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This dissertation research comprised three studies examining the effects of acute 

and chronic endurance exercise on circulating angiogenic cells (CACs). Because the 

balance between nitric oxide (NO) and reactive oxygen species (ROS) is a critical 

aspect of the physiological function/dysfunction of CACs, each study determined the 

effects of exercise on NO-ROS balance within a variety of CAC types.  Study #1 

demonstrated that regular endurance exercise is associated with greater basal 

intracellular NO levels in cultured CACs, and that one mechanism underlying this 

association was increased NADPH oxidase enzyme activity in the sedentary state. 

Study #2 suggested an association between a sedentary lifestyle and increased nitro-

oxidative stress in freshly-isolated CD34+ progenitor cells. Study #3 demonstrated 

that prior exercise attenuates high-fat meal induced-increases in mitochondrial-

derived intracellular ROS in CD31+ CACs. Overall, it is concluded that acute and 

chronic endurance exercise enhance intracellular NO and ROS dynamics in CACs. 
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 Chapter 1: Introduction and Specific Aims 

Background 

Current estimates indicate that only 50% of cardiovascular (CV) disease cases can 

be explained by traditional CV risk factors including hypertension, hyperglycemia, 

hypercholesterolemia, and others (22), and only ~60% of the CV disease risk 

reduction through regular exercise can be explained by its effects on traditional risk 

factors (151). Recent evidence indicates that the number and function of circulating 

angiogenic cells (CACs) may account for some of the unexplained CV risk and 

reduction in risk through regular exercise. The term “CACs” refers to a variety of cell 

types that can maintain, repair, and regenerate the vascular endothelium (250). As the 

development of endothelial dysfunction is thought of to be the earliest event in the 

development of atherosclerosis (78, 179), the maintenance of a functional 

endothelium by CACs is a critically important physiological process in current CV 

disease prevention research. Epidemiological data have established associations of 

CACs with CV disease risk (reviewed extensively in Chapter 2), but the biological 

mechanisms underlying these associations are unclear. Further, growing evidence 

indicates that both acute and chronic endurance exercise increase the number of 

CACs. This increased CAC number has been proposed to enhance the capacity for 

endogenous vascular repair. However, the effects of exercise or training on functional 

aspects of CACs have not been adequately examined.  

Therefore, the overall aim of this dissertation research was to determine the 

effects of acute and chronic endurance exercise on molecular regulators of CAC 

function. The three studies contained herein examined angiogenesis- and oxidative 
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stress-related genes and intracellular free radicals in CACs to determine if acute and 

chronic exercise are associated with more favorable intracellular conditions for CAC-

mediated endothelial repair. Specifically, these studies focused on the regulation of 

nitric oxide (NO) and reactive oxygen species (ROS), as these molecules are 

important mechanistic regulators of a variety of CAC maintenance and repair 

functions, including mobilization, homing/migratory capacity, and secretion of 

angiogenic growth factors (61, 88, 250). In addition, ex vivo experimental inhibition 

of NADPH oxidase was performed in each experiment to determine the mechanistic 

role of this pro-oxidant enzyme relative to any effects of exercise or exercise training 

on CACs.  

Specific Aims 

Specific Aim 1. To determine the effects of acute and chronic endurance 

exercise on intracellular nitric oxide in putative endothelial progenitor cells. 

Study #1 (Jenkins et al., Am J Physiol-Heart Circ Physiol 2009; Chapter 3) 

determined the effects of acute and chronic endurance exercise on the intracellular 

environment of cultured endothelial progenitor cells (EPCs), which represent one 

type of CACs. It was hypothesized that acute and chronic endurance exercise would 

increase intracellular nitric oxide (NO) levels. Experiments with apocynin, an 

inhibitor of NADPH oxidase, were performed to examine whether alterations in NO 

could be explained by changes in NADPH oxidase enzyme activity.  

Specific Aim 2. To determine the effects of acute and chronic endurance 

exercise on intracellular NO, superoxide production and angiogenic gene 

expression in circulating CD34+ progenitor cells. 
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CD34+ progenitor cells in the circulation provide a pool of CACs and promote 

vascular repair (139, 209). In Study #2 (Jenkins et al., J Appl Physiol, in press, 2011; 

Chapter 4), intracellular superoxide ( O2
     ·- 

) and NO were assessed in freshly-isolated 

CD34+ cells of trained and sedentary men before and after acute exercise. The 

mechanistic role of NADPH oxidase underlying any effects of acute or chronic 

endurance exercise on NO or O2
     ·- 

 was determined by incubating cells with or 

without apocynin. It was hypothesized that acute and chronic endurance exercise 

would favorably influence the balance between NO and O2
     ·- 

 in freshly-isolated 

CD34+ PBMCs, and elevated NADPH oxidase activity in cells of the sedentary group 

would be a causal mechanism underlying these effects. It was also hypothesized that 

the expression of genes involved in the regulation of intracellular NO and O2
     ·- 

 levels 

would be consistent with greater antioxidant capacity and angiogenic function in the 

trained state. 

Specific Aim 3. To determine the effects of endurance exercise on CACs 

during postprandial lipemia.  

In study #3, the in vivo circulating environment was experimentally manipulated 

using a high-fat meal to induce postprandial lipemia (PPL) (Jenkins et al., 

Arterioscler Thromb Vasc Biol, submitted, 2011; Chapter 5). PPL is one of the most 

dramatic experimental perturbations of the CV and metabolic systems that can be 

performed in human subjects. PPL-induced hypertriglyceridemia has severe CV 

effects, including reduced NO bioavailability, increased systemic oxidative stress, and 

impaired endothelial function (237). However, acute exercise performed on either the 

preceding day (221) or during lipemia (160) can ameliorate PPL-induced endothelial 
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dysfunction. Importantly, PPL also causes pro-atherogenic phenotypes in circulating 

mononuclear cells, including upregulation of adhesion molecules and expression of 

proinflammatory genes (5, 153). CACs have never been examined during PPL, but 

exposure to an atherogenic environment promotes foam cell formation in cultured 

CD34+-derived EPCs (38), suggesting that these cells may be adversely affected by 

elevated lipids in vivo. As most people in Western societies are in a postprandial state 

most of the time, and atherosclerosis is a disease process mediated to a large extent by 

postprandial events (129, 192, 264), the results of this experiment are of high clinical 

relevance and public health significance. It was hypothesized that (i) PPL would 

reduce intracellular NO levels and increase the production of ROS by NADPH 

oxidase and/or mitochondria; and (ii) that these effects would be attenuated by a 

single bout of exercise performed on the prior day. 
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Chapter 2: Review of Literature 

Circulating Cells for Endogenous Vascular Repair 

The development of endothelial dysfunction is considered to be the first step in 

the etiology of cardiovascular (CV) disease and is a predictor for future CV events 

(189). Recent research has attempted to improve the understanding of physiological, 

cellular, and molecular processes involved in the maintenance of a functionally-

competent endothelial layer throughout the vasculature. Historically, it was thought 

that blood vessels lacked intrinsic mechanisms to repair cellular damage that causes 

endothelial dysfunction, especially damage resulting from inflammatory and 

oxidative injury that ultimately lead to atherosclerosis (179, 180). However, it is now 

known that although vascular endothelial cells have limited proliferative capacity, 

and are therefore unable to replace themselves to maintain a functional endothelial 

layer, there are several circulating cell types that perform critical functions for 

vascular endothelial maintenance, repair, and growth (12, 13). This dissertation 

research examined the effects of exercise on subpopulations of peripheral blood 

mononuclear cells (PBMCs), termed circulating angiogenic cells (CACs), with 

known roles in vasculogenesis and established relationships with endothelial function 

and CV disease risk. This chapter will review the current understanding of (i) the 

definition and functions of CACs, (ii) the relationship between CAC number and 

function and CV disease risk, (iii) cellular and molecular mechanisms linking CACs 

and CV disease, and (iv) the effects of lifestyle factors (i.e, physical activity an 

dietary habits) on CAC number and function. 



 6 
 

Definitions and Functions of CAC Types 

Overview. Circulating angiogenic cells (CACs) are PBMCs that perform a variety 

of functions in maintaining the endothelial lining of blood vessels. CACs are thought 

to support blood vessel maintenance in at least one of the following ways: by 

migration to sites of endothelial damage and incorporate into the endothelial 

monolayer, thus providing a ‘fresh’ endothelial cell to replace a damaged one; 

contributing to angiogenesis by incorporating into new vessels as they sprout/expand 

into tissues requiring increased perfusion; and/or via the release angiogenic growth 

factors/cytokines, such as VEGF, in a paracrine manner at sites of new vessel growth 

or endothelial damage, aiding in recruitment and proliferation of endothelial cells or 

other CACs. For this literature review, the term “CAC” is used in a broad sense to 

refer to any cell type previously shown to perform one or more of these functions. 

Current data indicate that these cells comprise at least four CAC subpopulations: (i) 

endothelial progenitor cells (EPCs); (ii) circulating bone marrow-derived CD34+ 

progenitor cells (regardless of coexpression of an endothelial antigen; (iii) pro-

angiogenic hematopoietic cells; and (iv) circulating endothelial cells that originate 

from the vessel wall.  

Endothelial Progenitor Cells. Endothelial progenitor cells (EPCs) originate early 

in embryonic development where they are derived from a common mesenchymal 

stem cell that gives rise to the hematopoietic and endothelial lineages (termed the 

“hemangioblast”) (95, 96, 175). Until recently, it was thought that EPCs existed only 

in the prenatal environment in mammals, and angiogenesis during adulthood was 

believed to result from the sprouting of existing vascular endothelial cells to form 
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new blood vessels (175, 176). However, in 1997 Asahara et al. (13) discovered EPCs 

also exist as a rare subpopulation of PBMCs in humans that co-express a 

hematopoietic stem cell marker (CD34) and an endothelial marker. These cells had 

the capacity to re-endothelialize denuded vessels and contributed to de novo 

vasculogenesis in vivo (13). Thus, the authors identified an entirely new mechanism 

for the maintenance of vascular integrity in adults, and the clinical implications of this 

discovery of circulating cells with vasculogenic capacity have become increasingly 

recognized in recent years.  

EPCs contribute to repair of the endothelium by direct (i.e., engraftment) and 

indirect (i.e., paracrine secretion of angiogenic factors) mechanisms (26, 167). The 

exact degree to which EPCs perform endothelial repair by engraftment in damaged 

vessels is a controversial issue and has been found to be variable across several 

studies from animal models. One study found that 30% of endothelial cells were 

derived from progenitor cells in an allogeneic transplant model (97). Effect sizes in 

other studies have been smaller, ranging from ~10% (34, 210) to less than 5% (63); 

furthermore, several studies have found no evidence for EPC engraftment into the 

endothelium under physiological conditions (75, 76, 168, 238). This variability in 

results among published studies is probably related to the different experimental 

approaches among laboratories. The studies using severe ischemia models have most 

consistently supported a role for EPCs in formation of new blood vessels. In this 

experimental approach, a major vessel (usually the femoral artery) is ligated and the 

downstream tissues are subjected to a period of ischemia. The ischemic tissue 

becomes necrotic and the animal may lose the affected hindlimb. However, studies in 
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which ischemic tissues have been treated with EPCs have prevented the ischemia-

induced necrosis by promoting vascularization and restoring tissue perfusion (4, 11, 

186, 253). Data from these studies have been largely interpreted by the field as 

evidence for a role of EPCs in growth of new vessels (225). However, the hindlimb 

ischemia method is a severe experiment and its relevance to the physiological/clinical 

situation is unclear; i.e., there are no diseases (even peripheral arterial disease with 

severe ischemia) in which human patients experience an ischemic stimulus as 

dramatic and sudden as is seen in the mouse hindlimb ischemia model. A proposed 

alternative mechanism for EPC-mediated vascular maintenance is secretion of growth 

factors in a paracrine manner, and there is growing experimental evidence supporting 

this notion (85, 116, 263). Thus, the current thinking is that the major contribution of 

EPCs to the maintenance of vascular integrity is through pro-angiogenic functions, 

and that engraftment probably plays a minor role (85, 217) except in cases of severe 

tissue ischemia.  

Issues with EPC terminology based on cell origin and phenotype. It has recently 

become clear that a number of cell types are involved in the maintenance of 

endothelial integrity, and the term “EPC” is now considered a broad term and may 

apply to a number of specific cell subpopulations. Broadly speaking, two functionally 

distinct subpopulations of EPCs have been identified. Early EPCs organize into 

colonies in culture after ~1 wk, promote vascular repair by secretion of pro-

angiogenic growth factors at sites of endothelial injury, but have a low capacity to 

self-replicate and do not contribute to the formation of new vessels in vitro or in vivo 

(27, 92, 105, 260, 261). Conversely, late EPCs form colonies after an extended time 
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in culture (~2-4 wk), have robust proliferative capacity and contribute directly to 

neovascularization (72, 105, 144, 217, 261). It is extremely controversial whether 

EPCs of any particular subset or origin constitute “true” EPCs. Briefly, the confusion 

arises partly from the fact that there are additional circulating mononuclear 

subpopulations with angiogenic potential displaying substantial overlap with EPCs in 

their origin and phenotype. For example, some subpopulations of T-cells and 

monocytic macrophages co-express endothelial antigens and perform angiogenic 

functions (discussed below – see Angiogenic Monocytes and T-Cells). For these 

reasons, it has been suggested that the term “EPC” should be avoided unless the terms 

“endothelial” and “progenitor” can be defined using sophisticated methodologies to 

determine expression of specific cell surface markers and in vivo vasculogenic 

potential (92).  

Circulating CD34+ progenitor cells as CACs. Despite the widespread 

disagreement and controversies over cell definitions in the CAC field, cells 

expressing the hematopoietic stem cell antigen CD34 have been shown to contain 

progenitor cell subsets with angiogenic function. The presence of one or more 

endothelial markers, e.g. the vascular endothelial growth factor (VEGF) receptor-2 

(VEGFR2) [as originally reported by Asahara (13)], CD144, CD146, CD31, von 

Willebrand factor, and others have been used to identify EPCs from within the CD34+ 

cell pool (92, 105, 217). However, CD34+ cells are scarce in the adult human 

population [< 1% of total PBMCs, (184, 185)]. Thus, for practical purposes, the 

CD34+ population, without further subdivision into subsets expressing endothelial 

antigens, is often used for CAC studies (15, 42, 184, 254). Human and animal cell 
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therapy studies using autologous transplantation of CD34+ cells have found beneficial 

CV-related outcomes (89, 90, 98, 262), providing proof of concept for the angiogenic 

potential of circulating CD34+ cells. Recent reports indicate that CD34+ cell numbers 

are lower in patients with CV and metabolic diseases compared to healthy 

populations (55, 56), further supporting a link between CD34+ cells and systemic CV 

pathophysiology. However, it is unlikely that inclusion of only the CD34 antigen is 

sufficient for enumeration or functional analysis of CACs. This is because of the 

heterogeneity of CD34+ subpopulations as discussed above, and also because of the 

existence of a number of non-progenitor hematopoietic cells that can function as 

CACs, which will be described in the next section.  

Angiogenic monocytes and T-cells. Although most of the research on CACs has 

focused on the angiogenic actions of progenitors, there are also developmentally 

mature (i.e., CD34-) hematopoietic cells that co-express endothelial antigens and 

perform angiogenic functions. There is a large body of work on monocytes involved 

in angiogenesis, as monocytes have long been known to adhere to the endothelial 

layer of vessels undergoing collateral growth (182). Pharmacologic inhibition of 

monocyte recruitment from the bone marrow substantially reduced angiogenesis, 

suggesting that monocyte recruitment is indeed required for growth of new vessels 

(86). Although the mechanism by which monocytes support angiogenesis is not 

completely clear, there is evidence that monocytes become activated by signals, e.g. 

monocyte chemoattractant protein-1, secreted from the cells at the edge of vessels 

undergoing angiogenesis (106). These activated monocytes in turn secrete angiogenic 

growth factors such as VEGF to aid in further angiogenesis (9). This process requires 
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leukocyte-endothelial cell interactions that are mediated by the glycoprotein CD44 

(234) and monocyte invasion into the endothelium, which is coordinated by 

expression of adhesion molecules known as integrins (84). In addition, recent 

evidence indicates that monocytes are an exogenous source of nitric oxide (NO) for 

the vascular endothelium during angiogenesis (219). Particularly interesting was the 

finding that the NO synthase (NOS) isoform required for angiogenesis was the 

inducible NOS (iNOS) isoform, not the endothelial (eNOS) isoform (219), which is 

the major source of NO involved in endothelial cell-dependent vasodilation (102). 

These data came from experiments with iNOS and eNOS knockout mice, and only 

iNOS knockout mice had impaired angiogenic activities. However, the relative 

contributions of iNOS and eNOS to human CAC function in the context of vascular 

maintenance or disease-related impairments have not been investigated. 

The term “monocyte” is a general term referring to a number of different PBMC 

subpopulations involved in immune function, tissue inflammation, and host defense. 

The question of which monocyte cell fractions are responsible for angiogenic 

functions has received remarkably little attention in recent years, as the field has 

mostly focused on CACs that can be defined specifically as “EPCs” and not on other 

cells previously known to aid in angiogenesis. The monocytic CD14+/CD34- cell 

fraction has been reported to take on an endothelial cell phenotype in angiogenic 

culture conditions (79, 188). Indeed two separate publications have concluded that 

CD14+/CD34- (79) or CD14+/CD34low (178) cells are the primary source of human 

CACs. These cells have been shown to cooperate with CD34+ cells in angiogenesis 

(8, 79), suggesting that interactions among CAC types are important to consider. 
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Furthermore, some EPCs (i.e. early EPCs) display phenotypic overlap with 

monocytes/macrophages under certain conditions (e.g., phagocytosis of invading 

bacteria) (173, 261). Monocytic progenitors from bone marrow have been shown to 

adhere to injured endothelium and accelerate re-endothelialization by adopting an 

EPC phenotype (64). A population of monocytes has been reported to patrol healthy 

endothelium, recognize inflammation, and remove inflamed tissue by initiation of the 

early immune response (14). Together, these data suggest the existence of one or 

more populations of circulating angiogenic monocytes that display a high degree of 

functional plasticity and are probably an under-appreciated source of endothelial 

vascular repair.  

Similar to the case for monocytes, evidence has existed for many years that T-

cells are involved in angiogenesis. Over 20 years ago, T-cells were reported to 

produce a “lymphocyte angiogenesis factor”, and the degree of this angiogenesis 

factor secretion was found to decline with age (73). Recent evidence also indicates 

that angiogenic T-cells can home to sites of endothelial injury and secrete angiogenic 

growth factors in a manner similar to other CACs (43, 100, 120). Kushner et al. found 

that CD31+ T-cells secrete angiogenic growth factors in large quantities (120) and 

that their capacity to do so declines with age (122). In addition, data from studies on 

EPCs, specifically early EPCs, have implicated a role for T-cell subpopulations as 

CACs. Microarray gene expression analysis indicated that the commonly-used early 

EPC colony-formation assay (91) consists of hematopoietic cells with a gene 

expression signature similar to that of T-cells, but having little genomic resemblance 

to endothelial cells (41). Furthermore, depletion of T-cells before plating prevented 
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formation of CAC colonies from monocytic cells (227). Therefore, the role of 

angiogenic T-cells as CACs for endothelial repair has also been inadequately 

investigated. 

Circulating endothelial-like cells. The vessel wall itself has been implicated as a 

source of CACs (104, 259). Endothelial cells lining the vessel wall are generally 

considered to be fully differentiated cells with limited proliferative potential (20). 

However, using single cell assays for proliferative and clonogenic capacity, Ingram et 

al. showed that human aortic endothelial cells contain a complete hierarchy of highly 

proliferative progenitor cells (104). Thus, since these cells are sloughed from the 

endothelial lining (225), the endothelium can act as its own source of CACs for tissue 

renewal. Furthermore bone marrow (114) and circulating (115) cells expressing the 

endothelial antigen CD31 but lacking the progenitor antigens (e.g. CD34 or cKit) 

have been described as having profound angiogenic potential. Several authors (34, 

114, 115) emphasized a number of important implications for the existence of 

proangioegenic CD31+ endothelial-like cells for cell-mediated angiogenesis: (i) 

CD31+ cells are far more abundant in peripheral blood of adults than progenitor cells, 

indicating CACs may be more numerous than commonly thought (79); (ii) because of 

this high cell frequency, CD31+ cells have the advantage of not requiring ex vivo 

expansion to obtain significant numbers, thus making them a potentially attractive 

therapeutic source of cell therapy for CV disease; (iii) one of these studies (114) 

showed that in bone marrow, CD31 may be a specific single marker identifying 

CACs for angiogenic potential, which, if confirmed, would greatly simplify the 

controversial issues plaguing the CAC field surrounding cell identity.  
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Associations between CACs and CV Disease Risk  

CV disease and CAC number. Some estimates indicate that conventional CV risk 

factors such as hypertension and dyslipidemia explain only ~50% of CV disease cases 

(22), and there has been intense investigation to determine whether novel risk factors 

can be identified as targets for CV disease prevention and treatment. CACs are 

increasingly thought of as one such novel risk factor, and recent research has 

established solid evidence for a relationship between CAC numbers and CV disease 

incidence and risk. For example, the concentration of CACs are independently 

inversely related to endothelial dysfunction in coronary artery disease patients (249). 

CAC number is also related to a number of conventional CV risk factors and CV 

complications, including age (93), composite Framingham risk score (91), obesity 

(137), hypertension/pre-hypertension (136, 255), and glucose intolerance and diabetes 

(52), inflammation (243, 244) and the prothrombotic state (244). CACs are also 

reduced in overt diseases, including coronary artery disease (195), peripheral arterial 

disease (39), arterial calcification (31); abdominal aortic aneurysm (25), heart failure 

(62), and diabetes (56, 57), and atherosclerosis (54).  

One possible mechanistic explanation for reduced cell numbers in these disease 

states is that reserves of CACs within bone marrow and the vessel wall become 

depleted over the normal course of aging (10, 185, 236, 241, 248). It is thought that 

CV and metabolic disease risk factors (e.g. hyperglycemia or hyperlipidemia, which 

will be discussed in detail below) continually damage the vascular endothelium and 

thus create a constant need for CACs, eventually resulting in the depletion of the pool 

of cells available for endothelial regeneration (63, 83, 99, 205, 236).  
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CV disease and CAC function. CV diseases and risk factors are also associated 

with reduced CAC function. Bone marrow transplantation experiments in young and 

old mice indicated an age-related decline in progenitor cell-mediated 

neovascularization (205). Cells from young donors injected into ischemic hindlimbs 

of older mice completely prevented ischemic injury, however cells from older donors 

had no protective effect when injected into the ischemic limbs of young mice. There 

is evidence that CAC number is reduced with age and in the presence of disease due 

to reduced capacity to mobilize cells from their niche in bone marrow and 

vasculature, and also due to depleted reserves (205, 241). Studies have documented 

an association between age and impaired functional aspects of CACs, including 

reduced migratory capacity (93), reduced secretion of cytokines (122), and increased 

apoptotic susceptibility (122). CACs from patients with metabolic and CV diseases 

and/or CV risk factors have exhibited a variety of impaired functional capacities (e.g., 

impaired migratory capacity, neovascularization potential, in vitro angiogenesis, etc.), 

(83, 87, 88, 99, 112, 113, 228).  

Therefore, there is ample correlational evidence supporting a link between CV 

risk factors or overt disease and reduced number and function of CACs. However, 

investigations into the mechanisms underlying these correlations have only recently 

begun to appear in the literature. A summary of the current information relative to the 

known mechanisms of CACs related to CV disease development and pathogenesis 

follows in the next section.  
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Mechanistic Studies Linking CACs and CV Disease 

In the last few years it has become increasingly clear that NO levels in CACs are 

critical for a number of cellular functions (61), and the molecular regulation of NO in 

CACs is somewhat similar to the mechanisms regulating vessel wall endothelial cell 

NO levels. This section will deal with mechanistic aspects of the relationship between 

CACs and CV disease, with particular focus on NO and oxidative stress.  

Nitric oxide. NO is mechanistically involved in a number of CV functions, 

including smooth muscle cell relaxation for vasodilation, inhibition of leukocyte and 

platelet adhesion, and a number of anti-atherogenic biochemical actions (159). Recent 

evidence supports a critical role for NO in CAC-mediated effects on the vascular 

endothelium (61). The first study highlighting the importance of eNOS-derived NO in 

CAC biology showed that eNOS knockout mice had impaired CAC mobilization 

from the bone marrow and reduced CAC-mediated endothelial repair compared to 

wild type mice (4). Heiss et al. recently demonstrated the importance of NO as a 

regulator of human CAC functional capacity (88). These authors first observed that 

CACs from coronary artery disease patients had no detectable levels of eNOS protein 

whereas CACs from controls had substantial eNOS expression. The disease-

associated eNOS deficiency was correlated with substantially impaired VEGF-

stimulated migratory capacity compared to disease-free control subjects. However, 

treatment of CACs from the patient group with a NO donor completely eliminated the 

difference in migratory capacity between the groups, indicating that the disease-

related impairment in CAC function is entirely NO-dependent.  
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What causes the reduced NO production in disease and in the presence of risk factors 

for CV disease? Accumulated oxidative stress insults are generally accepted as a 

principle cause of cellular aging (33, 77). Evidence from vascular endothelial cell 

biology suggests that oxidative stress, i.e., an imbalance between the production of 

reactive oxygen species (ROS) and the capacity for the cellular antioxidant defense 

systems to protect against excessive ROS, could be involved in CAC functional 

decline with aging and in disease states. However, it has only been in the last few 

years that careful examinations of NO- and oxidative stress-related pathways in 

CACs have begun to appear in the published literature. CAC oxidative stress occurs 

as a result of overproduction of ROS by NADPH oxidase, xanthine oxidase, and/or 

mitochondria (61). The principle components of the antioxidant defense system are 

the superoxide dismutase [cytosolic superoxide dismutase 1 (SOD1) and 

mitochondrial superoxide dismutase 2 (SOD2)], which convert superoxide ( O2
     ·- 

) to 

hydrogen peroxide; catalase, which converts hydrogen peroxide to oxygen and water; 

and glutathione peroxidases, which prevent the oxidation of cellular macromolecules 

(e.g. lipids and proteins).  

NADPH oxidase. The pro-oxidant family of enzymes called NADPH oxidases has 

been most widely studied as a source of oxidant stress in cardiovascular tissues. The 

NADPH oxidase (Nox) family consists of 7 homologues, 4 of which are expressed in 

the cardiovascular system (Nox1, Nox2, Nox4, and Nox 5) (123). There is a well-

established role for Nox2 (a.k.a., gp91phox) as the major Nox homologue in vascular 

endothelial cell physiology and pathophysiology (28, 47, 111, 172). In addition, 

gp91phox is expressed and plays an important role in cells with tissue repair functions 
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including fibroblasts, hematopoietic stem cells, and a number of CAC types (17). 

Therefore, this literature review and the work presented in this dissertation focus 

specifically on this Nox isoform and the supporting subunits with which it associates. 

Structurally, the catalytic subunit gp91phox forms a membrane-bound complex with 

the p22phox subunit. Upon activation of intracellular signaling pathways by factors 

such as angiotensin II (and others, discussed below) the p47phox subunit is 

phosphorylated by proline-directed kinases or protein kinase-C (49), resulting in a 

conformational change that facilitates translocation to the membrane from the 

cytosol. Through additional phosphorylation events, the p67phox subunit binds to the 

translocated p47phox, which provides a binding site for the activated small GTPase 

Rac. Complete assembly of this entire subunit complex is required for activation of 

the enzyme. Once assembled, O2
     ·- 

 is generated via the transfer of electrons from 

NADPH to molecular oxygen. Low levels of NADPH oxidase activity produce O2
     ·- 

 

in controlled amounts, and under normal physiological conditions gp91phox-

derived O2
     ·- 

 can act as signaling molecules for a number of biological processes, 

including angiogenesis (218), endothelium-dependent vasodilation (18), mobilization 

of CACs (223), and the functional responsiveness of CACs to growth factors (226). 

However, when produced in excess, NADPH oxidase-derived O2
     ·- 

 damages cellular 

components, and can interact with NO to produce peroxynitrite (an extremely reactive 

and potent source of nitro-oxidative damage) (159). NADPH oxidase overproduction 

of O2
     ·- 

 can also cause eNOS enzyme uncoupling, resulting in the production of O2
     ·- 

 

by eNOS itself (159). Several factors associated with the development of CV disease 

have been shown to increase NADPH oxidase activity in endothelial cells and CACs, 
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including oxidized LDL-cholesterol (oxLDL) (74, 135); oxidized fatty acids (29); 

angiotensin II (103); hyperglycemia (50, 242), advanced glycation end products 

(AGEs) (245); and a number of inflammatory cytokines such as C-reactive protein 

(170), TNFα (148), and proinflammatory interleukins (IL)-4 and IL-6 (128). 

Xanthine oxidase. Xanthine oxidase is derived from a posttranscriptional 

modification to the constitutively expressed xanthine dehydrogenase. Both of these 

enzymes oxidize hypoxanthine to xanthine and xanthine to urate. Xanthine 

dehydrogenase uses NAD+ as an electron acceptor, generating NADH (a stable 

product). Xanthine oxidase, on the other hand, uses molecular oxygen as the electron 

acceptor, thereby generating O2
     ·- 

 (142, 145). Xanthine oxidase is expressed in 

vascular endothelial cells and CACs, and excess xanthine oxidase activity has been 

linked to oxidative stress-mediated dysfunction of cardiovascular tissues (130, 145, 

161). It has been suggested that the primary role for endothelial cell xanthine oxidase 

is to recruit and activate immune cells in the inflammatory response to foreign 

pathogens (130, 145). These inflammatory and pro-oxidative pathways are highly 

activated in the injury pathogenesis of atherosclerosis (180), and xanthine oxidase 

activity is an important player in the oxidative stress-related development of CV 

disease and atherosclerosis. For example, increased xanthine oxidase activity was 

demonstrated to be partly responsible for hypertension and increased arteriolar tone in 

rats (208). Additionally, coronary artery disease patients displayed increases in 

xanthine oxidase activity in coronary artery endothelial cells compared to controls 

(202). It is important to mention that although the different sources of O2
     ·- 

 discussed 

in this chapter are presented and discussed in isolation, these pro-oxidant enzymes 
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operate in coordinated, tightly controlled networks. This is particularly evidenced by 

the finding that xanthine oxidase-derived O2
     ·- 

 production was completely prevented 

in endothelial cells lacking the NADPH oxidase subunit p47phox (143), suggesting that 

fully assembled and activated NADPH oxidase enzymatic activity is required for 

xanthine oxidase to produce O2
     ·- 

. Finally, all of the studies discussed above have 

examined xanthine oxidase in endothelial cells of the vascular system. The only study 

available that has examined a role for xanthine oxidase in cells with CAC functional 

capacity found that xanthine oxidase-derived O2
     ·- 

 stimulated proliferation of bone 

marrow progenitor cells (169). However, it remains to be determined whether 

excessive xanthine oxidase activity is involved in dysfunctional CACs in the setting 

of CV disease.  

Mitochondrial respiration. Similar to the situations described above for O2
     ·- 

 

derived from NADPH oxidase and xanthine oxidase, O2
     ·- 

 generated as a byproduct 

of cellular respiration acts as a signaling molecule with normal physiological 

functions when produced in a controlled fashion and in low amounts (45). O2
     ·- 

 is 

constitutively generated by complexes I and III of the mitochondrial electron 

transport chain (134, 154). However, here again O2
     ·- 

 in excess is associated with 

cellular damage resulting in negative CV health consequences. In atherosclerosis, 

mitochondria-derived O2
     ·- 

 production has been implicated in the processes of 

monocyte infiltration and their eventual transformation into lipid-laden macrophages 

(i.e., foam cells) (119). The accumulation of these cells at sites of endothelial damage 

(i.e., the atherosclerotic plaques) creates a pro-inflammatory and pro-oxidative 
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microenvironment. Surprisingly, no data are available to assess the role of 

mitochondria derived O2
     ·- 

 in CAC physiology or pathophysiology.  

Antioxidant defenses. Antioxidants are defined as compounds or enzymes that are 

able to compete with oxidizable cellular substrates, and, thus, can prevent or delay the 

oxidation of those substrates (45). The enzymatic antioxidants are cytosolic SOD 

(SOD1), mitochondrial SOD (SOD2), catalase, and glutathione peroxidases. Both 

forms of SOD convert O2
     ·- 

 to hydrogen peroxide and are critical to maintaining an 

appropriate level of intracellular O2
     ·- 

. Catalase, which converts hydrogen peroxide to 

oxygen and water, and glutathione peroxidases, which prevent the oxidation of 

cellular macromolecules (e.g. lipids and proteins), catalyze the conversion of 

hydrogen peroxide (H2O2) generated by SOD activity to water and stable O2 (45). 

Thus, adequate activities of these enzymes are required to prevent the decomposition 

of SOD-derived H2O2 to highly reactive oxygen radicals (e.g., the hydroxyl radical). 

CACs have been noted for their high levels of antioxidant gene expression, and this 

unique feature of CAC biology has been proposed as an explanation for how CACs 

are able to perform their reparative functions in hostile proinflammatory, pro-

oxidative microenvironments [e.g., in areas of damaged endothelium or developing 

atherosclerotic plaque (40, 82)]. There is some, but insufficient, evidence that CAC 

expression and activity of antioxidant genes are responsive to prolonged oxidant 

exposure from the environment. For example, previous work has documented 

declines in intracellular antioxidant functions in CACs with age (81) and upon 

experimental exposure to glycation end products (30). However, whether the 
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antioxidant defense system is altered with lifestyle factors or disease risk factors 

requires additional study.   

Relation of Lifestyle Factors to CAC Number and Function 

Hyperglycemia and CACs. Insulin resistance and diabetes impair CAC-induced 

endothelial regeneration (24, 35, 112). Abnormally high blood glucose concentrations 

damage peripheral tissues by promoting formation of advanced glycation end 

products (AGEs) upon reaction of glucose and other sugars derived from glucose with 

components (primarily proteins) in the circulation and the intracellular environment 

of target tissues (68). Glycated proteins in the blood can bind to a number of AGE 

receptors (rAGEs) on target tissues, and rAGE signaling induces a number of 

oxidative stress pathways (68). In CACs, AGEs have been well documented to impair 

pro-angiogenic functions (30, 187, 206). In addition, excessive glucose (246) and 

AGEs have been shown to activate NADPH oxidase activity (177, 245). 

Mechanistically, p47phox was implicated as a factor in diabetes-related impairments in 

NO levels and in vivo regenerative capacity of CACs, as p47phox RNA interference 

restored the levels of NO and in vivo regenerative capacity of CACs to those of 

healthy controls (200). However, the role of NO depends on the source in diabetes, as 

iNOS-derived, but not eNOS-derived, NO was responsible for increased peroxynitrite 

production in a mouse model of diabetic retinopathy (50). Overall, there is sufficient 

evidence to conclude that a hyperglycemic environment induces substantial oxidative 

stress and angiogenic dysfunction in CACs.  

High-fat diet and CACs. Consumption of high-fat diet is linked to a number of 

CV risk factors, including hyperlipidemia, hypertension, obesity, and metabolic 
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syndrome. Mechanistically, consumption of a high-fat diet induces oxidant stress in 

the vasculature and causes endothelial dysfunction (51, 65, 117). A single high-fat 

meal induces a severe challenge to the vascular endothelium. Flow-dependent 

vasodilation in large conduit vessels was decreased by ~50% at 2-4 hrs following the 

ingestion of a high-fat meal (237). Supplementation with dietary antioxidants in the 

form of vitamins (165) and phytonutrients (a mix of vegetable juice concentrate and 

herbal extracts) were later shown to blunt the effect of high-fat feeding on endothelial 

dysfunction (166), consistent with a role for oxidative stress as a mechanistic 

mediator of the endothelial impairment. Only one study has indirectly assessed the 

effect of a high-fat meal on oxidative stress and functional aspects of CACs. Liu et al. 

(132) investigated the effect of postprandial remnant-like particles (i.e., particles of 

chylomycrons and very low-density lipoproteins with known roles in vascular 

inflammation, oxidative stress and endothelial function) on CACs. CACs exposed to 

remnant lipoprotein particles exhibited impaired migratory and proliferative 

capacities and increased senescence compared to untreated cells. Nitrotyrosine 

staining was increased in remnant like particle-treated cells, and this was inhibited by 

pre-treatment with SOD, suggesting increased O2
     ·- 

 production and formation of 

peroxynitrite as a mechanism of the postprandial remnant-like particle effects on 

CAC function. This study indicates that remnant microparticles, which are elevated 

during the postprandial period following a high-fat meal, induce oxidant stress in 

CACs that could contribute to CV disease-associated impairments in CAC function. 

A limitation of this study (132) was that the remnant like particles were isolated from 

plasma from older hypelipidemic subjects, and the CACs were isolated from young 
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healthy donors. Therefore, the extent to which the results of Liu et al. can be 

extrapolated to the in vivo situation is not clear.  

However, while further evidence is clearly needed with respect to CACs per se, 

there is a growing literature on the effects of a high-fat meal on lipid uptake as well as 

inflammatory- and oxidative stress-pathways in PBMCs (without further division into 

subfractions). Postprandial lipemia (PPL), i.e. the appearance of elevated blood lipids 

following ingestion of a meal, has been repeatedly shown to induce lipid uptake (71, 

127) and activate inflammatory pathways (5, 101, 233) in mononuclear cell 

populations. Mechanistically, it was recently shown that a high-fat meal increases 

expression of the receptor for apoloprotein B-48 in circulating CD14+ monocytes, 

which causes lipid engorgement and foam cell formation in resident macrophages 

(235). Monocytes also upregulate expression of CD11c/CD18, an integrin involved in 

monocyte adhesion to inflamed endothelium and thought to be critical in the in the 

accumulation of monocytes/macrophages in atherosclerotic plaques (252), in 

response to a high-fat meal (71). All of these studies implicated a role for 

inflammatory pathways in the effects of high-fat feeding on circulating monocytes; 

however, oxidative stress pathways have not been adequately examined. Only two 

studies have investigated whether oxidant status was altered in circulating cells 

during PPL. First, it was observed that ingestion of red wine completely prevented 

PPL-induced increases in nuclear factor-kappaB activation in PBMCs, an effect that 

was attributed to its antioxidant properties (19). Second, treatment of cells isolated in 

the postprandial state with the oxidative scavenger dimethylthiourea reduced the 

expression of neutrophil adhesion molecule CD66b by ~35% (5). Thus, there is 
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limited, but promising, evidence that oxidant stress pathways are at least partly 

responsible for dysfunctional proatherogenic effects of a high-fat meal on circulating 

cells. Furthermore, it can be cautiously speculated that similar effects would be 

observed in CACs. Given the roles of (i) CACs in maintaining vascular endothelial 

homeostasis, (ii) oxidative stress in CV disease- and risk factor-related CAC 

dysfunction, and (iii) postprandial lipemia in the development of endothelial 

dysfunction and atherosclerosis, it would appear that studies investigating the effects 

of high-fat feeding on oxidant stress in CACs are urgently needed. 

Effects of acute exercise on CAC number. Acute exercise increases the number of 

CACs in most (124, 146, 152, 174, 193, 212, 214, 228, 231, 257) but not all (133, 

212) studies. A number of factors appear to determine whether CAC numbers 

increase with exercise. For example, age, training status, and the nature of the 

exercise stimulus appear to play a role (149, 152, 212). Particularly, exercise intensity 

(124, 152, 231) and/or duration (124, 146) must be sufficient. In one study 

investigating the effects of prolonged endurance exercise (i.e., a marathon), there was 

no change in CACs defined as CD34+/VEGFR2+ cells (2). However, there was a 

significant decrease in CD34+ progenitors, and therefore an increase in the percentage 

of endothelial antigen-expressing cells within the total CD34+ cell pool. The authors 

interpreted these findings as evidence that prolonged running exercise may induce 

endothelial differentiation of circulating progenitors. Recently, Bonsignore et al. (21) 

published a comprehensive comparison of the effects of short-duration maximal 

exercise (a 1500m run) and prolonged endurance exercise (a marathon) on three 

different types of CACs (CD34+/VEGFR2+ EPCs, CD133+/VE-cadherin+ EPCs, and 
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cultured CACs derived from the whole PBMC pool). Levels of all three cell types 

increased significantly with both types of exercise. However, the magnitude of the 

increase in CD133+/VE-cadherin+ EPCs was greater with marathon running compared 

to the 1500m run. In contrast, the number of CACs generated by the culture assay 

was induced to a greater extent by the 1500m run than the marathon, and the increase 

in CD34+/VEGFR2+ cells did not differ between exercise bouts. In addition, the total 

numbers of CD34+ or CD133+ progenitor cells were unchanged with prolonged 

endurance exercise. Together, these data indicate that the effect of acute exercise on 

CAC number varies according to intensity and duration and differs among CAC 

subpopulations. 

In terms of molecular regulation of exercise-induced CAC mobilization, the 

relatively rapid increase in circulating VEGF levels with acute exercise has recently 

been proposed to act as a stimulus for mobilization of CACs (146). Morici et al. (152) 

observed increases in CD34+ and CD133+ progenitors in response to supramaximal 

interval rowing exercise, and these changes were tightly linked with increases in 

levels of a number of circulating stem cell-mobilizing factors. These data suggest a 

possible role for cytokines in exercise-induced mobilization of progenitor cells from 

the bone marrow. Another important mechanism for exercise-induced CAC 

mobilization is NOS activity, as a recent study indicated that a significant effect of 

acute exercise on CAC number was completely blunted by infusion of the NOS 

inhibitor L-NAME (36). This finding was consistent with the previously-established 

requirement for eNOS in mobilization of CACs from bone marrow in a mouse model 

(4). 
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Effects of acute exercise on CAC function. Few data are available on the effects of 

acute exercise on functional aspects of CACs. Acute exercise reversed CAC 

dysfunction in heart failure patients (228), although this acute exercise effect was not 

observed by the same research group following a period of exercise training (230). It 

can be speculated that an increase in CAC intracellular NO levels could be partially 

responsible for the acute exercise-induced improvement in CAC, as a previous study 

indicated that exercise increased NO release by CACs into their culture media (257). 

In addition, our laboratory also recently found that acute exercise may influence the 

function of CACs by favorably influencing cell cycle gene expression through 

thrombin signaling (133), suggesting a possible role for thrombin in CAC-mediated 

endothelial maintenance.  

Effects of chronic exercise on CAC number. The first report of exercise training-

induced effects on CACs indicated that mice with access to a running wheel had 

higher circulating levels of spleen- and bone marrow-derived CACs than sedentary 

mice (125). There is evidence that oxidant stress is involved in the regulation of 

chronic exercise-induced changes in CAC number, as experimental knockdown of 

catalase activity in mice prevented increases in bone marrow CACs following a 3-wk 

period of physical activity (207). In humans, most investigations of the effects of 

exercise training on CACs have used CV disease patients as study participants. From 

these studies, it appears that patients with CV risk factors or overt CV disease 

increase CAC number with regular exercise (1, 125, 181, 203, 230). Healthy patients 

can also increase CAC number following exercise training (93). Cross-sectional 

studies of healthy subjects have been less supportive of chronic exercise effects on 



 28 
 

baseline CAC number (133, 212, 251), although there has been one report of higher 

CD34+ cells in trained than in sedentary older men (212). We found that the changes 

in CD34+ and CD34+/VEGFR2+ cell numbers were closely related to changes in total 

antioxidant capacity and endothelial function during detraining in master’s athletes 

(251), suggesting that maintenance of CAC number through regular physical activity 

may be an important mechanism by which regular exercise functions to preserve 

vascular endothelial health.  

Effects of chronic exercise on CAC function. The first study investigating the 

effects of exercise on CACs by Laufs et al. found not only an increase in the number 

of CACs in both mice and humans, but also a correlation between the change in CAC 

number and the extent of neovascularization in the trained mice (125). Although this 

study is often interpreted as evidence for the involvement of CACs in training-

induced angiogenesis [for example, in the recent review by Mobius-Winkler et al. 

(147)], the data were correlative and indirect. The best evidence supporting a role for 

CACs in exercise training-induced neovascularization came from a study in which 

mice were subjected to an experimental stroke (67), and greater numbers of 

genetically-labeled bone marrow cells were found in revascularized brain regions of 

animals with access to running wheels compared to animals who remained sedentary 

following stroke. Thus, bone-marrow derived CACs may play a role in exercise 

training-induced angiogenesis of ischemic tissues in CV disease, but clearly these 

data need confirmation in human subjects. In addition, while few studies have 

investigated endurance training effects on human CAC function, longitudinal data 

indicate that training can enhance migration of CACs towards angiogenic growth 
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factors (93). There is also evidence that proliferative capacity and/or endothelial-

directed differentiation of CACs may be altered by regular exercise. Our laboratory 

found higher levels of endothelial gene expression in CACs from trained compared to 

sedentary individuals (133). Somewhat different from our finding of increased CAC 

differentiation towards the endothelial lineage, treatment of CACs with serum from 

subjects following an exercise training program significantly increased proliferative 

capacity of CACs (66). 

Summary of Literature Review 

Overall, there is sufficient evidence in the literature to state the following as facts: 

(i) CACs do exist and they play an important role in the maintenance of vascular 

endothelial integrity; (ii) NO and oxidative stress are mechanistic mediators of CAC 

number and function, and (iii) the number of CACs is increased by acute and chronic  

endurance exercise. Priorities for advancing the CAC field include the examination of 

whether and how acute and/or chronic exercise modifies functional aspects of CACs 

by altering NO- and oxidative stress-related processes. Integrative studies examining 

the interactive effects of physical activity and dietary factors on associated with 

oxidant status of CACs are especially needed. Thus, clearly much work remains for 

future studies to further clarify the role of CACs in acute and chronic exercise effects 

on vascular health. 
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Chapter 3: Effects of Acute and Chronic Endurance Exercise on Intracellular 

Nitric Oxide in Putative Endothelial Progenitor Cells: Role of NADPH Oxidase 

 

The following is a reprint of the report of this study as it was published previously:  

 

Jenkins et al., American Journal of Physiology – Heart and Circulatory Physiology 

297(3): H1798-H1805, 2009. 

 

Included with permission from the American Physiological Society (see Appendix). 
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ABSTRACT 

We sought to delineate the effects of acute and chronic exercise on the regulation of 

intracellular nitric oxide (NOi) production in putative endothelial progenitor cells 

(EPCs).  Putative EPC colony forming units (CFU-EC) were cultured from blood 

drawn before and after 30 min of treadmill exercise at 75% of maximal oxygen 

uptake in active (n = 8) and inactive (n = 8) men.  CFU-EC were similar between 

groups at baseline, but increased after exercise in active men only (P = 0.04).  CFU-

EC expressed lower NADPH oxidase subunit gp91phox mRNA and elevated 

endothelial nitric oxide synthase (eNOS) mRNA in active relative to inactive men at 

baseline (P < 0.05).  Acute exercise reduced gp91phox mRNA in CFU-EC of both 

groups (P < 0.05), while p47phox mRNA levels were reduced in the inactive group 

only (P = 0.02).  There were no differences between groups or with acute exercise in 

xanthine oxidase, superoxide dismutase (SOD) isoforms, or gluthathione peroxidase-

1 (GPX-1) mRNA levels. NOi was significantly greater in CFU-EC of active men at 

baseline (P = 0.004).  NOi increased in CFU-EC of inactive men with acute exercise, 

and in vitro experiments with apocynin indicated the increased NOi production was 

caused by suppression of NADPH oxidase.  However, the increases in NOi with the 

different treatments in the inactive group did not reach the baseline levels in the 

active group (P < 0.05).  We conclude that acute exercise increases NOi in cells 

generated by the CFU-EC assay through an NADPH oxidase-inhibition mechanism in 

sedentary men.  However, differences due to chronic exercise must involve additional 

factors.  Our findings support exercise as a means to improve putative EPC function 

and suggest a novel mechanism that may explain this effect.  
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INTRODUCTION 

Bone marrow-derived progenitor cells with vasculogenic capacity, often termed 

putative endothelial progenitor cells (EPCs), have emerged as a novel cardiovascular 

(CV) disease risk factor because of their role in the maintenance of vascular 

endothelial integrity.  Circulating levels of putative EPCs independently predict CV 

disease progression, CV events, and endothelial dysfunction (189, 248) and EPC 

number and function decline with physical inactivity (211).  Thus, the available data 

strongly implicate putative EPCs as potential targets in the primary prevention of CV 

disease through regular exercise. 

Acute and chronic endurance exercise are thought to increase EPC number and 

their ability to secrete pro-angiogenic growth factors and/or incorporate into existing 

vascular endothelium (190, 211).  A single exercise bout increases putative EPC 

number in humans (37), and exercise training interventions have increased putative 

EPC number and colony forming units (CFU-EC) in healthy subjects (93), and, most 

frequently, in patients with CV disease risk factors or overt CV pathologies (125, 131, 

162, 203).  However, while these previous studies provided strong evidence of 

putative EPC involvement in the exercise-induced enhancements of vascular health, 

the data are generally associative and mechanistic cause-effect relationships have not 

been established. 

The signaling molecule nitric oxide (NO) plays a central role in the function of 

EPCs (216), as well as in mature endothelial cells (ECs) (159).  Exercise training 

improves endothelial function by increasing vasodilatory NO release and endothelial 

nitric oxide synthase (eNOS) activity in ECs (125).  Conversely, NO activity is 
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markedly reduced in the presence of CV disease risk factors including sedentary 

behavior (138).  Physical inactivity causes endothelial dysfunction in part through 

impairment of eNOS (256) by upregulation of the pro-oxidant enzyme NADPH 

oxidase (138, 161), which generates deleterious superoxide anions and, via 

uncoupling of the eNOS reaction, the powerful oxidant peroxynitrite (118, 161).  

NADPH oxidase is one of the most important sources of oxidative stress in mature 

ECs throughout the CV system (159), and although the available evidence indicates 

that the eNOS and NADPH oxidase pathways are active in putative EPCs (48, 258), 

they have not been adequately characterized with respect to alteration of putative EPC 

function by physical activity.  It is plausible that a reduction in NO generation by 

increased NADPH oxidase activity is a cellular mechanism for impaired putative EPC 

function with a sedentary lifestyle. 

Therefore, the purpose of this study was to determine the effects of acute and 

chronic endurance exercise on the intracellular environment of putative EPCs.  We 

hypothesized that acute exercise and regular physical activity would increase CFU-

EC intracellular NO (NOi) levels by upregulation of eNOS and suppression of 

NADPH oxidase.  We also explored whether mRNA levels of other pro-oxidant 

(xanthine oxidase) and antioxidant [copper-zinc and manganese superoxide 

dismutases (CuZnSOD and MnSOD, respectively), and glutathione peroxidase-1 

(GPX-1)] in CFU-EC were affected by acute and chronic endurance exercise.   

METHODS 

Screening 
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All participants were young, healthy, nonsmoking males with no history of CV or 

metabolic disease, and were not taking prescription medications.  The active group (n 

= 8) consisted of men age 18-30 yrs with a history of >3 yrs moderate- to high-

intensity endurance exercise for >4 hrs/wk.  These men were recruited from local 

running clubs in the University of Maryland area.  The inactive group (n = 8) 

included young men of a similar age who reported ≤20 min endurance exercise ≤2 

days/wk.  Groups were matched for age, body mass index (BMI), body composition, 

and conventional CV risk factor profile.  All participants provided written informed 

consent prior to all testing and the University of Maryland Institutional Review Board 

approved all study procedures.   

Maximal graded exercise test and body composition 

All testing occurred in the morning after an overnight fast and refraining from 

alcohol, vitamins, and caffeine for 24 hrs.  Height, weight, and blood pressure were 

measured, and body fatness was estimated using the seven-site skinfold procedure 

(107).  Maximal oxygen uptake (V
 .

O2max) was assessed using a constant-speed 

treadmill protocol with 2% increases in incline every 2 min until exhaustion.  The 

treadmill speed was chosen by the investigators based on subject experience, typical 

running speed, and heart rate such that V
 .

O2max was achieved in ~6-12 min.  Expired 

gases were analyzed using an automated indirect calorimetry system (Oxycon Pro, 

Cardinal Health, Inc.; Dublin, OH). V
 .

O2 was considered maximal using the plateau 

criteria, and all tests met at least two of the following secondary criteria of maximal 

effort: a respiratory exchange ratio of >1.10, a rating of perceived exertion of ≥19, 

and/or a peak heart rate within 10 beats per minute of the age-predicted maximum 
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(6).  Heart rate was measured during testing using heart rate monitors (Polar Electro, 

Inc.; Woodbury, NY).   

Blood sampling and steady state exercise test  

Participants reported to the laboratory after an overnight fast for experimental 

testing 48-72 hrs after completing the V
 .

O2max and body composition assessments.  A 

blood sample for baseline CFU-EC and standard CV risk factor assessments was 

drawn immediately before exercise, and a second sample was obtained for CFU-EC 

30 min after completing a 30-min treadmill run at 75-80% V
 .

O2max.  Treadmill 

running speed was the same as that used for the  V
 .

O2max test and the appropriate 

percent incline was estimated from the American College of Sports Medicine 

equation for V
 .

O2 during treadmill running (6).  Intensity during exercise was 

monitored using the heart rate reserve method. 

Colony forming unit-endothelial cell (CFU-EC) assay  

The CFU-EC assay was performed as described previously (91).  Briefly, 

mononuclear cells were isolated from peripheral blood samples obtained before and 

30 min after exercise by density gradient centrifugation (Ficoll Paque Plus, GE 

Healthcare; United Kingdom).  The cells were washed twice with PBS supplemented 

with 2% FBS, and plated at 5 × 106 cells/well on 6-well culture plates coated with 

human fibronectin (BD Pharmingen; Franklin Lakes, NJ) in 2 mL Endocult Medium 

(Stem Cell Technologies; Vancouver, BC).  Non-adherent cells were harvested after a 

48-hr incubation in a humidified incubator (37C, 5% CO2) and replated (1 × 106 

cells/well) on 24-well fibronectin-coated plates (BD-Pharmingen) in 1 ml Endocult 

Medium.  CFU-EC appeared 3d later and were defined according to previously 
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established methodology which includes central cores of round cells with more 

elongated sprouting cells at the periphery (91).  The endothelial lineage of these cells 

has been confirmed previously by immunocytochemical staining for von Willebrand 

factor, vascular endothelial growth factor receptor-2, and CD31 (91).  Investigators 

trained in identification of colonies but blind to the status of the sample performed 

CFU-EC counts in four randomly chosen wells.  The correlation between observers in 

our laboratory for CFU-EC counts was 0.98 (p < 0.001).  To reduce assay variability, 

all experiments in this study were performed with the same stock and lot of Endocult 

basal medium and supplements.   

Gene expression by semiquantitative RT-PCR 

eNOS, NADPH oxidase (subunits gp91phox, p47phox, and p67phox), xanthine 

oxidase, CuZnSOD, MnSOD, and GPX-1 mRNA levels were measured using 

semiquantitative RT-PCR.  Total RNA was extracted in quadruplicate from CFU-EC 

cultured for 5 days using the TRI reagent (Sigma-Aldrich; St. Louis, MO) according 

to previously described methods (201).  RNA quantity was calculated from 

absorbance at 260 nm and quality was verified by the 260:280 absorbance ratio.  

RNA was reverse transcribed to cDNA using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Inc.; Carlsbad, CA) according to the 

manufacturer’s instructions.  cDNA was amplified using specific primers under 

optimal thermal cycling conditions determined empirically for each target gene as 

previously described (201).  The primer sequences and thermal cycling conditions are 

presented in Table 2.  PCR products were separated by agarose gel electrophoresis 

and photographed under ultraviolet light.  Signal intensities were semi-quantified 
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using NIH imaging software (ImageJ) and normalized to the signal for the reference 

gene 18S.   

Experimental blockade of NADPH oxidase activity  

NADPH oxidase activity in CFU-EC was inhibited using the drug apocynin 

(Sigma-Aldrich) in ex vivo experiments to determine if exercise increases CFU-EC 

NOi via an NADPH oxidase-dependent mechanism.  Apocynin prevents assembly of 

the enzyme by reacting with thiol groups required for the translocation of the 

intracellular subunits p47phox and p67phox to the catalytic gp91phox subunit, in turn 

preventing the generation of deleterious superoxide radicals (204).  Cells of active 

and inactive groups from before and after acute exercise were incubated from day 4 to 

day 5 of the CFU-EC assay with 100 μM apocynin in 1 ml Endocult medium.  Cells 

treated with the same volume of the apocynin vehicle (10 µl PBS) in 1 ml Endocult 

medium were used as a control.  The apocynin concentration and the 24-hr treatment 

were empirically determined to produce detectable changes in NOi.  We aimed to not 

affect the early events of the assay such as adherence of the cells to the plate or initial 

differentiation into CFUs, but we did want to allow sufficient time for any measurable 

effects of apocynin on NOi to appear. An apocynin-induced increase in endothelium-

dependent dilation and its NO component in mouse aorta was recently observed in as 

little as 60 min (46).  Therefore, we believe the 24-hr experiment was valid for our 

purposes.  The experiment consisted of the following conditions for both active and 

inactive group CFU-EC: baseline-vehicle (BL-VEH), baseline-apocynin (BL-APO), 

exercise-vehicle (EX-VEH), and exercise-apocynin (EX-APO).  These experiments 
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were performed on CFU-EC from a subset of individuals (n = 3-5 per group per 

condition). 

Detection of intracellular nitric oxide in CFU-EC   

NOi was measured using the DAF-FM diacetate fluorescent dye technique  

(Molecular Probes, Carlsbad, CA) as described by Drenning et al. (44), with minor 

modifications.  DAF-FM diacetate is a pH-insensitive dye that emits fluorescence on 

reacting with an intermediate of NO during the spontaneous oxidation of NO to NO2
-.  

On day 5 of the CFU-EC assay, media were removed, CFU-EC in triplicate wells 

were washed twice with 500 µl PBS, loaded with 500 µl PBS containing 10 μM 

DAF-FM diacetate, and incubated for 30 min at 37°C.  Dyed cells were washed twice 

with PBS, and NOi fluorescence was measured using a multi-label plate reader 

(Wallac 1400 VICTOR2, Perkin Elmer, Inc., Waltham, MA) with excitation and 

emission wavelengths of 488 and 535 nm, respectively.  Every CFU-EC plate 

included the following controls: (i) duplicate wells of unloaded cells to serve as a 

control for cellular autofluorescence, (ii) duplicate wells that contained no cells, but 

contained 10 µM DAF-FM in PBS to correct for any fluorescence resulting from the 

dye itself, and (iii) duplicate wells of 500 µl PBS alone.  As the arbitrary-type 

fluorescence among these three control conditions were similar in pilot experiments 

(P = 0.7, data not shown), the average fluorescence value of the three controls was 

subtracted from each experimental value.  The average within- and between-assay 

coefficients of variation for the arbitrary fluorescence were 5% and 9%, respectively, 

indicating good agreement in arbitrary fluorescence between wells on the same plate 



 41 
 

and among experiments conducted on different days.  Data are expressed as fold 

difference from the mean for the active group's CFU-EC in the BL-VEH condition.   

In addition, we must point out that gene expression and NOi measurements were 

made on all cells present in the CFU-EC assay, and not the colonies alone. Thus, the 

term "CFU-EC" must be interpreted to mean all cells cultured in the CFU-EC assay 

when we refer to our NOi and gene expression data.  

Statistics 

Between-group and acute exercise effects were analyzed by independent and 

paired samples t-tests, respectively, according to a priori planned contrasts.  Within- 

and between-group ANOVA with Dunnett’s post hoc tests were used to determine 

whether exercise and/or apocynin treatments increased NOi relative to BL-VEH.  We 

used the α = 0.05 criterion for statistical significance.  Data are presented as mean ± 

SE unless indicated otherwise.   

RESULTS 

Active and inactive participants were successfully matched on the basis of age, 

BMI, and the standard CV risk factor profile, but differed significantly in terms of V
 .

O2max (Table 1).    

CFU-EC counts 

CFU-EC counts were not different between groups at baseline (P = 0.23; Figure 

3.1A).   CFU-EC increased after exercise in the active group (P = 0.02), but did not 

change in the inactive group (P = 0.6; Figure 3.1B).     

Gene Expression 
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eNOS mRNA levels were elevated in CFU-EC from active relative to inactive 

men by ~30% at baseline  (P = 0.04) and by ~17% after exercise (P = 0.05), but did 

not change with exercise in either group (P ≈ 0.4 for exercise-induced changes in both 

groups) (Figure 3.2).  gp91phox mRNA levels were ~44% lower in CFU-EC from 

active than inactive men at baseline (P = 0.02) and were reduced after acute exercise 

in both groups (active, P = 0.02; inactive, P = 0.04), with expression remaining 

significantly (P = 0.01) higher after exercise in CFU-EC of inactive compared to 

active men (Figure 3.3A).  p47phox mRNA levels did not differ between groups at 

baseline but decreased by ~20% after exercise in the inactive group (P = 0.02) (Figure 

3.3B).  There were no differences between groups or with acute exercise in p67phox 

mRNA levels (Figure 3.3C) or xanthine oxidase (Figure 3D) mRNA levels (P > 

0.05).  There were also no differences between groups or with acute exercise in 

expression of the antioxidant genes CuZnSOD, MnSOD, or GPX-1 (Figure 3.4A-C; P 

> 0.05). 

Intracellular nitric oxide (NOi)  

Detectable NOi was ~56% greater in the cells cultured in the CFU-EC assay from 

active compared to inactive men (p = 0.004) (Figure 3.5).  In the active group there 

were no significant differences among BL-VEH, BL-APO, EX-VEH, or EX-APO in 

CFU-EC NOi (ANOVA P > 0.05).  In the inactive group, BL-APO (P = 0.04), EX-

VEH (P = 0.04), and EX-APO (P = 0.02) all significantly increased NOi levels 

relative to the BL-VEH condition.  However, there were no differences in NOi among 

these three experimental conditions for the inactive group (all P > 0.05).  

Additionally, inactive group NOi levels were significantly lower compared to the 
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active group BL-VEH in all experimental conditions (BL-APO, EX-VEH, and EX-

APO; all P < 0.05).  Colony formation was not affected by VEH or APO treatments 

(data not shown); therefore, CFU-EC count data are from VEH or untreated samples. 

DISCUSSION 

The main findings of this study are (i) acute exercise increases CFU-EC NOi 

levels in sedentary individuals, (ii) regular endurance exercise is associated with 

increased eNOS gene expression and NOi in CFU-EC, (iii) the acute exercise effect 

on NOi is NADPH oxidase-dependent, and (iv) the training effect on NOi appears to 

involve other mechanisms besides reduced NADPH oxidase activity.  Importantly, 

these differences were observed between groups of healthy young men who were 

matched for age, BMI, and the standard CV risk factor profile, and differed only in V
 .

O2max.  Our findings support the notion that acute and chronic exercise improve 

putative EPC function and suggest a novel cellular mechanism that may explain this 

effect.  

NADPH oxidase is regarded as one of the most important sources of oxidative 

stress in the CV system (78, 159, 161).  ECs throughout the CV system express 

elevated NADPH oxidase in several pathological conditions associated with physical 

inactivity, including CV disease (3), hypertension (111), and diabetes (155).  In 

putative EPCs, excessive NADPH oxidase-derived superoxide radicals promote 

premature cellular senescence and reduced proliferative capacity (103).  Here, we 

show elevated expression of the NADPH oxidase catalytic subunit gp91phox gene in 

CFU-EC of healthy men who would be considered very healthy, and have excellent 

CV disease risk profiles, but who do not regularly perform endurance exercise.  We 
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show further that a single bout of exercise reduces mRNA expression of gp91phox and 

p47phox in CFU-EC NOi from these men.  To our knowledge, no studies have assessed 

the effects of acute or chronic endurance exercise on putative EPC NADPH oxidase 

gene expression, but these data are consistent with a previous report of CV disease 

patients showing a reduction in gp91phox mRNA in coronary artery ECs following a 4-

wk endurance training program (3).   

Because eNOS uncoupling, and subsequent depletion of NOi, is a consequence of 

elevated NADPH oxidase activity (118, 161), we tested whether the observed 

differences in eNOS and NADPH oxidase gene expression between groups and with 

acute exercise were corroborated by differences in CFU-EC NOi.  Consistent with the 

elevated baseline gp91phox and reduced eNOS mRNA levels in the inactive group, 

these individuals also displayed significantly lower NOi compared to the active group.  

The inactive group NOi levels increased with BL-APO, EX-VEH, and EX-APO 

treatments.  Importantly, the effects of NADPH oxidase inhibition and acute exercise 

on NOi were nearly identical in magnitude and were not additive, as evidenced by no 

further increase in NOi in the EX-APO condition over either treatment alone.  

Further, there was no acute exercise effect on eNOS mRNA in either group, despite a 

between-group difference at baseline.  Together, these data indicate that in inactive 

individuals, NOi in putative EPCs is increased by acute endurance exercise through 

an NADPH oxidase-driven mechanism.  This is a critical finding of the study, but this 

mechanism only partly explains the training-related differences in NOi in cells of the 

CFU-EC assay.  The increases in the inactive group's NOi by apocynin, exercise, and 

their combination were not sufficient to reach the levels of the active group's CFU-EC 
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NOi under the BL-VEH condition.  Thus, the exercise training-induced difference in 

NOi is also likely explainable by the elevated baseline eNOS gene expression in the 

active group as well as other mechanisms independent from NADPH oxidase. 

The changes observed with acute exercise in the inactive group were not observed 

in the active group.  CFU-EC of these individuals displayed lower gp91phox mRNA at 

baseline and decreased expression of gp91phox following exercise, but this change was 

apparently without consequence for NOi levels, which remained higher in CFU-EC 

from active men under all experimental conditions.  It is reasonable to speculate that 

we have observed a ceiling effect for the active individuals' NOi levels. 

Most reports of acute exercise and exercise training effects on putative EPCs have 

enumerated cells by colony-forming potential in culture or flow cytometry.  In 

general, exercise training increases putative EPC number and colony-forming 

potential (93, 125, 162, 203), but this has not always been the case (212).  The 

available data are also equivocal as to whether an acute exercise bout increases 

putative EPCs, with some studies showing increased EPC number (124, 231) and 

colony formation (70, 124, 174) after acute exercise, but others showing no effect on 

putative EPC number (212) or colony formation (231).  The most consistent effects of 

acute and chronic exercise have been observed in patient populations with overt 

endothelial dysfunction and CV pathologies (125, 162, 203).  Of all these studies, the 

acute exercise CFU-EC data in the present study are most consistent with (i) a report 

in which CFU-EC increased in endurance-trained individuals after exercise of 

equivalent intensity and duration to that in the present study (30 min at ~80% V
 .

O2max) (124), and (ii) another report showing no change in CFU-EC after exercise in 
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a group of untrained, but healthy, men and women (231).  Therefore, taken with 

previous data, the present study suggests a relationship between participant fitness 

and the response of putative EPC colony formation to acute exercise, but this 

hypothesis needs further attention. 

However, the effects of exercise on the EPC intracellular environment may well 

be far more important than acute or chronic exercise effects on putative EPC number 

or colony formation.  From our data, a reasonable working hypothesis is that the 

intracellular environment of a putative EPC may influence its functional capacity and 

its ability to affect endothelial function.  NADPH oxidase and eNOS were chosen as 

target genes in this study because of their well-characterized role in the (dys)function 

of the endothelium throughout the CV system.  Clearly, our evidence suggests that 

NOi production is altered in putative EPCs due to changes in activity, indicating an 

important effect of exercise on the EPC intracellular environment.  Our evidence 

further suggests that an impaired intracellular redox state resulting from high NADPH 

oxidase activity may be detrimental to putative EPC function in young, healthy men 

with a sedentary lifestyle. 

Our findings indicate a role for NADPH oxidase in the regulation of NOi in cells 

generated by the CFU-EC assay.  However, additional factors were implicated in 

training-related differences as well as the response to acute exercise in inactive 

subjects. Thus, we also investigated the expression of other genes involved in 

intracellular redox status.  The findings that mRNA levels of antioxidant (CuZnSOD, 

MnSOD, and GPX-1) and pro-oxidant (xanthine oxidase) genes did not differ 

between groups or with acute exercise support the role for NADPH oxidase as a key 
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mediator of NOi dynamics.  However, these data do not clarify the complete training-

related or acute exercise-induced differences in NOi.  Further work will be necessary 

to fully identify all the factors explaining the differences NOi regulation in putative 

EPCs between the trained vs. untrained states.  We speculate that there may be 

differences in the activities or responsiveness of these or other oxidases or antioxidant 

systems that we did not detect at the mRNA level.  

We must acknowledge three limitations of our study.  First, NOi and gene 

expression were measured from all cells present in the dish, and not the colonies 

themselves.  Fluorescence microscopy experiments have documented eNOS activity 

in cells generated by the CFU-EC assay (158), but the amount of NO release by the 

colonies relative to the other cells present in the dish has not been determined.  

Therefore, it is unclear if differences detected in NOi measures were due to changes 

in NO production in the colonies themselves, or due to changes in a subpopulation of 

cells outside the colonies that express eNOS and/or NADPH oxidase.  However, the 

data of Hill and colleagues (91) suggest that it is the CFU-EC themselves that express 

endothelial markers, and the colonies have been repeatedly shown to take up 

acetylated LDL and bind to lectin, suggesting an endothelial phenotype.  Second, 

there are conflicting reports about the identity of cells generated by the CFU-EC 

assay.  An emerging hypothesis suggests that CFU-EC may be T cells (41) with a 

distinct angiogenic phenotype (100).  There are also very recent data on the existence 

of a novel population of circulating CD31+ T cells that secrete angiogenic growth 

factors (121), which is one mechanism by which CFU-EC have been proposed to 

promote new vessel growth (100, 224).  We believe our data provide new information 
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on how acute and chronic endurance exercise may alter the function of these cells, but 

we must emphasize that the precise identities of these cells and other putative 

vasculogenic progenitors are still being elucidated.  Finally, while it appears likely 

that the effect of acute exercise on NOi was NADPH oxidase-dependent based on our 

study design, we must be somewhat circumspect with this conclusion.  We 

acknowledge that a number of other factors affect NO throughout the CV system 

(159). 

In conclusion, we found a cross-sectional difference between active and inactive 

young men in NOi in cells cultured in the CFU-EC assay that may be partly explained 

by elevated NADPH oxidase with physical inactivity.  Acute exercise appears to 

attenuate some, but not all, of this difference through suppression of NADPH oxidase 

activity, indicating the existence of a training effect that must be due to elevated 

eNOS and other factors.  Our findings may have important implications for the role of 

putative EPCs in the maintenance of a healthy endothelium through physical activity. 
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Table 3.2. Participant characteristics. Data are mean ± S.D.*  

  
  

Active 
(n = 8) 

Inactive 
(n = 8) 

P 

Age (y) 25 ± 4 25 ± 3 0.82 
Height (m) 1.81 ± 0.1 1.81 ± 0.04 0.96 
Weight (kg) 78.8 ± 13.2 77.9 ± 17.2 0.90 
BMI (kg·m-2) 24.0 ± 3.8 23.6 ± 4.4 0.86 
Fat (%) 14.1 ± 5.4 14.8 ± 6.7 0.82 
FFM (kg) 67.3 ± 8.8 65.4 ± 9.6 0.70 
Glucose (mg·dl-1) 84 ± 8 81 ± 8 0.45 
TC (mg·dl-1) 149 ± 21 147 ± 25 0.87 
HDL (mg·dl-1) 53 ± 5 49 ± 11 0.31 
LDL (mg·dl-1) 81 ± 21 81 ± 22 0.99 
TG (mg·dl-1) 70 ± 18 82 ± 30 0.40 
SBP (mm Hg) 118 ± 6 121 ± 5 0.29 
DBP (mm Hg) 75 ± 10 79 ± 6 0.39 
V

 .
O2max (L·min-1) 4.7 ± 0.6 3.6 ± 0.4 0.001 

V
 .

O2max (ml·kg-1·min-1) 60.2 ± 5.4 47.3 ± 5.7 P < 0.001 
V

 .
O2max (ml·kg FFM-1·min-1) 70.1 ± 5.1 55.5 ± 4.3 P < 0.001 

*Abbreviations: BMI, body mass index; FFM, fat-free mass; TC, total cholesterol; 
HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; 
TG, triglycerides; SBP, systolic blood pressure; DBP, diastolic blood pressure;  
V

 .
O2max, maximal oxygen uptake.   
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Figure 3.1.  (A) Endothelial cell colony forming units (CFU-EC) in active and inactive
men at baseline and after 30 min exercise at 75% V

 .
O2max.  *Significantly different from

baseline value (P < 0.05).  (B) Acute exercise-induced change in CFU-EC in active and
inactive men.  *Significantly smaller change in inactive than active men (P < 0.05). 
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Figure 3.2.  eNOS mRNA as measured by semiquantitative reverse transcriptase-PCR
in active and inactive men. *Significant difference between groups (P < 0.05). 



 54 
 

Figure 3.3.  mRNA levels of the NADPH oxidase subunits gp91phox (A), p47phox 
(B), and p67phox (C), and xanthine oxidase (XO).  *Significant difference between 
groups (P < 0.05); †Significant within-group difference (after vs. before acute 
exercise; P < 0.05). 
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Figure 3.4.  mRNA levels of CuZnSOD (A), MnSOD (B), and GPX-1 (C).  There 
were no significant differences between groups or with acute exercise in either 
group (P > 0.05). 
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 Figure 3.5.  Effects of acute exercise and NADPH oxidase inhibition on 
intracellular nitric oxide (NOi) in CFU-EC from active and inactive men.  Relative 
fluorescence units (RFU) were normalized to the mean for the active group 
baseline-vehicle (BL-VEH) condition.  *Significant difference from within-group 
BL-VEH condition (P < 0.05).  †Significantly different from active group CFU-EC 
under the BL-VEH condition (P < 0.05).
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Chapter 4: Effects of Acute and Chronic Endurance Exercise on Intracellular 

Nitric Oxide and Superoxide in Circulating CD34+ and CD34- Cells 

 

The following is a reprint of the report of this study as it will be published in the 

Journal of Applied Physiology (Epub June 23, 2011). Permission from the American 

Physiological Society to include this manuscript in this dissertation is pending.  
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ABSTRACT 

We investigated the influence of acute and chronic endurance exercise on levels 

of intracellular nitric oxide (NO), superoxide ( O2
     ·- 

), and expression of genes 

regulating the balance between these free radicals in CD34+ and CD34- peripheral 

blood mononuclear cells (PBMCs; isolated by immunomagnetic cell separation). 

Blood samples were obtained from age- and body mass index (BMI)-matched 

endurance-trained (n = 10) and sedentary (n = 10) men before and after 30 min of 

exercise at 75% maximal oxygen uptake (V
 .

O2max). Baseline levels of intracellular 

NO (measured by DAF-FM diacetate) and O2
     ·- 

 (measured by dihydroethidium) were 

26% (P < 0.05) and 10% (P < 0.05) higher, respectively, in CD34+ PBMCs from the 

sedentary group compared to the endurance-trained group. CD34+ PBMCs from the 

sedentary group at baseline had 2-fold greater inducible nitric oxide synthase (iNOS) 

mRNA and 50% lower endothelial NOS (eNOS) mRNA levels compared to the 

trained group (P < 0.05). The baseline group difference in O2
     ·- 

 was eliminated by 

acute exercise. Experiments with apocynin indicated that the training-related 

difference in O2
     ·- 

 levels was explained by increased NADPH oxidase activity in the 

sedentary state. mRNA levels of additional angiogenic and antioxidant genes were 

consistent with a more angiogenic profile in CD34+ cells of trained subjects. CD34- 

PBMCs, examined for exploratory purposes, also displayed a more angiogenic 

mRNA profile in trained subjects, with vascular endothelial growth factor (VEGF) 

and eNOS being more highly expressed in trained subjects. Overall, our data suggest 

an association between the sedentary state and increased nitro-oxidative stress in 

CD34+ cells.  
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INTRODUCTION 

CD34+ peripheral blood mononuclear cells (PBMCs) are stem/progenitor cell 

precursors for hematopoietic and endothelial cells (11). Given appropriate 

environmental cues, CD34+ PBMCS can perform beneficial angiogenic functions (11, 

42) and subsets of CD34+ cells co-expressing endothelial antigens have endothelial 

progenitor cell (EPC) characteristics. However, controversy over precise definitions 

of EPCs and other angiogenic cells has slowed progress in the field (53, 92), making 

it difficult to reach consensus on which cells should be targeted for investigation of 

exercise-induced effects on cell-based endothelial repair mechanisms. It is generally 

agreed upon that CD34+ progenitor cells, whether through actions of particular 

endothelial-directed subsets or by acting as a pool of generic progenitors, perform 

proangiogenic actions that contribute to the maintenance of vascular endothelial 

integrity (55, 56). CD34+ cell numbers predict cardiovascular (CV) disease risk and 

are functionally susceptible to adverse effects resulting from lifestyle related 

metabolic and CV disease in vivo environment (52, 55, 56). In addition, CD34+ 

PBMCs have recently received a great deal of attention in the literature for cell 

therapy applications, with a recent study finding a reduction in myocardial infarct size 

following coronary infusion of CD34+ bone marrow cells (171).  However, no studies 

have investigated the effects of acute or chronic exercise on functional aspects of 

CD34+ cells. 

There is growing evidence that acute and chronic endurance exercise increase the 

functional capacity of circulating angiogenic cells (93, 109, 198, 228-230), but the 

mechanisms underlying the functional adaptations to exercise training are not clear. 
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The balance between nitric oxide (NO) and superoxide ( O2
     ·- 

) production is a critical 

mechanistic aspect of the angiogenic functions of cultured progenitor cells (61, 216), 

and there is a link between CV/metabolic disease and reduced NO/increased O2
     ·- 

 

production in EPCs (199, 215). There have been some recent investigations into 

whether exercise training favorably alters the balance between NO and O2
     ·- 

 levels in 

circulating angiogenic cells. For example, we reported that increased activity of the 

pro-oxidant enzyme NADPH oxidase is a mechanistic mediator of lower intracellular 

NO levels in cultured EPCs of sedentary compared to trained men (109). 

Additionally, a recent study found that exercise training in metabolic syndrome 

patients increases NO production and reduced O2
     ·- 

 production in cultured EPCs, in 

conjunction with increased endothelial repair capacity in vivo (199). However, the 

effects of exercise training on intracellular NO and O2
     ·- 

 need to be examined in 

CD34+ cells, given their angiogenic properties discussed above. Furthermore, no 

exercise-based EPC studies have tested the assumption that the phenotype of cells 

generated after several days in culture under powerful angiogenic conditions 

accurately reflects the in vivo phenotype, and thus there is a need to examine cells in 

their freshly-isolated state.  

Another issue that has not received adequate attention is whether acute exercise 

alters oxidant status of circulating angiogenic cell types. Acute exercise increases NO 

production (109) and the migratory capacity (228) of cultured EPCs. However, no 

studies have directly assessed the effects of acute exercise on O2
     ·- 

 production in any 

angiogenic cell type. Given the known role for acute exercise-induced oxidative stress 

as a stimulus for beneficial adaptive responses in the form of increased NO 
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bioavailability and up-regulation of antioxidant defense systems in muscle (110) and 

the vasculature (69), there is a need to investigate the effects of acute exercise on 

circulating cells with angiogenic function. 

Therefore, we tested the hypothesis that acute and chronic endurance exercise 

would favorably influence the balance between NO and O2
     ·- 

 in freshly-isolated 

CD34+ PBMCs, and elevated NADPH oxidase activity in cells of the sedentary group 

would be a causal mechanism underlying these effects. We also hypothesized that the 

expression of genes involved in the regulation of intracellular NO and O2
     ·- 

 levels 

would be consistent with greater antioxidant capacity and angiogenic function in the 

trained state. Finally, although there are angiogenic monocytic and T-cell 

subpopulations within the CD34- PBMC fraction (15, 34, 79, 120, 122, 240), no 

studies have examined the effects of acute or chronic endurance exercise on their 

functional properties. Thus, we also explored the effects of acute and chronic exercise 

on NO, O2
     ·- 

, and gene expression in CD34- PBMCs. 

METHODS 

Screening. All potential participants completed medical and physical activity 

history questionnaires that we have used previously (109). All participants were 

nonsmoking men age 18-35 with no history and currently free of CV disease and 

diabetes. Subjects were normotensive and were not on cholesterol, antihypertensive, 

or antihyperglycemic agents. Endurance-trained individuals (n = 10) performed at 

least 4 hr/wk of endurance exercise, and sedentary individuals (n = 10) reported 

engaging in exercise for <20 min/d on <2 days/wk. Groups were matched for age and 

body mass index. The study was approved by the University of Maryland College 
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Park Institutional Review Board and all participants provided written informed 

consent.  

Maximal graded exercise test and body composition. All testing occurred in the 

morning after an overnight fast. Participants refrained from alcohol, vitamins, and 

caffeine for 12 hrs and antihistamines or NSAIDs for 24 hrs prior to testing. Body 

composition was estimated using the 7-site skinfold procedure (107). Maximal 

oxygen uptake (V
 .

O2max) was assessed using a constant-speed treadmill protocol with 

2-3% increases in incline every 2 min until exhaustion. Subjects ran at a treadmill 

speed chosen by the investigator based on subject experience, typical run speed, and 

heart rate such that V
 .

O2max was achieved in 6-12 min. Pulmonary ventilation and 

expired gas concentrations were analyzed in real time using an automated 

computerized indirect calorimetry system (Oxycon Pro, Viasys). V
 .

O2 was considered 

maximum if a plateau was achieved (increase in V
 .

O2 of < 250 ml/min with increased 

work). In the absence of a clear plateau, tests were verified to meet at least two of the 

following secondary criteria of maximal effort: a respiratory exchange ratio >1.10, a 

rating of perceived exertion >18, and a peak heart rate within 10 beats/min of the age-

predicted maximum. Heart rate was measured during the test using heart rate 

monitors (Polar).  

Submaximal exercise test. Subjects reported to the laboratory 2-7 days following 

their V
 .

O2max test. The endurance-trained subjects performed one of their usual 

exercise training sessions 16-24 hrs before this test. Seated blood pressure was 

measured and blood samples were obtained before and after exercise for assessment 

of conventional CV risk factors (baseline sample only), hematocrit, hemoglobin, and 
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isolation of circulating CD34+ and CD34- cells. The exercise consisted of 30 min of 

treadmill running at 75% of the subject's V
 .

O2max. The treadmill speed was the same 

as that used for the maximal test and % incline was adjusted to elicit the appropriate 

intensity according to the ACSM equation for V
 .

O2 during treadmill running (6). 

Intensity was verified using the heart rate reserve method.  

Isolation of CD34+ cells. PBMCs were isolated from 30 ml EDTA-anticoagulated 

blood samples using density gradient centrifugation. CD34+ enriched PBMCs were 

obtained using immunomagnetic selection according to the manufacturer’s 

instructions (Stemcell Technologies). Briefly, the final PBMC pool was resuspended 

in PBS + 2% FBS at a density of 2 × 108 cells/ml. The CD34+ selection antibody 

cocktail was added (100 µl/ml) to the PBMC suspension and incubated at room 

temperature for 15 min. Magnetic nanoparticles were then added (100 µl/ml) and 

incubated for 10 min, and PBS + 2% FBS was added to bring suspensions to a final 

volume of 2.5 ml. Cells were then incubated in the selection magnet for 5 min. CD34+ 

cells remain attached to the side of the tube, and CD34- cells were poured off in the 

supernatant. The magnetic incubation step was repeated, and CD34+ and CD34- cell 

fractions were counted by hemocytometer. Flow cytometry analysis of the 

immunomagnetically-purified CD34+ and CD34- cell fractions indicated 59% purity 

in the positively-selected fraction. Importantly, we found no detectable CD34+ cells 

in the CD34-depleted fraction. These values are comparable to or better than 

previously-published purity values for immunomagnetically-selected CD34+ cells 

from unmobilized adult peripheral blood. For example, the purity of CD34+ cells 

reported by Asahara et al. (13) was only 16%, and Schatteman et al. have reported 
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CD34+ cell purity values ranging from 20-50% (79, 183, 186). Finally, the percent 

yield of immunomagnetically purified CD34+ was not affected by acute exercise 

(~1% of total PBMCs both before and after exercise).  In addition, PCR confirmed 

high expression of CD34 mRNA in CD34+ enriched cells, with only faint expression 

detected in CD34- cells.  

Detection of intracellular free radicals and inhibition of NADPH oxidase 

activity. NO measurements were performed in duplicate as we have described 

previously (109), with modifications to examine freshly-isolated cells in a 96-well 

format. Briefly, 1.5 × 105 cells stained with 10 µM DAF-FM diacetate for 

determination of NO levels and 10 µM dihydroethidium (DHE) for determination of 

O2
     ·- 

 levels (Molecular Probes). Cells were also incubated with or without 1 mM 

apocynin (a pharmacologic NADPH oxidase inhibitor) to determine the mechanistic 

role of NADPH oxidase underlying the effects of acute exercise or differences 

between trained and sedentary groups. Cells were incubated with DAF-FM, DHE and 

drug or vehicle treatments in a final volume of 150 µl serum-free PBS for 60 min at 

37°C. Excess DAF-FM and DHE were removed by centrifugation at 500g for 5 min 

and cells were resuspended in 150 µl PBS. NO fluorescence was quantified using a 

fluorescent plate reader (Wallac Victor2 1400, Perkin Elmer) using excitation and 

emission filters of 488 and 535 nm, respectively. O2
     ·- 

 fluorescence was measured 

using excitation and emission filters of 543 and 620 nm, respectively. NO and O2
     ·- 

 

fluorescence values were normalized to cell number and are expressed relative to the 

mean for the endurance-trained group’s baseline CD34+ cells. Intra-assay coefficients 

of variation for NO and O2
     ·- 

 were 3.6% and 2.6%, respectively. Because each assay 
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was performed on different days for each subject, inter-assay coefficients of variation 

were determined on blank samples (PBS only) to document the day-to-day variability 

in arbitrary/background fluorescence. The inter-assay coefficients of variation were 

5.0% and 2.7% for NO and O2
     ·- 

 assays, respectively, indicating good day-to-day 

reliability of the assays. For validation of the fluorescent probes, unfractionated 

PBMCs and in CD34+-enriched cells were treated with a NOS inhibitor (L-NAME, 

300 uM) and a SOD mimetic (Tempol), which reduced the DAF and DHE 

fluorescence signals, respectively, to ~10-20% of basal levels (n = 3 in pilot 

experiments). Conversely, for positive controls, treatment of cells with NO and O2
     ·- 

 

donor 3-morpholino-sydnomine dose-dependently increased the DAF and DHE 

signals in by ~1200-1800 fold compared to basal levels.   

Semiquantitative reverse-transcriptase PCR. mRNA levels of endothelial nitric 

oxide synthase (eNOS), NADPH oxidase subunits gp91phox and p47phox, superoxide 

dismutases (SOD; SOD1 and SOD2) and glutathione peroxidase-1 (GPX-1) were 

measured exactly as described previously (109). Additionally, cells were examined 

for expression of CD34 (forward primer: TGAAAAAGCTGGGGATCCTAGA, 

reverse primer: TCCCAGGTCCTGAGCTATAGCC), vascular endothelial growth 

factor (VEGF) (forward primer: AAGGAGGAGGGCAGAATCAT, reverse primer: 

ATCTGCATGGTGATGTTGGA), and inducible NOS (iNOS; forward primer: 

GGCCGCAGAGAACTCAGCCTCA, reverse primer: 

CTCAAAACAGCCGCTTCCCCAGAA). PCR products were electrophoresed on 

1.5% agarose gels and visualized under UV light. Band intensities were quantified 

using imageJ and normalized to the signal for 18S as a reference gene. Data are 
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expressed relative to the endurance-trained group’s normalized baseline value (set at 

100%).  

Statistics. Data were analyzed using a two-factor [group (trained or sedentary) × 

time (baseline and after exercise)] repeated measures ANOVA. Assumptions of 

normality and homoscedasticity were verified for all data. The criterion for statistical 

significance was P ≤ 0.05. Data are presented as means ± SEM.  

RESULTS 

Subject characteristics. Endurance-trained and sedentary groups were 

successfully matched for age and BMI, but differed substantially (~33%; P < 0.05) in 

terms of V
 .

O2max (Table 4.1). For one subject in the endurance-trained group, only 

baseline data were available (thus n = 9 for endurance-trained subjects after exercise).  

Intracellular NO and O2
     ·- 

 

CD34+ cells. Sedentary subjects had 26% higher baseline NO levels compared to 

endurance-trained subjects (P < 0.05, Fig 4.1A) and NO levels in the trained group 

tended to increase with acute exercise (P = 0.055; Fig 4.1A). Apocynin treatments 

had no effect on NO levels of CD34+ cells in either group (P > 0.05). Analysis of 

main effects revealed greater NO in CD34+ cells of the sedentary group with data 

collapsed across treatment conditions (P = 0.005). The sedentary group also had 

higher O2
     ·- 

 levels at baseline (P < 0.05; Fig 4.1B). O2
     ·- 

 levels increased in the 

endurance-trained group with acute exercise (P < 0.05) but did not change in the 

sedentary group (P > 0.05). Treatment with apocynin reduced O2
     ·- 

 levels in the 

sedentary group both before and after exercise relative to their baseline vehicle-

control condition (P < 0.05) such that baseline group differences were completely 
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abolished (P < 0.05). However, apocynin treatment had no effect on O2
     ·- 

 in CD34+ 

cells from the trained group.  

CD34- cells. The sedentary and endurance-trained groups had similar NO levels at 

baseline (Fig 4.2A). In the trained group, there was no effect of acute exercise on NO 

levels, although apocynin (~45%, P < 0.05) increased NO levels both at baseline and 

after acute exercise. Acute exercise tended to increase NO in the sedentary group by 

38% (P = 0.10), and this increase resulted in a significant difference between the 

groups after acute exercise (56% greater NO levels in the sedentary group; P < 0.05). 

Apocynin increased NO levels in CD34- cells from the sedentary group by 46% at 

baseline and by 41% after acute exercise compared to their baseline vehicle-control 

condition (both P < 0.05). At baseline, NO levels increased with apocynin treatment 

to a greater extent in CD34- cells of the sedentary group compared to the trained 

group (group difference of 40%, P < 0.05). The difference between the groups was 

not statistically significant in apocynin-treated CD34- cells after acute exercise. There 

were no significant effects of training status, acute exercise, or apocynin on O2
     ·- 

 

levels in CD34- cells (Fig 4.2B).  

Gene expression 

CD34+ cells. Endurance-trained subjects had ~2-fold greater eNOS mRNA levels 

in CD34+ cells compared to sedentary subjects at baseline (P < 0.05), and a similar 

trend was observed after acute exercise (P = 0.08; Fig 4.3A). iNOS mRNA levels in 

the sedentary group were ~2-fold greater than those of the trained group at baseline 

and after acute exercise (both P < 0.05; Fig 4.3B). VEGF mRNA levels were (~20%) 

higher in the trained group at baseline (P < 0.05) but the difference between the two 
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groups was not significant after acute exercise (Fig 4.3C). SOD1 mRNA levels were 

~25% and 40% higher in cells of the trained group before and after acute exercise, 

respectively (P < 0.05), with the sedentary group having a significant acute exercise-

induced decrease in SOD1 mRNA (Fig 4.3D). There were no significant effects of 

acute exercise or training status on SOD2 or GPX1 mRNA levels (Fig 4.3E and F). 

p47phox mRNA levels were higher in the trained subjects compared to the sedentary 

group at baseline (~40%, P < 0.05) and after acute exercise (~50%, P < 0.05; Fig 

4.3G). Both groups had significant acute exercise-induced decreases in p47phox 

mRNA levels (P < 0.05). gp91phox mRNA levels in CD34+ cells were similar between 

groups but differed after exercise by ~40% (P < 0.05; Fig 4.3H). Both groups had 

significant exercise-induced reductions in gp91phox mRNA levels (P < 0.05). 

CD34- cells. eNOS mRNA levels were ~25% lower in the sedentary group at 

baseline and increased with acute exercise in the sedentary group (P < 0.05, Fig 

4.4A). However, there were no differences in iNOS mRNA levels between groups or 

effects of acute exercise for either group (Fig 4.4B). Endurance-trained subjects had 

~25% higher baseline VEGF mRNA levels than the sedentary group at baseline (P < 

0.05, Fig 4.4C), and groups had similar VEGF mRNA levels after acute exercise. 

There were no differences between groups in SOD1, SOD2, or GPX1 (Fig 4.4D-F) at 

baseline, and acute exercise-induced increases were only evident in the sedentary 

group (P < 0.05 for SOD1 and SOD2, P = 0.08 for GPX1). There were no differences 

between groups or with acute exercise in expression of p47phox or gp91phox (Fig 4.4G-

H). 

DISCUSSION 
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 The major findings in the CD34+ cell fraction are (i) intracellular NO and O2
     ·- 

 

levels are higher in sedentary than endurance-trained men; (ii) the effect of training 

status on O2
     ·- 

, but not NO levels, is NADPH oxidase-dependent; and (iii) mRNA 

levels of a number of angiogenic and antioxidant genes are lower in sedentary than 

trained men. Together, these findings point to increased nitro-oxidative stress in the 

sedentary state. Importantly, these data were obtained from a carefully selected and 

screened study sample of healthy, lean, young men with low risk for CV disease. 

Thus, the molecular changes in CD34+ cells from sedentary subjects apparently occur 

associated with impaired angiogenic potential in circulating CD34+ cells may occur 

very early in the disease-related process associated with a sedentary lifestyle.  

 Our finding of higher intracellular NO in CD34+ cells of the sedentary group was 

contrary to our original hypothesis. Data from human and animal studies indicate that 

maintaining optimal levels of intracellular NO in vascular endothelial cells is a key 

mechanism by which exercise improves CV health (78, 126). Additionally, we and 

others have previously shown that cultured EPCs seem to exhibit similar NO-related 

biology compared to fully differentiated endothelial cells. For example, cultured 

angiogenic cells upregulate endothelial and angiogenic genes in response to shear 

stress (254). EPCs of CAD patients had undetectable eNOS and impaired migratory 

capacity that was reversed upon treatment with a NO donor (88). We previously 

reported that cultured EPC colonies from endurance-trained individuals had higher 

NO levels compared to sedentary individuals (109). Together, these previous data 

provided a strong rationale for our original hypothesis that trained men would have 

higher NO in circulating CD34+ cells.  
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These previous investigations were based on the premise that eNOS is the primary 

source of NO in endothelial cells, and, by extension, in angiogenic cells that take on 

an endothelial phenotype in culture. However, the iNOS isoform also produces NO in 

large quantities in hematopoietic cells (213). The expression and activity of iNOS 

relative to eNOS can determine whether NO performs beneficial physiological 

functions (e.g. vasodilation in ECs, progenitor/angiogenic cell migration and homing) 

or harmful pathophysiological functions (e.g. inflammation, nitro-oxidative damage 

to cell components, and apoptosis) (157, 191, 222). These adverse consequences of 

high NO are amplified in the presence of excess O2
     ·- 

, as the interaction of these two 

radicals results in the rapid and spontaneous formation of peroxynitrite (213). 

Peroxynitrite increases iNOS expression (32) and promotes uncoupling of the eNOS 

reaction (61). Thus, the present findings of greater iNOS gene expression, lower 

eNOS gene expression, greater NO levels, and greater NADPH oxidase-derived O2
     ·- 

 

production in the sedentary group are suggestive of a state of increased nitro-

oxidative stress in CD34+ cells of sedentary individuals. However, our cross-sectional 

study design allows us to conclude that we have identified an association, but not 

necessarily a cause-effect relationship, between a sedentary lifestyle and increased 

nitro-oxidative stress.  

 It is also possible that our present finding of higher levels of NO in cells from the 

sedentary group was in contrast with our previous finding of higher NO levels in 

cultured EPCs from trained compared to sedentary men (109) because of the 

difference between cultured and freshly-isolated cell characteristics. Our use of 

freshly-isolated cells in the present study is a very different approach compared to 
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using cultured PBMC-derived EPCs grown in a powerful endothelial growth 

environment (i.e. exposure of high concentrations to known endothelial growth 

factors for 5 days), as in our previous study. It is reasonable to suggest that cells from 

exercise-trained subjects may be primed for endothelial-directed differentiation under 

angiogenic growth conditions, owing to their higher expression of eNOS (in ref. 20, 

and replicated in both cell fractions of the present study) and VEGF gene expression.  

 It was surprising that NO and O2
     ·- 

 levels increased with exercise in CD34+ cells 

from the trained group but not the sedentary group, which also contrasted with our 

previous data (109). An important aspect of our study with respect to the acute 

exercise data is that we obtained samples at only one time point after exercise. A time 

course experiment is warranted to determine whether NO and/or O2
     ·- 

 in freshly-

isolated CD34+ cells are unaffected by acute exercise in sedentary individuals, or 

whether training status determines the temporal nature of the response. 

 Treatment of CD34+ cells with apocynin reduced intracellular O2
     ·- 

 in the 

sedentary group and a normalization of the baseline O2
     ·- 

 difference between groups, 

suggesting that the training-related difference in O2
     ·- 

 observed at baseline was a 

result of increased NADPH oxidase enzymatic activity in the sedentary group. 

Excessive NADPH oxidase-derived O2
     ·- 

 has been implicated in oxidative stress-

related dysfunction of progenitor cell angiogenic activities (61). Our data provide the 

first evidence that NADPH oxidase activity is elevated in freshly-isolated CD34+ 

cells of sedentary individuals, and it is important to emphasize that because we 

matched groups for age and BMI, we are confident that we have isolated the effect of 
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chronic exercise training to the extent possible given the cross-sectional study design. 

Nevertheless, these findings will require confirmation in a future prospective study.   

 The major findings in the CD34- cell fraction are (i) training status modifies the 

regulatory effect of NADPH oxidase enzyme activity on intracellular NO 

concentrations, as indicated by the effect of apocynin on NO being different between 

the sedentary and trained groups; (ii) regular endurance exercise is associated with 

enhanced angiogenic gene expression (i.e., VEGF and eNOS); and (iii) acute exercise 

increases antioxidant gene expression in CD34- cells of sedentary individuals.    

The greater response of NO levels to apocynin treatment in the sedentary group than 

in the trained group is possibly indicative of greater basal NADPH oxidase enzymatic 

activity in the sedentary group. This finding is in line with our previous observations 

in putative EPC colonies, most of which are CD34- (109). Thus, further research is 

required to link the role of NADPH oxidase enzymatic activity and its regulatory 

effects on NO levels with angiogenic actions of particular CD34- cellular subsets. In 

addition, our data suggest that the angiogenic properties of CD34- cells may be 

enhanced by acute and chronic endurance exercise, as indicated by the higher levels 

of basal VEGF and eNOS mRNA in trained compared to sedentary subjects, and also 

by the acute exercise-induced increased in antioxidant genes in CD34- cells of 

sedentary subjects. However, the CD34- cells as a whole should probably not be 

thought of as angiogenic per se, as these cells are mostly white blood cells (T-cells, 

monocytes, etc) with primarily immune function, and it would be interesting to know 

which cell populations within the CD34- fraction are driving the present results. A 

reasonable hypothesis for future research is that the functions of angiogenic CD34- 
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monocyte and T-cell fractions (15, 34, 79, 120, 122) may benefit from acute (based 

on our finding of increased antioxidant gene expression) and chronic (based on our 

finding of higher eNOS and VEGF gene expression) endurance exercise. 

  Limitations. It would have been advantageous to have selected additional 

subpopulations within the CD34+ fraction, e.g. CD34+/VEGFR2+ or CD34+/CD45- 

EPCs, however cell yields in pilot studies were too low to perform NO or O2
     ·- 

 assays. 

Thus, we chose to examine only two subfractions based on the presence or absence of 

the CD34 antigen, which yielded an appropriate number of cells to work with and 

seemed reasonable given their accepted role as proangiogenic cells under certain 

conditions. We did not measure all aspects of angiogenic function (e.g., in vitro 

capillary formation, migration, and assessments of target genes at the protein level), 

and clearly data generated from such assays would have aided the interpretation of 

the unexpected finding of higher NO levels in CD34+ cells of the sedentary group.  

  Conclusions. The present study provides the first evidence that physical 

inactivity is associated with increased nitro-oxidative stress in CD34+ cells, and it 

appears that the notion that higher levels of NO are necessarily associated with 

beneficial cellular outcomes will require further investigation. In particular, the 

relative contribution of eNOS vs. iNOS activities to CD34+ cell-mediated vascular 

endothelial maintenance needs to be examined. As we have investigated these 

outcomes in healthy young men at low risk for CV disease, we have isolated the 

effects of exercise training independent of other confounding factors. Thus, we 

anticipate that the information provided by our study will be particularly useful for 

the development of therapeutic applications of CD34+ cells in regenerative medicine. 
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The efficacy of cell therapy trials may be improved if exercise training as a strategy 

to reduce nitro-oxidative stress were employed in conjunction with cell infusions. 

However, further investigation is required to confirm the nitro-oxidative stress at the 

functional level (e.g. nitration of proteins) in CD34+ cells. Overall, our data provide 

strong a rationale for further research to clarify the mechanisms of exercise-induced 

improvements in the vascular repair capacity of circulating CD34+ PBMCs.  
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Table 4.1. Subject characteristics.   

 Endurance-Trained Sedentary  
 (n = 10) (n = 10) 

Age (y) 25 ± 1 25 ± 1 
BMI (kg·m-2) 22.1 ± 1 23.9 ± 1 
Body fat (%) 7.1 ± 0.4 14.9 ± 1.3* 
Glucose (mg·dl-1) 78 ± 2  79 ± 4 
Cholesterol (mg·dl-1) 165 ± 6  171 ± 12 
HDL-C (mg·dl-1) 65 ± 4 54 ± 4* 
LDL-C (mg·dl-1) 88 ± 4 99 ± 13 
TC/HDL 2.6 ± 0.1 3.4 ± 0.4 
LDL/HDL 1.4 ± 0.1 2.0 ± 0.4* 
VLDL-C (mg·dl-1) 11 ± 0.9 19 ± 2* 
Triglycerides (mg·dl-1) 57 ± 5 95 ± 9* 
SBP (mm Hg) 121 ± 3 119 ± 2 
DBP (mm Hg) 74 ± 2 76 ± 4 
MAP (mm Hg) 90 ± 2 91 ± 2 
V

 .
O2max   

   l·min-1 4.82 ± 0.13 3.68 ± 0.14* 
   ml·kg-1·min-1 70.3 ± 0.9 46.9 ± 1.5* 
   ml·kg FFM-1·min-1 75.6 ± 1.1 55.1 ± 1.5* 

*Statistically significant difference between groups (P < 0.05). Abbreviations: BMI, 

body mass index; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density 

lipoprotein cholesterol; VLDL-C, very low-density lipoprotein-cholesterol; SBP, 

systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; 

V
 .

O2max, maximal oxygen uptake.  
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Figure 4.1. Nitric oxide (NO; panel A) and superoxide (panel B) fluorescence in 
CD34+ cells of endurance-trained and sedentary men before and after acute exercise. 
*Statistically significant difference between groups within the given experimental 
condition (P < 0.05); †Statistically significant within-group change relative to 
baseline control sample (P < 0.05).

Figure 4.1. Nitric oxide (NO; panel A) and superoxide (panel B) fluorescence in 
CD34+ cells of endurance-trained and sedentary men before and after acute exercise. 
*Statistically significant difference between groups within the given experimental 
condition (P < 0.05); †Statistically significant within-group change relative to 
baseline control sample (P < 0.05).
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Figure 4.1. Nitric oxide (NO; panel A) and superoxide (panel B) fluorescence in 
CD34- cells of endurance-trained and sedentary men before and after acute exercise. 
*Statistically significant difference between groups (P < 0.05) within the given 
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Figure 4.3. mRNA levels of eNOS (A), iNOS (B), VEGF (C), SOD1 (D), SOD2 (E), 
GPX-1 (F), p47phox (G), and gp91phox (H) in CD34+ cells of endurance-trained and 
sedentary men before and after acute exercise. (I) RT-PCR agarose gel 
electrophoresis products shown are representative of data presented in panels A-H; 
separate images from the same gel are shown for each target gene. Abbreviations: ET 
= endurance-trained group; S = sedentary group.  *Statistically significant difference 
between groups within the given experimental condition (P < 0.05); †Statistically 
significant within-group change relative to baseline control sample (P < 0.05).   
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Figure 4.4. mRNA levels of eNOS (A), iNOS (B), VEGF (C), SOD1 (D), SOD2 (E), 
GPX-1 (F), p47phox (G), and gp91phox (H) in CD34- cells of endurance-trained and 
sedentary men before and after acute exercise. (I) RT-PCR agarose gel 
electrophoresis products shown are representative of data presented in panels A-H; 
separate images from the same gel are shown for each target gene. Abbreviations: ET 
= endurance-trained group; S = sedentary group.  *Statistically significant difference 
between groups within the given experimental condition (P < 0.05); †Statistically 
significant within-group change relative to baseline control sample (P < 0.05).  
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Chapter 5:  Prior Endurance Exercise Prevents Postprandial Lipemia-Induced 

Increases in Reactive Oxygen Species in Circulating CD31+ Cells 

 
 

This manuscript will be submitted to  

Arteriosclerosis, Thrombosis, and Vascular Biology. 
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ABSTRACT 

OBJECTIVE: We hypothesized that prior exercise would prevent postprandial 

lipemia (PPL)-induced increases in intracellular reactive oxygen species (ROS) in 

three distinct circulating angiogenic cell (CAC) subpopulations.  

METHODS and RESULTS: CD34+, CD31+/CD14-/CD34-, and 

CD31+/CD14+/CD34- CACs were isolated from blood samples obtained from ten 

healthy men before and 4 hr after ingesting a high fat meal with or without ~50 min 

of prior endurance exercise. Significant PPL-induced increases in ROS production in 

both sets of CD31+ cells were abolished by prior exercise. Experimental ex vivo 

inhibition of NADPH oxidase activity and mitochondrial ROS production indicated 

that mitochondria were the primary source of PPL-induced oxidative stress. The 

attenuated increases in ROS with prior exercise were associated with increased 

antioxidant gene expression in CD31+/CD14-/CD34- cells and reduced intracellular 

lipid uptake in CD31+/CD14+/CD34- cells. These findings were associated with 

systemic cardiovascular benefits of exercise, as serum TG, OxLDL, and plasma EMP 

concentrations were lower in the exercise trial than the sedentary trial. 

CONCLUSIONS: Prior exercise completely prevents PPL-induced increases in ROS 

in CD31+/CD14-/CD34- and CD31+/CD14+/CD34- cells. The mechanisms underlying 

the effects of exercise on CAC function appear to vary among specific CAC types.  
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INTRODUCTION 

Ingestion of a high-fat meal increases serum triglyceride concentrations (TG), 

induces systemic oxidative stress, and impairs vascular endothelial function (220, 

237). As the majority of individuals in Western society are in a postprandial state 

most of the time (196), routine exposure to postprandial lipemia (PPL) and the 

associated endothelial dysfunction may affect the development of cardiovascular 

(CV) disease (7). PPL-induced vascular endothelial dysfunction is thought to be 

mediated by oxidative stress resulting from an increased lipid load within the cell, in 

turn leading to increased oxidative metabolism and excess production of reactive 

oxygen species (ROS) (16, 239). The primary consequences of increased ROS 

production are nitric oxide (NO) scavenging and uncoupling of the endothelial NO 

synthase (eNOS) enzyme (159), ultimately resulting in reduced NO bioavailability, 

impaired NO-dependent vasodilatory function, and, with chronic exposure, a pro-

atherogenic cellular environment within the vessel wall (239).  

Prior exercise effectively reduces PPL (164, 239) and the accompanying vascular 

endothelial dysfunction (160, 221). The mechanisms underlying the protective effects 

of exercise involve up-regulation of systemic (221) and intracellular (16, 23, 239) 

antioxidant defenses that enable the preservation of NO bioavailability and vascular 

function in the face of a high-fat challenge. However, it is unknown whether these 

mechanisms are uniform throughout all CV cells and tissues. 

Circulating angiogenic cells (CACs) are now understood to be important for the 

maintenance of a healthy endothelium (250). CAC number is associated with CV 

disease incidence and risk factors, such as obesity, physical activity, and diabetes (52, 
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56, 137, 212, 251). However, there are few published data on the functional responses 

of CACs to lifestyle factors. The CAC populations that have received the most 

attention are bone marrow-derived CD34+ progenitor cells that co-express endothelial 

markers (12, 13). However, although cells expressing the endothelial antigen CD31 

(34, 114, 115) and/or the monocyte antigen CD14 (15, 59, 79, 141, 178, 184) 

represent important CAC subpopulations, the effects of exercise and other lifestyle 

factors on functional aspects of these cell populations have not been studied. Finally, 

several studies have shown that PPL causes inflammation and ROS production in 

leukocytes (5, 71, 101, 235), but whether these effects are uniform among leukocyte 

subsets (including CACs) or could be ameliorated by exercise is not known.  

In the present study, we tested the effect of a high fat meal with or without a bout 

of prior endurance exercise on ROS and NO production in CD34+, CD31+/CD14-

/CD34-, and CD31+/CD14+/CD34- CACs. We also attempted to gain mechanistic 

insight into the molecular source of PPL-induced ROS using pharmacological 

inhibition of NADPH oxidase- and mitochondria oxidative activity. We hypothesized 

that PPL would reduce intracellular NO levels and increase the production of ROS by 

NADPH oxidase and/or mitochondria, and that these effects would be attenuated by a 

single bout of exercise performed on the prior day. In addition, we assessed 

concentrations of serum TG, serum oxidized LDL-cholesterol (OxLDL), and plasma 

endothelial microparticles (EMPs) to determine if exercise reduces systemic PPL-

induced oxidative stress and endothelial damage in conjunction with any effects on 

CACs.  

METHODS 



 

 87 
 

Overview of Experimental Procedures 

Following a screening visit to obtain informed consent and assess maximal 

oxygen uptake (V
 .

O2max) and body composition [inclusion criteria: male, age 18-35 

yr, normotensive, normolipidemic, normoglycemic, not taking any medications, and 

physically active (at least 4 hr/wk participation in endurance exercise)], subjects were 

subjected to PPL tests under two separate experimental conditions: control, in which 

no prior exercise was performed, and an exercise trial, in which subjects performed 

stationary cycling at 70% V
 .

O2max until reaching an energy expenditure of 2.5 MJ 

(~50 min). Subjects remained sedentary for the entire 24 hr period preceding the PPL 

test. The exercise trial was completed ~15 hr prior to the PPL test. The order of 

treatments was randomized and balanced across the study subjects (n = 10), and 

treatments were scheduled 1 week apart. Subjects consumed a standardized meal the 

evening before the PPL test. The PPL test meal consisted of heavy whipping cream, 

chocolate syrup, sugar, and powdered milk, and provided ~1300 kcal (84% from fat). 

Additional details of the study protocol, including the exercise protocol and test meal 

macronutrient composition for each subject, are provided in the Supplemental 

Materials (Supplemental Tables 5.I and 5.II).  The University of Maryland College 

Park Institutional Review Board approved all study procedures and subjects provided 

written informed consent.  

Immunomagnetic Cell Separation 

Peripheral blood mononuclear cell (PBMCs) were isolated by density gradient 

centrifugation (Ficoll; GE Healthcare), and separated into CD34+, CD31+/CD14-

/CD34-, and CD31+/CD14+/CD34- cell fractions using an immunomagnetic cell 
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separation procedure (EasySep®, Stemcell Technologies) according to the 

manufacturer’s instructions (additional details are provided in Supplemental 

Materials).  

Experimental Inhibition of NADPH oxidase and Mitochondrial ROS Production 

NADPH oxidase was inhibited using apocynin (Sigma), and mitochondria 

respiratory complex I was inhibited by rotenone (Sigma; additional details are 

provided in the Supplemental Materials). 

Measurement of Intracellular NO and ROS, Intracellular Stored Neutral Lipid 

Assay, RNA Isolation and Assessment of Gene Expression, Serum Triglyceride 

and Oxidized LDL-cholesterol, Endothelial Microparticles 

These protocols are described in the Supplemental Materials.  

Statistics 

Assumptions of homoscedasticity and normality were verified for all outcome 

measures. Data were analyzed using two-factor (condition × time) or three-factor 

(condition × time × drug) repeated measures ANOVA, where appropriate. Analyses 

of simple effects were used to determine differences between control and exercise 

treatments at specific time points. Total TG areas under the lipemia curves (TG AUC) 

were calculated using the trapezoid rule (140) and compared between control and 

exercise treatments using paired t-tests. Statistical significance was accepted at P ≤ 

0.05.  

RESULTS 

Subject characteristics 
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Anthropometric and clinical characteristics of the study subjects are presented in 

Table 5.1.   

Intracellular ROS and NO Levels 

Reactive oxygen species. In CD31+/CD14-/CD34- cells, there was a ~30% 

increase in ROS with PPL in the control condition (P < 0.05), and this effect of PPL 

was completely absent in the prior exercise trial (Fig 5.1A). Apocynin increased ROS 

levels at both 0- and 4-hr time points in both trials (P < 0.05), but the magnitudes of 

these increases were significantly greater in the control trial compared to the trial with 

prior exercise (P < 0.05). The apocynin-induced increase in ROS levels in these and 

the two other cell types (presented below) was a surprising finding, given the 

hypothesis of the study that NADPH oxidase-inhibition would experimentally 

demonstrate that the PPL-induced increase in ROS would be driven by NADPH 

oxidase. When we observed that these findings were consistent and statistically 

significant after testing the first 5 subjects of the study, we attempted to determine if 

another cellular source of pro-oxidant activity could have compensated for NADPH 

oxidase inhibition by increasing ROS production. Thus, before testing the remaining 

participants, we examined the effects of allopurinol (a xanthine oxidase inhibitor), 

rotenone (a mitochondrial complex I inhibitor), and antimycin (a mitochondrial 

complex III inhibitor) in combination with apocynin (n = 3 pilot subjects). It was 

found that the most consistent inhibitor of the apocynin-induced increase in ROS was 

rotenone, i.e. ~60-100% of the increase could be eliminated by rotenone compared to 

~20% by allopurinol and <10% by antimycin (data not shown). Therefore, rotenone 

was included in the experiments for the remaining subjects. The apocynin-induced 
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increases in ROS in CD31+/CD14-/CD34- cells were completely reversed by rotenone 

in both the control and prior exercise trials (P < 0.05). ROS levels were lower in the 

prior exercise trial compared to the control trial under all experimental conditions (P 

< 0.05).  

In CD31+/CD14+/CD34- cells, PPL increased ROS by ~25% in the control trial (P 

< 0.05), and this increase was absent in the trial with prior exercise (Fig 5.1B). 

Apocynin substantially increased ROS levels at both time points during both trials (P 

< 0.05), and again this was completely reversed by rotenone treatment (P < 0.05). The 

magnitude of the increase in ROS levels with apocynin treatments and the degree of 

reduction by rotenone treatments were similar between control and exercise trials. 

In CD34+ cells, PPL induced a small (~10%), but statistically significant increase 

in ROS in the trial with prior exercise (P < 0.05), but no change was observed in the 

control trial (Fig 5.1C). NADPH oxidase inhibition with apocynin induced ~2-2.5 

fold increases in ROS levels at 0 hr and 4 hr in both the control and prior exercise 

trials (P < 0.05), which was completely attenuated by co-incubation with rotenone (P 

< 0.05).  

Nitric Oxide. There were no effects of PPL or apocynin on NO levels in either the 

prior exercise or control trial in CD34+/CD14-/CD34- cells (Fig 5.2A). In 

CD34+/CD14+/CD34- cells, PPL increased NO levels both with and without apocynin 

treatments by ~10-15% in the control trial (P < 0.05), but there were no effects of 

PPL or apocynin in the prior exercise trial (Fig 5.2B). PPL had no effect on NO in 

CD34+ cells during the control trial, but induced a ~10% decrease in NO during the 
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trial with prior exercise (P < 0.05). This 10% reduction in NO was reversed upon 

treatment with apocynin (Fig 5.2C). 

Intracellular Neutral Lipid Storage 

Within the CD34+ cells, PPL caused a significant increase in stored neutral lipids 

during the prior exercise trial (P < 0.05), but there was no change during the control 

trial (Fig 5.3). There were no significant PPL-induced changes in stored neutral lipids 

in CD31+/CD14-/CD34- cells in either trial. In CD31+/CD14+/CD34- cells, 

intracellular lipids increased significantly in the control trial (P < 0.05), but there was 

no effect of PPL in the prior exercise trial. There were no differences in basal (0 hr) 

stored neutral lipid levels between the control and prior exercise trials (data not 

shown). 

Circulating TG, OxLDL, and EMP Concentrations 

Fasting (i.e., 0-hr) serum concentrations of TG and OxLDL were not different 

between trials (P > 0.05; Fig 5.4). Serum TG concentrations increased significantly 

throughout the sampling period in both the control and prior exercise trials (P < 0.05), 

but the concentrations were lower (P < 0.05) at 1 and 3 hr, and tended to be lower at 4 

hr (P = 0.06), during the prior exercise trial compared to the control trial (Fig 5.4A). 

TG AUC was significantly lower in the prior exercise trial compared to the control 

trial (Fig 5.4B, P < 0.05). There was a 28% increase in serum oxLDL concentration in 

the control trial (P < 0.05), and there was no change in oxLDL concentration in 

response to the high-fat meal with exercise performed on the prior day (Fig 5.4C and 

D). Plasma EMP markers of endothelial activation (Fig 5.5A) and endothelial 

apoptosis (Fig 5.5B) were lower in the prior exercise trial compared to the control 
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trial (55% and 30%, respectively; both P < 0.05), but were unaffected by the high-fat 

meal in either trial.  

Gene Expression 

Overall, the pattern of gene expression varied considerably among the three cell 

types in response to PPL with and without prior endurance exercise. The major 

finding was that prior exercise increased expression of the antioxidant genes 

superoxide dismutase (SOD)-1 and SOD2 in CD31+/CD14-/CD34- cells at both 0 hr 

and 4 hr time points, while SOD1 and SOD2 gene mRNA levels were not affected by 

prior exercise in either CD31+/CD14-/CD34- or CD34+ cells. Additional data on 

mRNA levels of endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), 

vascular endothelial growth factor (VEGF), NADPH oxidase subunits gp91phox and 

p47phox, and the oxidized LDL-cholesterol receptor-1 (LOX1) are presented in 

Supplemental Figures 5.II-IV.    

DISCUSSION 

The major finding of this study is that PPL increases intracellular ROS in 

CD31+/CD14-/CD34- and CD31+/CD14+/CD34- PBMCs, and this effect is prevented 

by performing endurance exercise on the prior day. Consistent with previous data 

indicating that postprandial oxidative stress is caused by an increase in mitochondria-

derived ROS production (23, 239), our data implicate mitochondria as a possible 

source of PPL-induced increases in intracellular ROS in the CD31+ CAC 

subfractions. In addition, we observed beneficial effects of exercise on PPL-induced 

changes in intracellular storage of neutral lipids and expression of genes involved in 

the functional status of CACs; however, there were adverse effects of PPL on CD34+ 
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cells (i.e., elevated ROS, reduced NO, and increased stored neutral lipid) in the prior 

exercise trial only. Therefore, our data suggest that the effects of exercise are not 

uniform among CAC subpopulations.  

Exercise Protects Against High-fat Meal-induced Increases in Intracellular ROS 

of CD31+/CD14-/CD34- and CD31+/CD14+/CD34- Cells  

We hypothesized that NADPH oxidase would play a role in the effects of PPL-

induced oxidative stress, as PPL has been shown to increase OxLDL (220), and 

OxLDL increases NADPH oxidase expression in cultured CACs (135). However, in 

the present study apocynin treatment induced a dramatic increase in intracellular ROS 

levels in all three CAC types. We were able to determine that mitochondria up-

regulate ROS production with acute apocynin treatments in all three cell types 

examined, as the apocynin-induced increase in ROS was completely reversed upon 

treatment with the complex I inhibitor rotenone. Further, and more importantly, the 

protective effects of exercise against PPL-induced ROS production in both CD31+ 

cell fractions appeared to be mitochondria-dependent, as indicated by the return to 0-

hr ROS levels in rotenone-treated 4-hr cells. However, we acknowledge that a 

limitation of our study is that we did not include a rotenone-only treatment condition. 

Thus, our interpretation that mitochondria might account for the PPL-induced ROS 

increase must be taken with caution, and will require confirmation in further 

experiments designed a priori to examine the role of mitochondria. It is also 

important to mention that in our preliminary experiments, apocynin at the chosen 

concentration (250 µM) decreased basal ROS production as measured by DCF 

fluorescence in unfractionated PBMCs (data not shown), and previous studies have 
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used similar or greater concentrations of apocynin to investigate the NADPH oxidase-

driven components of cultured endothelial cell ROS production (150) and vascular 

endothelial dysfunction (46). Thus, the up-regulation of mitochondria-derived ROS 

by apocynin in our experiments appears to be a phenomenon specific to the CAC 

populations examined in the present study, and the biology of redox regulation does 

not appear to be uniform between vessel wall endothelial cells and CACs. 

Furthermore, it is interesting that the degree of the mitochondria-mediated increase in 

ROS was blunted with prior exercise in the CD31+/CD14-/CD34- fraction, indicating 

that in these cells there was an attenuation of mitochondrial ROS production in 

response to the high-fat meal, or there may have been an up-regulation of intracellular 

antioxidant defenses that resulted in enhanced scavenging of ROS. In line with the 

latter possibility, we also found increases in both SOD1 and SOD2 mRNA levels in 

CD31+/CD14-/CD34- cells with exercise (supplemental Fig 5.II). In 

CD31+/CD14+/CD34- cells, on the other hand, the PPL-induced increase in ROS was 

similarly blunted by prior exercise, and yet there were no effects of exercise on 

antioxidant gene expression (Supplemental Fig 5.III). However, in these cells prior 

exercise caused a significant reduction in the degree of neutral lipid storage with PPL, 

which would be expected to result in attenuated ROS production (239). Regardless, 

the critical finding of the present study is protection against PPL-induced oxidative 

stress in CD31+/CD14-/CD34- and CD31+/CD14+/CD34- angiogenic cells by prior 

exercise. These findings are especially important in light of recent reports that CD31+ 

cells in bone marrow and peripheral blood are an important source of CACs for the 

maintenance of vascular endothelial integrity and are effective for cell-based 



 

 95 
 

regenerative medicine therapy (114, 115). Our data suggest that exercise may 

enhance the ability of CD31+ CACs to cope with a physiological pro-oxidative 

challenge, and may therefore improve the efficacy of these cells for therapeutic 

treatment of CV diseases.  

Exercise and PPL Have Minimal Effects on Intracellular NO in CACs 

 Surprisingly, there were few significant effects of PPL, exercise, or their 

interaction on intracellular NO levels in the three cell types examined in the present 

study. Given the critical role for NO in a number of CAC functions, we expected that 

NO would be reduced by PPL without prior exercise and that this reduction would be 

absent, or at least blunted, in the trial with prior exercise. Thus, the reduction in NO 

in CD34+ cells during the prior exercise trial was not anticipated. However, it was 

consistent with the gene expression data indicating that eNOS expression increased 

with PPL in the control but not the prior exercise trial (Supplemental Fig 5.IV). 

Similarly, there were no changes in NO levels in CD31+/CD14-/CD34- cells, although 

in these cells mRNA levels of both NOS isoforms were significantly increased during 

the prior exercise trial compared to the sedentary trial (supplemental Fig 5.II). These 

effects at the mRNA level were not associated with changes at the functional level 

(i.e., intracellular NO). In CD31+/CD14+/CD34- cells, conversely, PPL-induced 

increases in eNOS mRNA and in intracellular NO were observed both in the control 

trial, but not in the trial with prior exercise. However, it must be emphasized that the 

changes in NO in both CD34+ and CD31+/CD14+/CD14- cells, while statistically 

significant, were relatively small (~10%), and therefore further research is needed to 

determine the physiological significance of these findings. 
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Role of Lipid Storage and Gene Expression: Evidence for CAC Subpopulation-

specific Mechanisms Underlying Effects of Exercise 

As mentioned above, we observed higher levels of in SOD1 and SOD2 mRNA 

levels in CD31+/CD14-/CD34- cells during the prior exercise trial, but differences 

between trials in these antioxidant genes in CD31+/CD14+/CD34-. Conversely, there 

were no effects on lipid storage in CD31+/CD14-/CD34- cells, whereas in 

CD31+/CD14+/CD34- cells there was a significant reduction in the degree of PPL-

induced lipid uptake with prior exercise. Furthermore, the expression profile of the 

angiogenic, pro-oxidative, and antioxidant genes we examined varied considerably in 

response to PPL and exercise among the three cell types we investigated 

(Supplemental Figures 5.II-IV). Therefore, it would appear that the mechanisms by 

which exercise and high-fat meal ingestion alter the angiogenic functions in CACs are 

not uniform among specific CAC subpopulations.   

Exercise Blunts PPL-induced Increases in Serum TG and OxLDL and Reduces 

EMPs in Spite of PPL  

Our finding of a reduction in TG AUC following ingestion of a high-fat meal with 

exercise performed on the prior day is consistent with numerous previous studies [for 

review, see Petitt and Cureton (164)]. An increase in serum OxLDL has been 

observed in response to ingestion of a high-fat meal (220), and to the best of our 

knowledge, this is the first study to report an exercise-induced protection against this 

effect. As OxLDL has been previously reported to cause dysfunction of cultured 

CACs through increased intracellular oxidative stress (135), the mechanisms 

underlying our findings of reduced intracellular ROS may have involved the reduced 
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exposure to circulating OxLDL after the high-fat meal with prior exercise. In 

addition, our data provide the first evidence that exercise can reduce circulating 

EMPs, a well-established marker of damaged vascular endothelium (94). Specifically, 

EMP populations indicating the presence of endothelial activation and endothelial 

apoptosis were lower in the exercise trial compared to the sedentary trial, even in the 

face of the high-fat challenge, which has previously been shown to increase 

circulating EMPs (60, 220). Thus, our TG,  OxLDL, and EMP data are in line with (i) 

the known effects of a high-fat meal on TGs and on systemic oxidative stress, and (ii) 

the reduction in or prevention of PPL-induced vascular dysfunction (160, 221), which 

is mediated by oxidative stress (165, 166, 239).  

CONCLUSIONS 

In summary, we have shown that the PPL-induced increases in intracellular ROS 

production in CD31+ cells are prevented by prior endurance exercise. Our 

experiments suggested mitochondria as the source of the PPL-induced increase in 

ROS, although future studies designed a priori to determine the role of mitochondria 

in PPL-induced ROS production in CACs are required for confirmation. These 

findings add to the strong and consistent evidence that the detrimental effects of PPL 

on the CV system are mediated by oxidative stress, and our direct measurements of 

the intracellular environment within human CACs indicate that these effects of PPL 

can be prevented by prior endurance exercise. Our data also provide novel insight into 

the understanding of how situations encountered in daily life, such as exercise and 

high-fat meal ingestion, might alter the endothelial repair capacity of CACs. These 

findings were linked to prior exercise-induced reductions in circulating TG, OxLDL, 
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and EMP concentrations during PPL, suggesting a systemic CV benefit of exercise 

even in the face of a high-fat challenge. Finally, our findings could provide important 

information for the ongoing efforts to optimize the application of CACs for 

therapeutic treatment of CV disease patients.  
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Table 5.1. Subject Characteristics. 

   Mean SEM
Age (yr) 27 0.9 

BMI (kg/m2) 24.6 0.7 
Body Fat (%) 15.1 1.2 
Glucose (mg/dl) 82 2.2 
Cholesterol (mg/dl) 163 5.8 
HDL-C (mg/dl) 54 3.2 
LDL-C (mg/dl) 93 3.7 
VLDL-C (mg/dl) 16 1.7 
TG (mg/dl) 78 8.1 
SBP (mm Hg) 120 3.0 
DBP (mm Hg) 75 1.8 
MAP (mm Hg) 90 1.8 

V
 .

O2max (L/min) 
  L/min 3.75 0.2 

  ml/kg/min  48.0 2.2 
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Figure 5.1. Effects of PPL with and without prior endurance exercise (left panels) and 
apocynin and rotenone treatments (right panels) on intracellular reactive oxygen species in 
CD31+/CD14-/CD34- (A), CD31+/CD14+/CD34- (B), and CD34+ (C) CACs. Horizontal dashed 
line at 100% indicates control (vehicle) condition. *Statistically significant difference from 0-
hr control (vehicle) condition (P < 0.05). #Magnitude of change from 0-hr control (untreated) 
condition is significantly different between control and prior exercise trials (P < 0.05). 
†Statistically significant difference between rotenone and apocynin-treated cells (P < 0.05).  
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Figure 5.2. Effects of PPL and apocynin treatment with and without prior endurance 
exercise on intracellular nitric oxide in CD31+/CD14-/CD34- (A), 
CD31+/CD14+/CD34- (B), and CD34+ (C)  circulating angiogenic cells. *Statistically 
significant difference from 0-hr control (vehicle) condition (P < 0.05). #Change from 
0-hr control (untreated) condition is significantly different between trials (P < 0.05). 
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Figure 5.3. PPL-induced changes in stored neutral lipid in circulating angiogenic cells 
with and without prior endurance exercise. *Statistically significant change within trial 
(i.e., the percent change is different from zero; P < 0.05). #Magnitude of change is 
significantly different between trials (P < 0.05).  
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Figure 5.4. Effects prior exercise on PPL as measured by serum TG concentrations 
(A), TG AUC (B), and oxLDL (C). (D) PPL-induced change (%) in OxLDL in control 
and prior exercise trials. *Statistically significant difference from 0-hr time point 
within trial (P < 0.05). †Statistically significant difference between trials (P < 0.05). 
#P = 0.06 for difference between trials in serum TG concentration at 4-hr time point.  
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Figure 5.5. Effects of postprandial lipemia with and without prior endurance exercise 
on plasma endothelial microparticles (EMPs). (A) EMP fragments of activated 
endothelium (CD62E+ EMPs); (B) apoptotic endothelial CD31+/CD42- EMPs. *P < 
0.05 for main effect of exercise.  
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Expanded Materials and Methods 

Screening 

Ten healthy, nonsmoking, recreationally- to highly-active (endurance exercise 

≥4hr/week) men aged 18-35 yrs with no history of CV or metabolic disease were 

recruited for this study. Potential subjects were initially screened by telephone or 

email, and reported to the laboratory following an overnight fast for a screening visit 

to verify eligibility. Exclusion criteria were as follows: systolic blood pressure ≥130 

mm Hg, diastolic blood pressure ≥90 mm Hg, serum total cholesterol level ≥200 

mg/dl; low-density lipoprotein-cholesterol level of ≥130 mg/dl; high-density 

lipoprotein-cholesterol of ≤ 35; fasting glucose ≥100 mg/dl). The University of 

Maryland College Park Institutional Review Board approved all study procedures and 

subjects provided written informed consent. 

A blood sample was obtained for assessment of fasting serum triglycerides (TG), 

lipoprotein lipids, and glucose (Quest Diagnostics, Baltimore, MD). Height, weight, 

and body mass index were measured, and body composition was assessed using the 7-

site skinfold procedure (107). Maximal oxygen uptake (V
 .

O2max) was determined 

using a stationary cycling test to exhaustion (Life Cycle). Subjects began cycling at 

200W, and the work rate increased by 25W every 2 min until the subject was unable 

to maintain a cycling cadence of ≥50 revolutions/min. V
 .

O2 was measured 

continuously via an automated indirect calorimetry system (Oxycon Pro). All subjects 

achieved a valid V
 .

O2max as indicated by the plateau criteria (≤200 ml/min increase 

in V
 .

O2 with increase in work rate).  

Experimental Protocol 
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For the exercise trial, subjects reported to the laboratory at 3:00 PM, and 

performed stationary cycling at 70% of V
 .

O2max until a total energy expenditure of 

2.5 MJ (598 kcal) was reached. This exercise protocol was chosen because exercise 

of this intensity and energy expenditure have been shown to consistently reduce PPL 

in response to high fat meals (164). Exercise intensity was verified by measurement 

of V
 .

O2 via indirect calorimetry every 10 min during exercise. The exact work rate 

and duration of exercise for each subject are presented in Supplemental Table 5.I. For 

the control trial, subjects remained sedentary for the 24 hours prior to the PPL test. 

Subjects were instructed to maintain the same dietary habits for 72 hr preceding each 

PPL test, which was verified by dietary logs. 

Because the effect of exercise on PPL is influenced by the timing, caloric content, 

and composition of meals ingested following exercise (80), participants consumed a 

meal of fixed macronutrient composition (40% carbohydrate, 30% fat, and 30% 

protein) between 7:00 and 8:00 PM, as described previously (197). This meal 

consisted of commercially available Zone Perfect bars (Abbott Nutrition, Columbus, 

OH). The number of bars eaten by each participant was calculated and portioned by 

weight to provide 0.5 g of carbohydrate/kg BW and 20.9 kJ/kg BW. Subjects were 

asked to sleep for at least 8 hr prior to PPL testing.  

PPL tests began at 6:00 AM on the morning following each treatment and were 

performed as described by our laboratory previously (247). The test meal contained 

heavy whipping cream, sugar, chocolate syrup, and nonfat powdered milk. The size 

of the test meal was normalized to each subject’s body surface area (386 g/2 m2 body 

surface area). A 386-g serving of the meal provided 1362 kcal (84% fat). The exact 
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meal composition for each subject is presented in Supplementary Table 5.II. All 

subjects consumed their test meals within 5 min and the meals were well-tolerated. 

Thirty-ml blood samples (K2EDTA Vacutainer Tubes, Becton Dickinson) were 

obtained at baseline (0 min) and 240 min for isolation of CD34+, CD31+/CD14-

/CD34-, and CD31+/CD14+/CD34- CACs.  Plasma and serum samples were obtained 

before the meal and at 1, 2, 3, and 4 hr postprandial for assessment of serum 

triglyceride and oxidized LDL (OxLDL) concentrations and plasma endothelial 

microparticle (EMP) concentrations.  

Immunomagnetic Cell Separation 

Peripheral blood mononuclear cells (PBMCs) were isolated from 0- and 4-hr 

samples using density gradient centrifugation (Ficoll, GE Healthcare). The CD34+, 

CD31+/CD14-/CD34-, and CD31+/CD14+/CD34- fractions were purified using 

multiple rounds of immunomagnetic cell separation according to the manufacturer’s 

instructions (EasySep® Immunomagnetic Cell Separation Kits, STEMCELL 

Technologies). In the first step, PBMCs were sorted into CD34+ and CD34- fractions. 

The CD34- fraction was then sorted into CD31+/CD34- and CD31-/CD34-. The CD31-

/CD34- fraction was discarded. In the final sorting step, the CD31+/CD34- fraction 

was further divided into CD14+ and CD14- fractions. Each of these sorting procedures 

was performed as follows: cells were resuspended in PBS + 2% FBS at a density of 2 

× 108 cells/ml. The positive selection antibody cocktail was added (100 µl/ml) to the 

cell suspension and incubated at room temperature for 15 min. Magnetic 

microparticles were then added (100 µl/ml) and incubated for 10 min, and PBS + 2% 

FBS was added to bring suspensions to a final volume of 2.5 ml. Cells were then 
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incubated in the selection magnet for 5 min. Positively-selected cells remained 

attached to the side of the tube, and negatively-selected cells were poured off in the 

supernatant. The magnetic incubation step was repeated, and positive and negative 

cell fractions were counted by hemocytometer. The validity of the CD34+ PBMC 

immunomagnetic selection procedure has been previously confirmed in our 

laboratory (108).  For validation of the CD14 and CD31 selection procedures, CD14-, 

CD14+, CD31+, and CD31- selected fractions were analyzed by RT-PCR. RNA was 

isolated and converted to cDNA as described below and cDNA was assessed for 

CD31 and CD14 gene products using PCR and followed by electrophoresis on 

ethidium bromide-stained 1.5% agarose gels (CD31 forward primer: 5’-

CCCAGGAGCACCTCCAGCC-3’; CD31 reverse primer: 

GGACCTCATCCACCGGGGCT-3’;  CD14 forward primer: 5’- 

GGGCGCCTGAGTCATCAGGACAC-3’; CD14 reverse primer: 5’-

CAAGGTTCTGGCGTGGTCGCA-3’). 18S was used as the reference gene. 18S 

primer sequences were published previously (109). For both selection antibodies, 

positively-selected cells displayed strong expression of the target antigens, while 

CD31 and CD14 mRNAs were not detectable in the negatively-selected fractions 

(Supplemental Figure 5.I).  

Pharmacological Treatments and Measurement of Intracellular NO and ROS 

These experiments were performed in duplicate as we have described previously 

(108, 109), with modifications to examine freshly-isolated cells in a 96-well format. 

Briefly, 1.5 × 105 cells stained with 10 µM DAF-FM diacetate for determination of 

intracellular NO levels or 2 µM 2´,7´-dichlorodihydrofluorescein diacetate 
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(H2DCFDA) for determination of intracellular ROS levels (Molecular Probes). DAPI 

(750 ng/ml) was used to label cell nuclei (Molecular Probes). Cells were also 

incubated with or without 250 µM apocynin (a pharmacologic NADPH oxidase 

inhibitor) and/or 1 µM rotenone (an inhibitor of mitochondrial complex I) to 

determine the contribution of NADPH oxidase- and mitochondrial-derived ROS to 

any observed effects of PPL  and/or exercise on intracellular ROS and NO levels. 

Rotenone treatments were performed on cells from a subset of subjects (n = 5), and, 

owing to limiting cell yields, were only performed on cells that were analyzed for 

intracellular ROS levels. Cells were incubated with fluorescent dyes and drug or 

vehicle treatments in a final volume of 150 µl serum-free PBS for 60 min at 37°C. 

Plates were then centrifuged at 500g for 5 min and cells were resuspended in 150 µl 

PBS. NO and ROS fluorescence were quantified using a fluorescent plate reader 

(Wallac Victor2 1400, Perkin Elmer) using excitation and emission filters of 488 and 

535 nm, respectively. DAPI fluorescence was measured using excitation and emission 

filters of 355 and 460 nm, respectively. NO and ROS fluorescence values were 

divided by DAPI fluorescence values for normalization to cell number, and data are 

expressed relative to the mean for the no exercise 0-min value. Intra-assay 

coefficients of variation for NO and ROS were both 5%. Because each assay was 

performed on different days for each subject, inter-assay coefficients of variation 

were determined on blank samples (PBS only) to document the day-to-day variability 

in arbitrary/background fluorescence. The inter-assay coefficients of variation were 

5% and 4% for NO and ROS assays, respectively, indicating good day-to-day 

reliability of the assays. For validation of the DAF fluorescent probe, unfractionated 
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PBMCs and the immunomagnetically-selected CAC populations (n = 3 pilot 

experiments) were treated with a NOS inhibitor (L-NAME) and the NO donor, (3-

morpholino-sydnomine). L-NAME reduced DAF fluorescence signals to ~10-20% of 

basal levels, while 3-morpholino-sydnomine dose-dependently increased the DAF 

signal by ~1200-1800 fold compared to basal levels. Similarly, for validation of the 

ROS probe H2DCFDA, the SOD mimetic reduced DCF fluorescence by >50% in all 

cell populations, whereas 3-morpholino-sydnomine (also ROS donor) increased DCF 

fluorescence by ~1000 fold compared to basal levels.  

Intracellular Lipid Assay 

In cells from a subset of subjects (n = 5), intracellular lipids were measured with 1 

µM BODIPY 493/503 (Molecular Probes), a stain for intracellular nonpolar lipids, 

using excitation and emission filters of 488 and 535 nm, respectively. Stored neutral 

lipid fluorescence values were divided by DAPI fluorescence for normalization to cell 

number. Data are expressed as percent change from 0 to 240 min within each 

experimental condition.    

Assessment of Gene Expression by RT-PCR 

RNA was isolated using the TRI reagent and reversed transcribed to cDNA. 

mRNA levels of endothelial/angiogenic [endothelial nitric oxide synthase (eNOS) 

and vascular endothelial growth factor (VEGF)], pro-oxidant [inducible NOS (iNOS), 

oxLDL receptor (LOX-1), and NADPH oxidase subunits gp91phox and p47phox], and 

antioxidant genes (SOD1 and SOD2) were assessed using semiquantitative RT-PCR. 

eNOS, gp91phox, p47phox, SOD1, and SOD2 primer sequences are published 

elsewhere (109). Additional gene targets included VEGF (forward primer: 5’-
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AAGGAGGAGGGCAGAATCAT-3’, reverse primer: 5’-

ATCTGCATGGTGATGTTGGA-3’), iNOS (forward primer: 5’-

GGCCGCAGAGAACTCAGCCTCA-3’, reverse primer: 5’-

CTCAAAACAGCCGCTTCCCCAGAA-3’), and the oxLDL receptor-1 (LOX-1; 

forward primer: 5’-TTACTCTCCATGGTGGTGCC-3’, reverse primer: 5’-

AGCTTCTTCTGCTTGTTGCC-3’). Gene products were amplified using optimized 

thermal cycling conditions followed by electrophoresis on ethidium bromide-stained 

1.5% agarose gels. For each target gene, all samples within each cell type were run on 

the same gel. Gels were visualized under UV light, and band intensities were 

quantified using ImageJ. Data were normalized to the reference gene 18S, and are 

presented relative to the normalized value for the control 0-hr condition (set at 100%). 

Serum Triglyceride and Oxidized LDL-cholesterol Concentrations 

Serum TG concentrations were examined using a standard colorimetric assay 

(Sigma), as described by our laboratory previously (247). Total areas under the TG 

curves (TG AUC) were calculated using the trapezoidal principle (140). The TG 

intra-assay coefficient of variation was 6.5%, and the inter-assay coefficient of 

variation was 8.5%. Serum levels of oxidized LDL cholesterol (OxLDL) were 

determined using a sandwich ELISA (Mercodia) according to the manufacturer’s 

instructions. Serum OxLDL was measured at 0- and 4-hr only. The OxLDL assay 

intra-assay coefficient of variation was 4%. All samples were analyzed in the same 

batch to eliminate inter-assay variability.   

Plasma Endothelial Microparticles (EMPs) 
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Preparation of Plasma: Plasma samples were thawed at room temperature and 

centrifuge at 1500g x for 20 minutes at room temperature to obtain platelet poor 

plasma (PPP), The top 2/3 volume of PPP was further centrifuged at 1500g for 20 

minutes at room temperature to obtain cell free plasma (CFP) (194).  The supernatant 

was used for microparticle analysis (58). A volume of 100 μl supernatant was 

incubated with the different fluorochrome-labeled antibodies for 20 minutes at room 

temperature in the dark. Two different antibody combinations were used: CD31-

phycoerythrin (PE, 20 μl/ sample) with CD42b-fluorescein isothiocyanate (FITC, 20 

μl/sample), CD62E-PE (15 μl/sample). All antibodies were obtained from BD 

Biosciences. Samples were diluted with 500 ml of 0.22 μm double -filtered PBS 

before flow cytometric analysis. 

Detection of endothelial microparticles using flow cytometry: Samples were 

analyzed using a BD LSRII flow cytometer and BD FACSDIVA software. EMPs 

were defined as CD31+CD42b- or CD62E+ events smaller than 1.0 μm.  A 

logarithmic scale was implemented for forward scatter signal, side scatter signal and 

each fluorescent channel; size calibration was done with 0.9 μm standard precision 

NIST Traceable polystyrene particle beads (Polysciences, Inc.) and forward scatter 

signal. Fluorescence minus one (FMO) controls and non-stained samples were used to 

discriminate true events from noise, and to increase the specificity for microparticle 

detection for each sample. The flow rate was set on medium on LSRII and all samples 

were run for 180 seconds.  Using beads, we calculated that, on medium flow rate, a 

mean sample volume of 101 μl/ 180 seconds was processed. EMP counts per μl 

plasma were determined using the following formula: 
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(Example for CD31+/CD42- events): 

Number of CD31+/CD42- events      ×     Total volume of sample 
Volume sample analyzed                            Amount of PPP 

Where: the total volume of the sample equals 100 μl PPP stained with 20 μl 

CD42b-FITC and 20 μl of CD31-PE diluted with 500 μl PBS, 93 μl formaldehyde; 

(733 μl for CD31+ CD42- and 713 μl for CD 62E), the volume of the sample 

analyzed by the flow cytometer in 180 seconds equals 101 μl; and the amount of PPP 

used for the analysis is 100 μl (232). 

Supplemental Results – RT-PCR 

In CD31+/CD14-/CD34+ cells, eNOS mRNA levels were higher in the trial with 

exercise compared to control (P < 0.05), but were unaffected by PPL during either 

trial (Supplemental Fig 5.IIA). iNOS mRNA was unaffected by PPL in the control 

trial, but increased significantly with PPL in the trial with prior exercise (P < 0.05) 

such that iNOS levels were higher at the 4 hr PPL time point during the prior exercise 

trial compared to the 4 hr PPL time point of the control trial (P < 0.05; Fig 5.IIB). 

VEGF mRNA levels significantly decreased with PPL during the control trial (P < 

0.05), yet increased significantly during the prior exercise trial (P < 0.05; Fig 5.IIC). 

SOD1 mRNA increased with PPL during the control trial (P < 0.05; Fig 5.IID), but 

there was no effect of PPL in the prior exercise trial (Fig 5.IID). There were no 

effects of PPL or differences between trials for SOD2 or gp91phox mRNA levels (Fig 

5.IIE-F). p47phox and LOX-1 (Fig 5.IIG-H) mRNA levels displayed similar patterns in 

response to prior exercise and PPL, with no effects of PPL in the control trial, 
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although both of these genes were significantly increased in the trial with prior 

exercise (P < 0.05).  

In CD31+/CD14+/CD34- cells, PPL increased eNOS mRNA in the control trial (P 

< 0.05) but there was no change in the prior exercise trial (Fig 5.IIIA). There were no 

changes in iNOS mRNA with PPL during either trial (Fig 5.IIIB). VEGF mRNA was 

significantly reduced at 0 hr in the prior exercise trial compared to 0 hr in the control 

trial (P < 0.05), and tended to increase (P = 0.07) in the prior exercise trial (Fig 

5.IIIC). There were no effects of PPL during either trial on SOD1 or SOD2 mRNA 

levels (Fig 5.IIID-E). gp91phox mRNA did not change significantly with PPL in the 

control but increased significantly in the trial with prior exercise (P < 0.05; Fig 

5.IIIF). PPL induced significant increases in p47phox mRNA in both trials (P < 0.05; 

Fig 5.IIIG). LOX-1 mRNA levels were higher at both time points of the prior exercise 

trial compared to the control trial (P < 0.05) but were unaffected by PPL in both trials 

(Fig 5.IIIH). 

In CD34+ cells, eNOS mRNA increased significantly with PPL in the control trial 

but there was no change in the prior exercise trial (Supplemental Fig 5.IVA). There 

were no effects of exercise or lipemia on iNOS, VEGF, SOD1, SOD2, or gp91phox 

mRNA (P > 0.05; Fig 5.IVB-F). p47phox increased significantly with PPL during both 

the control and prior exercise trials (P < 0.05; Fig 5.IVG). LOX1 mRNA was 

unaffected by prior exercise or PPL (Fig 5.IVH). 
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Supplemental Table 5.I. Duration of submaximal exercise at 70% V
  .

O2max   

Body mass V
  .

O2max 70% V
  .

O2max 70% V
  .

O2max Work rate Duration 
ID (kg) (ml/kg/min) (ml/kg/min) (L/min) (Watts)* (min)** 
01 78.4 50.0 35.0 2.74 203 43.5 
02 63.4 61.1 42.8 2.71 210 44.1 
03 72.6 54.5 38.2 2.77 209 43.2 
04 97.0 50.5 35.4 3.43 255 34.9 
05 64.0 42.1 29.5 1.89 133 63.3 
06 87.5 52.2 36.5 3.20 239 37.4 
07 83.2 47.0 32.9 2.74 199 43.7 
08 87.5 41.6 29.1 2.55 179 46.9 
09 81.1 42.0 29.4 2.38 168 50.1 
10 68.6 38.9 27.2 1.87 129 63.9 

    
Mean 78.3 48.0 33.6 2.6 193 47.1 
SD 11.1 7.0 4.9 0.5 41 9.7 
SEM 3.5 2.2 1.5 0.2 13 3.1 

*Calculated using the American College of Sports Medicine for V
 .

O2 during cycle ergometry (6): V
 .

O2 

= Watts/Mass × 10.8 + 7.  
**Time required to reach an energy expenditure of 2.5 MJ (598 kcal) using assumption that 1 L O2 

consumed = 5 kcal energy expenditure.  
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ID 
Weight 

(lbs) 
Height 
(inches) 

Body 
Surface 

Area (m2) 

Meal 
Volume 

(mL) 

Meal 
Volume   
(fl oz) 

Meal 
Calories 

(kcal) 

Protein 
Calories 

(kcal) 

CHO 
Calories 

(kcal) 

Fat 
Calories 

(kcal) 
01 172.5 69 1.91 364 12.3 1303 36 182 1121
02 139.5 67 1.71 325 11.0 1164 33 163 1001
03 159.7 69 1.84 350 11.8 1254 35 176 1078
04 213.4 72 2.16 411 13.9 1472 41 206 1266
05 140.9 66 1.70 323 10.9 1157 32 162 995
06 192.5 71 2.05 389 13.1 1394 39 195 1199
07 183.0 73 2.05 389 13.1 1393 39 195 1198
08 192.5 73 2.08 395 13.4 1417 40 198 1218
09 172.5 69 1.91 364 12.3 1303 36 182 1121
10 151.0 70 1.82 346 11.7 1241 35 174 1067
     
Mean 172 70 2 365 12 1310 37 183 1126
SD 24 2 0.2 30.1 1.0 108 3 15 93
SEM 8 1 0.05 9.5 0.3 34 1 5 29

Supplemental Figure 5.II. PPL test meal composition for each subject.Table 
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Supplemental Figure 5.I. Validation of immunomagnetic separation of CD31+ (left) and 
CD14+ (right) peripheral blood mononuclear cells (PBMCs) by RT-PCR. NTC: no template 
control. 
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Supplemental Figure 5.II. Effects of postprandial lipemia with and without prior endurance 
exercise on eNOS (A), iNOS (B), VEGF (C), SOD1 (D), SOD2 (E), gp91phox (F), p47phox (G), 
and LOX1 (H) mRNA levels in CD31+/CD14-/CD34- cells. *Statistically significant change 
from within-trial 0 hr sample (P < 0.05). †Statistically significant difference from 
corresponding time point between trials (P < 0.05). 
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Supplemental Figure 5.III. Effects of postprandial lipemia (PPL) with and without prior 
endurance exercise on eNOS (A), iNOS (B), VEGF (C), SOD1 (D), SOD2 (E), gp91phox (F), 
p47phox (G), and LOX1 (H) mRNA levels in CD31+/CD14+/CD34- cells. *Statistically 
significant change from within-trial 0 hr sample (P < 0.05). †Statistically significant 
difference from corresponding time point between trials (P < 0.05). 
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Supplemental Figure 5.IV. Effects of postprandial lipemia with and without prior endurance 
exercise on eNOS (A), iNOS (B), VEGF (C), SOD1 (D), SOD2 (E), gp91phox (F), p47phox (G), 
and LOX1 (H) mRNA levels in CD34+ cells. *Statistically significant change from within-
trial 0 hr sample (P < 0.05). †Statistically significant difference from corresponding time 
point between trials (P < 0.05).  
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Chapter 6:  Summary and Conclusions 

Summary 

The three studies performed for this dissertation have contributed the following 

new information: (i) regular endurance exercise is associated with greater intracellular 

NO in cultured CACs, partly due to physical activity-dependent down-regulation of 

NADPH oxidase activity (study #1), (ii) a sedentary lifestyle is associated with nitro-

oxidative stress in freshly isolated CD34+ progenitor cells (study #2), and (iii) prior 

endurance exercise prevents PPL-induced increases in ROS production in CD31+ 

CACs (study #3). With a few notable exceptions (discussed in the Discussion section 

of each manuscript), it can be concluded that, in general, the hypotheses outlined in 

Chapter 1 were supported by these findings. Although these studies provide some of 

the first information about the effects of acute and chronic endurance exercise on 

molecular regulators of CAC function, a number of important questions remain for 

future research. 

Perspectives for Future Research 

Is NO a valid surrogate marker for CAC functional capacity? Substantial 

evidence from the literature indicates that exercise training can improve CAC 

function as indicated by migratory capacity and reendothelialization assays (93, 198, 

228, 230). It is also generally thought that these functions of CAC functions are 

dependent on the availability and actions of NO (61, 250). However, the present data 

(from study #2) indicating an inverse relationship between exercise training status 

and intracellular NO levels in CD34+ cells would suggest that NO may not be an all-

encompassing indicator of the functional status of these cells. Based on the vast 
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amount of information relative to the beneficial health consequences of exercise, it is 

unlikely that the lower NO levels in CD34+ cells from the trained group should be 

taken as an indicator that these cells were dysfunctional. Rather, the discrepancy 

probably reflects the dual role that NO plays in cells of the immune system. NO is 

elevated in nitro-oxidative stress and, in high concentrations, can play a role in 

inflammatory responses (159, 213). As discussed in Chapter 4, it is likely that the 

higher NO levels (combined with higher O2
     ·- 

, higher iNOS mRNA levels, and lower 

eNOS mRNA levels) in CD34+ cells from the sedentary group is suggests a pro-

inflammatory/pro-oxidative cell phenotype associated with a sedentary lifestyle. 

Although this conclusion was somewhat speculative, there is substantial evidence that 

sedentary behavior increases systemic inflammation and oxidative stress (163). 

Unfortunately, it was not possible to prove that the higher NO in cells from sedentary 

individuals in study #2 was linked to chronic inflammation/oxidative stress given the 

cross-sectional study design. Also, it would have been advantageous to have had a 

measure of angiogenic capacity (e.g., in vitro vessel formation, which was not 

performed because of limiting cell yields), as such data would have been helpful in 

interpreting whether higher NO levels were associated with impaired CAC function. 

Nevertheless, it is reasonable to suggest that the role of NO as a marker of CAC 

functional capacity needs to be re-evaluated. Future exercise studies must link 

measures of NO and ROS to measures of CAC function to definitively clarify the 

mechanistic role of NO-ROS dynamics in exercise-induced alterations in CAC-

mediated effects on the vascular endothelium. 
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Are CACs required for exercise training-induced effects on the vasculature? The 

present studies focused on genes (antioxidant defenses, pro-oxidant enzymes, and 

regulators of angiogenesis) and intracellular molecules (NO and ROS) that had 

previously been implicated in functional activities of CACs. However, these 

experiments may have been somewhat premature, because at this point we still do not 

know whether or to what extent CACs are actually involved in exercise training 

effects on the vascular endothelium. Probably because of technical limitations, no 

studies have examined the effect of in vivo CAC depletion on exercise training-

induced angiogenesis or effects on endothelial function. However, pharmacologic 

manipulation of circulating monocyte concentrations in rodents indicated that VEGF- 

and ischemia-induced angiogenesis is impaired in the presence of low circulating 

monocyte levels (86). Clearly a similar approach applied to an exercise training 

model would provide critical information to form appropriate hypotheses dealing with 

the effects of acute exercise or exercise training on CAC number and function. Thus, 

although we know that regular exercise can prevent or delay the onset of endothelial 

dysfunction and CV disease, or even reverse existing CV pathologies, future work 

must determine whether and quantify the extent to which CACs are involved in 

mediating the effects exercise training on CV health.  

Cell therapy: the future of exercise-based CAC research? While the present 

research investigations were underway, a substantial number of papers were 

published on the use of CACs as a source for cell therapeutic treatment of ischemic 

CV diseases. A recent review of 19 published cell therapy studies and 31 registered 

ongoing clinical trials concluded that although the prospect of “regenerative 
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medicine” using cell therapy is promising, the results are too variable for widespread 

clinical use (156). Current strategies to improve the efficacy of cell therapy include 

the use of mobilizing agents, pharmacologic adjuvants, ex vivo CAC expansion, and 

gene modification (156). One strategy conspicuously absent from this list is exercise, 

and, indeed, our laboratory has recently proposed that exercise may be one way to 

improve CAC-mediated regenerative angiogenesis (250). Specifically relating to the 

results of the present studies, the following hypotheses are proposed. Based on study 

#1, preconditioning patients with a bout of acute exercise prior to ex vivo expansion 

in culture may reduce oxidative stress and increase NO bioavailability of CACs to be 

used for therapy. From study #2, it might be expected that an exercise training 

intervention prior to CAC infusions would reduce nitro-oxidative stress and increase 

the expression of genes involved in angiogenesis in CD34+ progenitor cells, a cell 

population that was recently shown to improve left ventricular function after coronary 

artery infusion in post-myocardial infarction patients (171). Finally, the results of 

study #3 would suggest that exercise might improve the ability of CD31+ cells, 

recently shown to be effective source of cell therapy in rodent models of ischemic CV 

disease (114, 115), to better cope with an inflammatory/pro-oxidative challenge and 

thereby result in improved therapeutic outcomes.    

Conclusions 

Overall, it is concluded that acute and chronic endurance exercise enhance 

intracellular NO and ROS dynamics in CACs. The nature and direction of these 

effects appear to vary according to methodological approaches, such as cultured vs. 

freshly-isolated CACs and choice of cell surface antigens used to identify CAC 
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subpopulations. The roles of NO and ROS in CAC function and the extent to which 

CACs contribute to exercise training-induced improvements in vascular endothelial 

function will require clarification in future studies. Finally, the present studies may 

provide useful information for the development of future examinations of whether 

exercise can enhance the therapeutic efficacy of CACs in the treatment of CV disease.  
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March 12, 2008
To: Investigator: James M. Hagberg

Co-Investigator(s): Not Applicable
Student Investigator(s): Sarah Witkowski
Department: KNES - Kinesiology

From: Roslyn Edson
IRB Manager
University of Maryland, College Park

Re: IRB Application Number 06-0447 (PAS# 1486.5)
Life-Long Exercise and Novel Cardiovascular and Aging Risk
Factors

Approval Date: 02-21-2008

Expiration Date: 10-18-2008

Type of Application: Addendum (To include Nathan Jenkins as a student investigator on the
project, add two additional younger groups of 12 healthy male participants
between 18 and 30 years of age, recruit the UMCP varsity-and-club-level
crosscountry and track teams and if necessary, via personal contacts with local
running/cycling teams and clubs, draw the same amount of blood from the two
groups of younger individuals as approved for the older participants, omit the
forearm blood flow and the body composition assessment via DEXA procedures
and access body composition using the skinfold technique. Also, a physician
will no longer supervise the maximal exercise testing of the trained and
untrained younger subjects.)

Type of Research: Non-Exempt

Type of Review: Expedited
_______________________________________________________________________

The University of Maryland, College Park Institutional Review Board (IRB) approved
your IRB application. The research was approved in accordance with the University’s
IRB policies and procedures and 45 CFR 46, the Federal Policy for the Protection of
Human Subjects. Please include the above-cited IRB application number in any future
communications with our office regarding this research.

Recruitment/Consent: For research requiring written informed consent, the
IRB-approved and stamped informed consent document is enclosed. The IRB approval
expiration date has been stamped on the informed consent document. Please keep copies
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of the consent forms used for this research for three years after the completion of the
research.

Continuing Review: If you want to continue to collect data from human subjects or
analyze data from human subjects after the expiration date for this approval, you must
submit a renewal application to the IRB Office at least 30 days before the approval
expiration date.

Modifications: Any changes to the approved protocol must be approved by the IRB
before the change is implemented except when a change is necessary to eliminate
apparent immediate hazards to the subjects. If you want to modify the approved protocol,
please submit an IRB addendum application to the IRB Office.

Unanticipated Problems Involving Risks: You must promptly report any unanticipated
problems involving risks to subjects or others to the IRB Manager at 301-405-0678 or
redson@umresearch.umd.edu.

Student Researchers: Unless otherwise requested, this IRB approval document was
sent to the Principal Investigator (PI). The PI should pass on the approval document or a
copy to the student researchers. This IRB approval document may be a requirement for
student researchers applying for graduation. The IRB may not be able to provide copies
of the approval documents if several years have passed since the date of the original
approval.

Additional Information: Please contact the IRB Office at 301-405-4212 if you have
any IRB-related questions or concerns.
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August 27, 2010

To: Investigator: James M. Hagberg
Co-Investigator(s): Not Applicable
Student Investigator: Nathan Thomas Jenkins
Department: KNES - Kinesiology

From: Joseph M. Smith, MA, CIM
Manager
University of Maryland, College Park

Re: IRB Application Number: 10-0481 (PAS# 3162)
Project Title: “Effect of endurance exercise on angiogenic cells and

growth factors during postprandial lipemia.”

Approval Date: 08-23-2010

Expiration Date: 08-23-2011

Type of Application: New Application

Type of Research: Non-Exempt

Type of Review: Expedited
________________________________________________________________________

The University of Maryland, College Park Institutional Review Board (IRB) approved your IRB
application. The research was approved in accordance with the University’s IRB policies and
procedures and 45 CFR 46, the Federal Policy for the Protection of Human Subjects. Please
reference the above-cited IRB application number in any future communications with our office
regarding this research.

Recruitment/Consent: For research requiring written informed consent, the
IRB-approved and stamped informed consent document is enclosed. The IRB approval
expiration date has been stamped on the informed consent document. Please keep copies of the
consent forms used for this research for three years after the completion of the research.

Continuing Review: If you want to continue to collect data from human subjects or analyze
data from human subjects after the expiration date for this approval, you must submit a renewal
application to the IRB Office at least 30 days before the approval expiration date.
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Modifications: Any changes to the approved protocol must be approved by the IRB before the
change is implemented except when a change is necessary to eliminate apparent immediate
hazards to the subjects. If you want to modify the approved protocol, please submit an IRB
addendum application to the IRB Office.

Unanticipated Problems Involving Risks: You must promptly report any unanticipated
problems involving risks to subjects or others to the IRB Manager at 301-405-0678 or
jsmith@umresearch.umd.edu.

Student Researchers: Unless otherwise requested, this IRB approval document was sent to the
Principal Investigator (PI). The PI should pass on the approval document or a copy to the
student researchers. This IRB approval document may be a requirement for student researchers
applying for graduation. The IRB may not be able to provide copies of the approval documents
if several years have passed since the date of the original approval.

Additional Information: Please contact the IRB Office at 301-405-4212 if you have any IRB-
related questions or concerns.
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Project Title: Life-Long Exercise and Novel Cardiovascular Disease and Aging 
Risk Factors – Young Active Participants 

 

Page 1 of 4             Date ______________ Initials ____________ 
 

CONSENT FORM 
 
 This is a research project being conducted by Dr. James Hagberg in the Department of 
Kinesiology at the University of Maryland College Park. We are inviting you to participate in 
this research project because you are 18 – 35 years of age, are generally healthy, and have a long 
history of exercise/physical activity. The purpose of this study is to determine whether aging and 
regular exercise are associated with novel risk factors related to cardiovascular disease. In this 
case, “novel” risk factors mean newer risk factors beyond the standard risk factors such as 
cholesterol levels, blood pressure, diabetes, and obesity. In a subset of exercisers we will 
determine the degree to which these risk factors change when they stop exercising for 10 days. 
Two groups of older participants, one consisting of life-long exercisers and the other of generally 
sedentary individuals, have already completed the study. We recruit you for the study because 
we would like to compare the levels of novel risk factors from these older groups to those from 
younger individuals who exercise regularly. Your participation in this research is completely 
voluntary and you may choose not to take part at all. You are free to ask questions at any time 
without penalty. If you decide to participate in this research, you may stop participating at any 
time. If you decide not to participate in this project or if you stop participating at any time, you 
will not be penalized or lose any benefits to which you otherwise qualify. The specific tests, their 
requirements, and time commitments are described below.  
 
 Participant Characteristics: You have already completed a telephone or personal 
interview that you verbally consented to that determined that you are 18 – 35 years of age, 
regularly engage in endurance exercise such as running or cycling, are not a diabetic, have no 
evidence of cardiovascular or lung disease, and have no other medical problems that keep you 
from exercising vigorously. We have also discussed with you that certain medications may 
exclude you from taking part in this study. 

 
Study Procedures: If you qualify and complete the phase of this study where you stop 

exercising for 10 days, your total involvement in this study will consist of 3 visits over 2 – 3 
wks. If you do not undergo the 10 days of stopping exercise, your total involvement will consist 
of 2 visits over approximately 1 week.   
  
 Screening Visit: For the Screening Visit, the study will be explained to you, your 
medical history will be reviewed, and you will be asked to provide your written informed 
consent. Your resting blood pressure will be measured and about 2 tablespoons of blood will be 
drawn from a vein in your arm. Your body composition will be assessed by a procedure that 
involves measuring the thickness of your skinfolds. You will then undergo a treadmill exercise 
test to determine your maximal exercise capacity. This test will be done on an exercise treadmill 
where the treadmill incline will increase every 2 minutes until you cannot continue. Blood 
pressure, heart rate, and the electrical activity of your heart (electrocardiogram) will be recorded 
before, during, and after the test. During this test you will have a noseclip on your nose and you 
will breathe through a mouthpiece so that the air that you breathe out can be analyzed. This visit 
will last about 1 hour. 
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 Testing Visit #1: For the first Testing Visit, you will report to the laboratory in the 
morning after an overnight fast (only taking in water from 8 PM the night before). Prior to this 
visit you will record all items that you eat over a 7 day period. About 4 tablespoons of blood will 
be drawn from a vein in your arm. You will then undergo treadmill exercise for 30 minutes at a 
moderate to vigorous intensity. Heart rate and blood pressure will be monitored before, during, 
and after the exercise. During this test you will have a noseclip on your nose and you will 
breathe through a mouthpiece so that the air that you breathe out can be analyzed. At 5 and 30 
minutes after the exercise approximately 4 tablespoons of blood will be drawn from a vein in 
your arm. The blood samples that you provide before and after exercise will be tested for levels 
of the new cardiovascular disease risk factors. This visit will last about 1.5 hours.  
 
 If you are not undergoing the 10 days without exercise, this is all the testing that is 
required of you. If you are undergoing the 10 days without exercise phase of the study, you will 
undergo 1 additional visit to the laboratory.   
 
 Testing Visit #2: Following 10 days of training cessation, you will report to the 
laboratory for a blood draw and a second assessment of your body composition. During the 
period of training cessation, we ask that you monitor your weight to ensure that you do not gain 
or lose any weight when you are not exercising. If you change any of your medications during 
this phase of the study, please notify one of the researchers.  This visit will last about 30 minutes. 
 
 The maximum total amount of blood that will be drawn during the testing is about 12 
tablespoons if you are not undergoing the 10 days without exercise and about 18 tablespoons 
over the space of 2 – 3 weeks if you are undergoing the 10 days without exercise. This is 
approximately 1/3 and 1/2, respectively, of the amount of blood that is typically drawn during a 
single blood donation. These samples will be used to measure a number of chemicals and cell 
numbers in the blood that may be related to a person’s risk of cardiovascular disease and other 
age-related diseases. 
 

 
o take part in Testing Visit #2 

 
⁮ Yes, I consent to having my blood drawn and saved for future analyses 
⁮ No, I do not consent to having my blood drawn and saved for future analyses and my samples 
must be destroyed after the completion of this study.  
 
 Confidentiality: We will do our best to keep your personal information confidential. To 
help protect your confidentiality, all data are kept in a locked office with access available only to 
study personnel. Furthermore, all computer data bases containing results from this study will not 
have any names attached to them. If we write a report or article about this research project, your 
identity will be protected to the maximum extent possible. Your information may be shared with 
representatives of the University of Maryland College Park or government authorities if you or 
someone else is in danger or if we are required to do so by law.  
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 Samples of your blood will be sent to other collaborating laboratories for other blood 
measurements. Your blood samples sent to these laboratories will be identified only by a 
numeric code and only investigators at the University of Maryland College Park will know 
whose name is associated with each coded number. The list of names and codes will be retained 
at the University of Maryland College Park for up to 25 years.  
 
 Risks: The following risks are associated with your participation in this study. (1) There 
is some risk associated with maximal exercise testing but complications are unusual in healthy 
individuals in your age group (Gibbons et al., 1989, Circulation Vol. 80, No. 4).  Risks will be 
minimized by having the test administered by personnel trained in such tests and emergency 
procedures. You will gradually cool down upon reaching your highest effort, which will further 
help to reduce the risk of complications. A cardiac defibrillator will be present at all testing 
sessions. (2) There are risks of bruising and infection associated with blood drawing. These risks 
will be minimized by using sterile techniques and by having experienced personnel draw all 
blood samples. (3) The skinfold body composition testing has no known risks. (4) The risk of 
stopping your exercise for 10 days, if you complete this portion of the study, is that your risk 
factors for cardiovascular disease may deteriorate. It is unlikely that substantial changes will take 
place over the space of the 10 days without exercise. Furthermore, you will be able to start 
exercising again immediately after these 10 days without exercise. (5) There are no known risks 
associated with completing 7 day dietary records. (6) Your involvement will require some 
amount of time, travel, and effort. Your parking costs will be covered. 
 
 Benefits: This study may not help you personally, but may help the investigators to 
determine whether regular exercise results in better levels of new cardiovascular disease risk 
factors. Because you are a young and healthy participant, and you are therefore not at elevated 
risk for cardiovascular disease because of increasing age, your participation will help us to learn 
about these new risk factors in a group of people who are at very low risk for developing 
cardiovascular disease. You will also help us to learn what happens to the new risk factors after 
10 days of no physical activity. You might benefit because you will receive information about 
your current cardiovascular fitness and body fat levels, and you will be told of any abnormalities 
found during testing and will be advised to consult your personal physician. You will also be told 
of your results of the different risk factors that we measure and will be provided an explanation 
of these results.  

 
 Emergency Information: In the event of a physical injury resulting from participation in 
this study, medical attention is available at the Washington Adventist Hospital. The University of 
Maryland does not provide any medical, hospitalization, or other insurance for participants in 
this research study nor will the University of Maryland provide any medical treatment or 
compensation for any injury sustained as a result of participation in this research study except as 
required by law. 
 
 Contact Information: This research is being conducted by James Hagberg PhD of the 
Department of Kinesiology at the University of Maryland. If you have any questions about the 
research study itself, please contact Dr. Hagberg at 301-405-2487 (office) or via email at 
hagberg@umd.edu. If you have questions about your rights as a research subject or wish to 
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report a research-related injury, please contact: Institutional Review Board Office, University 
of Maryland, College Park, MD 20742; email: irb@deans.umd.edu; telephone: 301-405-
0678. 

 
 This research has been reviewed according to the University of Maryland College Park 
IRB procedures for research involving human subjects.  
 
 Your signature below indicates that you are at least 18 years of age, the research has 
been explained to you, your questions have been fully answered, and you freely and 
voluntarily choose to participate in this research program.  
 
 
_________________________________ 
Participant’s printed name 
 
 
_________________________________   ______________________ 
Participant’s signature      Date 
 
 
_________________________________   ______________________ 
Witness Signature      Date 
 
 
_________________________________   ______________________ 
Investigator Signature      Date 
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CONSENT FORM 
 
 This is a research project being conducted by Dr. James Hagberg in the Department of 
Kinesiology at the University of Maryland College Park. We are inviting you to participate in 
this research project because you are 18 – 35 years of age, are generally healthy, and are 
generally sedentary. The purpose of this study is to determine whether aging and regular exercise 
are associated with novel risk factors related to cardiovascular disease. In this case “novel” risk 
factors mean newer risk factors beyond the standard risk factors of cholesterol levels, blood 
pressure, diabetes, and obesity. Two groups of older participants, one consisting of life-long 
exercisers and the other of generally sedentary individuals, have already completed the study. 
We recruit you for the study because we would like to compare the levels of novel risk factors 
from these older groups to those from younger individuals who do not exercise regularly. Your 
participation in this research is completely voluntary and you may choose not to take part at all. 
You are free to ask questions at any time without penalty. If you decide to participate in this 
research, you may stop participating at any time. If you decide not to participate in this project or 
if you stop participating at any time, you will not be penalized or lose any benefits to which you 
otherwise qualify. The specific tests, their requirements, and time commitments are described 
below.  
 
 Participant Characteristics: You have already completed a telephone or personal 
interview that you verbally consented to that determined that you are 18 – 35 years of age, are 
not a diabetic, have no evidence of cardiovascular or lung disease, and have no other medical 
problems that keep you from exercising vigorously. We have also discussed with you that certain 
medications may exclude you from taking part in this study. 

 
Study Procedures: If you qualify and complete this study, your total involvement will 

consist of 2 visits over approximately 1 week, including 1 Screening Visit and 1 Testing Visit.  
 
 Screening Visit: For the Screening Visit, the study will be explained to you, your 
medical history will be reviewed, and you will be asked to provide your written informed 
consent. Your resting blood pressure will be measured and about 2 tablespoons of blood will be 
drawn from a vein in your arm. Your body composition will be assessed by a procedure that 
involves measuring the thickness of your skinfolds. You will then undergo a treadmill exercise 
test to determine your exercise capacity. This test will be done on an exercise treadmill where the 
treadmill incline will increase every 2 minutes until you cannot continue. Blood pressure, heart 
rate, and the electrical activity of your heart (electrocardiogram) will be recorded before, during, 
and after the test. During this test you will have a noseclip on your nose and you will breathe 
through a mouthpiece so that the air that you breathe out can be analyzed. This visit will last 
about 1 hour. 
 
 Testing Visit: For the Testing Visit, you will report to the laboratory in the morning after 
an overnight fast (only taking in water from 8 PM the night before). Prior to this visit you will 
record all items that you eat over a 7 day period. About 4 tablespoons of blood will be drawn 
from a vein in your arm. You will then undergo treadmill exercise for 30 minutes at a moderate 
to vigorous intensity. Heart rate and blood pressure will be monitored before, during, and after 
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the exercise.  During this test you will have a noseclip on your nose and you will breathe through 
a mouthpiece so that the air that you breathe out can be analyzed. At 5 and 30 minutes after the 
exercise approximately 4 tablespoons of blood will be drawn from a vein in your arm. The blood 
samples that you provide before and after exercise will be tested for levels of the new 
cardiovascular disease risk factors. This visit will last about 1.5 hours.  
 
 The maximum total amount of blood that will be drawn during this Testing is about 12 
tablespoons. This is approximately 1/3 of the amount of blood that is typically drawn during a 
single blood donation. These samples will be used to measure a number of chemicals and cell 
numbers in the blood that may be related to a person’s risk of cardiovascular disease.  
 
⁮ Yes, I consent to having my blood drawn and saved for future analyses 
⁮ No, I do not consent to having my blood drawn and saved for future analyses and my samples 
must be destroyed after the completion of this study.  

 
 Confidentiality: We will do our best to keep your personal information confidential. To 
help protect your confidentiality, all data are kept in a locked office with access available only to 
study personnel. Furthermore, all computer data bases containing results from this study will not 
have any names attached to them. If we write a report or article about this research project, your 
identity will be protected to the maximum extent possible. Your information may be shared with 
representatives of the University of Maryland College Park or government authorities if you or 
someone else is in danger or if we are required to do so by law.  
 
 Samples of your blood will be sent to other collaborating laboratories for other blood 
measurements. Your blood samples sent to these laboratories will be identified only by a 
numeric code and only investigators at the University of Maryland College Park will know 
whose name is associated with each coded number. The list of names and codes will be retained 
at the University of Maryland College Park for up to 25 years.  

 
 Risks: The following risks are associated with your participation in this study. (1) There 
is some risk associated with maximal exercise testing but complications are unusual in healthy 
individuals in your age group (Gibbons et al., 1989, Circulation Vol. 80, No. 4).  Risks will be 
minimized by having the test administered by personnel trained in such tests and emergency 
procedures. You will gradually cool down upon reaching your highest effort, which will further 
help to reduce the risk of complications. A cardiac defibrillator will be present at all testing 
sessions. (2) There are risks of bruising and infection associated with blood drawing. These risks 
will be minimized by using sterile techniques and by having experienced personnel draw all 
blood samples. (3) The skinfold body composition testing has no known risks. (4) There are no 
known risks associated completing 7 day dietary records. (5) Your involvement will require 
some amount of time, travel, and effort. Your parking costs will be covered.   
 
 Benefits: This study may not help you personally, but may help the investigators to 
determine whether regular exercise results in better levels of new cardiovascular disease risk 
factors. Because you are a young and healthy participant, and you are therefore not at elevated 
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risk for cardiovascular disease because of increasing age, your participation will help us to learn 
about these new risk factors in a group of people who are at very low risk for developing 
cardiovascular disease. You might benefit because you will receive information about your 
current cardiovascular fitness and body fat levels, and you will be told of any abnormalities 
found during testing and will be advised to consult your personal physician. You will also be told 
of your results of the different risk factors that we measure and will be provided an explanation 
of these results.  
 
 Emergency Information: In the event of a physical injury resulting from participation in 
this study, medical attention is available at the Washington Adventist Hospital. The University of 
Maryland does not provide any medical, hospitalization, or other insurance for participants in 
this research study nor will the University of Maryland provide any medical treatment or 
compensation for any injury sustained as a result of participation in this research study except as 
required by law. 
 
 Contact Information: This research is being conducted by James Hagberg PhD of the 
Department of Kinesiology at the University of Maryland. If you have any questions about the 
research study itself, please contact Dr. Hagberg at 301-405-2487 (office) or via email at 
hagberg@umd.edu. If you have questions about your rights as a research participant or wish to 
report a research-related injury, please contact: Institutional Review Board Office, University 
of Maryland, College Park, MD 20742; email: irb@deans.umd.edu; telephone: 301-405-
0678. 
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This research has been reviewed according to the University of Maryland College Park 
IRB procedures for research involving human participants.  

 
Your signature below indicates that you are at least 18 years of age, the research has 

been explained to you, your questions have been fully answered, and you freely and 
voluntarily choose to participate in this research program.  
 
_________________________________ 
Participant’s printed name 
 
_________________________________   ______________________ 
Participant’s signature      Date 
 
_________________________________   ______________________ 
Witness Signature      Date 
 
_________________________________   ______________________ 
Investigator Signature      Date 
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CONSENT FORM

Project Title Effect of endurance exercise on angiogenic cells and growth factors
during postprandial lipemia.

Why is this
research being
done?

This is a research project being conducted by James M. Hagberg,
Ph.D. at the University of Maryland, College Park. We are
inviting you to participate in this research project because you are
a healthy, physically active male between the ages of 18 and 35
with no history of cardiovascular or metabolic disease. You have
already indicated by phone or email interview that you meet these
criteria and also that you have no history of lactose intolerance
(an inability to digest dairy products) or other disorders of the
digestive system. The purpose of this research project is to
investigate the effects of a high-fat meal on recently-discovered
proteins and cell types in the blood. We are also interested in
whether exercise performed on the day before eating a high fat
meal alters these effects. Because most of us in modern Western
societies are almost always in a “postprandial” state (i.e., we have
usually had a recent large meal), the results of this study will have
important implications for a large number of people. The
experimental protocol (described in detail below) involves
performing exercise or no exercise on the day before a
“postprandial lipemia” test. Postprandial lipemia simply means
measuring the levels of fat (triglycerides) appearing in your blood
after eating a high-fat meal (a chocolate milkshake).

What will I be
asked to do?

This study involves 5 visits to the laboratory, totaling 15.5 hours
of your time:

Visit #1: ASSESSMENT OF BODY COMPOSITION,
CARDIOVASCULAR RISK FACTORS, AND AEROBIC
CAPACITY. On the 1st visit, you will read and sign the informed
consent, and complete and submit the physical activity history
and medical history forms. Your height will then be measured on
a metric scale and body composition will be assessed using the
skinfold method, in which skinfold thickness is measured using
calipers at 7 sites on your body. Blood pressure will be measured,
and a fasting blood sample will be obtained (1 tsp). The purpose
of this blood draw is to exclude any subjects from further testing
who have blood cholesterol levels: LDL or “bad” cholesterol
above 130 mg/dl; HDL or “good” cholesterol below 40; or total
cholesterol above 200 mg/dl). Subjects with high blood glucose
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values (i.e., above 100 mg/dl) will also be excluded from further
testing. Following the body composition assessment and blood
draw, your maximal oxygen uptake (a measure of the fitness of
your cardiovascular system) will be tested on a stationary bicycle.
This test will begin at a low intensity, and the intensity will
increase every two minutes until you can no longer continue. The
test is designed to last ~6-12 minutes. Your expired air will be
collected using a specialized mouthpiece and analyzed. This visit
will last a total of 1 to 1.5 hours.

Visit #2: CONTROL TRIAL OR EXERCISE TRIAL. For the 2nd

and 4th visits, you will report to the laboratory at 4:00 PM having
not ingested any food 3 hours before the treatment protocol. The
order of the control and exercise treatments will be randomized.
This visit will last approximately 1.5 hours.

EXERCISE TRIAL: You will be allowed to ingest only water
during the exercise treatment and the ingested volume will be
recorded. The exercise protocol will consist of cycling at an
intensity corresponding to 70% of your maximal exercise
capacity measured during visit #1. You will exercise until you
have burned 600 Calories. We anticipate that you will perform
about 45 minutes of exercise (between 30 and 60 minutes) to
burn 600 Calories at this exercise intensity. Furthermore, after
your maximal exercise test (visit #1), we will be able to
calculate an estimate of the number of minutes it will take you
to burn 600 calories. However, the equation we use is accurate
for most individuals, but it is not perfect for everyone.
Therefore, we will not know exactly how long you will need
to exercise on this visit until you actually perform the
experiment. The estimate we give you has a margin of error of
approximately 5 minutes for most people.

CONTROL TRIAL: You will perform the no-exercise control
trial by reporting to the laboratory at 5 PM and sitting quietly
for the same length of time as is estimated for the exercise
trial.

Following both the exercise and control trials, you will be given
the evening postexercise meal to take home and eat between 7:00
p.m. and 7:30 p.m. This meal will contain two Zone Perfect®
Nutrition Bars. The meal will provide 420 kcals and will contain
no more than 40% carbohydrate (42 g), 30 % fat (14 g), and 30 %
protein (32 g). You will be asked not to eat anything more after
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the evening postexercise meal until your next visit at ~7:00 a.m.
on the following day, and to drink only water during this time.
You may drink as much water you like and to record the volume
on the dietary log.

Visit #3: POSTPRANDIAL LIPEMIA TEST #1. You will report
to the laboratory between 7:00 and 7:15 A.M. in a fasted state as
soon as possible after waking up, having performed no physical
activity during that morning. You will have an intravenous (i.e.,
“IV”) catheter inserted into an easily accessible vein on your arm
by ~7:30 a.m.

You will consume the test meal from ~7:30 A.M. until ~08:00
A.M. The amount you will consume will be determined on the
basis of your body size. An average serving of this test meal
provides 1362 calories (84% fat). The ingredients are heavy
whipping cream, chocolate syrup, sugar, and milk powder. It is
very much like a rich, chocolate milk shake. Immediately upon
completion of the meal, a blood sample will be obtained for the 0-
hr time point. The next blood samples will be obtained at 60
minute intervals after meal ingestion for 4 hours. The venous
catheter will be flushed a standard saline solution after each
sample is obtained to prevent blood from clotting in the line. You
will be allowed to drink water throughout the test and the volume
you drink will be recorded.

The following volumes of blood will be obtained at each
sampling point. The purpose of each sample is including in
parentheses.

Baseline (pre-meal): 4 tsp for examination of fasting triglycerides
and angiogenic growth factor levels
0 hr (immediately upon completion of meal): 8 tsp for isolation of
stem cells measuring angiogenic growth factors
1, 2, and 3 hrs: 4 tsp for measuring angiogenic growth factors and
triglyceride concentrations
4 hr: 8 tsp for isolation of stem cells and measuring angiogenic
growth factors

Therefore, a total of 32 tsp of blood will be obtained during this
test. For comparison, a pint (96 tsp) is given at a blood donation.
This test will last approximately 5.5 hours.

Visit #4: EXERCISE OR CONTROL TRIAL (as described for
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Visit #2). The remaining experimental trial will be completed on
this visit. This visit will occur at least 3 and not more than 10
days after the preceding postprandial lipemia test. This visit will
last approximately 1.5 hours.

Visit #5: POSTPRANDIAL LIPEMIA TEST #2 (exactly as
described for Visit #3). This visit will last approximately 5.5
hours.

What about
confidentiality?

We will do our best to keep your personal information
confidential. To help protect your confidentiality, you will be
identified by a 2-digit ID number on data forms, questionnaires,
and computer files. Your name will not be included on any of
these forms. Confidentiality will be maintained by developing a
code form that associates the ID numbers with the names of the
participants. The code form will be maintained in a locked, secure
filing cabinet in the Metabolic Testing Laboratory, and only study
personnel will have access to this file. All study
forms/questionnaires will include subjects’ ID numbers only (no
names). If we write a report or article about this research project,
your identity will be protected to the maximum extent possible.
Your information may be shared with representatives of the
University of Maryland, College Park or governmental authorities
if they or others are in danger or if we are required to do so by
law. Data will be kept for a minimum of 3 years and a maximum
of 10 years. Information collected from excluded participants or
participants who withdraw from the study will not be used and
will be destroyed or shredded immediately. Responses from
participants recruited by email will be kept confidential by
printing paper copies of emails and storing them in locked,
secured files according to subject codes. All personally
identifying information (e.g., name and email address) will be
redacted from the printed versions and, all email correspondence
containing any identifying information will be permanently
deleted after securing the hard printed copies.

What are the risks
of this research?

Participation in this study does not involve any known
psychological, social, legal, or economic discomfort or risks.
Physical discomfort may be experienced during exercise along
with minor local discomfort due to the insertion of a venous
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catheter.

The primary risks in this study are (1) physical and mental fatigue
due to the performance of maximal and submaximal exercise, and
(2) physical discomfort from blood drawing, The risks of exercise
will be minimized by: (1) recruiting subjects such as yourself who
are accustomed to vigorous exercise and who have no history of
cardiovascular or metabolic disease, (2) informing you about the
symptoms and signs of strenuous exercise complications and
instructing you to stop exercising if these symptoms or signs
develop, (3) monitoring behavior continuously and terminating
exercise immediately if there are signs of developing illness such
as headache, nausea, mental disorientation, lack of coordination,
or dizziness. Should you develop any signs or symptoms, an
emergency protocol will be immediately initiated and emergency
medical technicians will be called. The probability of avoiding
serious injury is high if emergency care is initiated immediately.
Emergency protocols for handling a cardiovascular problem are
posted in the laboratory at all times and the study personnel are
trained and certified to perform emergency CPR/AED procedures.
All exercise testing procedures and safety protocols in our
laboratory follow the American College of Sports Medicine’s
guidelines for exercise testing. The risks of drawing blood from
the arm include the possibilities of feeling lightheaded or fainting,
development of a small bruise, or infection. These risks will be
minimized by using only qualified and experienced personnel to
draw blood who will follow standard sterile techniques, who will
observe the subject after the catheter is withdrawn, and who will
apply pressure to the blood-draw site.

Additionally, there may be some risk associated with consuming a
high fat meal, including indigestion and/or nausea. However, it is
anticipated that this risk will not be substantially greater than that
faced in day-to-day life, as the test meal is very much like a rich,
chocolate milkshake that might be purchased from a common fast
food chain. The risk of gastrointestinal distress is minimized by
ensuring that you have no history of lactose intolerance or
gastrointestinal disorders.

All testing will be carefully supervised by the investigators and
other trained personnel to reduce the possible risks. In the
unlikely event of an emergency, laboratory personnel trained in
CPR will be present during all test sessions. An AED is present
in the laboratory at all times and is verified to be in proper
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working order on a daily basis.

What are the
benefits of this
research?

This study may not help you personally. However, you might
benefit by having their body composition assessed and will be
provided information about your height, weight, body fat levels,
aerobic fitness, your current levels of cardiovasuclar disease risk
factors. Finally, you will be helping us understand the effects of
exercise and postprandial lipemia on a recently-discovered
population of cells that repair the cardiovascular system.
Therefore, you will be contributing to the advancement of
important biomedical research by volunteering your time.

Do I have to be in
this research?
May I stop
participating at any
time?

Your participation in this research is completely voluntary. You
may choose not to take part at all. If you decide to participate in
this research, you may stop participating at any time. If you decide
not to participate in this study or if you stop participating at any
time, you will not be penalized or lose any benefits to which you
otherwise qualify.

Is any medical
treatment available
if I am injured?

The University of Maryland does not provide any medical,
hospitalization or other insurance for participants in this research
study, nor will the University of Maryland provide any medical
treatment or compensation for any injury sustained as a result of
participation in this research study, except as required by law.

What if I have
questions?

This research is being conducted by Dr. James M. Hagberg at
the University of Maryland, College Park. If you have any
questions about the research study itself, please contact Dr.
Hagberg at (301) 405-2487 or by email at hagberg@umd.edu.

If you have questions about your rights as a research subject or
wish to report a research-related injury, please contact:
Institutional Review Board Office, University of Maryland,
College Park, Maryland, 20742; (e-mail) irb@umd.edu;
(telephone) 301-405-0678
This research has been reviewed according to the University of
Maryland, College Park IRB procedures for research involving
human subjects.

Statement of Age of
Subject and
Consent

Your signature indicates that:
you are at least 18 years of age;,
the research has been explained to you;
your questions have been fully answered; and
you freely and voluntarily choose to participate in this research
project.

Subject Signature NAME OF SUBJECT
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SIGNATURE

and Date

DATE

NAME OF WITNESS

SIGNATURE

Witness Signature
and Date

DATE

NAME OF
INVESTIGATOR
SIGNATURE

Investigator
Signature And Date

DATE
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