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THE INVERSE CONDUCTIVITY PROBLEM
AND THE HYPERBOLIC X-RAY TRANSFORM

CAaRrLOS A. BERENSTEIN anDp Enrico CASADIO TARABUSI

ABSTRACT. It is shown here how the approximate inversion algorithm of Barber &
Brown for the linearized inverse conductivity problem in the disk can be interpreted
exactly in terms of the X-ray transform with respect to the Poincaré metric and of
suitable convolution operators.

0. INTRODUCTION

The purpose of electrical impedance imaging is to reconstruct the conductivity
(or impedance) as a function on the interior of a given body from the measurements
of the boundary potentials induced by boundary currents which can be varied
at will. One possible approach is due to Barber and Brown [BB1], [BB2], who
gave an algorithm for an approximate inversion of the linearized two-dimensional
problem when the conductivity on a disk is approximately constant. Later, Santosa
and Vogelius [SV] justified this by following Beylkin’s generalized Radon transform
method [B] to construct another approximation for the inversion. In this note we
shall show the exact relations between these and the X-ray (or Radon) transform
R on the hyperbolic disk, based on the exact inversion for R found in [BC1], and
prepare the ground for improved inversion algorithms for the impedance problem.
The complete details will be given in a forthcoming paper.

1. BACKGROUND

Let D, the unit disk of C, be endowed with the Poincaré (hyperbolic) metric
ds? = 4]dz|*/(1—]z]%): this is conformal to the Euclidean metric and has constant
curvature —1. The induced distance of z € D from the origin 0 is related to |z|
by |z] = tanhd(z,0)/2. A geodesic for this metric is a diameter or the intersection
with D of a circle perpendicular to dD. In geodesic polar coordinates z = (w,r),
with w = z/|z] and r = d(z,0), the Poincaré metric is expressed as ds®> = dr? +
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sinh® r dw?, where dw? is the ordinary metric in 8D. The length of a geodesic circle
of radius r is 27 sinh r, while the Laplace-Beltrami operator on D is

11—z 232
W LET N
b? 0 -2
= W + cothrE + sinh ra—w2—,
where A is the Euclidean Laplacian.
Following Helgason [H1], [H2], the hyperbolic X-ray transform on D of a function
f of compact support (or fast decay) is

Rf(vy) = / f(z)dmy(z)  for every v €T,

where dm., is the hyperbolic arc length on ~, and G is the set of geodesics of D.
The dual X-ray transform of a (say) continuous function ¢ on I is

Re6(z) = /F #(7)dun(y)  for every z € D,

where dy . is the unique measure on I'; = {y € T': 4 3 z} which is invariant by
all isometries of D which keep z fixed. The transform R was inverted by Helgason
in [H3], while an inversion for R*R was proved in [BC1], based on the observation
that R*R is a convolution operator with a radial kernel, namely 1/(7sinhr). For
other properties of R, relations with the Riesz transform, and characterizations of
the range see [BC3], [BC2], and the literature cited there.

2. THE INVERSE CONDUCTIVITY PROBLEM

In this section we summarize the procedure of [SV]: other references for these
questions are [SU|, [BB1], [BB2].

The inverse conductivity problem in dimension 2 is modeled on D by the Neu-
mann problem

div(fgradu) =0 in D,
f— = on 0D,

where the input +, the boundary current to be applied, is such that |, ap® =0,
and the measurable output is the boundary potential u|sp (unique up to constant).
The goal is the recovery of the conductivity £, which is a positive function on D
(in fact it can be assumed to be bounded away from 0). As it is shown in [SV], this
problem can be linearized about the conductivity = 1, so that 8 = 1 + §3, thus

leading to the pair of Neumann problems, with w = U + éU (where U corresponds
to the unperturbed state 8 = 1),

a—U:d) on 0D,

{AU:O in D,
on
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and

o(6U)
({-, ) denotes the standard scalar product), with 6U = u — U measured on dD.
It 1s natural to assume 68 = 0 on 9D and take ¢ = 3, to be a dipole at a point

w € 0D; then the former Neumann problem, with U = U,,,, becomes

{ A(6U) = —(grad 68,gradU) in D,

{ AU, =0 in D,
ou, 06,
o~ "5, on oD,

where 0/07 is the counterclockwise tangential derivative, and where é,, is the Dirac
delta function at w. Then 6U itself depends on w also, so we denote it §U,,, and
the problem reads

(2.1) a(6U.,,)

o =0 on 0D.

{ A(6U,) = —(grad 68, gradU,) in D,

The function U, is explicitly given in [SV]:

ZE,

Y

where z' = (iw,2), y' =1 — (w, 2).
Let us introduce new independent variables

!

SR
(=) +(y")*

The function z — w = u +1v is a conformal mapping onto {Smw > 1/2}. Let §U,,
in the new variables (u,v) be denoted by ¢, and 64 by b. Then (2.1) becomes

u=U,,

— ab 3 Cx
Ag = ~5, o {Smw > 1/2},
O _ Smw =
%—0 on {Smw = 1/2}.

The Green function in {Smw,Sm{ > 1/2}, where ¢ = £ + i, given by

1 u—E& u—¢
R (e e A e ey
1s the solution of the problem

ApG = 9 in {Smw > 1/2},

Ou
oG o
8_v_0 on {Smw = 1/2}.
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Therefore o roo
g(w) = / / b(¢)G(¢, w) d€ dn + constant.
—oo J1/2

One possible normalization for dU,,, hence for g, is to take the tangential deriv-
ative on the boundary (since the Neumann problem requires |, ap9Uw =0). So

B, o L [® [P (@& (1/2-n)’
@2 Fti)= zw/_oo/m w62 7 (1/2 =gy (&) 4 dn

The left-hand of (2.2) can be computed from the output data. Thus the linearized
inverse conductivity problem leads to a family of integral equations (2.2), one for

each w € 0D.

3. CONVOLUTION OPERATORS
AND THE HYPERBOLIC X-RAY TRANSFORM

In trying to explain the ad hoc solution by Barber and Brown [BB1], [BB2] of
the inverse conductivity problem, Santosa and Vogelius used in [SV] the method
of the Beylkin generalized Radon transform [B] to construct an approximation to
the inversion of (2.2). Their approach consisted in introducing a transform that
integrates along the geodesics of D (which happen to be the level curves of U, for
w € OD) after multiplication by an exponential factor: the main problem being
that it distinguished the orientation of the geodesics, while physical considerations
indicate that it is not the case. At any rate, their questions led us in [BC1] to
consider the inversion of R*R since it was an approximate solution to the problem.
The main point of the present note is to show that (2.1) with the equivalent col-
lection of integral equations (2.2) can be exactly formulated in terms of hyperbolic
geometry and X-ray transform.

Let v(w,s) be the geodesic determined by the equation {U, = s}, and x the
function on I' given by

xO(w,5)) = 2D (0, ),

where y(w, s) has extreme points w and z(w,s) € 0D; the function x is given by
the data (as proposed by Barber and Brown).

Proposition 3.1. We have
x = R(A*68),

where A is the radial convolution kernel

A(r) = ?4-17;(3 cosh™r — cosh™27). O

The Barber-Brown backprojection was the dual X-ray transform R* (see Sec-
tion 1), so that the exact equation for the Barber-Brown inversion is

(3.1) R*x = R*R(A + §p).
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Since the composition product R*R is a radial convolution operator, it commutes
with the convolution by A. Recalling (cf. [BC1]) that T = (1/47)Apu(1 — cothr) is
the exact convolution inverse of R*R, where Ay is the Laplace-Beltrami operator
on D for the Poincaré metric, we have

T(r)= A(r)  for r — oo;

on the other hand, T is singular at » = 0 but A is not. The Barber-Brown procedure
R*y =~ 68 can be understood now by replacing A by T in (3.1). The proof of
the proposition consists in analyzing the commutator of R with an arbitrary radial
convolution operator. The symbol of A (with respect to Helgason’s spherical Fourier
transform [H2]) is easily computed. Setting I'(a +b) = I'(a + b)T'(a — b), where I'
is the Euler Gamma, function, recalling that Ag(\) = —A? — 1/4, and using [GR,
formula 7.132.7] and the functional relation I'(z + 1) = 2 I'(z) we get

AN = 27r/ A(r) P;x—1/2(coshr) sinhrdr
0

ne(3e8)-w(3+3)
= —#A(A)F(Zi%),

where P, is the associated Legendre function. The determination of the convolution
inverse of A is still an open question.
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