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The high computational cost of population based optimization methods has been 

preventing applications of these methods to realistic engineering design problems. The 

main challenge is to devise approaches that can significantly reduce the number of 

function (or simulation) calls required in such optimization methods. This dissertation 

presents some new online and offline approximation approaches for design optimization. 

In particular, it presents new DOE and metamodeling techniques for Genetic Algorithm 

(GA) based multi-objective optimization methods along four research thrusts. The first 

research thrust is called: Online Metamodeling Assisted Fitness Evaluation. In this thrust, 

a new online metamodeling assisted fitness evaluation approach is developed that aims at 

significantly reducing the number of function calls in each generation of a Multi-

Objective Genetic Algorithm (MOGA) for design optimization. The second research 

thrust is called: DOE in Online Metamodeling. This research thrust introduces a new 

DOE method that aims at reducing the number of generations in a MOGA. It is shown 

that the method developed under the second research thrust can, compared to the method 

in the first thrust, further reduce the number of function calls in the MOGA. The third 

research thrust is called: DOE in Offline Metamodeling. In this thrust, a new DOE 

method is presented for sampling points in the non-smooth regions of a design space in 

order to improve the accuracy of a metamodel. The method under the third thrust is useful 



in approximation assisted optimization when the number of available function calls is 

limited. Finally, the fourth research thrust is called: Dependent Metamodeling for Multi-

Response Simulations. This research thrust presents a new metamodeling technique for an 

engineering simulation that has multiple responses.  

Numerous numerical and engineering examples are used to demonstrate the 

applicability and performance of the proposed online and offline approximation 

techniques. In particular, it is shown that in situations where the application of population 

based optimization techniques requires numerous simulation evaluations (or function 

calls), the proposed online metamodeling assisted fitness evaluation approach, the DOE 

assisted online metamodeling approach, and the DOE assisted offline metamodeling 

approach can be employed to construct a global approximation to the simulation model 

and significantly reduce the number of function calls. Moreover, for simulations with 

multiple responses, the proposed dependent metamodeling approach can be used to 

construct reasonably accurate metamodels and thus facilitate optimization. 
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Chapter 1 Introduction 

This dissertation presents some new approximation methods. Approximation 

methods are often used in computational engineering design and optimization where it 

is necessary to perform design calculations efficiently with minimum possible number 

of simulation evaluations (or function calls). An approximation method involves two 

steps: Design of Experiments (DOE) and metamodeling. This dissertation presents a 

new online metamodeling approach to significantly reduce the number of function calls 

for population based multi-objective optimization methods, in general, and Multi-

Objective Genetic Algorithms (MOGAs), in particular. In addition, a novel DOE 

method is developed and integrated with the online metamodeling approach to further 

reduce the number of function calls. Also, a new adaptive DOE approach is developed 

for offline metamodeling. Finally, a new metamodeling approach is presented for 

multi-response deterministic simulations. Numerous numerical and engineering 

examples are used to demonstrate the merits and applicability of the proposed DOE 

and metamodeling approaches. 

1.1 Motivation and Objective 

Mathematical models have been widely used by researchers to analyze engineering 

problems. These mathematical models are often implemented as deterministic 

computer simulation or analysis models. Engineering design and optimization relies on 

exploration of different points and therefore numerous analyses or simulation calls are 

unavoidable. In fact, computational design optimization methods, in particular 

population based optimization methods, often require numerous simulation runs (or 
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function calls) before the assessment and selection of a particular optimum engineering 

design alternative is complete.  

Today the most common strategy to reduce the number of function calls associated 

with such an exploration is to use approximation (see, e.g., Barthelemy and Haftka, 

1993; Myers and Montgomery, 1995; Roux et al., 1998; Ruzika and Wiecek, 2003; 

Simpson et al., 2004). A typical approximation approach includes two components: (1) 

DOE, in which a sample of experiments (or observed design points) is selected 

according to a predefined criterion, and (2) metamodeling, in which the experiments 

are used to build a metamodel of the simulation (i.e., a compact or less costly model of 

the simulation model). Figure 1.1 represents an example in modeling, simulation and 

approximation for an engineering problem. 

Engineering Problem

A

A’

B

B’

C

rail

bumper

connector

20mph

ApproximationComputer Simulation

DOE

Meta-
Model

 
Figure 1.1 The simulation and approximation for an engineering problem 

According to how the metamodel interacts with a simulation and the optimizer, 

metamodeling approaches in the literature can be categorized as online and offline 

approaches. In an online metamodeling approach, metamodeling is made and 

adaptively improved in the course of optimization (Nair and Keane, 1998; Farina, 
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2001, 2002; Jin et al., 2001, 2002; Hong and Tahk, 2003; Nain and Deb, 2003). In 

offline metamodeling approaches, optimization is performed based on an a priori 

constructed metamodels (Papadrakakis et al., 1999; Wilson et al., 2001; Koch et al., 

2002; Lian and Liou, 2004; Chung and Alonso, 2004; Fang et al., 2004). Figure 1.2 

shows the schemes for online and offline metamodeling with an optimizer. 

Simulation Metamodeling

Optimization model

Optimizer  
(a) 

Simulation Metamodeling Optimization model Optimizer  
(b) 

Figure 1.2 The schemes for (a) online metamodeling, and (b) offline 
metamodeling, with an optimizer 

Offline metamodeling approaches often require fewer function calls than those for 

online metamodeling. However, offline metamodeling approaches can introduce false 

optimum solutions when used with multi-objective optimization and when it is difficult 

to obtain a good fidelity metamodel over the entire input space while at the same time 

use a low number of function calls (Simpson et al., 2001; Wilson et al., 2001). Online 

metamodeling approaches, on the other hand, can gradually improve the metamodel 

accuracy (Jin, 2005). Hence, both online metamodeling and offline approaches are 

useful in engineering design optimization. Online metamodeling approaches are often 

applied to the situation where relatively no limit exists for the number of function calls 

available, while offline metamodeling approaches are proper for the situation that a 
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limited number of function calls are available. In this dissertation, both online and 

offline metamodeling techniques are explored in the context of genetic algorithm based 

design optimization methods. 

The metamodel accuracy is always critical for both online and offline 

metamodeling approaches. In addition, the DOE technique used is very important for 

improving the metamodel accuracy as discussed in the next few paragraphs. 

 In a DOE technique, the experiments can be selected all-at-once or selected at 

different stages. The latter approach is often referred to as a sequential approach. 

Furthermore, a DOE approach is called sequentially adaptive if the information from 

both the last selected design points and the metamodel is used in selecting new design 

points. Figure 1.3(a) shows a scheme for non-adaptive DOE in which only the 

information from the selected design points is used for selecting new design points. 

Figure 1.3(b) shows a scheme for adaptive DOE, in which the information from both 

the selected design points and the corresponding metamodel is used for selecting new 

design points.  

Simulation MetamodelingNon-adaptive DOE Selected design points

Optimization model Optimizer  
(a) 

Simulation MetamodelingAdaptive DOE Selected design points

Optimization model Optimizer  
(b) 

Figure 1.3 Optimization with (a) non-adaptive DOE, and (b) adaptive DOE 

In general, adaptive DOE approaches are considered to be superior to non-adaptive 
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approaches in terms of metamodel accuracy. Part of this dissertation focuses on the 

development and application of sequentially adaptive DOE methods and their 

integration with online and offline metamodeling approaches. 

Although many DOE and metamodeling methods in the context of online 

metamodeling have been reported in the literature, most of them are subjectively 

devised. Moreover, the DOE and metamodeling approaches are often used separately 

in the literature. More function calls can be saved if they are used in an integrated 

manner. In the context of offline metamodeling, the research focus is to use as few as 

possible function calls and to build a reasonably accurate metamodel. However, most 

of the DOE methods do not use the available information efficiently. Finally, most of 

the current metamodeling approaches assume that the simulation model has a single 

response (output), while in reality a simulation model often produces multiple 

responses simultaneously. 

The overall objective of this dissertation is to develop objective methods for DOE 

and metamodeling in the context of online and offline metamodeling. Also, a 

metamodeling technique for deterministic simulations with multiple responses will 

develop.  

This overall objective aims at facilitating computer-aided engineering design 

optimization, particularly in the context of MOGAs, by reducing the number of 

function calls needed for convergence to an optimal solution. 

1.2 Research Thrusts 

To achieve the aforementioned overall objective, four research thrusts have been 

identified and pursued in this dissertation as follows: (1) Research Thrust 1: Online 
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Metamodeling for Fitness Estimation (see Chapter 3 for details), (2) Research Thrust 2: 

Adaptive DOE for Online Metamodeling (see Chapter 4 for details), (3) Research 

Thrust 3: Adaptive DOE for Offline Metamodel (see Chapter 5 for details), and (4) 

Research Thrust 4: Dependent Metamodeling for Multi-Response Simulations (see 

Chapter 6 for details). 

A brief description of the motivation and objective for each research thrust is given 

in Sections 1.2.1 to 1.2.4. 

1.2.1 Research Thrust 1: Online Metamodeling for Fitness Estimation 

A number of techniques incorporating metamodeling with population-based 

optimization methods, such as GAs, have been reported in the literature (Jin, 2005). 

Some of these methods use metamodeling for fitness estimation and are referred to as 

online metamodeling (Chung and Alonso, 2004; Farina, 2001; Nain and Deb, 2002, 

2003; Oduguwa and Roy, 2002). Note that the use of metamodeling for fitness 

evaluation can increase the risk of generating false optima (Jin, 2005), especially when 

the metamodel is not accurate in the early generations of a population-based 

optimization method. Moreover, the online metamodeling methods reported in the 

literature are all subjective: The points are chosen randomly or subjectively for 

metamodeling. Research Objective 1 addresses this issue.  

Research Objective 1: To develop a new online metamodeling approach that uses 

an objective criterion to determine whether a simulation model or its metamodel 

replacement should be used to evaluate design points.  

This new approach is referred to as online metamodeling for fitness estimation in 

the context of population based design optimization methods such as MOGAs. 
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A portion of this work was presented in Li et al. (2006b) and Li et al. (2007). 

1.2.2 Research Thrust 2: Adaptive DOE for Online Metamodeling  

Metamodeling can also be used for generating new points (Anderson and Hsu, 

1999; Abboud and Schoenauer, 2001; Rasheed, 2000; Rasheed et al., 2005; Li et al., 

2007). When metamodeling is used with population based optimization methods, the 

risk of generating false optima is avoided if metamodeling is used for generation or 

reproduction of new points (Shan and Wang, 2005). However, the use of 

metamodeling in reproduction can not reduce the number of function calls as many as 

it does in the fitness evaluation. Moreover, the savings obtained in terms of the number 

of function calls due to the use of metamodeling in fitness evaluation and reproduction 

of design points are independent since such savings are obtained during different 

stages in a population-based optimization method. Thus an integration of 

metamodeling with both fitness evaluation and reproduction should reduce the number 

of function calls even more compared to research thrust 1. Such an approach has not 

been reported in the literature. Research Objective 2 addresses this issue. 

Research Objective 2: To develop a new adaptive DOE method and integrate it 

with the online metamodeling of Research Thrust 1, so that the number of function 

calls can be further reduced. This new approach is referred to as adaptive DOE for 

online metamodeling. 

A portion of this research thrust was presented in Li et al. (2007). 

1.2.3 Research Thrust 3: Adaptive DOE for Offline Metamodeling  

In the context of offline metamodeling, DOE methods are critical for improving 
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metamodel accuracy. Adaptive DOE approaches use the information from all existing 

experiments as well as the metamodel for selecting new designs. According to the 

adaptation mechanism, adaptive DOE approaches in the literature can be grouped into 

three types. These are based on: i) Being adaptive according to the estimated optima 

(maxima or minima) (e.g., Watson and Barnes, 1995), ii) being adaptive according to 

the location of design points in the input space with the largest estimated uncertainty 

associated with an estimated response (e.g., Cox and John, 1992, 1997), and iii) 

adaptation to the location of estimated optima with large uncertainty (e.g., Schonlau et 

al., 1997; Jones et al., 1998; Sasena, 2002; Sasena et al., 2000; Farhang-Mehr and 

Azarm, 2002, 2005; Farhang-Mehr et al., 2003). All the aforementioned approaches 

directly use estimated function responses and/or uncertainty in selecting additional 

points, while such estimates are often inaccurate especially in the early-stage of an 

optimization process. Hence, these adaptive DOE approaches may sample some points 

that have neither good objective function values nor large uncertainty associated with 

an estimated response. As a result, sampling in the previous methods consumes 

precious function calls without providing much insight or help in metamodel 

construction. Research Objective 3 addresses this issue. 

Research Objective 3: To develop a new adaptive DOE method for offline 

metamodeling that is objective and uses all the available information efficiently to 

improve the metamodel accuracy.  

This new approach is referred to as an accumulative error-based DOE approach. 

Also, a portion of this work was presented in Li and Azarm (2006). 
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1.2.4 Research Thrust 4: Dependent Metamodeling for Multi-Response 
Simulation  

Engineering simulations can produce multiple responses. One can treat each of 

these responses as a separate ‘model’ and construct a metamodel for each response. 

This is a fairly common approach in the literature and is referred to as independent 

metamodeling. The previously reported independent metamodeling approaches are 

based on an independent treatment of responses and therefore do not exploit 

information such as correlations among responses. Hence, these independent 

metamodeling approaches can be inefficient.  

The research on how to handle multiple responses in a computationally efficient 

manner and particularly in the context of more modern metamodeling techniques such 

as kriging remains sparse.  Several researchers (e.g., Khuri, 1996; Chaio and Hamada, 

2001) have partially addressed this issue by regression methods, using a “desirability” 

function to combine all responses from a simulation into one (e.g., Derringer and 

Suich, 1980; Del et al., 1996), or using generalized distance and dual responses to 

account for the correlation among responses (e.g., Vining and Myers, 1990; Lucas, 

1994; Myers et al., 1997). Cokriging, an extension of kriging, has also been reported in 

the literature to handle multiple responses (e.g., Ver Hoef and Cressie, 1993; Romero 

et al., 2006). However, in cokriging it can be difficult to estimate cross-correlation 

parameters because the value of simulation responses and their gradients are required 

(Chung and Alonso, 2002). Furthermore, obtaining gradients may not be easy and can 

be time consuming. Research Objective 4 addresses the above mentioned issues. 

Research Objective 4: To develop a new metamodeling approach for multi-

response simulations.  
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The new approach is referred to as dependent metamodeling and uses all of the 

available information in building a metamodel for every response from a simulation 

simultaneously. Also, a portion of this work was presented in Li et al. (2006a). 

1.3 Organization of Dissertation 

The organization of the rest of the dissertation is as follows. In Chapter 2, the 

definition and terminology used in this dissertation are outline. In Chapter 3, a new 

method for online metamodeling for fitness estimation of population based 

optimization methods is presented. In Chapter 4, a novel adaptive DOE approach is 

developed and integrated with the online metamodeling approach presented in Chapter 

3. After that, a new adaptive DOE approach for offline metamodeling is proposed in 

Chapter 5. Followed in Chapter 6, a novel dependent metamodeling approach is 

developed for multi-responses deterministic simulations. Finally, in Chapter 7, the 

dissertation is concluded with remarks and discussions for the research thrusts, as well 

as suggestions for future research directions. Figure 1.4 shows the organization and 

flow of information for the dissertation.  

In the next chapter, the definition and terminology used throughout this dissertation 

are given. 
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Figure 1.4 Organization of dissertation 
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Chapter 2 Definition and Terminology  

2.1 Introduction  

In this chapter, we provide several definitions and terminologies that will be used 

throughout the dissertation. First, the formulation for a general multiobjective 

optimization problem, based on which metamodeling is devised, will be introduced. 

Next, the concept of domination in the multi-objective optimization is introduced. 

Followed is a brief description of population-based optimization methods and the 

computational challenge when such methods are applied to multi-objective 

optimization problems. We then discuss kriging metamodeling that is used as the 

metamodeling technique in the research thrusts. After that, we introduce the basic 

concept behind the maximum entropy design method, which in later chapters is 

modified and used for DOE in the proposed approaches. Finally, we introduce the 

measures used for evaluating the accuracy of a metamodel. 

2.2 Multi-Objective Optimization 

A multi-objective optimization problem is formulated as follows: 

Kkh
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Mif
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,...,1             0)(                    

,,1             0)(   :subject to

,,1                    )(     minimize

==
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=

x

x

x
x

K

K

                                   (2.1) 

where fi refers to an objective function,  x = (x1,…,xN)T is a vector of design variables, 

the functions g1,…,gJ are the inequality constraints, and h1,…,hK are the equality 

constraints. It is assumed that at least two of the M objective functions are conflicting 

with each other. 
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In the rest of the dissertation, x (or x if it has one dimension) is referred to as a 

point. The computer program representing all of fi, gj, and hk together is defined as a 

deterministic simulation. A deterministic simulation is assumed to produce an identical 

response for the same input point. Also, a deterministic simulation may produce 

multiple responses in a single run. In this case, it is defined as a deterministic 

simulation with multiple responses. In the rest of the dissertation, a deterministic 

simulation is simply called a simulation. An evaluation of a point by a simulation is 

denoted as one function call. Note that the counting of function calls is based on the 

number of points evaluated. In other words, even if the simulation has multiple 

responses, the evaluation of a point for all the responses counts for one function call. 

In the following, some further definitions are given in the context of a simulation. 

2.2.1 Input space 

A space Ω formed by all possible points to a simulation is referred to as the input 

space for the simulation. A point in the input space can be represented by a vector. 

Each element of this vector can be continuous or discrete. Each element is assumed to 

be bounded by lower and upper bounds and thus can be normalized in the range: [0, 1]. 

2.2.2 Experiment 

A point is referred to as an experiment if it is evaluated for its true response by a 

simulation. In contrast, a point that is not evaluated by the simulation is called an 

unobserved point and denoted as 0x . 

2.2.3 Design 

A set of experiments is referred to as a design D. The true responses for all 
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experiments in a design are obtained by running the simulation. 

 2.3 Pareto Frontier 

The optimum solutions for a multi-objective optimization problem, Eq. (2.1), form 

a Pareto frontier in the objective space (i.e., f-space). Solutions along a Pareto frontier 

are non-dominated. A point is said to be non-dominated if no other point in the current 

set of points is better than that point with respect to all objectives (Goldberg, 1989; 

Deb, 2001).  In this way, the domination status of a point can be determined as either 

being dominated or non-dominated. The set of all non-dominated points in the current 

set of points forms a non-dominated design set. The remaining points form a 

dominated design set. In this regard, the Pareto frontier is a set of points that are non-

dominated over the entire design space. 

f2

f1 

a

b

c
d

j

i

min

min  
Figure 2.1 Pareto dominance in multi-objective optimization 

Figure 2.1 above shows an example of dominance in objective space, whereby both 

objectives are being minimized (as illustrated by the two arrows on the two axes), with 

a population of six points. Four of these points {a, b, c, d} are non-dominated. That is, 

each of these points is not dominated in terms of all objective function values by any 

other point in the population. So, in this population, points {a, b, c, d} form the non-
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dominated set, and the points {i, j} form the dominated set. 

It can be observed in Figure 2.1 that the domination status of points is dependent 

on their relative position in the objective space. However, the domination status is not 

very sensitive to the change of the position of a point. For example in Figure 2.2 

below, even if the point j changes its position to j’, it is still dominated (i.e., by points 

a, b and c). This observation indicates that a point can have some degree of variance in 

terms of its fitness (i.e., position in f-space) without changing the domination status 

with respect to other points in the population. 

f2

f1 

a

b

c
d

j

i

min

min

j’

 
Figure 2.2 Domination status when the position of an point changes 

2.4 Population-Based Methods for Multi-Objective Optimization  

Generally speaking, there are two classes of design optimization methods that can 

be used to solve optimization problems (e.g., Belegundu and Chandrupatla, 1999; 

Papalambros and Wilde, 2000; Arora, 2004). These two classes are gradient- and non-

gradient-based methods (e.g., population-based optimization methods). Gradient-based 

methods (e.g., Bazaraa et al., 1993) require derivative information for the optimization 

functions (i.e., objective and constraint functions) and usually have an implicit 

assumption that these functions are “smooth” and that design variables are continuous. 
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In general, gradient-based methods can only guarantee a local optimum design solution 

unless the functions used in the problem have special properties such as linearity or 

convexity. 

The smoothness assumption can be relaxed in population-based optimization 

methods such as evolutionary algorithms (e.g., Rosenberg, 1967; Holland, 1975; 

Goldberg, 1989; Deb, 2001) and particle swarm optimizers (e.g., Kennedy and 

Eberhart, 1995; Li, 2003; Coello et al., 2004). As a result, population-based 

optimization methods have become increasingly popular for solving multiobjective 

optimization problems due to the generic ability of these methods to handle complex 

real-world problems. Since such methods maintain a population of design points, this 

allows exploration of different parts of the solution space simultaneously. 

Various versions of the aforementioned population-based optimization methods 

have been reported (e.g., Schaffer, 1984; Deb, 1999; Coello, 2000; Fonseca and 

Fleming, 1993; Srinivas and Deb, 1994; Deb et al., 2000; Norn and Nafpliotis, 1993; 

Zitzler and Thiele, 1998; Li, 2003; Coello et al., 2004; Alvarez-Benitez et al., 2005; 

Sierra and Coello, 2005; Reddy and Kumar, 2007). These methods have the following 

common characteristic: They all use i) some sort of algorithm based on the concept of 

dominance to determine the fitness for a point, ii) operators for generating points so 

that local optima can be avoided, and iii) numerous fitness evaluations (i.e., simulation 

or function calls) to obtain optimum solutions. This large number of function calls may 

not be affordable in practice despite recent and foreseeable dramatic improvements in 

computer hardware and solution algorithms. One of the strategies to reduce the 

computational cost is to use metamodeling to partially substitute the simulation with a 
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metamodel during the optimization process. 

In this dissertation, a MOGA is used as the population based optimization method. 

In particular, the approaches of Chapter 3 and Chapter 4 are implemented with MOGA. 

Note that the proposed approaches are not restricted to this specific optimization 

method, although they implemented using this method. Actually, the proposed 

approach can be used with any population-based optimization method as long as the 

concept of dominance is used for fitness evaluation.  

In the next subsection, a brief introduction of MOGA is given. 

2.4.1 Multi-Objective Genetic Algorithm 

MOGA is based on the GA that is extended for multi-objective optimization. GA 

was developed for global optimization of unconstrained single-objective optimization 

problems. GAs are stochastic and population based optimization methods whereby the 

input space Ω is searched through selected points using genetic operations. In a GA, 

each design variable is coded as a binary string and then all design variables are 

collected to form a chromosome representing a point. Each point is assigned with a 

fitness value based on the objective function value to present the goodness of this 

point. GA creates a new generation of points through two important operations, i.e., 

crossover and mutation. In a crossover operation, as shown in Figure 2.3(a), two points 

are randomly selected as parents and then portions of their chromosomes are swapped 

to produce offspring points. For diversity, as shown in Figure 2.3(b), a mutation 

operation is performed in that a bit is randomly selected and changed from 0 to 1 or 

vice versa. 
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(a)                                                                        (b) 

Figure 2.3 (a) Crossover, and (b) mutation operation 

In GAs, points are also “inherited” in that a subset of points which have good 

fitness values are chosen to migrate into the next generation. Together crossover, 

mutation, and inheritance provide a powerful search scheme for finding a global 

optimum point (Deb, 2001). 

StartStart

Generate initial 
design alternatives

Assign fitness to
design alternatives

Stop?Stop?EndEnd
yes

Evaluate 
design alternatives

Use inheritance,
crossover, and
mutation operations

Create next
generation of 
design alternatives

no

 
Figure 2.4 Steps for a GA 

As shown in Figure 2.4, a GA starts with an initial population of points that are 

randomly generated. Next, points in the population are evaluated and their fitness 

assigned. After that, a stopping criterion is checked to see whether the fitness of points 

can be further improved or whether a predefined number of iterations have been 

reached. If the stopping criterion is satisfied, then the GA is stopped; otherwise, 

crossover, mutation, and inheritance operations are applied to produce a new 

generation of points and the procedure is repeated. 

GAs can be easily modified to handle multi-objective optimization problems. The 

multi-objective optimization version of the GA is referred to as a MOGA (e.g., 

Narayanan and Azarm, 1999; Deb 2001; Kurpati et al., 2002).  MOGAs are capable of 
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handling multiple objectives by defining fitness in a Pareto optimality sense as shown 

in Figure 2.1. For instance, Deb (2001) proposed a MOGA with a non-dominated 

sorting scheme, in which the domination status among points are established pair-wise 

for each point. Conventional MOGAs can also handle multi-objective optimization 

problems with constraints. A common approach for handling constraints is the penalty 

method (e.g., Coit et al., 1996; Kurpati et al., 2002) whereby the constraints are 

combined with the objective functions as a penalty when they are not satified at a 

point. 

In this dissertation, a MOGA that uses non-dominated sorting scheme (Deb, 2001) 

with an elitism strategy (Li et al., 2006b) for fitness evaluation and a penalty method 

(Kurpati et al., 2002) for constraint-handling is referred to as a conventional MOGA. A 

flowchart for a MOGA is given in Figure 2.5. 

0 0 1 0 1 0 1 1 0 0

1 1 1 0 0 0 0 1 1 1

0 0 1 0 1 0 0 1 1 1

1 1 1 0 0 0 1 1 0 0

CROSS OVER

0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 

MUTATION
0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 

MUTATION

0 0 1 0 1 0 1 1 0 0

1 1 1 0 0 0 0 1 1 1

0 0 1 0 1 0 0 1 1 1

1 1 1 0 0 0 1 1 0 0

CROSS OVER

0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 

MUTATION
0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 1 0 0 

MUTATION

Simulation

Initial population of designs

Elite designs Offspring
Next population of designs

Elite designs Offspring
Next population of designs

Fitness evaluation

Code designs

Dominated
designs

Non-dominated
designs

Dominated
designs

Non-dominated
designs

Design Point0 0 1 0 1 0 1 1 0 0

current population

Pareto
optima

f1

f2

Feasible 
domain

Non-dominated
Dominated
Non-dominated
Dominated

 
Figure 2.5 Flowchart for a MOGA 

It can be seen that the major steps in a MOGA as shown in Figure 2.5 are similar to 

those in a GA as shown in Figure 2.4. Note that the fitness evaluation in a MOGA is 
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performed by obtaining non-dominated and dominated sets in the current population as 

shown in the middle block on the right part in Figure 2.5. The other two blocks on the 

right part Figure 2.5 show the coding of a point and the crossover and mutation 

operations in a MOGA, separately. 

MOGAs are considered robust and capable of finding global optima. However, as a 

population based optimization method, a MOGA requires a large number of function 

calls that has prohibited applications of these algorithms to realistic engineering design 

problems. 

As discussed, a common way to reduce the number of function calls is to use a 

metamodel to partially substitute the intensive simulation in the optimization process. 

In the next section, kriging metamodeling is introduced, which is used in the rest of the 

dissertation as the metamodeling technique.  

2.5 Kriging Metamodeling 

Kriging is an interpolative metamodeling method for response approximation from 

a simulation (e.g., Sacks et al., 1989; Jones, 2001). Over the past several years kriging 

has become popular for metamodeling in the field of engineering design because of its 

general predictive modeling ability. 

Kriging can be viewed as a linear predictor estimating unknown response values 

based on all observed response values. To simplify the description of kriging, we 

consider a single-input (x) single-response (y) simulation model, that is, y = f(x). A 

kriging method treats the deterministic response y of the simulation as a realization of a 

stochastic process Y: 

Y = μ + Z(x)                                                         (2.2) 
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where Y is the approximation of a true response y, μ is a constant representing the 

known prior information (i.e., mean of the responses based on the current metamodel), 

x a point, and Z is assumed to be a stochastic process with zero mean and non-zero 

variance σ2. It is assumed that the function f to be approximated is continuous and thus 

the responses will not change significantly for two adjacent input points x. In practice, 

this assumption can be somewhat relaxed and replaced with a weaker assumption, i.e., 

for two points xi and xj, the response values of y(xi) and y(xj) should be close to each 

other if the distance between xi and xj is small. In other words, one can state that the 

random variables Y(xi) and Y(xj) tend to be highly correlated if the distance between xi 

and xj is small. The correlation “Corr” between any two random variables Y(xi) and 

Y(xj) can be calculated by a variety of correlation functions (e.g., Clark et al., 2005). 

The correlation function presented by Sacks et al. (1989) is the most commonly used: 

||)||exp()](),([ jiji xxxYxYCorr −−= θ                              (2.3) 

where θ  is a parameter determined by the degree of the correlation among the 

responses. The larger the value of θ , the weaker the correlation, and vice versa.  

Suppose there are n experiments in the current design D: x1, x2,…, xn, and y 

represents the set of  n corresponding observed actual responses: 
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The covariance matrix Cov of y can be defined by 

Cov(y) 2σ= R                                                     (2.5) 

where R is a nn ×  correlation matrix with the (i, j) element given by Eq. (3.3): 
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The diagonal elements of R is always of the form Corr(Y(xi),Y(xi)) and are equal to one. 

Also, define r as a 1×n  correlation matrix for y and the estimated response for an un-

observed point 0x , and J is a 1×n  vector of ones: 
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So far we have assumed that μ  and 2σ  are known a priori. In fact, they can also 

be estimated after n experiments as follows: 
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where μ̂  and 2σ̂  are estimates for μ  and 2σ , respectively. Then the kriging estimates 

the response and the corresponding variance for an unobserved point 0x  as follows: 
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where )( 0xY  is the estimated response and )( 0
2 xs is the corresponding kriging 

variance, which serves as a measure of uncertainty for an estimated response. Clearly, 

for observed experiments, the kriging variance 2s  is zero. On the other hand, there is a 

non-zero kriging variance for any unobserved point (i.e., 0x ). The further away is 0x  
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from current existing experiments, the higher the value of the kriging variance. 

When Eq. (2.2) is assumed to be a normal process, the kriging variance is a 

conditional normal distribution with zero mean and )( 0
2 xs  as the variance [US Army 

Corps, 1997]. The kriging variance can be converted to a “prediction interval” with a 

95% confidence level and the range of the interval equals to )(4 0xs  (or )(2 0xs± ), as 

shown in Figure 2.6. 

 sxY 2)( 0 +sxY 2)( 0 −

)( 0xY

95%
 

Figure 2.6 Prediction interval for the kriging variance 

We define the prediction interval for an unobserved point 0x  as )( 0xI P  for a 95% 

confidence level:  

  )(4)( 00 xsxI P =                                                (2.12) 

This prediction interval can be used to measure the uncertainty of a response obtained 

by a kriging metamodel.  

The kriging metamodeling is also illustrated in Figure 2.7. Figure 2.7(a) shows the 

prior distributions of Y’s with the given mean of the stochastic process and without any 

observation of the response. On the other hand, Figure 2.7(b) shows the posterior 

distributions based on observing the responses for two experiments (x1 and xi). The 

hollow points in Figure 2.7(a) indicate that these points are not observed. The 

estimated responses are represented by Y (e.g., Y2 for x2 and Y0 for x0 as shown in 
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Figure 2.7(a)). The two points x1 and xi are observed (shown as solid points as 

represented with y1 and yi in Figure 2.7(b)) and the kriging method updates the 

estimates of other responses, i.e., it revises the prior distribution of Y’s. It can be 

observed that the estimated responses in Figure 2.7(a) and Figure 2.7(b) for Y2 are 

different. The change of the kriging variance is also illustrated in Figure 2.7. 

μ μ

yy

x1x 0x2x x1x 0x2x

2Y 0Y 0Y
2Y

iy

ix ix
1y1y

(a) (b)  
Figure 2.7 Kriging metamodeling: (a) before any experiment is observed, and (b) 

after two experiments (x1 and xi) are observed 

2.6 Maximum Entropy Design Method 

Lindley (1956) introduced Shannon’s entropy H (Shannon, 1948) into the field of 

DOE and interpreted it as the amount of information retrieved from an experiment. 

Currin et al. (1988, 1991) then proved that the entropy criterion H selects the new 

experiment xi+1 (assuming a scalar input) as the one that maximizes the expected 

retrieved information due to the new experiment, i.e., 

xi+1 = arg max H(x1, x2, . . . , xi ; x)                                   (2.13) 

where (x1, x2, . . . , xi) are for the existing i experiments, and “arg max” denotes the 

optimal solution, e.g., xi+1, of the maximum entropy H problem. xi+1 is for the new 

experiment to be found by the method. 

Later, it was further proved (e.g., Shewry and Wynn 1987) that assuming normal 
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priors, this criterion is equivalent to maximizing the determinant “det” of the 

covariance matrix R as follows: 

xi+1 = arg max det(R)                                          (2.14) 

where R is (defined in Eq. 2.6) a ( ) ( )11 +×+ nn  matrix with each element calculated 

using (x1, x2, . . . , xi, xi+1). 

Using the maximum entropy design, the resulting design is almost symmetric with 

emphasize on the boundaries. For instance, Figure 2.8 shows a design D obtained using 

the maximum entropy design with 13 experiments in a two dimensional input space.  

2x

1x  
Figure 2.8 Maximum entropy design for 13 experiments 

Clearly, this approach uses no information from the response for sampling 

subsequent experiments, which makes it appropriate for initial design selection where 

no prior information is available. Moreover, the approach emphasizes selecting points 

in the input space where fewer experiments have been sampled. 

2.7 Measurement for Metamodel Accuracy 

 In order to assess a metamodel accuracy, a randomly selected set of test points is 

used and the Root Mean Squared Error (RMSE) and the Maximum Absolute Error 

(MAE) can be calculated for this set. 

The RMSE, which calculates the overall accuracy of a metamodel in the response 
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(or output) space, is obtained by: 
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where xi is an experiment in the testing sample, )(ˆ ixy is an estimated response for xi,  

)( ixy  is the actual response, and n is the number of the test points used. 

The MAE, which calculates the largest difference between a metamodel and 

corresponding actual response for all the test points, is obtained by: 

)()(ˆmax MAE ii xyxy −=                                    (2.18) 

where “max” denotes the maximum difference for the estimated response and actual 

response obtained for all the test points. 

In Chapter 5 and Chapter 6 of the dissertation, the quantities RMSE and/or MAE 

are used for the measurement of the accuracy for the obtained metamodels. Normalized 

values for the responses are used in calculating RMSE and MAE. Assuming that the 

lower bound and upper bound of a response is known (or known approximately), a 

normalized value (in a range of [0, 1]) for a response value (or its estimate) is obtained 

as follows: 

boundlower  - boundupper 
boundlower  -  valueresponse   valuenormalized =                      (2.19) 

Note that the quantities RMSE and MAE are obtained for each response metamodel 

separately, thus the multiple responses with different scales will not influence 

metamodel accuracy assessment. 

In the next chapter, the research thrust one, a new online metamodeling assisted 

optimization approach, is presented. 
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Chapter 3 Online Metamodeling for Fitness Evaluation 

3.1 Introduction 

A significant challenge in the applications of population based optimization 

methods to engineering design problems has been the high computational cost of these 

methods due to the large number of function calls required for these methods (Deb, 

2001). As discussed before, a common strategy to reduce the computational effort for 

such optimization methods is to use metamodeling techniques. Researchers have been 

quite active in developing models and methods that improve the efficiency of 

population based optimization methods in terms of the number of function calls 

(Papadrakakis et al., 1999; Farina, 2001; Simpson et al., 2001; Jin et al., 2002; Hong et 

al., 2003; Jin, 2005; Wang and Shan, 2007).  

The online metamodeling techniques are frequently used to reduce the number of 

function calls (Farina, 2001; Hong et al., 2003; Jin et al., 2002). Most of the online 

metamodeling approaches reported in the literature so far are focused on single-

objective optimization. The research on how to embed metamodeling within multi-

objective population based optimization methods remains sparse (Farina, 2001, 2002; 

Nain et al., 2003). Moreover, most of this type of approaches utilize neural network, 

which is well known to require a large number of function (simulation) calls (Simpson 

et al., 2001). Another unresolved issue in the current online metamodeling approaches 

is how to objectively decide when to switch to the metamodel during the optimization 

(Jin et al., 2001, 2002; Jin, 2005). Usually the switching between the original 

simulation model and the metamodel has been subjectively decided (Nain et al., 2003). 
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Finally, the fidelity of the metamodel may vary significantly during the optimization 

process and this can cause oscillation (Jin, 2005). 

In this chapter we develop a novel online metamodeling approach to address all of 

the above mentioned shortcomings. More specifically, a new online kriging 

metamodeling assisted fitness evaluation approach is presented. We use an objective 

criterion to determine whether a simulation or its kriging metamodel replacement 

should be used to evaluate points. In the proposed approach, the kriging metamodels 

for the simulation are built and adaptively improved within a population based 

optimization method (i.e., MOGA). The approach is general and requires no additional 

function calls prior to the start of the optimization procedure to build the kriging 

metamodels offline. The proposed criterion is developed based on the metamodel’s 

predicted error which can be easily obtained as a byproduct from kriging and without 

extra computation. 

The rest of the chapter is organized as follows.  In Section 3.2, the general 

framework for the online metamodeling approach is briefly introduced. In Section 3.3 

the details of the proposed online metamodeling approach, namely kriging 

metamodeling assisted fitness evaluation, are given. Examples and corresponding 

results are discussed in Section 3.4. Finally, in Section 3.5 the main observations for 

the proposed metamodeling based MOGA approach are summarized. 

A portion of this chapter was presented in Li et al. (2006b) and Li et al. (2007). 

3.2 Online Metamodeling Framework 

In online metamodeling based approaches, in the initial stages of a population 

based optimization method, rough metamodels are constructed. These metamodels are 
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then gradually improved as more simulation data becomes available.  

In Figure 3.1, a basic scheme for an online metamodeling approach during a single 

generation, ith population, of a population based optimization method is given. In this 

chapter, MOGA (See, e.g., Section 2.4.1) is used as the population based optimization 

method. 

Populationi-1 Populationi

Metamodel

Simulation

Estimated
Responses

Actual
Responses

Fitness

Start

(i-1)th
Population

ith
Population

(i+1)th 
Population

 
Figure 3.1 Online metamodeling assisted fitness evaluation in one generation 

It can be seen in Figure 3.1 that the key issue is to determine a condition for using 

metamodels, during the optimization procedure, to partially substitute simulations. In 

other words, metamodeling is used to estimate the fitness for some points in the ith 

population, and simulations are used for other points.  

3.3 Kriging Metamodeling Assisted Fitness Evaluation 

The basic idea behind the proposed approach for metamodeling assisted fitness 

evaluation is to ensure (as much as possible) that in each generation the non-dominated 

set obtained using metamodels remains the same as the one obtained using the 

simulation. As discussed in Section 2.3, fitness values can have some variances 
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without changing the dominance status. Thus, the challenge of using a metamodel or 

simulation can be tackled by determining how big the variance for a fitness value can 

be so that the dominance status will not be changed. Also, in kriging metamodeling a 

prediction interval (i.e., as denoted in Eq. (2.12)) can be obtained for each estimated 

response. That is, the variance of a fitness value can be obtained when kriging 

metamodeling is used. In this regard, the kriging is used as the metamodeling 

technique for the proposed approach. 

3.3.1 Minimum of Minimum Distances (MMD) 

In any generation, except in the initial population where all points are evaluated for 

their fitness values using the simulation, the kriging metamodel can be used to estimate 

the fitness values of the points. Based on these predicted values, the dominance status 

can be determined as follows in Figure 3.2. 

 f2

f1 

a

b

c

d

j

i

MMD

min

min  
Figure 3.2 MMD in objective space 

As shown in Figure 3.2, points {a, b, c, d} form the estimated non-dominated set, 

while points {i, j} form the dominated set. Then, the current population is divided into 

two sets, i.e., estimated dominated set and estimated non-dominated set. Note that this 

partitioning is based on the fitness values obtained from the kriging metamodel and no 



 31

simulation calls (actual calls) are used at this stage. Furthermore, the quantity MMD is 

defined in the objective space as the minimum distance between all pairs of non-

dominated points and dominated points as described next.  

After the points in the current population are split into two sets: Estimated non-

dominated and estimated dominated points, MMD in Figure 3.2 can be calculated using 

the follows equation: 

)pointsdominated(   ,              
points)dominated-non(  ,,,              

})()(min{
2

jiq
dcbap

qfpfMMD

=
=

−=

          (3.1) 

where the norm is defined in the f-space (f1,  f2, …, fM). In order to connect MMD with 

prediction intervals of the kriging metamodel for each objective (recall Section 2.5), 

MMD is projected along each objective function axis to obtain 
mf

MMD , m = 1, ..., M, 

as shown in Figure 3.3: 
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Figure 3.3 Projection of MMD 

where 
1f

MMD  is the MMD projection along 1f , and )(aI P  and )( jI P  are prediction 

intervals for points a and j, separately.  
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3.3.2 Relation between MMD and Prediction Interval  

As mentioned before, the estimated response from a kriging metamodel has a 

variance that can be converted to a prediction interval. As long as the values of a 

prediction interval do not affect the domination status of two points, the kriging 

metamodel outputs are considered accurate estimates for the true responses for these 

two points. Hence, the criterion that relates MMD and prediction interval can be 

defined by examining whether or not the domination status is changed when kriging 

estimates are used. If the domination status is changed, then the points that contribute 

to this change are evaluated using the original simulations. Those points that do not 

contribute to the change of the domination status can be estimated using kriging 

metamodels. 

To obtain the relation between MMD and the prediction interval, for simplicity, we 

examine the situation in one dimension in the objective space (e.g., along objective 

function f1 as shown in Figure 3.3). Because the prediction interval is symmetrical, we 

only need to examine one half of the interval for each point involved in the evaluation. 

It can be observed from Figure 3.3 that as long as the sum of half prediction intervals 

for points a and j do not exceed the corresponding MMD projection, the domination 

status of a and j along objective f1 will not be changed even if the kriging estimates for 

both points are used. This relation between MMD and the prediction interval can also 

be expressed by the following condition: 

1
2)()( fpp MMDjIaI ≤+                                                  (3.2) 

Thus, Eq. (3.2) is used as the condition to determine whether kriging metamodels or 

simulations should be used for fitness evaluation. It can be seen from Eq. (3.2) that if 
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the value of the half of the prediction interval of a point is greater than MMD, this 

point must be evaluated using the simulation. Note that this relation should hold for 

any point that can be estimated using kriging metamodels so that the domination status 

of all points in the current population is unchanged. For those points that can be 

estimated using kriging metamodels, the kriging-based estimated responses are 

considered to be accurate enough to ensure a correct domination status in the current 

population. However, it is going to require a lot of computation efforts if all the points 

in the current population are compared pair wise according to Eq. (3.2). Thus, an 

algorithm that can reduce the computation effort is proposed in the next section. 

3.3.3 Shrinking, Sorting, and Selecting Algorithm 

The aforementioned condition, Eq. (3.2), can be implemented in a three-stage 

procedure: Shrinking, sorting, and selecting stages. This procedure is applied in each 

generation of the proposed approach to determine the number of points that can be 

estimated using kriging metamodels. A description of the three-stage procedure 

follows. To simplify the exposition, we consider a single-input or single variable (x) 

case. The procedure can be readily extended to a multi-input case, as demonstrated by 

the examples later. 

In the first stage (i.e., the shrinking stage), points with zero prediction interval pI  

and points with a large value of the prediction interval (i.e., points with prediction 

interval greater than twice the value of MMD, recall Eq. (3.2)) are removed from the 

population. Note that the points with zero prediction have already been evaluated while 

those with a large value of the prediction interval are to be evaluated by the simulation. 

After the removal of these two kinds of points, the size of the population becomes 
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smaller than the original population. We refer to this reduced size population as a 

“shrunk population”. We define the population size as n and the shrunk population size 

as ns. Since some points in the current population are inherited, the number of points 

with a zero prediction interval is always greater than zero. That is, ns < n, and we will 

work on a set with fewer points than the original population. 

In the second stage (i.e., sorting stage), the points in the shrunk population are 

sorted based on their prediction interval values, from large to small. In other words, the 

first point 1x  in the set has the largest value of the prediction interval )( 1xI p  while the 

last point 
snx  has the smallest value of the prediction interval )(

snp xI , as shown in the 

following in Eq. (3.3). 

0)(...)(2 11
>≥≥≥

snppf xIxIMMD                               (3.3) 

where ix  is an point in the sorted shrunk population, i = 1,…,ns.  

In the last stage (i.e., selecting stage), the points in the sorted shrunk population are 

examined, beginning from the first point x1, to determine whether or not there exists a 

point xi that satisfies the following condition, which is derived from Eq. (3.2): 

1
2)()( 1 fipip MMDxIxI ≤+ +                                         (3.4) 

If the condition in Eq. (3.4) is not satisfied for a point ix , then ix  is removed from the 

sorted shrunk population and evaluated using the simulation. On the other hand, if the 

condition in Eq. (3.4) is satisfied, then following Eq. (3.3) we have:  

)()(...)()()()(2 121 −+++ +≥≥+≥+≥
snipipipipipip xIxIxIxIxIxIMMD       (3.5) 

which implies that the point ix  as well as all remaining points in the sorted shrunk 

population meet the condition in Eq. (3.2) and they can be estimated using the kriging 
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metamodel for their fitness values. This three-stage procedure is presented in detail in a 

flowchart in Figure 3.4, where N is the counter for the original population (N = 1, …, 

n), and sN  is the counter for the shrunk population ( sN = 1, …, ns). 
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Figure 3.4 Shrinking, sorting, and selecting algorithm 

A step-by-step description of the algorithm is given as follows. 

Step 1: Initialize counters: 1,0,1 === ss NnN .  

Step 2: Examine the value of prediction interval )( Np xI  of the Nth point in current 

generation. 

Step 3: If the value of prediction interval )( Np xI  for the Nth point is zero (i.e., this 

point has been evaluated using simulation), go to Step 8. 

Step 4: If the value of prediction interval )( Np xI  for the Nth point is greater than 
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2MMD (i.e., this point has a large variance and needs to be evaluated using 

simulation), go to Step 5.  

Step 5: Evaluate this point using simulation, and go to Step 8. 

Step 6: If conditions in Step 3 and 4 are not met, augment this point into the shrunk 

population. 

Step 7: Set ns = ns + 1, go to step 8. 

Step 8: Check whether all points in current population are examined: if yes, go to Step 

10; otherwise, go to Step 9. 

Step 9: Set N = N + 1, and repeat Step 3 to Step 7 for the Nth point. 

Step 10: Form the shrunk population with points obtained from the previous steps. 

Step 11: Examine whether there is any point in the shrunk population: If yes, go to 

Step 12; otherwise, end the procedure (i.e., all the points with a non-zero 

prediction interval are to be evaluated using simulation). 

Step 12: Sort the points in the shrunk population by the value of the prediction interval 

(from large to small) to obtain a sorted shrunk population. 

Step 13: Examine the Nsth point with the criterion described in Eq. (3.2): If satisfied, it 

means this point as well as remaining points in the sorted shrunk population can 

be estimated using kriging metamodels; otherwise, go to Step 15.  

Step 14: Form the set of points that can be estimated using kriging metamodels. 

Step 15: Evaluate the Nsth point using simulation. 

Step 16: Check whether all the points in the sorted shrunk population have been 

examined: If yes, end the procedure; otherwise, go to Step 17. 

Step 17: Set Ns = Ns + 1, and go back to Step 12. 
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This procedure is repeated for all objective functions in the simulation. If a point is 

selected to be evaluated using kriging for all objective functions, then that point is 

estimated using kriging; otherwise, that point is evaluated using the simulation. 

3.3.4 Stopping Criterion 

In order to compare the performance of the proposed approach with a conventional 

MOGA, a stopping criterion is defined as follows. This stopping criterion has two 

parts, and both parts need to be satisfied to stop the optimization procedure:  

1) When the number of non-dominated points is more than some pre-specified 

percentage of the population size (e.g., 80%) and becomes steady, it can be 

concluded that the algorithm has converged or is near the Pareto set.  

2) When the iteration history, i.e., the curve representing the number of function calls 

versus the number of generations becomes flat, it can be concluded that the 

algorithm has been converged. 

Note that the second part of the stopping criterion is not used for the conventional 

MOGA while the first part is. This is because in the conventional MOGA the 

simulation is used for any newly generated points in each generation and thus the 

number of function calls always increases as the generation number increases (see 

Figure 4.12). 

3.3.5 Steps for the Kriging Metamodeling Assisted MOGA (or K-MOGA) 

In the proposed approach, the points in a population, other than those in the initial 

population, can be divided into two groups. Those points whose simulation response 

can be estimated using kriging metamodels and the remaining points whose response 
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are to be evaluated using the simulation. Again, the fitness values for all points in the 

initial population are calculated by running the simulation. Kriging metamodels are 

constructed and updated based on all function calls. Since the initial points may be far 

away from the Pareto frontier or they may not sample the design space well, the initial 

kriging metamodels may not be sufficiently accurate. However, these kriging 

metamodels are adaptively improved as the algorithm evolves and more function calls 

are used. During the early generations, the percentage of points for which the kriging 

metamodels are used is small (e.g., this percentage is zero for the initial population). 

However, as more observed points are added to the kriging metamodel, the predicted 

error of the unobserved points is going to gradually improve and the percentage of the 

points for which kriging metamodels is used is going to increase as the subsequent 

generations are evolved. 

Note that, according to the criteria in Eq. (3.4), points with large variance values 

are required to be evaluated using the simulation and such points will be used to 

improve the accuracy of the kriging metamodels. Actually, all evaluated points 

contribute to improve the accuracy of the kriging metamodels, no matter whether they 

are in the current population or previous populations. Thus, the kriging metamodel 

accuracy will always improve during the optimization procedure. 

Figure 3.5 shows a one generation scheme for the proposed kriging assisted fitness 

evaluation approach in online approximation. A conventional MOGA (see, e.g., 

Section 2.4.1) is used as the population-based optimization framework, as shown in the 

dashed block on the left hand side in Figure 3.5. Compared to the conventional 

MOGA, there is an addition in the proposed approach. That is, there is an online 
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metamodeling assisted fitness evaluation, as shown in the dashed block on the right 

part in Figure 3.5. We denote this MOGA with kriging metamodeling assisted fitness 

evaluation as K-MOGA. 
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Figure 3.5 Flowchart of K-MOGA in one generation 

The steps for the proposed approach are as follows: 

Step 1: Start with generating an initial population. Simulation is used to calculate the 

responses (i.e., objective/constraint functions) for all points in the initial 

population and these are used to build the initial kriging metamodels, each for 

an objective/constraint function. The non-dominated (or elite) points in the 

previous population are identified based on their fitness values. 

Step 2: The algorithm evolves into the next generation. The non-dominated (or elite) 
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points in the previous population are inherited into the next generation. The 

remaining (but not the inherited) points are generated by the crossover and 

mutation. 

Step 3: Apply the current kriging metamodels to predict response values and the 

associated variance for the points in the current population; identify the 

estimated non-dominated and estimated dominated points and calculate MMD 

for the current population. 

Step 4: Obtain the prediction interval for each point and apply the sort, shrank, and 

select algorithm to split the current population into two groups: Those points 

that can be estimated using kriging metamodels and those that need to be 

evaluated using simulation. 

Step 5: Calculate the Fitness value of each point based on its estimate (by kriging 

metamodels) or evaluation (by simulations), and obtain the non-dominated 

points in the current population. Note that function calls are saved in this step, 

since some points are estimated using metamodels instead of simulation. 

Kriging metamodels are also updated based on the newly available function 

calls. 

Step 6: Check the stopping criterion. Check the stopping criterion described in Section 

3.3.4. If both stopping parts in the stopping criterion are satisfied, stop the 

procedure; otherwise, go back to Step 2. 

In the next section, several numerical and engineering examples are used to 

demonstrate the applicability of the proposed approach. Discussions are also carried 

out based on the obtained results. 
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3.4 Examples and Results 

In this section, we use five numerical and engineering examples with different 

degrees of difficulty to illustrate the applicability of the proposed approach. As a 

typical example of our results, we use the first example, a simplified version of ZDT2 

(e.g., Deb, 2001), to present a comparison of the conventional MOGA and the 

proposed approach. Next, the results for a real-world engineering example (Rolander et 

al., 2005; Ramb and Joshi, 2005) are presented. Finally the comparison results for the 

remaining three examples selected from the literature (Deb, 2001) are presented.  

In order to compare the conventional MOGA and the proposed approach, both 

approaches were run for 30 times for each example. The values of other genetic 

parameters are selected as follows. For the convergence, the number of non-dominated 

points is limited to be not more than a pre-specified percentage of the population size 

(i.e., 70% of the population). The remaining points are offspring points that are 

produced by genetic operations such as crossover and mutation. Such a strategy 

ensures that a pre-specified percentage of points in the population (i.e., 30%) are 

generated by genetic operations. For offspring points, we use a probability of 0.95 for 

crossover and a probability of 0.05 for mutation. The same settings are used for all 

examples. 

Note that the proposed kriging metamodeling assisted fitness evaluation approach 

is implemented in a MOGA framework for the rest problems of this chapter. Thus, as 

defined in Section 3.3.5, we use “K-MOGA” to denote the proposed approach and use 

“MOGA” to denote the conventional MOGA in the figures and tables in the rest of the 

chapter. 
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3.4.1 ZDT2 Example 

We applied the conventional MOGA and the proposed approach to a simplified 

ZDT2 problem (Deb, 2001). This example has two objective functions, no constraint, 

and three variables, as given in Eq. (3.6). 
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The true Pareto optimal solutions for this problem are: x1 being any point within 

the range [0, 1], x2 = 0, and x3 = 0, with the true Pareto frontier as shown in Eq.(3.7). 
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The Pareto frontier is non-convex as shown in Figure 3.6. For this example, two 

separate kriging metamodels (for the two objectives) are built and adaptively improved 

to predict the response for the objective functions values. It can be seen that the results 

from K-MOGA are in good agreement with MOGA and the true Pareto frontier.  
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Figure 3.6 Pareto solutions for the ZDT2 example 
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Figure 3.7 shows the number of function calls for 30 different runs (to account for 

the stochastic property of MOGA). As shown in this figure, a MOGA run with the least 

number of function calls (i.e., 231 in run 15) requires more calls than the new approach 

run with the maximum number of function calls (i.e., 197). The mean value and 

standard deviation (STD) for all 30 runs for both the conventional MOGA and new 

approach are shown in Table 3.1.The performance of the conventional MOGA and the 

proposed K-MOGA approach for all examples in terms of function calls are presented 

in Table 3.1. As shown in that table, on the average, the K-MOGA can save over 50% 

in terms of the number of function calls when compared to the conventional MOGA. 

For most of the test examples, standard deviations in the proposed approach are also 

less than those in the conventional MOGA. 
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Figure 3.7 Number of function calls vs. run no. for the ZDT2 example 

The results for the ZDT2 example show that the proposed approach saves more 

than 60% of the number of function calls on the average compared to the conventional 

MOGA. 

3.4.2 Cabinet Example 

The optimization of a fully enclosed vertical cabinet containing ten point blade 
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server racks is selected as the last engineering test example. The simulation model for 

this example was developed by Rolander et al. (2005). The cabinet geometry is shown 

in Figure 3.8. 

 

Figure 3.8 Air-cooled cabinet model design, courtesy of Rolander et al. (2005) 

This model has two isoflux blocks that act as flow obstructions, representing a dual 

processor blade server. Both blocks have a constant heat generation rate Q, which is 

dissipated through convection to the air flowing through the server. The cabinet is 

divided into three sections: a, b and c, corresponding to the lower two, middle three, 

and upper five servers as shown in Figure 3.8. The quantities Qa, Qb, and Qc denote the 

heat generation of each server in the respective cabinet section. In each section, all 

blocks have the same constant heat generation rate Q. Air flow with an inlet velocity is 

used to cool the cabinet as shown in Figure 3.8. A two-dimensional heat transfer 

simulation model has already been built for this problem and reported in the literature 

(Rolander et al., 2005; Ramb and Joshi, 2005). 
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In this thermal optimization model, inlet air velocity Vin and heat generation Qa, Qb, 

and Qc are considered as design variables. The output of the simulation model is a 10-

element vector of temperatures, each for one server. The design objectives are to: 1) 

minimize the maximum server temperatures, and 2) maximize the sum of total heat 

generations. The optimization problem is defined in Eq. (3.8). The constraint in this 

optimization problem is handled using a metamodeling assisted constraint method 

introduced in Li et al. (2006b). 
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The optimization results for this cabinet problem are shown in Figure 3.9 and in 

Table 3.1. In this problem, each function call generates the sum of Q and the maximum 

of Tj, which are used in both objective and constraint functions. It is observed that the 

number of function calls in the proposed approach is significantly fewer than the 

conventional MOGA, while the optimal solutions as shown in Figure 3.9 are 

comparable. 

The results in Figure 3.9 also show several interesting and unexpected features.  It 

is seen that the maximum total power dissipation with this example air-cooled 

geometry is limited to about 1800W, beyond which the maximum temperature 

specification cannot be met.  It is extremely useful to deduce such limits for various 

cooling solutions, so that one could determine the overall thermal management 
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approach for a given total cabinet power dissipation.  Also, due to the rather flat shape 

of the Pareto Front in Figure 3.9 it is seen that proper placement of servers at the 

higher end of total powers is very important in reducing temperatures. 
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Figure 3.9 Pareto solutions for cabinet problem using MOGA and K-MOGA 

3.3.6 Additional Examples 

In this section, three additional examples: ZDT1, ZDT3, and Gear-Train from Deb 

(2001) are presented to demonstrate further applicability of the proposed approach. 

These three test problems have different degrees of difficulty and characteristics. For 

instance, the Pareto frontier for ZDT3 is disconnected. And, the Gear Train test 

example has integer design variables. The formulations of these test examples and the 

comparison results as obtained from the proposed approach, the conventional MOGA, 

and the true Pareto frontier if the closed form solution is available, are presented as 

follows: formulations of the examples are given in Eq. (3.9), Eq. (3.10) and Eq. (3.11); 

Pareto frontiers are given in Figure 3.10, Figure 3.11 and Figure 3.12. 
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Figure 3.10 Pareto frontiers for ZDT1 example 

ZDT3 Example: 
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Figure 3.11 Pareto frontiers for ZDT3 example 

Gear-Train Example: 
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Figure 3.12 Pareto frontiers for Gear-Train example 

The performance of the conventional MOGA and the proposed K-MOGA approach 

for all examples in terms of function calls are presented in Table 3.1. As shown in that 
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table, on the average, the K-MOGA can save over 50% in terms of the number of 

function calls when compared to the conventional MOGA. For most of the test 

examples, standard deviations in the proposed approach are also less than those in the 

conventional MOGA. 

Table 3.1 Comparison of MOGA and Proposed approach for test examples 

Number of function calls 
Conventional MOGA K-MOGA 

Example Pop-size % average 
reduction in # of 

function calls  
30 runs Mean STD 30 runs Mean STD 

ZDT1 30 57% [293-594] 398 51 [120-258] 172 38 
ZDT2 30 63% [231-561] 417 73 [134-197] 156 12 
ZDT3 30 50% [340-616] 485 69 [176-307] 243 34 

Gear-Train 50 50% [347-633] 471 78 [159-323] 234 39 
Cabinet 30 42% [810-1125] 998 75 [434-705] 584 75 

3.4 Summary 

A new kriging metamodeling assisted fitness evaluation approach in online 

approximation is presented in this chapter. In the proposed approach, the kriging 

metamodeling is embedded within a conventional MOGA. Compared to a conventional 

MOGA, the proposed approach reduces the number of function calls by evaluating 

some points in the population via kriging metamodels instead of the simulation. We 

have introduced the concept of “minimum of the minimum distances” (MMD) and 

derived its relation with the predicted error that is easily obtained from kriging. This 

criterion is used to identify those points in the population that can be evaluated using 

kriging metamodels. The identified points are those that do not change the estimated 

dominance status in the objective space for the current generation. For other points in 

the generation, the responses are obtained from the simulation and used to adaptively 

update the next generation kriging metamodels so that more points can be evaluated by 
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the updated kriging metamodels and thus an additional number of function calls can be 

saved in subsequent generations.  

In the proposed approach, the metamodel may be of low fidelity and it may even 

produce false optima, which is one of the general concerns in using a metamodel, can 

be avoided. The proposed criterion is objective rather than subjective and can be 

applied to other population-based optimization methods using different types of 

metamodels if the measure for predicted error is available. The main advantage of 

using kriging metamodeling is that the predicted error of the estimated response can be 

obtained without extra computational effort.  

Five examples of both numerical and engineering types and with different degrees 

of difficulty are used to demonstrate the applicability of the proposed approach. The 

results show that the proposed is able to achieve comparable convergence and diversity 

of the Pareto frontier as to that from a conventional MOGA while at the same time to 

significantly reduce the number of function calls.  

One of the characteristics of the proposed approach is that those points inherited 

from previous generations with incorrectly estimated kriging variance are most likely 

to be removed from the population by a more accurate kriging metamodel. Therefore, 

the side effect of such inherited points can be diminished when the kriging metamodels 

are updated adaptively in consecutive generations. In essence, the proposed approach 

has a self-correcting mechanism in terms of identifying proper points for kriging 

metamodeling to estimate. 

Finally, it should be noticed that the relation between MMD and the predicted error 

of kriging for the objective functions is devised based on a worst case scenario and 
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thus the proposed approach can be considered to be conservative. Also, the points that 

are generated by GA operations, evaluated by the simulation and used in kriging 

metamodel construction can affect the accuracy of the metamodel. By devising a less 

conservative criterion and an improved sampling strategy for kriging, it should be 

possible to further improve the efficiency of the proposed approach in terms of the 

number of function calls. 

In the next chapter, the research thrust two, a new adaptive DOE method in online 

metamodeling, is presented.  
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Chapter 4  Adaptive DOE in Online Metamodeling 

4.1 Introduction 

As discussed in Chapter 3, fitness estimation in online metamodeling is a popular 

and efficient strategy for reducing the number of function calls in the optimization 

process. However, in using such a strategy, the number of function calls can only be 

reduced during each generation. Another way of saving the number of function calls is 

to reduce the total number of generations required for convergence. Many approaches 

were developed in the literature that use metamodeling for generating some new design 

points (Anderson and Hsu, 1999; Abboud and Schoenauer, 2001; Rasheed, 2000; 

Rasheed et al., 2005; Li et al., 2007) to speed up the convergence. Such approaches 

approaches actually fall under DOE methods, since new points are selected according 

to some predefined criterion. 

The use of metamodeling for fitness evaluation can increase the risk of generating 

false optima (Jin, 2005), especially when the metamodel is not accurate in the early 

generations of a population based optimization method (e.g., MOGA in this 

dissertation). This risk of generating false optima is avoided when the metamodel is 

used during the generation or reproduction of new design points (Shan and Wang, 

2005). However, the use of metamodeling during reproduction cannot reduce as many 

of the function calls as it does in the fitness evaluation. Moreover, all previous 

metamodeling methods for reproduction modify the operators in a population based 

optimization method (e.g., crossover and mutation in MOGA) and thus lack the ability 

to directly estimate the Pareto frontier. Finally, the savings obtained in the number of 



 53

function calls using metamodeling for fitness evaluation and reproduction are 

independent of each other, since such savings are obtained during different stages of a 

generation in a population based optimization method (e.g., MOGA). For this reason, 

an integration of metamodeling with both fitness evaluation and reproduction should 

reduce the number of function calls significantly more than previous population based 

optimization methods. Such an approach has not been reported in the literature and is 

the subject of the present chapter. 

The population based optimization method used in this chapter is a conventional 

MOGA (recall Section 2.4.1), thus the overall approach with the DOE and fitness 

estimation is denoted as an improved MOGA in the rest of this chapter. In the 

improved MOGA, the approach discussed in Chapter 3 is used for determining whether 

metamodeling should be used for fitness evaluation for some of the design points. The 

improved MOGA also involves a newly developed, adaptive DOE approach, with a 

better sampling of the design space, which creates a portion of the design points for the 

MOGA.   

This proposed improved MOGA has several advantages over previously reported 

metamodeling-assisted MOGA approaches. First, in our method the metamodeling is 

used only to estimate the response for design points whose response error is small. 

Previous methods, however, use metamodeling for points whose response error might 

be large. Thus, in our method, the average metamodel accuracy is not as important as it 

is for previous online metamodeling methods. Second, our improved MOGA uses 

metamodeling for both fitness evaluation and reproduction, which helps to reduce the 

number of function calls significantly. This is because the use of metamodeling in the 
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fitness evaluation reduces the number of function calls in each generation of a MOGA, 

while its use in reproduction reduces the total number of generations. Finally, the 

improved MOGA uses objective measures for using metamodeling in the fitness 

evaluation and reproduction, while previous approaches use either subjective measures 

or do not have a predictive ability for the Pareto frontier. 

The rest of the chapter is organized as follows. The overall framework for the 

improved MOGA is introduced in Section 4.2. Details of the proposed adaptive DOE 

method are given in Section 4.3. In Section 4.4, the stopping criterion and the steps for 

the improved MOGA are outlined. In Section 4.5, the results of numerical and 

engineering examples are presented. Key conclusions are provided in Section 4.6. 

A portion of this chapter was presented in Li et al. (2007). 

4.2 Framework for the Improved MOGA 

Compared to the conventional MOGA, there are two additions in the proposed 

improved MOGA. These additions are (i) online metamodeling-assisted fitness 

evaluation, and (ii) adaptive DOE-assisted reproduction. The first addition has been 

presented in Chapter 3. However, the focus of this chapter is on a newly developed, 

adaptive DOE technique that is used as part of a scheme for reproduction of new 

design points. Another focus is on the integration of the two additions within the 

conventional MOGA. 

Figure 4.1 illustrates the three main components in the improved MOGA, as shown 

inside the dashed blocks of Figure 1 and labeled as components 1, 2, and 3. These 

components are: 1. Conventional MOGA, 2. Metamodeling-assisted fitness evaluation, 

and 3. Adaptive DOE-assisted reproduction. Component 1 essentially summarizes the 
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basic steps in a conventional MOGA (recall Section 2.4.1). Component 2: 

Metamodeling assisted fitness evaluation, outlines the scheme for fitness evaluation 

when metamodeling used, as presented in Chapter 3. 

Kriging metamodel

Error acceptable
for a point?

Simulation

Fitness evaluation

Predicted optima

Some points
with large uncertainty

Yes No

Code designs

Initial population
of points

Simulation

Fitness evaluation

Non-Dominated    Dominated
points             points

Non-Dominated    Dominated
points             points

Next population of designs
Elite points    Offspring  DOE points

Next population of designs
Elite points    Offspring  DOE points

2. Metamodeling assisted
fitness evaluation

3. Adaptive DOE
assisted reproduction

Inheritance Crossover
& mutation

Stop?Stop? No

EndEnd

Start

Yes

1. Conventional MOGA
 

Figure 4.1 The framework for the improved MOGA 

Component 3, the adaptive DOE-assisted reproduction, shows a new adaptive DOE 

method that is proposed for generating a portion of the design points used in the next 

population. Note that as shown in Figure 4.1, the kriging metamodels constructed and 

updated by Component 2 are also used to obtain the predicted optima. Some 

unobserved design points in the predicted optima are then selected and added to the 

next population as the DOE points. This new DOE method is described next in Section 

4.3. 
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4.3 Adaptive DOE Assisted Reproduction 

As discussed before, the DOE points are selected from the predicted optima. The 

points in the predicted optima are obtained by applying the conventional MOGA to an 

optimization model in which the objective and constraint functions are replaced by 

their kriging metamodels. Some of the points in the predicted optima might have been 

previously generated as elite points, offspring points, or DOE points. Moreover, a 

subset of these points might have been observed in the previous generations.  

The DOE points selected from the predicted optima are those that have a large 

estimated error. These DOE points are observed, and the actual values of their 

responses are used to update the kriging metamodel. In this way the estimated error of 

other unobserved design points around the selected points can be reduced. In addition, 

the predicted optima can eventually become a good approximation to the Pareto 

frontier. The approach has an adaptive ability: the predicted optima gradually and 

adaptively approach the Pareto frontier as the MOGA converges.  

Next, we must determine which points and how many of the points from the 

predicted optima should be selected. In the next sub-section, a constrained maximum 

entropy design method is proposed to solve this selection problem. 

4.3.1. DOE Points: Selection by Constrained Maximum Entropy Design 

The DOE points are selected by a constrained maximum entropy design approach. 

This approach is an extension to the original unconstrained maximum entropy design 

approach (recall Section 2.6).  

An important property of the original unconstrained maximum entropy design 

method is that the newly selected design point is located far from all the observed 
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design points. This property is exactly what we are looking for in selecting the DOE 

points from the predicted optima. In addition, we still need a threshold for determining 

whether the selected DOE points have a large estimated error. A design point is 

considered to have a large estimated error if this error can change the domination status 

of this point. For example, as shown in Figure 4.2, the corresponding estimated error 

intervals for the two design points a and b, with a presumed confidence level, have an 

overlap along the objective function f1 axis. 

f2

f1

as2±

a
b

Point in predicted optimaPoint in predicted optima

Projected distance
for f1

bs2±

 
Figure 4.2 Determination of a large estimated error 

Due to this overlap, there is a possibility that one of these points can become a 

dominated point even though it belongs to the predicted optima. Thus, either point a or 

point b or both could be selected as DOE points. Figure 4.3 represents a situation in 

which point a is dominated by point b, when both of their response estimates vary 

within the error intervals. The solid points in the figure are used to represent the 

response estimates due to uncertain variations. In this situation, as shown in Figure 4.3 

the domination status of point a has been changed (compared to Figure 4.2) and thus 

the point will have to be evaluated (or observed). 
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Figure 4.3 Change of the determination status 

The condition that determines whether a point has a large estimated error is stated, 

in general, as follows: 

( ) mpp fbIaI for  distance projected)()(
2
1

>+                       (4.1) 

where a and b are the two adjacent points in the current predicted optima along at least 

one fm with } ..., ,2 ,1{ Mi ∈ , )(aI p  denotes the predicted interval (Eq. (2.12)) for the 

estimated response for the point a. Therefore, a new constrained maximum entropy 

design approach is proposed in which the DOE points are selected from the predicted 

optima one point at a time so that: 
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where U is the set of unobserved points in the current predicted optima, R and i follow 

the same definition as in Section 2.6, and 'x  is an adjacent point to 1+ix  in the current 

predicted optima. Note that if 'x  is an observed point and the constraint in Eq. (4.2) is 

violated, then the next unobserved point in the predicted optima will be used as 'x . 
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4.3.2. DOE Points: Selection Steps  

The steps in the DOE approach, which is an adaptive DOE assisted reproduction 

approach, are presented in the flowchart of Figure 4.4. 

Conventional MOGA

Predicted optima
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Each other and existing points
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Elite points     Offspring  DOE points
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Optimization model
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Run simulation

Obtain/update subset of
points with large error

Select one DOE point using
maximum entropy deign

# of such points > 0

Yes
No

Previous step

Next step

Next step

Previous step

Collect
DOE points

 
Figure 4.4 Steps for adaptive DOE assisted reproduction 

As shown in Figure 4.4, from the left, beginning from the kriging metamodel, the 

optimization model is constructed such that all objective and constraint functions are 

replaced by their kriging metamodels. Next, the conventional MOGA is used to solve 

this optimization model. The result is a set of optimum solutions, called predicted 

optima. Next, the constrained maximum entropy design method is used to select some 

points from the predicted optima that are far from each other and existing design points 

(as shown in the dashed box in Figure 4.4), which are then augmented as the DOE 

points to the next population. 

The steps inside the dashed block to the right of Figure 4.4 work as follows. First, 

based on the current kriging metamodel, we identify a subset of points from the 

predicted optima that have a large error (see Eq. (4.2)). If this is the first iteration for 

the steps in the dashed block, we call the obtained subset of points the “first iteration 
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subset.” We call subsequent iterations “updated subsets.” Next, we check the stopping 

criterion to see whether this set is empty. There can be two situations when the set will 

be empty. One situation is when the first iteration subset is empty, which means that all 

points in the predicted optima have a small error. In this case, we go to the “Next step” 

outside the dashed block without a DOE point. The other situation is when an updated 

subset is empty after several iterations within the dashed block. In this case, in every 

iteration before the current iteration, a DOE point has already been selected, and all of 

these points are collected and sent to the “Next step.” Note that all of the sampled (or 

DOE) points are evaluated one at a time using the simulation, and the kriging 

metamodel is updated accordingly. In this way, it is likely that the points which 

previously had a large error will have their error reduced once the kriging metamodel 

has been updated. As a result, except for the one DOE point that is selected in the last 

iteration, an updated subset can have fewer points than the last updated subset. 

Eventually the updated subset becomes empty, which ends the steps inside the dashed 

block. 

4.4 Improved MOGA  

In this section, the steps for the improved MOGA are given. The stopping criterion 

used in the improved MOGA is similar to that in K-MOGA of Chapter 3, except that 

when the number of non-dominated points is reached to more than 70% (it was 80% in 

K-MOGA), it can be concluded that the algorithm has converged. The change of this 

percentage is due to the fact that the new points are generated by DOE, inheritance, 

crossover and mutation in the approach in this chapter, while there was no DOE in the 

approach in Chapter 3.  
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4.4.1 Overall Procedure for the Improved MOGA 

The detailed steps for the proposed improved MOGA approach are given as 

follows, including the initial and main steps. 

Initialization Step: The design points are coded in a binary form. An initial population 

of design points is created randomly. Simulation is used to calculate the responses (i.e., 

for the objective and constraint functions) for all design points in the initial population, 

and these points are used to build initial kriging metamodels, each for an 

objective/constraint function. 

Main Steps: 

Step 1: Kriging metamodel updating and fitness evaluation. The kriging 

metamodel is updated for the current population of design points. The responses for 

design points that have an acceptable estimated error in their response are 

evaluated/updated by the kriging metamodels. The remaining design points in the 

population are evaluated by the simulation. The fitness of all design points is evaluated 

using a non-dominated sorting algorithm (Deb, 2001).  

Step 2: Non-dominated/dominated design points and the GA operations. The 

non-dominated and dominated design points are determined. The non-dominated 

design points are inherited by the next population to form the elite points. The GA 

operations of crossover and mutation are applied to non-dominated and dominated 

design points to create the offspring design points for the next population. 

Step 3: DOE points. Based on the current kriging metamodels, the adaptive DOE-

assisted reproduction is performed to obtain the DOE points (recall Figure 4.1 and 

Figure 4.4). DOE points are augmented to the next population. Thus, the next 
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population contains design points generated by MOGA operations as well as the DOE 

points. 

Step 4: Stopping criterion. If both parts (recall Section 3.3.4) of the stopping 

criterion are satisfied, the algorithm is stopped; otherwise, the algorithm continues to 

Step 1. 

4.5 Examples and Results 

Five examples are used to demonstrate the proposed approach. The first example is 

an engineering example (i.e., the distillation column design example) with a simulation 

model for which explicit (or closed form) functions are not available. The other four 

examples are numerical or engineering type with explicit objective functions, which 

were also been used in Chapter 3. The conventional MOGA, the K-MOGA, and the 

improved MOGA are applied to these examples. 

For convergence of the conventional MOGA, the number of non-dominated design 

points inherited is set to be 70% of the population. We use a probability of 0.95 for 

crossover and 0.05 for mutation. For the improved MOGA, the total number of the 

inherited and DOE points do not exceed more than 80% of the population. Likewise, 

K-MOGA, the total number of the inherited and DOE points does not exceed more 

than 80% of the population. This is to ensure that the percentage of the design points 

from crossover and mutation is not less than 20%, so that the stochastic property of 

MOGA is preserved. 

4.5.1 Distillation Column Design Example 

A distillation column (or tower) is a unit used to separate a mixture of two or more 
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chemicals based on the difference in their volatilities. A layout for a binary distillation 

tower (for separating a mixture of two chemicals) is given in Figure 4.5. 

The symbols used in Figure 4.5 are defined as follows. D and B are the flow rate of 

distillate and bottom products; F is the feed flow rate; L is the liquid molar flow rate 

inside the column; N1 is the number of stages in the rectifying section (upper section); 

N2 is the number of stages in the stripping section (bottom section); R is the reflux 

ratio; V is the vapor molar flow rate inside the column; VB is the boil up ratio; XB is the 

composition of the more volatile component in stream B; XD is the composition of the 

more volatile component in stream D; XF is the mole fraction of the more volatile 

component in the feed; XN is the mole fraction of more volatile component in liquid 

leaving tray N; and YN is the mole fraction of more volatile component in vapor leaving 

tray N.  
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Figure 4.5 Binary distillation column 
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In this example a mixture of toluene (less volatile component) and benzene (more 

volatile component) is fed to a distillation column where they are separated into two 

high purity streams. The stream recovered at the top is the distillate and would contain 

mostly the more volatile component benzene. Similarly, the liquid recovered at the 

bottom is called the bottoms and would contain mostly the less volatile component, 

toluene. A detailed description of the distillation towers can be found in Jeankoplis 

(1993) as well as Seader and Henley (2006). 

The attained purity of the distillate and bottoms depend on many design variables. 

In this simplified version of the distillation tower, the design variables are N1, N2, R 

and VB. Especially the latter two design variables reflect the quantity of liquid and 

vapor returned to the column respectively (e.g., Douglas, 1988).  

Assume that the values of the feed composition XF and the flow rate F are fixed 

(e.g., F = 100mol/hour, XF = 0.45), then an analysis model is developed by our 

collaborators at the Petroleum Institute in UAE, which has N1, N2, R and VB as inputs 

and B, XB, D and XD as outputs, represented by a black-box as in Figure 4.6. 

 

Distillation
Column

Simulation
Model

N1

N2

R

VB

XD

XB

D
B  

Figure 4.6 Inputs and outputs of the distillation column simulation model 

The objectives in this problem are to simultaneously maximize the product yield 

(D) and purity (XD), which are conflicting to each other. There are four design 

variables N1, N2, R, VB. The lower and upper bound of the four design variables are 

given (see Eq. (4.3)). A multi-objective optimization model with two design objectives 
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and several constraints is constructed:   
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This optimization model is solved using the conventional MOGA and the improved 

MOGA. Figure 4.7 shows the obtained optimization results. It is observed that the 

Pareto frontiers from both approaches agree with each other well. In other words, it 

shows that the improved MOGA can be used to obtain optimum solutions for such 

problems with the same quality as that from the conventional MOGA. The results of 

the comparison in terms of the number of function calls for the improved MOGA, the 

conventional MOGA and the K-MOGA are given in Table 4.1 and Table 4.2. 
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Figure 4.7 Pareto solutions for distillation column design 
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4.5.2 Additional Test Examples 

In this section, four additional examples, i.e., ZDT1, ZDT2, ZDT3, and Gear-Train 

from Deb (2001) are presented to further demonstrate the applicability of the proposed 

approach. These examples are also used in the last chapter and thus the formulations 

for these examples are already given in the last chapter. The Pareto frontiers obtained 

using the improved MOGA and the conventional MOGA are given in Figures 4.8-4.11. 
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Figure 4.8 Pareto frontiers for ZDT1 example 
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Figure 4.9 Pareto frontiers for ZDT2 example 
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Figure 4.10 Pareto frontiers for ZDT3 example 
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Figure 4.11 Pareto frontiers for Gear-Train example 

It can be seen in Figures 4.8-4.11 that the Pareto frontiers obtained using the 

improved MOGA agree with those from the conventional MOGA for the four 

examples. 

In terms of the number of function calls, the performance of the improved MOGA 

has been compared against the conventional MOGA and also the K-MOGA of Chapter 

3. The results are presented in Table 4.1 where again (as in Chapter 3) each example 

was run 30 times to account for the stochastic nature of MOGA.  
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Table 4.1 Statistics for number of function calls 

Number of function calls 
Conventional MOGA K-MOGA Improved MOGA 

Example & 
Population size 

30 runs Mean STD 30 runs Mean STD 30 runs Mean STD 
ZDT1 (30) [293-594] 398 51 [120-258] 172 38 [73-129] 102 12 
ZDT2 (30) [231-561] 417 73 [134-197] 156 12 [55-103] 71 13 
ZDT3 (30) [340-616] 485 69 [176-307] 243 34 [121-176] 149 14 

Gear Train (30) [347-633] 471 78 [159-323] 234 39 [119-271] 203 45 
Distillation 

Column (40) [472-689] 599 54 [368-437] 396 37 [280-336] 315 31 

Based on the data in Table 4.1, the savings obtained in terms of the number of 

function calls for each example are calculated based on their mean value. This 

calculation is performed for the K-MOGA over the conventional MOGA, the improved 

MOGA over the conventional MOGA, and the improved MOGA over the K-MOGA, 

separately. The results are shown in Table 4.2.  

Table 4.2 Reduction of the average number of function calls 

Reduction in terms in the mean value of the number of function calls Example 
(Population size) 

⎟
⎠
⎞

⎜
⎝
⎛−

MOGA alConvention
MOGAK1 -  ⎟

⎠
⎞

⎜
⎝
⎛−

MOGA alConvention
MOGA Improved1  ⎟

⎠
⎞

⎜
⎝
⎛−

MOGAK
MOGA Improved1

-
 

ZDT1 (30) 57% 74% 41% 
ZDT2 (30) 63% 83% 54% 
ZDT3 (30) 50% 69% 39% 

Gear Train (30) 50% 57% 13% 
Distillation 

Column (40) 
34% 47% 20% 

Average saving 47% 66% 33% 

It is observed in Table 4.2 that the improved MOGA outperforms both the K-

MOGA and the conventional MOGA in terms of the average number of function calls 

for each and all five examples. In particular, on the average, the proposed improved 

MOGA can save 66% in the number of function calls over the conventional MOGA, 

while the K-MOGA can save 47% over the conventional MOGA. In other words, the 

improved MOGA uses about 33% fewer number of the function calls over K-MOGA. 
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Figure 4.12 Number of generations for convergence 

It can be seen in Figure 4.12 that, according to the stopping criterion introduced for 

the three approaches, the improved MOGA requires fewer generations for convergence 

than that for the K-MOGA. According to the first part of the stopping criterion in 

Section 3.3.4, it is observed that the conventional MOGA converges at about 

generation number 30 for this example. However, the curve for the conventional 

MOGA does not show flatness in Figure 4.12. As discussed in Section 3.3.4, this is 

because there are always new design points generated by the crossover and mutation 

operations in the conventional MOGA, and these design points can only be evaluated 

by the simulation. As a result, the number of function calls keeps increasing as the 

generation number increases, as shown in Figure 4.12.  Similar results are obtained for 

the other examples. 

4.6 Summary 

The main contribution of the approach developed in this chapter is that for the first 
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time in the literature online metamodeling for both fitness estimation and reproduction 

has been integrated and used to significantly reduce the number of function calls in a 

MOGA. As shown in the examples and test results, this improved MOGA has resulted 

in significant savings in terms of the number of function calls while obtaining solutions 

that are similar to those obtained from a conventional MOGA. 

There are two main features in the improved MOGA. These are: i) online 

metamodeling for fitness evaluation, and ii) adaptive DOE for reproduction. These two 

features work in concert with the kriging metamodeling in different phases of the 

MOGA as follows.  

In the fitness evaluation, kriging metamodeling is used to estimate the response for 

some design points to save the number of function calls. This is feasible because the 

responses for the design points do not have to be calculated precisely using the 

simulation. Instead, an estimate of their simulation response can be used only if the 

associated error does not change the domination status. In the reproduction phase, 

kriging metamodeling is used to predict the Pareto frontier in every generation and thus 

help MOGA to converge faster. As MOGA solutions are evolved, the predicted Pareto 

frontier approaches the Pareto frontier. Thus, when some design points are selected 

from the predicted optima and their responses are evaluated and added to the next 

population, the number of non-dominated design points is increased more quickly, so 

that eventually the Pareto frontier is obtained in fewer generations than with a 

conventional MOGA. 

 Five examples of both numerical and engineering types and with different degrees 

of difficulty have been used here to demonstrate the applicability of the improved 
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MOGA. The results confirm that this new optimization approach is indeed able to 

estimate the Pareto frontier with comparable quality to a conventional MOGA 

approach, while significantly reducing the number of function calls. For the five 

examples, it was observed that using the improved MOGA saved an average of 66% of 

function calls compared to the conventional MOGA.  

The fitness estimation and adaptive DOE techniques proposed in this chapter are 

not restricted to a specific MOGA approach. In fact, these techniques can be integrated 

with other population-based stochastic multi-objective optimization methods with 

schemes for fitness evaluation and new population generation, such as the particle 

swarm optimization (e.g., Kennedy and Eberhart, 1995). 

In the next chapter, the research thrust three, a novel adaptive DOE method in 

offline metamodeling, is presented. 
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Chapter 5  Adaptive DOE in Offline Metamodeling 

5.1 Introduction 

In chapters 3 and 4, the fitness estimation and DOE techniques were used in the 

context of online metamodeling in MOGA for design optimization. An alternative 

strategy to reduce the number of function calls is to use offline metamodeling (see, 

e.g., Barthelemy and Haftka, 1993; Myers and Montgomery, 1995; Roux et al., 1998; 

Ruzika and Wiecek, 2003; Simpson et al., 2004). The goal of the offline metamodeling 

is to construct a reasonably accurate metamodel using as few experiments as possible. 

Clearly, the metamodel accuracy is heavily dependent upon the DOE method used. 

In this chapter, a new adaptive DOE approach is developed, which selects more 

points in non-smooth regions (see the definition in Section 5.3.1). We refer to the 

method as an ACcumulative Error (ACE) approach for DOE. In the ACE approach, the 

maximum entropy design method (recall Section 2.6) is used for initial design and 

kriging (recall Section 2.5) for metamodeling. In particular, the leave-one-out error 

(see Section 5.4.1) for existing experiments is obtained, the non-smooth regions (which 

contain local optima) are probed using this information, and the next point is sampled 

in one or more such regions. After that, the metamodel is updated and non-smooth 

regions are probed again. The procedure is repeated until potentially all non-smooth 

regions have some sampled points or no additional new non-smooth regions are 

discovered.  

The rest of the chapter is organized as follows. A review of previous work for 

adaptive DOE methods is given in Section 5.2. In Section 5.3, terminology and 
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definition used in the proposed approach are introduced. In Section 5.4, the new DOE 

approach is proposed and discussed in detail. In Section 5.5, several numerical and 

engineering examples and the corresponding results are discussed. Finally, the 

concluding remarks are given in Section 5.6. 

A portion of this chapter was presented in Li and Azarm (2006). 

5.2 Background for Adaptive DOE Methods 

As introduced in Chapter 1, a DOE approach is said to be non-adaptive when the 

only information used in it is from the experiments. Examples of non-adaptive DOE 

approaches are: Latin hypercubes (McKay et al., 1979), maximum entropy design 

(Shewry and Wynn, 1987; Koehler and Owen, 1996), mean squared error (Jin et al., 

2002), integrated mean square error (Sacks et al., 1989), maximin distance approach 

(Johnson et al., 1990), orthogonal arrays (Owen, 1992), and uniform design approaches 

(Fang et al., 1994, 2000). In general, a non-adaptive approach results in the same set of 

experiments whether or not it is applied in a single stage or sequentially in different 

stages of sampling. 

On the other hand, a DOE approach is adaptive when the information from both the 

experiments and metamodel is used in selecting the next experiments. In general, 

sequentially adaptive approaches are considered to be superior to non-adaptive 

approaches in terms of improving the metamodel accuracy. A sequentially adaptive 

DOE approach often begins with an initial DOE that is generated using some non-

adaptive or random approach. After that, the metamodel is constructed based on the 

initial experiments and the corresponding responses from the simulation. The 

information from the experiments and their responses together with the metamodel is 
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used for sampling the next point or set of points. This procedure continues until a 

predefined stopping criterion is met. 

Based on the adaptation scheme used, the sequentially adaptive DOE approaches 

can be classified into three types. The first type refers to the methods that are made 

adaptive according to the estimated optima (e.g., Watson and Barnes, 1995). The 

second type refers to the methods that are made adaptive based on the experiments that 

produce large uncertainty associated with an estimated response (e.g., SDO or 

Sequential Design for Optimization, see:  Cox and John, 1992, 1997). The third type 

refers to the methods which are based on a compromise between the estimated optima 

and large uncertainty in the response (e.g., Schonlau et al., 1997; Jones et al., 1998; 

Sasena, 2002; Sasena et al., 2000; Farhang-Mehr and Azarm, 2002 and 2005; Farhang-

Mehr et al., 2003). 

All of the aforementioned approaches directly use an estimate for the simulation 

response and/or uncertainty in the estimated response in selecting new points. 

Unfortunately, such estimates are often inaccurate, especially when the number of 

experiments used to build the metamodel is small. Hence, these adaptive DOE 

approach may sample some experiments that are not desired: The selected points have 

neither a good estimate of the optima (maximum or minimum of an objective function) 

nor provide a good prediction of uncertainty in the estimated response. As a result, the 

sampling scheme in these methods is likely to consume precious function calls without 

significantly improve the metamodel accuracy. 

To address the above mentioned shortcoming, a new DOE method is developed in 

this Chapter. This new DOE approach only uses true responses in determining non-
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smooth regions and selecting new points, thus it avoids being misled by the estimated 

uncertainty in the response during the early-stage of metamodeling.  

5.3 Terminology and Definition 

In this section, some terminology and definition used in the proposed adaptive 

DOE method are given.  

5.3.1 Non-Smooth Region 

A non-smooth region refers to a region in the input space where the responses for 

adjacent points usually have very different values. An example of a non-smooth region 

is shown in Figure 5.1, where ( )0.33 0.04,∈x  corresponds to a non-smooth region, in 

which the corresponding response values (the curve inside the dashed circle in Figure 

5.1) changes significantly. That is, a non-smooth region usually contains one or more 

local optima (maxima and/or minima). For the purpose of the proposed approach, we 

exclude the cases in which the response has an asymptotic behavior within the non-

smooth region and that its value is infinite. Note that our definition for a non-smooth 

region is applicable to both continuous and discontinuous domains. 
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Figure 5.1 Non-smooth region 
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5.3.2 Greedy Algorithm 

For completeness, this subsection provides a brief review of the principle of a 

greedy algorithm (e.g., Weiss, 1997), which is used later in the proposed adaptive DOE 

approach.  

Greedy Algorithms are often used to quickly find global optimal solutions for a 

class of combinatorial optimization problems with the following two properties: 1) 

Greedy-choice property, which means the global optimal solution can be reached by 

solving a sequence of locally optimal choice sub-problems, and 2) Optimal 

substructure, which means an optimal solution to the sub-problem (locally optimal) is 

always a subset of the global optimal solution for the entire problem.  

A classical example of an optimization problem with these two properties that can 

be solved quickly by the greedy algorithm is the problem of making a change (e.g., 

Cormen et al., 2001). Suppose you are asked to change a certain U.S dollar amount by 

using the smallest possible number of coins, where coins available are quarters (25 

cents), dimes (10 cents), nickels (5 cents) and pennies (1 cent). As an example, 

suppose you buy a cup of hot chocolate that costs for 1.36 dollars. You give the cashier 

2 dollars, thus the cashier owes you 64 cents. In order to give you back the smallest 

number of coins, the cashier calculates the change using a greedy algorithm as follows. 

First the cashier gives you two quarters, and then a dime, and finally he/she gives you 

four pennies. The total number of coins is seven, which is the smallest number of coins 

for 64 cents. This solution is a global optimal solution (i.e., the smallest number of 

coins needed). Note that this problem has the above-mentioned two properties. That is, 

every time the minimum number of coins with the largest value (local optimum) is 



 77

chosen, and once a coin has been included in the solution set, it remains in the final 

solution set (globally optimal). In fact, it was proved (e.g., Weiss, 1997; Cormen et al., 

2001) that a greedy algorithm can always yield the global optimum choice for such a 

class of problems. 

In general, a greedy algorithm solves optimization problems in a sequence of steps: 

It works in a top-down fashion, making one greedy choice after another, reducing the 

optimization problem to a smaller one in each step. In the greedy algorithm, the 

procedure of choosing a local optimum is repeatedly performed with the hope that a 

desired global optimal solution is found at the termination, which contains all the 

explored local optima.  

Using a greedy algorithm, an adaptive DOE problem can be posed in a way similar 

to the above problem of making a change: Select as few as possible experiments such 

that the metamodel accuracy can be improved as much as possible. Thus, an adaptive 

DOE problem can be solved using a greedy algorithm. That is, we first select every 

new experiment according to the current information from both existing experiments 

and the metamodel so that the metamodel accuracy is improved in the most inaccurate 

location. As a result, the final design (containing all selected experiments) is expected 

to improve the overall metamodel accuracy. Thus, the greedy algorithm is one way to 

tackle the adaptive DOE problem and can yield a very good, if not the best possible, 

design.  

In the next section, a new adaptive DOE approach is proposed according to the 

greedy algorithm principle. 
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5.4 The ACcumulative Error (ACE) Approach for DOE 

The proposed adaptive DOE approach is based on the observation that a reasonably 

accurate metamodel for simulation response can be constructed if all local optima of 

the response are evaluated. Moreover, the local optima are assumed to be located in the 

non-smooth regions which can be probed by calculating the leave-one-out error (e.g., 

Meckesheimer and Booker, 2002) by an experiment in such a region (see the next 

section).  

In the following sections, the method of probing non-smooth regions using the 

leave-one-out error (LOO) is discussed first. Then, the ACcumulative Error (ACE) is 

introduced and its relation with the leave-one-out error is given. Finally, the proposed 

new DOE approach using the principles of the greedy algorithm and ACE is presented. 

5.4.1 Leave-One-Out Error 

Leave-One-Out (LOO) or cross-validation is often used for metamodel accuracy 

assessment as well as in sampling approaches (Jin et al., 2002). The basic procedure 

used in LOO is as follows. First, the method begins by leaving out any experiment 

from the current design D. Next, the method fits a metamodel to the remaining 

experiments in D. The method uses this metamodel to predict the response for the left-

out experiment. Finally, the method calculates the difference between the predicted 

response (i.e., the metamodel response) and actual response (the simulation) for that 

left-out experiment. This procedure is performed for all experiments in D, by leaving 

them out one at a time. 

We define the LOO error for an experiment ix  as: ix
LOOe , which represents the 

difference between the actual response and its estimate: 



 79

( ) ( )ii
x
LOO xyxye i ˆ−=                                               (5.1) 

where ( )ixy  is the actual response for ix , and ( )ixŷ  is the corresponding metamodel 

response when ix  is left out. It is observed that the quantity ix
LOOe  can be used to 

represent the fidelity of the metamodel in a small region around ix , as shown in Figure 

5.2 and Figure 5.3.  

In Figure 5.2, a metamodel with 10 experiments is constructed. Following the 

definition in Section 5.2, it is observed that the experiment: x = 0.125, is in a non-

smooth region while x = 0.625, is not in a non-smooth region. 
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Figure 5.2 Metamodel with 10 experiments 

Two metamodels, each with a left-out experiment, are built and shown in Figure 

5.3(a) and Figure 5.3(b), separately. It can be seen in Figure 5.3(a) that a small value of 

ix
LOOe  (i.e., 625.0

LOOe ) indicates that either the metamodel in the region around this point is 

smooth and has a good accuracy or the true response for this point is estimated well by 

the metamodel even if this point is in a non-smooth region. According to the definition 

of the LOO error, the latter situation implies that there are already enough experiments 

in the non-smooth region around this point and no additional experiments are needed. 
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The former implies that the region is already smooth and not many sample points are 

needed. On the other hand, as shown in Figure 5.3(b), a large value of ix
LOOe  (i.e., 125.0

LOOe ) 

means that the response in this region is more likely to be non-smooth or not sampled 

well and thus more experiments are needed to improve the metamodel accuracy. 

Hence, the value of ix
LOOe  of an existing experiment can be used to identify regions 

where more points need to be selected to improve the metamodel accuracy. 
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Figure 5.3 Metamodels with point (a) x = 0.625 left out, and (b) x = 0.125 left out 
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Note that the value of ix
LOOe  is dependent upon the number or location of the 

remaining experiments (e.g., 9 experiments remained after one point left out) in the 

current design D. This dependency is useful for updating the values of the LOO error 

when more experiments are available, thus making possible to identify some new non-

smooth regions. 

The goal of the DOE in this chapter is to sample new points that are not in the 

current design D. However, the values of the LOO error are not available for those 

unobserved points. Thus, it can not be determined whether an unobserved point is in a 

non-smooth region can not be obtained directly by calculating the value of the LOO 

error.  

In the next subsection, the ACE concept is introduced. The ACE concept will be 

used to estimate the value of the LOO error for an unobserved point, so that additional 

points can be sampled according to the estimated values of the LOO error. 

5.4.2 Degree of Influence and Accumulative Error 

The metamodeling approach used in this chapter is based on the kriging (see, e.g., 

Section 2.5). In the kriging metamodeling, the estimated response for an unobserved 

point is assumed to be highly correlated to the responses from the experiments that are 

close to that point. If an existing experiment is located in a non-smooth region in which 

only a few experiments have been sampled, then an unobserved point close to this 

experiment will likely have a large value of the LOO error. In this regard, the LOO 

error of an unobserved point 0x  can be estimated by the values of the LOO error for all 

existing experiments around this unobserved point. Note that the experiments that are 
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close to 0x  should have more of an impact in terms of the LOO error on 0x  than those 

which are relatively far from it. 

We define the Degree-of-Influence (DoI) from ix  to 0x  as a function of the 

distance form ix  to 0x . In essence, DoI represents the amount of influence that the 

LOO error has from ix  on 0x .  Many different functions are introduced in the literature 

to represent this kind of correlation (e.g., Lophaven, 2002; Clark, 2005). In this 

chapter, we use an exponential function: 

( )0exp)( xxxDoI ii −−= α                                             (5.2) 

where α  determines how fast DoI (xi) diminishes as ix  moves away from 0x . The 

value of DoI ( ix ) diminishes rapidly even for a small distance when the value of α  is 

large. Using Eq. (5.2), the relationship between DoI and 0xxi −  with different values 

of α  is shown in Figure 5.4. 
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Figure 5.4 DoI vs. 0xxi −  for different α  values 

It is observed in Figure 5.4 that for 100=α , the value of DoI is almost zero when 

the distance between ix  and ox  is greater than about 0.08. On the other hand, for 
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10=α , the distance can be as large as about 0.7 for the value of DoI to be almost zero, 

where “almost zero” means less than 10-5, which is considered as the worst case DoI 

here. Any value of DoI which is less than this worst case DoI is discarded.  

The value of α  actually defines a hyper-sphere, i.e., a DoI region, where an 

experiment ix  resides in the center of the region and has a non-zero DoI (i.e., greater 

than or equal to the worst case DoI) for an unobserved point 0x  located in this region 

(but not in its center). In other words, the value of α  should be determined such that 

any unobserved point 0x  will be placed in at least one DoI region. Thus every 0x  will 

have to have a non-zero DoI. The value of α  can be obtained using a worst case 

analysis: When 0x  is on the boundary of the DoI region of an experiment that is closest 

to 0x , the value of DoI from this experiment should be non-zero (i.e., greater than or 

equal to the worst case DoI). In this way, the radius of the hyper-sphere is defined as 

the DoI distance, and this value will be used for all experiments in the current design 

D. The DoI distance is obtained using a three-step max-min procedure1: For a given 

design D with n experiments, Step 1: For every experiment from design D, calculate 

the minimum distance from that experiment to all other experiments in D. This will 

obtain n number of minimum distances. (Note that the number may be less than n since 

some of the minimum distances might be the same.) Step 2: Obtain the maximum 

distance out of the n minimum distances. Step 3: Set DoI distance to be one half of the 

maximum distance, i.e., the radius of the hyper-sphere. Note that these steps are 

performed based on the normalized values of ix  and 0x . The lower and upper bounds 

                                                   
1  Note that the computational complexity of this procedure is: O(n2), where n is the number of 
experiments in the design space. 
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in the input space can be used to normalize the input points to [0, 1]. 

Having the values of the worst case DoI (e.g., 10-5) and DoI distance (see Step 3 in 

the last paragraph), based on Eq. (5.2), the value of α  can be obtained: 

( )
distance 

 caseworst ln
DoI

DoI−
=α                                                   (5.3) 

Note that the value of α  may not change in every iteration since a newly selected 

experiment may not change the DoI distance. 

Being able to obtainα , the estimated LOO error for an unobserved point 0x  is 

calculated next:  

( )[ ]i

n

i

x
LOO

x
AC xDoIee i∑

=

=
1

0                                              (5.4) 

where ix
LOOe  is obtained in Eq. (5.2), 0x

ACe  gives the ACE value for 0x , and ix  is an 

existing experiment. In essence, Eq. (5.4) implies that the ACE value for an 

unobserved point is determined based on the LOO error and the proximity of 

experiments around this point. Substituting Eq. (5.2) into Eq. (5.4) results in Eq. (5.5): 

( )[ ]∑
=

−−=
n

i
i

x
LOO

x
AC xxee i

1
0exp0 α                                    (5.5) 

It can be seen in Eq. (5.5) that an unobserved point can have a large value of 0x
ACe  if it is 

in a region where existing experiments have a large value of the LOO error. Such a 

region is indicated as a non-smooth region and potentially does not have enough 

sampled experiments, and thus is a good candidate region for sampling new points. 

5.4.3 A Greedy Algorithm for Adaptive DOE 

In this subsection, we present the proposed ACE approach with several parts. 
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These are: 1) Criterion for selecting new points, 2) initial design and stopping criterion, 

3) steps for the proposed approach, and 4) computational complexity of the approach. 

1) Criterion for Selecting New Points  

Now that the estimate of the LOO error (and ACE) for an unobserved point can be 

calculated, given i experiments, the new (i+1)th experiment, or xi+1, is obtained by 

selecting a point with the largest value of the ACE, i.e., 

DD ∈∉∈=+ xxUxex x
ACi ,  ,  , max arg 001

0                             (5.6) 

where “arg max” denotes the optimal solution for the optimization problem in which 

the value of 0x
ACe  is maximized. 

It should be clear that the point 1+ix  obtained using Eq. (5.6) tends to be very close 

to some existing experiments in D. This is because of the way 0x
ACe  is calculated: The 

closer 0x  is to some existing experiments, the larger the value of 0x
ACe . As a result, the 

newly selected points tend to cluster in a non-smooth region first, and then another and 

so on. However, note that the number of available experiments is limited in real 

engineering problems and thus some non-smooth regions may not even get the chance 

to be sampled. Hence, instead of heavily sampling one non-smooth region first, we will 

try to sample all non-smooth regions with the same degree of importance. To do this, 

the concept of a cluster threshold is introduced. This threshold is used to prevent 

clustering of new points with existing experiments. 

A cluster threshold is obtained in a three-step procedure which is somewhat similar 

to how the DoI distance is obtained. These steps are as follows. Step 1: For every 

experiment in the design D, calculate the minimum distance from that experiment to all 

other experiments in D. Step 2: Obtain the average for the obtained minimum 
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distances. Step 3: Set the value of the cluster threshold to be one half of this average 

distance. The “one half” coefficient indicates that the new point can be located among 

experiments that have a greater distance to each other than the average distance 

obtained in Step 2. Note that the value of the cluster threshold changes when a new 

experiment is sampled. 

For regions that have more experiments (i.e., clustered), the distance between the 

new point and each experiment is expected to be smaller than the average distance (see 

Step 3 in the last paragraph). Such a new point can not be sampled among these 

experiments since it violates the cluster threshold.  

Considering the cluster threshold and substituting Eq. (5.5) into Eq. (5.6), a 

constrained maximization problem is obtained as follows: 
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expmax arg

000

1
01 α

               (5.7) 

where the inequality constraint is used so that the newly sampled point has a 

reasonable distance from all existing experiments. 

As new points are selected and evaluated, and the kriging metamodel is updated, 

the values of ACE in the current non-smooth regions are reduced because the LOO 

error becomes smaller. On the other hand, these new points will also help explore new 

non-smooth regions according to the updated metamodel. Accordingly, the ACE 

approach will tend to sample points in the new non-smooth regions, since the values of 

ACE in such regions are expected to be large. 

Even if a cluster threshold is used in the proposed approach, it is still possible that 
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too many experiments are selected in some non-smooth regions, while other non-

smooth regions are left un-sampled. This happens because: 1) Additional local optima 

are discovered in the current non-smooth regions as more points are sampled in these 

regions (an example will be discussed in Section 5.5.1) even if new non-smooth 

regions are discovered, and 2) no new non-smooth region has been explored. For both 

cases, the newly selected point is close to other existing experiments and the 

corresponding ix
LOOe  value can become very small (i.e., the sampling of the new point 

does not provide much improvement in the metamodel accuracy). In this regard, the 

maximum entropy design method (recall Section 2.6) is used in the proposed approach 

to sample the next new point and discover a potentially new non-smooth region. As 

mentioned before, the maximum entropy design method is a non-adaptive DOE 

approach since no information from the response is used for sampling subsequent 

experiments. Moreover, the maximum entropy design approach emphasizes selecting 

points in regions where fewer experiments have been sampled.  

2) Initial Design and Stopping Criterion 

By combining the greedy sampling criterion with an adaptively obtained cluster 

threshold as well as the maximum entropy design method (particularly when 

experiments are clustered), the proposed approach is able to sample multiple non-

smooth regions, even if there are several of them, in the input space. However, such a 

capability is dependent upon an a priori discovery of a non-smooth region or regions. 

A non-smooth region can be discovered in the initial design or in the process of 

sampling new points: For each experiment, a large value of the LOO error indicates 

that the corresponding experiment is potentially in a non-smooth region. In this regard, 
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a basic requirement for an initial design is that the entire input space should be sampled 

uniformly so that all regions have an equal chance to be probed for the initial design. 

As discussed above, the maximum entropy design method is appropriate for an initial 

design since it tends to cover the entire input space symmetrically. Also note that the 

number of points in an initial design is dependent on the dimension of the input space: 

The higher the dimension of the input space, the more the number of points is required 

for the initial design.  

So far, the proposed DOE approach is open-ended: It can sample as many 

experiments as needed, given that there are enough computational resources. However, 

in reality, the computation resources are limited. Thus, a stopping criterion should be 

included to terminate the sampling procedure. A DOE approach often stops according 

to: 1) The required metamodel accuracy (e.g., RMSE and MAE; or using cross-

validation), or 2) the number of available simulation calls known a priori from the 

limitation in computational resources (with the hope that the obtained metamodel 

meets the requirement for accuracy). The metamodel accuracy is not used as a stopping 

criterion here simply to avoid extra simulation runs; rather, the number of available 

simulation calls is used as the stopping criterion. 

3) Steps for the Proposed Approach 

Figure 5.5 gives the flowchart for the proposed approach. The detailed steps are 

given in the next paragraph, which are grouped into initial steps and main steps. 

Initial Steps: 

Step 1: Initial design. In this step, n experiments are selected using the maximum 

entropy design method. The quantity n is used to account for the number of 
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experiments in the design D. Initially, n is set to be the number of experiments in the 

initial design. 

Step 2: Get response values for the initial design.  

Step 3: Build kriging metamodel for the initial design. The initial kriging 

metamodel is built based on the response values for the initial design. This metamodel 

is denoted the initial metamodel. 
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Figure 5.5 Flowchart for the proposed approach 

Main Steps: 

Step 4: LOO error calculation for the nth metamodel. The value of the LOO error 

for each experiment in the current design is obtained using Eq. (5.1). 

Step 5: Accumulative error calculation for the nth metamodel. The value of the 
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accumulative error for all un-sampled points are obtained using Eq. (5.5) based on the 

values of the LOO error from Step 4. (Note that the un-sampled points refer to all 

points in the normalized input space except the experiments.) 

Step 6: Select the next experiment. The Eq. (5.7) is solved to obtain the next 

experiment. 

Step 7: Obtain the response for the new experiment. The response for the newly 

selected experiment is obtained by the simulation. 

Step 8: Increase the counter for the number of experiments by one. Set: n = n + 1. 

Step 9: Update the kriging metamodel. The kriging metamodel is updated using the 

response for the nth experiment (i.e., the previous n experiments plus the new 

experiment). 

Step 10: Check stopping criterion. Check whether n reaches the limitation of the 

number of experiments: If yes, stop the algorithm; otherwise, continue. 

Step 11: Check the cluster and LOO error condition. When the nth experiment is 

very close to other experiments (i.e., closer than a presumed cluster threshold) and has 

a small LOO error, it is unacceptable and continue to the next step; otherwise, go to 

Step 4. 

Step 12: Get the next experiment using the maximum entropy design method, and 

go back to Step 7.  

As discussed in Section 5.3.2, an adaptive DOE problem can be proposed as an 

optimization problem which has the greedy-choice property and optimal substructure. 

Hence, a greedy algorithm can be used to find global optimal solution for such 

problems. On the other hand, the proposed approach follows the greedy principle 
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because at every stage it chooses the new point with the largest value of ACE, which is 

obtained only based on current information, while the consequences for choosing this 

point is not considered. 

In the next subsection, an analysis of the computational complexity is performed 

for the proposed approach. 

4) Computational Complexity Analysis 

Assume that the computational time for running a single simulation call is st , for 

kriging metamodeling is kt , and for other operations (i.e., the leave-one-out error 

calculation) is ot , with the assumption that oks ttt >>> . Also we define n as the size of 

current design, and N as the total number of all possible points in an input grid space. 

Following the procedure for the complexity analysis (e.g., Kozen, 1992; Cormen, 

2001) and using the ‘O’ notation (i.e., worst case analysis in terms of “order of 

magnitude” of calculations), a computational complexity analysis for the proposed 

approach can be performed as follows. In the step 4 of last section, the leave-one-out 

error for all experiments based on kn (i.e., the kriging metamodel constructed with nth 

experiments) are calculated using Eq. (5.1), and the computational complexity is 

O( otn × ). In the step 5, the accumulate error 0x
ACe  for all unobserved points are obtained 

using Eq. (5.5), and the computational complexity is O( ktN × ). In the step 6, the next 

experiment is selected by solving the maximization problem in Eq. (5.7), and the 

computational complexity is O( otN × ). In the step 7, the simulation is called to obtain 

the actual response, and the computational complexity for all simulation calls is 

O( stn × ). Hence, the total computational complexity for the proposed approach is 
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O( otn × ) + O( ktN × ) + O( otN × ) + O( stn × ). The total computational complexity is 

dominated by O( stn × ) since it is assumed that oks ttt >>> , In other words, the total 

time for running the simulation contributes the most to the total computational cost of 

the approach. 

Note that the computational cost of the proposed approach is independent of the 

dimension of the input space, in the sense that only the Euclidian distance of 

experiments is used to obtain the next experiment as shown in Eq. (5.7). In other 

words, a higher dimension input space only causes some more internal computations 

(e.g., kt  and ot ), but does not change the way of solving the maximization problem of 

Eq. (5.7).  

5.5 Examples and Results 

Most of the test problems used in this section have one or two inputs and one output 

so that the response surface/curve can be shown graphically.  

First we use a numerical example with a single input to demonstrate the proposed 

approach during different sampling stages. After that an engineering example with two 

inputs is used to show the applicability of this new DOE approach to multi-

dimensional engineering problems. Then, a two-dimensional-input numerical example 

with multiple non-smooth regions is used to demonstrate that the proposed approach is 

able to sample multiple non-smooth regions. Finally an engineering example with four 

design variables is used to show that the proposed approach is applicable to problems 

with multiple inputs. In all four examples, the kriging metamodeling (see, e.g., Section 

2.5) is used for metamodel construction. The maximum entropy design approach (see, 
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e.g., Section 2.6), which is a non-adaptive DOE approach, and the Sequential Design 

for Optimization (SDO) (Cox and John, 1992, 1997), an adaptive DOE approach, are 

used and compared with the proposed DOE approach in terms of the metamodel 

accuracy. 

In the SDO approach, in order to select new experiments, the 

function ( ) ( )00ˆ xksxy −  is constructed and minimized, where 0x  is an unobserved 

point, ( )0ˆ xy  is the estimated response for 0x , ( )0xs  is the standard deviation for the 

variance of the estimated response for 0x , and k is a scalar greater than zero.  Each 0x  

corresponds to a solution for the above function and the 0x  which gives the global 

minimum solution is selected as the next experiment. Following a previous work 

suggestion (Jones, 2001), the value of k is set to be 5 here. The SDO approach 

emphasizes on searching relatively un-sampled regions in the input space where the 

variance is large. See Cox and John (1992, 1997) for a more detailed description for 

the SDO approach. 

5.5.1 Numerical Example 1: Single Input-Single Output, Multi-Modal 

The numerical example is from Farhang-Mehr and Azarm (2002). It is a single-

input (x) single-response (y) function as formulated in Eq. (5.8). 

)]85(sin51)20[ln()0801400min(60       
20)10sin(6)1(

22

250200072 2

x..x.|.,|x
e.xxeey ).(xxx

++−−+

−+−= −−−−

              (5.8)           

We begin with an initial design of 8 experiments sampled using the maximum 

entropy design: D = {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 1}, which includes 

experiments on the boundary and middle regions of the input space. The metamodel 
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with 8 initial experiments (hollow points) and the actual response curve are shown in 

Figure 5.6. 

It can be seen in Figure 5.6 that there is a non-smooth region for the response 

curve, which makes this function an interesting test problem for the proposed DOE 

approach. For this example, as discussed next, 27 additional experiments are used to 

build the metamodel, one by one.  It is assumed that in this example the total number 

of available function calls is 35. 
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Figure 5.6 Metamodel using initial design 

The experiments obtained using the new approach and the maximum entropy 

design approach. The corresponding metamodels are shown in Figure 5.7, Figure 5.8 

and Figure 5.9, for 15 experiments, 25 experiments and 35 experiments, separately. 

And the values of RMSE and MAE (obtained using 1000 randomly selected testing 

points) are compared for the metamodels with 35 experiments using both approaches. 

It is observed that the proposed approach provides a more accurate metamodel in 

which both RMSE and MAE are improved. The metamodels with 15 and 25 

experiments are used to show the progress in the metamodel accuracy of the approach 

as more experiments are selected. 
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(a)                                                  (b) 

Figure 5.7 Metamodels with 15 experiments for (a) maximum entropy design and 
(b) proposed approach 
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(a)                                                                   (b) 

Figure 5.8 Metamodels with 25 experiments for (a) maximum entropy design and 
(b) proposed approach 
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(a)                                                                              (b) 

Figure 5.9 Metamodels with 35 experiments for (a) maximum entropy design 
approach: RMSE = 0.067, MAE = 0.242 and (b) proposed approach: RMSE = 

0.048, MAE = 0.115 
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Figure 5.10 Final design for maximum entropy design and proposed approach 

The 35 experiment designs sampled using the maximum entropy design and the 

proposed approach are shown in Figure 5.10. It can be observed that the proposed 

approach samples more points (12 of them) in the non-smooth regions than the 

maximum entropy design approach (9 of them). This observation confirms that the 

proposed approach is adaptive to the responses and hence it can help to construct a 

metamodel with high accuracy. This one-dimensional numerical example illustrates the 

applicability of the proposed DOE approach. It can be seen in Figure 5.7, Figure 5.8 

and Figure 5.9 that the proposed approach tends to sample more points in the non-

smooth regions, while the maximum entropy design approach keeps sampling the 

entire input space equally. 

The experiments obtained using the maximum entropy design and the proposed 

approaches are shown in Table 5.1. The corresponding metamodel accuracy (RMSE 

and MAE) is calculated for the initial design and for every 5 additional experiments. 
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Table 5.1 Experiments and the corresponding metamodel accuracy 
Maximum Entropy Design Approach Proposed Approach Experiment 

 Number Experiments RMSE MAE Experiments RMSE MAE 
0 0 

0.25 0.25 
0.5 0.5 

0.75 0.75 
1 1 

0.125 0.125 
0.625 0.625 

 
 
 

8 Initial 
Experiments 

0.375 

 
 
 
 
 
 
 

 0.272 

 
 
 
 
 
 
 

0.322 0.375 

 
 
 
 
 
 
 

 0.272 

 
 
 
 
 
 
 

0.322 
9 0.875 0.925 

10 0.94 
 

0.243 
 

0.322 0.06 
 

0.237 
 

0.322 
11 0.06 0.175 
12 0.56 0.33 
13 0.31 0.29 
14 0.805 0.215 
15 0.185 

 
 
 
 

0.152 

 
 
 
 

0.322 0.465 

 
 
 
 

0.122 

 
 
 
 

0.322 
16 0.44 0.03 
17 0.685 0.095 
18 0.975 0.97 
19 0.025 0.15 
20 0.405 

 
 
 
 

0.128 

 
 
 
 

0.322 0.4 

 
 
 
 

0.095 

 
 
 
 

0.268 
21 0.84 0.44 
22 0.215 0.195 
23 0.595 0.27 
24 0.095 0.42 
25 0.715 

 
 
 
 

0.103 

 
 
 
 

0.319 0.52 

 
 
 
 

0.062 

 
 
 
 

0.268 
26 0.91 0.355 
27 0.34 0.54 
28 0.525 0.56 
29 0.01 0.015 
30 0.99 

 
 
 
 

0.088 

 
 
 
 

0.319 0.11 

 
 
 
 

0.050 

 
 
 
 

0.127 
31 0.155 0.94 
32 0.655 0.985 
33 0.28 0.735 
34 0.78 0.765 
35 0.47 

 
 
 
 

0.067 

 
 
 
 

0.242 0.16 

 
 
 
 

0.048 

 
 
 
 

0.115 

It is observed from the results shown in Table 5.1 that the proposed approach 

outperforms the maximum entropy design approach every time in terms of RMSE after 

the initial design. For MAE, the proposed approach also outperforms the maximum 

entropy design approach. 

In order to compare the proposed approach with the SDO approach, the same 8 

experiments: D = {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 1}, are also used as an initial 
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design. The SDO approach is used to obtain the additional 27 experiments one-by-one. 

The final design and metamodel are shown as below. 
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Figure 5.11 Design of 35 experiments and metamodel 

using SDO with RMSE = 0.051, MAE = 0.197 

Comparing Figure 5.9 and Figure 5.11, it can be observed that: (i) the proposed 

approach and the SDO approach show similar values of RSME, while the proposed 

approach gives a smaller MAE, and (ii) both the proposed approach and the SDO 

approach show smaller values of RMSE and MAE than the maximum entropy design 

approach. 

In order to study the effect of the number of initial experiments, we also applied the 

proposed approach on this example with 5 initial experiments sampled using the 

maximum entropy design: D = {0, 0.25, 0.5, 0.75, 1}, which includes experiments on 

boundary and middle regions of the input space. The metamodel obtained using the 

initial design is shown together with the actual response curve in Figure 5.12. It is 

observed that the metamodel in Figure 5.12 is different from that in Figure 5.6. 
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Figure 5.12 Metamodel using 5 initial experiments 

The metamodel for 35 experiments are built and shown in Figure 5.13. A testing 

sample of 1000 randomly selected points is used to assess the metamodel accuracy by 

calculating RMSE and MAE. 
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Figure 5.13 Metamodel for 35 experiments using 5 initial points 

Comparing the metamodel in Figure 5.13 with that in Figure 5.9(b), it can be seen 

that they are similar to each other over the input space (x-axis), except that there are 

some minor differences. In fact, the values for both RMSE and MAE are quite similar 

to each other, i.e., RMSE = 0.045 and MAE = 0.115 for the metamodel with 5 initial 

experiments vs. RMSE = 0.048 and MAE = 0.115 for metamodel with 8 initial 

experiments. Thus, for this example, the number of initial experiments does not affect 

the accuracy of the final metamodel very much. However, this conclusion is tempered 
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by the fact that in this example the number of initial experiments is much less than the 

number of experiments selected adaptively.  

5.5.2 Numerical Example Two: Two-Input, Single Output, Multi-Modal  

The second numerical example is from Jin et al. (2002). This numerical example 

has two inputs (i.e., x1 and x2), and one output (i.e., y). The function is given in Eq. 

(5.9) and the inputs are normalized to be in the range: [0, 1], and the actual response 

surface for the problem is shown in Figure 5.14 as follows: 
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Figure 5.14 Actual response surface for the second numerical problem 

We begin with an initial design with 25 experiments. Then we apply the proposed 

approach to obtain 25 additional experiments. The final design is shown in Figure 

5.15(b). For comparison, the same procedure is performed using the maximum entropy 

design approach with a design that is in Figure 5.15(a).  
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Figure 5.15 Final design: (a) maximum entropy design and (b) proposed approach 

As observed in Figure 5.15, the proposed approach samples more points in the non-

smooth regions than those by the maximum entropy design approach. This observation 

shows that the proposed approach is adaptive to the responses and hence can obtain a 

reasonably accurate metamodel. 

The metamodels built based on the final designs are shown in Figure 5.16(a) and 

Figure 5.16(b). 
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(a)                                                              (b) 

Figure 5.16 Metamodels for (a) maximum entropy design approach with RMSE = 
0.046, MAE = 0.268, and (b) proposed approach with RMSE = 0.020, MAE = 

0.108 

An additional testing sample of 1000 randomly selected experiments is used to 

assess the overall metamodel accuracy by calculating RMSE and MAE. Comparing the 
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metamodels in Figure 5.16(a) and Figure 5.16(b), it can be observed that the proposed 

approach provides a more accurate metamodel in which both RMSE (normalized) and 

MAE (normalized) are improved compared to the maximum entropy design approach. 

Note that a metamodel with reasonable accuracy is important in the offline 

metamodeling assisted optimization of deterministic simulation models (e.g., Farhang-

Mehr and Azarm, 2005). This numerical problem shows that the proposed approach is 

applicable to problems with multiple non-smooth regions. 

The same initial design of 25 experiments is used in order to compare the proposed 

approach with the SDO approach. Figure 5.17 shows the obtained metamodel using the 

SDO approach. 
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Figure 5.17 Metamodel for the SDO approach 

with RMSE = 0.024 and MAE = 0.233 

Comparing Figure 5.16 and Figure 5.17, it can beobserved that the proposed 

approach and the SDO approach have a similar RMSE values, while a smaller MAE is 

obtained in the proposed approach. Again, it is observed that both the proposed 

approach and the SDO approach performed better than the maximum entropy design in 

terms of RMSE and MAE. 
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5.5.3 Linkage Example Two: Four-Input 

The control value actuator linkage example used in this chapter is adapted from the 

examples in Gunawan (2004). This is an engineering example with explicit functions. 

The original problem from Gunawan (2004) has three design variables. We modified 

the problem and now it has four design variables. The modified problem is described 

as follows. The structure of a control value actuator linkage considered in this example 

is shown in Figure 5.18 as follows. 
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(a)                                        (b) 

Figure 5.18 A Control Value Actuator Linkage, courtesy from Gunawan (2004) 
and modified 

The linkage shown above has a crank and a rod which are connected by a pin joint. 

And one end of the rod is also pinned to a slider. At the beginning, the crank is at a 55° 

angle from the vertical axis as shown in Figure 5.18(a). The dimensions of the linkage 

and the force applied on it are shown in Figure 5.18(b). The design objective is to 

maximize the average torque (T) at the end of the crank as it turns from 0° to 90°. It is 

assumed that the weight of the crank, rod, and slider is negligible. The design variables 

in the problem are the crank length (Lc), the rod length (Lr), the center distance (d), and 

the applied force (F). The crank length and the rod length are bounded between 0 and 

10 inch, the center distance is bounded between 5 and 7 inch. In order to add non-
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smooth regions to the objective function, the applied force, which is not a design 

variable in the problem in Gunawan (2004), is considered as a design variable in this 

dissertation and is bounded between 0 and 1425.5 lbs with a variance coefficient v. 

Constraints of the problem are not considered in this example, since the emphases is to 

build a metamodel for the objective function f, which is defined in Eq. (5.10). 
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We begin with an initial design of 25 experiments. Then we apply the proposed 

approach to obtain 75 additional experiments. As in the previous examples, the 

maximum entropy design approach and the SDO approach were also applied to this 

example for comparisons. The obtained experiments are used to build metamodels for 

the objective function, and an additional testing sample of 1000 randomly selected to 

assess the overall metamodel accuracy by calculating RMSE and MAE. The 

metamodel accuracy, as discussed in Section 5.5.2, is critical in the offline 

metamodeling assisted optimization of deterministic simulation models. The results are 

shown in Table 5.2 as follows. 
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Table 5.2 RMSE and MAE for the Control Value Actuator Linkage Example 

 Non-adaptive Approach SDO Approach Proposed Approach
RMSE 0.2166 0.1494 0.1528 
MAE 0.1472 0.1508 0.1163 

It can be observed from Table 5.2 that (i) the proposed approach provides a more 

accurate metamodel in which both RMSE (normalized) and MAE (normalized) are 

improved compared to the maximum entropy approach; (ii) the proposed approach and 

the SDO approach show similar RMSE values, and the proposed approach gives a 

smaller MAE. 

Finally, note that the total number of experiments for metamodel building (e.g., 35 

for example one, 50 for example two, and 100 for example three) is assumed to be the 

available number of function calls. In general, more experiments may be needed for 

problems with more design variables. This is because an adaptive DOE method is in 

essence a space filling method with emphases toward some regions but not other 

regions. Thus, as the dimension of the input space increases, more experiments will be 

required to fulfill the input space so that based on these experiments a metamodel with 

reasonable accuracy can be built. 

5.6 Summary 

The main contribution of the approach presented in this chapter is that we explicitly 

use the greedy principle for developing a proposed DOE method. As shown in the 

examples and test results, this greedy DOE method has outperformed a conventional 

(non-adaptive) DOE method in terms of the metamodel accuracy for the same number 

of experiments. 

The proposed approach is adaptive and samples more experiments in regions of 
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input space where the corresponding response is non-smooth. The approach starts with 

a set of initial design that is obtained using the maximum entropy design. Next, an 

initial metamodel is constructed by kriging. The remaining points are sampled one 

point at a time and then the kriging metamodel is updated accordingly. Using a 

modified leave-one-out strategy, the metamodel is used to find regions in the input 

space where the corresponding response is estimated to be non-smooth. The new point 

is placed in the non-smooth region so that the expected accuracy improvement of the 

metamodel is maximized. This process is repeated until a presumed number of 

simulation calls is reached. The proposed DOE approach has the ability to prevent 

clustering by adaptively determining a cluster threshold. This threshold is used to 

verify whether a newly selected point is sufficiently far from existing experiments.  

This proposed approach is demonstrated with several numerical and engineering 

examples. The results from these examples show that for the same number of 

experiments and in terms of the metamodel accuracy, the proposed strategy 

outperforms both the maximum entropy design approach and the SDO approach. Note 

that this conclusion should be tempered by the assumption that the proposed approach 

is intended for problems where computational effort associated with simulations is 

much higher than that needed for sampling and metamodeling. If the computational 

cost for sampling and metamodeling cannot be ignored relative to that of the 

simulation model, then the proposed method can be less efficient than the conventional 

maximum entropy design approach. 

In the next chapter, the research thrust four, the adaptive metamodeling for multi-

response simulations, is presented. 
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Chapter 6 Metamodeling for Simulations with Multiple 

Responses  

6.1 Introduction 

Engineering design problems often have multiple outputs that need to be dealt with 

simultaneously. For example, manufacturers of motor vehicles need to ensure that the 

vehicles are safe (e.g., protect passengers in the case of an accident) via conducting 

crashworthiness testing. Several outputs can be obtained and analyzed as a result of an 

impact test, such as transmitted force and displacement. Also, such real-world 

engineering systems are complex and computing the objective/constraint functions and 

obtaining optimum solutions analytically are difficult and sometimes impossible. 

Therefore, computer simulation is frequently used in representing complex engineering 

systems for both responses evaluation and design optimization (Tekin and 

Sabuncuoglu, 2004). And these simulations can yield multiple responses for each 

execution. 

In this chapter we present a new methodology for multi-response approximation 

that accounts for multiple responses available from a simulation model, both at the 

DOE stage and at the metamodel building stage. We label this new approach 

dependent metamodeling, as the model is built considering interdependencies between 

the different responses computed in a single simulation run. Unlike the conventional 

independent metamodeling approach that builds a single response metamodel for each 

response, the proposed dependent metamodeling approach builds a system of 

dependent metamodels based on all responses from the simulation.  
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In the proposed approach in this chapter, we use a combination of an extended 

maximum entropy design method (see Section 6.3.2) as our DOE approach and 

kriging-based method (see Section 6.3.1) for metamodeling. We define this approach 

as the proposed approach. On the other hand, the combination of the maximum entropy 

design method (recall Section 2.5) and the original kriging method (recall Section 2.6) 

are defined as the conventional approach. As a demonstration and for comparison, we 

applied both the proposed approach and the conventional approach to a numerical and 

an engineering example. The results show that the proposed approach outperforms the 

conventional approach in terms of the model accuracy for both examples. 

The rest of the chapter is organized as follows.  In Section 6.2, a brief review of 

multi-response deterministic simulations is outlined. Then in Section 6.3 the details of 

the proposed approach for multi-response deterministic simulations are given. 

Examples and corresponding results are discussed in Section 6.4. Finally, in Section 

6.5 we summarize the main observations of the proposed metamodeling approach and 

discuss some future works.  

A portion of this chapter was presented in Li et al. (2006a). 

6.2 Multi-Response Deterministic Simulation 

As discussed in Section 2.2, a computer simulation can be viewed as a black-box 

function that produces responses for given inputs. The dimension of the input and 

response of a simulation can be more than one. Especially when the response is a 

multi-dimension vector, a deterministic simulation is said to be a multi-response 

deterministic simulation, as the one represented in Figure 6.1. Such a simulation 

produces all the responses for an input in one simulation run.  
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Figure 6.1 Multi-response deterministic simulation model 

The deterministic simulation model represented in Figure 6.1 has a vector of input 

variables (design variables), denoted by x = (x1, …, xn). The corresponding vector of 

responses, denoted by y = (y1, …, ym).  The universe Ωn that contains all design variable 

vectors is defined as the input space of the simulation, while the corresponding outputs 

from the computer simulation (see Figure 6.1) form the response space Λm. Thus, the 

deterministic relation between input and response vectors is: 

  ( )xfy =      (6.1) 

where f: Ωn   Λm  is a vector valued function that expresses possibly very complex 

relationship between design variables and responses. Note that f by itself has m 

components: f1, f2, …, fm, each of which, i.e., fi, maps x to yi, where i = 1, 2, …, m. This 

system of functions, that are not known individually and explicitly, can be represented 

as in Figure 6.2. 
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Figure 6.2 A system of functions in a multi-response simulation model 
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6.3 Metamodeling for Multi-Response Simulation 

The goal of metamodeling is to estimate ( ).f , replacing it by the estimate ( ).f̂ , 

where the system of substitute f̂  is such that ( )xfy ˆˆ =  approximates y as closely as 

possible. Note that ŷ  is a vector defined as follows: 

[ ]myy ˆ,...,ˆˆ 1=y                                                    (6.2) 

where iŷ  is an estimate for a scalar response iy , i = 1, 2, …, m. The conventional 

metamodeling approach creates an independent metamodel for each scalar response, 

i.e.,  

( )
( )

( )xfy

xfy

xfy

mm
ˆˆ

ˆˆ

ˆˆ

22

11

=

=

=

M
                                                    (6.3) 

where ( )ixf̂ , i = 1, 2, …, m, is a metamodel (e.g., kriging metamodel) for ( )ixf . 

Strictly speaking, in order to build a metamodel for each response, one needs to 

conduct experiments that only measure the ith response yi. However, as discussed in 

Section 6.2, all responses (i.e., y1, …, ym) of a computer simulation are simultaneously 

obtained for any given input vector x = (x1, …, xn) after each run of the simulation. In 

building a metamodel for such a multi-response simulation, a lot of computation effort 

is going to be wasted if all the responses are treated separately. For example, m 

different DOEs are needed for such an approach, and the total number of function calls 

will be m times as many as function calls needed for each DOE. In practice, this large 

number of function calls is not desired, especially when the number of responses is 

increased. Figure 6.3 shows an example where each response has its own DOE.  
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Figure 6.3 Metamodeling with different DOEs 

Another way to address this problem is to use some sampling techniques 

independent from the response function, like the maximum entropy design approach, 

which is not dependent on the response function and always gives an almost uniform 

DOE based on a priori information and current available experiments. We can get a 

single DOE for all responses using this technique, but the accuracy of the resulting 

metamodels can be low since no information about response functions is used in these 

kinds of approaches. A representation for such approaches is given in Figure 6.4. 

One DOE

 •

•
• m independent metamodels

Metamodel

 

Figure 6.4 Metamodeling with one DOE 
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This latter approach is better than the approach of independent metamodeling with 

different DOEs in that it is expected to have a much less number of function calls.  

In the next Section, a dependent metamodeling approach is developed in which the 

metamodels can be built with the same number of simulation runs as the approach of 

independent metamodeling with one DOE (see Figure 6.4), while achieving a good 

accuracy by using correlations among multiple responses. 

6.3.1 Dependent Metamodeling 

Dependent metamodeling is based on the idea that each single response is modeled 

as a function of all other responses, as well as the inputs. The goal of dependent 

metamodeling is to build a system of functions ( ).1ĝ , …, ( ).mĝ  such that  

( )
( )

( )121

3122

3211

ˆˆˆˆˆ

ˆˆˆˆˆ
ˆˆˆˆˆ

m-mm

m

m

y,...,y,y, gy

y,...,y,y, gy
y,...,y,y, gy

x

x
x

=

=
=

M
                                         (6.4) 

Each of the equations in Eq.(6.4) can be constructed using the kriging 

metamodeling, with estimates of responses included as part of the inputs for the 

equations, e.g., as shown in the first equation of Eq. (6.4): 1ŷ  is obtained based on x 

and 2ŷ , 3ŷ , …, mŷ . Note that, unlike Eq. (6.3), the dependent metamodels can not be 

solved independently to estimate a response. Instead, the equations in Eq. (6.4) must be 

solved simultaneously. Figure 6.5 shows an example of applying the dependent 

metamodeling and independent metamodeling to a simulation with two responses. 
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Figure 6.5 Scheme for (a) independent and (b) dependent metamodeling 

The corresponding system of modeling equations for Figure 6.5(a) and Figure 

6.5Figure 6.5(b) are shown in Eq. (6.5) and Eq. (6.6) separately as follows: 

( )
( )xfy

xfy

22

11

ˆˆ

ˆˆ

=

=
                                                   (6.5) 

( )
( )1122

2111

ˆˆˆ
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y, , x, xgy

n

n

…=
…=

                                         (6.6) 

In the proposed approach, Eq. (6.4) is solved recursively in a two-step procedure: 

(i) In the first step, Eq. (6.3) is used to obtain an initial estimate for each response, i.e., 

1ŷ , 2ŷ , …, mŷ ; and (ii) In the second step, these estimates are used in Eq. (6.4) to get 

new values for the estimates 1ŷ , 2ŷ , …, mŷ , which are different from the initial 

estimates. Then, the second step is repeated until the values of estimates are converged, 

i.e., no significant change between two consecutive estimates is observed for every 

estimated response. 

6.3.2. Extended Maximum Entropy Design 

The maximum entropy design criterion is originally applied only in the x space, 

with the assumption that DOE is performed only in the x space. However, with regard 

to the dependent metamodeling approach, the maximum entropy design criterion must 

be extended to accommodate the new, larger input space (which includes both the 

input and response vectors) associated with Eq. (6.4), i.e.,   
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(xi+1, yi+1) = arg max  H(x1, x2, …, xi, y1, y2, …, yi;  x, y)        (6.7) 

where in Eq. (6.7), H has the same definition as in Section 2.6, x and y are both vectors 

and the superscript for x or y refers to an experiment (or iteration) number. Note that 

the dimension of the search space in Eq. (6.7) differs from that for a conventional 

maximum entropy design method as defined in Eq. (2.12). Solutions to (6.7) are 

vectors (x1, x2, …, xn, y1, y2, …, ym)  of dimension n + m.  Furthermore, since y = (y1, 

y2, …, ym) is in fact a function of  x = (x1, x2, …, xn) (although the relationship is not 

known a priori), not every combination  (x, y)  = (x1, x2, …, xn, y1, y2, …, ym) is 

consistent as defined in the following.   

Definition: A vector (x, y) = (x1, x2, …, xn, y1, y2, …, ym) ∈ mn+Ω  is said to be 

consistent if the simulation yields (y1, y2, …, ym) as the response for the input (x1, x2, 

…, xn). In other words, in an n-input, m-response deterministic simulation model (i.e., 

Figure 6.2), (x1, x2, …, xn, y1, y2, …, ym)  is consistent if  yj = fj(x), j = 1, …, m. 

Clearly, there is no guarantee that the solution to Eq. (6.7) is consistent if we solve 

it directly as an unconstrained optimization problem.  A measure of the consistency of 

an arbitrary vector (x1, x2, …, xn, y1, y2, …, ym) is expressed by means of the functions 

δj defined as 

              δj (x,y) = | yj -  fj(x)|             (6.8) 

for j = 1,…, m.  However, since an exact evaluation of the functions fj(x) is not 

available, functions δj (x, y) in Eq. (6.8) must be estimated. This can be done using the 

metamodeling functions jĝ (x) (as defined in Eq. (6.4)) to replace fj(x), thus, 
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where k
jĝ  is the kth generation metamodeling for fj(x). Therefore (x1, x2, …, xn, y1, y2, 

…, ym) is estimated to be consistent if ( ) ( ) ( ) 0,ˆ...,ˆ,ˆ
21 ==== yxyxyx mδδδ  according 

to the current generation metamodel.  In order to account for the consistency condition, 

the conventional maximum entropy design criterion defined in Eq. (2.12) is replaced 

by a constrained maximization problem: Find (xi+1, yi+1) such that 

                                      maximize  H(x1, x2, …, xi, y1, y2, …, yi;  x, y)   

                          subject to  ( ) εδ ≤yx,ˆ
j ,  j = 1,…, m                                   (6.10) 

where ε is a tolerance parameter, that is a small positive constant that can be 

determined based on the density of the normalized input space, i.e., should be less than 

the distance between any two points in the input space; i is the number of experiments 

already in the design. This design criterion is used along with the system of dependent 

metamodels (i.e., Eq. (6.4)) to build metamodels for a multi-response deterministic 

simulation. Satisfying the consistency constraint in Eq. (6.10) is crucial to the success 

of the strategy. However, computational effort for satisfying the consistency constraint 

can be ignored, given the assumption that the computational cost for each simulation 

run is overwhelming. 

In the above mentioned proposed approach, the space on which the maximum 

entropy design is used has two characteristics that make it different from the 

conventional maximum entropy approach. First, the input space of the proposed 
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approach has a higher dimension than that of input space of the simulation because the 

responses of the simulation are also treated as part of the input space. Second, the 

entropy maximization problem in the proposed approach is constrained while the 

conventional maximum entropy design is unconstrained. Therefore, experiments 

obtained from the proposed approach will be different from the conventional approach 

since they are designed in a higher-dimension, mapped to the input space of the 

simulation, and forced to be consistent using the inequality constraints as defined in 

Eq. (6.10). 

6.3.3 Steps for Dependent Metamodeling 

The proposed approach, which includes a metamodeling approach and a sampling 

method, can be represented in Figure 6.6, and detailed steps as given next. 
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Figure 6.6 Overall framework of the proposed approach 

Normalization: We assume that the region of interest where experiments are to be 



 117

designed (the input design space) is bounded by upper and lower limits on each of the 

design variables and that normalization is possible so that the design space is bounded 

within [0, 1]n. Similarly, we also assume that the response space can be normalized 

using an estimate of the lower and upper limits of each response. In general, this is not 

a severe assumption, as the estimates need not be tight and may be simply set to values 

that result in intervals large enough to include all values of responses.  This results in a 

normalized response space contained in [0, 1]m. After normalization, we can use the 

constrained maximization problem as defined in Eq. (6.10) to obtain new experiments 

at a rate of one point per iteration, as explained in the following steps. 

Initial Design: The process starts with a randomly selected single initial 

experiment. Note that the proposed method may become too complicated and lose 

some of its appeal if an adaptive design criterion is used to multiple points are selected 

initially. Fortunately, in general, after enough points are added, the accuracy and 

efficiency of the proposed method is not affected significantly by how well the initial 

points are distributed. Nevertheless, it must be acknowledged that in problems with a 

very small number of experiments, the choice of the initial point can become 

somewhat significant, but the exact effect only depends on the properties of the 

unknown response and cannot be predicted if it is assumed that no information from 

the response is available initially.  

Stopping Criterion: The number of available simulation runs is used as the stopping 

criterion, determined a priori from the available computation resources, under the 

assumption that simulations account for the bulk of the computational effort. Model 

accuracy is not used as a stopping criterion in this chapter simply to avoid extra 
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simulation runs. The proposed algorithm is shown in Figure 6.7 and the detailed steps 

are also given below the figure. 
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Figure 6.7  Flowchart for dependent metamodeling 

Step by step description of the algorithm: 

Step 1: A single initial experiment x1 is chosen randomly from within the normalized 

design space. The design D is initialized, D = {x1}.  

Step 2: Define k as the iteration counter and set k = 1.  

Step 3: The response vector for the current design D (D = {x1, …, xk}) is obtained by 

running the multi-input,  multi-response simulation model. 

Step 4:  The kriging based dependent metamodeling is used to update the kth 

generation dependent metamodels (recall Section 6.3.1). 

Step 5: The consistency measures jδ̂  are built using the kth generation dependent 
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metamodels k
jĝ  for each input vector in a normalized design space.  

Step 6: The constrained maximum entropy optimization problem defined in Eq. (6.10) 

is solved to obtain the next input vector which maximizes entropy in the consistent 

input-response space (i.e., the space of vectors that are feasible according to the 

consistency constraints of the problem in Eq. (6.10)). 

Step 7: The newly selected experiment xk+1 (i.e., a single experiment for each stage) is 

merged into design D. 

Step 8: Set k = k + 1. 

Step 9:  Stop if the stopping criterion is achieved (e.g., desired number of experiments 

in D is reached). Otherwise, go to Step 3. 

The above algorithm is also shown in a flowchart as follows: 

6.4 Examples and Results 

In this section two examples are used to test the proposed approach. In each 

example, kriging models are constructed using both the conventional and the proposed 

approach. A testing sample with randomly selected experiments is used to estimate the 

model accuracy. The root mean squared error (RMSE) of the metamodels is used to 

evaluate the model accuracy.  

6.4.1 Numerical Example 

Consider the following two-input (i.e., n = 2) two-response (i.e., m = 2) explicit 

numerical problem (this is a modification of a single-response problem, first proposed 

by Farhang-Mehr and Azarm (2002, 2005) as a challenging test problem with varying 

response behavior and many local optima : 
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Table 6.1 includes a tabulation of 20 experiments (listed under “Conventional 

Approach” in Table 6.1) obtained using the maximum entropy design approach, which 

is also graphed in Figure 6.8(a). The order in which the experiments were obtained is 

shown in Table 6.1. Independent metamodels are then created separately using the 

kriging method for each response. Table 6.1 also shows a tabulation of a different 

design of 20 experiments (listed under “Proposed Approach” in Table 6.1) obtained 

using the new multi-response approach of this chapter (see Figure 6.8(b)). 

Table 6.1 Design of 20 experiments using conventional and proposed approaches 

(1): Conventional Approach 

(See Figure 6.8(a)) 
(2): Proposed Approach 

(See Figure 6.8(b)) 

Experiment x1 x2 Experiment x1 x2 
1 0.500 0.500 1 0.500 0.500 
2 0.000 0.000 2 0.951 0.999 
3 0.000 1.000 3 0.973 0.059 
4 1.000 0.000 4 0.121 0.015 
5 1.000 1.000 5 0.067 0.958 
6 0.000 0.500 6 0.925 0.543 
7 1.000 0.500 7 0.008 0.379 
8 0.500 1.000 8 0.620 0.915 
9 0.500 0.000 9 0.454 0.004 
10 0.244 0.734 10 0.054 0.696 
11 0.265 0.265 11 0.908 0.855 
12 0.755 0.755 12 0.278 0.910 
13 0.755 0.244 13 0.718 0.276 
14 0.755 1.000 14 0.285 0.224 
15 0.000 0.755 15 0.983 0.145 
16 0.265 0.000 16 0.472 0.105 
17 1.000 0.755 17 0.788 0.991 
18 0.000 0.244 18 0.719 0.051 
19 0.244 1.000 19 0.022 0.835 
20 1.000 0.244 20 0.976 0.902 
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(a)                                                          (b) 

Figure 6.8 Design of 20 experiments using (a) conventional independent approach, 
and (b) proposed dependent approach 

In the approach in this chapter, we use y2 as well as x1 and x2 as the input vector to 

estimate y1, and y1 as well as x1 and x2 as the input vector to estimate y2. Unlike the 

conventional approach, the distribution of the points in the new approach is 

asymmetric (Figure 6.8(a) is almost symmetric with emphasis on the boundaries). It 

means that the information from the other response has some effects in the selection of 

experiments and this additional information may help to build a more accurate 

metamodel, as observed in the RMSE results discussed in the next paragraph. 

Metamodels in both Figure 6.9 and Figure 6.10 are obtained after normalization. 

Figure 6.9 shows the metamodels and RMSE values obtained using the conventional 

maximum entropy approach. Figure 6.10 shows the metamodels and RMSE values 

obtained from the proposed approach of this chapter using the same number of 

experiments (20 simulation runs). To estimate the accuracy of the obtained 

metamodels (from both approaches), we used an additional testing sample of 1000 

randomly selected experiments and obtained the RMSE  for each metamodel. 

Comparing the metamodels in Figure 6.9 with the corresponding metamodels in Figure 

6.10, it can be observed that the proposed approach provides more accurate 
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approximations (i.e., lower RMSE values) for both responses. 
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(a)                                                                               (b) 

Figure 6.9 Metamodels from the conventional approach for (a) y1 

with 280)RMSE( 1 .~y , and (b) y2 with 390)RMSE( 2 .~y  
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(a)                                                                                (b) 

Figure 6.10  Metamodels from the dependent metamodeling approach for (a) y1 
with 050)RMSE( 1 .~y , and (b) y2 with 110)RMSE( 2 .~y  

6.4.2 Engineering example - Crashworthiness design simulation 

By most measures, simulation of a crash event involving a typical vehicle is a 

computationally intensive task. A detailed computer model of a passenger vehicle 

typically involves 105 – 106 degrees of freedom and one performance evaluation may 

require many hours or days of computer time. The physical phenomena involved are 

highly non-linear and the simulated responses tend to be quite ill-behaved. Because of 
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this complexity, metamodeling of such simulations are crucial for crashworthiness 

design. A detailed multi-purpose finite element model of a 1994 Chevrolet C-2500 

pick-up truck has been developed at the National Crash Analysis Center at George 

Washington University (Bedewi et al., 1996). A representation of the rail assembly is 

shown in Figure 6.11 as follows. 

A

A’

B

B’

C

rail

bumper

connector

20 mph

 
Figure 6.11 The bumper-rail assembly 

The assembly consists of the bumper, the left and right rails, and the cross rail 

connector.  The rail mountings, which connect the bumper and the rails, were replaced 

with connectors modeled by beam elements whose purpose is simply to 

engage/disengage the rail and the bumper. Lumped masses are attached at the rear end 

of the rails, at section B-B’.  As shown in Figure 6.11, the assembly is moving forward 

to the right at a speed of 20 mph when it hits a rigid wall. The stress analysis of this 

assembly was performed using a standard finite element package for large deformation 

and impact analysis.   

In designing for enhanced crashworthiness, the objective is to improve the 

protection of the passenger, e.g., by controlling the accelerations experienced by the 

passenger and the deformation of the structure in the immediate vicinity of the 

passenger.  In our case this is accomplished indirectly by  (1) the maximum force, F(t), 

transmitted through the rail (measured at section A-A’); and (2) the maximum (X-) 
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displacement D(t) of the section at B-B’.  The simulation model therefore, computes 

two responses:  

( )tFy
t 01 max
>

=                                                     (6.12) 

( )tDy
t 02 max
>

=                                                    (6.13) 

The simulation model calculates both of these responses in one run. The simulation 

run was performed by Dr. Diaz and his students at the Michigan State University (see 

Li et al., 2006a), and each run takes about 15 minutes on a Sun Ultra 80 workstation. 

Because of the non-linear and multi-response nature of this model, it is a particularly 

interesting case study for the proposed approach of this chapter. 

In Table 6.2, column 1 tabulates 36 experiments obtained using the conventional 

maximum entropy approach, which is also graphed in Figure 6.12(a). Table 6.2 also 

shows a tabulation of a different design of 36 experiments (listed under “Proposed 

Approach” in Table 6.2) obtained using the new multi-response approach of this 

chapter. Figure 6.12(b) shows the obtained experiments in the input space. The 

comparison of obtained designs is similar to that in the first example. 
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(a)                                                   (b) 

Figure 6.12 Design of 36 experiments using (a) conventional independent 
approach, and (b) proposed dependent approach 
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Table 6.2 Design of 36 experiments for crashworthiness design example 

(1): Conventional Approach 
(See Figure 6.12(a)) 

(2): Proposed Approach 
(See Figure 6.12(b)) 

Experiment Force Displacement Experiment Force Displacement 
1 1.000 1.000 1 0.500 0.500 
2 0.000 0.000 2 0.000 0.000 
3 0.000 1.000 3 1.000 1.000 
4 1.000 0.000 4 1.000 0.000 
5 0.500 0.500 5 0.000 1.000 
6 0.000 0.500 6 0.474 1.000 
7 1.000 0.500 7 0.000 0.473 
8 0.500 1.000 8 0.526 0.000 
9 0.500 0.000 9 1.000 0.421 
10 0.244 0.734 10 0.842 0.684 
11 0.265 0.265 11 0.210 0.789 
12 0.755 0.755 12 0.210 0.157 
13 0.755 0.244 13 0.000 0.736 
14 0.755 1.000 14 0.157 0.473 
15 0.000 0.755 15 0.578 0.157 
16 0.265 0.000 16 0.105 0.947 
17 1.000 0.755 17 0.947 0.157 
18 0.000 0.244 18 0.842 0.105 
19 0.244 1.000 19 0.210 1.000 
20 1.000 0.244 20 0.842 0.263 
21 0.755 0.000 21 0.736 1.000 
22 0.500 0.755 22 0.000 0.105 
23 0.500 0.244 23 0.947 0.052 
24 0.755 0.500 24 1.000 0.052 
25 0.244 0.500 25 1.000 0.526 
26 0.142 0.122 26 0.736 0.105 
27 0.122 0.877 27 0.733 0.133 
28 0.877 0.877 28 0.947 1.000 
29 0.877 0.632 29 0.894 0.578 
30 0.387 0.122 30 1.000 0.789 
31 0.346 0.877 31 0.947 0.684 
32 0.897 0.102 32 0.736 0.263 
33 0.877 0.367 33 0.966 0.333 
34 0.102 0.367 34 0.526 0.368 
35 0.612 0.897 35 1.000 0.842 
36 0.102 0.612 36 0.947 0.736 

 

Figure 6.13 and Figure 6.14 shows the resulting metamodels and RMSE values 

from the conventional and the proposed approach using the same number of 

experiments (36 simulation runs). Note that force and displacement values are 

normalized in Figure 6.13 and Figure 6.14. 
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In Figure 6.13 and Figure 6.14, the RMSE values of the obtained metamodels are 

estimated using a random sample of 40 experiments. Comparing the metamodels in 

Figure 6.13 with the corresponding metamodels in Figure 6.14, it can be observed that 

the proposed approach provides more accurate approximations for both responses (i.e., 

lower RMSE values). 
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(a)                                                                           (b) 

Figure 6.13 Metamodels from the conventional approach for (a) maximum force y1 
with 240)RMSE( 1 .~y , and (b) maximum displacement y2 with 490)RMSE( 2 .~y  
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(a)                                                                            (b) 

Figure 6.14 Metamodels from the dependent metamodeling approach for (a) 
maximum force y1 with 180)RMSE( 1 .~y , and (b) maximum displacement y2 with 

230)RMSE( 2 .~y  

6.5 Summary 

A new methodology for offline approximation of multi-response simulations is 
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proposed in this chapter, one that creates and updates mutually dependent metamodels. 

These metamodels are created assuming that other response values from the model can 

be used as inputs, creating a system of dependent metamodels that must be solved 

simultaneously. Unlike traditional (independent) metamodeling techniques, the new 

approach takes advantage of the cross-correlation among multiple responses to 

improve the accuracy of the obtained metamodel (with the same number of 

experiments), and to improve the efficiency for selection of new sample locations 

using the information present in all of the observations. 

The two examples in this chapter illustrate that, for the same number of simulation 

runs and in terms of the accuracy of the obtained metamodels, the new approach 

outperforms a conventional method by a good margin.  We should emphasize that this 

conclusion must be tempered by the fact that the proposed approach is intended for 

problems where computational costs associated with simulations are overwhelming. If 

the computational cost for internal computations cannot be ignored relative to that of 

the simulation model, then the proposed method is less efficient than the conventional 

approach. 

In the proposed approach, the experiments are generated at a rate of one point for 

each iteration since the fully sequential design is the most natural way for computer 

simulations (e.g., Jin et al., 2002; Sacks et al.; 1989). Furthermore, as mentioned 

before, the assumption is that the computational effort for each simulation is much 

more intensive in comparison to that required for metamodeling and DOE. Although 

the proposed approach is developed for generating one point at a time, it can also be 

readily extended to generating several points at a time by conducting each 
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corresponding DOE on one processor, and use the rest of the processors to evaluate the 

experiments by running the simulation (the main source of computational burden) 

separately at each processor. 

Finally, the number of available simulation runs and the desired model accuracy 

are often used as the stopping criterion in a sequential approximation process. In this 

chapter, the number of available simulation runs is used as the stopping criterion. The 

model accuracy in terms of RMSE, on the other hand, can be obtained using two 

different methods. One method is to use an additional testing sample with a set of 

randomly selected experiments to calculate the RMSE value, which is unbiased but 

requires extra simulation runs. In practice, these extra simulation runs are not desirable 

since the main purpose for approximation is to use fewer simulation runs.  Another 

method that is used to estimate the model accuracy is cross-validation (e.g., Kohavi 

1995), which does not require an additional testing sample. However, the cross-

validation method can be biased because the sample for testing is not selected 

randomly. One possible future direction calls for an un-biased and more efficient 

metamodel accuracy assessment method. 

In the next chapter, the conclusions of this dissertation are presented. 



 129

Chapter 7 Conclusions 

This dissertation presented the approaches and results for four research thrusts in 

the context of approximation assisted population based multi-objective optimization. 

These were: 1) Fitness Estimation in Online Metamodeling Research Thrust, wherein 

an online kriging based fitness estimation approach in online for population based 

optimization methods was developed; 2) Adaptive DOE in Online Metamodeling 

Research Thrust, wherein an adaptive DOE method that can identify predicted optima 

was developed; 3) Adaptive DOE in Offline Metamodeling Research Thrust, wherein a 

greedy algorithm for adaptive DOE was developed that can sample more experiments 

in non-smooth regions, and thus improves the metamodel accuracy; and 4) Dependent 

Metamodeling Research Thrust, wherein a metamodeling approach was developed that 

accounts for the correlation among the responses from a simulation with multiple 

responses.  

This last chapter is organized as follows. In Section 7.1, the four research presented 

in the previous four chapters are summarized. After that, some conclusions about the 

presented approaches are given in Section 7.2. In Section 7.3, the main contributions of 

this dissertation are outlined. Finally, some future research directions are discussed in 

Section 7.4. 

7.1 Summary 

In the following, a summary of the four research thrusts is provided.  

• Fitness Estimation in Online Metamodeling Research Thrust: As presented in 

Chapter 3, the kriging metamodeling assisted fitness evaluation approach in a 
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population based optimization method is developed as a new online metamodeling 

technique. The main idea is that some of the points are evaluated online using 

kriging metamodeling instead of the original simulation model in the optimization 

procedure. In this way, the number of function calls can be reduced in each 

generation in a population based optimization approach. The identified points to be 

estimated using the kriging metamodel are those that the corresponding estimated 

response would not change the estimated dominance status in the objective space 

for the current generation. If the dominance status is estimated to be changed, then 

the simulation is used for evaluating that point. Otherwise, the metamodel is used. 

• Adaptive DOE in Online Metamodeling Research Thrust: As presented in Chapter 

4, a new adaptive DOE method is developed. In the proposed DOE method, the 

predicted optima are identified, from which some points are selected and added to 

the next population in a population based optimization approach. It is shown that 

the number of generation needed for convergence is reduced. Also, this new 

adaptive DOE method is integrated with the kriging metamodeling assisted fitness 

evaluation approach developed in Chapter 3 in order to reduce the overall number 

of function calls even more when compared to MOGA or even K-MOGA. 

• Adaptive DOE in Offline Metamodeling Research Thrust: As presented in Chapter 

5, a greedy algorithm based DOE approach is developed for offline metamodeling. 

The proposed approach is denoted as an ACcumulative Error (ACE) approach for 

DOE. ACE is adaptive and samples more points in regions of input space where the 

response is non-smooth. The non-smooth regions are critical to identify and sample 

in order to improve the metamodel accuracy.  
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• Dependent Metamodeling Research Thrust: As presented in Chapter 6, a new 

approach to metamodeling is introduced whereby a sequential technique is used to 

construct and simultaneously update mutually dependent metamodels for high-

fidelity simulations with multiple responses. This new approach is a dependent 

metamodeling approach. Unlike conventional approaches which produce a single 

metamodel for each response independently, this new dependent metamodeling 

approach uses the correlation among different simulation outputs (or responses) in 

the construction of the metamodel.  These dependent metamodels are solved as a 

system of equations to estimate individual responses simultaneously.  

7.2 Conclusions 

In the following subsections, concluding remarks are given for each research thrust. 

7.2.1 Fitness Estimation in Online Metamodeling Research Thrust  

In this research thrust, the concept of MMD is introduced to distinguish between an 

estimated dominated and non-dominated set of points in a population. The relation 

between MMD and the uncertainty associated with the estimated responses is derived. 

This relation is used to objectively determine the condition for using the simulation or 

metamodel for evaluating a point, so that the number of function calls can be saved as 

the response for some points are estimated using the metamodel.  

The kriging assisted fitness evaluation approach presented in Chapter 3 was applied 

to several engineering and numerical test problems. These test problems have different 

degrees of difficulty and characteristics in terms of the design variables and 

constraints. For instance, some test examples have integer design variables, while 
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others have continuous design variables. Moreover, the shapes of the Pareto frontiers 

are quite different as shown in Chapter 3. We also used a conventional MOGA as a 

baseline optimization approach. For these test examples and on the average, a MOGA 

with the kriging assisted fitness evaluation (i.e., K-MOGA) reduces by a factor of two 

the number of function calls required compared to a conventional MOGA.  

 In the proposed approach, the kriging metamodel is updated in each generation in 

the optimization process. As a result, the metamodel accuracy is improved gradually. 

That is, those points that are migrated from previous generations with incorrectly 

estimated error are likely to be removed from the population due to a more accurate 

kriging metamodel. The side effect of such migrated points can be diminished when 

the kriging metamodels are updated adaptively in consecutive generations. In essence, 

the proposed approach has a self-correcting mechanism in terms of identifying good 

points for kriging metamodeling.  

There are some shortcomings in the proposed approach. One is that the relation 

between the kriging’s predicted error and MMD is devised based on a worst case 

scenario and thus the proposed approach can be considered to be conservative. Another 

is that the proposed approach requires extra computation for MMD calculation and 

metamodel construction. In this regard, it is often assumed that the computational cost 

for running the simulation is much more than that for the overhead in the proposed 

approach and thus the extra computational effort is neglected. 

7.2.2 Adaptive DOE in Online Metamodeling Research Thrust  

In Chapter 4, a new adaptive DOE method is developed to identify the predicted 

optima, and from which some points are selected as part of the next population. These 
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points are defined as DOE points, and are in addition to the points from inheritance, 

crossover and mutation used in the next population. The DOE method is combined 

with the online metamodeling approach from Chapter 3 and together with a population 

based optimization method, such as MOGA, to reduce the number of function calls.  

The same set of test problems (except for the engineering examples) from Chapter 

3 are also used in Chapter 4 to demonstrate the applicability of the approach in this 

research thrust. Also, the same conventional MOGA is used for comparison. It is 

observed that on the average, the number of function calls is reduced by about 70%. In 

other words, the use of the proposed DOE method contributes to an additional 20% 

saving in the number of function calls compared to K-MOGA. This extra saving, as we 

discussed in Chapter 4, is due to the reduction in the number generations for 

convergence. Moreover, the proposed DOE approach is applicable to MOGA and other 

population based optimization methods. 

One shortcoming of the proposed DOE method is that the predicted optima is 

obtained by running an optimizer in the metamodel, which is another computational 

overhead in the improved optimization framework in addition to that from the fitness 

estimation approach. However, again, as in the same previous assumption, the 

computational cost for running the simulation is assumed to be much more than that 

from the overhead cost and thus the overhead can be neglected. 

7.2.3 Adaptive DOE in Offline Metamodeling Research Thrust 

In this research thrust, as discussed in Chapter 5, a new adaptive DOE method is 

developed in which: i) a modified leave-one-out method is used to identify non-smooth 

regions, and ii) the greedy algorithm is used to select new experiments in the non-
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smooth regions. 

Several test problems are used to show the strength of the proposed greedy based 

adaptive DOE approach. These problems have single or multiple inputs. Also, the 

response surfaces (for problems with one or two inputs) have different degree of 

complexity. It is observed that the proposed DOE approach outperforms a conventional 

DOE method in terms of the metamodel accuracy using the same number of function 

calls for the test examples. 

One shortcoming of the proposed DOE approach is that we used an ad-hoc 

approach to determine how many of experiments should be used for initial design, 

before the approach begins and how many during the application method.  This aspect 

will need to be further investigated although some initial results are presented in 

Chapter 5. 

7.2.4 Dependent Metamodeling Research Thrust 

In the proposed approach in Chapter 6, the correlation among responses from a 

multi-response deterministic simulation is used to build metamodels for all these 

responses simultaneously. Also, in the DOE stage, the experiments are selected based 

on the information from both the input space and the response space.  

A numerical and an engineering example are used to show the strengths of the 

proposed dependent metamodeling approach. In these test problems, the multiple 

responses are correlated. And the correlation is used in building the metamodels for the 

responses simultaneously. It is shown from the two examples that, for the same number 

of experiments and in terms of the metamodel accuracy, the new approach outperforms 

a conventional method by a good margin. 
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One shortcoming of the proposed dependent metamodeling approach is that it’s 

computational overhead (e.g., for solving the system of equations accounting for the 

correlation) is increased as the number of responses increase. Another shortcoming is 

that the DOE method used in the dependent metamodeling approach is not fully 

adaptive to each response and thus may limit the improvement of the metamodel 

accuracy. 

7.3 Main Contributions 

The main challenge in metamodeling assisted fitness evaluation is to determine, in 

each generation of the optimization process, the response from which points should be 

estimated using the metamodel. A kriging assisted fitness evaluation approach is 

developed in this dissertation in which the MMD and kriging error is used to identify 

such points. It is shown that the new approach is able to reduce the number of function 

calls significantly compared to a conventional population based optimization approach. 

• Kriging assisted fitness evaluation approach is the first online metamodeling 

approach that uses the uncertainty of the estimated responses as the determination 

criterion. Only for points with large estimated uncertainty in the response, the 

simulation is used to obtain the actual response. These evaluated points are used to 

update and improve the accuracy of the kriging metamodel gradually, thus more 

points can be processed by the metamodel in the later generations and thus save in 

simulation costs. 

In the Adaptive DOE for online metamodeling, there are two major challenges: 1) 

Selecting some points that can help the optimization process to converge faster, while 
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keep the global searching ability of a population based optimization method, and 2) 

Being able to work in concert with a metamodel assisted fitness evaluation approach. 

A new DOE method is developed in this dissertation and is integrated in a 

conventional population based optimizer together with the fitness estimation approach 

presented in Chapter 4. It is shown that the savings obtained are significant in terms of 

both the number of function calls from both the DOE addition and the fitness 

estimation addition for a population based optimization framework. 

• The main contribution of this approach is that for the first time in the literature 

online metamodeling for both fitness estimation and reproduction has been 

integrated and used to significantly improve the performance for a population 

based optimization approach such as MOGA. 

In the Adaptive DOE for offline metamodeling, the major challenge is to select the 

minimum number of experiments to build accurate metamodel. This problem can be 

posed as an optimal selection problem that can be solved using a greedy algorithm. The 

results from the test examples in Chapter 5 show that the new approach outperforms a 

conventional DOE approach. 

• ACE approach is the first DOE approach in which the greedy principle is used 

explicitly to select new experiments in non-smooth regions which are identified 

using actual responses. In this way, the improvement of metamodel accuracy is 

maximized as more experiments are selected for the identified non-smooth regions. 

Finally in the metamodeling for deterministic simulations with multiple responses, 

as discussed in Chapter 6, the major challenge is to build accurate metamodels for all 

responses using as few as possible experiments. A novel dependent metamodeling 
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approach is developed in this dissertation that uses the correlation among all responses 

from a simulation. It is shown that, for the same number of experiments, the new 

approach can build more accurate metamodels when compared to a conventional 

approach as demonstrated in Section 6.4.1 and Section 6.4.2.  

• The main contribution of this part of research is that the correlation among all 

responses is accounted in building metamodel for a multi-response simulation 

model. These metamodels are created assuming that other response values from 

the model can be used as inputs, thus creating a system of dependent metamodels 

that are solved simultaneously.  

7.4 Future Research Directions 

In this section, several suggestions are given for future research. Some of these 

suggestions are based on the shortcomings discussed in the last section. Others are 

made based on extended research.  

• Kriging assisted fitness evaluation: In Section 7.1.1, it was mentioned that the 

online metamodeling approach of Chapter 3 is conservative because the relation 

between MMD and kriging error was derived from a worst case scenario. Hence, 

the number of the function calls in each generation can be further reduced if a less 

conservative criterion can be developed. Also, the reduction in the number of 

function calls for a test problem is known only after the approach is applied to that 

problem. It would be useful if it is possible to establish a lower bound for the 

reduction so that the saving can be estimated before the start of the approach. 

Finally, although we observed that the K-MOGA approach can reduce the number 

of function calls for every test problem compared with the conventional MOGA 
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approach, a theoretical proof is absent. The challenge is that the reduction of the 

number of function calls is problem dependent and this aspect needs to be further 

verified. 

• Adaptive DOE for online metamodeling: In the DOE method of Chapter 4, the 

criterion for selecting some points from the predicted optima in the DOE method is 

similar to that used in the online metamodeling approach of Chapter 3. That is, the 

criterion is conservative and tends to select more points (with a large kriging error) 

from the predicted optima as DOE points for the next population. As discussed in 

Section 4.3.2, these DOE points are all evaluated by the simulation.  As a result, 

the reduction in the number of function calls due to an online metamodeling 

assisted fitness evaluation can be diminished. Hence, a less conservative selection 

criterion can improve the efficiency of the proposed DOE method, too. Similarly, 

the determination of a lower bound for the reduction in the number of the 

generations for convergence will be helpful. The generality of the proposed 

approach in terms of reducing the number of function calls needs to be further 

verified. 

• ACE for DOE: Another future research idea for adaptive DOE in offline 

metamodeling is the so called resource (or function call) allocation problem. That 

is, given a limited number of function calls, how many of these function calls 

should be allocated for initial design, and how many for metamodel validation (i.e., 

the metamodel accuracy, such as by the RMSE). 

• Dependent metamodeling: As we mentioned in Section 7.1.4, the dependent 

metamodeling approach is not fully adaptive in the sense that the new experiments 
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are selected without using certain information from each response metamodel. 

Thus, the metamodel accuracy for a multi-response simulation can be further 

improved by an adaptive DOE method, such as the one presented in Chapter 5. 

• Approximation for simulations with uncertainty: The approximation research 

presented in this dissertation assumes that the simulations are deterministic even 

though some uncertainty can exists in real simulations. The extension of the 

proposed approximation techniques in this dissertation to simulations with 

uncertainty would be an interesting research area. Some initial research on this 

aspect has been reported (e.g., Daniel et al., 2006). 

• Approximation for multiple coupled simulations: Approximation methods 

developed in this dissertation are for all-at-once single simulations. However, an 

engineering system can be very complicated, have multiple disciplines, and involve 

multiple coupled simulations for those disciplines. Thus, a future challenge is how 

to efficiently extend the approximation methods in this dissertation to multi-

subsystem and coupled simulations. 
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