X∗(D1 ∩D2) = X∗(T̂ )/〈L1, L2〉.
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Proof. The group D1 ∩ D2 is the largest common subgroup of D1 and D2. Under

the categorical anti-equivalence between diagonalizable groups and their character

groups, its character group X∗(D1 ∩D2) is the largest common quotient of X∗(D1)

and X∗(D2). But as 〈L1, L2〉 is the smallest lattice containing both L1 and L2, we

conclude X∗(D1 ∩D2) = X∗(T̂ )/〈L1, L2〉.

3.2 The relevant group of an admissible element

For any w ∈ W̃ , there is an expression w = tλw̄ obtainable via the isomorphism

W̃ ∼= X∗(T )oW . We give certain conditions based on the data λ and w̄ to define

a diagonalizable group Sw in T̂ (C). This infinite group contains a finite subgroup

Sdz
w consisting of those κ ∈ Sw such that κ = κχ for some depth-zero character χ

on T (OF ). Given a root sub-system J ⊆ Φ, there are analogous groups Sw,J and

Sdz
w,J . We specify lattices Lw,J ⊂ X∗(T̂ ) such that X∗(Sw,J) = X∗(T̂ )/Lw,J , thereby

giving information about Sw,J through Theorem 3.1.4.

3.2.1 Definition of Sw and Sw,J

Lemma 3.2.1. Let w̄ ∈ W . Then κw̄χ = w̄κχ for all characters χ on T (OF ). If in

addition w̄ ∈ Wχ, then w̄κχ = κχ.

Proof. Given w̄ ∈ W , the LLC for Tori implies w̄χ(ν(τF (x))) = ν(κw̄χ) for all

ν ∈ X∗(T ) = X∗(T ). On the other hand,

w̄χ(ν(τF (x))) = χ(w̄−1ν(τF (x))) = (w̄−1 · ν)(κχ) = ν(w̄κχ).

Thus ν(w̄κχ) = ν(κw̄χ) for all ν. We conclude that w̄κχ = κw̄χ by Lemma 3.1.7.
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For the final statement, apply the definition Wχ = {w̄ ∈ W | w̄χ = χ}.

Definition 3.2.2. An endoscopic element κ ∈ T̂ (C) is relevant to w ∈ W̃ if

w̄κ = κ and λ(κ) = 1.

Proposition 3.2.3. The elements κ ∈ T̂ (C) relevant to a fixed w ∈ W̃ form a

closed subgroup called the relevant subgroup Sw.

Proof. First, we verify that relevant κ satisfy the group axioms. It is obvious that

κ = 1, corresponding to the trivial character, belongs to Sw for any w ∈ W̃ . If

κ1, κ2 ∈ Sw, then it is enough to observe that

w̄ · (κ1κ2) = (w̄ · κ1)(w̄ · κ2) = κ1κ2

and

λ(κ1κ2) = λ(κ1)λ(κ2) = 1.

In particular, w̄ · κ−1 = κ−1.

This subgroup is closed because it is the intersection of ker(λ) and the fixed-

point set of w̄, each of which is a Zariski-closed subset of T̂ (C).

The relevant subgroup for an element w is not a torus in general. See Ex-

ample 3.2.10 which uses an explicit realization of the character group X∗(Sw) to

produce torsion elements.

Lemma 3.2.4. Let w ∈ W̃ . Then ZVµ ∗ eχr(w) 6= 0 implies w ∈ AdmGr(µ) and that

κχ is relevant to w.

Proof. This is a rephrasing of two statements proved in Lemma 2.4.15.
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Definition 3.2.5. The subgroup of Sw consisting of κχ associated to χ ∈ T (kF )∨

will be called the depth-zero relevant subgroup of w. It is denoted Sdz
w .

Lemma 3.2.4 says that if ZVµ ∗eχr(w) 6= 0 then w is µ-admissible and κχ ∈ Sdz
w .

Definition 3.2.6. Let J be a root sub-system of Φ. For α ∈ J , consider α∨ as a

character on T̂ . Define Sw,J ⊆ Sw by

Sw,J = Sw ∩

(⋂
α∈J

ker(α∨)

)
.

Let Sdz
w,J denote the subset of Sw,J whose elements arise as endoscopic elements

corresponding to χ ∈ T (kF )∨.

Proposition 3.2.7. Let w ∈ W̃ , and fix a sub-system J ⊆ Φ. Then

Sdz
w,J = {κχ ∈ Sdz

w | Φχ ⊇ J}.

Proof. If κχ ∈ Sdz
w,J , then for all α ∈ J we have α∨(κχ) = 1. It follows that

χ ◦ α∨(x̃) = 1. By definition this means α ∈ Φχ, so in total, J ⊆ Φχ.

Conversely, if κχ ∈ Sdz
w satisfies Φχ ⊇ J , then χ ◦ α∨(x̃) = 1 for all α ∈ J .

Again, α∨(κχ) = 1, so that κχ ∈ ∩α∈Jker(α∨).

3.2.2 Lattices in character groups

The relevant subgroup Sw will guide us to an analogue of the critical index

torus defined for the Drinfeld case in [19], Section 6.4. This comes about by realizing

the character groups X∗(Sw) and X∗(Sw,J) as quotients of X∗(T̂ ) by specifying

certain lattices.
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The categorical anti-equivalence between diagonalizable groups and their char-

acter groups enables us to take advantage of the definition of Sw,J as the intersection

of two diagonalizable groups. Let KJ =
⋂
α∈J ker(α∨). In the following diagram,

arrows in the left diamond are inclusions while arrows in the right diamond are

quotients.

T̂ (C)

Sw

==

KJ

bb

Sw,J

bb <<

←→

X∗(T̂ )

yy &&

X∗(Sw)

&&

X∗(KJ)

xx

X∗(Sw,J)

Quotients of X∗(T̂ ) correspond to the lattice used to form the quotient. The

lattice needed to form the quotient X∗(Sw,J) is the lattice generated by the lattices

corresponding to X∗(Sw) and X∗(KJ).

Lemma 3.2.8. Let w = tλw̄ be a µ-admissible element in W̃ . Define a lattice

Lw = 〈w(ν)− ν | ν ∈ X∗(T̂ )〉, where w(ν) = λ+ w̄(ν). Then

Lw = 〈λ, w̄(ν)− ν | ν ∈ X∗(T̂ )〉.

The Lw so defined is the same as the lattice studied in Section 6.4 of [19].

Proof. It immediately obvious that Lw ⊆ 〈λ, w̄ν − ν| ν ∈ X∗(T̂ )〉.

Let us consider the reverse inclusion. If we choose ν = 0, then w(0) − 0 = λ

belongs to Lw. On the other hand, choosing ν = λ yields w(λ)− λ = w̄λ. For any

choice of ν ∈ X∗(T̂ ),

w(ν + λ)− (ν + λ) = w̄(ν) + w̄(λ)− ν.
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But we have just seen that w̄(λ) ∈ Lw, hence w̄(ν)− ν lies in Lw for all ν ∈ X∗(T̂ ).

It follows that Lw ⊇ 〈λ, w̄ν − ν| ν ∈ X∗(T̂ )〉.

Let A be a group and M be an A-module. The module of coinvariants of M

is defined as

MA = M/〈gm−m | m ∈M, g ∈ A〉.

This module satisfies the following universal property: If N is another A-module

with trivial A-action, and there is a surjection M → N , then there is a unique map

MA → N .

Proposition 3.2.9. Let w = tλw̄ be µ-admissible. Then

X∗(Sw) = X∗(T̂ )/Lw = X∗(T̂ )〈w̄〉/〈λ〉.

Proof. Let K be the intersection of kernels

K = ker(λ) ∩

 ⋂
ν∈X∗(T̂ )

ker(w̄(ν)− ν)


We contend that this set equals Sw in T̂ (C).

Recall that Sw is defined as the subgroup of T̂ (C) comprising those κ such

that λ(κ) = 1 and w̄κ = κ. Thus all κ ∈ Sw lie in ker(λ), and for each ν ∈ X∗(T̂ ),

(
(w̄ · ν)(κ)

)
ν(κ)−1 = ν(w̄−1κ)ν(κ)−1 = ν(κ)ν(κ)−1 = 1.

So κ ∈ ker(w̄(ν)− ν) for all ν ∈ X∗(T̂ ). It follows that Sw ⊆ K.

Conversely, if we choose some κ0 ∈ K, then λ(κ0) = 1 from the definition, while

for each character ν on T̂ (C), ν(w̄−1κ0) = ν(κ0). By Lemma 3.1.7, w̄−1κ0 = κ0. We

conclude that κ0 ∈ Sw. This proves Sw = K.
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For a character η ∈ X∗(T̂ ), Lemma 3.2.11 implies X∗(ker η) = X∗(T̂ )/〈η〉.

Lemma 3.1.8 shows that the character group of an intersection of kernels equals the

quotient of X∗(T̂ ) by the lattice generated by the characters whose kernels were

intersected. In this case,

X∗(K) = X∗(T̂ )/〈λ, w̄(ν)− ν | ν ∈ X∗(T̂ )〉.

Applying K = Sw and Lemma 3.2.8, we get the desired result: X∗(Sw) = X∗(T̂ )/Lw.

Example 3.2.10. Let G = GL4 and µ = (1, 1, 0, 0). Let w = tµ(132), so that

w̄ = (132) is a permutation in the symmetric group W ∼= S3. Then the module of

coinvariants X∗(T )〈w̄〉 is generated by ε̄1, ε̄4, where the εi are the coordinate cochar-

acters of X∗(T ), which form a basis, and ε̄i is the image of εi in the module of

coinvariants. Consider

X∗(Sw) = X∗(T )〈w̄〉/〈µ〉.

Then as elements of X∗(Sw),

2ε̄1 = ε̄1 + ε̄2 = µ̄ = 0.

Thus X∗(Sw) has 2-torsion in this case, and so Sw is not a torus.

Lemma 3.2.11. For any root subsystem J ⊆ Φ, let KJ = ∩α∈Jker(α∨) and let

LJ = Z〈α∨ | α ∈ J〉. Then X∗(KJ) = X∗(T̂ )/LJ .

Proof. Choose any α ∈ J . This determines a short exact sequence

1 −→ ker(α∨) −→ T̂ −→ Gm −→ 1.
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The corresponding exact sequence for character groups is

0←− X∗(ker(α∨))←− X∗(T̂ )
f←− Z←− 0,

where f : 1 7→ α∨. It follows that X∗(ker(α∨)) = X∗(T̂ )/Zα∨.

Now consider all α ∈ J at once. Repeated application of Lemma 3.1.8 shows

that X∗(KJ) = X∗(T̂ )/LJ .

Corollary 3.2.12. Let Lw,J be the lattice of X∗(T̂ ) generated by Lw and LJ as

defined above. Then X∗(Sw,J) = X∗(T̂ )/Lw,J .

A root sub-system J ⊆ Φ determines a subgroup WJ = 〈sα | α ∈ J+〉 of W .

Proposition 3.2.13. Let w = tλw̄ ∈ AdmGr(µ) and J ⊆ Φ. If w̄ ∈ WJ , then

Lw,J = 〈λ, α∨ | α ∈ J+〉.

Proof. By its construction, Lw,J = 〈λ + w̄(ν) − ν, α∨ | ν ∈ X∗(T̂ ), α ∈ J+〉.

Lemma 3.2.8 implies Lw,J = 〈λ, w̄(ν) − ν, α∨ | ν ∈ X∗(T̂ ), α ∈ J+〉, so that Lw,J

clearly contains 〈λ, α∨ | α ∈ J+〉.

In order to prove the reverse inclusion, it is enough to show that w̄(ν)− ν lies

in the span of the coroots of J+ for all ν ∈ X∗(T̂ ).

Since WJ is a reflection subgroup, we can find an expression w̄ = s1 · · · sm

where the si are reflections in WJ . Choose any ν ∈ X∗(T̂ ). Observe that

(s1 · · · sm)(ν) = (s2 · · · sm)(ν)− 〈(s2 · · · sm)(ν), α1〉α∨1 ,

where α1 is the positive root in J corresponding the to reflection s1. Of course, a

similar formula can be applied to the term (s2 · · · sm)(ν), leading to the expression

w̄(ν) = ν −
m∑
k=2

〈(sk · · · sm)(ν), αk−1〉α∨k−1.
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Therefore, w̄(ν)− ν ∈ 〈α∨ | α ∈ J+〉.

The fundamental group of a reductive algebraic group is defined by

π1(G) = X∗(T )/ZΦ∨.

A reductive algebraic group H is simply-connected if π1(H) = 1.

Corollary 3.2.14. Suppose that G satisfies the assumptions of Remark 2.3.10, in

particular, that Gder is simply connected. Let w = tλw̄ be µ-admissible, and let J ⊆ Φ

be a root subsystem. Suppose w̄ ∈ WJ . Then rank(Sw,J) = rank(T̂ )− rank(J)− 1.

Proof. By assuming that Gder is simply connected, we have that X∗(T )/ZΦ∨ is

torsion-free. So any torsion element of X∗(T )/ZJ∨ must come from the quotient

ZΦ∨/ZJ∨.

We claim that λ /∈ ZΦ∨. Fix a basis ∆ of Φ. Without loss of generality,

we may assume that λ is dominant because the coroot lattice is stable under the

W -action. A nonzero dominant coweight is in particular a fundamental coweight,

which corresponds to some simple root αi ∈ ∆. For any αj ∈ ∆, 〈λ, αj〉 = δij.

Suppose that λ ∈ ZΦ∨, so that we have an expression

λ =
∑
αj∈∆

cαjα
∨
j , where cαj ∈ Z.

We apply the simple reflection si to λ in two ways. First,

siλ = λ− 〈λ, αi〉α∨i = λ− α∨i .

On the other hand,

siλ = si

( ∑
αj∈∆

cαjα
∨
j

)
=
∑
αj∈∆

cαjsiα
∨
j = −cαiα∨i +

∑
αj∈∆\{αi}

djα
∨
j ,
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where we have used that si permutes the simple coroots α∨j for j 6= i. The coefficients

dαj are the permuted cαj . Now combine these two different forms of siλ to get a

relation

(2cαi − 1)α∨i +
∑

αj∈∆\{αi}

(cαj − dαj)α∨j = 0.

This is a linear combination of the basis elements of ZΦ∨, hence all coefficients must

be zero. This implies 2cαi = 1, which is impossible since cαi ∈ Z.

Because λ /∈ ZΦ∨, it is not a torsion element of X∗(T )/ZJ∨, and consequently

X∗(T̂ )/Lw,J =
(
X∗(T̂ )/LJ

)
/Zλ has rank equal to

(
rank(T̂ )−rank(J)−1

)
, because

rank(LJ) = rank(J).

Remark 3.2.15. The assumption that Gder be simply connected still admits the

GLn and GSp2n cases. Moreover, Corollary 3.2.14 is only used to find the rank of

certain Sw,J at the very end of the proof of the main theorem (Theorem 5.1.3); the

rest of the proof is independent of this assumption.

When G is GLn, GSp4 or GSp6, we can give a precise description of the

structure of X∗(Sw,J) as a finitely generated abelian group. More specifically, in

these cases we can say something about how torsion appears, rather than only

finding the rank of the group.

Lemma 3.2.16. Suppose G = GLn, GSp4 or GSp6. Consider Sw,J for µ-admissible

w and a root subsystem J ⊆ Φ. The Smith form of X∗(Sw,J) has a single invariant
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factor c1, and

X∗(Sw,J) ∼=


Zrank(T̂ )−rank(J)−1, if c1 = ±1,

Zrank(T̂ )−rank(J)−1 × Z/c1Z, otherwise.

Proof. We will handle the GLn case separately from GSp4 and GSp6.

Case 1: G = GLn. The quotient X∗(T )/ZJ∨ is the fundamental group of an

endoscopic group of GLn. All endoscopic groups have the property that their derived

groups are simply connected, so X∗(T )/ZJ∨ is torsion-free for all J ⊆ Φ. We show

how to write down an explicit set of generators.

Let ε1, . . . εn be the coordinate generators of X∗(T ). Coroots α∨ ∈ J∨ have

the form α∨uv = εu − εv The image of εi in X∗(T )/ZJ∨ is denoted ε̄i.

Let J = J1

∐
· · ·
∐
Jr be the irreducible decomposition of J . Let ik be the

minimal index among those i such that 〈εi, α〉 6= 0 for α ∈ Jk. Then if αuv ∈ Jk,

we have ε̄ik = ε̄u = ε̄v in the quotient. Let A denote the set of indices t such that

〈εt, α〉 = 0 for all α ∈ J . Then X∗(T )/ZJ∨ is generated by the ε̄ik and the ε̄t.

Relabel this generating set such that

X∗(T )/ZJ∨ = 〈ε̄j1 , . . . , ε̄jm〉.

Let λ = λ(w) be the translation part of w. Then λ =
∑t

`=1 εi` in X∗(T ). Let

Iλ = {i1, . . . , it}. There is a map

f : Iλ → {j1, . . . , jm}

defined by sending εi to its image in X∗(T )/ZJ∨. Set ci = |f−1(ji)| for 1 ≤ i ≤ m,

so λ̄ =
∑m

k=1 ciε̄jk .
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Corollary 3.2.12 and Proposition 3.2.13 show that

X∗(Sw,J) =
(
X∗(T )/ZJ∨

)
/〈λ〉.

Thus λ̄ =
∑m

k=1 ciε̄jk can be thought of as a 1 × m relation matrix among the

generators of X∗(T )/ZJ∨. The resulting Smith form, which describes the finitely

generated abelian group X∗(Sw,J), has a single invariant factor c1 and rank equal

to
(

rank(T̂ )− rank(J)− 1
)

by Corollary 3.2.14.

Case 2: G = GSp4 or GSp6. In this case,

X∗(T ) = 〈ε0, ε1, . . . , εn〉,

where ε0 is the similitude cocharacter. The positive coroots have one of three forms

for i < j: εi− εj, εi + εj or εi. For these low-rank groups, one can check all possible

J∨ to confirm that X∗(T )/ZJ∨ is torsion-free and generated by the images of a

subset of the εi.

There are six possible J∨ for GSp4:

J∨1 = {±(ε1 − ε2)} J∨4 = {±ε2}

J∨2 = {±(ε1 + ε2)} J∨5 = {±ε1}
∐
{±ε2}

J∨3 = {±ε1} J∨6 = Φ∨

Each system gives a relations matrix AJ among the generators ε0, . . . , εn. For ex-

ample, in the the case of J∨5 the matrix is

AJ5 =

[
0 1 0
0 0 1

]
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where the columns correspond to generators of X∗(T ) and each row is a rela-

tion coming from a positive coroot. This matrix has invariant factors (1, 1), hence

X∗(T )/ZJ∨5 ∼= Z3−2 = Z is torsion-free. The relation matrices for J∨1 , . . . , J
∨
4 consist

of a single row and have invariant factor (1), so each X∗(T )/ZJ∨i is torsion-free for

i = 1, . . . , 4. Meanwhile, we know X∗(T )/ZΦ∨ is torsion-free because GSp4 has a

simply-connected derived group.

We use the same approach for GSp6. There are thirty possible J∨, which split

into seven families organized by the type of J∨. We list each type, followed by the

number of members in the family, and then a representative J∨ of the family.

Type A1 (9) J∨ = {±(ε1 − ε2)}

Type A1 × A1 (9) J∨ = {±(ε1 + ε2)}
∐
{±ε3}

Type A2 (4) J∨ = {±(ε1 + ε2),±(ε1 + ε3),±(ε2 − ε3)}

Type C2 (3) J∨ = {±(ε1 − ε2),±(ε1 + ε2),±ε1,±ε2}

Type A1 × A1 × A1 (1) J∨ = {±ε1}
∐
{±ε2}

∐
{ε3}

Type C2 × A1 (3) J∨ = {±(ε1 − ε2),±(ε1 + ε2),±ε1,±ε2}
∐
{±ε3}

Type C3 (1) J∨ = Φ∨

Now we can construct relation matrices AJ as before to compute the Smith form of

X∗(T )/ZJ∨ in each case. It turns out that in every case, all invariant factors are

units, which means the quotient is torsion-free. Here are some examples.

Let J∨ = {±(ε1 + ε2),±(ε1 + ε3),±(ε2 − ε3)}:
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AJ =

0 1 1 0
0 1 0 1
0 0 1 −1

 ∼
1 0 0 0

0 −1 0 0
0 0 0 0



Let J∨ = {±(ε1 − ε2),±(ε1 + ε2),±ε1,±ε2}
∐
{±ε3}:

AJ =


0 1 −1 0
0 1 1 0
0 1 0 0
0 0 0 1

 ∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



Since X∗(T )/ZJ∨ is torsion-free in all cases for GSp4 and GSp6, we can now

proceed as in the GLn case. Consider the image of λ =
∑r

`=1 εi` in X∗(T )/ZJ∨ to

get a relation among the generators of the quotient, then take the Smith form.

3.3 Analogues of the critical index torus

The final section of this chapter determines an analogue of the group of kF -

points of the “critical index torus” TS(w) defined in the Drinfeld case [19], Section 6.4,

wherein this subtorus is defined by specifying that a coordinate in the diagonal torus

T is always 1 if that coordinate does not belong to a certain subset of indices S(w).

There are important differences between the Drinfeld case and the more general

case being considered here. First, in the general case we cannot find a subtorus

to play the role of TS(w), though we can approximate its behavior through certain

finite subgroups of T (kF ). Second, whereas the support of φ′r,1 can be described in

terms of the µ-admissible set and the single group TS(w)(kF ) in the Drinfeld case,

the general case admits the possibility that multiple finite groups Aw,J,kF are needed
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to completely describe those s ∈ T (kr) whose norms Nr(s) contribute to nonzero

coefficients φ′r,1(I+
r swI

+
r ). This second point will be elaborated in Chapter 5.

3.3.1 Stratification of Sdz
w by χ-root systems

Recall that T̂ (C)dz is the finite subgroup of T̂ (C) comprising the depth-zero

endoscopic elements κχ associated to χ ∈ T (kF )∨. Consider any κχ ∈ T̂ (C)dz, not

necessarily relevant to w. The corresponding character χ determines a χ-root system

Φχ ⊆ Φ, which may be reducible. We stratify T̂ (C)dz by defining

T̂ (J) =
{
κχ ∈ T̂ (C)dz | J = Φχ

}
,

which yields

T̂ (C)dz =
∐
J⊆Φ

T̂ (J).

Now any subset A ⊆ T̂ (C)dz can be stratified by setting A(J) = A ∩ T̂ (J) for each

J ⊆ Φ, thus we come to consider the strata Sdz
w (J) of the depth-zero relevant group.

Corollary 3.3.1. With notation as above,

Sdz
w,J =

∐
J⊆J ′⊆Φ

Sdz
w (J ′).

Proof. This is a consequence of Proposition 3.2.7.

Lemma 3.3.2. Consider a stratum Sdz
w (J). For all characters χ ∈ T (kF )∨ such

that κχ ∈ Sdz
w (J): the groups W ◦

χ are all isomorphic, the length functions `χ agree

in the obvious sense, and the polynomials R̃χ
u,v(Qr) are identical for all u, v ∈ W̃χ.

Proof. The key point is that all κχ ∈ Sdz
w (J) have the same χ-root system Φχ ⊆ Φ.

Consequently, the groups W ◦
χ are all identical, and so are the length functions `χ.
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Finally, the Hecke algebras H(Wχ,aff , Sχ,aff) all determine the same R̃χ-polynomials.

The common length function and R̃χ-polynomials associated to points in the

stratum Sdz
w (J) are sometimes denoted `J and R̃J , respectively.

3.3.2 Definition of finite critical groups

The critical index torus TS(w) defined in the Drinfeld case is first understood in

terms of geometric data concerning the special fiber of the Shimura variety. Haines

and Rapoport prove that TS(w) is the particular subtorus of T corresponding to the

lattice Lw ⊂ X∗(T ), where Lw is defined as in Lemma 3.2.8. The group of kF -points

TS(w)(kF ) plays a role in determining the support of φ′r,1 in the Drinfeld case. See

also Section 5.1.2. In the more general case considered in this thesis, the analogous

lattices Lw,J do not necessarily correspond to subtori of T , because X∗(T )/Lw,J is

not always torsion-free.

Definition 3.3.3. Let w be µ-admissible, and let J ⊆ Φ be a root subsystem. The

lattice Lw,J from Corollary 3.2.12 can be viewed as a lattice in X∗(T ). Define a

subgroup of T (kF ) by

Aw,J,kF = 〈ν(kF ) | ν ∈ Lw,J〉,

This is the finite critical group of w and J with respect to kF .

Lemma 3.3.4. Let χ be a depth-zero character on T (kF ). Then κχ lies in Sdz
w,J if

and only if the restriction of χ to Aw,J,kF is the the trivial character.
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Proof. Suppose κχ ∈ Sdz
w,J . We have η(κχ) = 1 for all η ∈ Lw,J because X∗(Sdz

w,J) =

X∗(T̂ )/Lw,J . Thus viewing η as an element of X∗(T ), we have χ(η(x̃)) = 1 for any

generator x̃ = τF (x) of k∗F , since χ(η(x̃)) = η(κχ). But Aw,J,kF is generated by the

elements η(x̃), so χ is trivial on this subgroup of T (kF ).

Conversely, suppose χ restricts to the trivial character on Aw,J,kF . For any

generator x̃ of k∗F such that x̃ = τF (x) for x ∈ IF , the hypothesis implies χ(η(x̃)) = 1

for η ∈ Lw,J . As before, χ(η(x̃)) = η(κχ), hence η(κχ) = 1 for all η ∈ Lw,J . Therefore

κχ ∈ Sdz
w,J by Corollary 3.1.6.

3.3.3 Sums of over groups of endoscopic elements

Let Nr : T (kr) → T (kF ) be the norm map. Lemma 2.3.23 showed that given

s ∈ T (kr), we can attach an element γNrs ∈ X∗(T ) to Nr(s) ∈ T (kF ). The purpose

of this section is to determine the possible values of sums

∑
κχ∈Sdz

w,J

γNrs(κχ)−1.

Such sums will appear in Chapter 5 as a result of grouping terms in an expression for

φ′r,1. The finite critical groups introduced in Definition 3.3.3 are the key determining

factor for whether a sum is zero.

Proposition 3.3.5. Let s ∈ T (kr), and define γNrs as above. Then

∑
κχ∈Sdz

w,J

γNrs(κχ)−1 =


0, if Nr(s) /∈ Aw,J,kF

|Sdz
w,J |, otherwise.

73



Proof. First, suppose there exists κ0 ∈ Sdz
w,J such that γNrs(κ0) 6= 1. Then

∑
κχ∈Sdz

w,J

γNrs(κχ)−1 =
∑

κχ∈Sdz
w,J

γNrs(κ0κχ)−1 = γNrs(κ0)−1
∑

κχ∈Sdz
w,J

γNrs(κχ)−1,

implies
∑

κχ∈Sdz
w,J

γNrs(κχ)−1 = 0. But γNrs(κχ) 6= 1 for some κχ ∈ Sdz
w,J if and only

if Nr(s) /∈ Aw,J,kF . The second case is obvious, because then Nr(s) ∈ Aw,J,kF implies

all γNr(s)(κχ) = 1
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Chapter 4: Combinatorics on increasing paths in a Bruhat graph

The explicit formula for Bernstein functions attached to dominant minuscule

cocharacters applied in Chapter 2 introduced a term to our formula connected with

the R̃-polynomials defined by Kazhdan and Lusztig. In fact, we must work with

polynomials R̃J
w,tλ(w)

(Qr) for w ∈ AdmGr(µ) and a χ-root system J ⊆ Φ. This chap-

ter applies a formula for R̃-polynomials due to Dyer in order to rewrite R̃J
w,tλ(w)

(Qr)

in a new way, which will simplify our formula for the coefficients of φ′r,1.

Our first order of business is to recall some definitions and results pertaining

to reflection subgroups and reflection orderings on Coxeter groups. Then, we will

take a closer look at the behavior of these objects in the special case of the Bruhat

interval between an affine Weyl group element and its translation part, before going

on to prove the desired modification to Dyer’s formula in the final section.

4.1 Background on Coxeter groups

Recall that a Coxeter system is a pair (W ,S) composed of a group W

generated by a set of involutions S subject to braid relations (sisj)
m(i,j) = 1, where

m(i, j) ∈ {Z,∞}. The length of an element w ∈ W is denoted `(w). A finite

Coxeter group has all m(i, j) ∈ Z, and a finite rank Coxeter group has |S| < ∞.
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Weyl groups are finite Coxeter groups, while affine Weyl groups are infinite. Both

types of groups have finite rank.

Essentially all of the material in this first section is covered in the book by

Björner and Brenti [1] or in the papers of Dyer cited throughout.

4.1.1 Bruhat order and Bruhat graphs

The following statement is Definition 2.1.1 in [1].

Definition 4.1.1. Let (W ,S) be a Coxeter system and let

T = {wsw−1 | w ∈ W , s ∈ S} =
⋃
w∈W

wSw−1

be its set of reflections. Let u,w ∈ W. Then

1. u
t→ w means that u−1w = t ∈ T and `(u) < `(w).

2. u→ w means that u
t→ w for some t ∈ T .

3. u ≤ w means that there exist ui ∈ W such that

u = u0 → u1 → · · · → uk = w.

The Bruhat graph Ω(W,S) is the directed graph whose vertices are the elements of

W and whose edges are given by u→ w. Bruhat order is the partial order relation

u ≤ w on the set W.

For elements x ≤ y in a Coxeter system (W ,S), a path ∆ from x to y, also

written x
∆−→ y, is a set of edges in Ω(W,S) that connect the vertices x and y. Let

BW(x, y) denote the set of all paths x
∆−→ y through Ω(W,S). If W is a Weyl group

associated to a root system Φ, this set instead may be written BΦ(x, y).
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4.1.2 Reflection subgroups of Coxeter groups

Definition 4.1.2. LetW be a Coxeter group with set of reflections T . Any subgroup

W ′ ⊂ W satisfying W ′ = 〈W ′ ∩ T 〉 is called a reflection subgroup of W.

The following is Definition 3.1 of [9].

Definition 4.1.3. Let W be a Coxeter group. For w ∈ W, let

N(w) = {t ∈ T | `(tw) < `(w)}.

If W ′ is a subgroup of W, let

Σ(W ′) =
{
t ∈ T | N(t) ∩W ′ = {t}

}
.

Theorem 4.1.4. Let W ′ be a reflection subgroup of a Coxeter system (W ,S) and

let S ′ = Σ(W ′). Then

1. W ′ ∩ T =
⋃
u∈W ′ uS ′u−1, and

2. (W ′,S ′) is a Coxeter system.

Proof. This is Theorem 3.3 of [9], where the result is established for general reflection

systems. The fact that a reflection subgroup of a Coxeter group if itself a Coxeter

group was proved independently by Deodhar [7] (see the “Main Theorem” proved

in Section 3 of the cited paper).

Dyer [10] further proved that the Bruhat graph associated to any reflection

subgroup W ′ of (W ,S) embeds as a full subgraph of the Bruhat graph Ω(W,S). Let

Ω(W,S)(W ′) denote the full subgraph of Ω(W,S) on the vertex set W ′.
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Theorem 4.1.5. Let W ′ be a reflection subgroup of (W ,S) and set S ′ = Σ(W ′).

1. Ω(W ′,S′) = Ω(W,S)(W ′).

2. For any x ∈ W, there exists a unique x0 ∈ W ′x such that the map W ′ →W ′x

defined by w 7→ wx0, for w ∈ W ′, is an isomorphism of directed graphs

Ω(W,S)(W ′)→ Ω(W,S)(W ′x).

Proof. This is Theorem 1.4 of [10].

Suppose (W ,S) is a finite-rank Coxeter system, i.e., S has finite cardinal-

ity. This is the case for all Coxeter groups considered in this thesis. There is a

root system ΦW associated to any such (W ,S) arising from the standard geometric

representation of W . See, for example, [1], Section 4.4.

Lemma 4.1.6. Let W be a Weyl group associated to a root system Φ and let W ′ be

any reflection subgroup of W . Then the root system ΦW ′ is a sub-system of Φ.

Proof. Per [1], the root system Φ = ΦW of (W,S) is equal to

Φ = {w(αs) | w ∈ W, s ∈ S},

where the αs form a basis for ambient Euclidean space with dimension equal to |S|.

The reflection group W ′ is a Coxeter system (W ′,Σ(W ′), hence there exists a

root system ΦW ′ as above. For each s′, the root as′ equals u(αs) for some u ∈ W

and s ∈ S. Therefore, for any w′ ∈ W ′ and s′ ∈ Σ(W ′), the root w′(αs′) has the

form u(αs) for some u ∈ W and s ∈ S. This proves ΦW ′ ⊆ Φ.
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4.1.3 Reflection orderings

Dyer introduced the notion of a reflection ordering in [11]. Our presentation

also draws from Sections 5.2 and 5.3 of [1].

Definition 4.1.7. Let (W ,S) be a finite-rank Coxeter system, and let ΦW be its

associated root system. A total ordering ≺ on the (possibly infinite) set of positive

roots Φ+
W is a reflection ordering if for all α, β ∈ Φ+

W and λ, µ ∈ R>0 such that

λα + µβ ∈ Φ+
W , we have that either

α ≺ λα + µβ ≺ β

or

β ≺ λα + µβ ≺ α.

The bijection between the positive roots Φ+
W and the set of reflections T inW

means that a reflection ordering induces a total ordering on T .

Proposition 4.1.8. Let (W ,S) be a finite-rank Coxeter system, and let ΦW be its

associated root system. Then there exists a reflection ordering on Φ+
W .

Proof. This first appeared in in [11], (2.1) - (2.3), and an alternative proof is given

in [1], Proposition 5.2.1.

We emphasize that Dyer’s theory holds for both finite and infinite Coxeter

groups. In what follows, we will repeatedly discuss reflection orderings on reflections

in a finite Weyl group and reflection orderings on affine reflections in an affine Weyl

group. For a finite Weyl group W (resp. an affine Weyl group Waff), the root
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system ΦW coincides with the root system of W (resp. the affine root system of W ).

See [21], Sections 6.4 - 6.5.

Definition 4.1.9. Let (W ,S) be a finite-rank Coxeter group, and fix a reflection

ordering ≺ on Φ+
W . Given a path

∆ = {w0, w1, . . . , wn}

from u→ v through the Bruhat graph for (W ,S), define the edge set of ∆ by

E(∆) = {w−1
i−1wi | 1 ≤ i ≤ n}.

The descent set of ∆ with respect to the reflection ordering ≺ is defined by

D(∆;≺) =
{
i ∈ {1, . . . , n− 1} : w−1

i wi+1 ≺ w−1
i−1wi

}
.

Given a fixed reflection ordering ≺ on the reflections of W and x ≤ y in the

Bruhat order on W , we denote the set of ≺-increasing paths from x to y by

B≺W(x, y) = {∆ ∈ BW(x, y) | D(∆;≺) = ∅}.

4.2 Bruhat intervals for admissible elements

This section shows that any path from a µ-admissible w in W̃ to its translation

part tλ(w) consists solely of reflections appearing in the finite Weyl group W .

Remark 4.2.1. In this section and the next, we will sometimes write BΦaff
(w, tλ(w))

when working with w and tλ(w) in W̃—as opposed to Waff . Let us justify this apparent

misuse of notation.
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Recall how Bruhat order works in the extended affine Weyl group: if w ≤ tλ,

then there exists a length-zero element σ ∈ W̃ such that w, tλ(w) ∈ σ−1Waff , and

σ−1w ≤ σ−1tλ(w) in the Bruhat order on Waff . We are simply writing BΦaff
(w, tλ(w))

instead of BΦaff
(σ−1w, σ−1tλ(w)).

Proposition 4.2.2. Let µ be a dominant minuscule coweight of Φ, and let (W,S)

be the finite Weyl group of Φ inside the affine Weyl group (Waff , Saff). Let T be the

set of reflections in W .

Consider a µ-admissible element w ≤ tλ(w). There exists a length-zero element

σ in W̃ such that w, tλ(w) ∈ σWaff . Let w
∆−→ tλ(w) be any path in the Bruhat graph

Ω(Waff ,Saff). Each reflection in the edge set E(∆) = {t1, . . . tn} belongs to T .

Proof. Let C denote the base alcove. Recall that Waff acts simply transitively on

alcoves (see [21], Section 4.5), and let Au = u · C for u ∈ Waff . Because w belongs

to Adm(µ), it can be written w = tλw̄ with w ≤ tλ. (N.B. the λ here is λ(w) by

definition.)

We claim that Aw and Atλ both contain λ in their closures. Observe that

the fundamental alcove C and the alcove w̄C both have the origin in their closure,

because w̄ is an element of the finite Weyl group. Translating each alcove by λ

means the translate of the origin lies in the closure of the translated alcoves.

A path w
∆−→ tλ is a sequence of (affine) reflections t1, . . . , tn such that

w < wt1 < wt1t2 < · · · < wt1 · · · tn = tλ.

Now we further claim that each alcove Awt1···ti also contains λ in its closure.

Let Hi be a hyperplane crossed by going from Awt1...ti−1
to Awt1...ti . All such Hi
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weakly separate Aw from Aλ. Suppose λ did not lie in some Hi. Then it would be

strictly on one side of Hi. This is a contradiction, because λ belongs to the closure

of both Aw and Aλ, and these alcoves are separated by Hi.

As a matter of notation, given u ∈ W̃ , let uti = utiu
−1. Then we can rewrite

the above sequence as

w < wt1w < wt1t2
wt1w < · · · < wt1···tn−1tn · · · wt1t2wt1w = tλ.

The argument above shows that the hyperplane for each affine reflection wt1···ti−1ti

passes through the point λ. Therefore, the corresponding reflection fixes this point,

wt1···ti−1ti(λ) = λ.

Since w−1 = w̄−1t−λ, the preceding equation can be rewritten

t1 · · · ti · · · t1w̄−1t−λ(λ) = w̄−1t−λ(λ)

Using w̄−1(0) = 0, we conclude that for each 1 ≤ i ≤ n,

t1 · · · ti · · · t1(0) = w−1(0) = 0.

An affine reflection fixes the origin if and only if its translation part is trivial. So

the reflection t1 · · · ti · · · t1 is in the finite Weyl group. It follows that each ti belongs

to T .

Lemma 4.2.3. Let w = tλw̄ be µ-admissible. There is an element wλ ∈ W such

that tλwλ has minimal length in the coset tλW , and moreover, for any x ∈ W

`(tλwλx) = `(tλwλ) + `(x).

Finally, for any x, y ∈ W , tλwλx ≤ tλwλy if and only if x ≤ y.
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Proof. Because we know w ≤ tλ, there is a length-zero element σ ∈ W̃ such that

w, tλ ∈ σWaff . We may and do think of tλ and w as elements of Waff by multiplying

each on the left by σ−1.

Since W is a finite group, it is clearly possible to attain a minimal value in the

set {`(tλx) | x ∈ W}. Let wλ denote an element of W such that `(tλwλ) is minimal.

In fact, this wλ is unique by the theory of minimal coset representatives applied to

the quotient Waff/W ; see [1] Corollary 2.4.5 for example.

By the triangle inequality, for any x ∈ W the lengths satisfy

`(tλwλx) ≤ `(tλwλ) + `(x).

Suppose `(tλwλx) < `(tλwλ) + `(x). Let Saff = {s0, s1, . . . , sr}, and choose reduced

expressions tλwλ = si1 · · · sin and x = sj1 · · · sjm . By assumption of strict inequality,

there is an index jk such that

`(tλwλsj1 · · · sjk−1
sjk) < `(tλwλsj1 · · · sjk−1

).

By the Exchange Condition, multiplying tλwλsj1 · · · sjk−1
by sjk must delete some

element in the expression si1 · · · sinsj1 · · · sjk−1
. Since the expression for x is reduced,

sjk must delete some sip . This contradicts the assumption that tλwλ = si1 · · · sin is

reduced. Therefore, `(tλwλx) = `(tλwλ) + `(x).

The final statement is a consequence of the above equality and the definition of

Bruhat order. If we assume x 6= y, then tλwλx < tλwλy means `(tλwλx) < `(tλwλy).

But then

`(tλwλ) + `(x) < `(tλwλ) + `(y),
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and so `(x) < `(y). Then by definition, x < y. To prove the opposite implication,

run the argument in reverse.

Proposition 4.2.4. Let w = tλw̄ ∈ AdmGr(µ). Given a reflection ordering ≺ on

Waff , let ≺ also denote its restriction to W . There is an explicit ≺-preserving bi-

jection between BΦaff
(w, tλ), whose paths go through Ω(Waff ,Saff), and BΦ(w−1

λ w̄, w−1
λ ),

whose paths go through Ω(W,S).

Proof. Choose any ∆ ∈ BΦaff
(w, tλ), with edge set E(∆) = {t1, . . . , tn}. That is,

w < wt1 < wt1t2 < · · · < wt1t2 · · · tn−1 < tλ.

By the final statement of Lemma 4.2.3, this chain of inequalities holds if and only

if the following chain also holds,

w−1
λ w̄ < w−1

λ w̄t1 < · · ·w−1
λ w̄t1 · · · tn−1 < w−1

λ .

Proposition 4.2.2 shows that the ti are reflections in the finite Weyl group.

Hence the new chain of inequalities defines a path ∆′ ∈ BΦ(w−1
λ w̄, w−1

λ ). The edge

sets of each path are identical, and moreover, the edges appear in the same order.

Therefore, we have a ≺-preserving bijection between the two Bruhat intervals.

4.3 A stratified formula for R̃-polynomials

The preceding section showed that the set of paths between a µ-admissible

element and its translation part increasing with respect to a reflection ordering ≺ is

in bijection with the ≺-increasing paths between certain finite Weyl group elements.

84



In this section, we show that the polynomials R̃J
w,tλ(w)

(Qr) appearing in the formula

for the coefficients of φ′r,1 can be written as a sum indexed by these paths.

4.3.1 Dyer’s formula

This subsection is devoted to justifying Theorem 4.3.4, Dyer’s R̃-polynomial

formula, in the context of this thesis. We begin by explaining how the polynomials

are defined for a general Coxeter system, then we compare this definition to the

definition of R̃-polynomials arising from the inversion formula for basis elements of

a twisted affine Hecke algebra (see Definition 2.3.16).

Given a Coxeter system (W ,S) and w ∈ W , the right descent set of w is

defined as

DR(w) = {s ∈ S | `(ws) < `(w)}.

Theorem 4.3.1. Let (W ,S) be a Coxeter system. There is a unique family of

polynomials {Ru,v(q
r)}u,v∈W satisfying the following conditions:

1. Ru,v(q
r) = 0 if u � v,

2. Ru,v(q
r) = 1 if u = v,

3. If s ∈ DR(v), then

Ru,v(q
r) =


Rus,vs(q

r), if s ∈ DR(u),

qrRus,vs(q
r) + (qr − 1)Ru,vs(q

r), if s /∈ DR(u).

Proof. This is Theorem 5.1.1 of [1].
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Proposition 4.3.2. Let u, v ∈ W, and let Q̂ = qr/2 − q−r/2. There exists a unique

polynomial R̃u,v(q
r) ∈ N[q] such that

Ru,v(q
r) = qr`(u,v)/2R̃u,v(Q̂r).

Proof. This is Proposition 5.3.1 of [1].

Recall that in Chapter 2 we set Q = q−r/2 − qr/2. In the definitions given for

the Hecke algebra case, the R-polynomials and R̃-polynomials are related by

(−1)`(u)(−1)`(v)Ru,v(q
r) = qr`(u,v)/2R̃u,v(Qr),

for u and v in the extended affine Weyl group W̃ , whereas in the definition of the

polynomials for general Coxeter groups we have

Ru,v(q
r) = qr`(u,v)/2R̃u,v(Q̂r).

Lemma 4.3.3. In the notation defined above,

(−1)`(u)(−1)`(v)R̃u,v(Qr) = R̃u,v(Q̂r).

Proof. Notice that Q̂r = −Qr, so it is enough to show that the sign (−1)`(u)(−1)`(v)

is somehow compatible with the individual terms in the polynomial. It will help to

rewrite (−1)`(u)(−1)`(v) = (−1)`(v)−`(u) = (−1)`(u,v).

Next, we recall two facts about R̃-polynomials arising from the inversion for-

mula for Hecke algebra basis elements. First, deg
(
R̃u,v(Qr)

)
= `(u, v); see [14],

Lemma 2.5. Second, the powers of Qr in R̃u,v(Qr) all have the same parity. This

follows from Theorem 4.3.4, whose proof is independent of the current argument.
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Suppose we have two paths ∆1,∆2 ∈ B≺Φχ,aff
(u, v), such that the product of edges of

∆1 is t1 . . . tr, while the product of edges of ∆2 is u1 . . . us. Then

u−1v = t1 . . . tr = u1 . . . us.

It is a general fact about Coxeter groups that in this situation r − s must be even;

but r = `(∆1) and s = `(∆2).

An R̃-polynomial has coefficients cn in N. Multiplying through by (−1)`(u,v)

gives

(−1)`(u,v)cnQ
`(u,v)−2n
r = (−1)2ncnQ̂

`(u,v)−2n
r .

This completes the proof.

Finally, we can state Dyer’s formula [11] using the notation of Chapter 2.

Theorem 4.3.4. Let W̃χ be the extended affine Weyl group of Hχr , and let ≺ be

a reflection ordering on the reflections in Wχ,aff . Let Qr = q−r/2 − qr/2. For any

u, v ∈ W̃χ such that u ≤χ v in Bruhat order,

R̃χ
u,v(Qr) =

∑
∆∈B≺Φχ,aff

(u,v)

Q`(∆)
r .

Proof. This statement is Theorem 5.3.4 of [1], applied to the case of R̃-polynomials

arising from H(Hχr , IHr) viewed as a twisted affine Hecke algebra.

4.3.2 Modifications to Dyer’s formula

Suppose J is a root sub-system of Φ. Let WJ = 〈sα | α ∈ J+〉 be the reflection

subgroup of W associated to J . The group WJ,aff is the corresponding affine Weyl
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group. Given a reflection ordering ≺ on reflections in Waff , we induce a reflection

ordering on reflections in WJ,aff by restricting the ordering on Φ+
aff to J+

aff .

Let w = tλw̄ ∈ AdmGr(µ), and J ⊆ Φ. There is an automorphism σ of the

base alcove C such that w and tλ lie in σWaff , so we may speak of paths w
∆−→ tλ

through the Bruhat graph Ω(Waff ,Saff). We consider Bruhat intervals

B≺Jaff
(w, tλ) = {w ∆−→ t | E(∆) ⊂ WJ,aff , D(∆,≺) = ∅}.

Lemma 4.3.5. For any path ∆ in B≺Jaff
(w, tλ), there is a unique minimal root sub-

system J∆ ⊆ J such that all reflections ti ∈ E(∆) lie in WJ∆
.

Proof. Fix a path ∆ ∈ B≺J,aff(w, tλ). By Proposition 4.2.2, the edges of all paths in

B≺J,aff(w, tλ) are finite reflections. Observe that

W ′ =
⋂

E(∆)⊂V⊂WJ

V = 〈ti | ti ∈ E(∆)〉,

is the smallest subgroup of WJ containing all of the edges in ∆. Theorem 4.1.4

shows that W ′ is itself a Coxeter group. Therefore, by Lemma 4.1.6, there is an

associated root system J∆ whose positive roots are in bijection with the reflections

of W ′.

Proposition 4.3.6. Let w = tλw̄ ∈ AdmGr(µ). The polynomial R̃J
w,tλ

(Qr), defined

with respect to the reflection subgroup (WJ ,ΣJ), can be rewritten as

R̃J
w,tλ

(Qr) =
∑
J ′⊆J

∑
∆∈B≺J (w,tλ)

J∆=J ′

Q`(∆)
r .

Proof. This is a direct consequence of Dyer’s formula and the preceding lemmas.
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Lemma 4.3.7. Let w = tλw̄ ∈ AdmGr(µ). For any chain of root systems J ′ ⊆ J ⊆

Φ, there is an equality of sets

{∆ ∈ B≺J (w−1
λ w̄, w−1

λ ) | J∆ = J ′} = {∆ ∈ B≺Φ (w−1
λ w̄, w−1

λ ) | J∆ = J ′}.

Proof. The reflection subgroups WJ and WJ ′ can be realized as Coxeter groups

(WJ ,ΣJ) and (WJ ′ ,ΣJ ′). Let Ω(W,S) denote the Bruhat graph of (W,S) and use

analogous notation for graphs of reflection subgroups.

The key observation comes from Theorem 4.1.5: The Bruhat graph of a re-

flection subgroup is equal to the full subgraph of the Bruhat graph of an ambient

Coxeter group having vertices in the reflection subgroup. Symbolically, this says:

Ω(W,S)(WJ ′) = Ω(WJ′ ,ΣJ′ )
= Ω(WJ ,ΣJ )(WJ ′).

Therefore, the set of paths through Ω(W,S) associated to J ′ equals the set of paths

through Ω(WJ ,ΣJ ) associated to J ′.

Corollary 4.3.8. Let w = tλw̄ ∈ AdmGr(µ) and J ⊆ Φ. Then

R̃J
w,tλ

(Qr) =
∑
J ′⊆J

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J ′

Q`(∆)
r .

Proof. Apply Lemma 4.3.7 to rewrite the formula of Proposition 4.3.6 withB≺Φ (w, tλ)

instead of B≺J (w, tλ). Then apply Proposition 4.2.4.
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Chapter 5: The combinatorial formula and example calculations

Let us recall what we have done leading up to this final chapter. First, we gave

an abstract definition of a test function φr via the Bernstein center and then explic-

itly described the test function in the case of I+
r -level structure for split connected

reductive groups with connected center by applying results on depth-zero charac-

ters and invoking Haines’s formula for Bernstein functions attached to dominant

minuscule cocharacters. We then embarked on two (mostly) independent paths. By

looking more closely at the depth-zero endoscopic elements κχ, we obtained infor-

mation on which s ∈ T (kr) help characterize the nonzero coefficients of φ′r,1, plus

we simplified the sum in the first explicit formula through a stratification process

indexed by χ-root systems. This stratification by χ-root systems was also employed

in the subsequent chapter to adapt a formula of Dyer concerning R̃-polynomials.

All of these threads will now come together into the main theorem.

The proof of the Main Theorem amounts to showing that the various strati-

fications and corresponding summations behave in a compatible way. By swapping

sums and subsequently reorganizing terms, objects introduced in Chapters 3 and 4

begin to appear in the formula. Finally, all but one summation drops out of the

formula for φ′r,1(I+
r swI

+
r ). This remaining sum is over a well-studied combinatorial
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set connected with the Bruhat order of the ambient Weyl group.

After proving the formula, we make some remarks about using it in practice.

The chapter concludes with some calculations of interest to the study of Shimura

varieties in the cases of GLn and GSp2n.

5.1 The Main Theorem

Throughout this section, let G be a split connected reductive group with

connected center and whose derived group Gder is simply-connected, and assume

W ◦
χ = Wχ (see Remark 2.3.10). Fix a split maximal torus T ⊂ G of rank d. Let µ

be a dominant minuscule cocharacter of T . Finally, choose a reflection ordering ≺

on Φ(G, T ).

Recall that Proposition 2.4.16 presented our first explicit formula for the coeffi-

cients of φ′r,1, the function used in place of φr,1 = q`(tµ)/2(ZVµ ∗ 1I+
r

) when computing

twisted orbital integrals:

φ′r,1(I+
r swI

+
r ) = [Ir : I+

r ]−1
∑

κχ∈Kq−1

γNrs(κχ)−1qr`(w,tλ(w))/2R̃χ
w,tλ(w)

(Qr).

5.1.1 Proof of the main theorem

The notation I+
r swI

+
r treats w ∈ W̃ as an element of Gr using the set-theoretic

embedding W̃ ↪→ Gr defined in Definition 2.4.13.

Lemma 5.1.1. For w ∈ AdmGr(µ) and s ∈ T (kr), we have

φ′r,1(I+
r swI

+
r ) = [Ir : I+

r ]−1
∑
J⊆Φ

∑
κχ∈Sdz

w (J)

γNrs(κχ)−1qr`(w,tλ(w))/2R̃J
w,tλ(w)

(Qr).
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Proof. According to Lemma 3.2.4, ZVµ ∗ eχr(w) = 0 if κχ is not relevant to w, i.e., if

κχ /∈ Sdz
w . Using this, we may replace the sum in the formula from Proposition 2.4.16

with Sdz
w . Then φ′r,1(I+

r swI
+
r ) equals

[Ir : I+
r ]−1

∑
κχ∈Sdz

w

γNrs(κχ)−1qr`(w,tλ(w))/2R̃χ
w,tλ(w)

(Qr).

Next, stratify Sdz
w as described in Section 3.3.1, i.e., Sdz

w =
∐

J⊆Φ S
dz
w (J), so that the

coefficient equals,

[Ir : I+
r ]−1

∑
J⊆Φ

∑
κχ∈Sdz

w (J)

γNrs(κχ)−1qr`(w,tλ(w))/2R̃χ
w,tλ(w)

(Qr).

Finally, recall that the polynomials R̃χ
w,tλ(w)

(Qr) are identical for all κχ in Sdz
w (J) by

Lemma 3.3.2. Specifically, they are the polynomial R̃J
w,tλ(w)

(Qr) with J = Φχ. This

completes the proof.

Lemma 5.1.2. For w ∈ AdmGr(µ) and s ∈ T (kr), φ′r,1(I+
r swI

+
r ) equals

[Ir : I+
r ]−1

∑
J⊆Φ

∑
κχ∈Sdz

w (J)

γNrs(κχ)−1qr`(w,tλ(w))/2
∑
J ′⊆J

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J ′

Q`(∆)
r .

Proof. Replace R̃J
w,tλ(w)

(Qr) with the formula from Corollary 4.3.8.

For each path ∆ in B≺Φ (w, tλ(w)), we defined a root system J∆ ⊆ Φ, which

in turn determines a diagonalizable subgroup Sw,J∆
of T̂ (C). Let Stors

w,J∆
denote the

torsion subgroup of Sw,J∆
. If w = tλ(w), then B≺Φ (w, tλ(w)) contains only a single

element, the “empty path,” whose length is zero and has trivial root system J∆ = ∅;

see also Corollary 5.2.1.

Let w ∈ W̃ , s ∈ T (kr), and J ⊆ Φ. Definition 3.3.3 introduced the finite

critical groups Aw,J,kF , and we saw in Proposition 3.3.5 that there are consequences
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of Nr(s) belonging to Aw,J,kF or not. Define the symbol δ(s, w, J) by

δ(s, w, J) =



0, if w /∈ AdmGr(µ)

0, if w ∈ AdmGr(µ) and Nr(s) /∈ Aw,J,kF

1, if w ∈ AdmGr(µ) and Nr(s) ∈ Aw,J,kF .

Recall that the main theorem holds under the conditions of Remark 2.3.10.

Theorem 5.1.3. Let w ∈ W̃ and s ∈ T (kr). Let d be the rank of T . Fix a reflection

ordering ≺ on Φ, and set c(∆) = [`(w, tµ)− `(∆)] /2. The coefficient of φ′r,1 for the

I+
r -double coset of (s, w) is given by

(−1)d
∑

∆∈B≺Φ (w−1
λ w̄,w−1

λ )

δ(s, w, J∆)|Stors
w,J∆
∩Kq−1|(q − 1)d−rank(J∆)−1qrc(∆)(1− qr)`(∆)−d.

Proof. If w /∈ AdmGr(µ), we know φ′r,1(I+
r swI

+
r ) = 0 for all s ∈ T (kr) by combining

Corollary 2.4.3 and Lemma 2.4.15. Thus we assume w ∈ AdmGr(µ), and our starting

point is the version of the formula given in Lemma 5.1.2. The first phase of the proof

involves rearranging the four summations therein.

First, observe that the sum indexed by endoscopic elements in the stratum

Sdz
w (J) does not depend on the choice of J ′ ⊆ J . Exchanging the corresponding sum-

mations and moving all terms to the innermost quantity shows that φ′r,1(I+
r swI

+
r )

equals

[Ir : I+
r ]−1

∑
J⊆Φ

∑
J ′⊆J

∑
κχ∈Sdz

w (J)

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J ′

γNrs(κχ)−1qr`(w,tλ(w))/2Q`(∆)
r .

Next, we rewrite the first two sums of this expression as follows: Instead of summing

over J ⊆ Φ and then summing over J ′ ⊆ J ; first sum over J ′ ⊆ Φ and then J ⊇ J ′.
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The new expression is

[Ir : I+
r ]−1

∑
J ′⊆Φ

∑
J⊇J ′

∑
κχ∈Sdz

w (J)

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J ′

γNrs(κχ)−1qr`(w,tλ(w))/2Q`(∆)
r .

The innermost sum does not depend on the choice of J containing a fixed J ′.

Therefore we may move it through the two adjacent summations. That is,

[Ir : I+
r ]−1

∑
J ′⊆Φ

∑
J⊇J ′

∑
κχ∈Sdz

w (J)

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J ′

γNrs(κχ)−1qr`(w,tλ(w))/2Q`(∆)
r

= [Ir : I+
r ]−1

∑
J ′⊆Φ

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J ′

qr`(w,tλ(w))/2Q`(∆)
r

∑
J⊇J ′

∑
κχ∈Sdz

w (J)

γNrs(κχ)−1

 .

Corollary 3.3.1 simplifies the quantity in parentheses:

[Ir : I+
r ]−1

∑
J ′⊆Φ

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J ′

qr`(w,tλ(w))/2Q`(∆)
r

 ∑
κχ∈Sdz

w,J′

γNrs(κχ)−1


The second phase of the proof simplifies the preceding expression by applying

our results about paths through the Bruhat graph and sums of character values.

Recall that `(tµ) = `(tλ) for all λ ∈ Wµ, so that we may work with `(w, tµ) in

all cases rather than `(w, tλ(w)). Observe that the difference of lengths

`(w, tµ) = `(tµ)− `(w)

has the same parity as every path length `(∆). (This a rephrasing of our earlier

statement that the orders of terms in R̃-polynomials all have the same parity.) Thus

c(∆) = [`(w, tµ)− `(∆)] /2 is a nonnegative integer. We also apply Corollary 3.3.5

to the quantity
(∑

κχ∈Sdz
w,J′

γNrs(κχ)−1
)

, which implies ∑
κχ∈Sdz

w,J′

γNrs(κχ)−1

 = δ(s, w, J ′)|Sdz
w,J ′ |.
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Finally, use that Ir/I
+
r
∼= T (kr) and that T is a split maximal torus to see

[Ir : I+
r ] = (qr − 1)d.

The result is that φ′r,1(I+
r swI

+
r ) equals

(−1)d
∑
J ′⊆Φ

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J ′

δ(s, w, J ′)|Sdz
w,J ′ |qrc(∆)(1− qr)`(∆)−d

For simplicity of notation, relabel all J ′ as J ,

(−1)d
∑
J⊆Φ

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J

δ(s, w, J)|Sdz
w,J |qrc(∆)(1− qr)`(∆)−d.

The third phase of the proof simplifies the double summation in the previous

expression.

Recall that there is a well-defined root subsystem J∆ ⊆ Φ associated to each

path ∆ in B≺Φ (w−1
λ w̄, w−1

λ ). This relationship partitions the ≺-increasing paths:

B≺Φ (w−1
λ w̄, w−1

λ ) =
∐
J⊆Φ

{
∆ ∈ B≺Φ (w−1

λ w̄, w−1
λ ) | J∆ = J

}
.

For a fixed J ⊆ Φ, suppose that J∆ 6= J for all ∆ ∈ B≺Φ (w−1
λ w̄, w−1

λ ). Then

δ(s, w, J)|Sdz
w,J |

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J

qrc(∆)(1− qr)`(∆)−d = 0.

On the other hand, for any J where there exist paths ∆ such that J∆ = J , we have

an equality

δ(s, w, J)|Sdz
w,J |

∑
∆∈B≺Φ (w−1

λ w̄,w−1
λ )

J∆=J

qrc(∆)(1− qr)`(∆)−d

=
∑

∆∈B≺Φ (w−1
λ w̄,w−1

λ )
J∆=J

δ(s, w, J∆)|Sdz
w,J∆
|qrc(∆)(1− qr)`(∆)−d
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So we have shown that φ′r,1(I+
r swI

+
r ) equals

(−1)d
∑

∆∈B≺Φ (w−1
λ w̄,w−1

λ )

δ(s, w, J∆)|Sdz
w,J∆
|qrc(∆)(1− qr)`(∆)−d,

because B≺Φ (w−1
λ w̄, w−1

λ ) splits as a disjoint union indexed by J ⊆ Φ.

Finally, let us rewrite |Sdz
w,J∆
|. The diagonalizable group Sw,J∆

⊆ T̂ (C) factors

into a direct product of a torus S◦w,J∆
and a torsion subgroup Stors

w,J∆
. Because the

group of depth-zero endoscopic elements Sdz
w in T̂ (C) equals the kernel Kq−1 of the

endomorphism on T̂ (C) given by multiplication by (q − 1),

Sdz
w,J∆

= (Stors
w,J∆
∩Kq−1)× (S◦w,J∆

∩Kq−1).

But since rank(Sw,J∆
) = d − rank(J∆) − 1 by Corollary 3.2.14, and S◦w,J∆

is the

connected component, we must have |S◦w,J∆
∩Kq−1| = (q − 1)d−rank(J∆)−1; so,

|Sdz
w,J∆
| = |Stors

w,J∆
∩Kq−1|(q − 1)d−rank(J∆)−1.

This completes the proof of the main theorem.

5.1.2 The Drinfeld Case

The formula for test functions in the Drinfeld case found by Haines and

Rapoport is a special case of Theorem 5.1.3. Their expression depends on the

“set of critical indices” S(w) associated to a µ-admissible element w ∈ W̃ and the

corresponding subtorus TS(w) of the split maximal torus T in G. Recall the Drin-

feld case data: G = GLd, µ = (1, 0, . . . , 0), and kF ∼= Fp. Let e1 = (1, 0, . . .),

e2 = (0, 1, 0, . . .), and so on.
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Definition 5.1.4. In the Drinfeld case, for w ∈ AdmGr(µ), the set of critical

indices is the subset S(w) ⊆ {1, . . . , d} given by

S(w) = {j | w ≤ tej}.

The subtorus TS(w) consists of the elements diag(t1, . . . , td) ∈ T such that ti = 1 for

all i /∈ S(w). See Section 6 of [19] for more details.

Corollary 5.1.5. (Haines-Rapoport, [19] 12.2.1) With respect to the Haar measure

dx on Gr which gives I+
r volume equal to 1, the function φ′r,1 is given by the formula

φ′r,1(I+
r swI

+
r ) =



0, if w /∈ AdmGr(µ)

0, if w ∈ AdmGr(µ) and Nr(s) /∈ TS(w)(kF )

(−1)d(p− 1)d−|S(w)|(1− pr)|S(w)|−d−1, otherwise.

Proof. Admissible elements in the Drinfeld case have the form

w = tem(mmk−1 · · ·m1),

where m > mk−1 > · · · > m1. The proof of [14], Proposition 5.2, shows that, in this

case,

R̃w,tλ(w)
(Q) = Q`(w,tλ(w)).

But Theorem 4.3.4 gives this polynomial in terms of the set B≺Φ (w, tλ(w)) for any

choice of reflection ordering ≺. It follows that B≺Φ (w, tλ(w)) consists of a single path

of length `(w, tλ(w)). Therefore, if w ∈ AdmGr(µ) we have

φ′r,1(I+
r swI

+
r ) = (−1)d(1− q)−dδ(s, w,Φ)|Sdz

w |(1− q)`(w,tλ(w)).
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Haines and Rapoport show that `(w, tλ) = |S(w)| − 1.

It is clear that in the Drinfeld case Sw is always a torus, hence we can define

a torus TS(w) that fits into an exact sequence

1→ TS(w) → T → Qw → 1,

such that Qw is dual to T̂ /Sw. We conclude that |Sdz
w | = (p − 1)d−|S(w)| by the

relations imposed by λ(κ) = 1 and w̄(κ) = κ.

Now apply the results of Chapter 3: if w ∈ AdmGr(µ) and Nr(s) ∈ TS(w)(kF ),

then we have

φ′r,1(I+
r swI

+
r ) = (−1)d(p− 1)d−|S(w)|(1− q)|S(w)|−d−1,

and the coefficient is zero otherwise.

5.1.3 Relationship to test functions with Iwahori level structure

Let us say something about the relationship between the formula for coef-

ficients φ′r,1, which is sufficient for computing twisted orbital integrals of the test

function φr,1, and the coefficients of the test function φr,0 with Iwahori level struc-

ture.

Let φr,0 = qr`(tµ)/2zµ,r be the Kottwitz function, where µ is a dominant mi-

nuscule cocharacter of G as usual and zµ,r is a Bernstein function in the center of

H(Gr, Ir) as defined in Section 2.4.2. Haines’s formula for Bernstein functions of

minuscule cocharacters shows that

φr,0 = qr`(tµ)/2
∑

w∈AdmGr (µ)

R̃w,tλ(w)
(Qr)T̃w,r,
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where again notation is the same as in Chapter 2. Its coefficients are

φr,0(IrwIr) = qr`(tµ)/2q−r`(w)/2R̃w,tλ(w)
(Qr).

The term q−r`(w)/2 comes from the normalization of basis elements in the Iwahori-

Matsumoto presentation of H(Gr, Ir). Dyer’s formula for R̃-polynomials, discussed

in Chapter 4, implies

φr,0(IrwIr) = qr`(tµ)/2q−r`(w)/2
∑

∆∈B≺Φaff
(w,tλ(w))

Q`(∆)
r .

Let c(∆) = [`(w, tµ)− `∆]/2 as in Theorem 5.1.3 to get

φr,0(IrwIr) =
∑

∆∈B≺Φaff
(w,tλ(w))

qrc(∆)(1− qr)`(∆)

So we see that the formula for coefficients of φr,0 have a similar structure to those

of φ′r,1. The latter can be written as

φ′r,1(I+
r swI

+
r ) = [Ir : I+

r ]−1
∑

∆∈B≺Φaff
(w,tλ(w))

δ(s, w, J∆)|Sdz
w,J∆
|qrc(∆)(1− qr)`(∆).

5.2 Remarks on applying the formula

Now that we have established the combinatorial formula for coefficients of φ′r,1,

let us say a few words about calculating values of the formula.

5.2.1 Some special cases

Understanding the ≺-increasing paths through the Bruhat graph is an impor-

tant first step in calculating results with Theorem 5.1.3. In some cases, B≺Φaff
(w, tλ(w))
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has a very simple description. The exercises following Chapter 5 of [1] describe

R̃u,v(Q) for elements u, v ∈ W such that `(u, v) ≤ 4; the following two corollaries

consider the cases `(w, tλ(w)) = 0 and `(w, tλ(w)) = 1.

Corollary 5.2.1. Suppose w = tλ for λ ∈ Wµ. Then

φ′r,1(I+
r stλI

+
r ) =


(−1)d(q − 1)d−1(1− qr)−d, if Nr(s) ∈ Aw,∅,kF

0, otherwise.

Proof. There are no non-trivial ≺-increasing paths from tλ to itself. Therefore, the

formula reduces to

[Ir : I+
r ]−1

∑
κχ∈Sdz

w

1 = (−1)d(1− qr)−d|Sdz
w,J |.

The relation λ(κχ) = 1 is the only restriction on depth-zero endoscopic ele-

ments. If we view κχ = diag(κ1, . . . , κd) ∈ T̂ (C), then this restriction allows for a

free choice of all κi except for one coordinate, which is determined by the relation.

It follows that Sw is a torus, hence |Sdz
w | = (q − 1)d−1.

Corollary 5.2.2. If w = tλx, for x a reflection in W , such that `(w, tλ) = 1, then

φ′r,1(I+
r swI

+
r ) =


(−1)d|Stors

w,J∆
∩Kq−1|(q − 1)d−2(1− qr)1−d, if Nr(s) ∈ Aw,J∆,kF

0, otherwise.

Proof. The interval B≺Φaff
(w, tλ) contains a single path ∆ = {w,wx}. It is clear that

J∆ is a rank 1 system determined by the root α ∈ Φ such that x = sα. Applying

the formula shows that φr,1(I+
r swI

+
r ) equals

(−1)d|Stors
w,J∆
∩Kq−1|(q − 1)d−2(1− qr)1−d,

because [`(w, tλ)− `(∆)]/2 = [1− 1]/2 = 0.
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5.2.2 Implementation details

Let us describe how to implement the formula in software. The data presented

in the next sections was computed using SageMath [8]; however, this process should

be feasible in any mathematics package with a robust implementation of Coxeter

groups and finitely generated abelian groups.

The first order of business is to enumerate the µ-admissible set, because if

w /∈ Adm(µ) then φ′r,1(I+
r swI

+
r ) = 0. By definition,

Adm(µ) = {w ∈ W̃ | w ≤ tλ, some λ ∈Wµ}.

Therefore, we can employ the following naive algorithm:

1. Determine the orbit Wµ.

2. For every λ ∈ Wµ and every w̄ ∈ W , compute tλw̄.

3. If tλw̄ ≤ tλ, then w = tλw̄ ∈ Adm(µ).

This approach is fast enough to handle small rank cases. For type An systems, |W | =

(n+ 1)!, which means this exhaustive strategy would quickly become infeasible.

Now the algorithm proceeds in parallel for each w = tλw̄ ∈ Adm(µ). For each

w ∈ Adm(µ), compute `(w) and `(tλ); this determines the codimension `(w, tλ).

Next, we must find the minimal length coset representative of tλ with respect

to the finite Weyl group, i.e., find wλ ∈ W such that tλwλ ∈ W̃ has minimal length.

Once w−1
λ inverse is in hand, we can focus our attention on the finite group W and

the elements w−1
λ w̄ and w−1

λ .
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In order to compute B≺Φ (w−1
λ w̄−1, w−1

λ ), we need to choose a reflection ordering

≺ for the finite Weyl group. Fortunately, one of Dyer’s results provides a straight-

forward algorithm for making a consistent choice across all root system types and

for all ranks.

Proposition 5.2.3. Let (W ,S) be a finite Coxeter system with longest element w0,

and let T = {t1, . . . , tn} be the set of reflections in W. Then the total ordering ≺

on T such that t1 ≺ . . . ≺ tn is a reflection ordering if and only if there is a reduced

expression w0 = s1 . . . sn, where si ∈ S, such that ti = s1 . . . si−1sisi−1 . . . s1.

Proof. This is [11], Proposition 2.13.

We come now to the main combinatorial part of the algorithm: enumerating

the ≺-increasing paths through the Bruhat graph of the finite Weyl group. This is

hard insofar as the Bruhat graph of (W,S) grows rapidly in complexity as the rank

of the group increases, but the basic problem has been studied due to the connection

with Kazhdan-Lusztig theory.

The naive approach of creating the full Bruhat graph and then considering all

paths is very expensive even in small examples. Instead, we take advantage of the

relative scarcity of reflections in W compared to |W |. For example, there are n(n+1)
2

reflections in a Weyl group of type An while the group has order (n+ 1)!.

For elements u, v ∈ W , enumerate B≺Φ (u, v) as follows:

1. Let C denote the set of “candidate paths” in the Bruhat graph Ω(W,S). This

set is initially empty and will be built up as the algorithm proceeds.

2. For each reflection t ∈ T , if u < ut in Bruhat order, add {u, ut} to C.
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3. For each reflection t ∈ T , and each candidate path ∆′ ∈ C, with x equal to the

last vertex in ∆′ and e the last edge in ∆′, check whether x < xt and e ≺ t. If

both conditions are satisfied, add {∆′, xt} to C.

4. Iterate the above procedure until the total number of trials equals `(u, v).

5. Finally, for each ∆′ ∈ C, if the last vertex of ∆′ equals v, then ∆′ is a ≺-

increasing path in Ω(W,S) from u to v.

While this algorithm is not necessarily efficient, there is a manageable upper bound

on the number of candidate paths to be considered: `(u, v) · |T |.

Once we have enumerated BΦ(w−1
λ w̄, w−1

λ ), we can read off the statistics c(∆)

and `(∆) for each path. The edges of the path determines the root system J∆ for

by looking at the intersection of all root subsystems in Φ which contain E(∆).

For each path ∆ ∈ B≺Φ (w−1
λ w̄, w−1

λ ), the group X∗(Sw,J∆
) is a finitely gener-

ated abelian group. It corresponds to Sw,J∆
under the categorical anti-equivalence

between diagonalizable algebraic groups and their character groups. Therefore, if

we find the invariant factors for X∗(Sw,J), as a finitely generated abelian group,

then we get a description of Sw,J .

We know that X∗(Sw,J∆
) = X∗(T )/Lw,J∆

, and Lw,J∆
is generated by λ and α∨

for α ∈ J+
∆ (whenever w̄ ∈ WJ∆

, which is true here). Suppose we choose a generating

set for X∗(T ) and find the coordinates for λ and the coroots α∨ in terms of these

generators. This is sufficient data to compute the invariant factors of X∗(Sw,J∆
). If

this group has any torsion, then take the additional step of computing |Stors
w,J∆
∩Kq−1|

by comparing the order of the torsion elements with the (q − 1)-th roots of unity.
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This concludes the mathematical considerations for implementing the calcula-

tions in software. The calculations reported on in the next two sections and in the

Appendix were done through a combination of by-hand calculation and SageMath.

Results were obtained on a single 1.1 GHz core using approximately 800 MB of RAM

in the largest cases; however, once the up-front work of computing the µ-admissible

set is done, the computation could be trivially parallelized across many cores.

5.3 Results for general linear groups

Let F be a p-adic field. The F -points of the general linear group GLd are

GLd(F ) = {g ∈Md,d(F ) | det(g) 6= 0},

where Md,d(F ) is the group of Md,d matrices under multiplication with coefficients

in F . We fix a split maximal torus T = {diag(t1, . . . , td) | ti ∈ Gm} in GLd. Since

GLd is self-dual, we can identify T with its dual T̂ so that

T̂ (C) = {κ = diag(κ1, . . . , κd) | κi ∈ C×}.

The character group X∗(T̂ ) consists of coordinate projections εi(κ) = κi, which can

also be viewed as cocharacters of T . The root system Φ = Φ(G, T ) is of type An−1,

and its positive roots are αij = εi − εj for 1 ≤ i < j ≤ n.

5.3.1 Example: GL4(F ), µ = (1, 1, 0, 0)

Let us give a detailed overview of how to compute the coefficients of φ′r,1

when G = GL4 and µ = (1, 1, 0, 0). Although this case is small enough for us to
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work through the details, we will explain how to read the results out of the tables

found in the Appendix to help the reader understand the data in larger examples.

Despite being the smallest example different from the Drinfeld case, we will see

several interesting distinctions between the coefficients in Corollary 5.1.5 and the

coefficients described below.

First, let us consider how data specific to this case fill in some of the values

in the formula of Theorem 5.1.3. The split maximal torus T has rank equal to 4.

Translation elements tλ in the W -orbit of tµ have length `(tλ) = 4. Therefore, the

formula becomes

∑
∆∈B≺Φaff

(w,tλ(w))

δ(s, w, J∆)|Stors
w,J∆
∩Kq−1|(q − 1)A(∆)qrB(w,∆)(1− qr)C(∆)

where 

A(∆) = 4− rank(J∆)− 1

B(w,∆) = [(4− `(w))− `(∆)]/2

C(∆) = `(∆)− 4

The root system is type A3, so it has six positive roots, and the longest element

of the finite Weyl group is w0 = s123121, where s1, s2 and s3 correspond to the simple

positive roots. The notation si1···in is shorthand for the product si1 · · · sin . Using

Proposition 5.2.3, we compute the reflection ordering,

s1 ≺ s121 ≺ s12321 ≺ s2 ≺ s232 ≺ s3,

which for the positive roots is

α12 ≺ α13 ≺ α14 ≺ α23 ≺ α24 ≺ α34.
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It is also useful to note that the rank of Φ equals 3, so that we know any χ-root

system J∆ of rank 3 must equal Φ.

The µ-admissible set AdmGr(µ) contains 33 elements, according to the formula

in [13], Proposition 8.2; the highest length for w ∈ AdmGr(µ) is `(w) = 4. We will

group the calculations according to these lengths.

Length 0:

There is a unique µ-admissible element such that `(w) = 0: w = tµs2312. The

minimal coset representative wλ equals w̄−1 = s2312. Calculations show that

B≺Φ (e, s2312) = {∆1,∆2},

where E(∆1) = {s121, s232} and E(∆2) = {s1, s121, s2, s232}. The reflection sub-

groups of W corresponding to these paths are

• WJ∆1
= {e, s121, s232, s2312}

• WJ∆2
= W

Hence J∆1 = {±α13,±α24} and J∆2 = Φ. So as an intermediate result we have

φ′r,1(I+
r swI

+
r ) = δ(s, w, J∆1)|Sdz

w,J∆1
|qr(1− qr)−2 + δ(s, w, J∆2)|Sdz

w,J∆2
|(1− qr)0.

Elements κ ∈ Sw,J∆1
satisfy α∨13(κ) = α∨24(κ) = µ(κ) = 1, hence they are

subject to constraints κ1κ2 = 1, κ1 = κ3 and κ2 = κ4; meanwhile κ ∈ Sw,J∆2
satisfy

κ1κ2 = 1 and κ1 = κ2 = κ3 = κ4 because α∨(κ) = 1 for all α ∈ Φ. Therefore,

• Sw,J∆1
= {diag(κ1, κ

−1
1 , κ1, κ

−1
1 ) ∈ T̂ (C) | κ1 ∈ C×}

• Sw,J∆2
= {diag(a, a, a, a) ∈ T̂ (C) | a2 = 1, a ∈ C×}

106



The group Sw,J∆1
is a torus with rank equal to 1, while Sw,J∆2

is a torsion group

of order 2. Assuming char(kF ) 6= 2, we have |Stors
w,J∆2

∩ Kq−1| = 2. Here’s a second

intermediate result, assuming char(kF ) 6= 2:

φ′r,1(I+
r swI

+
r ) = δ(s, w, J∆1)(q − 1)qr(1− qr)−2 + 2δ(s, w, J∆2).

Now we describe the finite critical groups Aw,J∆1
,kF and Aw,J∆2

,kF , which tell

us when s ∈ T (kr) give δ(s, w, J) = 1. By definition, Aw,J,kF = 〈ν(kF ) | ν ∈ Lw,J〉

and Lw,J = 〈w(ν) − ν, α∨ | ν ∈ X∗(T̂ ), α ∈ J+〉. Because J∆1 ⊂ J∆2 , we have the

containment Aw,J∆1
,kF ⊂ Aw,J∆2

,kF .

In conclusion, if char(kF ) 6= 2 and w = tµs2312,

φ′r,1(I+
r swI

+
r ) =



0, if Nr(s) /∈ Aw,J∆2
,kF

2, if Nr(s) ∈ Aw,J∆2
,kF \ Aw,J∆1

,kF

(q − 1)qr(1− qr)−2 + 2, if Nr(s) ∈ Aw,J∆1
,kF .

Length 1:

There are four µ-admissible elements with `(w) = 1:

t(1,1,0,0)s312, t(1,1,0,0)s231, t(1,1,0,0)s12312, t(1,0,1,0)s23121.

Let us explain the calculation when w = tµs12312. There is a unique ≺-

increasing path ∆ from w to tµ; `(∆) = 3 and E(∆) = {s121, s2, s232}. Thus J∆

must contain the positive roots α13, α23, and α24, which forces J∆ = Φ. Then

Sw,J∆
= {diag(a, a, a, a) ∈ T̂ (C) | a2 = 1}.

Since there is only a single path ∆ ∈ B≺Φaff
(w, tλ(w)), there is only a single finite

critical group Aw,J∆,kF .
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The calculations for the other three µ-admissible elements of length 1 are

completely analogous, in the sense that each B≺Φaff
(w, tλ(w)) contains a single path

∆ such that the numbers A(∆), B(w,∆) and C(∆) are as before. Therefore, if

`(w) = 1 and char(kF ) 6= 2,

φ′r,1(I+
r swI

+
r ) =


0, if Nr(s) /∈ Aw,J∆,kF

2(1− qr)−1, if Nr(s) ∈ Aw,J∆,kF .

Length 2:

There are ten µ-admissible elements with `(w) = 2; however, as we shall see

in a moment, it will help to group them into two subsets.

X1 X2

t(0,1,1,0)s32 t(1,0,0,1)s12

t(1,0,1,0)s3121 t(1,0,1,0)s1232

t(1,1,0,0)s21 t(1,0,1,0)s31

t(1,1,0,0)s2321 t(1,1,0,0)s123121

t(1,1,0,0)s1231

t(1,1,0,0)s23

The elements within each subset determine the same coefficients as the other

elements of their subset. We will discuss a representative from each subset.

Suppose we choose t(0,1,1,0)s32 ∈ X1. The set BΦ≺aff(w,tλ(w))
contains a unique

path ∆ whose edges are E(∆) = {s2, s3}. Then J∆ is the rank 2 subsystem whose

positive roots are α23, α34, α24. Next, we have that

Sw,J∆
= {diag(κ1, a, a, a) ∈ T̂ (C) | κ1 ∈ C×, a2 = 1}.

This is the direct product of a rank 1 torus and the torsion group

Stors
w,J∆

= {diag(1, a, a, a) ∈ T̂ (C) | a2 = 1}.
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So we have an example of a diagonalizable Sw,J∆
that is neither a torus nor a torsion

group. Then if w ∈ X1 and char(kF ) 6= 2,

φ′r,1(I+
r swI

+
r ) =


0, if Nr(s) /∈ Aw,J∆,kF ,

2(q − 1)(1− qr)−2, if Nr(s) ∈ Aw,J∆,kF .

Now consider t(1,0,0,1)s12 ∈ X2. There is again a unique ≺-increasing path from

w to t(1,0,0,1) whose edges are E(∆) = {s1, s121}. But now

Sw,J∆
= {κ = diag(κ1, κ1, κ1, κ

−1
1 ) | κ1 ∈ C×}

is a torus of rank 1, determined by the root system J∆ whose positive roots are

J+
∆ = {α12, α23, α13}. We conclude that if w ∈ X2, then

φ′r,1(I+
r swI

+
r ) =


0, if Nr(s) /∈ Aw,J∆,kF ,

(q − 1)(1− qr)−2, if Nr(s) ∈ Aw,J∆,kF .

Length 3:

There are twelve µ-admissible elements with `(w) = 3:

t(1,1,0,0)s12321, t(1,1,0,0)s121, t(1,1,0,0)s232, t(1,1,0,0)s2,
t(1,0,1,0)s12321, t(1,0,1,0)s3, t(1,0,1,0)s1, t(0,1,0,1)s2

t(1,0,0,1)s121, t(1,0,0,1)s1, t(0,1,1,0)s3 t(0,1,1,0)s232.

Corollary 5.2.2 covers this case. Each B≺Φaff
(w, tλ(w)) contains a unique path of

length 1, whose sole edge can be read directly off of each element, e.g. the path ∆

in the case w = t(1,1,0,0)s12321 has edge E(∆) = {s12321}.

In order to finish the calculation after invoking Corollary 5.2.2, we need to

check that Sw,J∆
is torsion-free. We will do so in the case w = t(1,1,0,0)s12321, since

again, all of the other cases work the same way. Here,

Sw,J∆
= {κ = diag(κ1, κ

−1
1 , κ3, κ1) | κi ∈ C×},
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which is a rank-2 torus. Then |Stors
w,J∆
∩Kq−1| = 1, and by the Corollary

φ′r,1(I+
r swI

+
r ) =


0, if Nr(s) /∈ Aw,J∆,kF ,

(q − 1)2(1− qr)−3, if Nr(s) ∈ Aw,J∆,kF .

Length 4:

There are six µ-admissible elements with `(w) = 4, namely the six elements

λ ∈ Wµ. This case is settled by Corollary 5.2.1:

φ′r,1(I+
r swI

+
r ) =


0, if Nr(s) /∈ Aw,∅,kF ,

(q − 1)3(1− qr)−4, if Nr(s) ∈ Aw,∅,kF .

Let us summarize the nonzero values from the different cases. We use the

notation Aw,J∆,kF to refer to the finite critical group determined by the unique path

in each case, except when `(w) = 0, where we need to consider two such groups.

2, `(w) = 0, Nr(s) ∈ Aw,J∆2
,kF \ Aw,J∆1

,kF

(q − 1)qr(1− qr)−2 + 2, `(w) = 0, Nr(s) ∈ Aw,J∆1
,kF ,

2(1− qr)−1, `(w) = 1, Nr(s) ∈ Aw,J∆,kF ,

2(q − 1)(1− qr)−2, `(w) = 2, w ∈ X1 Nr(s) ∈ Aw,J∆,kF ,

(q − 1)(1− qr)−2, `(w) = 2, w ∈ X2 Nr(s) ∈ Aw,J∆,kF ,

(q − 1)2(1− qr)−3, `(w) = 3, Nr(s) ∈ Aw,J∆,kF ,

(q − 1)3(1− qr)−4, `(w) = 4, Nr(s) ∈ Aw,∅,kF .

Reading data from tables in the appendix:

The preceding example shows how the values φ′r,1(I+
r swI

+
r ) all follow the same
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basic template. Table A.1 contains all of the data needed to compute a coefficient

of φ′r,1. Here is the row for the length-zero element:

`(w) = 0
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 2 2 Z 1 1 -2
∆2 4 3 Z/2Z 0 0 0

Aw,∆1,kF ⊆ Aw,∆2,kF

Of course, we already know the rank of Sw,J∆
is A(∆). The “Isom. class of

Sw,J∆
” is important because it specifies the torsion subgroup Stors

w,J∆
, if present. Thus

we have the necessary path data to plug into

∑
∆∈B≺Φaff

(w,tλ(w))

δ(s, w, J∆)|Stors
w,J∆
∩Kq−1|(q − 1)A(∆)qrB(w,∆)(1− qr)C(∆),

the template formula for this case, while the containment data Aw,∆1,kF ⊆ Aw,∆2,kF

tells us how to arrange the path values into the expression

φ′r,1(I+
r swI

+
r ) =



0, if Nr(s) /∈ Aw,J∆2
,kF

2, if Nr(s) ∈ Aw,J∆2
,kF \ Aw,J∆1

,kF

(q − 1)qr(1− qr)−2 + 2, if Nr(s) ∈ Aw,J∆1
,kF .

If B≺Φaff
(w, tλ(w)) contains a single path, the table will omit the information about

Aw,J∆,kF .

We saw that when `(w) = 2, there were two possibilities for φ′r,1(I+
r swI

+
r )

depending on whether w ∈ X1 or w ∈ X2. Table A.2 addresses this issue: Suppose

we were given w ∈ AdmGr(µ) with `(w) = 2; we would look up which subset Xi

contains w in Table A.2, which would tell us which row in Table A.1 to use.
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5.3.2 GL5(F ), µ = (1, 1, 0, 0, 0)

The group GL5 is type A4, hence its root system Φ has rank equal to 4. The

maximal split torus T ⊂ GL5 has rank d = 5. For all conjugates λ ∈ W ·µ, `(tλ) = 6.

Therefore, the formula becomes

(−1)
∑

∆∈B≺Φ (w,tλ(w))

δ(s, w, J∆)|Stors
w,J∆
∩Kq−1|(q − 1)A(w,∆)qrB(w,∆)(1− qr)C(∆)

where 

A(∆) = 5− rank(J∆)− 1

B(w,∆) = [(6− `(w))− `(∆)]/2

C(∆) = `(∆)− 5

Fix the following reflection ordering on W :

α12 ≺ α13 ≺ α14 ≺ α15 ≺ α23 ≺ α24 ≺ α25 ≺ α34 ≺ α35 ≺ α45.

There are 131 elements in AdmGr(µ).

The raw data for this case can be found in the Appendix, Tables A.3 and A.4.

The story for this case is similar to what we saw for (GL4, (1, 1, 0, 0)); however, we

will point out a few features before moving on to the GL6 cases.

First, let us discuss the length-zero alcove: w = t(1,1,0,0,0)s234123. There are

three paths in B≺Φaff
(w, tλ(w)) whose edge sets are:

• E(∆1) = {s1, s12321, s2, s23432}

• E(∆2) = {s121, s12321, s232, s23432}

• E(∆3) = {s1, s121, s12321, s2, s232, s23432}
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All three paths have J∆ = Φ, hence they determine the same finite critical group

Aw,J∆,kF . Compare this to the length-zero element in the case (GL4, µ = (1, 1, 0, 0)),

where there were two paths in B≺Φaff
(w, tλ(w)) but one finite critical group was a

subgroup of the other.

The relevant subgroup is Sw,J∆
= {diag(a, a, a, a, a) ∈ T̂ (C) | a2 = 1}, i.e., a

torsion group of order 2. Therefore, if `(w) = 0 is µ-admissible and char(kF ) 6= 2,

φ′r,1(I+
r swI

+
r ) =


0, if Nr(s) /∈ Aw,J∆,kF ,

(−1)
(

4qr(1− qr)−1 + 2(1− qr)
)
, if Nr(s) ∈ Aw,J∆,kF .

Second, notice that the coefficient for certain µ-admissible length-two w (specif-

ically, those w ∈ X2 listed in Table A.4) is very similar to that of the length-zero

element in (GL4, µ = (1, 1, 0, 0)). Here is a representative element:

w = t(1,1,0,0,0)s2312.

The set B≺Φaff
(w, tλ(w)) for this element contains two paths, whose edge sets are:

• E(∆1) = {s121, s232}

• E(∆2) = {s1, s121, s2, s232}.

These are identical to the paths given in Section 5.3.1 for the length-zero alcove. Of

course, here we have a larger torus; so for example

Sw,J∆2
= {diag(a, a, a, a, κ5) ∈ T̂ (C) | a2 = 1, κ5 ∈ C×}

has a free variable κ5 where the corresponding relevant group in the GL4 case was
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only a torsion group of order 2. If char(kF ) 6= 2,

φ′r,1(I+
r swI

+
r ) =



0, if Nr(s) /∈ Aw,J∆2
,kF ,

(−1)
(

2(q − 1)(1− qr)−1
)
, if Nr(s) ∈ Aw,J∆2

,kF \ Aw,J∆1
,kF ,

(−1)
(

(q − 1)2qr(1− qr)−3 + 2(q − 1)(1− qr)−1
)
, else.

On the other hand, if our µ-admissible element w has `(w) = 1, then the data

in Table A.3 shows that the coefficient φ′r,1(I+
r swI

+
r ) is essentially identical to that

of the length-zero element for GL4, even though the former’s ≺-increasing paths are

longer:

φ′r,1(I+
r swI

+
r ) =



0, if Nr(s) /∈ Aw,J∆2
,kF

−2, if Nr(s) ∈ Aw,J∆2
,kF \ Aw,J∆1

,kF

(−1)
(

(q − 1)qr(1− qr)−2 + 2
)
, if Nr(s) ∈ Aw,J∆1

,kF .

Of course, we have called attention to these examples to make the point that

patterns appear throughout the data. The polynomial given by the formula ulti-

mately depends on the structure of Bruhat intervals in some finite Weyl group, and

there are many isomorphic intervals between pairs of elements in different groups.

The examples given above cover all cases in (GL5, µ = (1, 1, 0, 0, 0)) where

B≺Φaff
(w, tλ(w)) contains multiple paths.

5.3.3 GL6(F ), µ = (1, 1, 0, 0, 0, 0)

The group GL6 is type A5, so Φ has rank 5. The split maximal torus T has

rank d = 6. All W -conjugates tλ of tµ have `(tλ) = 8. The µ-admissible set contains
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473 elements. Following the previous examples, this data determines our template

∑
∆∈B≺Φ (w,tλ(w))

δ(s, w, J∆)|Stors
w,J∆
∩Kq−1|(q − 1)A(w,∆)qrB(w,∆)(1− qr)C(∆)

where 

A(∆) = 6− rank(J∆)− 1

B(w,∆) = [(8− `(w))− `(∆)]/2

C(∆) = `(∆)− 6

Fix the following reflection ordering on W :

α12 ≺ α13 ≺ α14 ≺ α15 ≺ α16 ≺ α23 ≺ α24 ≺ α25 ≺ α26 ≺

≺ α34 ≺ α35 ≺ α36 ≺≺ α45 ≺ α46 ≺ α56.

The raw data for calculating the coefficients of φ′r,1 in this case are spread

across Tables A.5 and A.6. There are sub-cases in the calculations for µ-admissible

w of lengths 2, 3, 4, 5 and 6; Tables A.7 and A.8 list which elements correspond to

a given sub-case.

The unique length-zero µ-admissible element is w = t(1,1,0,0,0,0)s23451234. There

are five ≺-increasing paths from w to tλ(w); their edge sets are:

• E(∆1) = {sα13 , sα15 , sα24 , sα26}

• E(∆2) = {sα12 , sα13 , sα15 , sα23 , sα24 , sα26}

• E(∆3) = {sα12 , sα14 , sα15 , sα23 , sα25 , sα26}

• E(∆4) = {sα13 , sα14 , sα15 , sα24 , sα25 , sα26}
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• E(∆5) = {sα12 , sα13 , sα14 , sα15 , sα23 , sα24 , sα25 , sα26}

For paths ∆2, . . .∆5, J∆i
= Φ. The root system J∆4 is a subsystem of rank 4. Using

the data from Table A.5, we have for char(kF ) 6= 2,

φ′r,1(I+
r swI

+
r ) =



0, if Nr(s) /∈ Aw,J∆2
,kF ,

6qr + (1− qr)2, if Nr(s) ∈ Aw,J∆2
,kF \ Aw,J∆1

,kF ,

(q − 1)q2r(1− qr)−2 + 6qr + (1− qr)2, if Nr(s) ∈ Aw,J∆1
,kF .

The data shows that when w ∈ AdmGL6(µ = (1, 1, 0, 0, 0, 0)) has `(w) = 1,

the coefficient φ′r,1(I+
r swI

+
r ) is the same as the coefficient for the unique length-zero

w ∈ AdmGL5(µ = (1, 1, 0, 0, 0))—other than their difference in sign.

5.3.4 GL6(F ), µ = (1, 1, 1, 0, 0, 0)

Most of the objects here are the same as in Section 5.3.3, such as Φ, the choice

of maximal torus T , and the reflection ordering ≺ on W . In this case, the translation

tµ and its conjugates have length `(tµ) = 9. The template is

∑
∆∈B≺Φ (w,tλ(w))

δ(s, w, J∆)|Stors
w,J∆
∩Kq−1|(q − 1)A(w,∆)qrB(w,∆)(1− qr)C(∆)

where 

A(∆) = 6− rank(J∆)− 1

B(w,∆) = [(9− `(w))− `(∆)]/2

C(∆) = `(∆)− 6.

There are 883 µ-admissible elements, and as one would expect, there are many

different cases for the coefficients of φ′r,1. Raw data for the coefficients is spread
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across Tables A.9, A.10 and A.11. The subsets of µ-admissible elements are further

explained in Tables A.12 and A.13 as appropriate.

Let us discuss the coefficient for w = t(1,1,1,0,0,0)s345234123, the unique length-

zero µ-admissible element. This is the most complex example we shall consider

in this chapter: B≺Φaff
(w, tλ(w)) contains nine paths, which yield five distinct root

systems J∆. The edges sets are:

• E∆1 = {sα14 , sα25 , sα36}

• E∆2 = {sα13 , sα14 , sα25 , sα34 , sα36}

• E∆3 = {sα14 , sα23 , sα25 , sα35 , sα36}

• E∆4 = {sα12 , sα14 , sα24 , sα25 , sα36}

• E∆5 = {sα12 , sα13 , sα14 , sα23 , sα25 , sα34 , sα36}

• E∆6 = {sα12 , sα14 , sα23 , sα25 , sα34 , sα35 , sα36}

• E∆7 = {sα13 , sα14 , sα24 , sα25 , sα34 , sα35 , sα36}

• E∆8 = {sα12 , sα13 , sα14 , sα24 , sα25 , sα35 , sα36}

• E∆9 = {sα12 , sα13 , sα14 , sα23 , sα24 , sα25 , sα34 , sα35 , sα36}

The paths ∆5, . . . ,∆9 all have J∆ = Φ; however, the other four paths all give

a distinct subsystem J∆ ⊂ Φ.

• J∆1 = {±α14} × {±α25} × {±α36}

• J∆2 = {±α13,±α14 ± α16,±α34,±α36,±α46} × {±α25}
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• J∆3 = {±α14} × {±α23,±α25,±α26,±α35,±α36,±α56}

• J∆4 = {±α12,±α14,±α15,±α24,±α25,±α45} × {±α36}

Here is the graph of inclusions for the finite critical groups:

Aw,J∆5
,kF = · · · = Aw,J∆9

,kF

Aw,J∆2
,kF

55

Aw,J∆3
,kF

OO

Aw,J∆4
,kF

ii

Aw,J∆1
,kF

ii OO 55

As usual, the relationships between finite critical groups characterize the differ-

ent cases for the coefficient φ′r,1(I+
r swI

+
r ) when w = t(1,1,1,0,0,0)s345234123. If Nr(s) /∈

Aw,J∆5
,kF , then φ′r,1(I+

r swI
+
r ) = 0. Otherwise, there are three nonzero possibilities:

Case 1: If Nr(s) ∈ Aw,J∆5
,kF \

(⋃4
i=2Aw,J∆i

,kF

)
, the coefficient is

12qr(1− qr) + 3(1− qr)3.

Case 2: If Nr(s) ∈ Aw,J∆i
,kF \ Aw,J∆1

,kF for i = 2, 3, 4, the coefficient is

(q − 1)q2r(1− qr)−1 + 12qr(1− qr) + 3(1− qr)3.

Case 3: If Nr(s) ∈ Aw,J∆1
,kF , the coefficient is

(q − 1)2q3r(1− qr)−3 + 3(q − 1)q2r(1− qr)−1 + 12qr(1− qr) + 3(1− qr)3.

5.4 Results for general symplectic groups

We begin by recalling the definition of GSp2n and the associated data required

for the calculations of φ′r,1. Let Ĩn be the n×n matrix with ones on the anti-diagonal
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and zeroes everywhere else. Let

J =

 0 Ĩn

−Ĩn 0

 .

Then for a p-adic field F , the F -rational points of GSp2n are

GSp2n(F ) = {g ∈ GL2n(F ) | tgJg = c(g)J, c(g) ∈ F×}

We choose a split maximal torus T with

T (F ) = {diag(t1, . . . , tn, t
−1
n t0, . . . t

−1
1 t0) | ti ∈ F×}.

For the GLn case, we showed how to compute |Sdz
w,J | from the definitions,

looking at endoscopic elements in T̂ (C). For examples when G = GSp2n, we show

how to use Lemma 3.2.16 to get the structure of X∗(Sw,J), and hence that of Sw,J .

5.4.1 Example: GSp4(F ), µ = (1, 1, 0, 0)

As with the GLn examples, we use data from this case to first write down a

template formula for the coefficients of φ′r,1. The rank of T is 3, while translation

elements tλ for λ ∈ Wµ have `(tλ) = 3. Thus for w ∈ W̃ and s ∈ T (kr), the formula

for φ′r,1(I+
r swI

+
r ) becomes

(−1)
∑

∆∈B≺Φ (w,tλ(w))

δ(s, w, J∆)|Stors
w,J∆
∩Kq−1|(q − 1)A(w,∆)qrB(w,∆)(1− qr)C(∆)

where 

A(∆) = 3− rank(J∆)− 1

B(w,∆) = [(3− `(w))− `(∆)]/2

C(∆) = `(∆)− 3.
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Let us describe the characters and cocharacters of T . Let εi be the i-th coor-

dinate projection of T , and let c be the similitude character. Then

X∗(T ) = 〈c, ε1, ε2, ε3, ε4〉/〈ε1 + ε4 = ε2 + ε3 = c〉.

Using coordinates in terms of the εi, the positive roots in Φ, which is type C2, are

α1 = (1/2,−1/2, 1/2,−1/2)

α2 = (0, 1,−1, 0)

α3 = (1/2, 1/2,−1/2,−1/2)

α4 = (1, 0, 0− 1).

We can also describe the character lattice as X∗(T ) = 〈c0, c1, c2〉, where the genera-

tors act on t = diag(t1, t2, t
−1
2 t0, t

−1
1 t0) by ci(t) = ti for i = 0, 1, 2. In this coordinate

system, the roots are written

α1 = c1 − c2

α2 = 2c2 − c0

α3 = c1 + c2 − c0

α4 = 2c1 − c0.

The cocharacter lattice X∗(T ) is the free group on generators e0, e1, e2 where for

x ∈ F2×,

e0(x) = diag(1, 1, x, x)

e1(x) = diag(x, 1, 1, x−1)

e2(x) = diag(1, x, x−1, 1).
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We could again use coordinates in terms of maps ε̆i sending x ∈ F× to the i-

th coordinate in T with 1’s elsewhere. Then an element ν ∈ X∗(T ) is a tuple

(a1, a2, a3, a4) such that a1 + a4 = a2 + a3 = c. In these coordinates, µ = (1, 1, 0, 0)

is the map µ(x) = diag(x, x, 1, 1) ∈ T (F ) for x ∈ F×. So µ = e0 + e1 + e2. The

coroots are

α∨1 = (1,−1, 1,−1) = e1 − e2

α∨2 = (0, 1,−1, 0) = e2

α∨3 = (1, 1,−1,−1) = e1 + e2

α∨4 = (1, 0, 0,−1) = e1

Let s1 and s2 denote the simple reflections corresponding to the roots α1 and α2,

respectively. The longest element of the finite Weyl group is w0 = s2121, where again

the notation si1···in is shorthand for the product si1 · · · sin . By Proposition 5.2.3, we

have a reflection ordering,

s2 ≺ s212 ≺ s121 ≺ s1.

When µ = (1, 1, 0, 0), Proposition 8.2 of [13] shows that the set AdmGr(µ)

contains 13 elements. The µ-admissible elements range in length from 0 to 3.

See Table A.14 for the raw coefficient data.

Length 0:

The unique length-zero µ-admissible element is w = t(1,1,0,0)s212. We want to
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enumerate the ≺-increasing paths

B≺Φ (w−1
λ w̄, w−1

λ ) = B≺Φ (1, s212).

It turns out there are only two paths, whose edge sets are

E(∆1) = {s212},

E(∆2) = {s2, s212, s121}.

It is clear that J∆1 = {±α3} and J∆2 = Φ. Plugging this data into the template

gives us

(−1)
(
δ(s, w, J∆1)|Stors

w,J∆1
∩Kq−1|(q − 1)qr(1− qr)−2 + δ(s, w, J∆2)|Stors

w,J∆2
∩Kq−1|

)
It remains to describe Sw,J∆i

for i = 1, 2. Consider the quotient

X∗(T )/ZJ∨∆1
= 〈e0, e1, e2〉/〈e1 + e2 = 0〉 ∼= 〈ē0, ē1〉.

Now use the method of Lemma 3.2.16, i.e., consider how λ(w) = µ = e0 + e1 + e2

appears in the above quotient. It is just µ̄ = ē0 + ē1 − ē1 = ē0. But then

X∗(Sw,J∆1
) ∼= 〈ē0, ē1〉/〈ē0〉 ∼= 〈ē1〉 ∼= Z.

Similarly, for J∆2 = Φ,

X∗(T )/ZΦ∨ = 〈ē0〉,

because the relations imposed by the coroots in Φ∨ force ē1 = ē2 = 0. Then in the

quotient,

λ(w) = µ̄ = ē0.

So X∗(Sw,J∆2
) = {1}.
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The finite critical groups satisfy Aw,J∆1
,kF ⊂ Aw,J∆2

,kF . This is enough infor-

mation to give the coefficient data for this alcove:

φ′r,1(I+
r swI

+
r ) =



0, if Nr(s) /∈ Aw,J∆2
,kF

−1, if Nr(s) ∈ Aw,J∆2
,kF \ Aw,J∆1

,kF

(−1)
(

1 + (q − 1)qr(1− qr)−2
)
, if Nr(s) ∈ Aw,J∆1

,kF .

Length 1:

There are three µ-admissible elements w such that `(w) = 3:

t(1,1,0,0)s2121 t(1,1,0,0)s21 t(1,0,1,0)s12.

In each case, B≺Φ (w−1
λ w̄, w−1

λ ) contains a single path ∆1 with `(∆1) = 2.

When w = t(1,1,0,0)s2121, we have E(∆1) = {s2, s121} and J∆1 = {±2α2,±2α4}.

In this case,

X∗(T )/ZJ∨∆1
= 〈e0, e1, e2〉/〈e1, e2〉.

Then λ(w) = µ̄ = ē0 means

X∗(Sw,J∆1
) = 〈ē0〉/〈ē0〉 = {1}.

For w = t(1,1,0,0)s21, the edge set is E(∆1) = {s212, s121} and J∆1 = Φ. Finally,

if w = t(1,0,1,0)s12, then E(∆1) = {s2, s1} and J∆1 = Φ. In both of these cases,

X∗(Sw,J∆1
) is again trivial.

We have shown that

φ′r,1(I+
r swI

+
r ) =


0, if Nr(s) /∈ Aw,J∆1

,kF

(−1)(1− qr)−1, if Nr(s) ∈ Aw,J∆1
,kF .
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Length 2:

There are five µ-admissible elements whose length is two. In each case, there

is a single ≺-increasing path w
∆1−→ tλ(w). Here’s the data:

w E(∆1) J∆1

t(1,1,0,0)s2 {s2} {±α2}

t(0,1,0,1)s2 {s2} {±α2}

t(1,0,1,0)s1 {s1} {±α1}

t(1,1,0,0)s121 {s121} {±α4}

t(1,0,1,0)s121 {s121} {±α4}

Let us work out X∗(Sw,J∆1
) for w = t(1,1,0,0)s2. Starting with

X∗(T )/ZJ∨∆1
= 〈e0, e1, e2〉/〈e2〉 = 〈ē0, ē1〉,

we have that λ(w) = µ̄ = ē0 + ē1. Then in the notation of Lemma 3.2.16, the map

c : Z→ Z2 is given by the tuple c = (1, 1, 0). Since c1 is a unit, X∗(Sw,J∆1
) ∼= Z. The

calculation of X∗(Sw,J∆1
) is similar for the other length-two µ-admissible elements.

The coefficient for this case is

φ′r,1(I+
r swI

+
r ) =


0, if Nr(s) /∈ Aw,J∆1

,kF

(−1)(q − 1)(1− qr)−2, ifNr(s) ∈ Aw,J∆1
,kF .

Length 3:

The translation elements are t(1,1,0,0), t(1,0,1,0), t(0,1,0,1) and t(0,0,1,1). For any of

these, Corollary 5.2.1 shows

φ′r,1(I+
r stλI

+
r ) =


0, if Nr(s) /∈ Atλ,∅,kF ,

(−1)(q − 1)2(1− qr)−3, ifNr(s) ∈ Atλ,∅,kF .

124



5.4.2 GSp6(F ), µ = (1, 1, 1, 0, 0, 0)

In this case, the root system has type C3, so rank(T ) = 4. For λ ∈ Wµ, with

µ = (1, 1, 1, 0, 0, 0), translation elements have `(tλ) = 6. Use this data to fill in the

template:

∑
∆∈B≺Φ (w,tλ(w))

δ(s, w, J∆)|Stors
w,J∆
∩Kq−1|(q − 1)A(w,∆)qrB(w,∆)(1− qr)C(∆)

where 

A(∆) = 4− rank(J∆)− 1

B(w,∆) = [(6− `(w))− `(∆)]/2

C(∆) = `(∆)− 4.

Roots and coroots for GSp6 can be described in the same coordinate systems

used for GSp4. In particular, the cocharacter lattice of T is X∗(T ) = 〈e0, e1, e2, e3〉,

and we can express the coroots in terms of these generators:

α∨1 = (1,−1, 0, 0, 1,−1) = e1 − e2 α∨6 = (1, 1, 0, 0,−1,−1) = e1 + e2

α∨2 = (0, 1,−1,−1, 1, 0) = e2 − e3 α∨7 = (1, 0, 1,−1,−,−1) = e1 + e3

α∨3 = (0, 0, 1,−1, 0, 0) = e3 α∨8 = (0, 1, 0, 0,−1, 0) = e2

α∨4 = (1, 0,−1, 1, 0,−1) = e1 − e3 α∨9 = (0, 1, 1,−1,−1, 0) = e2 + e3

α∨5 = (1, 0, 0, 0, 0,−1) = e1

The simple reflections in W are s1, s2 and s3, corresponding to the roots α1, α2 and

α3, respectively. We sometimes specify a reflection in terms of its corresponding
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positive coroot,

sα1 = s1 sα4 = s121 sα7 = s31213

sα2 = s2 sα5 = s12321 sα8 = s232

sα3 = s3 sα6 = s2132312 sα9 = s323

The reflection ordering is:

s3 ≺ s323 ≺ s232 ≺ s31213 ≺ s2132312 ≺ s12321 ≺ s2 ≺ s121 ≺ s1.

There are 79 µ-admissible elements in this case, ranging in length from 0 to 6.

The data for this case is in Tables A.15 and A.16.

Consider w = t(1,1,1,0,0,0)s323123, the unique length-zero µ-admissible element.

The set B≺Φ (w, tλ(w)) contains five paths, whose edge sets are

E(∆1) = {s232, s31213}

E(∆2) = {s3, s232, s31213, s12321}

E(∆3) = {s323, s31213, s2132312, s12321}

E(∆4) = {s3, s323, s31213, s2132312}

E(∆5) = {s3, s323, s232, s31213, s2132312, s12321}.

The associated root systems for the first two paths are J∆1 = {±α7}
∐
{±α8}, which

is type A1×A1, and J∆2 = {±α3,±α4,±α5,±α7}
∐
{±α8}, which has type C2×A1.

The latter three associated root systems are J∆3 = J∆4 = J∆5 = Φ.

Next, we want to find X∗(Sw,J∆i
) to see if any torsion elements exist. Let us

do the calculation for ∆1. We have

X∗(T )/ZJ∨∆1
= 〈e0, e1, e2, e3〉/〈e1 + e3, e2〉 = 〈ē0, ē1〉.
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Since λ(w) = µ = e0 + e1 + e2 + e3 ∈ X∗(T ), it’s image in the above quotient is

µ̄ = ē0. This means c1 = 1 in the notation of Lemma 3.2.16, so X∗(Sw,J∆1
) ∼= Z is

torsion-free. A similar calculation for the other paths shows that X∗(Sw,J∆i
) = {1}

for i = 2, 3, 4, 5.

Here are the inclusions between the finite critical groups:

Aw,J∆1
,kF ⊂ Aw,J∆2

,kF ⊂ Aw,J∆3
,kF = Aw,J∆4

,kF = Aw,J∆5
,kF .

This is enough information to write down the coefficient φ′r,1(I+
r st(1,1,1,0,0,0)s313123I

+
r ):

0, if Nr(s) /∈ Aw,J∆3
,kF ,

2qr + (1− qr)2, if Nr(s) ∈ Aw,J∆3
,kF \ Aw,J∆2

,kF ,

3qr + (1− qr)2, ifNr(s) ∈ Aw,J∆2
,kF ,

(q − 1)q2r(1− qr)−2 + 3qr + (1− qr)2, if Nr(s) ∈ Aw,J∆1
,kF .

The µ-admissible elements such that `(w) = 3 split into two cases (the exact

lists are in Table A.16). Consider w = tµs323 as an exemplar for the first case. There

are two ≺-increasing paths w
∆i−→ tλ(w); their edge sets are:

E(∆1) = {s323}

E(∆2) = {s3, s323, s232}.

The associated root systems are J∆1 = {±α9} and J∆2 = {±α2,±α3,±α8,±α9},

which has type C2.

The usual method of calculation shows that

X∗(Sw,J∆1
) ∼= Z× Z
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and

X∗(Sw,J∆2
) ∼= Z.

We also have Aw,J∆1
,kF ⊂ Aw,J∆2

,kF . So the coefficient in this case is,

0, if Nr(s) /∈ Aw,J∆2
,kF ,

(q − 1)(1− qr)−1, if Nr(s) ∈ Aw,J∆2
,kF \ Aw,J∆1

,kF ,

(q − 1)2qr(1− qr)−3 + (q − 1)(1− qr)−1, if Nr(s) ∈ Aw,J∆1
,kF .

Now choose w = t(1,0,0,1,1,0)s123 as the representative for the second class of

length-three µ-admissible elements. There is only one ≺-increasing path in this

case, whose edge set is E(∆1) = {s3, s2, s1}. These edges correspond to the three

simple roots, so J∆1 = Φ. It follows that

φ′r,1(I+
r swI

+
r ) =


0, if Nr(s) /∈ Aw,J∆1

,kF ,

(1− qr)−1, if Nr(s) ∈ Aw,J∆1
,kF .

128



Appendix A: Tables of coefficient data

This appendix presents the data needed to fully explain several cases of φ′r,1

for general linear groups and general symplectic groups:

1. GL4, µ = (1, 1, 0, 0)

2. GL5, µ = (1, 1, 0, 0, 0)

3. GL6, µ = (1, 1, 0, 0, 0, 0)

4. GL6, µ = (1, 1, 1, 0, 0, 0)

5. GSp4, µ = (1, 1, 0, 0)

6. GSp6, µ = (1, 1, 1, 0, 0, 0)

In some tables, we will describe µ-admissible elements; these have the form

w = tλw̄, where λ is a conjugate of µ and w̄ is an element of the finite Weyl group.

The coordinates of the coweight λ in X∗(T ) are used. To save space, we write w̄ as

si1i2...ir rather than si1si2 · · · sir , where the sik are simple reflections in W .

See Section 5.3.1 for directions on using these tables.
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Table A.1: Coefficient data for GL4, µ = (1, 1, 0, 0)

`(w) = 0
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 2 2 Z 1 1 -2
∆2 4 3 Z/2Z 0 0 0

Aw,∆1,kF ⊆ Aw,∆2,kF

`(w) = 1
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 3 3 Z/2Z 0 0 -1

`(w) = 2, w ∈ X1

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 2 2 Z× Z/2Z 1 0 -2

`(w) = 2, w ∈ X2

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 2 2 Z 1 0 -2

`(w) = 3
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 1 1 Z× Z 2 0 -3

`(w) = 4
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∅ 0 0 Z× Z× Z 3 0 -4

Table A.2: Subsets of Adm(µ) for GL4, µ = (1, 1, 0, 0)

`(w) = 2, w ∈ X1

t(0,1,1,0)s32, t(1,0,1,0)s3121, t(1,1,0,0)s21, t(1,1,0,0)s2321

`(w) = 2, w ∈ X2

t(1,0,0,1)s12, t(1,0,1,0)s1232, t(1,0,1,0)s31, t(1,1,0,0)s123121, t(1,1,0,0)s1231,
t(1,1,0,0)s23
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Table A.3: Coefficient data for GL5, µ = (1, 1, 0, 0, 0)

`(w) = 0
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 4 4 Z/2Z 0 1 -1
∆2 4 4 Z/2Z 0 1 -1
∆3 6 4 Z/2Z 0 0 1

Aw,∆1,kF = Aw,∆2,kF = Aw,∆3,kF

`(w) = 1
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 3 3 Z 1 1 -2
∆2 5 4 Z/2Z 0 0 0

Aw,∆1,kF ⊆ Aw,∆2,kF

`(w) = 2, w ∈ X1

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 4 4 Z/2Z 0 0 -1

`(w) = 2, w ∈ X2

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 2 2 Z× Z 2 1 -3
∆2 4 3 Z× Z/2Z 1 0 -1

Aw,∆1,kF ⊆ Aw,∆2,kF

`(w) = 3, w ∈ X3

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 3 3 Z× Z/2Z 1 0 -2

`(w) = 3, w ∈ X4

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 3 3 Z 1 0 -2

`(w) = 4, w ∈ X5

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 2 2 Z× Z 2 0 -3

`(w) = 4, w ∈ X6

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 2 2 Z× Z× Z/2Z 2 0 -3

`(w) = 5
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 1 1 Z× Z× Z 3 0 -4

`(w) = 6
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∅ 0 0 Z× Z× Z× Z 4 0 -5
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Table A.4: Subsets of Adm(µ) for GL5, µ = (1, 1, 0, 0, 0)

`(w) = 2, w ∈ X1

t(1,0,0,1,0)s4123, t(1,0,1,0,0)s123423, t(1,0,1,0,0)s341232, t(1,0,1,0,0)s3412,
t(1,1,0,0,0)s12341231, t(1,1,0,0,0)s12341232, t(1,1,0,0,0)s123412, t(1,1,0,0,0)s234121,
t(1,1,0,0,0)s23412321, t(1,1,0,0,0)s2341

`(w) = 2, w ∈ X2

t(0,1,1,0,0)s3423, t(1,0,1,0,0)s341231, t(1,1,0,0,0)s2312, t(1,1,0,0,0)s23412312,
t(1,1,0,0,0)s234312

`(w) = 3, w ∈ X3

t(0,1,0,1,0)s423, t(0,1,1,0,0)s23423, t(0,1,1,0,0)s34232, t(0,1,1,0,0)s342, t(1,0,0,1,0)s41231,
t(1,0,0,1,0)s41232, t(1,0,1,0,0)s1234231, t(1,0,1,0,0)s312, t(1,0,1,0,0)s34121,
t(1,0,1,0,0)s3412321, t(1,0,1,0,0)s34312, t(1,1,0,0,0)s12312, t(1,1,0,0,0)s123412312,
t(1,1,0,0,0)s1234312, t(1,1,0,0,0)s23121, t(1,1,0,0,0)s231, t(1,1,0,0,0)s234123121,
t(1,1,0,0,0)s23421, t(1,1,0,0,0)s2343121, t(1,1,0,0,0)s23431

`(w) = 3, w ∈ X4

t(1,0,0,0,1)s123, t(1,0,0,1,0)s12343, t(1,0,0,1,0)s412, t(1,0,1,0,0)s1234232,
t(1,0,1,0,0)s12342, t(1,0,1,0,0)s341, t(1,1,0,0,0)s1234121, t(1,1,0,0,0)s123412321,
t(1,1,0,0,0)s12341, t(1,1,0,0,0)s234

`(w) = 4, w ∈ X5

t(0,1,0,0,1)s23, t(0,1,0,1,0)s2343, t(0,1,0,1,0)s42, t(0,1,1,0,0)s234232, t(0,1,1,0,0)s2342,
t(0,1,1,0,0)s34, t(1,0,0,0,1)s1231, t(1,0,0,0,1)s1232, t(1,0,0,0,1)s12, t(1,0,0,1,0)s123431,
t(1,0,0,1,0)s123432, t(1,0,0,1,0)s12, t(1,0,0,1,0)s4121, t(1,0,0,1,0)s41, t(1,0,1,0,0)s1232,
t(1,0,1,0,0)s123421, t(1,0,1,0,0)s12342321, t(1,0,1,0,0)s123432, t(1,0,1,0,0)s31,
t(1,0,1,0,0)s3431, t(1,0,1,0,0)s34, t(1,1,0,0,0)s123121, t(1,1,0,0,0)s1231,
t(1,1,0,0,0)s1234123121, t(1,1,0,0,0)s123421, t(1,1,0,0,0)s12343121, t(1,1,0,0,0)s123431,
t(1,1,0,0,0)s2342, t(1,1,0,0,0)s2343, t(1,1,0,0,0)s23

`(w) = 4, w ∈ X6

t(0,0,1,1,0)s43, t(0,1,0,1,0)s4232, t(0,1,1,0,0)s32, t(0,1,1,0,0)s3432, t(1,0,0,1,0)s412321,
t(1,0,1,0,0)s3121, t(1,0,1,0,0)s343121, t(1,1,0,0,0)s21, t(1,1,0,0,0)s2321, t(1,1,0,0,0)s234321
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Table A.5: Coefficient data for GL6, µ = (1, 1, 0, 0, 0, 0)

`(w) = 0
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 4 4 Z 1 2 -2
∆2 6 5 Z/2Z 0 1 0
∆3 6 5 Z/2Z 0 1 0
∆4 6 5 Z/2Z 0 1 0
∆5 8 5 Z/2Z 0 0 2

Aw,∆1,kF ⊂ Aw,∆2,kF = Aw,∆3,kF = Aw,∆4,kF = Aw,∆5,kF

`(w) = 1
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 5 5 Z/2Z 0 1 -1
∆2 5 5 Z/2Z 0 1 -1
∆3 7 5 Z/2Z 0 0 1

Aw,∆1,kF = Aw,∆2,kF = Aw,∆3,kF

`(w) = 2, w ∈ X1

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 4 4 Z× Z/2Z 1 1 -2
∆2 4 4 Z× Z/2Z 1 1 -2
∆3 6 4 Z× Z/2Z 1 0 0

Aw,∆1,kF = Aw,∆2,kF = Aw,∆3,kF

`(w) = 2, w ∈ X2

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 4 4 Z 1 1 -2
∆2 6 5 Z/2Z 0 0 0

Aw,∆1,kF ⊂ Aw,∆2,kF

`(w) = 3, w ∈ X3

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 3 3 Z× Z 2 1 -3
∆2 5 4 Z× Z/2Z 1 0 -1

Aw,∆1,kF ⊂ Aw,∆2,kF

`(w) = 3, w ∈ X4

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 5 5 Z/2Z 0 0 -1

Table continues on next page.
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Table A.6: Coefficient data for GL6, µ = (1, 1, 0, 0, 0, 0) (continued)

`(w) = 4, w ∈ X5

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 4 4 Z 1 0 -2

`(w) = 4, w ∈ X6

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 2 2 Z× Z× Z 3 1 -4
∆2 4 3 Z× Z× Z/2Z 2 0 -2

Aw,∆1,kF ⊂ Aw,∆2,kF

`(w) = 4, w ∈ X7

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 4 4 Z× Z/2Z 1 0 -2

`(w) = 5, w ∈ X8

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 3 3 Z× Z 2 0 -3

`(w) = 5, w ∈ X9

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 3 3 Z× Z× Z/2Z 2 0 -3

`(w) = 6, w ∈ X10

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 2 2 Z× Z× Z 3 0 -4

`(w) = 6, w ∈ X11

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 2 2 Z× Z× Z× Z/2Z 3 0 -4

`(w) = 7
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 1 1 Z× Z× Z× Z 4 0 -5

`(w) = 8
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∅ 0 0 Z× Z× Z× Z× Z 5 0 -6
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Table A.7: Subsets of Adm(µ) for GL6, µ = (1, 1, 0, 0, 0, 0)

`(w) = 2, w ∈ X1

t(0,1,1,0,0,0)s345234, t(1,0,1,0,0,0)s34512341, t(1,1,0,0,0,0)s234123,
t(1,1,0,0,0,0)s2345123412, t(1,1,0,0,0,0)s2345123423, t(1,1,0,0,0,0)s23454123

`(w) = 2, w ∈ X2

t(1,0,0,1,0,0)s451234, t(1,0,1,0,0,0)s12345234, t(1,0,1,0,0,0)s34512342,
t(1,0,1,0,0,0)s34512343, t(1,0,1,0,0,0)s345123, t(1,1,0,0,0,0)s1234512341,
t(1,1,0,0,0,0)s1234512342, t(1,1,0,0,0,0)s1234512343, t(1,1,0,0,0,0)s12345123,
t(1,1,0,0,0,0)s23451231, t(1,1,0,0,0,0)s23451232, t(1,1,0,0,0,0)s2345123421,
t(1,1,0,0,0,0)s2345123431, t(1,1,0,0,0,0)s2345123432, t(1,1,0,0,0,0)s234512

`(w) = 3, w ∈ X3

X3 contains the 30 length-three elements not contained in X4.

`(w) = 3, w ∈ X4

t(1,0,0,0,1,0)s51234, t(1,0,0,1,0,0)s1234534, t(1,0,0,1,0,0)s4512343, t(1,0,0,1,0,0)s45123,
t(1,0,1,0,0,0)s123452342, t(1,0,1,0,0,0)s123452343, t(1,0,1,0,0,0)s1234523,
t(1,0,1,0,0,0)s3451232, t(1,0,1,0,0,0)s345123432, t(1,0,1,0,0,0)s34512,
t(1,1,0,0,0,0)s123451231, t(1,1,0,0,0,0)s123451232, t(1,1,0,0,0,0)s12345123421,
t(1,1,0,0,0,0)s12345123431, t(1,1,0,0,0,0)s12345123432, t(1,1,0,0,0,0)s1234512,
t(1,1,0,0,0,0)s2345121, t(1,1,0,0,0,0)s234512321, t(1,1,0,0,0,0)s23451234321,
t(1,1,0,0,0,0)s23451

`(w) = 4, w ∈ X5

t(1,0,0,0,0,1)s1234, t(1,0,0,0,1,0)s123454, t(1,0,0,0,1,0)s5123, t(1,0,0,1,0,0)s12345343,
t(1,0,0,1,0,0)s123453, t(1,0,0,1,0,0)s4512, t(1,0,1,0,0,0)s12345232, t(1,0,1,0,0,0)s1234523432,
t(1,0,1,0,0,0)s123452, t(1,0,1,0,0,0)s3451, t(1,1,0,0,0,0)s12345121, t(1,1,0,0,0,0)s1234512321,
t(1,1,0,0,0,0)s123451234321, t(1,1,0,0,0,0)s123451, t(1,1,0,0,0,0)s2345

`(w) = 4, w ∈ X6

t(0,0,1,1,0,0)s4534, t(0,1,0,1,0,0)s452342, t(0,1,1,0,0,0)s3423, t(0,1,1,0,0,0)s34523423,
t(0,1,1,0,0,0)s345423, t(1,0,0,1,0,0)s45123421, t(1,0,1,0,0,0)s341231,
t(1,0,1,0,0,0)s3451234231, t(1,0,1,0,0,0)s34541231, t(1,1,0,0,0,0)s2312,
t(1,1,0,0,0,0)s23412312, t(1,1,0,0,0,0)s234312, t(1,1,0,0,0,0)s234512342312,
t(1,1,0,0,0,0)s2345412312, t(1,1,0,0,0,0)s23454312

`(w) = 4, w ∈ X7

X7 contains the 60 length-four elements not contained in X5 ∪X6.

Table continues on next page.
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Table A.8: Subsets of Adm(µ) for GL6, µ = (1, 1, 0, 0, 0, 0) (continued)

`(w) = 5, w ∈ X8

t(0,1,0,0,0,1)s234, t(0,1,0,0,1,0)s23454, t(0,1,0,0,1,0)s523, t(0,1,0,1,0,0)s2345343,
t(0,1,0,1,0,0)s23453, t(0,1,0,1,0,0)s452, t(0,1,1,0,0,0)s2345232, t(0,1,1,0,0,0)s234523432,
t(0,1,1,0,0,0)s23452, t(0,1,1,0,0,0)s345, t(1,0,0,0,0,1)s12341, t(1,0,0,0,0,1)s12342,
t(1,0,0,0,0,1)s12343, t(1,0,0,0,0,1)s123, t(1,0,0,0,1,0)s1234541, t(1,0,0,0,1,0)s1234542,
t(1,0,0,0,1,0)s1234543, t(1,0,0,0,1,0)s123, t(1,0,0,0,1,0)s51231, t(1,0,0,0,1,0)s51232,
t(1,0,0,0,1,0)s512, t(1,0,0,1,0,0)s12343, t(1,0,0,1,0,0)s1234531, t(1,0,0,1,0,0)s1234532,
t(1,0,0,1,0,0)s123453431, t(1,0,0,1,0,0)s123453432, t(1,0,0,1,0,0)s1234543,
t(1,0,0,1,0,0)s412, t(1,0,0,1,0,0)s45121, t(1,0,0,1,0,0)s451, t(1,0,0,1,0,0)s45412,
t(1,0,1,0,0,0)s1234232 t(1,0,1,0,0,0)s12342, t(1,0,1,0,0,0)s1234521, t(1,0,1,0,0,0)s123452321,
t(1,0,1,0,0,0)s12345234232, t(1,0,1,0,0,0)s12345234321, t(1,0,1,0,0,0)s1234532,
t(1,0,1,0,0,0)s123454232, t(1,0,1,0,0,0)s1234542, t(1,0,1,0,0,0)s341, t(1,0,1,0,0,0)s34531,
t(1,0,1,0,0,0)s34541, t(1,0,1,0,0,0)s345, t(1,1,0,0,0,0)s1234121, t(1,1,0,0,0,0)s123412321,
t(1,1,0,0,0,0)s12341, t(1,1,0,0,0,0)s12345123121, t(1,1,0,0,0,0)s1234512342321,
t(1,1,0,0,0,0)s1234512343121, t(1,1,0,0,0,0)s1234521, t(1,1,0,0,0,0)s123453121,
t(1,1,0,0,0,0)s1234531, t(1,1,0,0,0,0)s123454121, t(1,1,0,0,0,0)s12345412321,
t(1,1,0,0,0,0)s1234541, t(1,1,0,0,0,0)s23452, t(1,1,0,0,0,0)s23453, t(1,1,0,0,0,0)s23454,
t(1,1,0,0,0,0)s234

`(w) = 5, w ∈ X9

X9 contains the 60 length-five elements not contained in X8.

`(w) = 6, w ∈ X10

X10 contains the 90 length-six elements not contained in X11.

`(w) = 6, w ∈ X11

t(0,0,0,1,1,0)s54, t(0,0,1,0,1,0)s5343, t(0,0,1,1,0,0)s43, t(0,0,1,1,0,0)s4543,
t(0,1,0,0,1,0)s523432, t(0,1,0,1,0,0)s4232, t(0,1,0,1,0,0)s454232, t(0,1,1,0,0,0)s32,
t(0,1,1,0,0,0)s3432, t(0,1,1,0,0,0)s345432, t(1,0,0,0,1,0)s51234321, t(1,0,0,1,0,0)s412321,
t(1,0,0,1,0,0)s45412321, t(1,0,1,0,0,0)s3121, t(1,0,1,0,0,0)s343121, t(1,0,1,0,0,0)s34543121,
t(1,1,0,0,0,0)s21, t(1,1,0,0,0,0)s2321, t(1,1,0,0,0,0)s234321, t(1,1,0,0,0,0)s23454321

136



Table A.9: Coefficient data for GL6, µ = (1, 1, 1, 0, 0, 0)

`(w) = 0
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 3 3 Z× Z 2 3 -3
∆2 5 4 Z 1 2 -1
∆3 5 4 Z 1 2 -1
∆4 5 4 Z 1 2 -1
∆5 7 5 Z/3Z 0 1 1
∆6 7 5 Z/3Z 0 1 1
∆7 7 5 Z/3Z 0 1 1
∆8 7 5 Z/3Z 0 1 1
∆9 9 5 Z/3Z 0 0 3

Aw,J∆5
,kF = · · · = Aw,J∆9

,kF

Aw,J∆2
,kF

55

Aw,J∆3
,kF

OO

Aw,J∆4
,kF

ii

Aw,J∆1
,kF

ii OO 55

`(w) = 1
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 4 4 Z 1 2 -2
∆2 6 5 Z/3Z 0 1 0
∆3 6 5 Z/3Z 0 1 0
∆4 6 5 Z/3Z 0 1 0
∆5 8 5 Z/3Z 0 0 2

Aw,J∆1
,kF ⊂ Aw,J∆2

,kF = · · · = Aw,J∆5
,kF

`(w) = 2, w ∈ X1

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 3 3 Z× Z 2 2 -3
∆2 5 4 Z 1 1 -1
∆3 5 4 Z 1 1 -1
∆4 7 5 Z/3Z 0 0 1

Aw,J∆4
,kF

Aw,J∆2
,kF

88

Aw,J∆3
,kF

ff

Aw,J∆1
,kF

ff 88

Table continues on next page.
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Table A.10: Coefficient data for GL6, µ = (1, 1, 1, 0, 0, 0) (continued)

`(w) = 2, w ∈ X2

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 5 5 Z/3Z 0 1 -1
∆2 5 5 Z/3Z 0 1 -1
∆3 7 5 Z/3Z 0 0 1

Aw,J∆1
,kF = Aw,J∆2

,kF = Aw,J∆3
,kF

`(w) = 3, w ∈ X3

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 4 4 Z 1 1 -2
∆2 6 5 Z/3Z 0 0 0

Aw,J∆1
,kF ⊂ Aw,J∆2

,kF

`(w) = 3, w ∈ X4

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 4 4 Z 1 1 -2
∆2 4 4 Z 1 1 -2
∆3 6 4 Z 1 0 0

Aw,J∆1
,kF = Aw,J∆2

,kF = Aw,J∆3
,kF

`(w) = 3, w ∈ X5

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 4 4 Z× Z/3Z 1 1 -2
∆2 4 4 Z× Z/3Z 1 1 -2
∆3 6 4 Z× Z/3Z 1 0 0

Aw,J∆1
,kF = Aw,J∆2

,kF = Aw,J∆3
,kF

`(w) = 4, w ∈ X6

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 5 5 Z/3Z 0 0 -1

`(w) = 4, w ∈ X7

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 3 3 Z× Z 2 1 -3
∆2 5 4 Z× Z/3Z 1 0 -1

Aw,J∆1
,kF ⊂ Aw,J∆2

,kF

`(w) = 4, w ∈ X8

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 3 3 Z× Z 2 1 -3
∆2 5 4 Z 1 0 -1

Aw,J∆1
,kF ⊂ Aw,J∆2

,kF

Table continues on next page.
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Table A.11: Coefficient data for GL6, µ = (1, 1, 1, 0, 0, 0) (continued)

`(w) = 5, w ∈ X9

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 4 4 Z 1 0 -2

`(w) = 5, w ∈ X10

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 4 4 Z× Z/3Z 1 0 -2

`(w) = 5, w ∈ X11

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 2 2 Z× Z× Z 3 1 -4
∆2 4 3 Z× Z 2 0 -2

Aw,J∆1
,kF ⊂ Aw,J∆2

,kF

`(w) = 6, w ∈ X12

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 3 3 Z× Z 2 0 -3

`(w) = 6, w ∈ X13

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 3 3 Z× Z× Z/3Z 2 0 -3

`(w) = 7
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 2 2 Z× Z× Z 3 0 -4

`(w) = 8
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 1 1 Z× Z× Z× Z 4 0 -5

`(w) = 9
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∅ 0 0 Z× Z× Z× Z× Z 5 0 -6
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Table A.12: Subsets of Adm(µ) for GL6, µ = (1, 1, 1, 0, 0, 0)

`(w) = 2, w ∈ X1

t(1,1,0,1,0,0)s4523412, t(1,1,1,0,0,0)s23452341232, t(1,1,1,0,0,0)s34512341231

`(w) = 2, w ∈ X2

X2 contains the 18 length-two elements not contained in X1.

`(w) = 3, w ∈ X3

X3 contains the 44 length-three elements not contained in X4 ∪X5.

`(w) = 3, w ∈ X4

t(1,1,0,0,0,1)s234123, t(1,1,0,0,1,0)s23454123, t(1,1,0,1,0,0)s2345123423,
t(1,1,1,0,0,0)s2345123412, t(1,1,1,0,0,0)s34512341, t(1,1,1,0,0,0)s345234

`(w) = 3, w ∈ X5

t(0,1,1,1,0,0)s453423, t(1,0,1,1,0,0)s45341231, t(1,1,0,1,0,0)s4523412312,
t(1,1,1,0,0,0)s342312, t(1,1,1,0,0,0)s3452342312, t(1,1,1,0,0,0)s34542312

`(w) = 4, w ∈ X6

X6 contains the 48 length-four elements not contained in X7 ∪X8.

`(w) = 4, w ∈ X7

t(0,1,1,0,1,0)s53423, t(0,1,1,1,0,0)s3453423, t(0,1,1,1,0,0)s4523423, t(0,1,1,1,0,0)s4534232,
t(0,1,1,1,0,0)s45342, t(1,0,1,0,1,0)s5341231, t(1,0,1,1,0,0)s345341231,
t(1,0,1,1,0,0)s451234231, t(1,0,1,1,0,0)s4534121, t(1,0,1,1,0,0)s453412321,
t(1,1,0,0,1,0)s523412312, t(1,1,0,0,1,0)s5234312, t(1,1,0,1,0,0)s23453412312,
t(1,1,0,1,0,0)s42312, t(1,1,0,1,0,0)s45123412312, t(1,1,0,1,0,0)s45234123121,
t(1,1,0,1,0,0)s4523421, t(1,1,0,1,0,0)s4542312, t(1,1,1,0,0,0)s2342312,
t(1,1,1,0,0,0)s23452342312, t(1,1,1,0,0,0)s234542312, t(1,1,1,0,0,0)s3412312,
t(1,1,1,0,0,0)s3423121, t(1,1,1,0,0,0)s34231, t(1,1,1,0,0,0)s34512342312,
t(1,1,1,0,0,0)s34523423121, t(1,1,1,0,0,0)s345234231, t(1,1,1,0,0,0)s345412312,
t(1,1,1,0,0,0)s345423121, t(1,1,1,0,0,0)s3454231

`(w) = 4, w ∈ X8

t(1,0,1,0,0,1)s34123, t(1,0,1,0,1,0)s3454123, t(1,0,1,1,0,0)s345123423, t(1,0,1,1,0,0)s4512342,
t(1,0,1,1,0,0)s45341, t(1,1,0,0,0,1)s1234123, t(1,1,0,0,0,1)s2341231, t(1,1,0,0,0,1)s2341232,
t(1,1,0,0,0,1)s23412, t(1,1,0,0,1,0)s123454123, t(1,1,0,0,1,0)s234541231,
t(1,1,0,0,1,0)s234541232, t(1,1,0,0,1,0)s2345412, t(1,1,0,0,1,0)s52312,
t(1,1,0,1,0,0)s12345123423, t(1,1,0,1,0,0)s23451234231, t(1,1,0,1,0,0)s23451234232,
t(1,1,0,1,0,0)s2345312, t(1,1,0,1,0,0)s234534312, t(1,1,0,1,0,0)s451234121,
t(1,1,0,1,0,0)s4512341, t(1,1,0,1,0,0)s45234, t(1,1,1,0,0,0)s12345123412,
t(1,1,1,0,0,0)s1234523412321, t(1,1,1,0,0,0)s123452341, t(1,1,1,0,0,0)s234512312,
t(1,1,1,0,0,0)s23451234121, t(1,1,1,0,0,0)s2345123412312, t(1,1,1,0,0,0)s23451234312,
t(1,1,1,0,0,0)s2345234, t(1,1,1,0,0,0)s3451231, t(1,1,1,0,0,0)s345123421,
t(1,1,1,0,0,0)s345123431, t(1,1,1,0,0,0)s3452342, t(1,1,1,0,0,0)s3452343, t(1,1,1,0,0,0)s34523

Table continues on next page.
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Table A.13: Subsets of Adm(µ) for GL6, µ = (1, 1, 1, 0, 0, 0) (continued)

`(w) = 5, w ∈ X9

X9 contains the 90 length-five elements not contained in X10 ∪X11.

`(w) = 5, w ∈ X10

t(0,1,0,1,1,0)s5423, t(0,1,1,0,1,0)s523423, t(0,1,1,0,1,0)s534232, t(0,1,1,0,1,0)s5342,
t(0,1,1,1,0,0)s23453423, t(0,1,1,1,0,0)s34534232, t(0,1,1,1,0,0)s345342,
t(0,1,1,1,0,0)s45234232, t(0,1,1,1,0,0)s4532, t(0,1,1,1,0,0)s453432, t(1,0,0,1,1,0)s541231,
t(1,0,0,1,1,0)s541232, t(1,0,1,0,1,0)s51234231, t(1,0,1,0,1,0)s534121, t(1,0,1,0,1,0)s53412321,
t(1,0,1,0,1,0)s534312, t(1,0,1,1,0,0)s1234534231, t(1,0,1,1,0,0)s34534121,
t(1,0,1,1,0,0)s3453412321, t(1,0,1,1,0,0)s4312, t(1,0,1,1,0,0)s4512342321,
t(1,0,1,1,0,0)s453121, t(1,0,1,1,0,0)s45343121, t(1,0,1,1,0,0)s454312,
t(1,1,0,0,1,0)s5123412312, t(1,1,0,0,1,0)s51234312, t(1,1,0,0,1,0)s5234123121,
t(1,1,0,0,1,0)s523421, t(1,1,0,0,1,0)s52343121, t(1,1,0,0,1,0)s523431,
t(1,1,0,1,0,0)s123453412312, t(1,1,0,1,0,0)s234534123121, t(1,1,0,1,0,0)s23453421,
t(1,1,0,1,0,0)s412312, t(1,1,0,1,0,0)s423121, t(1,1,0,1,0,0)s4231, t(1,1,0,1,0,0)s451234123121,
t(1,1,0,1,0,0)s452321, t(1,1,0,1,0,0)s45234321, t(1,1,0,1,0,0)s45412312,
t(1,1,0,1,0,0)s45423121, t(1,1,0,1,0,0)s454231 t(1,1,1,0,0,0)s12342312,
t(1,1,1,0,0,0)s123452342312, t(1,1,1,0,0,0)s1234542312, t(1,1,1,0,0,0)s23423121,
t(1,1,1,0,0,0)s234231, t(1,1,1,0,0,0)s234523423121, t(1,1,1,0,0,0)s2345234231,
t(1,1,1,0,0,0)s2345423121, t(1,1,1,0,0,0)s23454231, t(1,1,1,0,0,0)s34123121,
t(1,1,1,0,0,0)s3421, t(1,1,1,0,0,0)s342321, t(1,1,1,0,0,0)s345123423121,
t(1,1,1,0,0,0)s3452342321, t(1,1,1,0,0,0)s345321, t(1,1,1,0,0,0)s3454123121,
t(1,1,1,0,0,0)s345421, t(1,1,1,0,0,0)s34542321

`(w) = 5, w ∈ X11

t(0,1,1,0,0,1)s3423, t(0,1,1,0,1,0)s345423, t(0,1,1,1,0,0)s34523423, t(0,1,1,1,0,0)s452342,
t(0,1,1,1,0,0)s4534, t(1,0,1,0,0,1)s341231, t(1,0,1,0,1,0)s34541231, t(1,0,1,1,0,0)s3451234231,
t(1,0,1,1,0,0)s45123421, t(1,0,1,1,0,0)s4534, t(1,1,0,0,0,1)s2312, t(1,1,0,0,0,1)s23412312,
t(1,1,0,0,0,1)s234312, t(1,1,0,0,1,0)s2312, t(1,1,0,0,1,0)s2345412312, t(1,1,0,0,1,0)s23454312,
t(1,1,0,1,0,0)s234312, t(1,1,0,1,0,0)s234512342312, t(1,1,0,1,0,0)s23454312,
t(1,1,0,1,0,0)s45123421, t(1,1,0,1,0,0)s452342, t(1,1,1,0,0,0)s23412312,
t(1,1,1,0,0,0)s234512342312, t(1,1,1,0,0,0)s2345412312, t(1,1,1,0,0,0)s341231,
t(1,1,1,0,0,0)s3423, t(1,1,1,0,0,0)s3451234231, t(1,1,1,0,0,0)s34523423,
t(1,1,1,0,0,0)s34541231, t(1,1,1,0,0,0)s345423

`(w) = 6, w ∈ X12

X12 contains the 200 length-six elements not contained in X13.

`(w) = 6, w ∈ X13

t(0,0,1,1,1,0)s543, t(0,1,0,1,1,0)s54232, t(0,1,1,0,1,0)s53432, t(0,1,1,1,0,0)s432,
t(0,1,1,1,0,0)s45432, t(1,0,0,1,1,0)s5412321, t(1,0,1,0,1,0)s5343121, t(1,0,1,1,0,0)s43121,
t(1,0,1,1,0,0)s4543121, t(1,1,0,0,1,0)s5234321, t(1,1,0,1,0,0)s42321, t(1,1,0,1,0,0)s4542321,
t(1,1,1,0,0,0)s321, t(1,1,1,0,0,0)s34321, t(1,1,1,0,0,0)s3454321
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Table A.14: Coefficient data for GSp4, µ = (1, 1, 0, 0)

`(w) = 0
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 1 1 Z 1 1 -2
∆2 3 2 {1} 0 0 0

Aw,J∆1
,kF ⊆ Aw,J∆2

,kF

`(w) = 1
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 2 2 {1} 0 0 -1

`(w) = 2
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 1 1 Z 1 0 -2

`(w) = 3
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∅ 0 0 Z× Z 2 0 -3
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Table A.15: Coefficient data for GSp6, µ = (1, 1, 1, 0, 0, 0)

`(w) = 0
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 2 2 Z 1 2 -2
∆2 4 3 {1} 0 1 0
∆3 4 3 {1} 0 1 0
∆4 4 3 {1} 0 1 0
∆5 6 3 {1} 0 0 2

Aw,J∆1
,kF ⊂ Aw,J∆2

,kF ⊂ Aw,J∆3
,kF = Aw,J∆4

,kF = Aw,J∆5
,kF

`(w) = 1
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 3 3 {1} 0 1 -1
∆2 3 3 {1} 0 1 -1
∆3 5 3 {1} 0 0 1

Aw,J∆1
,kF = Aw,J∆2

,kF = Aw,J∆3
,kF

`(w) = 2
Path `(∆) rank(J∆) Isom. class of Sw,J∆

A(∆) B(w,∆) C(∆)
∆1 2 2 Z 1 1 -2
∆2 4 3 {1} 0 0 0

Aw,J∆1
,kF ⊂ Aw,J∆2

,kF

`(w) = 3, w ∈ X1

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 1 1 Z× Z 2 1 -3
∆2 3 2 Z 1 0 -1

Aw,J∆1
,kF ⊂ Aw,J∆2

,kF

`(w) = 3, w ∈ X2

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 3 3 {1} 0 0 -1
`(w) = 4

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 2 2 Z 1 0 -2
`(w) = 5

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∆1 1 1 Z× Z 2 0 -3
`(w) = 6

Path `(∆) rank(J∆) Isom. class of Sw,J∆
A(∆) B(w,∆) C(∆)

∅ 0 0 Z× Z× Z 3 0 -4
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Table A.16: Subsets of Adm(µ) for GSp6, µ = (1, 1, 1, 0, 0, 0)

`(w) = 2, w ∈ X1

t(0,1,1,0,0,1)s323, t(1,0,1,0,1,0)s31231, t(1,1,0,1,0,0)s2312312, t(1,1,1,0,0,0)s2312312,
t(1,1,1,0,0,0)s31231, t(1,1,1,0,0,0)s323

`(w) = 3, w ∈ X2

t(1,0,0,1,1,0)s123, t(1,0,1,0,1,0)s31232, t(1,0,1,0,1,0)s312, t(1,1,0,1,0,0)s12312,
t(1,1,0,1,0,0)s23121, t(1,1,0,1,0,0)s2312321, t(1,1,0,1,0,0)s231, t(1,1,1,0,0,0)s3123121,
t(1,1,1,0,0,0)s321, t(1,1,1,0,0,0)s323123121, t(1,1,1,0,0,0)s32321
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